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Abstract 

Like many other cognitive processes, the perception of music 
involves processes and structural considerations that are 
highly relational in nature. To date, no physiologically 
plausible model has been used to simulate and explain how 
infants perceive melodic content. Here we used DORA 
(Discovery Of Relations by Analogy; Doumas et al., 2008), a 
domain-general symbolic-connectionist model of relational 
learning, to simulate melodic perception and categorization 
by infants (Chang & Trehub, 1977; Trehub et al, 1984), and 
to provide an account of the mechanism for melodic 
processing in infants. Given four input semantic features for 
each note in the melodic stimuli sequence (two of which 
could be internally obtained from the other two via a 
comparator), DORA’s performance matched the behavioral 
data from the infant studies. Furthermore, the ability of our 
model to simulate infants’ behavior is evidence that structured 
representations of relational musical properties can be 
bootstrapped from unstructured feature representations. 

Keywords: Melodic perception; relative pitch; relational 
learning; symbolic connectionist; DORA. 

Introduction 
While there are many defining characteristics of music (e.g., 
harmony, rhythm, timbre, pitch, etc.), one of the most 
fundamental and salient aspects is the melody. Indeed, 
simple melodies were likely the earliest form of music to 
have been created and transmitted, and have been (and still 
are) prevalent in all documented cultures past and present 
(Sachs, 1943). 

Simple melodies consist of discrete units or notes, with 
each note characterized by a pitch, or fundamental 
frequency. Importantly, there are several ways in which the 
pitch sequence of a melody can then be encoded and stored. 
The two most well documented forms of encoding are 
absolute or relative pitch. Absolute pitch encodes and stores 
a melody using the fundamental frequencies of each pitch, 
while relative pitch (or intervallic) encodes the melody in 
terms of the relations (or specific frequency differences) 
between each note. Notably, processing melodies in terms 
of the relative pitch information (or intervallic patterns) is 
considered to be the strategy most humans use to 

characterize and store familiar melodies (Attneave & Olson, 
1971). Another characteristic upon which melodies can be 
categorized, however, is according to the contour (general 
shape, or sequence of up and down movements in 
frequencies from note to note). Given the existence of these 
various characteristics, there has been considerable research 
and speculation on the extent to which these categorizations 
contribute to a listener’s mental representation of a melody, 
and how they may interact. 

Relative pitch and melodic contour 
The properties of relative pitch (or intervallic patterns) are 
most commonly used in long term musical storage and 
recall (Page, 1994). For example, when listening to the 
melody of a song, such as Happy Birthday, what makes the 
song immediately recognizable is the unique intervals 
between each of the notes in the song. That is, the song is 
recognizable whether it initially starts on a low or high note 
due to the unique intervallic pattern between all subsequent 
notes. There is much evidence on the use of relative pitch 
information in adults through both behavioral studies 
(Dowling, 1978, 1984, 1988) as well as neuroimaging 
studies (Fujioka, Trainor, Ross, Kakigi, & Pantev, 2004; 
Trainor, McDonald, & Alain, 2002). 

It is worth noting that while a melody with an identical 
contour to Happy Birthday, but with a different intervallic 
sequence would sound like a completely different tune, it 
would still have the same general “shape”, or up and down 
pattern. Although the intervallic pattern may be the most 
overtly salient feature of a melody, studies have shown that 
human adults are also sensitive to absolute pitch and 
melodic contour in the short term (Bartlett & Dowling, 
1980; Dowling, 1978). And while there is evidence that 
infants may also be sensitive to intervallic information 
(Trehub, Bull, & Thorpe, 1984), numerous experiments 
with infants suggest that they may primarily encode 
melodies using contour information (for review, see Trehub, 
2001; Trehub, Trainor, & Unyk, 1993). 

Even though intervallic and contour properties may 
characteristically differ in the type of information they 
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carry, what is perhaps more important is the fact that the 
nature of the information they carry are both fundamentally 
relational in nature. That is, this information depends on the 
relationship (whether it is the precise intervallic distances or 
the general contour shape) between each pitch, and not on 
the actual pitch frequencies themselves. And it is within this 
capacity that melodic perception can be said to share a 
cornerstone property with many higher-level cognitive tasks 
(and arguably certain “lower” level processes such as 
pattern recognition as well). 

