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Kisspeptin peptide ligand and its cognate receptor, GPR54
(Kiss1R), together function as a master gatekeeper in mam-
mals to dictate the timing of the onset of puberty. Since its
initial discovery as a tumor suppressor in 1996, Kiss1 metas-
tasis suppressor (a.k.a. metastin) is now largely recognized
for its role in fertility and reproductive biology. Indeed, a
survey of past literature reveals that major research efforts
have focused nearly exclusively on kisspeptin-expressing
hypothalamic neurons and their control of the initiation of
puberty in rodents and humans and in both sexes.1–8 Re-
cently, however, it has been suggested that central kisspeptin
signaling plays a broader role by coordinating the onset of
puberty with metabolic parameters, such as nutrient sens-
ing.9–13 Here, we will discuss an additional and unexpected
emerging role of Kiss1ARC neurons in controlling whole-body
skeletal homeostasis, highlighting recent studies that link
both central and peripheral kisspeptin signaling to bone

density and outlining important questions to be answered
in this developing field (►Fig. 1).

In the brain, kisspeptin is found in both male and female
neurons, where it is largely restricted to two hypothalamic
clusters, the arcuate nucleus (ARC) and the anteroventral
periventricular nucleus (AVPV). The majority of KissARC

neurons also express two other peptides, Neurokinin B and
dynorphin; hence, these are often referred to as KNDy
neurons. Elegant work using chemogenetic and optogenetic
approaches demonstrated that a subset of Kiss1ARC neurons
function as metabolic sensors that dial up or down energetic
outputs during puberty, pregnancy, and lactation. Connec-
tions with the adjacent nutrient-sensing agouti-regulated
peptide (AgRP) neurons are proposed to integrate metabolic
cues with reproductive needs to ensure survival of both the
mother and offspring. Surprisingly, this group also reported
that only a small number of Kiss1 afferent projections make
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Abstract Since its initial discovery in 2002, the neuropeptide Kisspeptin (Kiss1) has been
anointed as the master regulator controlling the onset of puberty in males and
females. Over the last several years, multiple groups found that Kiss1 signaling is
mediated by the 7TM surface receptor GPCR54. Kiss1 mRNA is highly enriched in the
basal medial and lateral subregions of the arcuate nucleus (ARC) in the medial basal
hypothalamus. Thus, Kiss1ARC neurons reside in a unique anatomical location ideal for
sensing and responding to circulating steroid hormones as well as nutrients. Kiss1
expression is highly responsive to fluctuations of the gonadal hormone, estrogen, with
nearly 90% of Kiss1ARC neurons expressing the nuclear hormone estrogen receptor
alpha (ERa). Here we review recent research that extends the function of Kiss1ARC
neurons beyond the regulation of puberty and highlight their emerging, novel roles in
controlling energy allocation, behavioral outputs, and sex-dependent bone remodeling
in females. Indeed, some of these previously unknown functions for Kiss1 neurons are
quite striking as exemplified by the remarkable increase in bone mass after manipulat-
ing estrogen signaling in Kiss1ARC neurons. Taken together, we suggest that Kiss1ARC

neurons are highly sensitive to nutritional and hormonal cues that dictate energy
utilization and reproduction.
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functional synaptic connections with gonadotropin-releas-
ing hormone (GnRH) expressing neurons.14–17 These data
suggest that the function of Kiss1ARC neurons is more expan-
sive than simply controlling pulsatile GnRH secretion and the
onset of puberty.

Nearly all hypothalamic Kiss1 neurons respond to estro-
gens, with 99% of Kiss1AVPV and 90% of KissARC neurons
thought to express the major nuclear receptor estrogen
receptor-α (ERα). There is also a dramatic inverse relation-
ship between the estrogen and Kiss1 pathways as shown by
prominent upregulation of Kiss1 transcripts following dele-
tion of ERα.18,19 KissARC neurons are proposed to mediate
much of the complex negative feedback in the hypothalamic–
pituitary–gonadal (HPG) axis by sensing and responding to
estrogens as well as nutrient signals including leptin and
ghrelin.20–24 Deleting ERα in the brain, or in a subset of ARC
neurons, initially disturbs negative feedback leading to an
acute elevation in gonadotropins and estrogen that then
normalizes with time.3,25 This is associated with premature
vaginal opening inmice, and the temporary surge in estrogen
might contribute to theweak anabolic response in themouse
skeletal system after conditionally deleting ERα in the
brain.26,27 Consistent with this hypothesis, removing all
gonadal hormones via ovariectomy in these two models
was found to eliminate the weak anabolic response.26,27

