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The Gut Microbiota and Diabetes:
Research, Translation, and
Clinical Applications—2023
Diabetes, Diabetes Care, and
Diabetologia Expert Forum
Diabetes Care 2024;47:1491–1508 | https://doi.org/10.2337/dci24-0052

Mariana Byndloss,1,2 Suzanne Devkota,3

Frank Duca,4 Jan Hendrik Niess,5,6

Max Nieuwdorp,7,8

Marju Orho-Melander,9 Yolanda Sanz,10

Valentina Tremaroli,11 and Liping Zhao12

This article summarizes the state of the science on the role of the gut microbiota
(GM) in diabetes from a recent international expert forum organized by Diabetes,
Diabetes Care, and Diabetologia, which was held at the European Association for
the Study of Diabetes 2023 Annual Meeting in Hamburg, Germany. Forum partici-
pants included clinicians and basic scientists who are leading investigators in the
field of the intestinal microbiome and metabolism. Their conclusions were as fol-
lows: 1) the GM may be involved in the pathophysiology of type 2 diabetes, as
microbially produced metabolites associate both positively and negatively with
the disease, and mechanistic links of GM functions (e.g., genes for butyrate pro-
duction) with glucose metabolism have recently emerged through the use of
Mendelian randomization in humans; 2) the highly individualized nature of the
GM poses a major research obstacle, and large cohorts and a deep-sequencing
metagenomic approach are required for robust assessments of associations and
causation; 3) because single–time point sampling misses intraindividual GM dy-
namics, future studies with repeated measures within individuals are needed;
and 4) much future research will be required to determine the applicability of
this expanding knowledge to diabetes diagnosis and treatment, and novel tech-
nologies and improved computational tools will be important to achieve this
goal.

In October 2023, a closed-door, day-long forum organized under the auspices of
the journals Diabetes, Diabetes Care, and Diabetologia took place during the Euro-
pean Association for the Study of Diabetes 2023 Annual Meeting in Hamburg, Ger-
many. The express goal of the forum was to create consensus and perform gap
analyses to advance research into the role of the gut microbiota (GM) in diabetes.
Discussions fell under four main headings: epidemiology; physiology and patho-
physiology; technology and methodology; and clinical applications.
The group acknowledged that many of the gaps in understanding of the GM’s

role in metabolic diseases are not unique to the diabetes field, but rather reflect
broader needs to 1) conduct more well-controlled prospective and retrospective
human studies that are followed up mechanistically with model systems studies
and 2) refine computational tools and welcome a return of microbiology and mo-
lecular biology to our experimental toolkit. Nonetheless, there was agreement that
the current reproduced microbiome data represent compelling target areas for
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future diabetes research. This article pre-
sents a distillation of the evidence and
recommendations on important micro-
biome focus areas that would benefit
from the attention of young and estab-
lished diabetes researchers alike. Key
knowledge gaps and challenges dis-
cussed in this article are summarized in
Table 1.

EPIDEMIOLOGICAL PERSPECTIVES

Epidemiological Associations
Between the GM and Diabetes
The GM is the largest and most complex
microbial community of the human body,
connecting our external and internal mi-
lieu (Fig. 1). The motivation for epidemio-
logical studies of the GM in obesity and
cardiometabolic diseases, including type 2
diabetes, emerged from rodent studies
demonstrating links among theGM, adipos-
ity, and glucose tolerance (1,2). In humans,
epidemiological studies have observed de-
creased microbial diversity in obesity, but
no generalizable obesity-associated gut mi-
crobial signature has emerged from meta-
analyses of small cohorts profiled by 16S
rRNA gene sequencing (3,4) or whole-
genome metagenomics (5). However, a
large GM study using deep-sequencing
whole-genome metagenomics in 34,057
individuals from Israel and the U.S. dem-
onstrated consistent GM-phenotype asso-
ciations and the predictive accuracy of
machine learning models trained on mi-
crobiome data for BMI and glycated he-
moglobin (A1C) that could be replicated

across the cohorts (6). By subsampling the
training cohort, these authors showed
increased predictive accuracy with in-
creased cohort size, with �7,500–10,000
individuals optimal for replicable results.
This finding highlights the necessity of us-
ing large cohorts with hundreds of individ-
uals and deep-sequencing whole-genome
metagenomics that adequately represent
the embedded interindividual heteroge-
neity and regional and demographic varia-
tion in human GM cross-sectional studies.

