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a b s t r a c t 

The rise of location-based services has enabled many opportunities for content service providers to op- 

timize the content delivery to user’s wireless devices based on her location. Since the sharing precise 

location remains a major privacy concern among the users, certain location-based services rely on con- 

textual location (e.g. residence, work, etc.) as opposed to acquiring user’s exact physical location. In this 

paper, we present PACL (Privacy-Aware Contextual Localizer) model, which can learn user’s contextual 

location just by passively monitoring user’s network traffic. PACL can discern a set of vital attributes (sta- 

tistical and application-based) from user’s network traffic, and predict user’s contextual location with a 

very high accuracy. We design and evaluate PACL using real-world network traces of over 1700 users with 

over 100GB of total data. Our results show that PACL, when built using the Bayesian Network machine 

learning algorithm, can predict user’s contextual location with the accuracy of around 89%. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

A tremendous growth has been observed in location-based ser-

vices, in the last few years. On a broad scale, current location-

based services can be classified into two categories. Users navigate

to specific locations, search for restaurants and businesses near

a certain location, check-in on social networks, etc. using these

location-based services. The first category requires precise user lo-

cation to provide its services. One example for such a service is

smartphone navigation system where exact latitude and longitude

information is essential. The other type of services only need con-

textual information about the users’ location. For example, know-

ing that a user is at an airport or a shopping mall is sufficient (and

necessary) to provide certain services specific to that location cat-

egory. Contextual location information is also important for con-

tent providers and Content Distribution Networks (CDNs) which

can use this knowledge to optimize the content delivery and pro-

vide useful recommendations based on user’s location type. Third

party services, also, can provide targeted advertisements related to

the contextual location of the user. Most users believe that con-
� An earlier version of this work was submitted and accepted for publication at 

IEEE INFOCOM 2014. The work was titled “Contextual Localization through Network 

Traffic Analysis”. 
∗ Corresponding author. 

E-mail addresses: akdas@ucdavis.edu (A.K. Das), phpathak@gmu.edu (P.H. 

Pathak), chuah@ucdavis.edu (C.-N. Chuah), pmohapatra@ucdavis.edu (P. Mohapatra). 
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extual location based services are based on precise user location,

hich they are not comfortable to share, in most occasions, to re-

eive contextual location based services. If these services can be

rovided to users without compromising their privacy (about pre-

ise location), we believe users would be benefited by such ser-

ices. In this paper, we present a privacy-preserving system that

an determine user’s location category (or contextual location) just

y passively monitoring and learning from aggregate network traf-

c from different categories of location. 

Existing services such as FourSquare [1] can be used by con-

ent providers to map a user’s precise location to her contextual

ocation category but this requires the user to share their precise

hysical location. Increasing concerns about location privacy, have

rompted more and more users to be unwilling about provide their

ocation information, especially for contextual location-based ser-

ices. This insecurity among users have led to the Do Not Track Me

nline Act of 2011 [2] which provides users with an option to dis-

ble tracking of its location by content providers or websites. As an

xample of privacy preferences, we can say that users are willing

o share their GPS location for Google Maps Navigation but when

ervices such as YouTube ask for user’s location, users often deny

he request even though content delivery could have been opti-

ized by YouTube if the location was available. 

In this paper, we propose a network traffic analysis technique

hereby an ISP or any third-party entity capable of passively

onitoring network traffic can determine user’s contextual loca-

ion (without knowing user’s exact physical location). The ISP can

http://dx.doi.org/10.1016/j.comnet.2017.02.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2017.02.011&domain=pdf
mailto:akdas@ucdavis.edu
mailto:phpathak@gmu.edu
mailto:chuah@ucdavis.edu
mailto:pmohapatra@ucdavis.edu
http://dx.doi.org/10.1016/j.comnet.2017.02.011
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Physical Location – using GPS, WiFi, etc.

Location Context GeneratorPACL

Information Layer - maps, establishments, etc.
Information Layer - maps, establishments, etc.

Contextual Location 
based services

Precise Location 
based services

Fig. 1. PACL as compared to regular localization using precise location. 
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e  
se the traffic analysis technique to determine the users’ location

ategory. Once the contextual location has been identified, CDNs

an probe to obtain this information from the ISPs using the pro-

osed ISP-CDN collaboration model [3,4] . This information can

hen be utilized by the CDNs to provide contextual location based

ervices to users, like targeted advertisements. For example, at

ork, a person would prefer to get an advertisement of a word-

rocessing software on sale rather than get an advertisement for a

ovie ticket. Thus, one of the major applications of the proposed

echnique is to provide location context based advertisements to

sers. 

Our method can also work without an ISP accessing the con-

ents of the packets (such as website being accessed or payload).

rotocol identification and relevant statistical features are sufficient

or location categorization. As we see later in the paper, statistical

eatures of flow, packets and protocols in the user created network

ata can be used to achieve an accuracy of location prediction

hich is as high as 83%. This is accomplished without looking at

he content of the packets. This kind of inspection is often carried

ut by the ISP for traffic engineering and security purposes. Hence,

e believe that ISPs can assist in location categorization using our

echnique while adhering to the privacy acts. After determining the

ocation category, the ISPs can also fine-tune their security poli-

ies, as public locations (like cafeteria/restaurants) needs different

olicies as compared to private locations (like apartments). For ex-

mple, certain ports and flows in a public location context can be

locked to provide more security to users from attackers. 

In this work, first, we show that network traffic originating

rom different types of locations (such as cafe, university campus,

esidence etc.) have built-in distinct signatures based on the loca-

ion category. Second, we propose a traffic analysis engine that can

everage information collected by existing passive traffic monitor-

ng systems to discern the contextual location signature. The signa-

ure is composed of different attributes that may differ depending

n the type of location (e.g., applications users access at different

ocations, flow length, packet size distributions etc.) These location

ignatures can be used to identify the contextual location of any IP

ddress. 

The contributions of our work are as follows: 

1. First, we show that traffic originating from different types of lo-

cations have distinct signatures embedded in them. To establish

this, we have collected nearly a 100GB of real-world network

traffic traces for over 1700 users at different types of locations.

We identify a number of attributes which when used together

can create a distinct contextual location signature. 

2. Next, we present a system (named PACL - Privacy-Aware Con-

textual Localizer) that can learn user’s contextual location

only by passively monitoring user’s traffic flows. The core of

PACL is a supervised machine learning engine that can predict

user’s contextual location efficiently and accurately. We eval-

uate our PACL model using our network traces, based on six

machine learning algorithms. The best prediction accuracy is

observed using the Bayesian Network classification algorithm

which show that PACL can predict contextual location with an

overall accuracy of 89%. This model not only gives overall good

accuracy, the accuracy for the individual classes are also very

similar and equally efficient. 

