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Abstract 
In addition to saliency and goal-based factors, a scene’s 
semantic content has been shown to guide attention in visual 
search tasks. Here, we ask if this rapidly available guidance 
signal can be leveraged to learn new attentional strategies. In a 
variant of the scene preview paradigm (Castelhano & Heaven, 
2010), participants searched for targets embedded in real-world 
scenes with target locations linked to scene gist. We found that 
activating gist with scene previews significantly increased 
search efficiency over time in a manner consistent with formal 
theories of skill acquisition. We combine VGG16 and EBRW 
to provide a biologically inspired account of the gist preview 
advantage and its effects on learning in gist-guided attention. 
Preliminary model results suggest that, when preview 
information is useful, stimulus features may amplify the 
similarities and differences between exemplars. 

Keywords: visual search; scene gist; guided attention; 
VGG16; EBRW 

Introduction 
Humans have a remarkable ability to rapidly categorize a 
visual scene. With no more than 25 milliseconds of exposure, 
a scene’s conceptual category or gist (e.g., kitchen, forest) is 
readily perceived by an observer. Why do we have this ability 
to quickly map visual features to rich conceptual knowledge? 
One prominent theory (Torralba, Oliva, Castelhano, et al., 
2006) suggests scene gist is rapidly perceived in order to 
guide exploration of our visual environment towards 
information-rich regions (e.g., countertops in a kitchen). 
Such gist-based guidance allows for efficient sampling of 
behaviourally-relevant information contained within the 
visual scene. Can gist and its associated vast semantic 
knowledge be flexibly, and usefully, used in new learning? 
Here, we empirically test the hypothesis that rapidly available 
guidance signals from scene gist can be leveraged to learn 
new attentional strategies. Moreover, we combine a formal 
process model of category learning and skill acquisition, 
exemplar-based random walk (EBRW), with a well-
established deep-learning vision model, VGG16, to provide 
a comprehensive account of the experimental effect.  

Categorization is the abstraction of stimulus features to 
group similar objects (or scenes) together (Greene & Fei-Fei, 
2014). Scene categorization is a rapid (Evans, Horowitz, & 
Wolfe, 2011; Harel, Groen, Kravitz, et al., 2016; Lowe, 
Rajsic, Ferber, et al., 2018; Mack, Gauthier, Sadr, et al., 2008; 
Mack & Palmeri, 2010), and seemingly automatic (Greene & 

Fei-Fei, 2014; Mack & Palmeri, 2015) visual perceptual 
process, occurring with less than 100 milliseconds of 
exposure to a natural scene image. In addition to visual 
features of a scene, scene gist is an important part of a scene’s 
overall context and has been found to guide attention in visual 
search (Castelhano & Heaven, 2010; Robbins & Hout, 2020). 

A scene’s properties, and the higher-order mental states of 
the observer (i.e., expectations, goals), both influence the 
allocation of visual attention (Võ & Wolfe, 2013; Yantis, 
1996). The understanding of these features is akin to 
“involuntary” versus “voluntary” direction of attention 
(Yantis, 1996). Although saliency and top-down factors 
undoubtably affect spatial attention and search behaviours, 
other important details that can be extracted from a scene, 
including its semantic contents and other global properties 
(Chun & Jiang, 1998) must be accounted for. Work has 
already been done to advance the notion of scene category as 
capable of learning-induced transformations. Brockmole and 
Henderson (2006) showed participants natural scene images 
with target letter embedded within. Critically, they used 
novel images (presented only once throughout the search 
task) as a baseline measurement of reaction time (RT), and 
repeated images to observe effects of contextual cueing. 
Their results reflect that target information associated with 
natural scenes was learned more quickly than targets linked 
to arbitrary configurations of letters and numbers; the 
semantic information contained in a scene is supposed to 
facilitate this process (Brockmole & Henderson, 2006).  