Kiss1ARC neurons are located in a unique anatomical
location ideal for sensing and responding to circulating
hormones and nutrients including steroid hormones, fatty

acids, insulin, glucose, adiponectin, and calcium.28,29 Kis-
s1ARC neurons also express the leptin receptor (LepR), but in
far fewer neurons with only 40% expressing both Kiss1 and
LepR. Interestingly, intracranial ventricular delivery of leptin
in rodents has been reported to have differing effects on bone
to either promote or lower bone mass.26,30–32 Relevant to
this discussion, it is unknown whether these bone-induced
changes arise from leptin signaling in Kiss1-LepRARC neu-
rons. As mentioned earlier, orexigenic AgRP neurons in the
ARC project to and regulate Kiss1ARC neurons.33 Stimulation
of AgRP neurons by starvation or by optogenetic activation
inhibits Kiss1ARC neuron activity and also results in infertili-
ty; bone mass was not analyzed in this study. Others have
shown that impairing AgRP neuron activity lowers bone
mass possibly by increasing sympathetic tone; no link was
made to Kiss1ARC neurons.34 In the developing ARC, nutrient-
sensing POMC expressing progenitor cells give rise to all ARC
neuronal populations including AgRP and Kiss1 neurons.35 In
this regard, others have found a small increase in trabecular
and cortical bone following deletion of ERα in developing
POMC neurons (POMC-Cre26). Interestingly, in our hands
using these same alleles, we failed to detect obvious changes
in the female skeleton.10

Although no obvious anatomical or functional sex differ-
ences within Kiss1ARC neurons have been reported, our
laboratory uncovered Kiss1ARC neurons as critical regulators
of sex-dependent nutrient partitioning and skeletal metab-
olism in female rodents using a combination of different
genetic models as well as stereotaxic surgery.10Deleting ERα
signaling in the ARC using the Esr1 floxed allele36 and genetic
or viral mediated Cre-deletion resulted in amassive increase
in female bone mass without changes to food intake. This
increase in skeletal density is sex specific, occurring in
females only. Female mutants exhibit a stunning increase
in trabecular bone mass of approximately 700% with an
average 80% BV/TV. Increased bone volume correlates with
an elevation in trabecular number and thickness and overall
increased mechanical strength of long bones. The high bone
mass phenotype is observed in young peripubertal females
(4.5 weeks of age) and in older female mice of 1.5 years—an
age that is roughly equivalent to a 65-year-old woman.
Surprisingly, no changes in circulating estrogen were ob-
served in our genetic models and importantly, the high bone
mass persisted in female mice even after ovariectomy (OVX).
Additionally, acute deletion of ERα in the ARC in female mice
after OVX resulted in a 50% increase in skeletal density, albeit
with lower peak bonemass thanwhen circulating estrogen is
onboard. Collectively, these data imply that there is a sex-
dependent brain-to-bone pathway which remains partially
intact even in the absence of ovarian hormones.

This remarkable high bone mass phenotype exceeds that
of other reported mouse models including the sclerostin
knockout mouse which has approximately 60% volumetric
bone mass observed in long bones.37 Within mutant female
bones, one observes an elevation of Osterix (Sp7) and Runt-
related transcription factor 2 (Runx2) levels, suggesting that
the increased bone formation inmutant females results from
an expansion of pre-osteoblasts. These molecular data

Fig. 1 Abstract showing established role of ERα estrogen signaling in
Kiss1ARC neurons in reproduction. Our recent study demonstrates
that these same neurons must normally restrain skeletal homeostasis
in females. Lifting this restraint by genetic or stereotaxic ablation of
ERα in the ARC within the medial basal hypothalamus (MBH) results in
high bone density as shown by ex vivo bone micro-CT image of a distal
femur isolated from a mutant Esr1Kiss1-Cre female (right) compared
with that from a control Esr1fl/fl female (left).
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support the observed increase in bone formation rate in the
absence of any observed changes in bone resorptionmarkers
and histology. An obvious change in sympathetic tone can
also be excluded in this model, as catecholamine levels
remain unchanged and show normal diurnal patterns.
Thus, the very high bone mass in our three different mouse
models likely stems from an expansion of pre-osteoblasts
rather than an increase in sympathetic tone or decrease in
bone resorption.10 No changes in circulating pituitary hor-
mones were observed, including follicle-stimulating hor-
mone (FSH), a proposed modulator of skeletal
homeostasis.38,39 Nor did we detect changes in circulating
gonadal steroids including estradiol or testosterone. Collec-
tively, these negative findings challenge the long-held view
that central estrogen signaling in Kiss1ARC neurons is critical
for controlling negative feedback on the HPG. Rather, our
findings establish a paradoxical role of central estrogen
signaling in Kiss1ARC neurons as a major player in female
skeletal homeostasis. When engaged, this pathway normally
restrains rather than promotes new bone formation. In the
future, it would be of interest to know whether direct
chemogenetic manipulation of Kiss1ARC neurons, or whether
pure or mixed ERα antagonists acting on these neurons, will
similarly alter bone mass.