This paper is structured as follows. We start out with discus-

ion of related research works in Section 2 . In Section 3 , we in-

roduce the PACL system and describe its functioning in details.

ection 4 includes details about the dataset used for analysis. The

eatures which differentiate each contextual location are discussed

n Section 5 . In Section 6 , we present the methods used for feature

election. The prediction model and the prediction results observed
sing our proposed model are in Section 7 , followed by conclusions

n Section 8 . 

. Background and related work 

Traditional location-based services are built on top of position-

ng systems (e.g. GPS) and information layer (e.g. maps, database

f establishments etc.). This is depicted in Fig. 1 . Here, location-

ased services that require exact physical location typically use

ata from user’s positioning system combined with details of in-

ormation layer. This opens up many entry points for privacy in-

asion of users. On the other hand, certain services (such as tar-

eted advertising, content delivery optimization etc.) do not re-

uire user’s exact physical location. Also, users are less likely to

rovide their location for such services. Our solution, PACL, can ad-

ress this challenge by eliminating the need of user’s physical lo-

ation in the case of contextual location-based services (see Fig. 1 ).

nstead of querying users for precise location, PACL passively learns

ser’s contextual location by monitoring users’ network traffic. 

Determining Location and Preserving Privacy: Significant

mount of past research has mostly focused on two topics: (i) ac-

urate and energy-efficient determination of user’s physical loca-

ion and, (ii) preserving user’s privacy when sharing user’s loca-

ion information. In the first category of research, a variety of loca-

ion determination mechanisms have been proposed like in [5,6] .

he central focus of these studies is to reduce the energy con-

umption of determining the location while increasing the accu-

acy. Also, other techniques such as map matching [7] are used to

mprove the accuracy. Location privacy preserving techniques have

ttracted a lot research starting from initial studies such as [8] .

ethods such as cloaking [9] and obfuscation [10] are proposed

s ways to prevent privacy leakage of users using location-based

ervices. PACL is different from these studies as it does not require

ctual physical location and other privacy preserving methods for

rotecting the physical location. 

Traffic Classification: Another thread of research that is rele-

ant to PACL is known as Internet traffic classification. The pur-

ose of traffic classification is to monitor and analyze network

raffic for determining applications and protocols being used. It is

 well-established method ( [11] and references therein) of profil-

ng network traffic, anomaly detection and detecting file sharing

f copyrighted content. Such traffic classification techniques and

ACL share a few common characteristics. They both utilized traffic

onitoring and are built using machine learning algorithms. Nev-

rtheless, we believe that PACL takes a step forward by learning

nd predicting contextual location purely through network traffic

nalysis. 

Another research work relevant to ours is [12] in which Trestian

t al. provide a detailed study on applications accessed by users at
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Fig. 2. Architecture of the PACL system: network traffic is monitored for a number 

of features, which when used in the PACL model gives contextual location predic- 

tion of an IP. 
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different locations and show that they tend to be different at work

and home, irrespective of the time of the day. Our model not only

profiles the usage of applications and services by users at different

locations but also combines them with other statistical features to

predict their contextual location. 

There are many online third-party software tools which claim

to predict the geographical location of an IP address [13] . How-

ever these services only provide city-level information of the IP

address but neither the exact location or the contextual location

is available. Some of these tools provide geographical coordinates,

but those mostly refer to the coordinates of the ISP the IP address

is registered to. 

3. Privacy Aware Contextual Localizer (PACL) system 

In this work, we design Privacy Aware Contextual Localizer

(PACL) system, which can determine the category of user’s location.

PACL is built on a simple fundamental idea that user’s network ac-

tivity is highly dependent on user’s contextual location. If one is

able to identify the attributes of network traffic that are sufficiently

different across different contextual location, ISP or any third party

entity capable of passively monitoring traffic, can use the same

set of attributes to determine user’s location context. This location

context can then be shared with content service providers who can

optimize the content deliver accordingly. The foremost advantage

of the PACL system is that users are not required to share their

precise location with anyone, and at the same time, they can be

served using the content that is optimized based on their location

context. The components of the PACL system are shown in Fig. 2 . 

Traffic Monitoring: PACL can be deployed within traffic mon-

itoring systems of an ISP or an AS (Autonomous System). Flows

originating from user IPs can be monitored for a fixed amount of

time after which PACL determines its contextual location. Note that

PACL is similar to traditional Internet traffic classification methods

as it performs better when complete bi-directional network traffic

of end-user IPs can be monitored. Since this is the first attempt

towards determining type of location purely using network traffic,

we restrict our study to the case where PACL is deployed on traffic

monitors with complete bi-directional network flows. 

In our measured dataset, we collect network traffic over the

edge at WiFi hotspots deployed at different types of locations (de-

tails in Section 4 ). We build and verify PACL using the traces of

over a 100GB collected at different location over the period of 20

days. 

Identifying Location Signature: In the PACL, we first identify

specific attributes of IPs which are likely to be correlated to IP’s
ocation. In the training phase, we use the available ground-truth

f location to find the correlation between the attributes with the

ocation. The attributes (or features) we use can be classified in

wo categories - statistical features and application-based features.

xamples of statistical features include number of flows originated

y an IP, packet length distribution of all packets of an IP etc.

n the other hand, in the application-based features, we classify

ser’s network flows in different categories of applications (such

s emails, games, social-networks etc.). To understand what kind of

ontent users are interested in (independent of which application

hey use to access it) when at a specific location, we also classify

ows into different interest categories. We show that both statisti-

al and application-based features can generate a distinct signature

or different locations. 

Applying Location Signatures to Determine Location Context:

nce the location signature has been identified, PACL prediction

odel predicts the contextual location of a user based on loca-

ion signature mentioned above and the observed statistical and

pplication-based features associated with the particular user (or

P address). As shown in Fig. 2 , the results are stored in a reposi-

ory, which can be accessed by the content providers to optimize

ontent delivery and provide location-specific services. However,

ven after prediction of contextual location of an IP address, PACL

ontinues to predict contextual location as dynamic reallocation of

Ps might change IP’s location category. 

The prediction model is built using a machine learning predic-

ion algorithm. Out of the six algorithms, the Bayesian Network al-

orithm gives the best prediction accuracy. It is observed that the

ombination of both the statistical features and application based

eatures give better prediction of location context than using each

et individually. Application of this model on our dataset of over

700 users yields a prediction accuracy of over 89%. 

