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Abstract

Leveraging Network Information for Data-Driven Scientific Discovery

by

Hongyuan You

Network is a popular format for encoding structured information in applications rang-

ing from spatial economics to neuroimaging studies. Discovering features of local pro-

cesses and structures plays a key role in understanding and interpreting the overall state

of complex networks. For example, the absence or inhibition of interaction in the protein-

protein network impacts the expression levels of protein pathways, which determines the

presence or absence of disease; the existence of structural network fragments is significant

for functional behavior in the neural system.

In this thesis, we will show that, through various regularization approaches, we can

discover local substructures that affect global states or properties of network instances,

or efficiently learn coherent models over networks that are robust to missing or cor-

rupted edge weights. Second, with increases in both the amount and the modalities of

neuroimaging data, there is a need for models that integrate diverse functional and struc-

tural data and that can identify plausible patterns in the complex brain architecture. We

will discuss how to model both the structure and function of brain connectivities, while

we place hard network constraints driven by prior knowledge and model assumptions.
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Chapter 1

Introduction

Network data arises in a number of application domains ranging from Internet of Things

(IoT), cloud computing, software vulnerability analysis, neuroscience, biology, geography,

to social sciences [3, 4, 5, 6]. Accordingly, network analysis has emerged as a major

paradigm for exploring complex processes behind observed data [7, 8, 9, 10]. Compared

to high dimensional data, analysis over network data is more challenging due to the

nature of inter-dependence among the entities.

In the first three sections of this thesis, we investigate the essential relationship be-

tween local network structure and global network behaviors. We consider multiple net-

work samples, each of which is associated with a global label that reflects its current

state (e.g., disease stage of the underlying brain network, drought stage of the under-

lying environmental network). To discover qualified sets of sub-structures, recent works

on supervised subnetwork mining aims to efficiently search discriminative subnetworks

for classification with respect to user-specified objective functions rather than frequency

criterion. Most of the frequency-based subnetwork mining algorithms [?, ?] are unsuper-

vised and apply variations of branch-and-bound searching strategy which help avoid the

in-feasibility of enumerating the full candidate set. The bottleneck of these methods lies

1



Introduction Chapter 1

on its redundancy of discovered subnetwork patterns without quality guarantee, and on

the exponentially increasing number of subnetworks when low-frequency threshold has

to be set to avoid loss of key information. For user-specified criteria such as prediction

accuracy, subnetwork learning methods usually [11, 12] conduct a network-guided heuris-

tic search or applies a rejection sampling on edit map representing the extremely large

combinatorial solution space, so that subnetworks in the answer set have better classifica-

tion performance with locally built network-constrained decision tree. All these search or

sampling approaches make the assumption of binary interactions, although network edges

are usually real-valued with the meaning of connectivity strength or correlation coeffi-

cient. Another promising approach [13, 14] is to develop shrinkage and selection methods

in the regularization perspective. By penalizing local variation of coefficient vector along

network edges, neighboring features on the network are encouraged to achieve similar

estimation of their coefficients. We extend this approach in various real-world scenarios,

and develop customized algorithms that select optimal discriminative subnetwork fea-

tures in a controlled-size without irrelevant and redundant nodes, given no assumption

about the statistical distribution of network data. One case is that both local network

interactions and the global network state can evolve over time (Section 4). The task

is to uncover a small set of local network processes that have maximum impact on the

global network states such that their evolution can be used to predict the transition of

the global network states. In order to support heterogeneity, we develop algorithms that

decompose a set of networks each of which has a marked set of vertices into a set of

common patterns that can together express the behavior of each network. The research

work in this thread is related to feature selection methods. However, these ignore the

interactions among network entities. Graph classification approaches do not consider

temporal smoothness.

The tool that we used in above problems, network-based regularization, covers a se-

2



Introduction Chapter 1

ries of general optimization problems including convex clustering [15], fused lasso [16],

network-enhanced classification, and total-variation regularization [17]. Recent works [18]

prefer formulating it as a large-scale convex optimization problem, which is solved in a dis-

tributed and scalable manner via alternating direction method of multipliers (ADMM) [19].

This makes it possible to perform each update independently per node or edge, with

guaranteed convergence and global optimality. We provide a generalized framework of

network-based regularization on dynamic networks with additional and adjustable penal-

ties on spatial and temporal smoothness. Our formulation introduces more flexibility by

allowing heterogeneous variations on every edge and between different snapshots. By in-

corporating the ADMM method into alternating updating steps, our convex formulation

achieves global convergence and optimality, and scales well to large datasets.

Another major topic of thesis is applying network-based methods on neuroimaging

data. As the amount and sources of neuroimaging data about nervous system processes

increases, these new imaging data sets are often complex and difficult to analyze, and

usually not reducible, thus requiring novel analysis approaches utilizing a network-based

view [20, 21, 22, 23, 24, 25, 26]. Consider brain networks associated with Alzheimer’s

disease (AD) [27, 28, 29] as a specific case of the aforementioned local-global problem. At

an early stage, the disease can be as mild as causing the patient difficulty in remembering

recent events; however, as the disease progresses, disease dynamics results in more brain

regions being impacted. Detecting subnetwork markers in brain connectivity that predict

and evolve along with the progression of the disease is thus an important task since it not

only helps to characterize the disease but further provides the means to plan the right

treatments at the right stage of the disease.

While the majority of network-based studies for fMRI have focused on the brain’s de-

fault mode or “resting” state [30], more recent efforts have turned to understanding brain

connectivity elicited by task demands, including visual processing [21, 31], memory [32],

3
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and learning [20]. Therefore there is a need for models that integrate diverse functional

and structural neuroimaging data and that can identify plausible patterns in the com-

plex architecture that is the human brain. Global network analysis of both functional

and structural connectivity has demonstrated that brain networks have characteristic

topological properties, including dense modular structures and efficient long-distance

paths [31, 33]. Relating functional connectivity networks from multiple tasks with an

underlying structural connectivity network opens up the opportunity of examining the

structure-function relationship from the perspective of different tasks and cognitive states.

Existing approaches for exploring this structure-function relationship commonly compute

statistics between the underlying structures and the functional activation signals. These

studies show that highly structurally connected regions have higher functional corre-

lations, but not vice versa. Others examine the possibility of predicting a functional

connectivity network from structural networks: Goni et al. [34] adopt numerical simula-

tion of fMRI activity on adjusted structural networks by a “neural mass” model. Becker

et al. [35] seek to approximate a functional connectivity network, as modeled by an

adjacency matrix, with a weighted sum of powers of the structural connectivity matrix,

with a rotation matrix to align eigenvectors to the target functional matrix. It has also

been shown that jointly modeling structural and functional connectivity improves the

classification of schizophrenia [36].

1.1 Contributions and Organizations

• Regularized Spectral Learning for Global-state Network Data: Data min-

ing practitioners are facing challenges from data with network structure. In this

work, we address a specific class of global-state networks comprising of a set of

network instances sharing a similar structure yet having different values at local

4



Introduction Chapter 1

nodes. Each instance is associated with a global network state which indicates

the occurrence of an event. The objective is to uncover a small set of discrimina-

tive subnetworks that can optimally classify global network values. Unlike most

existing studies which explore an exponential subnetwork space, we address this

difficult problem by adopting a space transformation approach. Specifically, we

present an algorithm that optimizes a constrained dual-objective function to learn

a low-dimensional subspace that is capable of discriminating networks labelled by

different global states, while reconciling with common network topology sharing

across instances. Our algorithm takes an efficiency-appealing approach from spec-

tral graph learning and we show that globally optimum solutions can be achieved

via matrix eigen-decomposition.

• Learning Predictive Substructures for Network Data: Learning a succinct

set of substructures that predicts global network properties plays a key role in un-

derstanding complex network data. Existing approaches address this problem by

sampling the exponential space of all possible subnetworks to find ones of high pre-

diction accuracy. In this work, we develop a novel framework that avoids sampling

by formulating the problem of predictive subnetwork learning as node selection,

subject to network-constrained regularization. Our framework involves two steps:

(i) subspace learning, and (ii) predictive substructures discovery with network reg-

ularization. The framework is developed based upon two mathematically sound

techniques of spectral graph learning and gradient descent optimization, and we

show that their solutions converge to a global optimum solution—a desired prop-

erty that cannot be guaranteed by sampling approaches. Through experimental

analysis on a number of real world datasets, we demonstrate the performance of

our framework against state-of-the-art algorithms, not only based on prediction
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accuracy but also in terms of domain relevance of the discovered substructures.

• Subnetwork Mining with Spatial and Temporal Smoothness: In many

real-world applications, data is represented in the form of networks with struc-

tures and attributes changing over time. The dynamic changes not only happen

at nodes/edges, forming local subnetwork processes, but also eventually influence

global states of networks. The need to understand what these local network pro-

cesses are, how they evolve and consequently govern the progression of global net-

work states has become increasingly important. In this work, we explore these

questions and develop a novel algorithm for mining a succinct set of subnetworks

that are predictive and evolve along with the progression of global network states.

Our algorithm is designed in the framework of logistic regression that fits a model

for multi-states of network samples. Its objective function considers both the spatial

network topology and temporal smooth transition between adjacent global network

states, and we show that its global optimum solution can be achieved via steepest

descent. Extensive experimental analysis on both synthetic and real world datasets

demonstrates the effectiveness of our algorithm against competing methods, not

only in the prediction accuracy but also in terms of domain relevance of the dis-

covered subnetworks.

• Discrepancy-aware Network Regularization: Network regularization is an ef-

fective tool for incorporating structural prior knowledge to learn coherent models

over networks, and has yielded provably accurate estimates in applications rang-

ing from spatial economics to neuroimaging studies. Recently, there has been an

increasing interest in extending network regularization to the spatio-temporal case

to accommodate the evolution of networks. However, in both static and spatio-

temporal cases, missing or corrupted edge weights can compromise the ability of
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network regularization to discover desired solutions. To address these gaps, we pro-

pose a novel approach—discrepancy-aware network regularization (DANR)—that is

robust to inadequate regularizations and effectively captures model evolution and

structural changes over spatio-temporal networks. We develop a distributed and

scalable algorithm based on alternating direction method of multipliers (ADMM) to

solve the proposed problem with guaranteed convergence to global optimum solu-

tions. Experimental results on both synthetic and real-world networks demonstrate

that our approach achieves improved performance on various tasks, and enables in-

terpretation of model changes in evolving networks.

• Reconstructing Coupled Networks Under Domain Constraints: Modeling

the behavior of coupled networks is challenging due to their intricate dynamics. For

example in neuroscience, it is of critical importance to understand the relationship

between the functional neural processes and anatomical connectivities. Modern

neuroimaging techniques allow us to separately measure functional connectivity

through fMRI imaging and the underlying white matter wiring through diffusion

imaging. Previous studies have shown that structural edges in brain networks

improve the inference of functional edges and vice versa. In this work, we investi-

gate the idea of coupled networks through an optimization framework by focusing

on interactions between structural edges and functional edges of brain networks.

We consider both types of edges as observed instances of random variables that

represent different underlying network processes. The proposed framework does

not depend on Gaussian assumptions and achieves a more robust performance on

general data compared with existing approaches. To incorporate existing domain

knowledge into such studies, we propose a novel formulation to place hard net-

work constraints on the noise term while estimating interactions. This not only
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leads to a cleaner way of applying network constraints but also provides a more

scalable solution when network connectivity is sparse. We validate our method on

multishell diffusion and task-evoked fMRI datasets from the Human Connectome

Project, leading to both important insights on structural backbones that support

various types of task activities as well as general solutions to the study of coupled

networks.
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Chapter 2

Regularized Spectral Learning for

Global-state Network Data

2.1 Introduction

With the increasing advances in hardware and software technologies for data col-

lection and management, practitioners in data mining are now confronted with more

challenges from the collected datasets: the data are no longer as simple as objects with

flattened representation but now embedded with relationships among variables describ-

ing the objects. This sort of data is often referred to as network or graph data. In the

literature, there are a large number of techniques developed to mine useful patterns from

network databases, ranging from frequent (sub)networks mining [37], network classifica-

tion/clustering [38, 39] to anomaly detection [40]. Often, even for the same data mining

task, we may need different algorithms to be developed depending on whether the net-

works are directed or indirected, or whether the data resides at nodes, edges or both of

them [37].

In this work, the focus is on a specific class of interesting networks in which we have a
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series of network instances that share a common structure but may have different dynamic

values on local nodes and/or edges. In addition, each network instance is associated

with a global state indicating the occurrence of an event. Such a class of global-state

network data can be used to model a number of real-world applications ranging from

opinion evolution in social networks [41], regulatory networks in biology [42] to brain

networks in neuroscience [43]. For example, we possess the same set of genes (nodes)

embedded in regulatory networks. Yet, research in systems biology shows that the gene

expression levels (node values) may vary across individuals and for some specific genes,

their over-expressions may impact those in the neighbors through the regulatory network.

These local effects may jointly encode a logical function that determines the occurrence

of a disease [42, 44]. In analyzing these types of network data, a natural question to

be asked is how one can learn a function that can determine the global-state values

of the networks based on the dynamic values captured at their local nodes along with

the network topology? More specifically, is it possible to identify a small succinct set of

influential discriminative subnetworks whose local-node values have the maximum impact

on the global states and thus uncover the complex relationships between local entities

and the global-state network properties? In searching for an answer, obviously, a naive

approach would enumerate all possible subnetworks and seek those who have the most

discriminative potential. Nonetheless, as the number of subnetworks is exponentially

proportional to the numbers of nodes and edges, this approach generally is analytically

intractable and might not be feasible for large scale networks. A more practical approach

is to perform heuristic sampling from the space of subnetworks. Though greatly reducing

the number of subnetworks to be visited, the sampling approaches might still suffer

from suboptimal solutions and might further lose explanation capability due to the large

number of generating subnetworks.

In this work, we propose a novel algorithm for mining a set of concise subnetworks
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whose local-state node values discriminate networks of different global-state values. Un-

like the existing techniques that directly search through the exponential space of sub-

networks, our proposed method is fundamentally different by investigating the discrim-

inative subnetworks in a low dimensional transformed subspace. Toward this goal, we

construct on top of the network database three meta-graphs to learn the network neigh-

boring relationships. The first meta-graph is built to capture the network topology

sharing across network instances which serves as the network constraint in our subspace

learning function. The two subsequent meta-graphs essentially capture the relationships

between neighboring networks, especially those located close to the potential discrimina-

tive boundary. In this setting, our algorithm aims to discover a unique low dimensional

subspace to which: i) networks sharing similar global state values are mapped close to

each other while those having different global values are mapped far apart; ii) the com-

mon network topology is smoothly preserved through constraints on the learning process.

In this way, our algorithm helps to attack two challenging issues at the same time. It

first avoids searching through the original space of exponential number of subnetworks

by learning a single subspace via the optimization of a single dual-objective function.

Second, our network topology constraint not only matches properly with our subspace

learning function, its quadratic form naturally imposes the L2-norm shrinkage over the

connecting nodes, resulting in an effective selection of relevant and dominated nodes for

the subnetworks embedded in the induced subspace. Additionally, the principal techni-

cal contributions of our work is the formulation of our learning objective function that is

mathematically founded on spectral learning and its advantages therefore not only ensure

the stability but also the global optimum of the uncovered solutions.

In summary, we claim the following contributions: (i) Novelty: We formulate the

problem of mining discriminative subnetworks by transformed subspace learning—an

approach that is fundamentally different from most existing techniques that address the
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problem in the original high-dimensional network space. (ii) Flexibility: We propose

a novel dual-objective function along with constraints to ensure learning of a single

subspace in which different global state networks are well discriminated while smoothly

retaining their common topology. (iii) Optimality: We develop a mathematically sound

solution to solve the constrained optimization problem and show that the optimal solution

can be achieved using matrix eigen-decomposition. (iv) Practical relevance: We evaluate

the performance of the proposed technique on both synthetic and real world datasets and

demonstrate its appealing performance against related techniques in the literature.

2.2 Preliminaries and Problem Setting

In this section, we first introduce some preliminaries related to network data with

global state values and then give the definition of our problem on mining discriminative

subgraphs to distinguish global state networks.

(Network data instance) Given Vi = {v1, v2, . . . , vni
} as a set of nodes and Ei ⊆

Vi × Vi as a set of edges, each connecting two nodes (vp, vq) if they are known to relate

or influence each other, we define a network instance (or snapshot) Ni as a quadruple

Ni = (Vi, Ei, Li, Si) in which Li is a function operating on the local states of nodes

Li : Vi → R and Si encodes the global network state of Ni.

In this work, we consider Ni as an indirected network and values at its local nodes are

numerical (both continuous and binary) while its global state is a discrete value. Since

each Ni is associated with Si as its state property, Ni is often referred to as a global-state

network. For example, in the gene expression data, each Ni corresponds to a subject and

a local state indicates the gene expression level at node vp ∈ Vi whereas the global state

encodes the presence or absence of the disease, i.e., Si ∈ {presence, absence}. Likewise

in a dynamic social network, a value at each node vp may encode the political standpoint
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of an individual whereas the global state indicates the overall political viewpoint of the

entire community at some specific time (snapshot). Both local and global states may

change across different network snapshots.

For network instances/snapshots with different structures, we may use the null value

to denote the state of a missing node and consequently, an edge in a network instance is

valid only if it connects two non-null nodes. Now, let us consider a database consisting

m network instances N = {N1, N2, . . . , Nm}, we further define the following network over

these network instances:

(Generalized network - first meta-graph)

We define the generalized network N as a triple N = (V,E,K) where V = V1∪V2 . . .∪Vm

and if ∃(vp, vq) ∈ Ei, such an edge also exists in E. For a valid edge E(p, q) ∈ E, we

associate a weight K(p, q) as the fraction of network instances having edge E(p, q) in

their topology structure,i.e., K(p, q) = m−1×
∑

iEi(p, q) with Ei(p, q) = 1 if there exists

an edge between vp, vq in network Ni. As such, K(p, q) is naturally normalized between

(0, 1]. The value of 1 means the corresponding edge exists in all Ni’s while a value close

to 0 shows that the edge only exists in a small fraction of network data.

It should be noted here that while we have no edge values at each individual network

Ni, we have non-zero value associated with each existing edge E(p, q) in the generalized

network N . Indeed, K(p, q) reflects how frequently there is an edge between vp and vq or

equivalently, how strongly is the mutual influence between two entities vp and vq across

all networks. As N is defined based on all network instances, we also view N as our first

meta-graph with V being its vertices and K capturing its graph topology generalized

from the network topology of all network instances. We are now ready to define our

problem as follows.

Problem Definition

Given a database of network data instances/snapshots N = {N1, N2, . . . , Nm}, we aim to
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learn an optimal and succinct set of subnetworks with respect to the topology structure

generalized in the first meta-graph that well discriminate network instances with different

global state values.

2.3 Spectral Solution for Constrained Dual-Objective

Formulation

2.3.1 Meta-Graphs over Network Instances

As mentioned in the above sections, searching for optimal subnetworks in the fully

high dimensional original network space is always challenging and potentially intractable.

We adopt an indirect yet more viable approach by transforming the original space into a

low dimensional space of which networks with different global-states are well distinguished

while concurrently retaining the generalized network topology captured by our first meta-

graph. Toward this goal, we develop two neighboring meta-graphs based on both the local

state values and global state values.

We denote these two meta-graphs respectively by G+ and G−. Their vertices cor-

respond to the network instances while a link connecting two vertices represents the

neighboring relationship between two corresponding network instances. For the meta-

graph G+, we denote A+ as its affinity matrix that captures the similarity of neighboring

networks having the same global state values. Likewise, we denote A− as the affinity ma-

trix for meta-graph G− that captures the similarity of neighboring networks yet having

different global network states. As such, A+ and A− respectively encode the weights on

the vertex-links of two corresponding graphs G+ and G−. In computing values for these

affinity matrices, with each given network instance Ni, we find its k nearest neighboring

networks based on the local state values and divide them into two sets, those sharing
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similar global state values and those having different global states. More specifically, let

kNN(Ni) be the neighboring set of Ni, then elements of A+ and A− are computed as:

A+
ij =

vi·vj

‖vi‖‖vj‖ if Si = Sj and Nj ∈ kNN(Ni) or Ni ∈ kNN(Nj), otherwise we set A+
ij = 0.

And A−ij =
vi·vj

‖vi‖‖vj‖ if Si 6= Sj and Nj ∈ kNN(Ni) or Ni ∈ kNN(Nj), otherwise A−ij = 0.

In these equations, we have denoted the boldface letters vi and vj as the vectors

encoding the dynamic local states of Ni’s and Nj’s nodes, and have used the cosine

distance to define the similarity between two network instances. It is worth mentioning

that, though existing other measures for network data [45], our using of cosine distance

is motivated by the observation that we can view each node as a single feature and thus

the network data can be essentially considered as a special case of very high dimensional

data. As such, the symmetric and nonnegative cosine measure can be effectively used

though obviously the other ones [45] can also be directly applied here.

It is also important to give the intuition behind our above computation. First, notice

that both A+ and A− are the affinity matrices having the same size of m×m since we

calculate for every network instance. Second, while A+ captures the similarity of network

instances sharing the same global states and neighboring to each other, A− encodes the

similarity of different global state networks yet also neighboring to each other. Such

networks are likely to locate close to the discriminative boundary function and thus they

play essential roles in our subsequent learning function. Third, both A+ and A− are

sparse and symmetric matrices since only k neighbors are involved in computing for each

network and if Nj is neighboring to Ni, we also consider the inverse relation, i.e., Ni is

neighboring to Nj. Moreover, A− is generally sparser compared to A+ as the immediate

observation from the second remark.
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2.3.2 Constrained Dual-Objective Function

Let us recall that vi is the vector encoding the node states of the corresponding

network Ni and let us denote the transformation function that maps vi into our novel

target subspace by f(vi). We first formulate the two objective functions as follows:

arg min
f

m∑
i=1

m∑
j=1

(f(vi)− f(vj))
2A+

ij (2.1)

arg max
f

m∑
i=1

m∑
j=1

(f(vi)− f(vj))
2A−ij (2.2)

To gain more insights into these setting objectives, let us take a look at the first

Eq.(2.1). If two network instances Ni and Nj have similar local states in the original

space (i.e., A+
ij is large), this first objective function will be penalized if the respective

points f(vi) and f(vj) are mapped far part in the transformed space. As such, minimizing

this cost function is equivalent to maximizing the similarity amongst instances having

the same global network states in the reduced dimensional subspace. On the other hand,

looking at Eq.(2.2) can tell us that the function will incur a high penalty (proportional

to A−ij) if two networks having different global states are mapped close in the induced

subspace. Thus, maximizing this function is equivalent to minimizing the similarity

among neighboring networks having different global states in the novel reduced subspace.

As mentioned earlier, such networks tend to locate close to the discriminative boundary

function and hence, maximizing the second objective function leads to the maximal

margin among clusters of different global-state networks.

Having the mapping function f(.) to be optimized above, it is crucial to ask which

is an appropriate form for it. Either a linear or non-linear function can be selected as
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long as it effectively optimizes two objectives concurrently. Nonetheless, keeping in mind

that our ultimate goal is to derive a set of succinct discriminative subnetworks along

with their explicit nodes. Optimizing a non-linear function is generally not only more

complex but importantly may lose the capability in explaining how the new features have

been derived (since they will be the non-linear combinations of the original nodes). We

therefore would prefer f(.) as in the form of a linear combination function and following

this, f(.) can be represented explicitly as a transformation matrix Un×d that linearly

combines n nodes into d novel features (d� n) of the induced subspace. For the sake of

discussion, we elaborate here for the projection onto 1-dimensional subspace (i.e., d = 1).

The solution for the general case d > 1 will be straightforward once we obtain the solution

for this base case. Given this simplification and with little algebra, we recast our first

objective function as follows:

arg min
u

m∑
i=1

m∑
j=1

‖uTvi − uTvj‖2A+
ij =

m∑
i=1

m∑
j=1

tr
(
uT (vi − vj)(vi − vj)

Tu
)
A+
ij

= tr

(
m∑
i=1

m∑
j=1

(
uT (vi − vj)A

+
ij(vi − vj)

T
)

u

)

= 2tr
(
uTVD+VTu

)
− 2tr

(
uTVA+VTu

)
= 2tr

(
uTVL+VTu

)
(2.3)

in which we have used tr(.) to denote the trace of a matrix and V as the matrix whose

column ith accommodates the dynamic local states of network instance Ni (i.e., vi),

forming its size of n ×m. Also, D is the diagonal matrix whose D+
ii =

∑
j A+

ij and we

have defined L+ = D+ −A+, which can be shown to be the Laplacian matrix [46]. For

the second objective function in Eq.(2.2), we can repeat the same computation which

yields to the following form:
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arg max
u

m∑
i=1

m∑
j=1

‖uTvi − uTvj‖2A−ij

= 2tr
(
uTVD−VTu

)
− 2tr

(
uTVA−VTu

)
= 2tr

(
uTVL−VTu

)
(2.4)

where again D− is the diagonal matrix with D−ii =
∑

j A−ij and we have defined L− =

D− −A−.

Notice that while the above formulations aim at discriminating different global state

networks in the low dimensional subspace, it has not yet taken into consideration the gen-

eralized network structure captured by our first meta-graph. As described previously, the

mutual interactions among nodes are also important in determining the global network

states. Also according to Definition 5, the larger the value placing on the link between

nodes vp and vq, the more likely they are being involved in the same process. Therefore,

we would expect our mapping vector u not only separating well different global state net-

works but also ensuring its smoothness property w.r.t. the generalized network topology

characterized by the first meta-graph N .

Toward the above objective, we formulate the network topology as a constraint in

our learning objective function, and in order to be consistent with the approach based

on spectral graph analysis, we encode the topology captured in N by an n×n constraint

matrix C whose elements are defined by:

Cpq = Cqp =



∑
qK(p, q) if vp ≡ vq

−K(p, q) if vp and vq are connected

0 otherwise

(2.5)

It is easy to show that, by this definition, C is also the Laplacian matrix and its
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quadratic form, taking u as the vector, is always non-negative:

uTCu =
n∑
p=1

u2p

n∑
q=1

K(p, q)−
n∑
p=1

n∑
q=1

upuqK(p, q)

=
1

2

n∑
p=1

n∑
q=1

K(p, q)(up − uq)2 ≥ 0 (2.6)

in which up, uq are components of vector u. It is possible to observe that if K(p, q) is

large, indicating nodes vp and vq are strongly interacted in large portion of the network

instances, the coefficients of up and uq should be similar (i.e., smooth) in order to minimize

this equation. From the network-structure perspective, we would say that if vp is known

as a node affecting the global network state, its selection in the transformed space will

increase the possibility of being selected of its nearby connected node vq if K(p, q) is

large, leading to the formation of discriminative subnetworks in the induced subspace.

Therefore, in combination with the dual-objective function formulated above, we finally

claim our constrained optimization problem as follows (the constants can be omitted due

to optimization):

u∗ =arg max
u

{
tr
(
uTV(L− − L+)V

T
u
)}

subject to uTCu ≤ t

and uTVD+VTu = 1 (2.7)

The first network topology constraint aims to retain the smoothness property of u

whereas the second constraint aims to remove its freedom, meaning that we need u’s

direction rather than its magnitude. The network topology constraint is beneficial in

two ways. First as presented above, it offers a convenient and natural way to incorpo-

rate the network topology into our space transformation learning process. Second, as
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being formulated in the vector quadratic form, it essentially imposes the features/nodes

selection through the coefficients of u by shrinking those of irrelevant nodes toward zero

while crediting large values to those of relevant nodes. Indeed, this quadratic L2-norm is

a kind of regularization which is often referred to as the ridge shrinkage in statistics for

regression [47]. The parameter t is used to control the amount of shrinkage. The smaller

the value of t, the larger the amount of shrinkage.