Relational processing 
The ability to explicitly represent and reason about 
relational properties has been proposed as a fundamental 
mechanism underlying a wide range of cognitive 
phenomenon, including analogy-making (Gentner, 1983; 
Gick & Holyoak, 1980; Holyoak & Thagard, 1995), 
language (Kim, Pinker, Prince, & Prasada, 1991), detection 
of perceptual similarities (Medin, Goldstone, & Gentner, 
1993), and the application of rules in novel situations 
(Lovett & Anderson, 2005). Given that melodic processing 
appears to require extracting relational information from 
melodies, it is reasonable to assume that the same 
mechanisms used in other relational tasks might also operate 
when processing musical information. That is, common to 
both of the main approaches used by adults and infants 
(intervallic and contour) to encode melodic information is 
that the underlying structure of the melody is represented as 
the relations between the individual notes. The strength of 
relational reasoning is in the ability to reason about the roles 
that objects play rather than the literal features of those 
objects (see Doumas, Hummel, & Sandhofer, 2008). 
Similarly, the ability to recognize a melody (or it’s shape) 
rests on appreciating the relationship between the pitches, 
and not the specific frequencies of each note. To evaluate 
the similarity between relational reasoning and music 
processing, we modeled melodic perception using a neurally 
plausible domain-general model of relational cognition.  

The LISA/DORA models 
LISA (Learning and Inference with Schemas and Analogies; 
Hummel & Holyoak, 1997, 2003) is a symbolic-
connectionist model of analogy and relational reasoning. 
DORA (Discovery Of Relations by Analogy; Doumas et al., 
2008) is an extension of LISA that learns structured (i.e., 
symbolic) representations of relations from unstructured 
inputs. That is, DORA provides an account of how the 
structured relational representations LISA uses to perform 
relational reasoning can be learned from examples. At 
present, DORA accounts for over 30 phenomena from the 
literature on relational learning, and cognitive development, 
and as it learns representations of relations it develops into 
LISA and can simulate the additional 40+ phenomena in 
relational thinking for which LISA accounts for (e.g., 
Doumas et al., 2008). In the following, we provide a very 
brief description of the LISA/DORA models (for full 
details, see Hummel & Holyoak, 1997, 2003; Doumas et al., 
2008). 

LISAese Representations  In LISA (and DORA after it has 
gone through learning), relational structures are represented 
by a hierarchy of distributed and localist codes (see Figure 
1). At the bottom, “semantic” units (small circles in Figure 
1) represent the features of objects and roles in a distributed 
fashion. At the next level, these distributed representations 
are connected to localist units (POs) representing individual 
predicates (or roles) and objects (triangles and larger circles 
in Figure 1). Localist role-binding units (RBs; rectangles in 
Figure 1) link object and role units into specific role-filler 
bindings. At the top of the hierarchy, localist P units (ovals 
in Figure 1) link RBs into whole relational propositions.  

Relational structures (or propositions) are divided into 
two mutually exclusive sets: a driver and recipient(s). In 
LISA/DORA, the sequence of firing events is controlled by 
the driver. Specifically, one (or at most three) proposition(s) 
in the driver become(s) active (i.e., enter working memory). 
When a proposition enters working memory, role-filler 
bindings must be represented dynamically on the units that 
maintain role-filler independence (i.e., POs and semantic 
units) to allow for reusability of units and preservation of 
similarity across different bindings (Hummel & Holyoak, 
1997). In LISA, binding information is carried by synchrony 
of firing (with roles firing simultaneously with their fillers). 
In DORA, binding information is carried by systematic 
asynchrony of firing, with bound role-filler pairs firing in 
direct sequence (for details, see Doumas et al., 2008).1 
 

 
 

Figure 1. LISA/DORA representation of the proposition, 
chase (dog, cat). 

 
Relational Learning In broadest strokes, DORA learns 
structured representations by comparing objects to isolate 
their shared properties and to represent these shared 
properties as explicit structures. More specifically, DORA 
starts with simple feature-vector representations of objects 
(i.e., a node connected to set of features describing that 
object; large and small circles from Figure 1). When DORA 
compares one object to another, corresponding elements 
(i.e., shared features) of the two representations fire 
simultaneously. Any semantic features common to both 