In our dataset, we collect data from WiFi hotspots and hence

re aware of the location category. For the PACL model, knowledge

f the location category for some user devices is necessary - this

rovides the ground-truth for the initial model building phase. For

his purpose, the PACL during traffic monitoring can anonymously

robe the users in a network for their location category informa-

ion. As we know, some users, who are willing to share location in-

ermittently, will reply to such queries. As a result, we will be able

o collect the location category information for the initial model

uilding phase. 

Before describing PACL in details, we discuss the application

cope and limitations of PACL. First and foremost, PACL cannot

e used for location-based services where user’s precise location

s essential. In other words, it cannot be used for applications

here precise location is more important than preservation of pri-

acy. Second, PACL is capable of predicting most common “location

ypes” but its current form cannot characterize traffic from short-

erm gatherings (such as a sports event). Thirdly, the PACL model

oes not need to be deployed in the network where the traffic is

rom one location context only. It has the capability to sort out dif-

erent IP addresses and determine their location context. That way

ultiple deployments at different locations are not required - de-

loyment at data aggregation points serves the purpose. 

. Network traffic collection and datasets 

One major challenge we faced in developing the PACL system

s to acquire network traffic traces which precisely originate at

pecific locations. If network traces from ISP or AS are used, they

ight not always have the ground-truth location for different IPs.

o address this challenge, we capture the network traffic at the

dge at different WiFi hotspots deployed at different locations. The

etails of the datasets are presented in Table 1 . 
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Table 1 

Dataset used For location signature analysis. 

Location Type Traces No. of IPs Total IPs. Total flows Packet Count Duration Trace Size 

(Million) (Hours:Minutes) 

Apartment-1 91 16,695 16 .47 7 :40 7.2GB 

Apartment-2 78 20,505 31 .15 10 :40 14.9GB 

Residential Apartment-3 72 315 14,396 17 .45 3 :22 7.9GB 

Apartment-4 52 6465 14 .82 2 :44 6.8GB 

Apartment-5 22 12,469 8 .38 3 :16 3.1GB 

Department hall 114 14,887 27 .34 5 :12 5.9GB 

University Campus Library-1 313 529 20,153 83 .62 7 :55 21.9GB 

Library-2 102 26,861 65 .29 8 :19 19.2GB 

Starbucks-1 234 39,532 12 .89 8 :03 5.6GB 

Cafeteria/Restaurant Starbucks-2 216 450 44,720 12 .73 8 :48 4.9GB 

Washington-1 88 10,682 2 .01 0 :18 682MB 

Sydney-1 80 8586 4 .05 1 :24 1.4GB 

Orlando 63 2280 1 .35 0 :20 499MB 

Washington-2 55 3201 1 .00 0 :13 209MB 

Airport/Travel Denver 53 458 7264 2 .02 0 :21 515MB 

Washington-3 40 1338 1 .37 0 :20 340MB 

Los Angeles 39 2691 1 .01 0 :15 411MB 

Sydney-2 23 872 0 .84 0 :25 190MB 

San Francisco 17 2024 1 .17 0 :15 624MB 
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1

.1. WiFi packet captures 

The data is collected by passively sniffing WiFi packets from

he air near the WiFi hotspot. We chose four different categories

f locations - residential, university campus, cafeteria/restaurants

nd airport/travel (see Table 1 ). The four location categories that

e consider are representative of locations where users have some

ort of distinct internet usage pattern. For example, the access of

ideos and games at residential locations create sessions with large

mount of data transfer and longer durations, whereas the access

f travel websites at airports will create smaller sessions with very

ow byte count. There can be other location categories, but we con-

ider these four for our experiments and our prediction model. 

For each category, we collected traces at multiple different lo-

ations of that category to extract/learn the category-specific char-

cteristics. The traces were collected using TP-Link WN722N WiFi

SB adapters [14] connected to a laptop running Linux. The WiFi

dapters run in monitor mode of ath9k driver [15] and Wireshark

s used to capture the packets. We connect three different adapters

o each laptop in order to simultaneously capture on 3 different

hannels (channels 1, 6 and 11 of 2.4 GHz IEEE 802.11 b/g/n). The

races account for a total of over 100GB of data captured over 20

ifferent days. The airport traces were captured in 2012 as de-

cribed in [16] . 

The dataset and the subsequent analysis is based on classifi-

ation of contextual location into four classes. However, the PACL

odel can be extended to incorporate other location categories,

rovided the model is trained beforehand based on the features

rom those locations. The analysis done here is based on wireless

etwork traces, but the analysis is applicable for wired network

raffic. We use WiFi traces as they can be collected easily in pub-

ic settings, and in any case, most of the devices that are used at

hese locations are wireless devices. 

.2. Data sanitization 

Before processing the data as input to the PACL learning model,

e sanitize the network traces. The process of the sanitization

hase is divided into two steps. First, the collected dataset is

nonymized to remove any personal identity related information.

he second step involves removing all the packets from the net-

ork traces which will not be forwarded to the ISP. In this step, all

he MAC layer frames (such as WiFi beacons etc.) as well as MAC
ayer headers are removed from all IP packets as these information

s not forwarded beyond WLAN. 

. Finding location signature 

We propose a traffic analysis system, which can passively mon-

tor network traffic and extract the statistical features and appli-

ation and service based features , on a per-IP basis, to be used

or learning and prediction. 

.1. Statistical features 

For each IP address in the trace, we calculated the statistical

eatures listed below. They are divided into 4 subsets as shown

elow. Type I and II attributes hold single numerical values, while

he attributes of Type III and IV are distributions, which are rep-

esented using < min, max, average, median, standard deviation,

kewness, kurtosis > . While extracting the features from the traffic,

e have no prior idea about the shape of the distributions (Gaus-

ian or not). We are primarily concerned with accurate representa-

ion and description of distributions obtained from the data. Thus,

imilar to the network features used in [11] we consider the first

our moments (mean, variance, skewness and kurtosis) in addition

o maxima, median and minima. Note that, a flow is identified us-

ng a 5-tuple < source IP, source port, destination IP, destination

ort, protocol > . 

ype I - Coarse-grain statistics: 

1) Total number of flows 

2) Average number of concurrent sessions 

3) Percentage ON time - ratio of number of 10 second blocks when

IP was active (had at least one flow) to the total time of the

trace 

4) Number of activity periods (one activity period = a period of

time when the IP was continually active, i.e. had at least one

flow active) 

5) Number of bytes transferred 

6) Number of packets transferred 

7) Average application data rate 

ype II - Protocol level statistics: 

8) Number of HTTP flows 

9) Number of HTTPS flows 

0) Number of TCP (non-HTTP/HTTPS) flows 
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Fig. 3. Figures represent variation of four key attributes across four different location classes. 
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1) Number of UDP flows 

Type III - Flow level statistics: 

2) Flow length 

3) Application data rate of the flows 

4) Bytes transferred per flow 

5) Packets transferred per flow 

Type IV - Packet level statistics: 

6) Packet inter-arrival time 

7) Packet size 

The total number of statistical features are 53 (1 feature each

for Type I and II and 7 features for each distribution for the statis-

tics of Type III and IV). 