2.3.3 Solving the Function

In order to solve our dual objective function associated with constraints, we resort the

Lagrange multipliers method and following this, Eq. (2.7) can be rephrased as follows:

L(u, λ) =uT
(
VL̃V

T
− αC

)
u− λ

(
uTVDVTu− 1

)
(2.8)

of which, to simplify notations, we have denoted L̃ = L− − L+, D = D+ and α is used

in replacement for t as there is a one-to-one correspondence between them [47]. Taking

the derivative of L(u, λ) with respect to vector u yields:

∂L(u, λ)

∂u
= 2

(
VL̃V

T
− αC

)
u− 2λVDVTu (2.9)

And equating it to zero leads to the generalized eigenvalue problem:

(
VL̃V

T
− αC

)
u = λVDVTu (2.10)

It is noticed that V is a singular matrix and its rank is at most min(n,m), making the

combined matrix on the right hand side not directly invertible. We therefore decompose

VD1/2 into PΣQT , where columns in P and Q are respectively called the left and right
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(orthonormal) singular vector of VD1/2 while Σ stores its singular values. Note that

this decomposition is always possible since D is a non-negative diagonal matrix of node

degrees. Additionally, both P and Q can be represented in the square matrices while Σ

a rectangular one of n×m size according to the most general decomposition form in [48].

Following this, the combined matrix on the right hand size can be rewritten as:

VDVT = PΣ2PT (2.11)

And in order to get a stable solution, we keep the top ranked singular values in Σ such

as their summation explains for no less than 95% of the total singular values1. Let us

denote B∗ = PΣ−2PT as the inversion of the right hand side and before showing our

optimal solution, we need the following proposition:

Proposition 1. Let P be the matrix of left singular vectors of VD1/2 defined above, then

its row vectors are also orthogonal, i.e., PPT = I

Proof: Let a be an arbitrary vector, we need to show PPTa = a. Due to the

orthogonal property of left singular vectors, it is true that PTP = I. The inversion of

P therefore is equal to PT and given arbitrary vector a, there is a uniquely determined

vector b such that Pb = a. Consequently,

PPTa = PPTPb = Pb = a

It follows that PPT = I since a is an arbitrary vector.

Proposition 2. Given B = PΣ2PT , we have BB∗ = I

Proof: The proof of this proposition is straightforward given Proposition 1.

1Note that since (VD1/2)(VD1/2)T is Hermitian and positive semidefinite, the diagonal entries in Σ
are always real and nonnegative.
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Now, for simplicity, let us denote A for the combined matrix (VL̃V
T
− αC), then it

is straightforward to see that u turns out to be the eigenvector of the equation:

B∗A = λu (2.12)

with the maximum value is given by the following proposition.

Proposition 3. Given matrix A = VL̃V
T
− αC and B = VDVT defined above, the

maximum value of uTAu subjected to uTBu = 1 is the largest eigenvalue of B∗A.

Proof: Due to Proposition 2, it is straightforward to see that:

uTAu = uTBB∗Au

On the other hand, uTBB∗Au = uTBλu by equation Eq. (2.12) and further taking into

account our second constraint, it follows that:

max
u:uT Bu=1

{uTAu} = max{λ}

From this proposition, it is safe to say that u∗ = u1 as the first eigenvector of B∗A

corresponding to its largest eigenvalue λ1 is our optimal solution. Since eigenvectors

and eigenvalues go in pair, the second optimal solution is the second eigenvector u2

corresponding to the second largest eigenvalue λ2 and so on. Consequently, in the general

case, if d is the number of unique global network states, our optimal transformed space

is the one spanned by the top d eigenvectors. In the next section, we present a method

to select optimal features/nodes along with the subnetworks formed by these nodes.
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2.3.4 Subnetwork Selection

In essence, our top d eigenvectors play the role of space transformation which projects

network data from the original high dimensional space into the induced subspace of d

dimensions. Their coefficients essentially reflect how the original nodes (features) have

been combined or more specifically, the degree of node’s importance in contributing to

the subspace that optimally discriminates network instances. Following the approaches

adopted in [49, 50] with c as the user parameter, we select top c entries in each {ui}di=1

corresponding to the selective nodes. Nonetheless, it is possible that there will be more

than c nodes selected by combining from d eigenvectors. Therefore, in practice, we may

use a simple approach by first selecting the largest absolute entries across d eigenvectors:

v = {v1, . . . , vn} where vp = max
i
|ui,p| (2.13)

where ui,p is the p-th entry of eigenvector ui, and then selecting nodes according to the

top c ranking entries in v. The subnetworks forming from these nodes can be straight-

forwardly obtained by matching to the nodes in our generalized network N defined in

Definition 5, along with their connecting edges stored in E. These subnetworks can be

visualized which offers the user an intuitive way to examine the results.

2.3.5 Computational Complexity

We name our algorithm SNL, an acronym stands for SubNetwork spectral Learning.

Its computation complexity is analyzed as follows. We first need to compute edges’

weights according to Definition 5 to build our first meta-graph which takes O(n2m) since

there are at most n(n−1)/2 edges in the generalized network N . Second, in building the

two subsequent meta-graphs, the cosine distance between any two network instances is
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computed which amounts to O(n2m) or O(mn log n) in case the multidimensional binary

search tree is used [51]. Also, since the size of matrix VD1/2 is m× n, its singular value

decomposition takes O(mn log n) with the Lanczos technique [46]. Likewise, the eigen-

decomposition of the matrix B∗A takes O(n2 log n) since its size is n × n. Therefore,

in combination, the overall complexity is at most O(n2m + n2 log n) assuming that the

number of nodes is larger than the number of network instances.

2.4 Experiments on Synthetic and Protein Protein

Interaction (PPI) Networks

2.4.1 Datasets and Experimental Setup

We compare the performance of SNL against MINDS [44] which is among the first

approaches formally addressing the global-state network classification problem by a sub-

network sampling. Another algorithm for comparison is the Network Guided Forests

(NGF) [52] designed specifically for protein protein interaction (PPI) networks. We use

both synthetic and real world datasets for experimentation. Since global states are avail-

able in all datasets, we compare average accuracy in 10-fold cross validation for synthetic

data, and 5-fold cross validation for real data (due to smaller numbers of network in-

stances). For SNL, the cross validation is further used to select its optimal α parameter

(shortly discussed below). Unless otherwise indicated, we set k = 10 and use the linear-

SVM to perform training and testing in the transformed space (keeping top 50 nodes)

in SNL. We set MINDS’ parameters as follows: 10000 sampling iterations, 0.8 discrimina-

tive potential threshold and K = 200 as recommended in the original paper [44]. The

Gini index is used for the tree building in NGF and we set its improvement threshold

ε = 0.02 [52].
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2.4.2 Results on Synthetic Datasets

We use synthetic data to evaluate the performance of our technique in training robust

classifiers and selecting relevant subnetworks. We generate scale-free backbone networks

by preferential attachment of a predefined size adding 20 edges for each new node. The

probabilities of backbone edges are sampled from a truncated Gaussian distributions:

N(0.9, 0.1) for edges among ground truth nodes (pre-selected nodes of high-correlation

with the network state) and N(0.7, 0.1) for the rest of the edges. The weighted backbone

serves as our generalized template to generate network instances by independently sam-

pling the existence of every edge based on its probability. The global states are binary

Si ∈ {0, 1} with balanced distribution. We further add noise to both global and local

states of ground truth nodes, respectively with levels of 10% and 30%.

Varying |Vgt|: In the first set of experiments, we aim to test whether the performance

of all algorithms is affected by the number of ground truth nodes. To this end, we

generate 5 datasets by fixing m = 1000 instances, n = 3000 nodes and vary the ground

truth nodes |Vgt| from 10 to 50. In Figure 2.1a, we report the average accuracy (and

standard deviation) of all algorithms in 10-fold cross validation. As one may observe,

SNL performs stably regardless of the change in the ground truth sizes. Compared to

the other techniques, its classification is always consistently higher across all cases. The

MINDS technique also performs well on this experimental setting yet the NGF seems to be

sensitive to the small ground truth sizes. For small |Vgt|, the sampling strategy based on

density areas employed in NGF has little chance to select the ground truth nodes, making

its accuracy close to a random technique. When more ground truth nodes are introduced,

NGF has higher possibility to sample high-utility nodes and in the last two datasets, its

performance is on par with that of MINDS. Nonetheless, its accuracy only peaks at 73%

in the best case which is lower than 77% in SNL (last column).
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Figure 2.1: Accuracy performance of SNL on synthetic datasets with varying groundtruth
nodes and network size, against baseline methods MINDS and NGF.

Varying network size: In the second set of experiments, we evaluate the performance

of all algorithms by varying the network sizes. Specifically, we fix m = 3000 network in-

stances, |Vgt| = 50 ground truth nodes and generate 5 datasets having the network size

varied from 2000 to 5000 nodes. The classification performance along with the standard

deviation is reported in Figure 2.1b. It is possible to see that the performance traits are

similar to those in our first set of experiments. SNL’s classification accuracy remains high

while that of NGF decreases with the increase of network size. This again can be explained

by the extension of the searching subnetwork space, leading to the lower likelihood of

both NGF and MINDS in identifying relevant subnetworks with potentially discriminative

nodes. The slightly better performance of MINDS (compared to NGF) is due to its accu-

racy thresholding in selecting candidate substructures. The set of MINDS’ selected trees

are thus qualitatively better. Nonetheless, as compared to SNL, our subspace learning

approach show more competitive results. Moreover, since the low-dimensional subspace

learnt in SNL is unique and linearly combined from the most discriminative nodes, its

performance also shows more stable, indicated by the small standard deviation across all

cases.
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Figure 2.2: Impact of numbers of ground truth nodes.
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Figure 2.3: Impact of network sizes.

Effect of network topology: In order to provide more insights into the performance of

SNL, we further test the network effect. As presented in Section 2.3, α is the parameter

controlling the influence of the network information on the subspace learning process.

The higher the α, the more preference putting on the heavily connected nodes. We

report in Figures 2.2a,2.3a the accuracy of SNL by varying α from 0.1 to 6.5 and in

Figures 2.2b,2.3b its ability in discovering the ground truth nodes. For the latter case,

we validate the performance through the usage of area under the ROC curve (AUC) [47].

As expected, incorporating the network structure in the subspace learning process

improves both classification rate and the AUC in uncovering the ground truth nodes.

The plots in Figures 2.2a,2.3a show that the accuracy initially improves for increasing
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influence of the network (α ≤ 5) and then decreases as the network component becomes

prevalently dominant (α > 5). This is because for large α, SNL tends to incorporate

irrelevant nodes solely based on their strong connections to the neighbors (yet their local

values might not help classifying global state values). Another notable observation is

that, in larger instances or ground truth feature sets, the optimal α tends to increase

as well. Moreover, the values of α that maximize classification accuracy also result in

optimal AUC in identifying the ground truth nodes (Fig. 2.2b,2.3b). These experiments

clearly show the helpful information provided by the network topology in uncovering the

groundtruth features. Also, the performance of NGF and MINDS has been excluded in this

set of experiments to save space and we will shortly discuss their AUC performance with

a real-world dataset.

2.4.3 Real-world Datasets

We use 4 real-world datasets to evaluate the performance of SNL and its competing

methods. The features in all datasets correspond to micro-array expression measure-

ments of genes; the topology structures relating features correspond to gene interac-

tion networks; and the global network states correspond to phenotypic traits of the

subjects/instances. The statistics of our datasets are listed in Table 2.1. Two of our

real-world datasets, breast cancer and embryonic development, were also used for exper-

imentation in the original NGF method [52]. Our other datasets come from a study on

maize properties [53] and a human liver metastasis study [54] combined with a functional

network [55]. The network samples are used as provided in the original studies, except for

maize where we down-sample one of the classes to balance the global state distribution.

Classification performance: The comparison of classification accuracy for all tech-

niques and datasets is presented in Figure 2.4a. We report the average accuracy and

28



Regularized Spectral Learning for Global-state Network Data Chapter 2

Table 2.1: Real-world dataset statistics and sources

Datasets Genes Edges Instances Global State

Breast cancer 11203 57235 295 cancer/non-cancer

Embryonic development 1321 5227 35 developmental tissue layer

Maize 8574 298510 344 high/low oil production

Liver metastasis 7383 251916 123 disease/non-disease

standard deviation from the 5-fold stratified cross validation. All techniques perform

competitively on the breast cancer data, achieving more than 70% of classification ac-

curacy on average. The accuracy of SNL dominates significantly that of the sampling

techniques on the embryonic and maize datasets (at least 15% and 10% improvement

respectively) and less so in the liver dataset. The separation is highest in the datasets of

small number of instances and big number of feature nodes – the settings in which SNL is

particularly effective. Beyond average performance improvement, SNL’s accuracy is also

more stable across all folds as it considers the global network structure when learning

a subspace for classification, while the alternatives perform sampling in the exponential

space of substructures.

Subnetwork discovery: Unlike the synthetic datasets where we can control the ground

truth network features, it is generally much harder to obtain ground truth subnetworks

for real world datasets. However, as an attempt to look deeper into the results, we choose

the Liver metastasis and further investigate the meaningful subnetworks generated by the

SNL. For this dataset, out of top 50 nodes of highest coefficient values (ref. Section 2.3.4),

about one third of the nodes are connected into four subnetworks. We depict in Figure 3.6

the two largest ones which respectively contain 7 and 4 connected gene nodes. Among

these selected subnetworks, the genes REG1A and REG3A are particularly interesting since

they are in agreement with the ones found in [1] which was shown to be involved in the
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Figure 2.4: Performance of SNL on protein-protein interaction (PPI) networks against
baseline methods NGF and MINDS.

liver metastasis cancer. As a comparison against MINDS and NGF, we notice that both

methods generate multiple binary-trees where each node has only a single parent. More-

over, while SNL can provide a natural rank of important genes based on their coefficients

(from the learnt subspace), it is less trivial to define important genes from NGF and MINDS

as they both generate thousands of trees. For the purpose of measuring biological rel-

evance of obtained genes, we define a ranking for these competing techniques based on

the frequency of genes appeared in the generated trees. For comparison, we select 46

metastasis-specific genes identified in [1] to serve as a ground truth set (39 intersect with
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our network and expression data) and plot the ROC performance of all algorithms in

Figure 2.4c. Note that, this is only a partial ground truth set, since identifying all genes

associated with this disease is a subject of ongoing research [1]. It is observed that the

ranking produced by SNL includes more ground truth genes than those of NGF and MINDS

at increasing false-positive rates. The higher true positive rates of SNL makes it a better

method for identifying new genes associated with the phenotype of interest. In practice,

this is an important feature of the algorithm since validating even a single gene related

to cancer is both time-wise and financially costly. As shown in Figure 2.4c, while the

ROC performance of NGF and MINDS are only at 0.59 and 0.57 AUC, that value of SNL is

0.69 which clearly demonstrates large gap of better performance.

2.5 Related Work

Mining discriminative subspaces from global-state networks is a novel and challenging

problem. Two lines of work close to this problem are network classification and mining

evolving subgraphs from dynamic network data. In the network classification case, most

representative algorithms are LEAP [56], graphSig [57], GAIA [58] and COM [59] which

generally assume a database consisting of positive and negative networks that need to

be classified. These approaches, though diverse in terms of their underlying algorithms,

all aim at extracting a set significant subnetworks that are more frequent in one class

of positive networks and less frequent in the negative class. Different from the above

problems, we aim to mine subnetworks which are represented in all network instances;

yet the node values along with the network structures can discriminate the global states

of the networks. Another line of related research focuses on mining dynamic evolving

subnetworks [10, 60, 61]. The problem in this case is to obtain subnetworks over time

that evolve significantly (outliers) from other network locations. This setting therefore
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do not model the problem developed in this work since the dynamic network snapshots

neither contain global-state values nor can remove their temporal property.

Several studies in systems biology have indicated the critical role of the network

structure in identifying protein modules related to clinical outcomes, for both regres-

sion [62, 63, 42] and classification [52, 44]. In the classification setting which is related

to our study, the NGF [52] is an ensemble approach that builds a forest of trees jointly

voting for the class of a network instance. Resided at the NGF’s core is the CART (classi-

fication and Regression tree) technique and in order to build a decision tree within the

PPI network, NGF starts with a root node and progressively includes connected nodes as

long as the improvement in class separation (measured by Gini index) is no smaller than

a given threshold. The study in [44] is the first one to formally introduce the problem

of subnetwork mining in global-state networks and further propose the MINDS algorithm

to solve it. Similar to NGF, MINDS adopts network-constraint decision trees and is also an

ensemble classifier. Nonetheless, it increases the quality of decision trees by developing a

novel concept of editing map over the space of potential subnetworks and exploits Monte

Carlo Markov Chain sampling over this novel data structure to seek decision trees with

maximum classification potential. Unlike the frequency-based and sampling classifica-

tion discussed above, our approach is fundamentally different as it searches for the most

discriminative subnetworks in a single low dimensional subspace through the spectral

learning technique, which generally leads to more stable and high-accuracy performance.

2.6 Conclusion

We proposed a novel algorithm named SNL to address the challenging problem of

uncovering the relationship between local state values residing on nodes and the global

network events. While most existing studies address this problem by sampling the expo-
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nential subnetworks space, we adopt an efficient and effective subspace transformation

approach. Specifically, we define three meta-graphs to capture the essential neighbor-

ing relationships among network instances and devise a spectral graph theory algorithm

to learn an optimal subspace in which networks with different global-states are well

separated while the common structure across samples is smoothly respected to enable

subnetwork discovery. Through experimental analysis on synthetic data and real-world

datasets, we demonstrated its appealing performance in both classification accuracy and

the real-world relevance of the discovered discriminative subnetwork features.
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Chapter 3

Learning Predictive Substructures

for Network Data

3.1 Introduction

Network analysis plays a key role in understanding complex data. One important

task in network analysis is learning local substructures that have impact on the global

network properties. Compared to feature selection in high dimensional data, the anal-

ysis in a network context is more challenging due to the inherent interactions among

features associated with nodes. Consider an example of Alzheimer’s disease in neuro-

science [43, 64] where the task is to find markers that can predict the disease states. Due

to the natural relationship between neural activity and neural connectivity, the loss of

neurons/synapses in one brain region usually impacts the cognitive functions of other

brain regions that are physically and functionally connected [65]. Hence, it is not suf-

ficient to simply identify isolated neuronal populations (brain regions) whose activation

is abnormal. Instead, it is crucial to consider the underlying network communication

among neuronal populations that leads to different states of the disease [64].
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Another example comes from biology, where studies have shown that biological out-

comes (i.e. global properties) are determined by modules of proteins that interconnect

within the context of protein-protein interaction (PPI) networks [52]. Such networks

are essential in understanding genetic and regulatory diseases such as cancers and neu-

rological disorders. Given the expression levels of genes for multiple patients, the task

in this setting is to identify predictive substructures associated with the disease, while

respecting the underlying interactions among implicated genes.

The success of machine learning and data mining algorithms depends on the represen-

tation of the underlying data. This is particularly true for network data where irrelevant

nodes and edges may limit the understanding and hinder the discovery of local processes

that impact and govern the global behavior of the network. Understanding what these

local subnetwork processes are, how they vary and what makes them different across net-

work populations is critically important for a variety of domain applications. Network

data (associated with network nodes) can naively be treated as an instance of high-

dimensional data and common feature extraction methods such as PCA/SVD [66, 67]

can be adopted for its analysis. While such methods can optimize the prediction quality,

the models they learn often lack domain relevance since they do not incorporate the un-

derlying network interactions, and thus may fail to discover actual processes behind the

observed data. A better suited approach to identifying discriminative substructures is to

directly sample the space of subnetworks and find ones that lead to high prediction of the

global network states [52, 44]. While such approaches emphasize locality of the selected

substructures, they need to explore an exponential number of connected subnetworks.

Additionally, it is hard to ensure a unique and stable result across different runs due

to the inherent drawback of sampling. Both stability and compactness of the predictive

substructures are keys to unearth the complex relationships between local node values

and global network properties.
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In this work, we propose a novel framework to learn a small set of subnetwork struc-

tures that are predictive of the global network properties. In contrast to existing ap-

proaches that either ignore the network topology or sample over the exponential space of

subnetworks, we formulate the predictive subnetworks learning problem as explicit node

selection subject to network-constrained regularization. Our framework is not only able

to discover a succinct set of predictive subnetwork structures but also, in combination

with a simple classifier such as the linear SVM, can accurately predict the global network

behavior within the space spanned by these substructures. Our learning task comprises

of two steps. In the first step, we learn an optimal embedding subspace in which net-

works of different global states are maximally separated while those of the same state are

clustered together. Each dimension of this low dimensional subspace essentially reflects

a different aspect in separating networks labeled by different global states. In the sec-

ond step, we perform substructures discovery through measuring the nodes’ importance,

regularized by their underlying local connectivity, along each intrinsic dimension of the

embedding subspace. Specifically, we adopt L1-norm to explicitly remove irrelevant nodes

that have little or no impact on the global network behavior, and L2-norm to enforce

connectivity among selected nodes. We solve the first step of subspace learning via ma-

trix eigen-decomposition by taking the graph embedding approach, while for the second

step, we employ the gradient descent technique to minimize fitting errors. The proposed

framework possesses many appealing properties: (1) it makes no assumptions about the

statistical distribution of network data; (2) it has a solid mathematical background from

spectral graph learning and convex gradient optimization; (3) it is guaranteed to achieve

the optimum solution in each step. Our experimental analysis using four real world

datasets demonstrates the superior performance of the proposed algorithm not only in

terms of prediction accuracy against state-of-the-art algorithms, but also in discovering

predictive network substructures with domain relevance. To the best of our knowledge,
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the proposed framework is the first that combines both subspace learning and network

structures discovery with explicit node-selection, providing better understanding of the

complex relationships between local node values and global network behavior.

3.2 Problem Setting and Preliminaries

3.2.1 Common Notation and Definitions

Definition 1. (Network sample) A network sample is a triple Si = (Vi, Ei,F), where

Vi = {v1, v2, . . . , vmi
} is a set of nodes, Ei ⊆ Vi × Vi is a set of undirected edges, and F

is a function labeling each node with a real number.

Let DS = {S1, S2, . . . , Sn} be a network dataset that consists of n network samples.

Each network sample Si ∈ DS is associated with a discrete global state or label `i. Unlike

chemical compounds or XML web data where network samples may have considerably

different network topologies [57, 56], we focus on a family of networks whose topologies

are relatively stable across network samples. Following this, we define an aggregate

network S generalizing all samples Si’s, as follows:

Definition 2. (Aggregate network) Let S = (V , E,W ) be a network summarizing the

aggregate structure of all Si∈DS, where V = V1∪V2 . . .∪Vn, E ⊆V×V and Ei⊆E ∀Ei.

Each edge E(p, q)∈E is associated with a positive weight W (p, q) defined as the fraction of

network samples containing that edge in their structure, i.e., W (p, q) = n−1×
∑

iEi(p, q)

with Ei(p, q) = 1 if vp connects vq in Si. Since all Si’s are undirected networks, W ∈Rm×m

defined for S is a symmetric matrix, with m as the total number of nodes in V.

The setting defined above is general enough to accommodate a number of practical

network applications including social networks, human brain networks or protein-protein

interactions. For instance, Si can model a snapshot captured at i-th timestamp of a
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social network, where vp corresponds to a user whose local state presumably encodes her

political viewpoint, while the global state `i indicates the overall political viewpoint of

the entire community (at the i-th timestamp). Snapshots captured at different times vary

slowly in terms of network structure. Likewise, Si can also be used to encode a human

brain network where the local value at an edge reflects the statistical correlation between

a pair of brain regions and a global state `i encodes whether the subject is healthy or

diseased. Different subjects may differ in their local node values but possess similar brain

network structures [65].

3.2.2 Relationships among Network Samples

In many practical applications, the discriminative structure behind the observed net-

work data can be captured by only a small number of latent regularities (dimensions)

since many irrelevant nodes/features may have little or no impact on the global network

labels. Learning an informative set of predictive subnetworks that influence the global

states depends on how the relationships among network samples are captured and rep-

resented. Toward this goal, we construct two graphs encoding the (dis)similarity among

network samples. Our optimization framework employs these relationship graphs to learn

a low dimensional subspace that captures both the neighboring and discriminative struc-

tures among network samples. The construction of the graphs of network samples follows

a similar construction from [68]. We next summarize the main steps of this construction

and introduce the necessary notation.

Let G+ be defined as the first graph in which each vertex represents a network sample

Si∈DS. A link is placed between two vertices if the corresponding network samples Si

and Sj have the same global state, and Si is among the k nearest neighbors (kNN) of Sj

or vice versa. Each link is further associated with a non-negative value K+
ij quantifying
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the degree of similarity between Si and Sj. Since the network samples have a similar

structure, only their node values are used to compute their neighborhood similarity.

Furthermore, as each Si is a subnetwork of S according to Def.5, we use an m-dimensional

vector vi (recall m is the total nodes in S) to store its local node values, with a null value

being used to denote the value of a missing node. This makes any two network samples

comparable in term of their local node values. As such, we adopt the cosine distance

(though more complex measures could be used [69, 50]) to compute K+
ij as follows:

K+
ij =


vi·vj

‖vi‖‖vj‖ , if `i=`j, Sj∈kNN(Si) or Si∈kNN(Sj)

0 otherwise

(3.1)

Likewise, G− is defined as a second graph with vertices also representing network

samples and a link connecting two vertices, say Si and Sj, if Si ∈ kNN(Sj) or Sj ∈

kNN(Si), yet their global states must be different. Likewise, a non-negative value K−ij is

associated with a link to reflect how similar Si and Sj are. Its computation is analogous

to Eq.(3.1) except one difference: `i 6=`j.

It is important to note that while the development in [68] builds graphs among net-

work instances in a similar fashion, its ultimate goal is classification of the global network

states, while our goal here is feature selection in the form of subnetworks. As such, our

feature selection framework can be combined with any classifier for global network states

within subnetworks as features, including the classifier developed in [68]. Another way

to view our current approach is as reducing the dimensions (features) in a controlled

manner (i.e., enforcing a desired number of preserved features), while being aware of the

network structure. Thus, it enables a more scalable and accurate training of classifiers,

due to the reduced size of the network instances.
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Figure 3.1: Overview of our framework in learning subnetwork structures for global
network state prediction. An optimal subspace Y separating different network states is
learnt first, then relevant subnetworks are mined through approximating Y with network
and sparseness regularizations.

3.3 Learning Discriminative Subspace and Subnet-

works

Given a set of network samples with global states, our goal is to uncover a succinct

set of subnetwork structures whose local node values have the highest impact on global

network states. Mining the optimal set of such predictive subnetworks is a non-trivial

task since the number of possible subnetworks grows exponentially with the network

size. As mentioned earlier, sampling is obviously one possible approach to overcome this

challenge. However, without an effective indexing or pruning strategy, one might have
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to sample an impractically large number of times to ensure good quality substructures.

Alternatively, methods operating on vector data and ignoring the network structures

address only the goal of prediction accuracy while lacking domain relevance.

Our proposed solution differs from the above two extremes by adopting the framework

summarized in Fig.3.1 (with notation is summarized in Table 3.1). Specifically, given DS,

we build two graphs G+ and G−. These two graphs serve our first objective of learning

a low dimensional subspace Y in which network samples with different global states

are well-distinguished while concurrently retaining the local similarities among network

samples of the same global states. After obtaining Y, we measure the importance of each

node along each intrinsic dimension. This objective is achieved by minimizing the fitting

errors between Y and the combination on the networks’ local node values V by using a

matrix U.