Whether scene gist can be the driver of attentional 
guidance still requires investigation, though recent studies 
have provided support for this notion (Robbins & Hout, 
2020). We hypothesize that initial search strategies will be 
largely informed by prior knowledge of information-rich 
areas of scene categories. As trials progress, however, 
participants will learn that scene gist is linked to specific 
target locations. That is, the consistent presence of a target in 
one location is expected to disrupt the typical category-
guided search patterns. Fully understanding this process 
requires a formal model that can account for how perceptual 
information is used to build new knowledge. The rich 
literature of cognitive learning models (e.g., Nosofsky & 
Palmeri, 1997) provides formal accounts of how perceptual 
information is leveraged in new learning, yet is missing the 
key perceptual mechanisms that translate visual stimuli into 
meaningful perceptual components. We explore whether the 
integration of a vision model and a cognitive model can 
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provide a formal means for understanding attention learning 
in scene perception.  
    We use VGG16, a deep convolutional neural network for 
image recognition (Simonyan & Zisserman, 2014), to obtain 
stimulus features as input to EBRW. This perceptual frontend 
allows for the investigation of scene perception together with 
learning in visual search. VGG16 performance in specific 
layers has been highly correlated with processing stages in 
human primary visual cortex (Eberhardt, Cader, & Serre, 
2016) (but see Palmerston, Zhou, and Chan (2020) for 
comments on functional connectivity beyond these areas). 
Essentially, VGG16 provides a biologically inspired 
characterization of the perceptual features underlying rapid 
scene perception. 

We combine VGG16 perceptual representations with  
EBRW (Nosofsky & Palmeri, 1997) to characterize the 
nature of learning in scene-gist guided attention. EBRW 
formally defines category learning as a mutual interaction 
between instance-based memory, selective attention, and 
random walk evidence accumulation (Nosofsky & Palmeri, 
1997). Category decisions are based on comparisons between 
the current stimulus and stored representations, or exemplars, 
of the relevant categories (Nosofsky & Palmeri, 1997). If the 
stimulus is similar to the exemplars of one category, the 
accumulation of evidence towards the category and 
subsequent decision will be made relatively quickly, whereas 
categorical ambiguity would slow the random walk process. 
Importantly, increased experience should lead to faster 
performance. Within learning experiments, each trial is 
encoded into EBRW as an additional exemplar of a category. 
Here, we conceptualize EBRW such that perceptual 
representations of scenes, which potentially hold key scene 
gist information, are encoded as exemplars of target location. 
Over multiple trials, these category representations 
associated with target location accumulate to drive faster 
responses in a manner consistent with the classic notion of a 
power law of practice.  
    We had participants perform a novel attentional learning 
task, finding that activating gist with scene previews 
significantly increases search efficiency in a manner 
consistent with formal theories of skill acquisition. As a proof 
of concept, we provide preliminary analysis of a model 
combining VGG16 and EBRW to account for scene gist-
based learning effects on attention.  

Methods 
In a variant of the scene preview paradigm (Castelhano & 
Heaven, 2010), participants searched for targets embedded in 
real-world scenes with target locations linked to scene gist. 
 

 

 
Figure 1. Trial schematic for each preview type 

condition in the behavioural experiment. After 
being shown an intact (left) or scrambled (right) 
preview of the search image, participants 
searched for a target for up to ten seconds, and 
identified it using a key press. 

Participants 
All participants were recruited from an undergraduate subject 
pool and given course credit as compensation for their 
participation. All participants had normal or corrected-to-
normal vision. This experiment was approved by the research 
ethics board at the University of Toronto. Participants were 
briefed and gave their written consent before the experiment 
began. 43 participants (17-22 years) took part in the 
experiment. Eleven participants had to be excluded from the 
data analysis due to insufficient mean accuracy (<0.85) in 
identifying the target’s identity across all trials of the 
experiment. The resulting sample size was therefore 32 
(mean = 18.85 years; 24 female). 

Materials 
Search and preview images 
The search images were 180 photographs of outdoor scenes, 
obtained from Google Images. 90 images were of forests, 
representing the ‘natural’ category. The other 90 images were 
of city streets, representing the ‘manmade’ category. All 
images were resized to 1600 x 1067 pixels and converted to 
grayscale. 