Several observational studies have re-
ported associations between the GM
and type 2 diabetes. Consistent features
of altered GM composition in type 2
diabetes and impaired glucose tolerance/
fasting glucose, found in epidemiological
studies worldwide and also occurring in
the metabolic syndrome, are reduced di-
versity and decreased abundance of bac-
teria that produce the short-chain fatty
acid (SCFA) butyrate (Figs. 1 and 2) (7–14).
Some studies have also observed an in-
crease of opportunistic pathogens (7,8,11),
some of which have been linked to sub-
clinical coronary atherosclerosis (15). The
mucus-degrading bacterium Ruminococ-
cus gnavus, which has been linked to in-
flammatory bowel diseases, recently has
also been identified as a predictor of sev-
eral features of the metabolic syndrome,
including low-grade inflammation, large
waist circumference, elevated serum trigly-
cerides, elevated A1C, and decreased HDL
cholesterol (16). However, as indicated by
meta-analyses of GM alterations across

different diseases, including gastrointesti-
nal (GI) and metabolic diseases, several of
these features are not disease specific and
might characterize a general GM dysbiosis
(4,5). Therefore, to disentangle disease-
specific microbial signatures beyond dif-
ferences in race/ethnicity, lifestyle, and
other demographic characteristics, it
will be important to perform studies in
large populations and to include healthy
individuals/control participants from dif-
ferent studies as references; these ap-
proaches have been shown to increase
disease prediction accuracy (5,6).

In addition to a decreased capacity to
produce butyrate, GM functional capabili-
ties that are altered in type 2 diabetes are
involved in the production of branched-
chain amino acids (BCAAs) and themetab-
olism of B vitamins and simple sugars
(7,12,17,18). Increased levels of circulating
BCAAs have been described in insulin-
resistant individuals and linked to a higher
risk of type 2 diabetes (19). In line with
this, an increased potential to synthesize
BCAAs and decreased microbial BCAA up-
take and catabolism have been described
in the GM of insulin-resistant individuals
with normoglycemia (18). However, the
analyses of GM functions only show an al-
tered potential. Quantification of metabo-
lites has recently been performed to
validate these findings. Figure 2 depicts
the links between GM metabolites and
signaling molecules that have been ob-
served for glucose metabolism and type 2
diabetes.

Table 1—The GM and diabetes: key knowledge gaps and challenges

Furthering our knowledge of the relationships between the GM and diabetes will require:
• Gathering data from large-scale prospective study cohorts and deep metagenomics sequencing with strain-level resolution to adequately

represent the interindividual heterogeneity, dynamics, and demographic variation in the human GM and thus disentangle robust disease
microbial signatures and their interplay with dietary history. Broad-level taxonomic information provided by 16S rRNA gene sequencing is
likely insufficient to describe robust associations between gut bacteria and human health.

• Increasing the proportion of GM sequence reads assembled to metagenomes and annotated with predicted functions. A recent analysis of
all publicly available metagenomes in 31 countries across six continents showed that 70% of the genomes retrieved from fecal samples
are uncharacterized. These genomes encode >170 million protein sequences, and about 40% of these potential functions lack functional
annotation (65).

• Expanding our understanding of the roles that not only gut bacteria but also viruses (i.e., bacteriophages) and fungi play in diabetes. Only
a few studies have addressed the role of these GM inhabitants in diabetes and their interactions with bacterial strains (81–83).

• Identifying chemical compounds resulting from GM and gut microbe-host co-metabolic processes, as well as proteins and peptides, that
could influence human host biology. A few metabolites linked to diabetes have been identified, but the full spectrum of compounds that
the GM is able to generate is still unknown.

• Determining the functional role of gut microbes, metabolites, and proteins detected in the intestine and plasma in the chain of causal
pathophysiological mechanisms leading to diabetes and associated conditions. Several GM metabolites, such as those produced from aro-
matic amino acids, have been associated with cardiovascular outcomes (49), but the functional roles of many others remain unknown.

• Assessing to what extent GM signatures linked to diabetes are modifiable (e.g., through FMT, diet, or intervention with probiotics and me-
tabolites) to prevent or mitigate disease.