Si, `i a network sample and its global
state/label

S, Cm×m the aggregate network (Def. 5) and
its Laplacian

n, m #network samples and #nodes in S
G+, G− similarity graphs among network

samples
K+, K− affinity matrices of G+ and G−
Vm×n node local states (features) for all

samples Si’s
Yn×d local states embedding in a low-

dimensional subspace
Um×d output node-selection matrix
λ1, λ2 regularization parameters for spar-

sity and network impact
c #nodes in selected substructures

(controlled by λ1)

Table 3.1: Summary of notations used in the work.

Such an error minimizing process is further complemented by L1-norm to remove
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irrelevant nodes, and L2-norm to enforce proximity of selected nodes in the general

network structure S (Def.5). The predictive substructures are then selected based on

U’s sparse coefficients. The obtained substructures can be used for visualization and

classification of new instances.

3.3.1 Subspace Learning

Given the two (dis)similarity graphs (defined in Sec.3.2.2), we construct our first

objective function for learning a subspace in which the similarity relations among network

samples of the same states are optimally preserved. This objective is formulated as

follows:

minimize
∑

i

∑
j
‖yi − yj‖22K+

ij

=
∑

i

∑
j
(‖yi‖22 + ‖yj‖22 − 2yTi yj)K

+
ij

= 2YT(D+ −K+)Y = 2tr(YTL+Y) (3.2)

in which L+ = D+ −K+ is the Laplacian matrix of G+; D+ is a diagonal matrix whose

entries are summations over K+’s rows, i.e.,D+
ii =

∑
j K+

ij, and yi, yj (as Y’s columns)

are the maps of network samples Si and Sj in our low dimensional subspace.

According to Eq.(3.2), similar network instances Si and Sj (i.e. high K+
ij) mapped to

distant points yi and yj in the resulting subspace would incur a high cost. Minimizing

this objective function is thus equivalent to optimally preserving the local similarities

among network samples having the same global state.

Analogously, we construct the second objective function to maximize the separation

of instances of different global states:
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maximize
∑

i

∑
j
‖yi − yj‖22K−ij

= 2YT(D− −K−)Y = 2tr(YTL−Y), (3.3)

where L− = D− −K− is the Laplacian of G−, D− is a diagonal matrix, D−ii =
∑

j K−ij,

and the embedding Y is similarly defined as in Eq.(3.2). Unlike Eq.(3.2), here we aim to

minimize the similarity between network samples Si and Sj with different global states

in the induced subspace. Such network instances might reside close to the classification

boundary and hence, by minimizing their similarity, we improve their separability in the

induced subspace. Combining the two objectives, we obtain:

Y =arg max
Y

{
tr
(
YT(L− − βL+)Y

)}
subject to YTD+Y = I (3.4)

where β ∈ (0, 1) is a trade-off parameter between the two objectives L− and L+. It can

be tuned via cross validation and based on empirical evaluation we find that β ∈ [0.2, 0.4]

often results in good performance. Additionally, the constraint YTD+Y = I is used to

ensure the uniqueness of the obtained subspace Y. In solving this constrained trace

optimization, we resort to the Largrange multipliers method [67]. Let us simplify the

notation L = L− − βL+ and D for D+. Our trace optimization in Eq.(3.4) can be recast

as:

L(Y,Λ) = YTLY −Λ
(
YTDY − I

)
(3.5)

where Λ is a diagonal matrix with diagonal entries corresponding to the Lagrange mul-

tipliers. Taking the derivative of L with respect to Y and equating it to zero yields:

LY = ΛDY (3.6)
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which gives us the optimal Y as the leading eigenvectors (corresponding to the largest

eigenvalues) of the matrix D−1L. We choose the number of selected eigenvectors equal

to d—the number of unique global network states, since a subspace with d dimensions is

generally sufficient to capture the discriminative structure among d different classes.

3.3.2 Learning Sparse Subnetwork Structures

In the low-dimensional subspace Y (obtained according to Eq.(3.6)), each row rep-

resents the embedding of a network sample and each column reflects a different aspect

in distinguishing global network states. We next proceed to quantifying the importance

of each node in each dimension of Y, or equivalently, the contribution of each node in

differentiating global network states.

Let V be the matrix storing local node states for all network instances (see Sec.3.2.2)

and U be a node-selection matrix that we aim to learn. Our objective is to minimize the

fitting errors ‖Y −VTU‖2F , while using the L2-norm to impose the network structure,

and the L1-norm to remove irrelevant nodes.

In essence, each column u ∈ U contains m coefficients for combining m V’s rows in

approximating one dimension of subspace Y. Thus, by sparsifying and regularizing u’s

coefficients subject to the network structure, we learn the degree of importance of every

node in discriminating global network states. Specifically, we formulate the network-

constrained regularization via the Laplacian matrix C as follows:

Cpq = Cqp =



∑
qW (p, q) if vp ≡ vq

−W (p, q) if vp, vq are connected

0 otherwise

(3.7)

The quadratic form of C is always non-negative, i.e., uTCu = 1
2

∑m
p=1

∑m
q=1W (p, q)(up−
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uq)
2 ≥ 0 (where up and uq are entries or components of u. Recall from Def.5 that a large

W (p, q) indicates nodes vp and vq influence each other strongly, their corresponding co-

efficients, up and uq, should be similar in order to minimize this quadratic equation. It is

thus intuitive to say that, if node vp impacts the global network state, its selection in U

will increase the utility of also selecting its neighbor vq, if the weight W (p, q) on the edge

connecting the two nodes is high. This network-regularized selection leads to connected

subnetwork structures in our solution.

Another important regularization we impose on learning the node-selection matrix U

is to explicitly exclude those nodes that have little or no impact on global state values.

These nodes are either irrelevant or redundant for the classification of global network

states and excluding them makes the final selected substructures concise and easy to

interpret. One of the most effective ways to accomplish this task is to impose the L1-

norm [67] on each vector u. By its nature, L1-norm will shrink some of entries in the

node-selection vector u to zero if a sufficiently large weight is placed on this sparsity

regularization. In combination with the network regularization, our overall regularized

subnetwork selection objective is formulated as follows:

arg min
U

‖Y −VTU‖2F + λ2
∑
u∈U

uTCu + λ1
∑
u∈U

|u|, (3.8)

where |u| =
∑m

t=1 |ut|. The λ1 and λ2 are the trade-off factors controlling respectively

the shrinkage imposed on u’s and the aggregate network topology (their impact will be

demonstrated in Sec.3.4.5). A larger value of λ1 will result in a smaller number of selected

nodes while a larger value of λ2 emphasizes the network structure.

In minimizing this objective function, note that Eq.(3.8) is not strictly convex due to

the absolute term
∑

u∈U |u|. We thus optimize it through the gradient descent approach
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in which each u is optimized individually. We rewrite the function as follows:

R(u) = ‖y −VTu‖22 + λ2u
TCu + λ1|u|

=
∑

i
(yi − vT

i u)2 + λ2u
TCu + λ1

∑
t
|ut| (3.9)

The derivative of the first term of R(u), denoted R1(u), w.r.t. a coordinate ut is:

∂R1(u)

∂ut
= 2

∑
i
(yi − utvit − ūT v̄i)(−vit)

= 2
∑

i
v2itut − 2

∑
i
(vit)(yi − ūT v̄i) (3.10)

where ū and v̄i denote the respective vectors excluding their t-th entry. Likewise, taking

the derivative of the second term of R(u), denoted by R2(u), w.r.t. ut leads to:

∂R2(u)

∂ut
=

∂

∂ut
λ2
∑

p

∑
q
upuqCpq

= λ2(
∑
p 6=t

Cptup +
∑
q 6=t

Cqtuq + 2Cttut)

= λ2(
∑

p
Cptup +

∑
q
Cqtuq) = 2λ2u

TC?t

= 2λ2Cttut + 2λ2ū
T C̄?t (3.11)

where C?t denotes the t-th column of matrix C and again C̄?t is the respective vector

excluding its t-th component.

Note that our last term in Eq.(3.9) is not a smooth function; so its derivative w.r.t.

ut is calculated as follows:

∂R3(u)

∂ut
=
∂λ1|u|
∂ut

=



{−λ1} if ut < 0

{+λ1} if ut > 0

[−λ1,+λ1] if ut = 0

(3.12)
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By combining the three derivatives, we get:

∂R(u)

∂ut
=



{a1uj − a2 − λ1} if ut < 0

{a1uj − a2 + λ1} if ut > 0

[−a2 − λ1,−a2 + λ1] if ut = 0

(3.13)

where, for simplicity, we have introduced a1 = 2
∑

i v
2
it+2λ2Ctt, which is always positive,

and a2 = 2
∑

i(vit)(yi− ūT v̄i)− 2λ2ū
T C̄?t. Setting this equations to zero and solving for

ut finally yields:

ut =



(a2 + λ1)/a1 if a2 < −λ1

(a2 − λ1)/a1 if a2 > +λ1

0 if a2 ∈ [−λ1; +λ1]

(3.14)

By the gradient descent optimization [67], we repeatedly update u’s components until

it converges. In what follows the convergence of our method is proven.

Proposition 4. Let u be a m× 1 vector, and R1(u) = ‖y−VTu‖22 be a scalar function

of n variables with second order derivatives defined on a convex domain D. Then its

second derivative is positive semi-definite and R1(u) is convex.

Proof: Given R1(u) = ‖y −VTu‖22 where y is a column in Y, it is to see that the

second derivative ∂2R1(u)/∂u2 = VVT. Its quadratic form bTVVTb is non-negative

given any m× 1 vector b and thus ∂2R1(u)/∂u2 is positive semi-definite. Using Taylor

approximation [70] of R1(u) near u, with a γ ∈ (0, 1) and u,u + h ∈ D, we can write:

R1(u + h) = R1(u) +
∂R1(u)

∂u

T

h +
1

2
hT

∂2R1(u + γh)

∂u2
h

As shown above, the second derivative of R1(u) is positive semi-definite, hence, the last
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term in this equation is non-negative, resulting in the following inequality:

R1(u + h) ≥ R1(u) +
∂R1(u)

∂u

T

h (3.15)

Now, given any u′ and u′′ in D and let ζ ∈ (0, 1) be a scalar, we have u = ζu′+(1−ζ)u′′ ∈

D due to the convexity of D. By Eq.(3.15), it follows that:


R1(u

′) ≥ R1(u) + ∂R1(u)
∂u

T
(u′ − u)

R1(u
′′) ≥ R1(u) + ∂R1(u)

∂u

T
(u′′ − u)

(3.16)

Multiplying the first row in Eq.(3.16) by ζ, the second row by (1 − ζ) and summing up

yields:

ζR1(u
′) + (1− ζ)R1(u

′′)

≥ R1(u) +
∂R1(u)

∂u

T (
ζu′ + (1− ζ)u′′ − u

)
= R1(u)

which shows the convexity of R1(u). �

Proposition 5. Let u be m× 1 vector and let R2(u) = λ2u
TCu be a scalar function of

n variables with second order derivatives defined on a convex domain D. Then R2(u) is

a convex function.

Proof: With similar arguments as those in Proposition 1, it is straightforward to prove

R2(u) is a convex function given that C is a positive semi-definite matrix as defined in

Eq(3.7). �

Proposition 6. GivenR(u) = R1(u)+λ2R2(u)+λ1R3(u) where λ1, λ2 are non-negative,

our optimization function R(u) formulated in Eq.(3.9) is convex.

Proof: For any u′,u′′ ∈ D, ζ ∈ (0, 1), where u = ζu′ + (1− ζ)u′′, the function R3(u)
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is also convex since:

ζR3(u
′) + (1− ζ)R3(u

′′) = ζ|u′|+ (1− ζ)|u′′|

= |ζu′|+ |(1− ζ)u′′| ≥ |ζu′ + (1− ζ)u′′| = R3(u)

in which we have used the triangle inequality in the second row. Based on (i) Proposi-

tion 4, 5, (ii) the fact that the summation of convex functions over a convex domain D

is also convex [70] and (iii) given that both λ1, λ2 ≥ 0, it follows that R(u) is a convex

function. �

Corollary 1. Proposition 6 guarantees the convergence of our gradient descent method

and the solution it finds is the unique optimum.

3.3.3 Subnetwork Structures

Due to the L1-regularization, the number of non-zero coefficients in each u ∈ U is

usually small according to the setting of λ1. Let us further index {ui}di=1 for column

vectors in U and assume that, for a specific λ1 value, c is the number of non-zero coeffi-

cients from each vector ui. In a general case, these coefficients might be slightly different

across {ui}di=1. Thus, we first rank the largest absolute non-zero entries across {ui}di=1

and aggregate them into a single final vector u as follows:

u = (u1, . . . , um)T with up = max
i
|ui,p| (3.17)

where ui,p is the p-th entry of eigenvector ui. We then select nodes according to the top c

ranking entries in u. The subnetworks induced by these nodes are obtained by matching

with the nodes of S defined in Def.5 along with connecting edges encoded in E.

49



Learning Predictive Substructures for Network Data Chapter 3

3.3.4 Algorithm Complexity

We name our framework DIPS—DIscovering Predictive subnetwork Structures, and

analyze its complexity in what follows. We first build the two similarity graphs G+ and G−

which takes O(mn2) in the worst case and can reduce to O(mn log n) with the use of a kd-

Tree structure [51]. Both D and L in Eq.(3.6) are of size n×n and the eigen-decomposition

for our first step takes O(n2 log n) with the Lanczos technique. In the second step, only

a2 is impacted by the change of u’s and its computation takes O(m) assuming that the

sizes of u, vi and C̄?j are all m × 1, while the time for u’s updates in Eq.(3.14) can be

considered as a constant. We need to update every component of u, the computation thus

amounts to O(dMm2) assuming M is the maximal number of iterations until convergence

of all d vectors u’s. The overall complexity is thus O(mn log n+ n2 log n+ dMm2).

3.3.5 Discussion

It is worthwhile to mention that both the sparseness and network-constrained regu-

larizations can be directly integrated into our first step formulated in Eq.(3.4). Neverthe-

less, that combination will result in a harder non-convex optimization problem, rendering

standard convex optimization theory not applicable. In order to address this difficulty,

we can either apply the minorization-maximization algorithm as developed in [71, 72] or

introduce another variable to convert the problem into the bi-convex optimization [73].

However, in both cases, it is not certain whether stable optimum solutions can be achieved

due to the original non-convexity optimization. We leave these issues for future studies.
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3.4 Experiments on Various Types of Real-World

Networks

3.4.1 Methodology

We compare the performance of DIPS against the following representative methods:

(1) MINDS [44]—among the first subnetwork sampling approaches for global-state net-

work classification, and (2) NGF [52]—a random forest based approach incorporating the

structure of PPI networks. Additionally, we also compare DIPS against techniques that

do not incorporate a network topology: (3) DIPSw/o, a variant of DIPS without network

constraints, (4) SVM by first performing SVD for dimensionality reduction (retaining

95% of the singular values). For each of our datasets, we evaluate the performance of all

algorithms via 5-fold stratified cross validation (CV). The parameters of DIPS are chosen

based on the estimated prediction accuracy within every 4 training folds and tested on

the left-out fold, following the protocol in [74, 75]. Unless otherwise specified, its param-

eters are tuned within the ranges: k ∈ [30− 80] with a step of 10; λ1 ∈ [0.15− 0.005] and

λ2 ∈ [0.1 − 1000] (in log-scale). For MINDS, the minimum discriminative potential for

each network constrained decision tree is set to 0.8 and K = 200 [44]. For NGF, we use

the Gini index for tree building and the threshold to stop growing a tree ε = 0.02 [52].

In both MINDS and NGF we sample/grow 10, 000 tree substructures.

3.4.2 Image Network Dataset

Since most network datasets (presented next) lack ground truth for the best features,

we conduct an experiment on image data, namely the CMUFace [76], in order to evaluate

the relevance of uncovered predictive subnetworks via visualization. Though images do

not originally involve explicit network structures, studying them as graphs has been
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deemed advantageous [77]. In particular, graphs enable the discovery of local image

properties, especially in image denoising since many pixels may be missing or tampered.

Following [77], we first down-sample the number of pixels to 50% and construct a common

network topology relying on the remaining pixels. Within each image, a pixel corresponds

to a node and has edges connected to the 5 nearest pixels. The value associated with an

edge is inversely proportional to its length, and a value associated with a node is the grey

level of the corresponding pixel. For the sake of visualization, we work with all straight

pose images where open eyes and sunglasses are selected as the global network states,

resulting in 156 network samples, each containing 1, 920 nodes and 11, 172 edges. The

subnetwork structures corresponding to the “eye” areas are therefore the ground truth

features.
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Figure 3.2: Prediction in image networks. Red bars show the best accuracies; Green bars
show accuracies with substructures having 80 nodes; Blue bars show accuracies with 80
trees used as features in NGF and MINDS.

Prediction Performance: In Fig.3.2, we report the prediction accuracy of all algo-

rithms averaged from 5-fold CV for 2 cases: (i) the best performance (red bars) not

constrained by the number of selected nodes, and (ii) the best performance when the

node number (i.e., value of c in Sec.3.3.3) in the predictive subnetworks is 80 (equal to

the number of ground truth nodes). Since NGF and MINDS are ensemble methods, we

further report when their selected trees are counted as the number of features (blue bars).
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As seen from Fig.3.2, both DIPS and DIPSw/o usually outperform the sampling methods

and SVM. Only DIPSw/o is inferior to NGF when the selected nodes are constrained to

80. In fact, DIPSw/o achieves the best accuracy when its substructures contains only 30

nodes while DIPS achieves the best accuracy of 82.1% when selecting 71 nodes to form

subnetworks. Both NGF and MINDS need a much higher number of nodes, respectively

355 and 202, to achieve their best accuracy. When the number of nodes is limited to 80,

NGF achieves only 71.9% of accuracy, which is considerably lower than DIPS’s 81.1%.

Methods 10 30 50 70 90
NGF-node 0.58(.10) 0.66(.10) 0.68(.06) 0.72(.08) 0.72(.09)
NGF-tree 0.68(.07) 0.72(.10) 0.74(.09) 0.72(.10) 0.74(.10)
MINDS-node 0.56(.05) 0.57(.10) 0.58(.08) 0.57(.10) 0.58(.09)
MINDS-tree 0.58(.07) 0.59(.10) 0.58(.10) 0.57(.07) 0.59(.07)
DIPSw/o 0.76(.02) 0.77(.02) 0.75(.02) 0.72(.02) 0.71(.02)
DIPS 0.76(.02) 0.79(.02) 0.82(.02) 0.82(.01) 0.81(.01)

Table 3.2: Prediction accuracy on image networks for varying number of features in
predictive substructures between 10 and 90 (std. dev. in brackets)

Table 3.2 provides more insights into the performance of all methods for varying

the number of selected nodes (trees in NGF- and MINDS-tree) from 10 to 90. The

classification rates of NGF and MINDS show similar trends of achieving higher accuracies

for larger numbers of selected nodes/trees, while generally stabilizing when more than

70 nodes/trees are selected. DIPSw/o outperforms DIPS for a small number of selected

nodes but its classification rate quickly deteriorates as the number of selected nodes

increases. As seen from the last row of Table 3.2, DIPS consistently maintains the high

accuracy rate and its performance only drops when the number of nodes exceeds the size

80 of the ground truth nodes.

Substructure Visualization: We also explore the subnetworks selected by each algo-

rithm. In Fig.3.3, we plot the selected substructures aggregated from 5-fold CV for all

algorithms by limiting the selected nodes to 80. Though several subnetworks are found
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(b)(a)

(d)(c)

Figure 3.3: Subnetworks selected by each method in image data. Overall network is
shown in grey while selected subnetworks are shown in blue (a background image is
selected from sunglass class). (a) NGF (b) MINDS (c) DIPSw/o (d) DIPS.

in the area of the “eyes”, NGF shows many irrelevant substructures selected across the

space. Most subnetworks found by MINDS are well connected and less fragmented, yet

some irrelevant regions are included. On the other hand, DIPSw/o (Fig.3.3c) discov-

ers a fragment of ground truth nodes but many irrelevant isolated nodes are also seen

throughout the entire network. This is justified by the lack of network regularization in

this model. Overall, none of the methods discover better features than DIPS as visualized

in Fig.3.3d. DIPS’s substructures are consistent across all folds and highly overlapping

with the ground truth region.
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3.4.3 Brain Network Dataset

The second dataset we examine is collected from the ADNI project1 focusing on

the Alzheimer’s disease. It consists of resting state fMRI scans captured from normal

control (NC) and Alzheimer’s disease (AD) subjects. For each fMRI scan, we employ

the FSL toolbox [2] to extract sequences of responses from 112 anatomical volumes of

interest (AVOI), each representing a brain region. We focus on the resulting functional

brain network [43] by building an edge-dual network: a node in the edge-dual network

is defined if the temporal correlation between the two underlying brain regions is ≥ 0.5.

The node value is the amount of correlation degree, and an edge connects two nodes if

they share one of the underlying brain regions. This setting ensures that any predictive

substructure involves at least two brain regions, which is consistent with the task of

analyzing functional brain connectivity [65, 43]. After pre-processing, the dataset consists

of 173 network samples, each having on average of 2, 948 nodes and 191, 750 edges.

Prediction Performance: We plot in Fig.3.4(a) the best prediction accuracy (red bars)

of all algorithms, and the best prediction accuracy in which the predictive substructures

involve 100 nodes (blue), and 100 trees (green) for NGF- and MINDS-tree variants.

Performance with smaller settings of selected nodes is reported in Table 3.3. As observed,

while NGF and MINDS are designed to find trees with low training errors, they both

do not perform noticeably better than the baseline SVM. In the case of NGF, a root

node selection in a densely connected area has limited impact. Both NGF and MINDS

suffer from an exponential number of possible subnetworks within the densely connected

brain graphs. In contrast, DIPS avoids this exponential complexity through subspace

learning and network-constrained regularization. Examining the detailed performance

in Table 3.3 provides further evidence of the accuracy gap between the two approaches.

1http://www.adni-info.org/
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While DIPS achieves 76% with 90 nodes in its predictive substructures, NGF and MINDS

can only get between 65% and 68% in their best performance.

Methods 10 30 50 70 90 100
NGF-node 0.57(.08) 0.64(.03) 0.65(.02) 0.66(.01) 0.65(.01) 0.65(.01)
NGF-tree 0.64(.02) 0.65(.01) 0.65(.01) 0.65(.02) 0.65(.03) 0.60(.03)
MINDS-node 0.58(.08) 0.61(.05) 0.64(.02) 0.61(.05) 0.61(.03) 0.61(.03)
MINDS-tree 0.64(.02) 0.61(.03) 0.65(.01) 0.66(.02) 0.68(.03) 0.67(.02)
DIPSw/o 0.63(.02) 0.71(.02) 0.74(.03) 0.76(.03) 0.76(.03) 0.74(.03)
DIPS 0.63(.03) 0.68(.03) 0.71(.02) 0.75(.02) 0.76(.02) 0.75(.04)

Table 3.3: Accuracy rates on brain networks with varying numbers of selected features
(std. dev. in brackets)

Predictive Substructures: Unlike image data where ground truth substructures can

be marked via visualization, defining predictive features for Alzheimer’s disease remains

an ongoing challenge [64]. Nevertheless, one way to evaluate the quality of uncovered

substructures from each technique is through their consistency in cross validation. Sub-

structures that are consistently found across training folds are likely the disease-related

biomarkers and they should be the first candidates for further investigation.

 0.5

 0.6

 0.7

 0.8

 0.9

NGF MINDS DIPS w/o DIPS SVM

A
c
c
u
ra

c
y

Best Node Tree

T2a.R

TP.R

T3a.R

TP.L

Hip.R
PP.R

FOC.RT2p.L

TO2.L

OLs.L

CO.R

Hip.L

Figure 3.4: Performance on brain networks. (a) Prediction accuracy of all methods (b)
Common predictive substructures found by DIPS.

We report the ratio between the intersection and union of substructures selected across

training folds of each algorithm. Specifically, we observe that both sampling techniques
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show less overlapping substructures for all sizes of selected nodes varied from 10 to 100,

with NGF starts reporting substructures of limited overlap (ratio of 0.017) only when

its tree ensembles contain at least 70 unique nodes. DIPS consistently shows overlap

ratios between 0.034 and 0.055 for the number of predictive nodes between 30 and 100.

These results reveal that our method selects more stable predictive substructures across

all training sets. Looking into the obtained structures, we observe that DIPS uncovers

11 nodes, out of 70 nodes, in common across all folds and these nodes form two large

subnetworks as depicted in Fig.3.4(b). By further investigation, we observe that these

substructures largely reside in the temporal lobe (TP.L, TP.R, T2a.R, T2p.L, T3a.R)

and the hippocampus (Hip.L/Hip.R), which are the two important brain regions strongly

impacted by Alzheimer’s disease [78, 79].

3.4.4 Gene Network Datasets

The last two datasets we use contain microarray co-expression data from studies

on embryonic development [52] and liver metastasis in human [1], combined with the

corresponding functional PPI network [55]. The former dataset contains 1, 321 genes,

5, 227 edges and 35 subjects divided into two global labels based on the developmental

tissue layers [52], while the latter comprises 7, 383 genes, 251, 916 edges from 123 subjects

labeled as disease/non-disease states.

Prediction Performance: Fig.3.5(a) compares the prediction accuracy in both datasets.

Due to space constraints, we only report the best performance with fine-tuned parame-

ters for each technique. Other than SVM, all techniques perform competitively on the

embryonic dataset, achieving more than 70% of prediction accuracy averaged from all

folds. MINDS performs better than NGF on these two microarray datasets, and also

better than DIPSw/o on the embryonic one. Nevertheless, the performance of DIPS is
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Figure 3.5: (a) Prediction accuracy in embryonic development and liver metastasis
datasets combined with PPI networks. (b) ROC performance w.r.t. ground truth genes
provided in [1] for liver metastasis.

by far the best, dominating both the baseline SVM and the sampling methods, with a

significant accuracy advantage on the liver metastasis dataset, which has a larger num-

ber of nodes. Moreover, DIPS’s relatively small standard deviation in accuracy in both

network datasets demonstrates its stability in predicting global network states across all

folds.

Predictive Substructures: As in the case of brain networks, there are no exact ground

truths for microarray data. Nevertheless, we choose the more challenging liver metastasis

dataset, along 39 cancer-related genes identified in [1] to serve as a ground truth set,

and further investigate the overlap of subnetworks selected by DIPS in relation to the

ground truth. At its best classification rate, DIPS’s substructures involve 65 nodes from

each training set and cumulatively 194 nodes from all training sets. Out of these, two

subnetworks (shown in Fig.3.6) are consistently observed across all folds. The genes MMP1,

TIMP1, MMP2 and TNFSF11 (shaded in Fig.3.6) are particularly interesting since they are

in agreement with the findings in [1] that identify these genes as the main targets related

to the liver metastasis.

As a comparison against other techniques, we evaluate the selected subnetworks in
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Figure 3.6: Typical predictive subnetworks uncovered by DIPS from liver metastasis.
Shaded nodes correspond to domain-relevant genes.

terms of ROC performance in identifying genes in the ground truth. Fig.3.5(b) plots

the ROC curves of competing methods when they obtain their best prediction rate. For

node ranking in DIPS and DIPSw/o, we rely on Eq.(3.17) while in NGF and MINDS,

we rank nodes based on their frequency of occurrence in sampled trees. The ROC curves

demonstrate that DIPS selects more ground truth nodes than NGF and MINDS for

small false positive rates. As this rate increases, the behavior of all methods become

quite similar since none of them are able to discover all ground truth genes. However,

the higher rate of true positive makes DIPS a better candidate for identifying new target

genes associated with the disease. This property is very important in practice since

validating a new target gene is costly and a method with better ROC performance can

provide better candidate genes to test experimentally.