                                                             
1 Asynchrony-based binding allows role and filler to be coded 

by the same pool of semantic units, which allows DORA to learn 
representations of relations from representations of objects 
(Doumas et al., 2008). 
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objects receive twice as much input and thus become 
roughly twice as active as features connected to one but not 
the other. By recruiting a new PO unit and learning 
connections between that unit and active semantics via 
Hebbian learning (wherein the strength of connections is a 
function of the units’ activation), DORA learns stronger 
connections between the new PO unit and more active 
semantic units. The new PO thus becomes an explicit 
representation of the featural overlap of the compared 
objects and can act as a single place predicate, taking other 
object representations as arguments to form role-filler pairs 
(see Doumas et al., 2008). Applied iteratively, this process 
allows DORA to learn structured explicit single-place 
predicate representations of any properties compared objects 
may share. Comparison also allows DORA to learn 
representations of multi-place relations by linking sets of 
constituent role-filler pairs into relational structures (i.e., to 
learn the chases relation by linking together representations 
of the roles chaser and chased; see Doumas et al., 2008 for 
details).  
Mapping For the purpose of analogical mapping, 
LISA/DORA learns mapping connections between units 
coactive of the same type in the driver and recipient (e.g., 
between PO units in the driver and PO units in the 
recipient). These connections grow whenever corresponding 
units in the driver and recipient are active simultaneously.  
They permit LISA to learn the correspondences between 
matching structures in separate analogs. They also permit 
correspondences learned early in mapping to influence the 
correspondences learned later. 

Methods 
In this section we describe two infant studies (Chang & 
Trehub, 1977; Trehub et al., 1984), followed by the details 
and outcomes of DORA’s simulation. 

Task 1 description 
In an experiment by Chang and Trehub (1977), infants (4.5 
to 6 months of age) were tested on their ability to recognize 
melodies based on either the absolute pitch frequencies or 
relational properties extracted from these pitches. This 
between-group experiment was conducted with a set of 15 
habituating trials, followed by four novel dishabituation 
trials, while the infants’ heart rates were monitored 
throughout to determine their expectation and recognition 
levels for the novel stimuli. The habituation stimuli 
consisted of randomly constructed six note melodic patterns. 
The dishabituation stimuli varied depending on which of 
two groups the infants were in. 

Crucially, in the “transposed” group, the novel test 
stimulus consisted of the same melody transposed to a 
different key. The novel melody retained the relational 
information between the individual notes (intervallic 
sequence), but none of the featural information (specific 
frequencies) of the individual notes. In the control group, 
the novel melody was a scrambled version of the original 
melody. The individual notes’ featural characteristics (pitch 

frequencies) were retained, while the relational 
characteristics between the notes were not. Thus, comparing 
performance between the “transposed” and control groups 
would indicate whether infants were processing the 
melodies based on the individual frequencies, or extracting 
the relational information between notes. 

 

 
 
Figures 2. a) The note sequences in the driver and recipient 
are compared with each other. b) After mapping notes in the 

sequence, DORA learns a new PO unit from the featural 
overlap of the mapped notes. Sn are semantic units, and R 

are random units (only two each are shown here). 

Simulation 1 
To simulate the training portion of the study, we created a 
“melody” consisting of 6 object PO units—one PO for each 
note (see Figure 2a). Each note PO unit was attached to four 
random semantic units (chosen from a pool of 100 features), 
one semantic indicating the note’s place in the stimuli 
sequence (1-6), one semantic describing the note’s specific 
frequency (between f1 and f24), one semantic for whether 
the note was higher or lower than the previous note (the first 
PO in the sequence was not connected to such a semantic), 
and one semantic describing the note’s distance (i.e., 
frequency difference) from the previous note. The 
information the semantic units carried was based on features 
which infants have been shown to be capable of extracting 
from melodies to greater or lesser extents. For instance, 
infants have been shown to be sensitive to sequential order 
(Thorpe & Trehub, 1989; Thorpe, Trehub, Morrongiello, & 
Bull, 1988), are sensitive to and can discriminate absolute 
pitch information under certain conditions (Lynch, Eilers, 
Oller, & Urbano, 1990; Trehub, Cohen, Thorpe, & 
Morrongiello, 1986), can process contour information 
(Trehub et al., 1984; Trehub et al., 1993), and are also 
sensitive to intervallic differences (Schellenberg & Trehub, 
1996a, 1996b). Importantly, the semantic values specifying 
frequency direction and frequency difference can be 
generated from the raw frequency values using the 
comparator mechanism described in Doumas et al. (2008) 
and adopted from the JIM model of object recognition 
(Hummel & Biederman, 1992). Finally, each PO was 
attached to an RB unit, and all the RBs attached to a single 
P unit, representing that the notes all belonged to a single 
sequence. 