• Establishing the potential synergistic, complementary, or antagonistic effects of the GM in determining the efficacy and mechanisms of ac-
tion of glucose-lowering medications.
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Figure 1—Microecological and physiological differences along the GI tract (103,234). Environmental conditions vary along the GI tract depending
on physical, nutritional, and biological host factors, which translate into adaptations and differences in the intestinal bacteria inhabiting the differ-
ent regions and their physiological functions through multidirectional interactions that may affect glucose metabolism and diabetes risk. The main
factors affecting the microbial load and composition in the different regions are as follows. 1) pH values increase drastically from the stomach (pH
1.0–4.4) to the small intestine (pH 5.5–7.0) and then more progressively to the colon, where the pH can drop again (pH 5.5) as a consequence of
the microbial fermentation of complex carbohydrates (fiber). The pH increases again in feces (up to pH 7.8). 2) Intestinal transit is shorter and peri-
staltic movements are more intense in the small intestine than in the large intestine. 3) Small intestinal host epithelial cells (Paneth cells) secrete
AMPs, acting as an innate defensive barrier reducing bacterial colonization, and M cells of Peyer’s patches also pick up bacteria from the intestinal
lumen. 4) Oxygen levels are also progressively reduced from the small intestine to the large intestine. 5) Dietary nutrients (proteins, lipids, and sim-
ple carbohydrates) are primarily digested by host enzymes and rapidly absorbed in the small intestine, limiting the accessibility of nutrients to in-
testinal bacteria; in contrast, partially undigested dietary residues (complex carbohydrates and partially hydrolyzed proteins/amino acids)
accumulate in the large intestine, where they serve as nutrients for bacteria. 6) Host glycans forming part of the mucous layer (produced by goblet
cells), which is remarkably thicker in the large intestine than in the small intestine, also represents a nutrient source for intestinal bacteria, sup-
porting their growth. 7) Bile acids are secreted to the small intestine, inhibiting and favoring the growth of specific bacteria that participate in their
metabolism and recirculation. Altogether, those abiotic and biotic factors affect the ecological conditions that facilitate the survival of denser pop-
ulations of bacteria moving to the most distal parts of the intestine (from 102–104bacterial cells/g in the duodenum to 107–109 in the ileum and
1011–1012 in the colon) and account for differences in bacterial composition, with facultative anaerobes preferentially colonizing the small
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Associations Between the GM or Its

Metabolites and Glucose-Lowering Drug

Treatments

Evidence supporting the role of the GM in
type 2 diabetes has been strengthened by
observational and interventional studies
demonstrating changes in the relative
abundance of multiple bacterial species in
the GM of metformin users (10,20–22). A
higher relative abundance of Escherichia
coli and a decreased abundance of Intesti-
nibacter bartlettii (10,20,21) have been
described in multiple cohorts involving in-
dividuals being treated with metformin.
Additionally, an increase in Escherichia
marmotae and a decrease in Romboutsia
timonensis have been found in metfor-
min-treated individuals in a recent large
metagenomic study (23).

Support for the causal effects of these
GMdifferences in type 2 diabetes has been
provided by randomized trials and studies
in drug-naive individuals demonstrating
that the GM compositional changes trans-
late to enhanced production of propionate
and butyrate (20,21) and modulation of
bile acid pools (21), which may mediate
some of the glucose-lowering effects of
metformin (Fig. 3) (20–22,24). However,
the GM might also be responsible for the
transient or persistent intestinal discomfort
experienced by �30% of individuals who
take metformin (e.g., through increased
gas production by some Escherichia spe-
cies) (22,25).

With regard to other oral glucose-
lowering drugs, studies have shown ef-
fects of dipeptidyl peptidase 4 (DPP-4)
inhibitors and a-glucosidase inhibitors
on the GM and microbial metabolites
but less clear effects of sodium–glucose
cotransporter 2 (SGLT2) inhibitors, thiazoli-
dinediones, and glucagon-like peptide 1
(GLP-1) receptor agonists (26–28). The ma-
jority of studies to date involving SGLT2 in-
hibitors have been conducted in mouse
models, and the few existing human stud-
ies have provided contradictory results
and were unable to clearly discriminate
the effects of the SGLT2 inhibitor from
those of previous or concomitant met-
formin treatment or concurrent lifestyle

modifications (29). GLP-1 receptor ago-
nists may exert anti-inflammatory effects
(e.g., through activation of the intraepi-
thelial lymphocyte GLP-1 receptors),
which in turn could contribute to modulat-
ing the gut microbiota (30,31). Although
muchmore research is needed, existing ev-
idence suggests that the GM may mediate
some of the benefits of glucose-lowering
treatments (26), and certain probiotics
or prebiotics might further improve the
glucose-lowering effects of these drugs
through their effects on the GM or its
functions (32). Further interventional and
translational studies are needed to deter-
mine whether drug-induced GM changes
are causally involved in mediating health
effects and to uncover the underlying
mechanisms.

Importantly, the GM might also influ-
ence the efficacy of glucose-lowering drugs,
for example, by expressing homologs of hu-
man DPP-4, which can decrease the activity
of GLP-1 and affect glucose metabolism
(Fig. 3) (33,34). Because bacterial DPP-4
homologs seem resistant to some drugs
targeting human DPP-4 (33), inhibition of
bacterial isozymes might be required to
improve metabolic responses to current
medications.