3.4.5 Impact of regularization factors

In order to provide more insights into the performance of DIPS, we conduct a series

of experiments to examine the impact of the two regularization factors on the prediction

accuracy. Recall that λ1 controls the number of selected nodes, while λ2 enforces the

network connectivity within selected nodes. In Fig.3.7, we show the relationships between

the two factors and the prediction accuracy on the 4 datasets. From the plots, a trend is

observed that as λ1 decreases, more nodes are selected, and the prediction accuracy keeps
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increasing. However, when λ1 is too small, the prediction rate deteriorates in all datasets,

especially on the image data. This can be explained by the fact that a very small λ1 leads

to an overwhelming number of selected substructures, which can potentially contain many

irrelevant nodes and lead to over-fitting. A similar trend is also observed by varying λ2.

A small λ2 leads to a low accuracy as the connectivity information is almost disregarded,

while a large λ2 favors tightly connected subnetworks whose local node values may not

strongly influence the global network properties. The most important observation from

the four plots is that all surfaces have convex-shapes which suggests that the optimal

model can be selected at the peak point at which it has a small number of selected nodes

to favor a simple model, while the network connectivity in the predictive substructures

is maximized.
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3.4.6 Scalability

We also evaluate the scalability of our proposed algorithms. Our implementation

employs the Lanczos method [80] to compute the leading eigenvectors. To provide an

idea about typical running times: DIPS takes 9s and 140s to complete a round of cross

validation on the image and brain networks, whereas for the embryonic and liver cancer

data, it takes 182s and 17s respectively. These computations are twice as fast as DIPSw/o

since the network regularization term allows DIPS to converge much faster. NGF and

MINDS take similar time on the image network data at 147s and 165s, and embryonic

at 109s and 110s, respectively. However, both methods require much more time on the

denser networks of liver and brain. In particular, they both take more than 1900s on the

brain networks, due to training and examining a huge number of decision trees. DIPS

thus shows much better scalability against the subnetwork sampling methods due to its

efficient and effective subspace learning approach with network regularization.

3.5 Related Work

Recent research in bioinformatics and systems biology has demonstrated the untility

of network structure for both classification [52, 44] and regression [62, 63] tasks. NGF [52]

is one representative classification approach based on a random forest classifier that

also incorporates biological constraints encoded by a protein-protein interaction (PPI)

network. The random forest is iteratively built over features within a connected subgraph

of the PPI.

Another recent classification scheme, MINDS [44], builds decision trees constrained

by the network topology and employs Markov Chain Monte Carlo to sample the space of

connected structures. Both MINDS and NGF are sampling ensemble methods that clas-

sify network instances based on majority voting. In contrast, our work avoids searching in
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the exponential space of subnetworks by learning a discriminative subspace and selecting

predictive feature substructures within that subspace. In addition, our approach directly

optimizes the compactness (feature selection) and discriminative power (accuracy) of

features.

Our work also fundamentally differs from other subspace learning approaches [68, 66]

that either focus on classification in a subspace instead of feature selection [68], or do

not consider the network structure to obtain a subspace [66]. Our method selects a

controlled-size subset of the features in a network-aware manner, which can then be used

for classification or other types of analysis.

Graph classification based on frequent/discriminative substructures has also been

considered for chemical and program call graph databases [57, 56]. Nodes in this setting

are labeled by discrete labels (e.g. chemical element or function name) and the task is

to find substructures that are frequent in one class of database graphs and infrequent in

another.

The original database graphs are represented and classified as binary feature vectors

encoding the inclusion/exclusion of discriminative subgraphs.

Our setting is different from frequent substructure classification as we work with

continuous labels on nodes whose values are directly used for classification of the global

states. The learnt substructures by our method are structurally contained in all network

samples and selected feature node values collectively discriminate between global network

states.

Dynamic network mining approaches also aim to discover subnetworks of interest in

multiple discrete snapshots of an evolving network or in a multi-layer network [10, 81, 61,

82]. The goal in this line of work, however, is not classification of global network states,

but the discovery of abnormal substructures that persist in time or across network layers.
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3.6 Conclusions

We proposed DIPS, a novel framework for mining predictive substructures in global-

state networks. Unlike existing techniques, DIPS avoids the exponential complexity of

subnetwork sampling through a two-step scheme: (i) subspace learning, and (ii) predic-

tive substructures selection with network regularization. We utilize two mathematically

appealing approaches of spectral graph learning and gradient descent optimization, and

we show that DIPS converges to a single optimum solution—a desired property that is

hard to achieve by sampling approaches. Through experimental analysis over four real-

world datasets, we demonstrated the advantageous performance of DIPS not only based

on classification rate but also in terms of domain relevance of the discovered predictive

subnetworks.
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Chapter 4

Subnetwork Mining with Spatial and

Temporal Smoothness

4.1 Introduction

Network data arises in a number of application domains ranging from neuroscience,

biology, geography, to social sciences [4, 3]. Accordingly, network analysis has emerged

as a major paradigm for exploring the complex processes behind the observed network

data. Compared to high dimensional data, the analysis over the network data is more

challenging due to the nature of inter-dependence among the data entities. Moreover,

most network data are not static but keep changing over time. These changes not only

happen at the local interactions within the network samples but also eventually influence

the global behaviors of the network instances. Consider brain networks associated with

the Alzheimer’s disease (AD) as an example [27]. The death of neurons and synapses can

impact the cognitive performance of some brain regions. At an early stage, the disease can

be as mild as making the patient difficult in remembering some recent events; however, as

the disease progresses with more impacted brain regions due to the neuronal connectivity,
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the decline of overall cognitive function can be experienced, including confusion, difficulty

speaking, and eventually leading to fatality. Detecting brain subnetwork markers that

highly predict and evolve along with the progression of the disease is thus an important

task since it not only helps to characterize the disease but further provides the means to

plan the right treatments at the right stage of the disease.

Analyzing network structural data has been widely studied in the literature with

existing work focusing on community extraction [4, 83], frequent subgraph mining [84, 85],

outlier detection [3, 86], and graph classification [87, 88]. Although these studies have

substantially promoted our understanding, they tend to be explored in a simple setting

of a single network (e.g., community/cluster discovery), or extended to multiple-network

settings (e.g., frequent subgraph mining), yet without fully investigating the essential

relationship between local network processes and global network behaviors. In this work,

we broaden the research scope to a more complex setting in which we deal with multiple

network samples, each of which is associated with a global label that reflects the current

state of the entire network (e.g., disease stage, climate condition). Both local network

interaction and global network state can evolve over time. The task is to uncover a small

set of local network processes that have maximum impact on the global network states

such that their evolution can be used to predict the evolution of global network states.

Certainly, one may argue that it is possible to view each network sample as a collec-

tion of edges and apply typical feature selection techniques like mutual information [89],

statistical t-test [90], or perform PCA/SVD to generate new features prior to the analy-

sis. While such an approach significantly reduces the number of features to be analyzed,

the obtained models often lack domain relevance since the nature of interaction among

network entities is completely ignored. A more feasible approach is to apply an effective

graph classification method [87] to categorize network samples with different global states.

Though this approach can be feasible for the goal of prediction, its newly generated fea-

65



Subnetwork Mining with Spatial and Temporal Smoothness Chapter 4

tures (typically in the form of frequent subgraphs [87, 85]) lack temporal smoothness,

and thus are less successful in interpreting and explaining the intrinsic network processes

governing global network properties.

We present a novel algorithm to discover a succinct set of informative subnetworks

that are highly predictive w.r.t. the development of the global network states. Due to

the smooth transition of global states, these local subnetwork processes do not change

abruptly from state to state, but rather develop smoothly along with the progression of

the network states. Our algorithm is developed in the framework of logistic regression

that fits the model for multi-states of network samples. Each global state of networks is

characterized by a parametric vector whose coefficients are learnt with regularization on

both the network topology (i.e., spatial smoothness) and the transition between any two

adjacent global network states (i.e., temporal smoothness). In order to ensure that only

the most predictive subnetworks will be learnt, we further exploit the sparsity-inducing

L1-norm imposed on each parametric vector to remove edges that have little or no impact

on the progression of global network states. The proposed formulation is challenging to

solve due to the introduction of non-smooth L1-norm term. We, however, will show

that the developed function is convex and our solution based on the steepest descent is

practically efficient. Our contribution can be summarized as follows: (i) We propose and

motivate a novel problem to study the impact of local subnetwork processes on global

network properties that both evolve over time. (ii) We propose an objective function

to learn local subnetwork processes that are highly predictive for the development of

global network states. (iii) We theoretically prove that the formulated function is convex

(though not strictly) and develop a novel gradient descent algorithm to optimize for a

global optimum solution. (iv) We extensively evaluate and demonstrate the appealing

performance of the proposed technique on both synthetic and real-world applications.
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4.2 Preliminaries

Definition 3. (Network sample) Let S(i) = (N , Ei) be a network sample, where N is a set

of pre-defined nodes, Ei ⊆ N ×N is a set of undirected edges. There is a labeling function

F operating on local edges’ values that maps each edge to a real number F : E (i)uv → R.

We denote DS = {S(1), S(2), . . . , S(n)} as the database that consists of n network

samples. Each network S(i) is further associated with a label yi, indicating its global

network state. Each yi receives a discrete value in {1, 2, . . . , K} and this order reflects

the temporal evolution over global network states. It is important to note that indexing

(i)’s are not networks’ timestamps. Instead, we consider temporal development based

on values of global network states. For example, S(i)’s can be snapshots captured from a

social or traffic network in multiple days, and yi’s reflect whether such snapshots are in

the morning, afternoon, or evening hours. Likewise, S(i)’s can be brain networks scanned

from multiple subjects, and associated yi’s label their disease-stages advanced from mild

to moderate to severe condition. The temporal development is thus at the group level,

instead of a network individual. For each global state, we define an aggregate graph that

generalizes network topology of all network samples having that network state. Prior to

that, let us define the adjacency of two edges in a network sample as follows.

Definition 4. (Edge Adjacency) Let S(i) = (N , Ei) be a network sample characterized

by Def.3, we define a pair {E (i)uv , E (i)st } ∈ E (i) as adjacent edges if they have one node in

common; otherwise, we call {E (i)uv , E (i)st } non-adjacent or distant edges of S(i).

Definition 5. (Aggregate Graph for k-th state) Let DSk={S(i)∈DS|yi=k}, we define

G(k)=(V(k),L(k),W(k)) as an aggregate graph that captures edge adjacency of all networks

in DSk, where V(k) = {v1, . . . , vm} is the vertex set with each vp corresponds to an edge

found in at least one S(i) ∈ DSk; L(k) ⊆ V(k)×V(k) is the set of links. A link L(k)
pq connects
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vertices vp and vq if the two corresponding edges are adjacent in at least one S(i) ∈ DSk

according to Def.4. Each link L(k)
pq is associated with a non-negative value W(k)

pq encoding

the fraction of S(i)’s in DSk having that edge-adjacency in their network structures.

Figure 4.1: (a) network samples; (b) aggregate graph; (c) weighted matrix; (d) vectors
encoding edge values.

Fig.4.1 shows a simple example to illustrate the concepts presented in the three defi-

nitions above. Two network samples having the same k-th state are shown in Fig.4.1(a)

while their aggregate graph G(k) is depicted in Fig.4.1(b). A value of 0.8 associated with

edge {ab} in S(1) encodes the degree to which nodes a and b are related in S(1), whilst

the value of 1 associated with link {ab, bc} in G(k) indicates that two edges {ab} and

{bc} are found adjacent in both S(1) and S(2). In the following, we refer to aggregate

graphs shortly as graphs, and associate the terms “vertex” and “link” specifically with

such graphs. Fig.4.1(c) shows W(k) as a matrix representing graph G(k).
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4.3 Multinomial Logistic Regression

For the class of network applications addressed in this study, though network sam-

ples may have considerably different values associated with local edges, their network

topologies are generally stable across samples (e.g., human brain networks, snapshots

from a sensor or social network, etc.). We therefore utilize a high dimensional vector

xi = [xi1, . . . , xim]T ∈ Rm to store the local edge values of a network sample S(i) (exam-

ples of xi’s are illustrated in Fig.4.1(d)). Under the framework of logistic regression, we

directly model the posterior probability of a k-th state imposed on an input sample xi

as follows:

P (yi = k|xi,Θ, b) =
exp (θTk xi − bk)∑K
j=1 exp (θTj xi − bj)

(4.1)

where bk and θk are respectively the bias term and the weight vector that characterize

the corresponding class k. Across all K models, scalars bk’s form the bias vector b while

vectors θk’s form the matrix Θ. They both are the parameters to be estimated and with

the maximum likelihood optimization, their coefficients can be fitted by minimizing the

negative log likelihood over n network samples:

NLL(Θ, b) = − log
n∏
i=1

P (yi = k|xi,Θ, b) (4.2)

4.4 Spatial and Temporal Smoothness

Spatial Smoothness: Network topology plays a key role in determining how nodes commu-

nicate. In order to discover subnetworks related to global network states, the connectivity

patterns within network samples have to be taken into account. Toward this goal, within

each k-th class of network samples, we aim to regularize the parametric vector θk subject

69



Subnetwork Mining with Spatial and Temporal Smoothness Chapter 4

to the topology captured by G(k), through using its Laplacian matrix C(k) defined by:

C(k)
pq =


1−W(k)

pq /dp if vp = vq and dp 6= 0

−W(k)
pq /
√
dpdq if vp and vq are connected in G(k)

0 otherwise

in which dp is the vertex degree of vp. Thus, the negative log likelihood is incorporated

with the spatial network constraint term as follows:

F (Θ, b)=−log
n∏
i=1

P (yi=k|xi,Θ, b)+
λ1
2

∑
k

θTk C
(k)θk (4.3)

with λ1 ≥ 0, and we can further expand:

θTk C
(k)θk =

∑
vp

∑
vq

(
θk(p)√
dp
− θk(q)√

dq

)2

W(k)
pq (4.4)

From this equation, it is clearly seen that ifW(k)
pq is large, indicating two vertices vp and

vq in graph G(k) strongly interact in a large portion of the network samples, the coefficients

at p-th and q-th entries of vector θk should be similar, i.e., smooth, in order to minimize

this equation. That means the selection of either vp or vq will encourage the selection of

the other one due to the large W(k)
pq , leading to the formation of subnetworks selected in

the final results. This network term is thus considered as the spatial smoothness since it

minimizes the difference between connected vertices in the aggregate graph.

Temporal Smoothness: Given the smooth progression on the observable global network

states, it is particularly important to capture the temporal changes in the network con-

nectivity patterns developed along with this process. For any two consecutive global

states, one would expect that the local subnetwork processes influencing the develop-
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ment of global network states will evolve in a smooth way rather than in an abrupt

manner. Following our objective function developed above, we thus further develop an-

other regularization term that penalizes large deviations between any two parametric

vectors θk and θk+1, which respectively account for the two consecutive global network

states. This gives rise to the following formulation:

F (Θ, b) = − log
n∏
i=1

P (yi = k|xi,Θ, b) +
λ1
2

∑
k

θTk C
(k)θk

+
λ2
2

K−1∑
k=1

‖θk+1 − θk‖22 (4.5)

where λ2 ≥ 0 is a parameter regularizing the impact of temporal smoothness. It is

worth noting that the L2 norm on the parametric vectors encourages coefficients at a

p-th feature across different states to be grouped together, which is essential for tracking

the temporal changes of various local network processes along with the evolution of the

global network states. Moreover, though each θk is learnt for a global state and their

coefficients can be different in scale, such parametric vectors are usually very sparse

with majority of entries are zeros (presented in the next section) in order to uncover a

small set of predictive subnetworks. The temporal smoothness thus can be interpreted

as penalizing the dissimilarity in sparseness across network samples with adjacent global

network states, ensuring the smooth changes in the succinct set of uncovered predictive

subnetworks.

4.5 Optimization with Sparse Model

In solving the objective optimization function formulated in Eq.(4.5), we resort to

the steepest gradient descent method since there is no closed form solution for Eq.(4.5).

For convenience, network state yi is re-formatted as “1-of-K” encoding vector yi =
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[y1
i , . . . ,y

K
i ]T such that only yki = 1 and all other entries are 0 if the original scalar

yi = k (e.g., if K = 3 and yi = 2, then yi = [0, 1, 0]). Following this, the conditional

likelihood of yi given xi can be written as:

P (yi = k|xi,Θ, b) =
K∏
k=1

P (yki |xi,Θ, b)yk
i (4.6)

For brevity, we denote P (k|xi)yk
i for P (yki |xi,Θ, b)yk

i by omitting parameter set {Θ, b}.

And its log form can be expanded by: logP (k|xi)yk
i =
∑

k yki (θ
T
k xi+bk)−log

∑
j exp(θ

T
j xi+

bj). In this form, it is straightforward to show that function F (Θ, b) in Eq.(4.5) is strictly

convex and the optimal solution for parameters θk’s and bk’s can be achieved through

iterative updates with their first derivatives given by:

F ′(θk) =
∂F

∂θk
=
∑
i

(P (k|xi)− yki )xi + λ1C
(k)θk (4.7)

− λ2(θk−1 − θk) + λ2(θk − θk+1) for θ′ks

F ′(bk) =
∂

∂bk
=
∑
i

(P (k|xi)− yki ) for b′ks. (4.8)

However, such a solution does not set any coefficient of θk’s to zero and thus, no

predictive subnetworks are selected which lacks crucial point of interpretation. We extend

our solution to the more challenging optimization by further imposing the sparseness on

θk’s through constraining their L1-norm within a constant value t > 0:

f(Θ, b) =− log
n∏
i=1

K∏
k=1

P (k|xi)yk
i +

λ1
2

∑
k

θTk C
(k)θk

+
λ2
2

K−1∑
k=1

‖θk+1 − θk‖22 subject to
∑
k

|θk| ≤ t (4.9)

The advantage of L1-norm constraint [74] is that it causes many coefficients to be

exactly zero when t is set sufficiently small. Together with our network regularization
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terms, this constraint naturally performs subnetwork discovery by keeping only the most

relevant substructures that are predictive to global network states. Eq.(4.9) can be

equivalently formulated in the Lagrangian form as follows:

f(Θ, b) =− log
n∏
i=1

K∏
k=1

P (k|xi)yk
i +

λ1
2

∑
k

θTk C
(k)θk

+
λ2
2

K−1∑
k=1

‖θk+1 − θk‖22 + β

K∑
k=1

|θk| (4.10)

with β > 0 playing the role of t, but a larger value of β forces more coefficients in θk’s

equal to 0. Unlike linear regression problem, our optimization function f(Θ, b) here is no

longer strictly convex and obviously, there exists no closed form expression for it. Before

showing Eq.(4.10) is minimizable via the approach of steepest descent, let us denote

F (θk) for a single network state by:

F (θk) = − log
∏
i

P (k|xi)yk
i θk +

λ1
2
θTk C

(k)θk

+
λ2
2

(
‖θk+1 − θk‖22 + ‖θk − θk−1‖22

)
(4.11)

For simplification, we have included the bias term bk as the first entry of the parametric

vector θk and thus it is skipped in the notation of F (θk). Note that this bias coefficient

is excluded from both the network regularization and the model smoothness terms. In

optimizing each single parametric vector θk, Eq.(4.10) can be simply written as:

f(θk) = F (θk) + β|θk| (4.12)

We have the following proposition:

Proposition 7. Given the spatial smoothness and temporal smoothness defined in Eq.(4.3)&(4.5),

function F (θk) defined Eq.(4.11) is convex.
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Proof: The proof of this proposition is straightforward by showing that its Hessian

matrix is positive definite. More specifically, continuing with the first derivative shown

in Eq.(4.7), it can be shown that the second derivative of F (θk) with respect to θk is:

F ′′(θk) =
∑
i

xix
T
i (P (k|xi)− P (k|xi)2) + λ1C

(k) + λ2I

= XP (k)XT + λ1

(
C(k) +

λ2
λ1
I

)
(4.13)

where P (k) is the diagonal matrix with entries (P (k|xi)−P (k|xi)2)’s, X is the matrix with

xi’s as its columns and I is the identity matrix. It is obvious that, given any non-zero

vector u ∈ Rm, the quadratic form uTF ′′(θk)u > 0 since: (i) (P (k|xi)− P (k|xi)2) ≥ 0 as

0 ≤ P (k|xi) ≤ 1; (ii) C(k) is positive definite according to Eq.(4.4); (iii) and both λ1 and

λ2 are non-negative numbers by our setting. �

Proposition 8. Given f(θk) = F (θk) + β|θk| where β is non-negative, our optimization

function f(θk) is convex.

Proof: Let h(θk) = β|θk| and for any θ
(1)
k , θ

(2)
k defined in a convex domain, ζ ∈ (0, 1),

and θk = ζθ
(1)
k + (1− ζ)θ

(2)
k , then h(θk) is also a convex function since:

ζh(θ
(1)
k ) + (1− ζ)h(θ

(2)
k ) = βζ|θ(1)k |+ β(1− ζ)|θ(2)k |

= β|ζθ(1)k |+ β|(1− ζ)θ
(2)
k | ≥ β|ζθ(1)k + (1− ζ)θ

(2)
k | = h(θk)

in which the triangle inequality has been used in the second row and given β ≥ 0. In

combination with Proposition 7, and note that the summation of convex functions defined

in the convex domain is also convex [70], it follows that f(θk) is a convex function. �

Proposition 8 is important as it ensures that our steepest descent algorithm will

converge. In the spirit of gradient descent, our algorithm keeps updating parametric
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vector θk by θk + δk as long as the overall function is being reduced. Let us specify:

f(θk) = F (θk) + β|θk| and (4.14)

f(θk + δk) = F (θk + δk) + β|θk + δk| (4.15)

Then the algorithm finds δk such that f(θk)− f(θk + δk) is maximized. That means

the next step of moving θk will lead to the steepest descent in reducing f(θk). This

maximization is equivalent to minimization of f(θk + δk)− f(θk):

argmin
δk

g(δk) = f(θk + δk)− f(θk)

= F (θk + δk)− F (θk) + β(|θk + δk| − |θk|) (4.16)

Further formulating terms on the right hand size, the 2nd order Taylor expansion can

be exploited to get:

F (θk + δk) = F (θk) + δTk F
′(θk) +

1

2
δTk F

′′(θk)δk or

F (θk + δk)− F (θk) = δTk F
′(θk) +

1

2
δTk F

′′(θk)δk (4.17)

where F ′(θk) and F ′′(θk) are respectively the gradient vector (Eq.(4.7)), and the Hessian

(Eq.(4.13)). Then, Eq.(4.16) can be rewritten as:

argmin
δk

g(δk) = F ′(θk)
T δk +

1

2
δTk F

′′(θk)δk + β (|θk+δk|−|θk|)

However, optimizing this function is still challenging since it is not smooth due to

the two absolute terms. Therefore, in order for minimization, the subderivative of the

function is required. For simplicity, we provide the calculation w.r.t. each coefficient of
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δk. In this case, let δkj be the j-th entry of δk, then the function can be written by:

g(δkj) = F ′j(θk)×δkj +
1

2
F ′′jj(θk)×δ2kj + β(|θkj + δkj|−|θkj|)

where F ′j(θk) is the j-th entry of the gradient vector F ′(θk), and F ′′jj(θk) is the j-th entry in

the diagonal of the Hessian matrix F ′′(θk). Consequently, we separate the subderivative

w.r.t. δkj into the following cases:

∂g(δkj)

∂δkj
=


F ′j(θk) + F ′′jj(θk)δkj + β if δkj > −θkj

F ′j(θk) + F ′′jj(θk)δkj − β if δkj < −θkj

Note that the derivative of the absolute term is not defined when θkj − δkj = 0, or in this

case we have δkj = −θkj.

Now we know that δkj is optimal if the minimum-norm subgradient at δkj is equal to

zero. Thus, combining with the setting of the subderiviate to zero yields:

δkj =


−F ′

j(θk)+β

F ′′
jj(θk)

if F ′j(θk) < F ′′jj(θk)θkj − β

−F ′
j(θk)−β
F ′′
jj(θk)

if F ′j(θk) > F ′′jj(θk)θkj + β

−θkj otherwise

(4.18)

For the bias term bk, which we previously included as the top entry of θk, its corre-

sponding deviation is δk0 = −F ′j(θk)/F ′′jj(θk) since bk is excluded from both spatial and

temporal regularization. Given δk’s computed above, our algorithm iteratively updates

θk’s until there is no reduction on the overall objective function in Eq.(4.10). The final

smoothly developed subnetworks are found by matching the optimal θk’s with the graph

topology of G(k)’s defined in Def. 5.

Algorithm Complexity: We name our algorithm SLR (Subnetwork Learning with Reg-
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Figure 4.2: Prediction accuracy of all techniques on synthetic datasets. Plots
(a)-(c) correspond to CNR=[1.5, 1.0, 0.5] respectively of all algorithms with
GndSNet=[1%, 2%, 5%, 10%] (std.dev. is shown on top of each bar).

ularization) and analyze its complexity as follows. First, in terms of network topology,

each network S(i) can be viewed as a subgraph of G(k). Without loss of generality, we as-

sume m as the maximum number of G(k)’s vertices. The computation of the log likelihood

term therefore takes O(Knm) time while that of the spatial smoothness takes O(Km2)

(see Eq.(4.10)). The calculation of temporal smoothness takes O(Km), whereas the 1st

and 2nd derivatives of F (Θ, b) take O(Knm) and O(Km2) respectively. These quantities

are computed at each iteration of the gradient descent and thus the overall computation

is O(J(Km2 + nm)) with J as the number of iterations. Compared to m, both K and J

are very small in practice. More importantly, the computation is not always quadratic in

m since the subnetworks’ size greatly reduces after each iteration due to the sparseness

imposed on θk’s.
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4.6 Experiments on Synthetic and ADNI Datasets

We compare SLR against the following techniques: (1) The well-known MRMR frame-

work [89] that views network samples as collections of edges and performs edge selection

based on mutual information; (2) SSVM by first applying SVD for dimensionality reduc-

tion (retaining 95% of the singular values) followed by SVM; (3) A recent typical graph

classification method [85], named GrphCls, that works in a supervised setting and with-

out side view information. We present two sets of experiments. First, to understand

the strengths and limitations of our method, we utilize synthetic datasets that allow us

to perform a number of controlled experiments. Second, we test all algorithms on the

human functional brain networks to evaluate their practicability. Performance of every

algorithm is evaluated via 5-fold stratified cross validation, in which their optimal param-

eters are chosen based on the estimated prediction accuracy within every 4 training folds

and tested on the left-out fold according to [74]. Unless otherwise specified, λ1 and λ2 in

SLR are selected from the ranges: [0.001−50] with logscale step while with GrphCls [85],

its min-sup is chosen from the range [0.2− 0.5] with step of 0.05. For MRMR, we use the

forward edge selection scheme.

4.6.1 Data with known ground truth

Following the approach described in [91, 92], the synthetic datasets are generated by

summary statistics associated with edges and adding ground truth signals at predefined

subnetwork regions. The distribution of edges’ values within the ground truth regions are

generated with spatially contiguous correlations and conform to the background network

structure. We use the contrast-to-noise (CNR) [91, 92] to control the difference between

ground truth and non-ground truth edges. Three batches of datasets are generated with

CNR=[1.5, 1.0, 0.5]. Within each CNR setting, we further vary the percentage of edges
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(forming ground truth subnetworks) GndSNet=[1%, 2%, 5%, 10%] of the total network

edges, and the size of a ground truth subnetwork is varied between 3 to 15 edges each.