Phase-scrambled images were created by deconstructing 
all 180 scenes images into constituent magnitude and phase 
spectra using fast Fourier transform (Sadr & Sinha, 2004), 
randomizing the phase component, and inverting the Fourier 
transform of the randomized phase and original magnitude 
components. Randomising the phase component of an image 
retains its low-level visual attributes but renders it 
semantically incoherent (Mack et al., 2008). By presenting 
these images as previews before the intact search image, 
participants are, in a sense, still being given “the same 
image”. The difference is that they will not be able to discern 
any gist information from that preview. Phase scrambling 
was performed using functions found in the pylab Python 
library. 

 

preview 

search 
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Targets 
Two targets were used in these experiments: an illustration 

of a kangaroo, and an illustration of a lizard. Both targets 
were taken from Keynote for iOS’s “shapes”, a clipart library 
accessible in the application. Each image was white with a 
black outline and presented at 50% opacity. Targets were 
each presented at a unique location on the right or left side of 
the screen depending on scene context in each trial of the 
experiment, such that there are 180 possible target locations. 
These category-incongruent targets were chosen over 
category-congruent targets (e.g., a fire hydrant on a city 
street) to encourage participants to explore the whole scene 
without being influenced by additional contextual factors 
implied by a congruent object’s identity.  

Procedures 
There were 180 trials in total, and participants completed 
every trial. All instructions were provided to the participant 
onscreen. They were advised to maintain fixation when 
beginning each trial, including when the preview was 
presented, and then to find the target in the image as quickly 
as possible. The first fixation was presented for 500 ms, 
followed by a preview of the search image for 166.7 ms, after 
which another fixation was presented for 500 ms. The search 
image was then shown, with the target, for up to ten seconds 
or until the participant had signalled that they have found the 
target with a key press. An intermediate screen was shown 
until the participant was ready to begin the next trial. 
Throughout the experiment, targets consistently appeared on 
either the left or right side of the screen, depending on the 
trial image’s scene category. For example, a participant 
would always see a target on the right side of a city street 
search image, and on the left for a forest search image. 
Premade conditions were counterbalanced for target side and 
preview type. Participants were not informed of the target 
location patterns. 
   Participants were subjected to both types of conditions at 
once, such that trials of each type were randomly interleaved 
throughout the entire experiment. The conditions were 
distinguished by the preview that was shown on each trial: a 
preview of the search image, or a phase-scrambled version of 
the search image. The latter preview type eliminated any 
distinguishable category information from the preview, such 
that there was no helpful gist information until the search task 
had started. 

Computational model 
To investigate how attention guidance is potentially impacted 
by associative learning between visual scene representations 
and target location, we conducted simulations with an 
integrative computational framework that combined a deep-
learning vision model (VGG16) with a category learning 
model (EBRW). 

 
Figure 2. VGG16 and EBRW model. Perceptual 

representations of scenes were first generated by 
a Places365-trained VGG16 model and feature 
vectors from the first fully connected layer (FC1) 
were extracted. The dimensionality of these 
feature vectors was reduced with PCA to define a 
two dimensional perceptual space. Each scene’s 
position along the two dimensions was then 
inputted to EBRW. Within EBRW, each scene 
was compared to previously encountered scenes 
associated with the two target locations. 
Similarity to these stored scene exemplars drove 
a drift diffusion evidence accumulation process to 
predict visual search response times. 

 
Perceptual frontend (VGG16) 

To obtain a measure of visual similarity between 
exemplars, a necessary component of EBRW model, we 
turned to a well-established deep-learning vision model. 
Briefly, the image feature extraction was done using VGG16, 
a deep convolutional neural network consisting of 16 layers 
(Simonyan & Zisserman, 2014), where the ‘learning’ layers 
consist of five convolutional layers and three fully connected 
layers (Krizhevsky, Sutskever, & Hinton, 2017); this was 
implemented using the Keras application programming 
interface (API) and TensorFlow machine learning platform 
in Python (Zhou, Lapedriza, Khosla, et al., 2018). To 
summarize, the model works as follows: the images are 
resized to 224 x 224 pixels, each convolutional layer applies 
‘filters’ to extract image features, and the model predicts the 
probability of the image belonging to one of the two stimulus 
categories (i.e., forest or city street) (Krizhevsky et al., 2017).  