Associations Between GM Metabolites and

Diabetes-Related Traits

SCFAs. The GM ferments plant-based
dietary carbohydrates and fiber, as well
as peptides that reach the large intes-
tine, to produce SCFAs—mainly acetate,
propionate, and butyrate. After hepatic
metabolism, �70% of colonic acetate, but
only small amounts of propionate and bu-
tyrate (<2% for butyrate), reach the circu-
lation (35). As described in more detail in
PHYSIOLOGICAL AND PATHOPHYSIOLOGICAL PERSPECTIVES,
SCFAs regulate several processes, includ-
ing intestinal motility and pH, gut barrier
immune responses and systemic metabo-
lism through pathways affecting gluco-
neogenesis, insulin sensitivity, and insulin
secretion (Fig. 2) (36). However, human
studies show extensive variation in the
levels of different SCFAs in the stools and/or
blood of individuals with type 2 diabetes,

which is likely because of methodological
limitations (36). The strongest support for
the role of SCFAs in the regulation of glu-
cose metabolism is provided by animal
studies and one recent human study using
the Mendelian randomization (MR) statisti-
cal method (36,37) (see ROLE OF MR IN ELUCIDAT-

ING CAUSAL EFFECTS, below).
Bile Acids. Bile acids are amphipathic
molecules that mediate the absorption of
dietary fats and lipid-soluble vitamins.
These molecules are also recognized as
major players in regulating lipid, glucose,
and energy metabolism. Consequently, al-
terations in bile acid pools have been
found in type 2 diabetes and other obesity-
related diseases and identified as possible
contributors to the pathophysiology of
type 2 diabetes (Fig. 2) (24,38–41).

Increased levels of 12a-hydroxylated
bile acids (41) and decreased levels of 6a-
hydroxylated bile acids (42,43) are linked
to insulin resistance and occur in people
with type 2 diabetes. Increased levels of
6a-hydroxylated bile acids are observed
after gastric bypass surgery and can pre-
dict type 2 diabetes remission (42). The
GM can deconjugate and transform bile
acids, thus contributing to a highly vari-
able but important portion of human bile
acid pools (Fig. 1) (44). For example, circu-
lating levels of 6a-hydroxylated bile acids
are found to co-vary with levels of specific
Clostridia species in the gut (43).

Intervention studies have also investi-
gated the potential importance of bile
acids in human metabolism. Elevated sys-
temic bile acid levels and intestinal signal-
ing to stimulate the release of GLP-1 have
been demonstrated after bariatric surgery,
with postprandial increases found to be
particularly important (45). However, ex-
aggerated bile acid responses have been
found in some individuals with cholecys-
tectomy and are associated with further in-
creased GLP-1 and insulin responses (46).
In people with type 2 diabetes, metformin
has been shown to improve glucose me-
tabolism via a decreased abundance of
Bacteroides fragilis, which has been linked
to increased levels of glycoursodeoxy-
cholic acid in the gut and inhibition of the

intestine and strict anaerobes dominating the microbiota of the large intestine, including butyrate producers. In the large intestine, EECs, mainly
L-cells, are stimulated by SCFAs (butyrate and propionate) to induce the hormones GLP-1 and PYY, which contribute to insulin secretion and glu-
cose homeostasis and regulate appetite. In the small intestine, other EECs, such as I-cells, predominate and produce the hormone CCK, which indu-
ces digestive enzymes and bile and suppresses appetite. This is also the main region where nutrient signals are sensed by the enteric neurons and
vagal afferents and thus signal to the brain to control energy homeostasis, although knowledge of the role of the gut microbiota in their regulation
is limited. SCFAs, especially butyrate, can also induce immunoregulatory T cells (T-regs) that protect against obesity-induced proinflammatory mac-
rophages and prevent LPS translocation. AA, amino acid; AMPs, antimicrobial peptides; CCK, cholecystokinin; PYY, peptide YY.
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farnesoid X receptor (FXR) (24). However,
our understanding of direct interactions
between the GM and bile acids and their
associations with the development and
treatment of type 2 diabetes and related

diseases is still limited, and more human
studies are warranted.
Other Metabolites. GM-produced amino
acid metabolites have also been linked to
type 2 diabetes (Figs. 1 and 2). Increased

circulating levels of 3-indolepropionic
acid, a tryptophan catabolite, have been
associated with improved insulin secre-
tion and sensitivity and a decreased risk
of type 2 diabetes (47). Furthermore,

mTORC     IRS1     Insulin resistance

Improved 
metabolism

Acetate
(propionate)