In total, 12 datasets have been generated and their network samples are labeled to three

global states. In simulation the evolving local network processes, ground truths for

network samples labeled by global state 1 are firstly created, then the ground truths for

networks with global state 2 are generated with the varying overlapping [60% − 90%]

with the ones in state 1. In a similar way, we generate the ground truths for network

samples with global state 3 based on the ones in state 2. For each individual dataset, we

generate 3K network samples evenly distributed into three global network states. Their

network structures form approximately 6K vertices and 125K links within each graph

G(k) in Def.5.

Prediction Accuracy: Fig.4.2(a)-(c) shows the experimental results of SLR and the

other three competing methods in predicting the global network states. Each plot in the

figure corresponds to a CNR setting, and each bar corresponds to a setting of GndSNet.

The accuracy values are obtained by averaging the prediction rate from cross validation.

As one observes, SLR performs stably over variation in both CNR and GndSNet.

Its prediction performance is better than MRMR since the network information is fully

explored, while is superior to the network-based GrphCls since the temporal smoothness

further narrows down the searching space to a small set of relevant and stable predictive

subnetworks. Among all techniques, SSVM is less successful and the possible reason is that

when irrelevant edges are prevalent in the data, aggregating all edges to form a lower

dimensional subspace might not lead to a satisfactory performance.

Ground truth subnetwork discovery: We compute ROC curves based on the set of

edges retrieved from the selected substructures w.r.t. the ground truth subnetworks. This

is plotted in Fig.4.3(a)-(c) for all algorithms except SSVM since its new features combine

information from all edges. The results are reported for GndSNet=5% as performance at
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Figure 4.3: ROC performance of the algorithms in uncovering the ground truth sub-
networks. Plots (a)-(c) correspond to 3 levels of CNR=[1.5, 1.0, 0.5] with GndSNet=5%
(similar trends were observed for other settings of GndSNet).

other settings shows similar trends. For edge ranking in our SLR method, we rely on the

absolute values of the parametric vectors, whereas for GrphCls, we rank edges based on

their aggregated frequency in the significant subgraphs [85]. In MRMR, the ranking is based

on the order in which edges are incrementally selected. The ROC curves shown in all three

plots demonstrate that SLR uncovers more relevant subnetworks than GrphCls and MRMR

for small positive rates. As this rate increases, the behaviors of three techniques become

similar since none of them can fully uncover all ground truths. However, the higher

ROC performance clearly makes SLR a better candidate in identifying local subnetworks

influencing global network properties, which is practically important since validating the

relevance of a subnetwork is often costly in real applications.

Impact of spatial and temporal network regularization: To provide more insights

into the performance of our algorithm, we further report a series of experiments in ex-

amining the impact of λ1 and λ2. The intrinsic relationship between these two factors

and SLR’s prediction rate is plotted in Fig.4.4. In Fig.4.4(a-c), we show the impact of

λ1 on prediction rate when fixing λ2 at different settings. An important trend can be

seen that either setting λ1 too small or large do not lead to a high prediction rate. A

small λ1 causes isolated edges to be selected since the network topology is disregarded,

while a large λ1 can overly favor strongly connected substructures yet not related to the

global network states. A similar trend is also seen in Figure 4.4(d-f) where we fix λ1
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Figure 4.4: Impact of λ1 and λ2 on prediction accuracy. Plots in three rows correspond
to CNR=[1.5, 1.0, 0.5] respectively with GndSNet=5%. Plots (a)-(c) show the impact of
λ1 while plots (d)-(f) show the impact of λ2.

and vary λ2. A small setting of λ2 causes different subnetworks across different global

network states, while its large value may force them to be too similar across states, even

for non-ground truth substructures, both leading to a low prediction accuracy.

4.6.2 Real world dataset

We choose the important application of analyzing human brain networks associ-

ated with the Alzheimer’s Disease. The analysis of brain data has recently attracted

much attention from the data mining community with convincing results demonstrated

in [85, 93, 94, 95]. However, unlike most previous studies which focus on a small number

of subjects and especially not for the temporal development of the disease, we analyze a

large scale cohort of 180 subjects obtained from http://www.adni-info.org/, and evenly

distributed into three global states: normal control (NC), mild cognitive impairment
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Figure 4.5: Prediction accuracy on human brain networks. Plots (a)-(d) correspond to
datasets C8, C4, C2 and C0 respectively, with the selected subnetworks varied from 1%,
2%, 5%, 10% to 12% of the total edges. GrphCls does not handle well densely connected
datasets, while SSVM is shown with a single column due to using aggregated features.

(MCI) and Alzheimer’s disease (AD). FSL toolbox [2] is used to convert an fMRI scan to

a functional brain network, comprising of 112 brain regions. A value associated with an

edge (connecting two brain regions) is evaluated by the correlation between their blood

oxygen level-dependent time series. Since there is no gold standard for choosing a proper

threshold for functional correlation, we follow the general approach in [96, 65] by select-

ing four thresholds ranging from [0.8, 0.4, 0.2, 0] to remove weak correlations, resulting

in four network datasets respectively denoted by C8, C4, C2 and C0, with numbers of

vertices/links varying from 776/15535 to 5515/49284.

Prediction Performance: We evaluate all algorithms on network state prediction by

comparing their performance on five settings of selected subnetworks between 1%, 2%,

5% 10% and 12% of total unique edges. Fig.4.5 reveals that all algorithms yield better

prediction rates for higher numbers of selected substructures. However, a level larger than
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Figure 4.6: Overlapping percentage of selected edges across all training data. Plots
(a)-(d) correspond to four network datasets C8, C4, C2 and C0.

10% does not lead to better prediction accuracy, due to the prevalence of noisy edges.

Among all examined techniques, SSVM shows the lowest performance at the prediction

rate of 39% in C8, a result that is only marginally better than the random guess of 33%.

GrphCls performs much better than SSVM but only works on the sparse network data

C8. For other datasets with denser network samples, GrphCls takes much longer time

handle the large amount of possible substructures. The performance of SLR is by far

the best, dominating both mutual information based MRMR and the frequent subgraph-

based GrphCls, with a large accuracy advantage on both sparsely and densely connected

network data. Looking deeper, we also see that for the same level of prediction rate,

subnetworks uncovered by SLR is usually more succinct compared to other competing

methods. For example, on the densely connected dataset C2, it achieves 60% of prediction

accuracy with 5% of total edges combined from its substructures, as compared to the

second-best technique MRMR, which requires double the number of edges for a prediction
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rate of 57%.
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Figure 4.7: Four typical subnetwork markers (visualized with node hubs) consistently
selected by SLR. Nodes are brain regions abbreviated in the HO atlas standard [2]. (a)
T2a.R: Right Middle Temporal Gyrus, anterior division; (b) T2a.L: Left Middle Temporal
Gyrus, anterior division; (c) FP.L: Left Frontal Pole; (d) TP.L: Left Temporal Pole.

Subnetwork discovery: We evaluate the quality of uncovered substructures from each

technique through their consistency in cross validation. Subnetworks that are consistently

selected across training folds are likely the disease-related biomarkers and they should be

the first candidate for further investigation. Fig.4.6 provides overlapping percentage (y-

axis) of discovered subnetworks across all training folds for the four datasets. As observed,

although the overlap tends to increase as the number of selected edges increases, none of

the competing methods consistently produce results as good as SLR, which implies that

SLR selects the most stable and consistent predictive substructures across all training

folds.

To validate that our proposed method finds meaningful subnetworks, we further in-

vestigate its selected subnetworks. Fig.4.7 displays the top four subnetworks consistently

discovered from all training folds. For easier visualization, we plot each subnetwork with

a core node that has the highest node degree (like community hub [4]). It is found that
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the core nodes like T2a.R, T2a.L and TP.L indeed reside within the temporal lope—the

brain region strongly impacted by Alzheimer’s disease as reported in [97, 98].
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Figure 4.8: Smoothly changing subnetworks. Columns from left to right in each plot cor-
respond to NC, MCI and AD states. Dark background colors show selected edges whereas
entries’ values show functional correlations averaged from network samples within the
corresponding group.

Fig.4.8 further provides visualization on how these subnetworks have changed smoothly

across the global network states. Three columns in each plot correspond to NC, MCI

and AD states. As seen, functional correlations deteriorate noticeably from NC to AD

groups in most cases, especially those in the T2a.R subnetwork (Fig. 4.8(a)) and the

TP.L subnetwork (Fig. 4.8(d)). This phenomenon can be explained by the fact that,

once T2a.R and TP.L regions are damaged by the disease, their cognitive performance is

significantly reduced which further impacts other functionally connected regions. How-

ever, we also observe that in some circumstances, the functional correlation increases

from NC to AD, as between FP.L and SCLC.L, OLi.R in Fig. 4.8(b), or between Thal.R

and CGa.L, SGa.L in Fig. 4.8(c). This increased functional connectivity might support

the “compensatory recruitment hypothesis” [98].
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4.7 Related Work

Analyzing network structural data has been widely studied in the literature with

most existing work focusing on community detection [4], frequent subgraph mining [84],

outlier detection [3], and graph classification [87, 58]. Close to our study is the line of

work on graph classification. Though diverse in terms of underlying approaches, most

algorithms [58, 56] generally assume a database consisting of “positive” and “negative”

graphs, and aim at extracting a set significant subgraphs that are frequently present in

one class but absent in the other, which subsequently are used as new (binary) features

to train classifiers. These approaches, recently being extended to semi-supervised set-

ting [99], uncertain graphs [100], or multiple side-view [85] which we have adapted for

our empirical comparison. Another related work is the one developed in [93] that directly

addresses the progressive data but in the non-network context. Moreover, its view on the

subject behaviors’ progression differs from ours in which it assumes the smooth changes

in predictive variables appear in every model while minimizing the models’ difference

learnt at various time points. In contrast, our study explores a single model in which the

changes in local network processes can lead to the changes in global network states.

Another line of related studies are from feature selection where one can view each

network sample as a collection of edges and use statistical analysis t-test [101, 95] or

mutual information [102, 89] to select edges that lead to the statistical difference among

various global network states. The advantage is that these studies can make an individ-

ual edge or region-based analysis [101, 102], instead of analyzing entire networks as a

whole. However, they lack the capability of analyzing both intra and inter-connectivities

among different network regions at the same time. Our work is also related to dynamic

network mining that aims to discover subnetworks of interest in multiple discrete snap-

shots of an evolving network [81] or in a multi-layer network [82]. The goal in this line
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of work, however, is not predicting global network states, but the discovery of abnormal

substructures that persist in time or across network layers.

4.8 Conclusions

In this work, we address an important problem of mining a succinct set local subnet-

works that are predictive for the progression of global network states. We develop SLR

as a novel algorithm that fits a model for multi-states of network samples subject to two

important constraints: (i) spatial smoothness imposed on the network topology to ensure

the well-connected substructures; (ii) temporal smoothness to discover predictive subnet-

works evolving along with the progression of global network states. SLR further imposes

the sparsity-inducing L1-norm to explicitly remove edges that have little or no impact

on the progression of global network states and we show that the overall optimization

function is convex. Extensive experiments on both synthetic datasets and the emerg-

ing brain networks demonstrate the appealing performance of our algorithm not only in

terms of prediction accuracy but also in the consistency of the discovered subnetworks

with existing literature, providing a better understanding of the intrinsic relationship

between the evolution of local network processes and the progression of global network

behaviours.
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Chapter 5

Discrepancy-aware Network

Regularization

5.1 Introduction

Network regularization is a fundamental approach to encode and incorporate general

relationships among variables, which are represented as nodes and linked together by

weighted edges that describe their local proximity. A significant amount of effort has been

devoted to developing successful regularizations [16, 103, 104, 18, 105] that take advantage

of prior knowledge on network structures to enhance estimation performance for a variety

of application settings, including image denoising [106], genomic data analysis [13] and

neuroimaging-based classification [107].

We consider the general setting of network regularization, now proposed as a convex

optimization problem defined on an undirected graph G(V , E) with node set V and edge
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set E :

min
∑
i∈V

fi(xi) + λ
∑

(j,k)∈E

ωjk · g(xj,xk), (5.1)

where on each node i, we intend to learn a local model xi ∈ Rd, which in addition to

minimizing a predefined convex loss function fi : Rd → R, carries certain relations to its

neighbors, defined by the function g : Rd × Rd → R.

In this work, we focus on the particular setting where g(xi,xj) = ‖xi − xj‖2, also

known as a sum-of-norms (SON) regularizer. It assumes that the network is composed

of multiple clusters, suggesting that all nodes within a cluster share the same consensus

model (xi = · · · = xj). As the observed data on each node may be sparse, the SON

regularizer allows nodes to ”borrow” observations from their neighbors to improve their

own models, as well as to determine the network cluster to which they belong. The SON

objective was first introduced in [15] for convex clustering problems and used off-the-

shelf sequential convex solvers. Chi & Lange [108] adapt SON clustering to incorporate

similarity weights with an arbitrary norm and solve the problem by both alternating

direction method of multipliers (ADMM) or alternating minimization algorithm (AMA)

in a parallel manner. More recently, Hallac et al. [18] point out that weighted SON

(named as Network Lasso) allows for simultaneous clustering and optimization on graphs,

and is highly suitable for a broad class of large-scale network problems.

In network regularization, a static weight assigned to an edge determines how strictly

the difference between models on the corresponding nodes is being penalized, relative to

the other node pairs in the network. However, unlike few scenarios in which network

information is explicitly given, edge weights are usually unavailable or even infeasible

to obtain in most real-world networks (e.g., gene regulatory networks [109]). Moreover,

due to possible measurement errors and inaccurate prior knowledge, the assigned edge
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weights don’t necessarily align with the underlying clustering structure of networks as

shown in [110, 111]. As a result, heavily relying on the edge weights in determining how

much penalty should be applied to neighboring models may contaminate the discovered

solutions.

Similar intuition applies when we extend to the temporal setting. Models on nodes

of temporal networks usually change at the level of groups over time. However, some

groups exhibit different evolution patterns than others [112]. Moreover, the grouping

structures themselves may evolve with time [113]. As static regularization cannot capture

such temporal evolution, a direct solution is to induce a time-varying local consensus by

employing the SON objective on both spatial and temporal directions, but we face an

more drastic problem: how to assign weights between snapshots.

Consequently, a framework that is robust to missing or corrupted edge weights in

network-based regularization and adapts to spatio-temporal settings is desired. Note

that without the assigned network weights, the setting in Eq. (5.1) degrades to simply

applying isotropic regularization for all the edges. In this work, we propose a generic for-

mulation, called the discrepancy-aware network regularization (DANR), which deploys

a suitable amount of anisotropic network regularization in both spatial and temporal

aspects. DANR infers models at each node per timestamp and can learn evolution of

models and transitions of network structures over time. We develop an ADMM-based

algorithm that adopts an efficient and distributed iterative scheme to solve problems

formulated by the DANR, and show that the proposed solution obtains guaranteed con-

vergence towards global optimal solutions. By applying to both synthetic and real-world

datasets, we demonstrate the effectiveness of the proposed approach on various network

problems.
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5.2 Modified Regularization for Spatial Networks

5.2.1 Discrepancy-aware Network Regularization

Since existing network-based regularizers rely on known weights on edges, the corre-

sponding solutions get misled when the edge weights are erroneous or unknown. Directly

learning the unknown edge weights by using the same regularizer as Eq. (5.1) would lead

to an optimization problem:

min
x,ω

∑
i∈V

fi(xi) + λ
∑

(j,k)∈E

ωjk ‖xj − xk‖2 (5.2)

which yields the trivial all-zero solution of ω and thus becomes unsatisfactory. Instead

of imposing more sophisticated model-based or problem-dependent regularization as sug-

gested in [114], we consider an alternative formulation that explicitly accounts for dis-

crepancies between models on adjacent nodes:

min
x,α

∑
i∈V

fi(xi) + λ · RS(x,α) (5.3)

RS(x,α) = µ
∑

(j,k)∈E

ωjk ‖xj +αjk − xk‖2 + (1− µ)‖α‖1,p (5.4)

where we denote ‖α‖1,p =
∑

(j,k)∈E ‖αjk‖p as the sum of p-norms of all αjk’s. We set

a penalty parameter λ ≥ 0 to control the overall strength of network regularization,

and a portion parameter 0 < µ < 1 to control the emphasis between the two terms

in RS(x,α). We name this formulation in Eq. (5.3) the discrepancy-aware network

regularization (DANR).

In the first term of RS, we define a discrepancy-buffering (DB) variable αjk ∈ Rd

to denote the preserved discrepancy between local model parameters xi and xj. More

specifically, when an edge weight ωjk is given but potentially imprecise or otherwise
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corrupted, αjk would compensate for abnormally large differences between models xj

and xk to reduce the magnitude of ωjk-weighted edge penalty term in RS. The DB

variable provides additional flexibility to its associated models, allowing them to stay

adequately close to their own local solutions w.r.t. minimizing local loss functions, and

avoid over-penalized consensus. When all ωjk’s are not given, αjk’s enable solving Eq. 5.3

under anisotropic regularizations even with homogeneous weights.

The second term of RS is the `1,p-regularizer (with 1 < p < ∞) [115] that ensures

sparsity at the group level. Note that we regard each variable vector αjk as a group (|E|

groups in total). The first key intuition here is that the regularization on α helps to

exclude trivial solutions, that is αjk = xk−xj. Second, it allows us to identify a succinct

set of non-zero vectors αjk’s, compensating for possible intrinsic discrepancies between

two adjacent nodes.

To sum up, discrepancy-buffering variable αjk’s are designed to elaborately adjust

network regularization strength on all edges, and thus reduce negative effects of the

unsquared norm regularizer. We will show in later sections that this modified formulation

remains convex and tractable via parallel optimization algorithms on large-scale networks.

5.2.2 Distributed ADMM-based Solution

In this section, we propose an ADMM-based algorithm for solving the ST-DANR

problem in Eq. (5.16) and present the convergence and complexity of the proposed al-

gorithm. The algorithm can be easily adapted to the spatial-only DANR problem in

Eq. (5.3) by omitting temporal-related updates.

The ADMM method was originally derived in [116] and has been reformulated in

many contexts including optimal control and image processing [117]. The method can

be considered as combining augmented Lagrangian methods and the method of multi-

pliers [19, 118]. It aims to solve optimization problems with two-block separable convex
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objectives in the following form of

min f(x) + g(z) s.t. Ax+Bz = c (5.5)

Observe that our proposed objective in Eq. (5.16) has a separable convex objective func-

tion: it can be reorganized into two-block separable convex objectives as in Eq. (5.5), for

which ADMM methods guarantee convergence to global optimal solutions [119, 120, 119].

More precisely, to fit our problem into the ADMM framework, we first define x={xj}j∈V

for model parameter vectors on the given undirected network G, and define consensus

variables u = [{ujk,ukj}(j,k)∈E ] as copies of x in the spatial penalty term RS(x,α). Then

we rewrite Eq. (5.16) as follows:

min
x,u,α

∑
j∈V

fj(xj) + λ1(1− µ1)‖α‖1,p (5.6)

+ λ1µ1
∑

(j,k)∈E

ωjk ‖ujk +αjk − ukj‖2

s.t. [ujk,ukj ] = [xj ,xk] , (j, k) ∈ E

in which the first term corresponds to the f block in Eq. (5.5), and the remaining terms

correspond to the g block. The equality constraints on Eq. (5.16) are used to force

consensus between variables x and u. Next, we derive the augmented Lagrangian of

Eq. (A.1):

Lρ1(x,u,α, δ) =
∑
j∈V

fj(xj) + λ1(1− µ1)‖α‖1,p +
∑

(j,k)∈E

(
λ1µ1ωj,k‖ujk +αjk − ukj‖2

+
ρ1
2
‖xj − ujk + δujk‖22 −

ρ1
2
‖δujk‖22 +

ρ1
2
‖xk − ukj + δukj‖22 −

ρ1
2
‖δukj‖22

)
(5.7)

where δ = [{δujk, δukj}(j,k)∈E ] are scaled dual variables for each equality constraint on the

elements of u. The parameters ρ1 > 0 penalize the violation of equality constraints in the
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spatial and temporal domain [121] respectively. The iterative scheme of ADMM under

the above setting can be written as follows, with l denoting the iteration index:

x(l+1) = argmin
x
Lρ1(x, (u,α, δ)(l))

(u,α)(l+1) = argmin
u,α

Lρ1(x(l+1),u,α, δ(l))

δ(l+1) = δ(l) + (x̃(l+1) − u(l+1))


(5.8)

where x̃=[{xj ,xk}(j,k)∈E ] is composed of replicated elements in x, and thus has a one-to-

one correspondence with elements in u.

Because the augmented Lagrangian in Eq. (5.7) has a separable structure as well, we

can further split the optimization above over each univariate element in x and z. Next,

we provide details for each ADMM update step.

x-Update. In the first update step of our ADMM updating scheme, we can decom-

pose the problem of minimizing x into separately minimizing xj for each node j:

x
(l+1)
j = argmin

xj

(
fj(xj) +

ρ1
2

∑
k∈Nj

‖xj − u(l)
jk + δ

u(l)
jk ‖

2
2

)

As above equation suggests, xj on node j first receives local information from the cor-

responding consensus variables belonging to all of its neighbors k ∈ Nj, then updates its

value to minimize the loss function and remain close to neighbouring consensus variables.

Since all remaining regularizations are quadratic, the x-update problem can be efficiently

solved whenever the loss function fj has certain properties, such as strong convexity.

(u,α)-Update. We can further decompose the (z,α)-update step in Eq. (A.2) into

subproblems on each edge (and its related variables ujk,ukj,αjk) as follows, which can
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be solved in parallel:

(u
(l+1)
jk ,u

(l+1)
kj ,α

(l+1)
jk ) = argmin

(
λ1(1− µ1)‖αjk‖p + λ1µ1ωjk‖ujk +αjk − ukj‖2

+
ρ1
2
‖x(l+1)

j − ujk + δ
u(l)
jk ‖

2
2 +

ρ1
2
‖x(l+1)

k − ukj + δ
u(l)
kj ‖

2
2

)
(5.9)

Notice that the sum of convex functions which are defined on different sets of variables

preserves the convexity. To minimize the objective with ujk,ukj and αjk simultaneously,

the convexity of Eq. (5.2.2) motivates us to adopt an alternating descent algorithm, which

minimizes each component iteratively with respect to (ujk,ukj) and αjk while holding

the other fixed. In detail, we solve Eq. (5.10) and Eq. (5.11) iteratively until convergence

is achieved:

(u
(l′+1)
jk ,u

(l′+1)
kj ) = argmin

(
λ1µ1ωjk‖ujk +α

(l′)
jk − ukj‖2 (5.10)

+
ρ1
2
‖x(l+1)

j − ujk + δ
u(l)
jk ‖

2
2 +

ρ1
2
‖x(l+1)

k − ukj + δ
u(l)
kj ‖

2
2

)
α

(l′+1)
jk = argmin

(
(1− µ1)‖αjk‖p + µ1ωjk‖u(l′+1)

jk +αjk − u(l′+1)
kj ‖2

)
(5.11)

where l′ denoting the iteration index of alternating descent. Further, we can utilize the

analytic solution to speed up the calculation of ujk and ukj:

Proposition 9. Problem (5.10) has a closed-form solution:

u
(l′+1)
jk = (1− θ)a+ θb− θα(l′)

jk

u
(l′+1)
kj = θa+ (1− θ)b+ θα

(l′)
jk


where we denote a = x

(l′+1)
j + δujk

(l′), b = x
(l′+1)
k + δukj

(l′), c = λ1(1 − µ1)ωjk, and θ =

c/(ρ1‖a− b+α
(l′)
jk ‖2) for simplification.

Proof: We present the analytic solution for updating (ujk,ukj), introduced in Eq.
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(2.9). For simplicity, we omit iteration index l′, and denote a = xj + δujk, b = xk + δukj

and c = λ1(1− µ1)ωjk.

min g(ujk,ukj) = c ‖ujk +αjk − ukj‖2 +
ρ1
2

(
‖a− ujk‖22 + ‖b− ukj‖22

)
(5.12)

We discuss the problem in the following two cases:

Case (1): When the objective function in Eq. (5.12) is differentiable under the

condition of ‖ujk +αjk − ukj‖2 6= 0, taking the sufficient condition of optimality as ∇g =

0, we have:

c
ujk +αjk − ukj
‖ujk +αjk − ukj‖2

− ρ1(a− ujk) = 0

−c ujk +αjk − ukj
‖ujk +αjk − ukj‖2

− ρ1(b− ukj) = 0

and we can solve above linear system equations to obtain:

ujk =
(c+ τρ1)a+ cb− cαjk

2c+ τρ1

ukj =
ca+ (c+ τρ1)b+ cαjk

2c+ τρ1

where we define τ := ‖ujk +αjk − ukj‖2 which still depends on ujk and ukj. Thus we plug

the expressions of ujk and ukj back into the definition of τ , and achieve the expression

of τ = ‖a− b+αjk‖2 − 2c/ρ1 which is fully comprised of fixed variables. Hence, we have

the solution as below:

u∗jk = (1− θ)a+ θb− θαjk

u∗kj = θa+ (1− θ)b+ θαjk (5.13)
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where θ := c/(ρ1‖a− b+αjk‖2) ≥ 0.

Case (2): When the objective function in (5.12) is not differentiable, we need to solve

the quadratic problem min ‖a− ujk‖22+‖b− ukj‖22 with the constraint ‖ujk+αjk−ukj‖2 =

0. It yields u∗jk = (a+ b−αjk)/2, u∗kj = (a+ b+αkj)/2, which is in the same form of Eq.

(5.13) if θ = 1/2.

To determine which of above differentiable conditions is satisfied, we compare result-

ing objective values in two cases. Denote F ∗1 and F ∗2 as the optimal objective value in

above two cases, we compute their difference as:

F ∗1 − F ∗2
‖a− b+αjk‖2

= (θ2 − 1

4
)
c

θ
+

cτρ1
2c+ τρ1

From the definition of τ and θ, we can derive τρ1 = c(1/θ − 2). Combining above:

F ∗1 − F ∗2
c‖a− b+αjk‖2

= −
(θ − 1

2
)2

θ

which shows that F ∗1 ≤ F ∗2 unless θ = 1/2. Therefore, we can have a unified solution as

Eq. (5.13). �

δ-Update. In the last step of our ADMM updating scheme, we have fully indepen-

dent update rules for each scaled dual variable δujk as follows:

δujk
(l+1) = δujk

(l) + (x
(l+1)
j − u(l+1)

jk ) (5.14)

Finally, we present the pseudo-code of our DANR approach as Algorithm 1.

Stopping Criterion and Global Convergence. For our ADMM iterative scheme

in Eq. (A.2), we use the norm of primal residual r(l) = x̃(l)−u(l) and dual residual s(l) =

ρ1(u
(l) − u(l+1)) as the termination measure. The optimality condition [19] of ADMM

shows that if both residuals are small then the objective suboptimality must be small,
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Figure 5.1: Pseudo-code of proposed DANR approach.

and thus suggests ‖r(l)‖2 ≤ ε1 ∧ ‖s(l)‖2 ≤ ε2 as a reasonable stopping criterion. Convex

subproblems in x-update and (u,α)-update need iterative methods to solve as well. The

stopping criterion for these subproblems is naturally to keep iteration differences below

thresholds, i.e. in (u,α)-update, we require ‖∆u(l′)‖2 ≤ ε′ and ‖∆α(l′)‖2 ≤ ε′.

Proposition 10. Our ADMM approach to solve the DANR problem is guaranteed to

converge to the global optimum.