The interplay between estrogen and Kisspeptin is quite
dynamic. Interestingly, we and others show that Kiss1 tran-
scripts or a knock-in GFP reporter are upregulated after
deleting ERα.10,25 This interplayappears to behighly relevant
in Kiss1ARC neurons prior to the onset of puberty when
stimulation of truncal and axial bone growth is initiat-
ed.40–42 Perhaps part of the initial prepubertal skeletal
growth spurt in females just prior to puberty, and with the
concomitant rise in gonadal hormones, can be partly attrib-
uted to enhanced kisspeptin signaling in the ARC. A more
granular approach is needed to define the precise Kiss1
neuronal subpopulation in the ARC that drives the high
bone mass phenotype.

Kisspeptin itself appears to act on the bone to induce
osteogenesis. Recently, it was shown that Kp-10, the smallest
of the Kisspeptins, is able to bind Kiss1R on the surface of
C3HT10T1/2 mesenchymal stem cells (MSCs) triggering
NFAT4c (nuclear factor of activated T cells 4), a known
regulator of osteoblast proliferation and osteoclast precursor
recruitment.43,44 NFATc4 activates bone morphogenic pro-
tein (BMP2) which is a key factor in activating osteogenesis
by regulating the expression of early osteogenic genes Runx2
and alkaline phosphatase (Alp). Gene editing in these im-
mortalized cells via CRISPR/Cas9 established that the Kp-10-
Kiss1R signaling is required for activation of this osteogenic
response. Mice deleted for kisspeptin or Kiss1R exhibit
approximately 50% decrease in volumetric trabecular bone
mass.45 There are multiple explanations that can account for
this phenotype including higher FSH levels, which have been
postulated to negatively influence bone mass,38,39 lower
circulating estrogen in mice that are hypogonadal, or im-
paired osteoblast proliferation in MSCs.

While our data show a strong sex bias with the high bone
mass phenotype restricted to females, it is possible that

males have a parallel system in other hormone-sensitive
brain regions. Finally, identifying the underlying molecular
mechanisms responsible for this powerful sex-dependent
neuroskeletal pathway has immense discovery potential for
new cellular therapeutic targets in age-related bone loss.

Conflict of Interest
None declared.

References
1 Clarkson J, d’Anglemont de Tassigny X, Moreno AS, Colledge WH,

Herbison AE. Kisspeptin-GPR54 signaling is essential for preovula-
tory gonadotropin-releasing hormone neuron activation and the
luteinizing hormone surge. J Neurosci 2008;28(35):8691–8697

2 Clarkson J, Han SK, Liu X, Lee K, Herbison AE. Neurobiological
mechanisms underlying kisspeptin activation of gonadotropin-
releasing hormone (GnRH) neurons at puberty. Mol Cell Endo-
crinol 2010;324(1-2):45–50

3 d’Anglemont de Tassigny X, Fagg LA, Dixon JP, et al. Hypogonado-
tropic hypogonadism inmice lacking a functional Kiss1 gene. Proc
Natl Acad Sci U S A 2007;104(25):10714–10719

4 Mayer C, Boehm U. Female reproductive maturation in the
absence of kisspeptin/GPR54 signaling. Nat Neurosci 2011;14
(06):704–710

5 Messager S, Chatzidaki EE, Ma D, et al. Kisspeptin directly
stimulates gonadotropin-releasing hormone release via G pro-
tein-coupled receptor 54. Proc Natl Acad Sci U S A 2005;102(05):
1761–1766

6 Navarro VM, Gottsch ML, Chavkin C, Okamura H, Clifton DK,
Steiner RA. Regulation of gonadotropin-releasing hormone secre-
tion by kisspeptin/dynorphin/neurokinin B neurons in the arcu-
ate nucleus of the mouse. J Neurosci 2009;29(38):11859–11866

7 Ree HJ, Hsu SM. Lectin histochemistry of malignant tumors. I.
Peanut agglutinin (PNA) receptors in follicular lymphoma and
follicular hyperplasia: an immunohistochemical study. Cancer
1983;51(09):1631–1638