Nf-�B

Colon cyte

Tight junction , improved gut barrier

Immune cells, IL 10 Inflammation

SCFAs Peri eral 
tissue

Insulin secretion
AppetitePYY

G P 1L cell

Colonic L-cell

Motility 
Secretion 

Butyrate
β-ox

BCAAs

ETHANOL

Imidazole 
propionate

BILE ACIDS

HISTIDINE

Fatty liver disease

Muscle

Liver

Brown 
adipose 
tissue

TGR5

Deconjugation and 
further modifications

PPARγ

Secondary 
bile acids

TRYPTOPHAN

FXR

FXR

TGR5

TGR5

Tight junctions, improved gut barrier

IL 22, immune homeostasis

Antioxidant

Ileal enterocyte
FXR

IPA, IA, 
and other 
metabolites

PXR

AHR

Faecalibacterium 
prausnitzii

MAM

Akkermansia 
muciniphila
(secreted factors, 
Amuc_1100)

Figure 2—GM metabolites and signaling molecules linked to glucose metabolism and type 2 diabetes. Structural and secreted GM proteins are in-
volved in the modulation of immune responses and inflammation, as shown for a protein secreted by F. prausnitzii (microbial anti-inflammatory
molecule [MAM]), which is able to inhibit the nuclear factor-kB (Nf-kB) pathway. Another example is Amuc_1100, an outer membrane protein of
A. muciniphila, which improves the gut barrier and decreases inflammation. The GM also produces SCFAs, which stimulate the release of incretin
hormones and improve peripheral tissue metabolism. In addition, SCFAs modulate immune cell function, improve the gut barrier, and stimulate
enteric neuron signaling. The SCFA butyrate also provides energy to colonocytes and increases colonocyte b-oxidation (b-ox) by activating peroxi-
some proliferator-activated receptor-g (PPARg). Bile acid signaling through the bile acid receptors FXR and TGR5 modulates metabolic responses
in several different tissues. GM tryptophan metabolites, such as indolepropionic acid (IPA) and indoleacrylic acid (IA), modulate immune and meta-
bolic responses by improving the gut barrier through the pregnane X receptor (PXR) and by signaling through the aryl hydrocarbon receptor (AHR)
on intestinal immune cells and increasing the production of interleukin-22 (IL-22). In the bloodstream, IPA and IA also provide antioxidant and anti-
inflammatory functions. Imidazole propionate and BCAAs impair insulin signaling through activation of the mechanistic target of rapamycin com-
plex 1 (mTORC1). The GM also produces ethanol, which is linked to fatty liver disease and insulin resistance. IL-10, interleukin-10; IRS1, insulin re-
ceptor substrate 1; PYY, peptide YY. Adapted from Caesar (235) with permission from Elsevier.
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increased plasma levels of imidazole pro-
pionate, a bacterial product of histidine
metabolism, have been reported in indi-
viduals with insulin resistance and type 2
diabetes (48). These metabolites and sev-
eral others derived from GM catabolism
of aromatic amino acids have also been
associated with incident cardiovascular
risk and mortality in independent cohorts
from Europe and the U.S. (49,50). Finally,
GM ethanol production has been associ-
ated with fatty liver disease (51–53) and
might be linked to insulin resistance (Fig. 2).

Role of MR in Elucidating Causal Effects

The GM can affect and interact with host
health in numerous ways, and the arrow of
causality is often bidirectional or even mul-
tidirectional. GM features at different levels
(e.g., community, species, pathway, gene,
and metabolite) can affect a host pheno-
type (e.g., altering the risk of obesity), while
the development of a phenotype (e.g.,
obesity) can, in turn, change the GM.

MR is a statistical method that uses hu-
man genetic variants related to exposures
to discriminate causal effects on disease

outcomes from associations that result
from confounding, reverse causation, or
something else. To apply MR to investi-
gate the connection between the GM and
type 2 diabetes, the GM feature in ques-
tion needs to be affected by a human ge-
netic variant or multiple variants strongly
enough to allow their use as instruments
in instrumental variant analysis.