Proof: Based on rigorous analysis in [19] and [119], we know that the convergence

to the global optimum is guaranteed for ADMM algorithms on problems of the following

form:

min h(x0) + g(z0) s.t. Ax0 +Bz0 = c0 (5.15)

where both h and g need to be convex functions and constraints are linear. Note that

our problem in Eq.(2.2) is equivalent to Eq.(2.5). To satisfy conditions of convergence

guarantee, we need to fit Eq.(2.5) to the form in Eq.(5.15).
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We let x0 = x and let z0 = [u,α], and further define h(x0) =
∑

j∈V fj(xj) and

g(z0) = λ1(1− µ1)‖α‖1,p + λ1µ1

∑
(j,k)∈E ωjk‖ujk + αjk − ukj‖2. Next, h(x0) is convex

because each cmponent fj(xj) is required to be convex in our problem setting. g(z0)

is also convex in terms of the joint variable [u,α], by the definition of convexity and

the triangle inequality. Lastly, the constraint {[ujk,ukj] = [xj,xk], ∀(j, k) ∈ E} is also

linear in terms of entries in u and x. Summing up, we can see that Eq.(2.5) fits the

form of Eq.(5.15). Then by theorems in [19] and [119], Our ADMM approach to solve

the problem Eq.(2.2) is guaranteed to converge to the global optimum. �

Computational Complexity. Let Nc denote the number of iterations that ADMM

takes to achieve an approximate solution x̂ with an accuracy of εx. Based on the con-

vergence analysis in [122], the time complexity scales as O(1/εx), which in our problem

mostly depends on the properties of cost functions fjt’s. Assume that all convex sub-

problems in x-update and (u, α)-update are solved by general first-order gradient descent

methods that take Nx and Nα iterations to converge respectively, the overall complexity

of the algorithm is therefore O
(
Nc

(
Nx|V|+Nα|E|+ |E|

))
.

5.3 Extension to Spatio-temporal Setting

The aforementioned shortcomings with pre-defined edge weights accentuate when we

consider temporal networks since acquiring explicit temporal edge weights is usually not

feasible. Thus, discrepancy-buffering variables are also crucial for the temporal setting.

Consider a temporal undirected network G consisting of M sequential network snap-

shots {G1,G2, . . . ,GM}, where each network snapshot Gt contains a node set Vt and an

edge set Et. We denote ωtj,k as the weight of spatial edge (jt, kt) between nodes jt and kt

within snapshot Gt, and ωt,t+1
j for the weight of temporal edge (jt, jt+1) that links node

jt with jt+1 across snapshots Gt and Gt+1 (shown in Fig.5.2). On each node jt, a convex
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loss function fj,t : Rd → R is given to measure the fitness of a local model parameterized

by xj,t ∈ Rd. With sparse observations for all snapshots, a straightforward task is to

find jointly optimal models for every node and every timestamp under the regularization

for both network topology and temporal evolution. We can propose an extension of the

DANR formulation to spatio-temporal networks, referred as ST-DANR:

min
x,α,β

∑
j∈V

M∑
t=1

fj,t(xj,t) + λ1 · RS(x,α) + λ2 · RT (x,β) (5.16)

where we define the discrepancy-aware regularizers as:

RS(x,α) = µ1

M∑
t=1

∑
(jt,kt)∈Et

(
ωtjk ‖xj,t +αjk,t − xk,t‖2

)
+ (1− µ1)‖α‖1,p (spatial penalty term) (5.17)

RT (x,β) = µ2

∑
j∈V

M−1∑
t=1

(
ωt,t+1
j ‖xj,t + βj,t − xj,t+1‖2

)
+ (1− µ2)‖β‖1,p (temporal penalty term) (5.18)

As we are interested in the heterogeneous evolution of nodal models across time, the

chosen unsquared norms in spatial and temporal regularization terms RS(x,α) and

RT (x,β) enforce piecewise consensus in both spatial and temporal aspects, which in-

dicates abrupt changes of regional models or sudden transitions in network structures at

particular timestamps, and also implies valid persistent models in the remaining segments

of time [123]. Beside the spatial DB variables αjk,t in RS(x,α), we define another set of

temporal DB variables βj,t ∈ Rd in RT (x,β) to compensate for inadequate regulariza-

tions caused by temporal fluctuations. For example, when modeling housing prices in a

city, βj,t would tolerate anomalous short-term fluctuations in prices, while large values

of αjk,t might be found near boundaries of disparate neighborhoods.
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Figure 5.2: Overview of our problem setting in temporal networks.

Adaptation to Streaming Data. In many applications, observed network snap-

shots arrive in a streaming fashion. Instead of recomputing all models on past snapshots

whenever a new snapshot is observed, incorporating existing models to facilitate the

new incoming snapshot is more efficient. Assume that we have learned models {x̂j,t}j∈V

for the τ -th snapshot, we then read observations of the next m snapshots indexed by

τ + 1, · · · , τ + m and attempt to learn models for them. To this intent, we deploy our

ST-DANR formulation in Eq. (5.16) on a limited time interval t = τ, · · · , τ + m, and

then integrate established model at t = τ by fixing {xj,τ}j∈V = {x̂j,τ}j∈V and solving

the remaining variables {xj,t}t=τ+1,··· ,τ+m
j∈V in the corresponding problem. Note that in our

setting, temporal messages are only transferable through consecutive snapshots, meaning

that fixing the τ -th snapshot is the same as fixing all past snapshots.

Lastly, we point out that distributed ADMM-based solution for DANR (§2.2) can

be adapted to ST-DANR, for either batch formulation (Eq. (5.16)) or streaming-case

formulation. Details in Appendix.

Temporal Evolutionary Patterns. In this work, we consider the unsquared edge
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penalty term ‖xj,t + βj,t − xj,t+1‖2 in RT since it enforces temporal reconstruction,

indicating sharp transitions or change points at particular timestamps. Similar to the

spatial case, there could be multiple available alternatives to enforce different types of

evolutionary patterns [123]. For example, replacing the unsquared norm with squared

norm form ‖xj,t + βj,t − xj,t+1‖22 will yield smoothly varying models along consecutive

snapshots, and has been well studied in [124, 125, 126, 127].

5.4 Experiments on Synthetic, Housing Rental Price

and LAGOS Datasets

In this section, we present an experimental analysis of the proposed method (DANR)

and evaluate its performance on classification and regression tasks. First, we employ a

synthetic dataset (§5.4.1) and two housing price datasets (BAY and SAC in §5.4.2) to

demonstrate the set of scenarios and applications that are particularly good fit for DANR.

In addition to an improvement on the estimation task, DANR learns fine-grained neigh-

borhood boundaries and reveals interesting insights into the network’s heterogeneous

structure. Lastly, in order to validate the efficacy of ST-DANR in the temporal setting,

we conduct experiments with the geospatial and temporal database of Northeastern US

lakes (§5.4.3), from which we aim to estimate the water quality of lakes over 10 years.

Baseline Algorithms. In spatial network scenarios (§4.1 & §4.2), we compare

DANR against three baselines: network lasso (NL) [18], robust multi-task feature learning

(rMTFL) [128], factorized multi-task learning (FORMULA) [129]. In spatial-temporal

network scenarios (§4.3), we compare ST-DANR with two widely-applied temporal reg-

ularizers in the literature, which are detailed in §4.3.

Parameters Setting. For both NL and DANR, we tune λ parameters from 10−3
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to 102 where λn+1 = 1.3λn. Concerning the DANR, for each value of λ, we further tune

µ parameters from 0.3 to 1, where µn+1 = µn + 0.02. Lastly, we set p = 3. We follow

the same strategy for both spatial (DANR) and spatio-temporal (ST-DANR) variants of

the proposed method. For all penalty parameters in rMTFL and FORMULA, we tune

them in the same way as λ in DANR. In addition, we vary the number of factorized base

models in FORMULA from 1 to 50 to achieve its best performance. For each dataset,

we standardize all features and response variables to zero mean and unit variance.

5.4.1 Node Classification with Limited Data

Following previous work [18], we first experiment with a synthetic network in which

each node attempts to solve its own support vector machine (SVM) classifier, but only has

a limited amount of data to learn from. We further split the nodes into clusters where each

cluster has an underlying model, i.e., nodes in the same cluster share the same underlying

model. Our aim is to learn accurate models for each node by leveraging their network

connections and limited observations. Note that the neighbors with different underlying

models provide misleading information to each other, which potentially harms the overall

performance. Therefore, we later investigate the robustness of the DANR with a varying

ratio of such malicious edges.

Synthetic Network Generation. We create a network of 100 nodes, split into

5 ground-truth communities C1, C2, · · · , C5. Each of these communities consists of

20 nodes. We denote the community of a node i with Ci. Next, we form the network

connections by adding edges between nodes based on the following criterion: The prob-

ability of adding an edge between any node pair (i, j) is 0.5 if Ci = Cj, i.e., the edge

connects nodes from the same community (intra-community edge). Otherwise, we set the

probability as 0.02 if Ci 6= Cj, i.e., the edge connects nodes from different communities
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(inter-community edge). The resulting synthetic network G0(V , E) has 100 nodes and 574

edges, with 82% of them being intra-community edges. Each ground-truth community

Ck has an underlying classifier model Xk ∈ R10, drawn independently from a normal

distribution of zero mean and unit variance, where k ∈ [1, · · · , 5]. Next, we generate 5

random training example pairs (w, y) per node, where w ∈ R10 denotes an observation

and y ∈ {−1, 1} denotes the ground-truth value to estimate. The ground-truth value y

for each observation w is then computed using the underlying classifier of the community

that a node belongs to:

y = sign(wTXk + η) (5.19)

where Xk ∈ R10 represents the corresponding weight of the classifier w.r.t. observations,

while η is the noise. All observations and noises are drawn independently from a normal

distribution for each data point. Note that 5 observations are insufficient to accurately

estimate a model xi ∈ R10. Hence for this setting, the network connections play an

important role as nodes can “borrow” training examples from its neighbors to improve

their own models.

Optimization Problem. The objective function fi on each node is formulated

by the soft margin SVM objective, where node i estimates its model (i.e. separating

hyperplane) xi ∈ R10 using its five training examples (w, y) as follows:

min
(1

2
xTi xi + C

5∑
l=1

ξl

)
s.t. y(l)(xTi w

(l)) > (1− ξl), ξl > 0

where ξl’s are slack variables that accounts for non-separable data. The constant C

controls the trade-off between minimizing the training error and maximizing the margin.

We set C to 0.75, which we empirically find to perform well.
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Test Results. In following subsections, we first thoroughly inspect DANR and its

prototype method NL on synthetic network G0, in order to show the benefits of intro-

ducing discrepancy-buffering variable α. Later in §4.1.2, we evaluate the performance

and robustness of DANR and all three baseline methods under more noisy scenarios. To

assess the performance, prediction accuracies are computed over a separate set of 1000

test pairs (10 per node). The test pairs are again randomly generated using Eq. (5.19).

Effect of Discrepancy-Buffering Variables.

We compare DANR with NL and report the prediction accuracy with varying λ

values in Figure 5.3. Recall that the proposed method introduces the µ parameter which

is coupled with the λ parameter. Therefore in order to have an adequate comparison

between DANR and NL, we modify our λ parameter to be λ̃ = λ/µ. Doing so ensures

that both methods apply the same amount of penalty to their network regularization

terms (See Eq. 5.2 and 5.3). For each value of λ, we vary µ from 0.3 to 1 and report the

highest accuracy achieved.

We first briefly mention the desired behaviors of the NL method and later accentuate

its drawbacks. As shown by Figure 5.3, for small λ values, the problem reduces to solving

the local optimization problem where each node estimates its model solely based on its

limited observations. This achieves 61.3% accuracy on the test set. Furthermore, as

λ increases, the NL penalty enforces nodes to form clusters, where nodes in the same

cluster share the same model. This behavior firmly improves the test performance with

prediction accuracy rising to 75.3%. Right after the peak performance is reached however,

a slight increase in λ causes a sudden drop in the performance and the problem reduces

to solving the global optimization problem over the entire network. Therefore when

λ > λcritical, the problem converges to a common model for all the nodes in the network

, i.e., xi = xj for ∀i, j ∈ V . This further drops the prediction accuracy to 56.4% on the
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test set.

The observed rapid drop in performance implies that the NL method is highly sensitive

to the λ parameter. There is only a narrow window of λ values that result in a proper

clustering of the network. As a result, one needs to excessively tune the λ parameter

around λcritical to find its optimal value. In addition, such clustering performance is

also highly affected by the volume of “malicious” (inter-cluster) edges in the network, as

shown in §5.4.1.

Figure 5.3: Prediction accuracy comparison with varying λ values.

From Figure 5.3, we can observe that the DANR approach exhibits improved per-

formance thanks to its discrepancy-buffering variables, α, which allow our regularization

term to better exploit the good edges while providing additional tolerance towards bad

edges. As a result, DANR achieves 79.1% accuracy on the test set, outperforming the

best baseline method by 3.8%. Another important observation is that DANR provides a

much wider window for selecting near-optimal λ than the baseline approach. That being

said, we now analyze how the µ parameter couples with the λ parameter, and further

present its effect on DANR’s performance.

Figure 5.4 displays the prediction accuracy vs. µ, with a fixed λ = 100 and 101.

Intuitively, as λ increases, the optimal value of µ also increases. The reason behind is

that as λ increases, the more non-zero discrepancy-buffering variables (parameterized by
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Figure 5.4: Effect of µ on the prediction accuracy, with a fixed λ.

(1 − µ)) are needed to persist the accurate clustering formation since high values of λ

forces global consensus over the network.

Robustness to Malicious Edges.

Note that the ratio of inter-community edges in the earlier synthetic network G0 is

18%. Here we use term noise for the ratio of such malicious edges in the network. Taking

into account that the amount of noise is critical in learning accurate models for nodes in a

network, we now investigate the efficacy of DANR w.r.t. varying noise. First, we remove

all inter-community edges and later iteratively add malicious edges to the network. Then

we solve the same problem with the noise varying from 0 to 0.6, and report prediction

accuracies of all methods in Figure 5.5.

As shown, the performance of DANR, NL and FORMULA drops in the absence of

noise. Meanwhile the pure multitask method rMTFL maintains the same low accuracy,

since it doesn’t utilize the network information. However, as we increase the noise,

DANR starts to outperform NL and FORMULA, where the gap between the models’

performances becomes larger at a higher ratio of malicious edges. This confirms that

compared to the baseline methods, the DANR exhibits more robust performance in noisy
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Figure 5.5: Prediction accuracy comparison with varying noise.

settings thanks to its discrepancy-buffering variables.

Running Time and Scalability

# nodes DANR NL rMTFL FORMULA
100 4.18 s 1.41 s 3.32 s 7.38 s
500 15.10 s 5.75 s 7.88 s 24.62 s
1000 48.85 s 12.36 s 53.91 s 62.68 s
5000 146.78 s 37.99 s 221.52 s 446.21 s
10000 484.68 s 123.81 s - -

Table 5.1: Running time on synthetic datasets when we vary the number of nodes in the
network. ‘-’ means the method cannot finish within limited time period.

To test the scalability of our method, we create synthetic dataset in the same way as in

§4.1, but varying the number of nodes in the graph from 100 to 10000. Moreover, we tune

the probability of adding edges within and between clusters so that the degree of each

node is maintained as 20 for all graph sizes. We compare the running time of all methods

in the table above. The rMTFL and FORMULA cannot give a result when the graph has

10000 nodes. DANR and NL are both distributed methods, and therefore their running

times increase almost linearly with the increasing number of nodes. Comparing with
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NL, DANR spends a longer time to get more robust results, which suggests a trade-off

between complexity and robustness.

5.4.2 Spatial: Housing Rental Price Estimation

In this section, our goal is to jointly (i) estimate the rental prices of houses by lever-

aging their geological location and the set of features; (ii) discover boundaries between

neighborhoods. The intuition is that the houses in the same neighborhood often tend to

have similar pricing models. However, such neighborhoods can have complex underlying

structures (as described later in this section), which imposes additional challenges in

learning accurate models.

Dataset. We experiment with two largely populated areas in Northern California:

the Greater Sacramento Area (SAC) and the Bay Area (BAY). The anonymized data is

provided by the property management software company Appfolio Inc, from which we

further sample houses with at least one signed rental agreement during the year 2017.

The resulting dataset covers 3849 houses in SAC and 1498 houses in BAY. Concerning

the houses that have more than one rental agreement signed during 2017, we average

the rental prices listed in all the agreements. Each house holds the information about

its location (latitude/longitude), number of bedrooms, number of bathrooms, square

footage, and the rental price. We regard these areas (SAC and BAY) as two separate

datasets for the remainder of this section. We also randomly split 20 % of the houses in

each dataset for testing.

Network Construction. After excluding test houses from both datasets, we con-

struct two networks (one for each dataset) based on the houses’ locations. An undirected

edge exists between node i and j, if at least one of them is in the set of 10 nearest

neighbors of the other. (Note that node j being one of the 10 nearest neighbors of i

doesn’t necessarily imply that node i is also in the set of nearest neighbors of j.) In the
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resulting networks, the average degree of a node is 12.16 for SAC and 12.04 for BAY. Ad-

ditionally, we construct two versions of these networks, weighted and unweighted. While

the weighted network has edge weights inversely proportional to the distances between

houses, the unweighted network ignores the proximity between houses, and thus weights

on all the edges are 1.

Optimization Problem. The model at each house estimates its rental price by

solving a linear regression problem. More specifically, at each node i we learn a 4-

dimensional model xi = [ai, bi, ci, di]. x simply represents the coefficients of each feature,

which later is used to estimate the rental price pi as follows:

pi = ai · (#bedrooms) + bi · (#bathrooms)

+ci · (squarefootage) + di,

where di is the bias term. The training objective is

min
x,α

∑
i∈V

‖pi − pi‖22 + c · ‖xi‖22 + λ · RS(x,α)

where RS represents the proposed network regularization term (see Eq. 5.3), while c is

the regularization weight to prevent over-fitting.

Test Results. Once training converges, we predict the rental prices on the test set.

To do that, we connect each house in the test set to its 10 nearest neighbors in the

training set. We then infer the new model xj by taking the average of the models on

its neighbors: xj = (1/|N(j)|)
∑

k∈N(j) xk. The model xj is further used to estimate the

rental price of the corresponding house. Alternatively, one can also infer xj by solving

minxj

∑
k∈N(j) ‖xj − x∗k‖2, while keeping the models on neighbors fixed. However, we

empirically find that simply averaging the neighbors’ models performs better for both
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methods in this particular setting. We compute Mean Squared Error (MSE) over test

nodes to evaluate the performance.

Method BAY SAC
Local estimation (λ = 0) 0.5984 0.6250
Global estimation (λ > λcritical) 0.4951 0.5403
rMTFL 0.4774 0.4115
FORMULA (unweighted) 0.4446 0.3503
FORMULA (weighted) 0.4181 0.3379
Network Lasso (unweighted) 0.4392 0.3273
Network Lasso (weighted) 0.4173 0.3022
DANR (unweighted) 0.4106 0.2978

Table 5.2: MSE for housing rental price prediction on test set.

Table 5.2 displays the test results of eight different settings on both datasets. As

shown, local & global estimations and rMTFL method produce high errors for both

datasets. We further apply FORMULA and Network Lasso (NL) methods to both

weighted and unweighted versions of the networks, while the proposed method is only

applied to the unweighted version. Notice that the network weights are irrelevant for

the local & global estimation settings and the rMTFL method. Intuitively, both FOR-

MULA and NL performs better on the weighted setting compared to the unweighted

setting for both datasets. As shown, the rental price estimation errors achieved by the

NL are 0.4173 (weighted) vs. 0.4392 (unweighted) for BAY and 0.3022 (weighted) vs.

0.3273 (unweighted) for SAC. These results suggest that the pre-defined weights on these

networks help to learn more accurate models on houses.

However, we further argue that although such pre-defined weights imprsssove the

overall clustering performance, they don’t account for more complex clustering scenarios,

e.g., two nearby houses falling into different school districts or some houses having higher

values compared to their neighbors due to geography, e.g., having a view of the city. That

being said, DANR outperforms all the other baselines and achieves the smallest errors for
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both datasets; 0.4106 for BAY and 0.2978 for SAC. Especially, the DANR (unweighted)

even outperforms the weighted version of the baseline approaches by a notable margin.

This reveals that the DANR indeed accounts for such heterogeneities in data and provides

enhanced clustering of the network.

Figure 5.6: Examples of complex neighborhood structures captured by the DANR. In
left, the house shown in yellow resides at the border of three different area codes. In
right, the creek side house (colored in blue) differs from all of its neighbors, possibly due
to its appealing location.

Figure 5.6 shows examples of two complex scenarios that are captured by the DANR

from the SAC network. We use a color code to represent the clusters in the network,

where the same colored houses (i, j) are in consensus on their models (xi = xj). In the

left subfigure, the house shown in yellow uses a different model than all of its neighbors.

Interestingly, it resides at the border of three different area codes. The area code for

this house is 95864, while the area code on its west is 95825 and 95826 on its south-east.

Additionally, we observe similar heterogeneous behaviors in some houses that are near

creeks, lakes, and rivers. As an example, Figure 5.6 (right) displays a creek side house

(colored in blue), which again uses a different underlying model from its neighbors.
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5.4.3 Spatio-Temporal: Water Quality Estimation of North-

eastern US Lakes

We now evaluate our method in spatio-temporal setting, where the aim is to dynami-

cally estimate the water quality of Northeastern US lakes over years. We follow the same

procedure in §5.4.2, but have an additional temporal regularization term in our objective

that allows nodes to obtain signals from past snapshots of the network, along with their

neighbors in the current snapshot.

Dataset and Network. We experiment with the geospatial and temporal dataset

of lakes in 17 states in the Northeastern United States, called LAGOS [130]. The dataset

holds extensive information about the physical characteristics, various nutrient concen-

tration measurements (water quality), ecological context (surrounding land use/cover,

climate etc.), and location of lakes; from which we select the following available set of

features: {max depth, surface area, elevation, annual mean temperature, % of agricul-

tural land, % of urban land, % of forest land, % of wetland}. The water quality metric

to estimate is the summerly mean chlorophyll concentration of the lakes. We represent

the feature vector with w ∈ R8 and the water quality score with y ∈ R.

During our experiments, we consider a 10-year period between 2000 and 2010. Due

to sparsity in the data, we allow 2 years range between the two consecutive snapshots of

the network. This results in total of 1039 lakes with all the aforementioned features and

the water quality measurements available for each of the selected years. After randomly

splitting 20% of the lakes for testing, we build our network by using the latitude/longitude

information of lakes, where each lake (node) is connected to 10 nearest lakes.

Optimization Problem. After constructing the network, we now aim to dynami-

cally estimate the water quality (yi,t) of lakes by using their feature vectors (wi,t). More

formally, for each year t ∈ [2000, 2002, · · · , 2010], we learn a model xi,t ∈ R8 per node
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by solving the following spatio-temporal problem in a streaming fashion: (4.16)

min
x,α,β

∑
i∈V

f(xi,t,wi,t, yi,t) + λ1 · RtS(x,α) + λ2 · RtT (x,β)

where f is the linear regression objective andRS is the DANR term applied on the spatial

edges. RT is the temporal regularization term, for which we consider two formulations

as described next.

Test results. For each year, we first solve the spatial problem (Eq. (4.16) without

the temporal term RT ) and report the Mean Squared Errors in Table 5.3. Note that

the test nodes are again inferred by averaging the neighbors’ models in the current

snapshot. Later, in order to successfully assess the improvements gained by the temporal

discrepancy-buffering variables (β), we solve the above spatio-temporal problem with

three different temporal regularizers:

DANR+T-SON: DANR with temporal sum-of-norms regularizer where

Rt
T (x, ·) =

∑
i∈V

‖xi,t − x̂i,t−1‖2

DANR+T-SOS: DANR with temporal sum-of-squares regularizer where

Rt
T (x, ·) =

∑
i∈V

‖xi,t − x̂i,t−1‖22

ST-DANR: Spatio-temporal discrepancy-aware network regularizer where

Rt
T (x,β) = µ2 ·

∑
i∈V

‖xi,t − x̂i,t−1 + βi,t‖2 + (1− µ2) · ‖β‖1,p

DANR+T-SON and DANR+T-SOS approaches simply apply two widely adopted

temporal regularizers on the temporal edges (the sum-of-norms regularizer [131] and
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(a) Year 2000

(b) Year 2002

(c) Year 2004

Figure 5.7: Evolution of clustering captured by the ST-DANR over years.
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sum-of-squares reqularizer [124, 127, 125] respectively), while ST-DANR includes the

discrepancy-buffering variables on both spatial and temporal edges. Recall that we solve

the Eq. (4.16) in a streaming fashion for simplicity, i.e., each snapshot of the network

solves the problem while holding the models learned on the previous snapshot (if avail-

able) fixed. Potentially, the performance can further be improved by allowing updates

on the previous snapshots.

Method 2000 2002 2004 2006 2008 2010
DANR 0.8479 0.9033 0.6384 0.6722 0.4556 0.4113
+ T-SON N/A 0.8308 0.5744 0.6061 0.4109 0.3517
+ T-SOS N/A 0.8045 0.5618 0.6045 0.3978 0.3476
ST-DANR N/A 0.8037 0.5604 0.5866 0.3844 0.3311

Table 5.3: MSE for water quality estimation over years.

As we can see from the Table 5.3, leveraging the temporal connections between the

two consecutive snapshots significantly improves the performance. The DANR+T-SON

outperforms the DANR by 8%-14%, while DANR+TSOS outperforms the DANR by

10%-15%. Moreover, the ST-DANR consistently outperforms both baselines for all the

years. This confirms that the proposed formulation accounts for the heterogeneous nature

of the temporal networks where some group of nodes exhibits different evolution patterns

than the others.

Figure 5.7 further displays the models (color-coded) learned on three consecutive

snapshots, corresponding to years 2000, 2002 and 2004. In 2000, the formed clusters

don’t go much beyond the boundaries of the states, resulting in coarse clustering of the

network. Yet some states such as Missouri and Iowa are grouped into one cluster (shown

in green). This suggests that accurately estimating the chlorophyll concentration of lakes

based on the selected set of features is indeed challenging. Specifically, the estimation

problem depends on several other external factors that potentially affect the volume of

plants and algae in lakes; cultural eutrophication, nutrient inputs from human activities
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to name a few [130]. However, as it can be seen from the models learned in 2002 and 2004,

the clustering performance improves once we allow temporal regularization to synchronize

models between two consecutive snapshots, which is analogous with the reduction in

errors over years as reported in Table 5.3. Overall, we observe a split of clusters over

time, e.g., in Wisconsin, Minnesota, Iowa and New England. Additionally, a dark brown

cluster in south Missouri begins to appear in 2002 and further spreads north in 2004. This

indicates that by leveraging the temporal connections, the ST-DANR learns improved

models and clustering while allowing for heterogeneity in group level evolutions of nodes.

5.5 Related Work

Among existing network-based regularization approaches, there are two major types

of edge objectives that are most commonly used: the square-norm objective and the

unsquared-norm objective, encouraging different styles of expected solutions. The squared-

norm edge objective (i.e.,
∑

jk ωjk‖xj − xk‖22), well-known as graph Laplacian regular-

ization [132], assumes underlying models on nodes are smoothly varying as one traverses

edges in the network, and accordingly enforces similar but not identical models on linked

nodes. Due to the merits of simple computations and good performance, graph Lapla-

cian regularizer has gained popularity in solving problems, such as image deblurring

and denoising [106], genomic data analysis [13], semi-supervised regression [133], non-

negative matrix factorization [134] and semi-definite programming [135]. However, the

square-norm objective usually induces very dense models. The unsquared-norm objec-

tive, known as sum-of-norms regularizer [15, 131], bears some similarity to scale-valued

fused lasso signal approximator [16] that exists in signal processing applications, for ex-

ample, total-variation (TV) regularizer for image denoising, and graph trend filtering

(GTF) regularizer for nonparametric regression. TV regularizer [136] is developed to pe-
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nalize both the horizontal and vertical differences between neighboring pixels, which can

be thought of as a special scalar-valued network lasso on a 2D grid network. GTF [105]

generalizes the successful idea of trend filtering to graphs, by directly penalizing higher

order differences across nodes. All regularizers above require correct edge weights so

that network structures can be properly used to improve joint estimation. In contrast,

our proposed approach allows ambiguous input of network edge weights by introducing

the discrepancy-buffering variables. Also, as a variation of SON regularization, our for-

mulation enjoys small model complexity as local consensus is imposed across large-scale

networks.