PO PO PO PO PO

RB RB RB RB

P

PO PO PO PO PO PO

RB RB RB RB

P

PO

DRIVER

RECIPIENT

S1R

PO

RB

PO

RB

RS2

new 
PO

(a) (b)

RB

RB RB

RB
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We allowed DORA to compare each note sequence to the 
previously experienced note sequence, map the two 
sequences, and learn new predicate POs using the 
predication learning algorithm described above. The 
sequence of firing of the PO units in the driver was the same 
as the order of the notes in the melodic sequence (i.e., the 
first note in the sequence fired first, the second note second, 
and so on). More specifically, DORA represented the 
current note sequence in the driver and the previous note 
sequence in the recipient (see Figure 2a). Next DORA 
attempted to map the sequences. Finally, DORA learned 
new PO units using these mappings (Figure 2b). DORA 
stored the results of learning in memory. 

In previous studies, DORA has successfully been used to 
simulate frontal lobe maturation by adjusting the level of 
lateral inhibition between units in the recipient (e.g., 
Doumas, Morrison, & Richland, 2009, 2010; Morrison, 
Doumas, & Richland, 2006, 2011). Reflecting the fact that 
we are simulating infants we used a highly reduced lateral 
inhibition parameter of 0.5. 

After training, DORA’s LTM consisted of the 15 
sequences of notes it had learned during training. In 
addition, we created 50 additional sequences of between 2 
and 8 notes to serve as distractors in memory (following the 
assumption that other melodic sequences may have been 
learned by the infant). In each distracter note sequence each 
PO from the same sequence was attached to a single RB unit 
with all RBs from the same sequence attached to a single P 
unit, indicating all the notes belonged to a single sequence 
(as with the training items). Each PO was attached to 4 
random features as well as one semantic indicating the note 
and another semantic indicating the interval (frequency 
difference) from the previous note. 

To simulate the test, we created two melodies, each 
consisting of 6 PO units, each representing a single note. 
Each note PO unit was attached to four random semantics, 
one semantic unit describing the note’s place in the 
sequence (1-6), one semantic describing the frequency, one 
describing frequency difference from the previous note, and 
another describing the direction of the difference (just as for 
the melodies created in the training condition). Additionally, 
as originally conducted by Chang and Trehub (1977), we 
created a transposed melody that consisted of the same 
sequence of notes as the training melodies, but in a different 
key. The control melody consisted of the exact same POs 
used in training, but in a scrambled order.  

We put the test melody (transposed or control) in the 
driver, and allowed DORA to attempt to retrieve an item 
from LTM, and attempt to map it to the melody in the 
driver. If DORA successfully mapped the new melody to 
one of the sequences it had learned during training, this 
implied that DORA recognized the new melody. Otherwise, 
DORA was taken to be surprised by the new melody. 

We ran 200 simulations (100 transposed and 100 control), 
each consisting of 15 training and one test trial (the exact 
same number of training and test trials used in the original 
study). DORA’s performance was a close qualitative match 

to the data from Chang and Trehub’s (1977) study. Just like 
infants in the transposed condition, when presented with 
transposed melodies, DORA was much more frequently 
unsurprised (77 of 100 trials). On the other hand, for control 
melodies, DORA was unsurprised much less frequently (31 
of 100 trials). These results indicate, that DORA, like the 
infants in the original study, could detect and extract 
regularity in melodic sequences, and generalize that 
regularity to novel keys. 

Task 2 description 
For the second simulation, we used a study by Trehub, Bull, 
and Thorpe (1984). This study was conducted on infants 8 
to 11 months of age, and used a broader range of melodic 
stimuli to examine the extent to which infants process 
intervallic, contour, octave transpositions, and range 
information from melodies. Although the first task (Chang 
& Trehub, 1977) demonstrated that infants used relational 
information to categorize melodies, the design did not 
specifically differentiate between intervallic and contour 
relations (it is possible that infants could have used either 
strategy to categorize the melodies). 
 

 
 

Figure 3. Three types of transformations applied to test 
melodies in Trehub, Bull, & Thorpe (1984). 