Although several genome-wide associa-
tion studies have been performed on dif-
ferent GM features such as gut bacterial
taxa relative abundances and human fecal
microbial metabolites, large MR studies
investigating their causal role in type 2 di-
abetes have been limited and are not yet
confirmed in replication studies. Sanna
et al. (37) identified human genetic var-
iants that associate with fecal SCFA levels
and reported evidence for a potential
causal connection between the GM’s bu-
tyrate production potential (i.e., genes re-
sponsible for GM butyrate production)
and improved response to insulin during
an oral glucose tolerance test. These au-
thors also found a causal link between
abnormal fecal propionate levels and

increased type 2 diabetes risk (37). Another
MR study reported that type 2 diabetes
and kidney disease increased plasma levels
of the GM-dependent metabolite trime-
thylamine oxide (TMAO) and proposed
that the earlier observational evidence of
elevated risk of cardiovascular diseases
with higher TMAO levels might have
been the result of confounding or reverse
causality rather than a causal effect (54).
Another recent study suggested that cer-
tain bacterial genera could have a causal
link to type 2 diabetes (55). Considering
the limitations of both MR (e.g., pleiot-
ropy and problems related to weak in-
strumental variables) and GM research
(e.g., methodological differences, interin-
dividual heterogeneity, and intraindivid-
ual variability), large, high-quality studies
are needed to assess the ability of host
genetic variants using MR to mimic spe-
cific GM features—whether specific bac-
terial species, genera, or metabolite
products—to understand causal connec-
tions with type 2 diabetes pathogenesis.

Associations Among Diet, GM, and Diabetes

Decreased dietary fiber intake has been
associated repeatedly with increased risk
of type 2 diabetes; accordingly, new die-
tary recommendations for diabetes man-
agement encourage high consumption of
minimally processed plant foods such as
whole grains, vegetables, whole fruit, le-
gumes, nuts, and seeds (56). Diet is a
driver of the GM ecosystem, and micro-
bially accessible carbohydrates promote
GM diversity and SCFA generation, which
decreases inflammation and supports the
maintenance of the gut barrier (57).

In relation to the GM and glucose me-
tabolism, increased fiber intake has been
associated with increased levels of dis-
tinct species, for example, Prevotella copri
(58) (now renamed Segatella copri). Stud-
ies have also shown that the beneficial
effects of fibers on A1C may be mediated
by the specific baseline GM composition
and diversity of fiber-promoted SCFA-
producing bacteria (59). However, var-
iable effects are observed even in
well-controlled dietary interventions (60),
and given the high interindividual variability
of the GM, dietary responses of the GM
are highly individualized (61). Precision, or
“personalized,” nutrition is an evolvingfield
based on identifying individual-specific re-
sponse-predictive features that can be
used to design dietary interventions (62).
Using personal data on GM composition
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metformin include improved glucose sensing through sodium–glucose cotransporter 1 (SGLT1) and
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cells [236,237]). However, through the expression of DPP-4 isozymes, the GMmight decrease GLP-1
activity and affect the efficacy of glucose-lowering drugs. Adapted from Caesar (235) with permis-
sion from Elsevier.
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and other information such as blood bio-
markers and dietary habits, machine-
learning approaches have been applied
to predict postprandial glycemic re-
sponses to standardized meals with
greater accuracy than other predictive
methods (63,64). These studies have re-
vealed that the specific composition of
the GM contributes to the specific re-
sponse of its host (i.e., the response to
the diet differs in the presence of differ-
ent bacteria). Hence, the GM determines,
at least in part, metabolic heterogeneity
among humans. Being modifiable and
highly metabolically active, the GM offers
possibilities for more precise lifestyle in-
terventions and novel treatments.

Knowledge Gaps, Challenges, and
Possibilities
Several large, high-quality reference ge-
nome catalogs now exist (65–67) and
greatly facilitate taxonomic assignment
and functional characterization of the
GM in human studies. However, these
databases are not without limitations
(Table 1). For epidemiological analyses,
GM data are fraught with challenges, in-
cluding great inter- and intraindividual
variability, high dimensionality (i.e., the
number of observed GM features may
be larger than the number of samples
and subjects), and sparsity (i.e., GM fea-
tures such as species are only detected
in part of the samples) (68). At the pop-
ulation level, the GM is composed of
thousands of interacting species, each
harboring genetic diversity across hosts
and within a host over time; yet, com-
monly performed analyses often ignore
such nonindependence, the complex ad-
ditive and interaction effects among the
microbes, and the modifiability and fluc-
tuations of the GM. However, some re-
cent analyses have revealed different
patterns of intraindividual variation and
adaptation to host physiology for differ-
ent bacterial species (14,69,70).
Other challenges relate to the re-

markable number of phenotypic and
environmental factors that the GM may
influence and to which it may respond.
The requirement of large cohorts has
unquestionably been demonstrated in
human genetics; most polygenic traits
are known to be affected by many ge-
netic variants with small effect sizes,
which nonetheless can be summed to
powerful polygenic risk scores of clinical
importance (71,72). Similarly, as evidenced

by the findings of the large metagenomic
study from Israel and the U.S. (6), single
bacterial species might have associations
of low effect size with human phenotypes
or be present in low abundance. Thus,
large sample sizes for adequate statistical
power and coverage of interindividual vari-
ability are necessary to obtain replicable
results and high prediction accuracy.