The perceptual representations across the layers of VGG16 
include varying degrees of scene-specific and scene-gist 
information. With the goal of primarily representing scenes 
according to scene gist while also maintaining important 
variability across the scenes, we focused on representations 
from the fully connected layer FC1. To best link these high-
dimensional visual representations onto the cognitive 
mechanisms of EBRW, we performed dimensionality 
reduction with PCA (scikit-learn) following the approach of 
similar prior work (Mack & Palmeri, 2010). Specifically, we 
retained the first two principal components. Although this 
resulted in a significant reduction of information from the 
VGG16 representations, the resulting two-dimensional 
representations retained both scene-gist and scene-specific 
information and were appropriate for the computational 
constraints of EBRW simulations. 

 
EBRW 
EBRW simulations were based on RTs from all participants 
for each repetition of each trial type. Image features 
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generated by the VGG16 perceptual frontend served as 
perceptual representations of each scene image for EBRW. 
EBRW is defined by five parameters: α, a constant 
accounting for the time needed to extract a category label for 
a retrieved instance; c, a constant used for transforming 
distance measures into similarity measures; w, a vector of 
attention weights for the image feature dimensions; and two 
regression parameters that map the arbitrary units of EBRW 
accumulation evidence to RT: k, a scaling factor for the slope; 
and μr, the y-intercept, or the mean of the RTs.  

To simulate the current task, PCA representations of the 
VGG16 FC1 layer for scenes were stored in category 
knowledge along with category labels corresponding to target 
location (right vs. left of screen). On each trial, the current 
scene representation was compared to previously 
encountered scene representations associated with the two 
target category locations to drive a drift diffusion process. 
The higher a match between the visual features of a scene and 
previously encountered scenes with the same target location, 
the faster the predicted visual search. At the end of a trial, the 
current scene’s representation was encoded into the model’s 
category knowledge as a new exemplar for the correct target 
location, making it available to impact the similarity 
calculations in subsequent search trials. Across trials, the 
number of stored exemplars for each target location grew to 
reflect prior experiences in linking scene category with target 
locations. 

To isolate the potential mechanistic effect of preview type, 
three separate models with one parameter allowed to vary 
between preview type (α, c, and w) were fit to participants’ 
RTs. Parameter optimization was conducted by minimizing 
the root mean-squared error (RMSE) between observed and 
model-predicted RTs with differential evolution, a stochastic 
genetic algorithm-based optimization method  (scipy v.1.5.2, 
differential_evolution). Since all three models shared the 
same degrees of freedom in accounting for the behavioural 
data, the final RMSE of the three models served as an index 
for comparison. Given the exploratory nature of the 
VGG+EBRW model for visual search and the relatively 
noisy nature of the behavioural data, we opted to optimize 
parameters based on fits to the entire behavioural dataset all 
at once rather than individual fits specific to each participant. 
Although this approach precludes characterizing model 
mechanisms at the level of individual participants, it does 
provide a well-powered method for identifying likely 
mechanisms that describe group-level differences between 
preview types and offers preliminary proof-of-concept 
evidence for the proposed computational framework. 

Results 

Experiment 
Mean values of the median RTs, per participant, for trials 
with intact and scrambled previews are 3077 ms (SD = 633.3) 
and 3074 ms (SD = 651.2), respectively. The effect of 
learning repetition, preview type, and their interaction on log-
transformed RT was estimated with a linear mixed effects 

regression model using the R ‘lme4’ package (Bates et al., 
2020). Participants were modelled as a random effect. 

Participants averaged 87.8% and 85.9% successful 
searches for intact and phase-scrambled trials respectively. 
Thus, the type of preview did not affect participants’ ability 
to complete the search. However, search efficiency was 
impacted by preview type. Search RTs decreased over trials 
(β=-0.003135, 95% CI [-0.004484, -0.001788], t=-4.559, 
p=5e-6) but showed no main effect of preview type (β=-
0.08955 (95% CI [-0.1931, 0.01381], t=-1.696, p=0.0899). 
Critically, preview type significantly interacted with trial 
number such that intact scene previews led to faster search 
RTs over the course of the experiment relative to phase-
scrambled previews (β=0.002286, 95% CI [0.0003540, 
0.004222], t=2.316, p=0.0206). This effect suggests that an 
intact scene preview speeds visual search, potentially through 
the activation of the scene’s gist and its association with 
target location.  