8 Stafford LJ, Xia C, Ma W, Cai Y, Liu M. Identification and charac-
terization of mouse metastasis-suppressor KiSS1 and its G-pro-
tein-coupled receptor. Cancer Res 2002;62(19):5399–5404

9 Hellier V, Brock O, Candlish M, et al. Female sexual behavior in
mice is controlled by kisspeptin neurons. Nat Commun 2018;9
(01):400

10 Herber CB, KrauseWC,Wang L, et al. Estrogen signaling in arcuate
Kiss1 neurons suppresses a sex-dependent female circuit pro-
moting dense strong bones. Nat Commun 2019;10(01):163

11 Padilla SL, Johnson CW, Barker FD, Patterson MA, Palmiter RD. A
neural circuit underlying the generation of hot flushes. Cell Rep
2018;24(02):271–277

12 Qiu J, Rivera HM, Bosch MA, et al. Estrogenic-dependent gluta-
matergic neurotransmission from kisspeptin neurons governs
feeding circuits in females. eLife 2018;7:e35656

13 Telegdy G, Adamik Á. The action of kisspeptin-13 on passive
avoidance learning in mice. Involvement of transmitters. Behav
Brain Res 2013;243:300–305

14 Kumar D, Candlish M, Periasamy V, Avcu N, Mayer C, Boehm U.
Specialized subpopulations of kisspeptin neurons communicate
with GnRHneurons in femalemice. Endocrinology 2015;156(01):
32–38

15 Kumar D, Freese M, Drexler D, Hermans-Borgmeyer I, Marquardt
A, Boehm U. Murine arcuate nucleus kisspeptin neurons commu-
nicate with GnRH neurons in utero. J Neurosci 2014;34(10):
3756–3766

16 Yeo SH, Kyle V, Blouet C, Jones S, ColledgeWH. Mapping neuronal
inputs to Kiss1 neurons in the arcuate nucleus of the mouse. PLoS
One 2019;14(03):e0213927

Seminars in Reproductive Medicine Vol. 37 No. 3/2019

Should We Make More Bone or Not Herber, Ingraham 149

D
ow

nl
oa

de
d 

by
: U

ni
ve

rs
ity

 o
f C

al
ifo

rn
ia

, S
an

 F
ra

nc
is

co
. C

op
yr

ig
ht

ed
 m

at
er

ia
l.



17 Yip SH, Boehm U, Herbison AE, Campbell RE. Conditional viral
tract tracing delineates the projections of the distinct kisspeptin
neuron populations to gonadotropin-releasing hormone (GnRH)
neurons in the mouse. Endocrinology 2015;156(07):2582–2594

18 Clarkson J, Boon WC, Simpson ER, Herbison AE. Postnatal devel-
opment of an estradiol-kisspeptin positive feedback mechanism
implicated in puberty onset. Endocrinology 2009;150(07):
3214–3220

19 Gottsch ML, Navarro VM, Zhao Z, et al. Regulation of Kiss1 and
dynorphin gene expression in the murine brain by classical and
nonclassical estrogen receptor pathways. J Neurosci 2009;29(29):
9390–9395

20 Cravo RM, Frazao R, Perello M, et al. Leptin signaling in Kiss1
neurons arises after pubertal development. PLoS One 2013;8(03):
e58698

21 Frazao R, Dungan Lemko HM, da Silva RP, et al. Estradiol modu-
lates Kiss1 neuronal response to ghrelin. Am J Physiol Endocrinol
Metab 2014;306(06):E606–E614

22 Martin C, Navarro VM, Simavli S, et al. Leptin-responsive
GABAergic neurons regulate fertility through pathways that
result in reduced kisspeptinergic tone. J Neurosci 2014;34(17):
6047–6056

23 Wang L, Burger LL, Greenwald-Yarnell ML, Myers MG Jr, Moenter
SM. Glutamatergic transmission to hypothalamic kisspeptin neu-
rons is differentially regulated by estradiol through estrogen
receptor α in adult female mice. J Neurosci 2018;38(05):
1061–1072

24 Forbes S, Li XF, Kinsey-Jones J, O’Byrne K. Effects of ghrelin on
Kisspeptin mRNA expression in the hypothalamic medial pre-
optic area and pulsatile luteinising hormone secretion in the
female rat. Neurosci Lett 2009;460(02):143–147

25 Mayer C, Acosta-Martinez M, Dubois SL, et al. Timing and com-
pletion of puberty in female mice depend on estrogen receptor
alpha-signaling in kisspeptin neurons. Proc Natl Acad Sci U S A
2010;107(52):22693–22698