During the entire time of the trace, the DHCP lease to a par-

ticular device does not expire and thus for all calculations, we as-

sume one IP address is assigned to one device (we also verify this

by checking the MAC addresses corresponding to each IP address).

For the calculation of activity period, percentage ON time and con-

current flows per IP address, the entire trace duration was divided

into bins of 10 s intervals each and the analysis was done based on

the whether an IP address created any flow during each of these

time bins. The statistical attributes which are directly dependent

on the total time of the trace (e.g., total flows per IP, total num-

ber of HTTP flows, etc.) were normalized on a per hour basis, to

eliminate any biases due to difference in the duration of different

traces. 

Analysis of Statistical Features : The statistical attributes re-

veal distinct information that can serve as location signature and

in turn, used to predict contextual location. Some of these charac-

teristics are shown in Fig. 3 . As we can see, airport trace has the
ighest number of flows per IP per hour as compared to the other

ocations, whereas Campus has the lowest, as seen in Fig. 3 a. Air-

ort and cafeteria traces have mostly smartphone based network

raffic and thus each device generates a large number of flows (due

o background applications and ads). On the other hand, campus

races have a large number of IP addresses with very low flow

ount - as there are users who pass by the WiFi hotspot and their

evices, which are connected to the campus network, by default,

ay generate traffic for that transient period of time. 

Fig. 3 b and d shows the length of flows and the number of ac-

ivity periods per IP are the largest in case of residence as com-

ared to others. This is expected, as in residential buildings users

end to keep their devices on for longer duration, even though

he usage can be in on-off manner and not continuously. From

ig. 3 b we can observe that more than 50% of the IP addresses

n the residential traces have flow lengths greater than top 10% IP

ow-lengths in cafeteria trace. This is because most users tend to

tay for a very short time in cafeterias. This proportion of users is

maller in campus as many users prefer to sit at once place. How-

ver there are several IP addresses with very small flow-lengths in

ampus trace, generated due to users who happen to pass by, as

entioned above. 

Activity Period: One of the most distinct attributes among dif-

erent location categories is activity period, as we will later see

n Section 7 . We calculate activity period count as the number of

imes an IP was continuously generating at least one flow in each

f the 10 s time intervals, the whole trace was divided into. Fig. 3 d

ndicates the higher number of activity periods in apartments, but

uestions may arise as to why such a trend is observed in airports

oo. This is because the activity period is normalized on a per-hour

asis and the activity periods actually calculated are for approxi-
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Fig. 4. Figures represent the variation of a particular attribute across the different traces of the same location class. 
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Table 2 

Application categories and services. 

Categories Entertainment, Games, News-Reading, Finance, 

Social network, Sports, Education-Career, Email, 

Family, File-sharing, Technology, Food-Culture, 

Health, Fashion, Politics, Shopping, Automobiles, 

Weather, Portals, Travel, Science 

Services YouTube, Netflix, Pandora, Amazon, Craigslist, 

Twitter, Facebook, Instagram, ESPN, Gmail, 

CNN, Dropbox 

Table 3 

Categories and keywords. 

Interest Category Keywords 

Entertainment youtube, netflix, itunes, mp3, video 

Games zynga, xbox, games, trivia, aws 

News and Reading nytimes, bbc, cnn, blogspot, news 

Sports espn, mlb, soccer, fifa, ncaa, nba 

Social Networks facebook, twitter, friends, plus.google 

Travel maps, expedia, tripadvisor, yelp 

Technology endgadget, cnet, bestbuy, techcrunch 

Education and Career .edu, stackoverflow, github, courseera 

Shopping craigslist, amazon, ebay, groupon 

Email gmail, pop3, imap, smtp, hotmail 
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ately 15–30 min traces. Hence we see higher number of activity

eriods in airport trace. Around 90% of IP addresses at campus and

afeteria have activity period count less than five. This is mainly

s a result of passer-by user devices in campus traces and users

n cafeteria traces who connect to the network for a few specific

urposes. 

Percentage ON Time: The percentage ON time of each IP ad-

ress represents the total time an IP was active, as a percentage

f the entire time of the trace. As seen in Fig. 3 c, apartment and

irport traces have the highest ON time percentage of all the four

ocations as most user devices are usually on for almost the entire

ime of the trace (note that airport traces are very short in du-

ation). ON time percentages in cafeteria is smaller than those in

ampus, but there are some devices with very high percentage ON

ime in the cafeteria dataset. This is most likely to be due to the

mployees of the establishment who were present at that location

uring the entire data collection time. 

Variation across datasets for the same location category:

ig. 4 a and b shows the variation of two specific attributes across

ore than one trace of a particular location. These two figures help

s to show that the variation of a particular attribute across mul-

iple traces at the same category of location behaves similarly, in-

pite of the fact that the trace was collected in a different date and

t a different location (but same contextual location). Similar trend

cross different traces at same location category is seen for almost

ll of the above mentioned features, which help us to assign a spe-

ific signature for each type of location. 

To detect the interest of users in various kinds of applications

t different locations, we use a keyword based search on the con-

ent of the captured packets, a method similar to the one used in

12] . Packets include the HTTP objects like GET, POST and URLs as

ell as DNS queries and answers. For the keyword based search,

e created a keyword list, currently around 50 keywords for each

ategory - generated using the common words of the Keyword Tool

rom Google Adwords [17] collected over one week, for each of the

ategories. Based on this search, we used the percentage of pack-

ts for a particular IP that had a keyword-match in any category as

he score of the IP for that category. Apart from the 21 categories,

e also did the above analysis on 12 commonly used services and

sed the scores as attributes. The 33 attributes in this category,

ombined with 53 statistical features, result in 86 attributes, in to-

al. 