 
 

 

  
Figure 3. A: Average median RTs for trial 

blocks of each trial type. Darker dots are group-
level means, while lighter dots reflect individual 
participants’ binned median RTs. Error bars 
represent bootstrapped 95% confidence interval. 
B: Estimated marginal means from LMER model 
for RT as a function of trial repetition and preview 
type. Margins around each line represent 95% 
confidence bands. 

Model simulations 
As a preliminary proof of concept analysis, we conducted 

model simulations with the aim of accounting for group-level 
trends in the visual search behaviour. First, VGG16 trained 
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on Places365 was used to generate perceptual representations 
of each scene image. Specifically, we extracted vector 
representations for the scenes from the first fully connected 
layer (FC1) and submitted these representations to principal 
component analysis (PCA) keeping only the first two 
principal components. Although these components explained 
only 17.4% of the variance across the layer representations, 
they captured category differences well. Both categories 
showed similar within-category cosine distances (forest: 
µ=0.953, s=0.085, range=[0.506, 1.315]; street: µ=0.944, 
s=0.056, range=[0.631, 1.066]) and larger between category 
distances (µ=1.065, s =0.034 range=[0.856, 1.186]). These 
reduced perceptual representations served as input to EBRW.  

We formalized increases in search efficiency over time as 
a category learning process, specifically EBRW, that linked 
VGG16 scene representations to target location (i.e., left vs. 
right side of the search scene). Our implementation followed 
the standard formulization of EBRW (Nosofsky & Palmeri, 
1997); here, we focus on a conceputal overview rather than 
restating the model equations. On each trial, the summed 
simliarity between the current search scene’s VGG16 
representation and the previously stored scenes associated 
with the two target locations is calculated. The degree that the 
current scene matches one target location’s stored scenes 
over the other is then used to estimate both the probability of 
selecting that target location and the response time of the 
visual search. With each correct trial, the current scene’s 
VGG16 representation and its associated target location is 
stored in memory. Thus, over time, EBRW builds “category” 
representations that link perceptual features of scenes to 
target locations. 

As a first step in evaluating this model, we focused on three 
parameters in EBRW: sensitivity, c, which acts as a scaling 
parameter on the similarity calculation between the current 
scene and stored exmplars; attention weight, w, which biases 
the contribution of the two perceptual feature dimensions in 
calculating similarity; and alpha, which determines the time 
needed to retrieve an exemplar from memory. These 
parameters are linked to distinct mechanisms that each could 
influence search efficiency over learning by way of an intact 
scene preview. Three separate models that each each allowed 
one of these parameters to vary across preview type was fit 
to all participants’ RTs across trial repetitions (Figure 3A). 
To be clear, this combined VGG16+EBRW model provides 
a mechanistic account of how visual features are linked to 
scene gist and how, over the course of multiple experiences, 
scene gist can be associated with attentional strategies (i.e., 
attend to the left or right of the scene). This model does not 
formalize the deployment of overt or covert attention; rather 
focusing on how regularities in prior experience can lead to 
more guided attention. 

Model analyses revealed that the sensitivity model 
provided the best fit to behaviour (RMSEc = 153.79; RMSEα 

= 153.91; RMSEw = 153.97). Importantly, sensitivity was 
greater for the intact preview (0.128) than for the scrambled 
preview (0.089) condition. In EBRW, higher sensitivity acts 
to sharpen the similarity function. Thus, intact scene 

previews may serve to activate related stored scene 
exemplars associated with efficient search strategies. These 
simulations are preliminary and based on group averages of 
search behaviour. Model fits to individual participants’ data 
will be a key future analysis to pinpoint the specific model 
mechanisms that give rise to the greater learning effect 
observed for intact previews. 

 

 
 

Figure 4. VGG16+EBRW predictions of RT 
over repetitions of preview types using image 
features determined by VGG16 with separate 
sensitivity parameters for preview type. Darker 
points represent average RT per trial block and 
lighter points depicted model predictions for each 
participant. Error bars represent bootstrapped 
95% confidence intervals.  