To better understand the long-term
influence of GM variation and dynamics
on type 2 diabetes, prospective studies
are crucial. In the few prospective stud-
ies published to date, GM features have
been associated with incident type 2
diabetes in a geographically diverse
Chinese population (73) and a subset of
a Spanish clinical trial (74), both studies
using 16S rRNA gene sequencing. GM fea-
tures were also linked to type 2 diabetes
in a large population-based Finnish cohort
with 18 years of follow-up using shallow
metagenomic sequencing (75). However,
in these studies, the number of incident
cases was restricted, and the analyses had
limited resolution (i.e., were restricted to
the most dominant GM taxa), as none of
the studies used deep-sequencing whole-
genomemetagenomics.

The importance of subspecies- and
strain-level resolution in metagenomic
studies may have been undervalued and is
an important limitation to harnessing the
GM for human health. For example, Faeca-
libacterium prausnitzii is among the most
promising candidates for next-generation
probiotics, but there are also other promis-
ing candidates, such as Akkermansia muci-
niphila and P. copri (76). With regard to
F. prausnitzii, several potential subspecies
have been found in the human gut, harbor-
ing different functional potential for the
use of complex polysaccharides (77). In line
with this observation, several F. prausnitzii
subspecies were also identified in the large
metagenomic study from Israel and the
U.S., and negative associations with BMI
were observed only for a subset of them
(6). In the case of P. copri, both positive
and negative associations have been found
with the host metabolic phenotype (e.g.,
visceral fat and glucose responses).

These inconsistent findings could be
partially explained by intra- and inter-
species diversity (78,79). The current
code of nomenclature defines bacterial
species based on genome similarity,
with conspecific genomes having $70%
similarity by DNA-DNA hybridization and
an average nucleotide identity $94% in

the core genome and $96% in universal
marker genes (80). However, these geno-
mic variations can translate into impor-
tant phenotypic differences. For example,
these differences may define a strain
within the same species as commensal
or pathogenic, as in the cases of B. fragi-
lis and Clostridium difficile, depending on
whether the strain encodes virulence fac-
tors (80). Overall, the studies mentioned
above demonstrate that differences at the
strain or even substrain level are highly
meaningful, and low-resolution analyses
(such as 16S rRNA gene sequencing) miss
key information.

Another knowledge gap concerns the
viral component of the GM, predomi-
nantly comprising viruses that infect bac-
teria, known as bacteriophages (or, more
simply, “phages”). Although these phages
have not been well studied in the epide-
miological setting, they may be important
for understanding the bacterial dynamics
of the GM that may affect its interactions
with the host.To date, only a few epidemi-
ological studies have reported associa-
tions between the gut phageome and
type 2 diabetes (81,82) or the metabolic
syndrome (83). Although initially promis-
ing, the conclusiveness of the results is
limited because of the restricted sample
sizes. Future studies of the role of phages
as regulators of the GM and cardiometa-
bolic health are warranted but will face
challenges related to, among other issues,
virome isolation and the limitations of cur-
rent databases (84,85).

Integrative multiomics studies might be
needed to investigate the intricate con-
nections among environmental factors,
the GM, the virome/phageome, and cardi-
ometabolic phenotypes. Some pioneering
examples of reasonably large studies have
recently demonstrated the power of such
approaches (14,86–88). The interactions
are multifactorial and multidirectional and
demand untargeted, large-sized, multio-
mics and longitudinal approaches of high
depth and resolution.

PHYSIOLOGICAL AND
PATHOPHYSIOLOGICAL
PERSPECTIVES

Current Understanding of the Role of
the GM in the Pathophysiology of
Diabetes
During their evolution, mammals had to
adapt to a world rich in microbes, viruses,
and fungi (89). During and immediately
after birth from a sterile intrauterine
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environment, mammals are exposed to
potentially harmful microbes (90–92).
Evolution has created substantial bar-
riers, including the GI transit process (93),
immunoglobulin A (IgA) (94–96), mucus
(97), the epithelial layer (98), the endo-
thelial barrier (99), lymph nodes (100),
and the liver (101), all of which prevent
microbial translocation into the body but
create an optimal reservoir for the micro-
bial ecosystem (102). Low microbe num-
bers are present in the upper GI tract. At
the same time, high microbial density
and richness are observed in the large in-
testine, along with physiological changes
in the pH and aerobic/anaerobic condi-
tions from the small to the large intestine,
with anaerobic conditions in the large in-
testine (Fig. 1) (103).