26 Farman HH, Windahl SH, Westberg L, et al. Female mice lacking
estrogen receptor-α in hypothalamic proopiomelanocortin
(POMC) neurons display enhanced estrogenic response on corti-
cal bone mass. Endocrinology 2016;157(08):3242–3252

27 Ohlsson C, Engdahl C, Börjesson AE, et al. Estrogen receptor-α
expression in neuronal cells affects bone mass. Proc Natl Acad
Sci U S A 2012;109(03):983–988

28 Castellano JM, Bentsen AH, Mikkelsen JD, Tena-Sempere M.
Kisspeptins: bridging energy homeostasis and reproduction.
Brain Res 2010;1364:129–138

29 Dudek M, Ziarniak K, Sliwowska JH. Kisspeptin and metabolism:
the brain and beyond. Front Endocrinol (Lausanne) 2018;9:145

30 Ducy P, Amling M, Takeda S, et al. Leptin inhibits bone formation
through a hypothalamic relay: a central control of bonemass. Cell
2000;100(02):197–207

31 Smith JT, Acohido BV, Clifton DK, Steiner RA. KiSS-1 neurones are
direct targets for leptin in the ob/ob mouse. J Neuroendocrinol
2006;18(04):298–303

32 Bartell SM, Rayalam S, Ambati S, et al. Central (ICV) leptin injection
increases bone formation, bone mineral density, muscle mass,
serum IGF-1, and the expression of osteogenic genes in leptin-
deficient ob/ob mice. J Bone Miner Res 2011;26(08):1710–1720

33 Padilla SL, Qiu J, Nestor CC, et al. AgRP to Kiss1 neuron signaling
links nutritional state and fertility. Proc Natl Acad Sci U S A 2017;
114(09):2413–2418

34 Kim JG, Sun BH, Dietrich MO, et al. AgRP neurons regulate bone
mass. Cell Rep 2015;13(01):8–14

35 Sanz E, QuintanaA, Deem JD, Steiner RA, Palmiter RD,McKnight GS.
Fertility-regulating Kiss1 neurons arise from hypothalamic POMC-
expressing progenitors. J Neurosci 2015;35(14):5549–5556

36 Feng Y, Manka D, Wagner KU, Khan SA. Estrogen receptor-alpha
expression in themammary epithelium is required for ductal and
alveolar morphogenesis in mice. Proc Natl Acad Sci U S A 2007;
104(37):14718–14723

37 Li X, OminskyMS, Niu QT, et al. Targeted deletion of the sclerostin
gene in mice results in increased bone formation and bone
strength. J Bone Miner Res 2008;23(06):860–869

38 Liu P, Ji Y, Yuen T, et al. Blocking FSH induces thermogenic adipose
tissue and reduces body fat. Nature 2017;546(7656):107–112

39 Sun L, Peng Y, SharrowAC, et al. FSH directly regulates bonemass.
Cell 2006;125(02):247–260

40 Bass S, Delmas PD, Pearce G, Hendrich E, Tabensky A, Seeman E.
The differing tempo of growth in bone size, mass, and density in
girls is region-specific. J Clin Invest 1999;104(06):795–804

41 Wang Q, Cheng S, Alén M, Seeman E; Finnish Calex Study Group.
Bone’s structural diversity in adult females is established before
puberty. J Clin Endocrinol Metab 2009;94(05):1555–1561

42 Shim KS. Pubertal growth and epiphyseal fusion. Ann Pediatr
Endocrinol Metab 2015;20(01):8–12

43 Son HE, Kim KM, Kim EJ, Jang WG. Kisspeptin-10 (KP-10) stim-
ulates osteoblast differentiation through GPR54-mediated regu-
lation of BMP2 expression and activation. Sci Rep 2018;8(01):
2134

44 Winslow MM, Pan M, Starbuck M, et al. Calcineurin/NFAT signal-
ing in osteoblasts regulates bone mass. Dev Cell 2006;10(06):
771–782

45 Brommage R, Liu J, Hansen GM, et al. High-throughput screening
ofmouse gene knockouts identifies established and novel skeletal
phenotypes. Bone Res 2014;2:14034

Seminars in Reproductive Medicine Vol. 37 No. 3/2019

Should We Make More Bone or Not Herber, Ingraham150

D
ow

nl
oa

de
d 

by
: U

ni
ve

rs
ity

 o
f C

al
ifo

rn
ia

, S
an

 F
ra

nc
is

co
. C

op
yr

ig
ht

ed
 m

at
er

ia
l.