5.6 Conclusions

We propose discrepancy-aware network regularization (DANR) approach for spatio-

temporal networks. By introducing discrepancy-buffering variables, the DANR automat-

ically compensates for inaccurate prior knowledge encoded in edge weights, and enables

modeling heterogeneous temporal patterns of network clusters. We develop a scalable

algorithm based on alternating direction method of multipliers (ADMM) to solve the pro-

posed problem, which enjoys analytic solutions for decomposed subproblems and employs

a distributed update scheme on nodes and edges. Our experimental results show that

DANR successfully captures structural changes over spatio-temporal networks and yields

enhanced models by providing robustness towards missing or inaccurate edge weights.
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Reconstructing Coupled Networks

Under Domain Constraints

6.1 Introduction

Recently, there has been an effort to move research from the investigation of single

networks to the more realistic scenario of multiple coupled networks. In this work, we

consider the case of pairs of networks, (G1,G2), that are categorized into different modal-

ities over a population. Such coupled network systems can be found in infrastructures

of modern society (energy-communication), financial systems (ownership-trade), or even

human brains (anatomical substrate-cortical activation). Our goal is to reconstruct one

network from information on the other, and during such a process obtaining a concise

interpretation of how one network affects the other.

To achieve the above goal, we consider an edge-by-edge formulation. We treat one

set of edges in G1 as predictors and the other set of edges in G2 as response variables in

a multivariate linear regression model. Past research for the above problem relies on the

restrictive Gaussian assumption, which simplifies the problem but is difficult to justify,
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especially in the domain of brain architectures. Adopting Gaussian assumption on non-

Gaussian data can significantly prevent the detection of conditional dependencies and

may lead to incorrectly inferred relationships among variables.

The learning of relationships between two different modalities can be difficult without

sufficient data. As a result, in sparser data settings, the ability to specify constraints

based on domain knowledge can be beneficial. For example, in the case of brain data,

functional edges have mainly local influences, and structural edges are more responsible

for long-distance influences [137, 138]. We want preferences encoded in domain knowledge

to guide the selection of partial correlations of unexplained noise terms in the constructed

model.

Based on the above motivations, we propose a flexible and efficient framework CC-

MRCE (Convex-set Constrained Multivariate Regression with Covariance Estimation)

that simultaneously learns both regression coefficients between two coupled networks

and the correlation structure of noise terms. In a departure from existing methods,

our framework encodes domain knowledge as a set of convex constraints and adopts

a pseudolikelihood-based neighborhood-selection objective in partial correlation estima-

tion, which has been shown to be more robust to non-Gaussian data. Because of the CC-

MRCE objective’s bi-convex nature, we alternately solve a regression sub-problem and

a constrained partial correlation sub-problem until convergence. The latter sub-problem

requires feasible solutions under given domain constraints that we render tractable via a

modified two-stage proximal gradient descent method.

We illustrate the use of our method in the context of the human brain. Brain

data presents one of the greatest technical challenges in analysis and modeling due to a

network-based characterization [139, 140], non-Gaussian nature of data, high dimension-

ality, a small number of samples, and the need to incorporate domain knowledge. We

apply the proposed framework on the Human Connectome Project (HCP) dataset [141],
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where two coupled networks are constructed from fMRI scans (representing cortical ac-

tivation) and diffusion scans (representing the anatomical substrate). We successfully

predict a brain functional network from the given structural network; our method out-

performs previous state-of-art methods, and our obtained models are easier to interpret.

We investigate the structure-function coupling for seven different tasks. Our findings

agree with the nature of fMRI task and brain region functions in existing literature, thus

validating our model’s ability to discover meaningful couplings.

Our main contributions are as follows: (1) We propose a regularized multiple re-

gression approach that adapts to non-Gaussian data. (2) We incorporate prior domain

knowledge to model estimation by formulating constraints into an optimization problem.

(3) We develop a fast method based on nested FISTA for solving the proposed opti-

mization problem. (4) We show the effectiveness of our model on HCP brain data using

quantitative comparisons with existing approaches as well as a qualitative analysis.

6.2 Constrained Multiple-Output Regression Formu-

lation

In this section, we first introduce existing works on multiple regression under Gaussian

assumptions and then motivate our approach under non-Gaussian settings and domain

constraints.

6.2.1 Multiple-output Regression Problem

Let D be an n-subject sample set in which all subjects share the same coupling

(G1,G2) but have different edge values. For subject i in D, let x(i) = (x
(i)
1 , · · · , x

(i)
p ) be

p-dimensional inputs that represent edge values in the first modality network G1, and
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y(i) = (y
(i)
1 , · · · , y

(i)
p ) be p-dimensional outputs1 that stand for edge values in the second

modality network G2. We assume that the inputs xi and outputs yi are correlated through

a multivariate linear regression model:

y(i) = x(i)B + ε(i), for i = 1, ..., n (6.1)

where B is the p × p regression coefficient matrix and its element βjk is the regression

coefficient that measures the cross-modality impact of edge xj to edge yk, and ε(i) is the

noise vector of subject i. The model can be expressed in the matrix form:

Y = XB +E (6.2)

where row i of X ∈ Rn×p and Y ∈ Rn×p are the structural and functional edge vectors

x(i) and y(i) of subject i.

A straightforward approach to estimating B is to solve p separate regression prob-

lems, assuming noise terms are independent and uncorrelated. Recently, advanced meth-

ods have been proposed to exploit the correlation in noise terms to improve the modeling.

They accomplish the goal by introducing an assumption that noise terms ε(1),...,ε(n) are

all i.i.d. Gaussian N (0,Ω−1) and then simultaneously estimating regression coefficients

B and inverse covariance matrix Ω of the noise terms. Two popular methods along this

direction are MRCE [142] and CGGM [143, 144, 145]. The MRCE method considers the

conditional distribution Y |X ∼ N (XB,Ω−1) and estimates both B and Ω by alter-

nately minimizing the negative conditional Gaussian likelihood, with the `1 lasso penalty

applied on the entries of B and Ω. The other method, CGGM, further assumes that

X and Y are jointly Gaussian. Under such formulation, the conditional distribution of

1In general, models do not require the same dimensions for inputs and outputs. We use the equality
setting only for simplicity.
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Y |X is given by N (−XΩXY Ω−1,Ω−1), which reparameterizes the regression coefficient

B as −ΩXY Ω−1. Compared with MRCE, the objective of CGGM is based on the neg-

ative conditional Gaussian likelihood as well, but is jointly convex for ΩXY and Ω, and

therefore more friendly to computation.

6.2.2 Relaxing Gaussian Assumptions

Although MRCE and CGGM have received significant attention in solving multi-

output regression problems, one drawback of these two approaches is the Gaussian as-

sumption, especially for applications to brain data [146, 147, 148]. Recall that MRCE

assumes the Gaussian noise, and CGGM further assumes joint Gaussian distribution over

both inputs and outputs. We tested whether the HCP structural and functional data is

Gaussian with a significance level of 0.05. The test rejects the Gaussian null hypothesis

for 97.5% of structural edges and 36.3% of functional ones. Since our sample size is

small, false negatives are more likely to occur [149], namely failing to reject the Gaus-

sian hypothesis when the underlying data is non-Gaussian. Therefore, the proportion of

non-Gaussian data in brain networks is expected to be even higher. Thus, relying on

Gaussian assumptions is likely to affect the constructed models negatively.

To avoid a Gaussian assumption, we propose a pseudolikelihood approach for learning

multi-output regression models by optimizing the following objective function:

min
{Bk},{ωjk}

[
− n

p∑
j=1

logωjj +
1

2

p∑
j=1

n∑
i=1

(
ωjj(y

(i)
j − x(i)Bj)

+
∑
k 6=j

ωjk(y
(i)
k − x

(i)Bk)

)2

+ λ1
∑
j<k

|ωjk|+ λ2
∑
j<k

|βjk|
]

or in a neat matrix notion:
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min
B,Ω

− n log |ΩD|+
1

2
tr
(
(Y −XB)T (Y −XB)Ω2

)
+ λ1‖B‖1 + λ2‖ΩX‖1 (6.3)

where Ω = {ωjk} denotes the inverse covariance matrix,B = {βjk} denotes the coefficient

matrix, and ΩD and ΩX denote the diagonal and off-diagonal parts of Ω. The proposed

objective can be considered as a reparameterization of the Gaussian likelihood with Ω2

and an approximation to the log-determinant term. It has been proven that under mild

singularity conditions, such reparameterization can guarantee estimation consistency for

distributions with sub-Gaussian tails [150, 151].

Next, we develop an optimization algorithm to minimize the objective. The objective

function itself is not jointly convex for both variables B and X, but remains convex with

respect to each of them while keeping the other fixed. Therefore, we adopt the alternating

minimization idea. In the t-th iteration, we first fix B as the estimated B̂(t−1) from the

previous (t − 1)-th iteration, and calculate the empirical covariance matrix S of noise

terms:

S(t−1) =
1

n
(Y −XB(t−1))T (Y −XB(t−1)) (6.4)

Next, we estimate the inverse covariance matrix: Ω(t) with the given S(t−1) as a constant:

Ω(t) = arg min
Ω

− log |ΩD|+
1

2
tr
(
S(t−1)Ω2

)
+ λ2‖ΩX‖1 (6.5)

Observe that the above subproblem follows CONCORD’s original form, which is more

robust to heavy-tailed data [151, 152] than the conventional Gaussian likelihood approach
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and can be efficiently solved using proximal gradient methods with a convergence rate of

O(1/t2) [153]. Lastly, we keep Ω fixed at Ω(t)2 and optimize the regression coefficients

B:

B(t) = arg min
B

1

2
tr
(

(Y −XB)T (Y −XB)Ω(t)2
)

+ λ1‖B‖1 (6.6)

Note that subproblem (6.6) is convex when Ω(t)2 is positive semi-definite. We present

the above regression-based approach as CONCORD-MRCE in Algorithm 1.

Algorithm 1: CONCORD-MRCE

Input: penalty parameter λ1 and λ2
Initialize t = 0, B̂(0) = 0 and Ω̂(0) = Ω̂(B̂(0)).
while not converged do

step 1: Compute Ŝ(t−1) = Ŝ(B̂(t−1)) as Eq.(6.4);
step 2: Update Ω̂(t) = Ω̂(Ŝ(t−1)) as Eq. (6.5) by calling CONCORD(Ŝ(t−1)) ;
step 3: Update B̂(t) = B̂(Ω̂(t)) as Eq.(6.6);

return B and Ω

6.2.3 Imposing Domain Constraints

Due to limited sample size of real-world datasets and their high dimensionality, incor-

porating accurate domain constraints can reduce the search space and avoid over-fitting.

Under a linear mapping assumption, the partial correlation of response variables arises

only from correlations in the noise terms. Therefore, Ω not only represents the inverse

covariance of noise terms, but also equals the conditional inverse covariance of Y |X.

The nonzero entries of Ω encode direct relationships among the target modality outputs

Y that cannot be explained by weighted inputs XB of the source modality. It will be

beneficial if the zero-vs-nonzero structure of Ω is partially given by domain experts and

used as hard constraints in model estimation.

More formally, let M be a binary matrix that has the same dimensions as Ω. We
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can define a convex matrix set SM , containing all matrices that share the same set of

zero entries with M . We can then improve the previous regression-based approach to

estimate Ω under the domain constraint that takes the form of Ω ∈ SM , written in an

equivalent unconstrained convex form:

Ω̂ = arg min
B,Ω

− n

2
log |Ω2

D|+
1

2
tr((Y −XB)T (Y −BX)Ω2)

+ λ1‖B‖1 + λ2‖ΩX‖1 + I{Ω ∈ SM} (6.7)

where I{Ω ∈ SM} is an indicator function. This formulation can be extended to Ω ∈ C

whenever C is a closed convex set of positive definite matrices.

6.3 Alternating Minimization Solution

In this section, we show how to adapt the previous solution when the inverse covari-

ance Ω is constrained during estimation. Notice that the ideas of Algorithm 1 can be

mostly used to solve Eq (6.7), except for the Ω-update step, which is now affected by the

added constraints. The new Ω-update step needs to solve the following sub-problem:

Ω(t) = arg min
Ω

− log |Ω2
D|+ tr

(
S(t−1)Ω2

)
+ λ2‖ΩX‖1 + I{Ω ∈ SM} (6.8)

We follow the FISTA (Fast Iterative Soft-Thresholding Algorithm [154]) approach

that is used in CONCORD [153]. This method utilizes an accelerated gradient algo-

rithm using soft-thresholding as its proximal operator for the L1 norm and achieves a

fast O(1/t2) convergence rate. Previous work [153] has also applied FISTA for partial

correlation estimation and proved its efficiency. To adapt our constrained problem into
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the FISTA framework, we split our objective function (6.8) into a smooth part and a

non-smooth part:

h1(Ω) = − log |Ω2
D|+ tr(SΩ2)

h2(Ω) = λ2‖ΩX‖1 + I{Ω ∈ SM}

For any symmetric matrix Ω, the gradient of the smooth function can be easily calculated

as: ∇h1(Ω) = −2Ω−1D + 2ΩS. With this formulation, we now adapt the FISTA iterative

scheme to solve our network-constrained problem (6.8):

αt+1 = (1 +
√

1 + 4α2
t )/2 (6.9)

Θ(t+1) = Ω(t) +
αt − 1

αt+1

(Ω(t) −Ω(t−1)) (6.10)

Ω(t+1) = proxγh2 [Θ
(t+1) − (nτt/2)∇h1(Θ(t+1))] (6.11)

where τt is the step length and t denotes the iteration number. γ is a trade-off param-

eter that controls the extent to which the proximal operator maps points towards the

minimum of h2(Ω), with larger values of γ associated with larger movement near the

minimum.

In these iterative steps, Θt+1 is an expected position, updated purely by momentum.

Within each loop, the algorithm first takes a gradient step of the estimated future position

(Eq.6.10) and then applies the proximal mapping of a closed convex function h2(Ω).

In contrast to the standard FISTA approach, the composite function h2(Ω) consists

of a sparsity penalty and a network-constrained indicator function. More specifically,

we can write down the explicit form of Eq. (6.11) according to the proximal operator
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definition:

Ω̂ = Ω̂X +AD

Ω̂X = proxγh2(AX)

= arg min
ΩX∈C

1

2γ
‖ΩX −AX‖2F + λ2‖ΩX‖1 (6.12)

where A = Θ(t+1) − (nτt/2)∇h(Θ(t+1)). Instead of directly solving the original problem

(6.12), we consider its dual problem as follows. Let matrix H be the dual variable of

matrix Ω. We have:

min
ΩX∈C

(
1

2γ
‖ΩX −AX‖2F + λ2 max

‖HX‖∞≤1
vec(HX)Tvec(ΩX))

= max
‖HX‖∞≤1

min
ΩX∈C

1

2γ

(
‖ΩX − (AX − γλ2HX)‖2F

− ‖AX − γλ2HX‖2F + ‖AX‖22
)

(6.13)

where AD and AX denote the diagonal and off-diagonal part of A. Since the initial

objective function above is convex in ΩX and concave in HX , we exchange the order of

the minimum and maximum operator in which the inner minimization problem has an

obvious solution through orthogonal projection theorem [155], written as

ΩX = PC (AX − γλ2HX) (6.14)

where PC is defined as an projection operator: PC(Γ) = argminR∈C ‖R − Γ‖2F and its

orthogonal projection operator PC⊥ is defined as I−PC . In the special case that C = SM ,

projection PC(Γ) is equivalent to removing invalid nonzero entries of the input matrix Γ.

Inserting the optimal ΩX back into objective (6.13), we now obtain the final dual
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form of the problem (6.12):

ĤX = arg min
‖HX‖∞≤1

‖AX − γλ2HX‖22

− ‖PC⊥(AX − γλ2HX)‖22 (6.15)

where any solution ĤX to the dual problem corresponds to a primal solution through

Eq.(6.14). Since the dual objective is continuously differentiable and constraints on l∞-

norm are convex, we can again efficiently solve it with additional inner FISTA iterations,

which is to minimize an equivalent composite objective min g1(HX) + g2(HX), where

g1(HX) is smooth and g2(HX) is non-smooth:

g1(HX) = ‖AX − γλ2HX‖22 − ‖PC⊥(AX − γλ2HX)‖22

g2(HX) = I{‖HX‖∞≤1}(HX).

To adapt FISTA to the problem (6.15), the only thing left is to obtain the gradient of

smooth function g1(HX), for which we need the lemma below:

Lemma 1. [156] If g is a closed proper convex function, and for any positive t, define

a proximal operator gt(x) := infu
[
g(u) + 1

2t
‖u− x‖2

]
, then its infimum is attained at

the unique point proxt(g)(x). Further, gt is continuously differentiable on E with a 1/t-

Lipschitz gradient given by ∇gt(x) = (x− proxt(g)(x))/t.

According to Lemma 1, we simply plug g(u) = δ(u ∈ C), and obtain that proxt(g)(x) =

PC(x). Therefore the gradient ∇g1 is calculated as:

∇g1(HX) = −2γλ2 · PC(AX − γλ2HX). (6.16)

and the proximal mapping of function g2(Ω) becomes a projection of HX into the L∞-
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ball:

(
proxg2(H)

)
ij

= sign(HX) min{|HX |,1X} (6.17)

This completes the modified Ω-update step in the constrained setting (referred to as

Constrained-CONCORD). Its corresponding pseudocode is presented in Algorithm 3.

The overall framework of simultaneously estimating Ω and B is presented in Algorithm

2, which we name as CC-MRCE.

Algorithm 2: CC-MRCE

Input: penalty parameter λ1 and λ2, convex constraint set C.
Initialize B̂(0) = 0 and Ω̂(0) = Ω̂(B̂(0)).
while not converged do

step 1: Compute Ŝ(t−1) = Ŝ(B̂(t−1)) as Eq.(6.4);
step 2: Update Ω̂(t) = Ω̂(Ŝ(t−1)) by calling
Constrained-CONCORD(Ŝ(t−1),E,λ1);
step 3: Update B̂(t) = B̂(Ω̂(t)) as Eq.(6.6);

return B and Ω

In every step of the while loop, CC-MRCE calls sub-function Constrained-CONCORD

to estimate the partial correlation matrix Ω(t) under hard constraints, i.e. the solution

Ω(t) shares the same zero and nonzero pattern as matrix E (shown in Algorithm 3).

Such constraints can be replaced by any set of convex constraints on Ω(t). Note that

superscript t′ and t in Algorithm 3 are iteration counters of inner and outer stages in

the Constrained-CONCORD algorithm, respectively.

Lemma 2. Let L(g1) be the Lipschitze constant of the gradient of objective function

g1(HX), then L(g1) ≤ 2λ22γ
2.

Although we use line-search to pick a proper step length κt′ in the inner-loop of Algo-

rithm 3, it can be replaced with a constant step length κt′ = 2λ22γ
2 according to the

above lemma.
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Algorithm 3: Constrained-CONCORD

Input: sample covariance matrix S, sparsity pattern E, penalty parameter λ2
Output: partial correlation matrix Ω
set Θ(1) = Ω(0) ∈ SpM , α1 = 1, τ(0,0) ≤ 1, c < 1
while not converged do
G(t) = ∇h1(Θ(t))
search largest τt ∈ {cjτ(t,0)}j=0,1,···
A(t) = Θ(t) − (nτt/2)G(t)

set Θ̃(1) = H(0) ∈ Sd×d, α̃1 = 1, κ(0,0) ≤ 1, c̃ < 1
while not converged do

G̃
(t′)
X = ∇g1(H(t′)

X )

search largest κt′ ∈ {c̃j
′
κ(t′,0)}j′=0,1,···

H
(t′)
X = proxg2

(
Θ̃

(t′)
X − κt′G̃

(t′)
X

)
check backtrack line search criterion

α̃t′+1 = (1 +
√

1 + 4α̃2
t′)/2

Θ̃(t′+1) = H
(t′)
X +

αt′−1
αt′+1

(
H

(t′)
X −H(t′−1)

X

)
compute κ(t′+1,0)

Ω(t) = PC(AX
(t) − γλ2HX

(t)) +A
(t)
D

check backtrack line search criterion

αt+1 = (1 +
√

1 + 4α2
t )/2

Θ(t+1) = Ω(t) + αt−1
αt+1

(Ω(t) −Ω(t−1))
compute τ(t+1,0)

6.4 Experiments on Synthetic and HCP Datasets

We present two sets of experiments. First, to understand our method’s strengths

and limitations, we utilize simulated datasets that allow us to inspect both reconstruc-

tion performance and model selection performance. We compare the proposed method

CC-MRCE with other baselines when the underlying data distribution does not follow

the Gaussian assumption. We show that both the non-Gaussian assumption and the

network constraints contribute to the improvement of performance. Second, we conduct

experiments on the Human Connectome Project (HCP) data [141]. Our model offers

a quantitative advantage over baseline methods for predicting functional networks from
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structural ones; at the same time, our results agree with existing neuroscience literature.

6.4.1 Application to Simulated Data

Data Generation. Using a similar approach to existing works [150, 151, 142], we

generate our simulated dataset by first synthesizing two key model parameter matrices

Ω0 and B0, and then construct input, output, and noise terms (i.e. x(i), y(i) and ε(i)’s).

Note that every positive-definite matrix has a Cholesky decomposition that takes

the form of LLT , where L is a lower triangular matrix L, and if L is sparse enough

then LLT is sparse as well. Therefore, we first sample a sparse lower triangular L with

real and positive diagonal entries, and then generate our inverse covariance matrix with

Ω0 = LLT . The generated p × p positive definite matrix Ω0 has 10% nonzeros entries

and a condition number of 4.3. To demonstrate the robustness of proposed method

CC-MRCE on non-Gaussian data, we sample the noise terms {ε(i)}ni=1 according to a

multivariate t-distribution with zero mean and covariance matrix Σ = Ω−10 .

Next, we generate a sparse coefficient matrix B0 using the matrix element-wise prod-

uct trick, B0 = W ◦K ◦Q. In this construction approach, W has entries with inde-

pendent draws from standard normal distribution N (0, 1). Each entry in K is drawn

independently from a Bernoulli distribution that takes value 1 with probability s1. Q has

rows that are either all one or all zero, which are determined by independent Bernoulli

draws with success probability s2. Generating the sparse B0 in this manner, we not only

control its sparsity level, but also forcibly make (1− s2)p predictors to be irrelevant for

p responses, and guarantee that each relevant predictor is associated with s1p response

variables.

In the following experiments, the probabilities s1 and s2 are chosen to be 0.15 and

0.8, the sample size n is fixed at 50, and the input and output dimensions p and q are
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both set to 20. The input x(i)’s are sampled from a multivariate normal distribution

N (0,ΣX) where (ΣX)jk = 0.5|j−k|, following previous works [157, 158]. The output

y(i)’s are calculated as the linear model assumption in Eq.(6.1). We replicate the above

process for independently generating a validation dataset of the same sample size. All

penalty parameters are selected simultaneously and tuned according to the validation

error.

Methods. In this heavy-tailed setting, we compare the performance of CC-MRCE

to CGGM and MRCE, which are developed under Gaussian settings. The CGGM imple-

mentation that we used in this experiment is provided by [159] and has been optimized

for large-scale problems and limited memory. The MRCE implementation is provided by

[142]. Both CGGM and MRCE do not adapt to the network constraints we impose here.

In order to inspect the effectiveness of network constraints, we apply multiple vari-

ations of constraint sets to the proposed CC-MRCE method, designated as CC-MRCE

(unconstrained), CC-MRCE (SNR: 2.0), CC-MRCE (SNR: 1.0) and CC-MRCE (perfect).

Network constraints in each variation are defined as follows. For CC-MRCE (perfect),

we choose SE = {Ω : Ω(j, k) = 0 if Ω0(j, k) = 0}, which forces selected nonzeros in

solution Ω to completely fall into ground-truth nonzeros. For CC-MRCE (SNR: 2.0) and

CC-MRCE (SNR: 1.0), we loosen the feasible set by adding 50%‖Ω0‖0 and 100%‖Ω0‖0

spurious nonzero positions, which are randomly sampled from positions of zero entries in

Ω0. For CC-MRCE (unconstrained), we remove all constraints so that the method only

relies on regularized multi-regression.

Performance Evaluation. We evaluate the reconstruction performance of mod-

els using the conventional MSE error (in percentage). Correlation coefficients between

predicted and ground-truth outputs are also provided along with their corresponding

p-values. In addition, we use the relative area under the curve (AUC) of receiver oper-

ating characteristic (ROC) curves [160, 161], with regards to Ω and B, as key measures
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to compare model selection performance of all these methods. The AUC of a perfect

ROC curve, which would be 1, indicates an ideal recovery of gound truth zero-vs-nonzero

structure in Ω (or B). However, models with large false-positive rates (FPR) are barely

meaningful in real scenarios. To focus on the initial portion of ROC curves, we control

the FPRs simultaneously to be smaller than 0.2 for both Ω and B estimation. Thus,

the maximum AUC value that a model can reach is just 0.2. For ease of comparison,

we provide relative AUC values, divided by 0.2 to normalize to 1. For each method, we

run the algorithm with at least 25 appropriate parameter pairs (λ1, λ2) to get its ROC

curve. Recall that all methods in this section are required to estimate 800 parameters

given n = 50 samples.

Test Results. Table 6.1 displays the test results of six different settings in all

measures mentioned above. As can be seen, all four CC-MRCE variations (with different

network constraints) obtain significantly smaller reconstruction MSE percentages, higher

correlation coefficients, and smaller p-values. Note that CGGM behaves the worst in all

measures since it is deeply rooted in the Gaussian setting and is consequently misled by

these assumptions. We also see that the performance of CC-MRCE gradually improves

when the applied network constraints are more informative.

Model
MSE

(100%)
Pearson’s
r-score

min
p-value

max
p-value

AUC
w.r.t. Ω

AUC
w.r.t. B

CC-MRCE
(unconstrained) 50.88 0.71 5.14E-09 0.10 0.52 0.53
CC-MRCE (SNR:1.0) 43.24 0.76 2.26E-11 0.08 0.85 0.64
CC-MRCE (SNR:2.0) 43.18 0.76 2.10E-11 0.07 0.92 0.66
CC-MRCE (perfect) 42.98 0.76 2.69E-11 0.06 1.00 0.67
MRCE 60.22 0.65 8.68E-09 0.17 0.37 0.54
CGGM 76.21 0.55 2.14E-07 0.96 0.33 0.19

Table 6.1: Reconstruction performance and model selection performance of models on
simulated dataset. CC-MRCE variations uniformly outperform MRCE and CGGM. CC-
MRCE variations with more strict constraints perform better.
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We also plot ROC curves for Ω and B estimation in Figure 6.1a and 6.1b, respec-

tively. It is clear that CC-MRCE performs better than MRCE and CGGM, across differ-

ent choices of network constraints. For Ω estimation, as expected, CC-MRCE with more

strict constraints has steeper curves, suggesting that it recovers mostly correct partial re-

lationships between variables with very few spurious connections, and therefore achieves

higher AUC scores. CC-MRCE (perfect) behaves perfectly for Ω-ROC, by its definition.