.2. Application based categorization 

The keyword search on the trace showed that in general,

round 60–70% of the IP addresses could be profiled on the ba-

is of interest category. A particular IP address is considered to be
nterested in a specific application category if there is at least one

acket that gives a keyword-match for that category. However, we

bserved that when a particular IP address was profiled to be be-

onging to a certain application category there were substantially

arge count of packets for which there was a keyword match in

he same category. Table 2 shows the list of categories and ser-

ices used for as the features in this category and Table 3 shows a

ew keywords of some of the categories. Fig. 5 represents the per-

entages of IP addresses that were profiled to be interested in one

pecific category. 

Interpretation of Application based Categorization: The res-

dential traces have the highest interest percentage in entertain-

ent. Apart from that, food, family, shopping, politics, fashion and

utomobiles have higher percentage with lower interest in mails

nd portals as compared to the other locations. Mail and portals

re not accessed by users at their own homes as compared to out-

ide, like at work or when on the go. Also access to file-sharing

ebsites are mostly seen in apartment traces. Traces collected in a

ampus WiFi hotspot have a very high percentage of IPs interested

n education related websites, portals and emails, as can be ex-

ected. Music, video and games are accessed much less in a cam-

us environment as compared to the others. Results in Fig. 5 verify

his claim. 
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Fig. 5. Representation of interest categorization (E1: Youtube, E2: Netflix, E3: Pandora, N1: CNN, S1: Facebook, S2: Twitter, S3: Instagram, M1: Gmail). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Chi-square statistic score for the highest-correlated features for each subset 

of statistical attributes. 
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Cafeteria and airport traces have very high number of IPs with

interest in social-networks, portals and email. Outdoor locations

are expected to have high percentage of users checking weather,

as is observed in cafeteria and airport traces. There is a high num-

ber of IP addresses accessing travel related websites in the airport,

as compared to other traces, which is an expected trend. Users in-

terested in entertainment are much higher in apartment and cafe-

teria. Gaming websites or applications are found to be very high in

the cafeteria trace (due to smart-phone games) and in apartments

(due to dedicated gaming services, such as, xbox). 

6. Feature selection 

Before creating the model for prediction, we need to identify

the specific features that contribute towards differentiating be-

tween location categories. For this purpose, Chi-squared statistic

evaluation [18] and CFS Subset evaluation [19] is applied to the

86 attributes and some of the features, which do not contribute to

the classification, are removed. 

Chi-Squared Statistic : This statistic is used to evaluate the “dis-

tance” between the distribution of each class for an attribute. Ini-

tially, the values of an attribute are divided into separate intervals.

Based on this division, the frequency of instances in each inter-

val and class is calculated. Then the Chi2 value is calculated based

on Eq. (1) (with n = 2) for each pair of sorted adjacent intervals

to ascertain if the relative frequencies of the classes are similar

enough to justify their merging. If the Chi2 distance is smaller than

a certain threshold for the pair, the intervals are merged. Merging

continues till all adjacent pairs have a Chi2 value greater than the

threshold (20 in our case). 

χ2 = 

n ∑ 

i =1 

k ∑ 

j=1 

(A i j − E i j ) 
2 

E i j 

(1)

◦ A ij = frequency of i th interval and j th class. 

◦ E ij = expected frequency of A ij = 

R i ∗C j 
N 

◦ R i = number of values in i th interval = 

∑ n 
i =1 A i j 

◦ C j = number of values in j th class = 

∑ k 
j=1 A i j 

◦ k = number of classes 

◦ n = number of intervals 

◦ N = total number of values 

At the end of this step, if an attribute has been merged into one

interval then the attribute is considered irrelevant in representing

the original data and hence has a Chi2 value of 0. Otherwise, the
core is calculated as per Eq. (1) . Fig. 6 represents the normalized

hi-squared statistic score of the statistical attributes based on (a)

oarse-grain features (b) protocol-based features (c) packet-based

eatures and (d) flow-based features. 

CFS Subset Selection: Correlation Feature Subset (CFS) em-

loys a simple correlation based heuristic to rank different subsets

ormed out of the entire feature set. The objective of the heuristic

s to find subsets that contains features that are highly correlated

o the class and loosely correlated with each other. The CFS sub-

et evaluation function which determines the “merit” of a feature

ubset is: 

 s = 

k. r c f √ 

k + k (k − 1) . r f f 

(2)

here, M s is the heuristic CFS Subset merit of a feature subset S

ontaining k features, r c f is the mean correlation value between

he features and the class where ( f ∈ S ) and, r f f is the average

orrelation value between two features in the subset. The numera-

or of Eq. (2) can be interpreted as providing an indication of how

ood the feature subset is, with high value of feature-class correla-

ion. The denominator represents how redundant the features are

mong themselves, indicated by the value of the feature-feature

orrelation. 

Application of the CFS Subset feature selection algorithm on our

ataset of 86 features returns 10 features, which includes activity

eriod, percentage ON time for an IP, flow count, UDP flow count

nd packet size per ip (mean), among others. The M s value for the

nal selected feature subset is 0.482. This value tells us that the
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eatures have some level of redundancy and are not entirely non-

orrelated. 

On the basis of the feature selection results, we choose to use

FS subset feature selection method. We remove 76 attributes from

ur data-set and build our model for prediction based on the re-

aining 10 features. In addition we also provide an analysis of

ow different subsets of features, based on how the features are

alculated and their computational complexity, can predict the dif-

erent location classes, in Section 7 . All prediction results shown

n Section 7 are based on a model built using the CFS subset at-

ributes (unless otherwise stated). 

. PACL prediction model and results 

In this section we describe the PACL model, created on the basis

f the aforementioned features to efficiently predict users contex-

ual location. 

.1. Model : machine learning prediction algorithm 

Predicting the location category from the statistical and appli-

ation based features is non-trivial as many of the statistical fea-

ures are dependent on each other and their inter-relationship is

on-linear. Different machine learning algorithms that are com-

only used for traffic classification purposes have different com-

utational complexity and perform differently based on the dataset

roperties. Kim, et. al, have used a number of machine learning al-

orithms for traffic classification [11] . Similarly, we use a number

f machine learning classifiers to create the model involving these

ndividual features. In this section, we give a short description of

he algorithms. 