 
Although a similar paradigm to Chang and Trehub’s 

(1977) study was used by Trehub et al. (1984), the two 
studies differed in two important aspects. First, the training 
and testing methodology was different. Whereas the first 
experiment used a habituation/dishabituation training 
paradigm and monitored heart-rate during testing, the 
second experiment used a training procedure that habituated 
infants to a melodic pattern and also trained them to respond 
with head turns to melodies that differed in melodic contour 
and range. Infants were then tested for subsequent 
discriminations of novel stimuli by monitoring head turns. 
Secondly, although training and testing stimuli also 
consisted of six note melodic patterns, several additional 
melodic properties were examined Trehub et al.’s testing 
condition. In addition to the transposed melody (as used in 
Chang and Trehub, 1977), the testing conditions included 
contour preserving and contour violating conditions in 
order to test for octave and frequency range sensitivity. The 
contour preserving condition (see Figure 3) allowed the 
researchers to test whether infants categorize melodies 
based on intervallic or contour properties. That is, it was 
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assumed that if infants recognized only the transposed 
condition and not the contour-preserving condition, then 
that would be taken as evidence that they processed the 
melodies based on intervals. On the other hand, if they 
recognized both, the most parsimonious explanation would 
be that they were processing the melodies based on contour 
alone. Additionally, the octave change conditions tested 
whether infants’ were also sensitive to larger changes in 
intervallic patterns. Crucially, it was found that infants did 
not discriminate either the transposition or contour 
preserving melodies, but discriminated the octave change 
melodies.2 In summary, Trehub et al. found that infants 
could categorize melodies by contour properties, but were 
also sensitive to the magnitude of the contour, and therefore 
could discriminate larger intervals (outside of the general 
original range) from the smaller intervals of melodies that 
occurred within the original melodic range. 

Simulation 2 
Although there were methodological differences between 
Task 1 and 2, we simulated Trehub et al. (1984) using the 
same basic procedure as in Simulation 1. Fundamentally, 
Task 2 used the same approach by exposing infants to a 
standard melody and then subsequently observing how they 
would perceive and categorize novel test stimuli. 
Accordingly, we created a set of training patterns and 
trained the model as in Simulation 1. 

To test the model, we created transposition melodies just 
as in Simulation 1. In addition, we created two kinds of 
contour preserving melodies. Close contour preserving 
melodies were similar to the training melodies, but with 
frequencies within 2 units of the training trials. So for 
example, if the first three notes of the training stimulus 
were: frequency2, frequency6, frequency8, the first three 
notes of the test pattern would be frequency2 ±2, 
frequency6 ±2, frequency8 ±2 (under the constraint that the 
direction of the note was maintained across training and test 
patterns—e.g., if the second note of the training melody was 
higher than the first, the second note of the test melody was 
also higher than the first). Similarly, the far contour 
preserving melodies were created in exactly the same 
manner, but with each note ±6 from the original. 

The results followed the same qualitative pattern observed 
in Trehub et al. (1984). As in the previous simulation, 
DORA successfully matched transposed melodies. 
Importantly, DORA also successfully matched close 
contour preserving melodies the majority of the time (74 of 
100 trials), and was surprised on far contour preserving 
melodies more frequently (63 of 100 trials). In other words, 
like the infants in Trehub et al.’s study, DORA was 
sensitive to contour preservation, but under conditions when 
the contour was preserved but coupled with large changes in 

                                                             
2 There was no evidence that infants processed octave shifts as 

musical pitches with closely related harmonic properties (as adults 
generally do), but rather that they only processed them as large 
shifts in frequency (see Trehub et al., 1984). 

frequency, DORA was more likely to categorize the melody 
as being different or produce a surprise reaction. 

Discussion 
To our awareness, this is the first time a general model of 
relational cognition has been used to simulate melodic 
perception, and the results subsequently compared to 
existing behavioral data from infants.3 We view these first 
steps as a very simple beginning, and hope to expand the 
complexity of the model and the range of future simulations. 

The results of both simulations were a good match to their 
behavioral counterparts, and supported our hypothesis that 
relational processing might play an important role in music 
perception. In the first simulation, DORA performed similar 
to infants in extracting the relational properties of 
transposed melodies, and also in failing to recognize the 
scrambled melody. In the second simulation, both DORA 
and infants categorized the melodies based primarily on 
relational information of the melodic contours. Furthermore, 
DORA’s ability to discriminate large contour distortions 
(far contour) in Simulation 2 suggests that infants may be 
sensitive to certain intervallic properties. 

While these simulations provide insights into some of the 
mechanisms that infants may use when categorizing music, 
we hope to determine through future studies, when and how 
children begin to learn the more typically defining feature of 
melodies: the intervallic sequences, or relative pitch 
relations between notes. Crucially, this study corroborates 
existing evidence that infants as young as four months are 
sensitive to relational features of music and appear to reason 
about these relational features in a structure sensitive 
manner (i.e., generalizing relational properties to novel 
inputs). Another important question that future simulations 
and studies should attempt to answer is whether this 
widespread ability to discriminate intervallic sequences in 
adults is innate, or in fact a learned ability. 

Lastly, DORA is currently the only model that learns 
complex structured relations and that can subsequently 
“grow up” to reason like an adult (Doumas & Hummel, 
2005). Accordingly, we hope to determine through future 
simulations whether DORA can perhaps also grow up to 
“appreciate” (or even compose) music like an adult. 
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