Discussion 
We show that, while mean RTs were similar for intact and 
scrambled trials, the rate of learning over trials for intact 
previews was substantially steeper than the learning rate for 
scrambled previews (Figure 3). These results are consistent 
with the hypotheses, such that it seems that there is some 
component of the intact previews that is more informative 
than the scrambled previews for the visual search task. It 
should be noted that many studies have found that 
performance is best in conditions where scene primes are 
identical to the search images (Brockmole & Henderson, 
2006; Castelhano & Heaven, 2010; Võ & Wolfe, 2013). 
Some have even argued that semantic gist is informative if 
and only if visual information is also present (Makovski, 
2018). Therefore, it cannot yet be concluded with confidence 
that gist per se is what caused participants to find the targets 
faster when presented with the intact previews; it could very 
well be that the visual information also had a role in driving 
those observed differences. 

Nonetheless, it is worthwhile to investigate the potential 
mechanisms underlying this intact preview advantage. 
Although cognitive models provide a rich landscape for 
characterizing learning, they lack perceptual mechanisms 
that translate sensory information into perceptual 
representations; this is especially true for complicated stimuli 
like real world scenes. Here we provided the first steps 
towards this challenge by integrating VGG16 and EBRW, 
finding initial evidence that this approach is viable. In 
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particular, we found that differences in the sensitivity 
parameter (c) across preview type provided the best account 
of the behavioural data, and that that parameter had a larger 
value for the intact condition than the scrambled condition. 
Higher sensitivity values translate to a sharper activation 
function, where similar items may appear more similar to 
each other, and different items may appear more different 
from one another. Here, that means that intact previews may 
better activate relevant category knowledge, speeding the 
retrieval of the newly learned associations between target 
locations and scene gist (Annis & Palmeri, 2019). These 
findings are similar to those reported by Annis and Palmeri 
(2019), such that exemplar distinctiveness, as defined by 
changes in sensitivity, was correlated with visual expertise. 
Again, this interpretation is based on preliminary model 
simulations of group-level behaviour, but it is consistent with 
both behavioural and model predictions. Future model 
analyses conducted at the level of individual participants will 
provide a formal evaluation of the sensitivity hypothesis 
suggested here.  

Our approach offers the best of both words: sophisticated 
models of vision, and theory-driven mechanisms of human 
learning. Here, we apply it to questions of novel scene 
learning to gain perspective on the time course of learning 
beyond what is observable from behavioural RT data, and, 
more specifically, to gather information about the potential 
mechanisms behind the intact preview advantage. Our 
method also allows us to make mechanistic inferences based 
on RTs and accuracy alone, extending the usefulness of these 
measures in studies of learning and attentional guidance.  

Given the exploratory nature of our approach, there are 
some limitations that must be addressed in order to further 
refine the model. Although visual search performance clearly 
demonstrates a speeding for intact previews, the trial-by-trial 
data is quite variable even when looking at group averages. 
Characterizing individual participant performance with 
tailored model simulations as opposed to the group average 
model fits in the current work may provide a better 
characterization of the underlying mechanisms. Also, 
VGG16 provides a wealth of perceptual representations 
across its many layers, only one of which we leverage in the 
current model implementation. A systematic evaluation of 
the gist-level and scene-specific information across the 
VGG16 layers as it relates to visual search performance will 
be key to understanding both trial-by-trial variability in 
search and the type of perceptional information that can drive 
new learning for attention guidance. Ultimately, the 
modeling framework we propose offers the potential to link 
the complex nature of naturalistic scene perception to novel 
learning situations.  

In conclusion, it is well established that scene 
categorization is a rapid, behaviourally relevant process. 
However, we do not know the extent to which scene gist 
information is useful in novel learning contexts. The results 
of the current behavioural experiment together with the 
modelling framework described here suggest that rapid scene 
categorization can be associated with new attentional 

strategies and increase visual search efficiency. These 
preliminary findings motivate future work that will 
characterize such learning effects in individuals and 
determine the nature of rapidly encoded scene information 
that best drives novel learning. 
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