.1.1. Decision tree based algorithms 

Reduced Error Pruning Tree : The algorithm implements a de-

ision tree with Reduced Error Pruning. Due to the non-linear na-

ure of the attributes the most prevalent algorithm used is decision

rees. Decision tree models employ simple if-then-else statements

hich predict classes efficiently and are also human readable. An-

ther very important advantage is that they do not require the fea-

ures to be independent among themselves. The algorithm imple-

ents a C4.5 decision tree using the information gain ratio of dif-

erent features. The information gain of an attribute is the expected

eduction in entropy because of knowing the value of the attribute

20] . Attributes with higher information gain are likely to be more

istinct among the classes, hence they are chosen first while build-

ng the decision tree from root to the leaves. The next step is the

runing of the tree. Reduced error pruning starts at the leaves and

ach node is replaced by the most popular class. If the accuracy of

he prediction of the class is not altered then the change is kept

nd steps are repeated. Using the decision tree with pruning en-

bles our model to run faster as the tree size reduces. Therefore,

his algorithm has the capability to deal with noisy datasets con-

aining features that do not contribute towards the ultimate classi-

cation model in a substantial way. Due to these reasons, decision

rees are widely used in traffic classification [21] . 

Random Subspace: Decision Tree with Meta-learning : The

eta-learning classifier consists of multiple trees constructed sys-

ematically by pseudo-randomly selecting subsets of the feature

ector. Decision trees are constructed using random subsets of the

eature set. Thereafter, the decision of each tree on the data used

or prediction is combined together by averaging the conditional

robability of each class at the leaves [22] . Decision tree algorithm

verfits very easily. Meta-learning classifier helps to avoid overfit-

ing as, at each stage, only a subset of features are used for the

odel. 
.1.2. Bayesian algorithms 

Naive Bayes: This algorithm, which is based on the Bayes theo-

em, analyzes the inter-relationship between each attribute of the

raining dataset and the class for each prediction instance (fea-

ure vector). The algorithm assigns a conditional probability value

o the relationship between the values of the attributes and the

lasses into which the entire data is classified [11,23,24] . Unlike

ecision trees, this algorithm cannot remove features that do not

ontribute towards the classification, and thus requires a thorough

eature selection pre-processing stage. Naive Bayes simply relies on

ach attribute and its relationship with the class. It assumes each

f the features to be independent of the others. Due to these prop-

rties, it is often used in network traffic analysis [21] , even though

t is known to perform poorly [23] as it cannot exploit the interde-

endencies among the features 

Bayesian Network: This is a probabilistic graphical model that

epresents a set of features and classes and their probabilistic re-

ationship via a directed acyclic graph (DAG) [11,24] . Nodes repre-

ent features or classes, while links between nodes represent the

elationship between them. Conditional probability tables deter-

ine the strength of the links. Unlike Naive Bayes, this algorithm

oes not treat the attributes as independent to each other. This al-

orithm can find hidden inter-dependencies between the features

here they are interrelated. Our dataset has features which are

nter-dependent to a certain extent. A case in point is the num-

er of bytes per flow and the number of packets per flow, which

ave a direct proportional correlation. We use this algorithm as it

an maintain the simplicity of Naive Bayes while exploiting the re-

ations between the features that are possible in our feature set. 

.1.3. Artificial neural network based algorithms 

Multilayer Perceptron: A MultiLayer Perceptron (MLP) is a

eedforward artificial neural network model that maps sets of fea-

ure vectors onto a set of appropriate classes [25] . A MLP consists

f multiple layers of nodes in a directed graph, with each layer

ully connected to the next one. Except for the input nodes, each

ode is a neuron (or processing element) with a nonlinear activa-

ion function. MLP utilizes a supervised learning technique called

ackpropagation for training the network. MLP is a modification of

he standard linear perceptron and can distinguish data that are

ot linearly separable. In our dataset the attribute values do not

ary linearly with the four classes and hence MLP is considered a

alid candidate for machine learning algorithm. 

.1.4. k-nearest neighbor 

If each feature vector is considered a point in a n-dimensional

pace, where n is the number of features, this algorithm computes

uclidean distances from each test instance to the k nearest neigh-

ors in that n-dimensional feature space [11] . An instance is clas-

ified by a majority vote of its neighbors, with the instance being

ssigned to the class most common among its k nearest neighbors

k is a positive integer, typically small). We include this algorithm

n our list of classifiers as it is shown to converge much faster than

he other classifiers especially in the case of network traffic analy-

is with training flows less than 50 0 0 [11] . 

.2. PACL prediction accuracy 

For the prediction of location category, the representative fea-

ures are extracted from an IP address. These features are then

sed as an input (test data) in the aforementioned model and a

ocation category is predicted. 

To check the prediction accuracy of our model we divide our

ntire data set into n -folds and use n −1 folds for training and use

he remaining one fold as test data to predict the location class.

e repeat this step for the remaining n −1 sets of data. Here, we
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Table 4 

PACL prediction accuracy for all machine learning algorithms. 

Machine Learning Algorithm Correct Instances (%) Time taken to build the model Area under ROC Curve 

Naive Bayes 963 (54 .97) 30 ms 0 .808 

Multilayer Perceptron 1186 (67 .69) 2 .75 s 0 .870 

k-Nearest Neighbor 1224 (69 .86) 5 ms 0 .807 

REP Decision Tree 1433 (81 .79) 80 ms 0 .923 

Random Subspace 1541 (87 .95) 110 ms 0 .977 

Bayesian Network 1570 (89 .61) 40 ms 0 .986 
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consider n = 10. We use this 10-fold cross validation method on

the entire dataset of 1752 devices(or IPs), where 17.9% of instances

belong to residential context, 30.2% to university campus, 25.7% to

cafeteria context and the remaining 26.2 instances belong to the

airport contextual location. 

We measure the efficiency of prediction of the location classes

on the basis of the following characteristics: 

1. True Positive Rate: The fraction of instances correctly classified

as class A, among all instances actually belonging to class A =
| T P| 

| T P| + | F N| , where TP = number of true positives and FN = num-

ber of false negatives. 

2. False Positive Rate: The fraction of instances which were

wrongly classified as class A, among all instances not belong-

ing to class A = 

| F P| 
| F P| + | T N| , where FP = number of false positives

and TN = number of true negatives. 

3. Area under ROC Curve: The Receiver Operating Characteristics

curve (ROC) plots the variation of false positive rate vs. true

positive rate for all the instances of the test data and for each

class. The ideal ROC curve approaches the top left corner for 1

true positive rate and 0 false positive rate. The area under the

ROC curve ( ∈ [0,1]) gives an estimate of the effectiveness of the

prediction model. A perfect model has a ROC area of one. 

4. Precision: The fraction of instances which actually belong to

class A, among all classified as class A = 

| T P| 
| T P | + | F P | . 

The results of our model and its behavior under different ma-

chine learning algorithms is presented in Table 4 . The table repre-

sents the number and percentage of correctly classified instances,

the time taken to build each model and the overall area under the

ROC curve. As mentioned before, a perfect model, has a ROC area

equal to 1. 