For the estimation of matrix B, a similar phenomena demonstrates that network con-

straints improve the learning of regression coefficients and lead to a better reconstruction

performance. Without imposing network constraints, unconstrained formulation of CC-

MRCE is likely to generate a biased estimate of Ω̂ on small datasets and can not recover

ground truth features in B.
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Figure 6.1: Benefit from domain constraints, CC-MRCE obtains better ROC curves when
uncovering nonzero entries of B and Ω.

6.4.2 Application to Human Connectome Data

Problem Formulation. Many works in literature report on coupling between brain

structural connectivities (SCs) and functional connectivities (FCs) for both resting state
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[162, 32, 163, 164] and task-evoked states [32, 165, 166, 167]. One such recent work

[35] maps SC to resting-state FC by aligning both the eigenvalues and eigenvectors of a

subject’s SC and FC matrices, and evaluates the mapping by reconstructing resting FCs

from SCs.

Inspired by the domain observation [138] that two functional connections sharing

the same node are more likely to form a meaningful pathway or functional activation

pattern, we constrain the partial correlations between non neighboring edges to be zero,

i.e. Ωjk = 0 if ej and ek are not incident edges in the fMRI-constructed network.

We conducted experiments by reconstructing task FCs from SCs of 51 subjects with

their fMRI data from HCP dataset under seven task states. We used the parcellation

scheme in [162] with a spatial scale of 33, resulting in 83 brain regions and 3403 possible

edges. Columns in predictor matrix, Equation (6.2), X ∈ R51×3403 represent SCs, whose

entries are numbers of white matter streamlines intersecting pairs of brain regions, and

columns in response matrix Y ∈ R51×3403 represent FCs, whose entries are functional

correlations between cortical activities of brain regions. B denotes the mapping (or

coupling) between SCs and FCs, and E denotes the part of FCs that cannot be explained

by SCs. We also normalized SC values to (0, 1], a range comparable to FC. We ran a

10-fold cross-validation of our model for each task, splitting data in a 9-1 train-validation

ratio (46-5 split for the 51 subjects). We selected the optimal hyperparameters λ1 and

λ2 by a 5 × 5 grid search in the log-scale between 10−1.6 to 10−0.4, keeping the models

with smallest Mean Squared Error (MSE) percentage on the validation sets, averaged

across 10 folds. In our case, both λ1 and λ2 have optimal values around 0.1 across tasks.

Aside from MSE, we also tested the Pearson correlation coefficient between predicted

FCs and ground truth FCs, (referred to as Pearson’s r-score, listed in Table 6.2) and

minimum, maximum p-values. The reconstruction MSE percentage is below 1% for

the training data and around 8% for the validation data. Strong and significant positive
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correlations are shown for both training (r-score around 0.6 to 0.8) and validation (r-score

around 0.5) data. These results indicate our model’s effectiveness in FC reconstruction by

exploiting cross-modal coupling between SC-FC and domain prior knowledge on FC-FC

relationships.

Performance Evaluation. Regarding the ability of finding accurate mappings be-

tween SCs and FCs, we compared our model with the optimization approach CGGM, a

deep learning approach Variational AutoEncoder (VAE) [168], and the Spectral Mapping

method [35]. For CGGM, the time required to run a 10-fold cross-validation with one set

of hyperparameters on a single task ranges from one day to a week. So we ran three sets

of hyperparameters on EMOTION and LANGUAGE, selected the best parameter pair,

and fixed it for the rest of the five tasks. In particular, we chose penalty terms on B and

E to be both 0.01. For VAE, both encoder and decoder consist of two fully connected

layers, with latent variable dimensions being two. We use MSE as the training loss. In

our experiments, increasing the number of layers or latent dimensions of VAE did not

improve the final performance. For the Spectral Mapping method, we follow the setup of

the original paper, setting maximum path length k to seven. The 10-fold cross validation

results of CGGM, VAE and Spectral Mapping method are reported in Table 6.2.

The assumption of Gaussian noise weakens CGGM’s performance on the HCP dataset:

it has unstable and large average MSE percentages across tasks, and the correlations be-

tween predictions and ground truth are very small and even negative, which are also not

statistically significant with regards to p-values. On the other hand, VAE models have

stable MSE percentage (around 80%) and average Pearson’s r-scores with small standard

deviations across all tasks. The correlations of VAE models are weak (all around 0.08),

yet statistically significant with p-values constantly smaller than 0.0025 for all tasks.

This shows VAE learns a slightly meaningful mapping, but with such a small sample

size, deep learning models are unlikely to perform well. Lastly, the Spectral Mapping
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Tasks
Reconstruction

MSE percentage
(100%)

Pearson’s
r-score

EMOTION CGGM 89.78 ± 21.95 -0.0309 ± 0.0285
VAE 81.57 ± 2.38 0.0777 ± 0.0070
Spectral Mapping 61.54 ± 33.84 0.4228 ± 0.0349
Random B 17.50 ± 1.84 -0.0014 ± 0.0086
CC-MRCE 8.84 ± 0.84 0.4575 ± 0.0402

LANGUAGE CGGM 41.38 ± 7.10 0.0270 ± 0.0448
VAE 72.68 ± 6.33 0.0815 ± 0.0081
Spectral Mapping 54.23 ± 30.18 0.4764 ± 0.0383
Random B 35.02 ± 58.49 0.0020 ± 0.0052
CC-MRCE 7.95 ± 0.87 0.4988 ± 0.0205

MOTOR CGGM 117.85 ± 27.32 -0.0016 ± 0.0456
VAE 77.30 ± 4.24 0.0782 ± 0.0110
Random B 57.26 ± 29.63 0.4156 ± 0.0548
Random B 21.02 ± 7.75 0.0023 ± 0.0090
CC-MRCE 7.80 ± 0.66 0.4807 ± 0.0480

GAMBLING CGGM 108.99 ± 32.83 -0.0211 ± 0.0795
VAE 79.14 ± 3.65 0.0804 ± 0.0071
Spectral Mapping 54.73 ± 30.70 0.4781 ± 0.0380
Random B 22.63 ± 13.15 0.0033 ± 0.0072
CC-MRCE 7.86 ± 1.72 0.5014 ± 0.0301

SOCIAL CGGM 112.82 ± 36.07 -0.0064 ± 0.076
VAE 79.42 ± 3.72 0.0772 ± 0.0088
Spectral Mapping 47.89 ± 28.09 0.4912 ± 0.0353
Random B 18.68 ± 3.74 0.0025 ± 0.0071
CC-MRCE 6.81 ± 0.95 0.5578 ± 0.0404

RELATIONAL CGGM 147.61 ± 49.24 -0.0265 ± 0.0754
VAE 81.11 ± 2.98 0.0706 ± 0.0081
Spectral Mapping 54.86 ± 30.68 0.4758 ± 0.0412
Random B 31.77 ± 18.30 -0.0019 ± 0.012
CC-MRCE 8.43 ± 1.09 0.4858 ± 0.0460

WM CGGM 81.46 ± 29.72 -0.0447 ± 0.0566
(Working VAE 77.99 ± 2.89 0.0799 ± 0.0109
Memory) Spectral Mapping 56.25 ± 32.85 0.4767 ± 0.0579

Random B 103.96 ± 111.99 -0.0041 ± 0.0089
CC-MRCE 7.69 ± 1.76 0.4968 ± 0.0543

Table 6.2: Functional connectivity reconstruction performance of seven tasks with differ-
ent models.
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(a) GAMBLING (b) LANGUAGE (c) RELATIONAL (d) WM

(e) EMOTION (f) MOTOR (g) SOCIAL

Figure 6.2: Visualizations of the B matrix for seven tasks. For each task, each fold in the
10-fold cross validation may lead to different models. Here, we only show those entries
that are nonzero more than five times.

method is designed for maximizing the correlation between fMRI prediction and ground

truth for brain data, so it performs well as for correlation, however the prediction values

are off, resulting in high MSE percentages. In all, our regression-based model performs

better in both correlation and value reconstruction, showing its superiority in prediction

on non-Gaussian data with small sample sizes.

Result Interpretation. Apart from better reconstruction performance, our model

also has the advantage of result interpretability. We can explore the SC-FC mapping

through the resulting coefficient matrix Bs. Since our problem definition is FC = SC ·

B +E, the ith row in B corresponds to ith edge pair in the SC vector. In the following,

we say an edge i exists if row i of B has nonzero entries. As the experiment is run under

the 10-fold cross validation setting and each training partition may generate a different

mapping B, we consider an entry in the common B to be nonzero if it is nonzero more

than five times in these 10 trials. The results are shown in Figure 6.2.
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(a) Axial (from top) (b) Sagittal (from left)

(c) Coronal (from back)

Figure 6.3: Visualization of the edges contributing to all seven tasks. Blue nodes are left
hemisphere brain regions, and purple nodes are right ones. Node size denotes the degree
and edge width denotes its importance, as in the mapping B.

From the figure, we can see for every task, several rows in B have many more nonzero

entries than the others. This indicates the existence of several significant structural edges

being responsible for most of the functional activities. To test if this assumption is valid,

we compared Bs from our model to randomly generated Bs with the same levels of

sparsity. The resulting MSE percentages, although having large variances, often have

smaller means than that of CGGM and VAE, implying the importance of sparsity level

of the coupling. However, the resulting r-scores of predicted FCs using a random B is

the lowest among all methods. Together with very large p-values, the results predicted

by random coupling show no correlation between predictions and ground truth. This
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indicates that our models learned meaningful mapping information from SCs to FCs,

and that structured sparsity of B is important for getting predictions besides the level of

sparsity alone.

(a) LANGUAGE (b) GAMBLING

(c) RELATIONAL (d) WM

Figure 6.4: Task-specific visualizations for high-contributing structural edges. Assuming
that the maximum number of nonzero entries of a row in B is m, we only show the edges
correspond to rows containing more than m/2 nonzero entries.

We now analyze the B matrices for different cognitive tasks. During fMRI data

acquisitions of all seven tasks, participants are presented with visual cues, either as

images or videos, and they need to use motions such as pressing buttons to complete

the tasks [169]. Interestingly, apart from the LANGUAGE task, the mappings learned

by our model predicts the strongest contribution of left precentral and left postcentral

connection, which is on the motor cortex responsible for right-side body movement.

From this, we assume most participants use their right hands to conduct the required

finger movements for these tasks. All mappings also contain edges in the occipital lobe,

complying with the visual nature of these tasks. The visualization of common edges that
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EMOTION LANGUAGE MOTOR GAMBLING
5.34 25.58 3.60 35.36

SOCIAL RELATIONAL WM
4.12 37.77 32.53

Table 6.3: Overlap ratios (%) of predicted B (SCs-FCs mapping) across 10 folds for seven
tasks.

exist in all seven tasks is shown in Figure 6.3. This “backbone” roughly resembles the

Default Mode Network [30, 165].

We then examined which structural edges contribute significantly to the functional

activity under different tasks. For this, we plot the “high-contributing” edges in LAN-

GUAGE, GAMBLING, RELATIONAL and WM tasks in Figure 6.4. An edge is consid-

ered as high-contributing if the number of nonzero entries of its corresponding row inB is

more than half of the maximum number of nonzero entries of any row in B. From Figure

6.4, we notice although a common backbone exists, structural connections in different

brain regions are responsible for specific tasks (e.g. SCs in and around hippocampus area

appear to be highly contributing to the WM FCs but not so for the LANGUAGE ones,

which is consistent with the literature [170]). We also plot both entry-wise and edge-wise

overlap ratio for the mapping of seven tasks in Figure 6.5.

Another interesting phenomenon in Figure 6.2 is that the number of nonzero entries

of B for LANGUAGE, GAMBLING, RELATIONAL and WM are much larger than

the other three tasks: EMOTION, MOTOR and SOCIAL, although the final model for

each task have a similar level of prediction performance and similar hyperparameters.

This is largely caused by the nature of non-overlapping Bs for EMOTION, MOTOR

and SOCIAL tasks: their B overlap ratios are significantly smaller than the other four

tasks as shown in Table 6.3. Here we define the overlap ratio as the number of nonzero

entries in the common B (entry ij being nonzero if it’s nonzero more than five times)

over the number of nonzero entries in B∪ = B1 ∪ · · · ∪B10 with Bk being the predicted
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(a) Entry-wise overlap (b) Edge-wise overlap

Figure 6.5: Entry-wise and edge-wise overlap ratio for the mapping of seven tasks. 5a
considers entry-wise overlap of predicted B of different tasks. The value on position
(task i, task j) is the entry-wise IoU (Intersection over Union) of task i’s B and task j’s
B, i.e. number of nonzero entries in Bi ∩Bj over number of nonzero entries in Bi ∪Bj.
5b considers the the SC edges responsible for different tasks. An edge is considered to
exist when its corresponding row in B has nonzero entries. The value in position (task
i, task j) is the number of common SC edges of task i and task j over the number of SC
edges of task j.

B using the kth split in 10-fold cross validation. This is also why we omit these three

tasks for Figure 6.4, as the predicted Bs are not stable across the population and only

a few common connections show significant contributions. We assume this results from

group heterogeneity when carrying out these tasks. Further studies with heterogeneous

models for the population will be useful to verify this assumption.

6.5 Conclusions

In this work, we proposed a regularized regression-based approach (CC-MRCE) for

jointly learning linear models and partial correlations among variables under domain
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constraints. Motivated by the neuroscience application of predicting functional brain

activities from structural connections, the CC-MRCE method discards the Gaussian

assumption and incorporates domain constraints into model estimation. We further de-

veloped a fast algorithm based on nested FISTA to solve the optimization problem. With

synthetic data analysis, we demonstrated that both domain constraints and assumption

of non-Gaussian data contribute to the performance improvement of CC-MRCE. Our

experimental results on Human Connectome Project data show that CC-MRCE out-

performs existing methods on prediction tasks and uncovers couplings that agree with

existing neuroscience literature.
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Conclusions

In this thesis, we have investigated how to leverage network structures, where a set of

inter-dependent entities is encoded as nodes and interactions among entities are encoded

as weighted edges. Multiple problems were discussed and their solutions were validated

on real-world datasets arising from various applications, including cancer genomic study,

neurological disease diagnosis, image feature extraction, house pricing and water qual-

ity estimation. We have implemented several computational approaches under specific

scenarios of realistic applications, dealing with the necessity of incorporating prior knowl-

edge, adjusting model assumptions and improving computational efficiency. The breadth

and depth of the problems and techniques applied in this work has led as to the following

observations:

• A subtle problem associated with neuroimaging datasets is high sensitivity to ar-

tifactual associations due to confounding effects. Shared confounding factors that

feed into two variables can induce false associations and bias the estimate of true

correlations. Confound effects are problematic due to their huge variety of poten-

tial imaging artifacts, including many factors that can affect both the imaging and

non-imaging variables of interest: head motion, head size, changes in breathing rate
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and depth, and scanner hardware and software changes [171]. It is of significance to

develop and apply sophisticated preprocessing methods for removing the confound

effect from imaging data [172, 173].

• It is now a few datasets have started to embrace ”big” imaging — with subject

numbers in tens of thousands, or significant increases in the quantity of imaging

and non-imaging data collected per subject. For example, the Human Connectome

Project (HCP) dataset has completed imaging of over a thousand young adults, and

utilizing vast improvements in the spatial and temporal resolutions with multiple

modalities. However, most neuroimaging studies continue to have modest sample

sizes (n ≈ 50 - 100) and modest amounts of data collected per subject, especially for

research projects that aim at task-specific problems. Therefore for many datasets

in this thesis, we prefer conventional learning methods rather than deep learning

approaches that require large amount of training data.

• The small sample size and high dimensionality of real-world datasets motivate

approaches for identifying and using prior or domain knowledge. In many applica-

tions, users have additional knowledge on the composition of entities that should

high probability of belong to the same community or category. We would like such

preferences to guide the selection of models or features. And network or graph

structure is a natural format of encoding abundant knowledge. Therefore, in this

thesis, we proposed several network-regularized methods for the incorporation of

such domain knowledge into tasks such as graph classification. Similar approaches

exist other problems as well. For example in LDA literature, aware that many types

of knowledge can also be expressed with two primitives on word pairs, [174] propose

the Dirichlet Forest prior to encode the domain knowledge associated with the set

of Must-Links and Cannot-Links, replacing the Dirichlet prior over the topic-word
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multinomial distribution. Experiments show that these domain-knowledge-aware

methods outperform original baselines in most cases.

• Computational efficiency has to be taken into account during method development

in this thesis. As the nature of network or graph, the problem search space is usually

exponentially growing with the number of nodes. Although sampling methods

can mitigate the computational burden to some extent, we adopt more efficient

approaches such as spectral methods and convex optimization formulations. It is

also helpful if the problem can be decomposed into smaller one and be parallelly

solved.
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Appendix A

Extended DANR Formulation under

Spatio-Temporal Setting

Figure A.1: Overview of our problem setting in temporal networks.
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A.1 Batch Formulation

Similar to the spatial only case in DANR method, we define x={xj,t}j∈Vt=1...M for model

parameter vectors on temporal undirected network G, and define consensus variables

z = [u,v] = [{ujk,t,0,ukj,t,0}(j,k)∈Ett=1...M , {vj,t,1}
j∈Vt
t=1...M−1, {vj,t,2}

j∈Vt
t=2...M ]

as copies of x in the corresponding spatial penalty term RS(x,α) and temporal penalty

term RT (x,β). Then we rewrite the problem as follows:

min
x,z,α,β

M∑
t=1

∑
j∈V

fj,t(xj,t)

+ λ1µ1

M∑
t=1

∑
(j,k)∈E

ωtjk ‖ujk,t +αjk,t − ukj,t‖2

+ λ2µ2
∑
j∈V

M−1∑
t=1

ωt,t+1
j ‖vj,t,1 + βj,t − vj,t+1,2‖2

+ λ1(1− µ1)‖α‖1,p + λ2(1− µ2)‖β‖1,p (A.1)

s.t. [ujk,t,ukj,t] = [xj,t,xk,t] , t = 1, . . . ,M

[vj,t,1,vj,t+1,2] = [xj,t,xj,t+1] , t = 1, . . . ,M − 1

The iterative scheme of ADMM under the above setting is modified as follows, with l

denoting the iteration index:

x(l+1) = argmin
x
Lρ1,ρ2(x, (z,α,β, δ)(l))

(z,α,β)(l+1) = argmin
z,α,β

Lρ1,ρ2(x(l+1), z,α,β, δ(l))

δ(l+1) = δ(l) + (x̃(l+1) − z(l+1))


(A.2)
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where x̃=[{xj,t,xk,t}
(j,k)∈Et
t=1...M ,{xj,t}j∈Vtt=1...M−1, {xj,t}

j∈Vt
t=2...M ] is composed of replicated elements

in x.

x-Update. Now we need to decompose the problem of minimizing x into separately

minimizing xjt for each node jt :

x
(l+1)
j,t = argmin

xj,t

(
fj,t(xj,t) +

ρ1
2

∑
k∈Nj,t

‖xj,t − u(l)
jk,t + δ

u(l)
jk,t‖

2
2

+
ρ2
2
‖xj,t − v(l)j,t,1 + δ

v(l)
j,t,1‖22 +

ρ2
2
‖xj,t − v(l)j,t,2 + δ

v(l)
j,t,2‖22

)
(A.3)

(z,α,β)-Update. The (z,α,β)-update step in Eq. (A.2) can be decoupled into

separate updates for a spatial (u,α)-update and a temporal (v,β)-update. For spatial

(u,α)-update, we have:

(u
(l′+1)
jk,t ,u

(l′+1)
kj,t ) = argmin

(
λ1µ1ω

t
jk‖ujk,t +α

(l′)
jk,t − ukj,t‖2

+
ρ1
2
‖x(l+1)

j,t − ujk,t + δ
u(l)
jk,t‖

2
2

+
ρ1
2
‖x(l+1)

k,t − ukj,t + δ
u(l)
kj,t‖

2
2

)
α

(l′+1)
jk,t = argmin

(
µ1ω

t
jk‖u

(l′+1)
jk,t +αjk,t − u

(l′+1)
kj,t ‖2

+ (1− µ1)‖αjk,t‖p
)

We can follow the same path to solve the temporal (v,β)-update, which is omitted here.

δ-Update. In the last step of our ADMM updating scheme, we have fully indepen-

dent update rules for each scaled dual variable δujk,t, δ
v
j,t,1 and δvj,t,2 as follows:

δujk,t
(l+1) = δujk,t

(l) + (x
(l+1)
j,t − u(l+1)

jk,t )

δvj,t,1
(l+1) = δvj,t,1

(l) + (x
(l+1)
j,t − v(l+1)

j,t,1 )

δvj,t+1,2
(l+1) = δvj,t+1,2

(l) + (x
(l+1)
j,t+1 − v

(l+1)
j,t+1,2)


(A.4)
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A.2 Streaming Case Formulation

Following the same notions in batch formulation of ST-DANR, we formally present

the streaming case formulation:

min
x,α,β

τ+m∑
t=τ+1

∑
j∈V

fj,t(xj,t) + λ1(1− µ1)‖α‖1,p + λ2(1− µ2)‖β‖1,p (A.5)

+ λ1µ1

τ+m∑
t=τ+1

∑
(j,k)∈E

ωtjk ‖xjk,t +αjk,t − xkj,t‖2

+ λ2µ2

∑
j∈V

(
ωτ,τ+1
j ‖x̂j,τ,1 + βj,τ − xj,τ+1,2‖2 +

τ+m−1∑
t=τ+1

ωt,t+1
j ‖xj,t,1 + βj,t − xj,t+1,2‖2

)

where ‖α‖1,p =
∑

jk∈E
∑τ+m

t=τ+1 ‖αjk,t‖p and ‖β‖1,p =
∑

j∈V
∑τ+m−1

t=τ ‖βj,t‖p. We then fit

the problem to classic two-block ADMM framework as we did for ST-DANR in batch

formulation:

min
x,u,v,α,β

τ+m∑
t=τ+1

∑
j∈V

fj,t(xj,t) + λ1(1− µ1)‖α‖1,p + λ2(1− µ2)‖β‖1,p (A.6)

+ λ1µ1

τ+m∑
t=τ+1

∑
(j,k)∈E

ωtjk ‖ujk,t +αjk,t − ukj,t‖2

+ λ2µ2
∑
j∈V

(
ωτ,τ+1
j ‖x̂j,τ + βj,τ − vj,τ+1,2‖2

+
τ+m−1∑
t=τ+1

ωt,t+1
j ‖vj,t,1 + βj,t − vj,t+1,2‖2

)
s.t. [ujk,t,ukj,t] = [xj,t,xk,t] , t = τ + 1, . . . , τ +m

[vj,t,1,vj,t+1,2] = [xj,t,xj,t+1] , t = τ + 1, . . . , τ +m− 1

where x̂τ is the estimated models at τ -th snapshot. Note that the existence of βj,τ and

vj,τ+1,2 causes a difference between Eq. (A.6) and the batch case formula in Eq. (A.1),
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which leads to a modification of updates in (v,β)-updates w.r.t. these two variables:

(v
(l+1)
j,τ+1,2,β

(l+1)
j,τ ) = argmin

(
λ2µ2ω

τ,τ+1
j ‖x̂j,τ + βj,τ − vj,τ+1,2‖2

+
ρ2
2
‖x(l+1)

j,τ+1 − vj,τ+1,2 + δ
v(l)
j,τ+1,2‖

2
2 + λ2(1− µ2)‖βj,τ‖p

)

This subproblem can still be solved by alternative minimization with following iterative

scheme:

v
(l′+1)
j,τ+1,2 = argmin

(
λ2µ2ω

τ,τ+1
j

∥∥∥x̂j,τ + β
(l′)
j,τ − vj,τ+1,2

∥∥∥
2

+
ρ2
2
‖x(l+1)

j,τ+1 − vj,τ+1,2 + δ
v(l)
j,τ+1,2‖

2
2

)
β
(l′+1)
j,τ = argmin

(
µ2ω

τ,τ+1
j

∥∥∥x̂j,τ + βj,τ − v(l
′+1)

j,τ+1,2

∥∥∥
2

+ (1− µ2)‖βj,τ‖p
)

Each step above is a simple optimization problem. Besides, updating steps for all re-

maining variables remain the same as in solution for batch formulation.
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Appendix B

Preprocessing of HCP Data

In our empirical experiments, all resting-state and task-evoked fMR images as well as

diffusion MR images were processed by the minimal HCP preprocessing pipeline and

converting the MR images into network representations. Well-known brain imaging tool-

boxes such as FSL, freesurfer, AFNI and ANTs are be used to preprocess.

The effect of intra-scan head motion was eliminated by applying a 6-DOF rigid body

spatial transform to the reference image. Second, image geometric distortion due to

magnetic field in homogeneities was removed through field map correction and boundary-

based registration to multi-modal (T1, T2, and GFA weighted) structural images of each

subject. Functional and diffusion images of all subjects were registered to a standard tem-

plate space, within a spatial realignment step which assumes both affine transformation

and nonlinear large deformation diffeomorphic metric mapping. After fitting to the tem-

plate space, all voxel-wise time-series were frequency filtered in order to block irrelevant

information for tasks of interest. Finally, a newly-developed multi-modal parcellation

was applied to cortical gray matter and create 300-500 regions of interest (ROIs).

To extract a network from the functional MR images, regional time series from each

region were averaged to estimate inter-regional connection strength (by Pearson’s corre-
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lation, partial correlation or magnitude-squared coherence). The network’s nodes cor-

respond to the ROIs and an edge connecting two nodes was associated with a value

corresponding to the degree of coherence computed from the two ROIs’ time-series. A

standardized array with metadata was used to store, analyze, and share data.

The diffusion data was also used to extract a structural brain network by first infer-

ring in each voxel, using spherical convolution, a orientation distribution function (ODF)

representing where white matter fibers are oriented in partial volumes of the voxels. A

global tractography of structural connectivity can then be learned using a markov ran-

dom field model which optimizes a connection energy which minimizes bending of the

ODFs while encouraging connections between neighboring voxels [175]. This generation

of structural streamlines was done per-subject in each subject’s native space and then

joined into a network defined over the same nodes as that of the fMRI data. Connections

between two regions were attributed by geometric information describing the connection

bundles going from one to the other, such as bundle density, multi-directional hetero-

geneity, or median diffusivity. Empirical experiments on HCP dataset have shown this

MRF-based streamline generation approach works significantly better than graph-based

efficiency approach in terms of structural network construction.
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[82] P. Holme and J. Saramäki, Temporal networks, Physics Reports 519 (2012), no. 3
97–125.

[83] A. Silva et. al., Graph wavelets via sparse cuts, in SIGKDD, 2016.

[84] C. Jiang et. al., A survey of frequent subgraph mining algorithms, Knowledge Eng.
Review 28 (2013), no. 1.

[85] B. Cao et. al., Mining brain networks using multiple side views for neurological
disorder identification, in ICDM, 2015.

[86] A. K. S. P. B. Xuan Hong Dang, Arlei Silva and A. Swami, Outlier detection from
network data with subnetwork interpretation, in ICDM, 2016.

[87] N. S. Ketkar et. al., Empirical comparison of graph classification algorithms, in
CIDM, 2009.

[88] X. H. Dang, A. K. Singh, P. Bogdanov, H. You, and B. Hsu, Discriminative
subnetworks with regularized spectral learning for global-state network data, in
ECML, 2014.

[89] H. Peng et. al., Feature selection based on mutual information: Criteria of
max-dependency, max-relevance, and min-redundancy, IEEE TPAMI 27 (2005),
no. 8.
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