We observe that while the Naive Bayes, Multilayer Perceptron

and k-Nearest Neighbor algorithms do not perform very well, the

results of Decision Tree and Random Subspace are acceptable. The

Bayesian Network model gives the best prediction accuracy, cor-

rectly predicting 1570 out of the 1752 instances giving a prediction

rate of 89.61%. 

The performance of the different algorithms is as we expected: 

• Naive Bayes treats all the attributes as independent which

is not the case for our dataset. Hence poor performance is

achieved when using this algorithm. 

• Multilayer Perceptron handles data that is not linearly separa-

ble and thus results in moderate performance. A major disad-

vantage of this algorithm is that the time taken to build the

prediction model is much higher than all the other algorithms

that we have dealt with. 

• k-Nearest Neighbor being a non-parametric learning algorithm,

does not make any assumptions on the dataset (e.g. linearly

separable). Thus with our real world dataset, the prediction ac-

curacy is moderate. 

• Decision Tree handles both non-linearity and non-

independence. Since our dataset is nonlinear and inter-

correlated, the results are relatively good. This algorithm also

works very well when there is a lot of noisy features. CFS Sub-

set removes all noisy features from the dataset. However, when
we use Chi-Squared feature selection, the ultimate dataset is

sufficiently noisy. In that case this algorithm gives the best

performance. 

• The CFS subset feature selection removes features that are very

redundant. The features that are left are slightly correlated

and these hidden inter-dependencies can be well identified by

Bayesian Network, leading to a good prediction accuracy. When

the dataset is noisy (as in the case of Chi Square filtered data),

the high number of inter-dependencies cannot be identified in

a very thorough way, resulting in a prediction model that per-

forms moderately well. Another advantage of this model is that

the PACL model can be built much faster than the decision tree

algorithms (almost half the time). 

One of the major purposes of proposing PACL is to deliver

ontextual location based services such as third party advertise-

ents or content suggestions to users. In the event of an error in

he classification, the content delivered to users will not be opti-

ized based on her location. Most targeted content delivery sys-

ems (specially advertisements) do not have access to users’ con-

ext (as users block the sharing of private information). As a result,

he content delivered is not optimized under most circumstances.

he error rate of PACL signifies that a user will be misclassified

nce out of every nine instances, which should not create any sig-

ificant inconvenience to the network usage experience. 

To see how the algorithms perform for each location class, we

epresent the location category-wise prediction results in Table 5 .

he prediction is weakest for residential location category across

ll the different algorithms. The major reason behind this is the

ower number of data points (or feature vectors) representing the

ocation category residence as compared to the other 3 locations.

he location category residence has around 300 feature vectors

hereas all other locations have in excess of 450. However, using

ayesian Network algorithm we see that the prediction accuracy

f residential location is not so different from the others and that

ll the locations have a TP rate which falls within 0.051 of each

ther (from 0.911 to 0.860). Overall, we observe that airport loca-

ion category has the best prediction accuracy, whereas cafeteria

nd campus dataset show similar prediction efficiency. 

As the Bayesian Network and the Random Subspace algorithms

ive us the best accuracy, we look at some of the results for these

n more details. We present the confusion matrix for prediction us-

ng both the algorithms in Table 6 . Each element in the table is

epresented as (x,y) where x is row number representing the num-

er of IPs actually belonging to that class, and y is column num-

er representing the number of IPs predicted in the corresponding

lass. 

The ROC curves for each algorithm for the 4 location categories

re shown in Fig. 7 b. The figure as well as Table 5 reconfirm that

he prediction is most effective for airport traces whereas resi-

ence traces show least effectiveness. However, the ROC curves for

he Bayesian Network algorithm are more close together, which

onfirms our observation above that Bayesian Network gives simi-

ar prediction accuracy. Hence the results are very good. for all the

ocation categories. 
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Table 5 

PACL location-wise prediction results : TP and FP rates are calculated for one class against all the 

other three classes in our dataset. 

Algorithm Location Class TP Rate FP Rate Precision ROC Area 

MultiLayer Perceptron Airport 0 .817 0 .075 0 .794 0 .925 

Cafeteria 0 .733 0 .165 0 .606 0 .857 

Campus 0 .614 0 .113 0 .702 0 .856 

Residence 0 .498 0 .081 0 .575 0 .832 

Combined Results 0 .677 0 .111 0 .678 0 .870 

k-Nearest Neighbor Airport 0 .751 0 .065 0 .804 0 .844 

Cafeteria 0 .711 0 .117 0 .678 0 .811 

Campus 0 .684 0 .129 0 .696 0 .789 

Residence 0 .629 0 .093 0 .596 0 .779 

Combined Results 0 .699 0 .103 0 .702 0 .807 

REP Decision Tree Airport 0 .873 0 .072 0 .811 0 .945 

Cafeteria 0 .836 0 .065 0 .817 0 .913 

Campus 0 .839 0 .072 0 .835 0 .938 

Residence 0 .676 0 .038 0 .798 0 .882 

Combined Results 0 .818 0 .064 0 .817 0 .923 

Random Subspace Airport 0 .950 0 .057 0 .855 0 .989 

Cafeteria 0 .882 0 .045 0 .871 0 .975 

Campus 0 .902 0 .043 0 .902 0 .971 

Residence 0 .737 0 .018 0 .899 0 .952 

Combined Results 0 .880 0 .043 0 .881 0 .977 

Bayesian Network Airport 0 .910 0 .056 0 .851 0 .985 

Cafeteria 0 .911 0 .028 0 .917 0 .987 

Campus 0 .892 0 .020 0 .952 0 .989 

Residence 0 .860 0 .033 0 .850 0 .978 

Combined Results 0 .896 0 .034 0 .898 0 .986 

Fig. 7. Decision tree and ROC curves for PACL prediction model. 

Table 6 

Confusion matrix for PACL prediction. 

(a) Random Subspace 

Classified Class Airport Cafeteria Campus Residence 

Airport 435 5 8 10 

Cafeteria 24 397 23 6 

Campus 17 25 477 10 

Residence 33 29 21 232 

(b) Bayesian Network 

Classified Class Airport Cafeteria Campus Residence 

Airport 417 6 15 20 

Cafeteria 26 410 4 10 

Campus 20 19 472 18 

Residence 27 12 5 271 
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In Fig. 7 a, we plot a pruned version of our decision tree model

built using all the CFS subset features). The model shows that the

ttribute “activity period” has the highest information gain. Fig. 3 d

hows that the variation of activity period across different location

lasses is very distinct and hence activity period is most effective

n distinguishing the location categories. Fig. 6 shows that this at-

ribute has the highest Chi-squared statistic score. Among all the

pplication based features “the percentage of flows destined to ed-

cation & career websites” has the highest information gain. The

ataset we collect is in a university town (Davis,CA) where the

ccess of school websites is prevalent in almost all location cat-

gories. But the amount of usage varies very distinctly at the cam-

us location context, as compared to other locations, as seen in

ig. 5 - hence contributing to high information gain. The nodes
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Table 7 

PACL model accuracy using different feature-vector subsets for different machine learning models : for each feature subset, CFS subset 

feature selection is applied and then the model is built. Number of features in each subset after feature selection is shown in Table 8 . 

All results are represented in the form of the percentage of correctly classified instances. 

Machine Learning Algorithm Coarse Grain Protocol Based Flow Level Packet Level Application Based All features 

Naive Bayes 41 .27 33 .39 45 .32 34 .98 35 .44 54 .97 

Multilayer Perceptron 46 .63 40 .72 47 .58 41 .78 43 .1 69 .69 

k-Nearest Neighbor 67 .35 64 .56 51 .59 52 .97 38 .81 69 .86 

REP Decision Tree 72 .83 75 .17 58 .22 67 .01 43 .04 81 .79 

Random Subspace 80 .02 83 .39 62 .38 70 .21 42 .47 87 .95 

Bayesian Network 73 .12 81 .84 58 .79 71 .86 43 .55 89 .61 

Table 8 

PACL prediction model accuracy using different f eature-vector subsets : all the models are built after applying CFS subset feature selection 

and then using the Bayesian Network prediction algorithm. 

Feature No. of No. of Correctly TP Rate ROC Attributes 

subset Features Features Classified Area with highest 

(original set) (CFS Subset) Instances (%) information gain 

Coarse-Grain 7 2 1281 (73 .12) 0 .731 0 .909 Activity period, Flow count 

Protocol Based 4 4 1434 (81 .85) 0 .818 0 .953 UDP flow count, HTTP flow count 

Application data rate per flow: std. devn., 

Flow Level 26 9 1030 (58 .79) 0 .588 0 .824 Flow length : max, min 

Bytes per flow: mean 

Packet size:max, Packet size:median, 

Packet Level 14 5 1259 (71 .86) 0 .719 0 .903 Packet inter-arrival time: max 

Education and Career 

Application Based 33 4 763 (43 .55) 0 .436 0 .693 Emails, Netflix, Games 

Activity Period, Flow throughput:avg, 

All Features 86 10 1570 (89 .62) 0 .896 0 .986 Education and Career 

Flow count, Packet Size:max 
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near the root of the tree includes attributes that belong to all the

different subset of features, which shows that the combination of

the features are required for efficient prediction. It is also observed

in Fig. 7 a that the top portion of the tree has no class of cafeteria.

We have observed that at least 6 attributes are required to deter-

mine the location to be a cafeteria in the best case, whereas that

count is 2 for campus, 3 for residence and 4 for airport. 

7.3. Prediction accuracy with feature subsets 

We predict contextual location based on a number of features

which are indicative of network usage patterns of various users.

Combination of all features give a good prediction accuracy. But a

question may arise as to how a certain subsets of features, calcu-

lated on the basis of a particular aspect of an IP address, contribute

towards to the accuracy. Performance of the individual subsets of

features using the same model and under the same experimen-

tal conditions is evaluated. The percentage prediction accuracy us-

ing the 4 sets of statistical features and the application based at-

tributes mentioned in Section 5 and comparison with the overall

results is shown in Table 7 for all of the machine learning algo-

rithms used. In addition, Table 8 lists the prediction accuracy for

the PACL model built using Bayesian Network in details. The ta-

ble also lists the number of attributes, before and after CFS subset

feature selection, TP rate, ROC area and the features that have the

highest information gain in each of the attribute subsets. 

In our analysis, the statistical features are calculated based on

high-level statistics and header information. Payload information is

used only in the categorization of application interest among users

at various locations. Certain commercial tools [26] are available for

extracting application based information systematically from the

packet payload [27] , more commonly known as Deep Packet In-

spection (DPI). There are multiple issues with using DPI. First, most

flows in modern day internet traffic are encrypted and hence can-

not be decoded. Secondly, looking into the payload leads to privacy

leakage issues from users’ point of view. Thirdly, this procedure is
esource and time intensive. Even though we have looked into pay-

oad for the application-based features, we have applied a keyword

ased search and did not look into the specific content accessed by

sers. An efficient tool to look into the content accessed by users

ight help us to distinguish between the applications better and

n turn improve the result. 

Extracting some of the features from the network traffic by

n ISP is computationally simpler and faster for some attributes

ompared to others. In our feature subset, coarse-grain statistics,

ike flow count, number of flows belonging to different protocols,

acket count, activity period count, etc., are easier to calculate as

hey are count-based statistics. The other feature values either de-

end on a particular distribution (packet level and flow level statis-

ics) or require us to look into the payload (application level cate-

orization). 

It is observed from Table 7 that only the coarse-grain and pro-

ocol based statistical feature subsets individually give highest pre-

iction accuracy in all the models as compared to the other sub-

ets. As a result, we can say, these features are most efficient con-

ributors in our prediction model among all the subsets. The low

omputational complexity involved in calculating these features for

ach user is specifically important for real-time prediction. In sit-

ations when the prediction has to be done without much delay,

he PACL model can use these feature sets and get a prediction ac-

uracy upto 83%. 

. Conclusions 

In this paper, we present a model for prediction of users’ con-

extual location by network traffic analysis. Using real world traces

e train our model on the basis of statistical and application-based

eatures, to classify users’ into four representative contextual loca-

ions. The PACL prediction model, in our test case, gives an accu-

acy upto 89%. Decision tree with metalearning and Bayesian Net-

ork algorithms give the best prediction accuracy. However, the

referred algorithm is Bayesian Network as it gives similar effi-
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iency of prediction among all the location classes and the model

s built faster. 

There are multiple directions of future work. First, looking into

he payload of packets is computationally expensive and as a re-

ult, we believe that the application based categorization has a

cope for improvement. Next, the application of PACL to predict

ash-mobs or events (short term gathering) is another scope of the

ork. If the PACL classification has more than four classes, there

ould be an overlap of characteristics between the different lo-

ation classes and machine learning algorithms might not be effi-

ient to identify which distinguishing characters are there in the

ataset. In that case, clustering of users based on their application

sage would help us identifying the different location categories

nd give better accuracy than the machine learning algorithms. 
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