Essential Functions of Microbes

Besides being a potential deleterious
threat for mammals, gut microbes also
provide essential functions for mammals,
including the education of the immune
system, protection from pathogens (i.e.,
colonization resistance) (104), metabolic
functions, and the supply of nutrients
(e.g., vitamins [105]), gut motility, and de-
toxification of xenobiotics (106). At the
same time, there is competition between
microbes and the host for nutrients in the
small intestine, and microbially produced
macronutrient byproducts are provided to
the host. Nutrients (i.e., fibers) and mam-
malian metabolites such as glucuronides,
mucus polysaccharides, and bile acids are
fermented or transformed by microbial
metabolism (Fig. 1) (107). Microbial me-
tabolism and microbial cell death and
turnover contribute to pools of microbial
metabolites in the peripheral blood,
where �30% of all peripheral blood me-
tabolites show associations with the GM
and its genes (108,109). These microbial
metabolites are recognized by receptors
such as G-protein–coupled receptors
(GPCRs) (110) or the aryl hydrocarbon
receptor (AHR) (111) or are further proc-
essed by mammalian enzymes such as
TMAO to regulate mammalian gene ex-
pression by epigenetic modifications, with
implications for cardiometabolic health
(112–115).

Roles of Nondigestible Fibers and Their

Metabolites

Nondigestible carbohydrates are an en-
ergy source for specific bacteria in the
large intestine that contain enzymes,

lacking in the host, that metabolize
these fibers and promote the produc-
tion of SCFAs. Numerous studies have
demonstrated that exogenous adminis-
tration of SCFAs, particularly propionate
and butyrate, is beneficial in rodent
models of diabetes-like phenotypes
(116–118). However, the evidence from
clinical trials in both type 1 and type 2
diabetes is less clear (119–123).

In the colon, SCFAs activate enter-
oendocrine cells (EECs) via binding to
GPCRs and free fatty acid receptors 2
and 3 to induce the release of gut pepti-
des, mainly GLP-1 and peptide YY (Fig. 1)
(124). In support of this finding, supple-
mentation with prebiotics in rodents and
humans, which can improve glucose tol-
erance and insulin resistance, has been
associated with increased levels of gut
peptides (125). In one study, a high-fiber
diet improved glucose tolerance in indi-
viduals with type 2 diabetes, an effect
that was associated with increased fecal
butyrate levels and circulating GLP-1
(59). GLP-1 regulates glucose homeosta-
sis by increasing insulin secretion, pro-
moting insulin sensitivity, and reducing
hepatic glucose production (Fig. 1).

Additionally, SCFAs are crucial for main-
taining overall gut health and the gut bar-
rier, as butyrate is the primary fuel source
for colonocytes. In contrast, reduced buty-
rate drives colonocytes toward anaerobic
glycolysis, which increases epithelial oxy-
genation, disrupting the anaerobic envi-
ronment of the colon (126). Although
SCFAs can act to increase gut peptide re-
lease or improve the gut barrier, additional
work has highlighted a glucoregulatory
role via their action in intestinal gluconeo-
genesis and on energy expenditure via
brown adipose tissue, as well as direct ac-
tion at the liver, pancreas, and even brain,
all of which requires further exploration
(127–131).

The GM produces a plethora of me-
tabolites in addition to SCFAs, which
likely play a crucial role in host glucose
homeostasis (Fig. 2) (132). For example,
bile acids are known glucoregulatory
signaling molecules, and their affinity
for both FXR and Takeda GPCR 5 (TGR5)
is significantly affected by deconjugation
and metabolism into secondary bile acids
coordinated by gut microbes (133–136).
Additionally, the GM converts tryptophan
and other nutrients into indoles that act
via the AHR to reduce inflammation in
the metabolic syndrome, especially at

the gut level (137,138). Furthermore, other
gut-derived molecules such as TMAO and
imidazole propionate have been implicated
in the development of diabetes (139,140).

Role of the GM in Gut Barrier Functioning

The GM plays a vital role in gut barrier
functioning. Impairment in the gut barrier
leads to a leaky gut, contributing to low-
grade systemic inflammation, a character-
istic of obesity and diabetes (141,142).
Although the mechanisms have been
studied mostly in experimental models,
one potential mechanism contributing to
systemic inflammation is an increase in
circulating lipopolysaccharide (LPS) endo-
toxins derived from the cell envelope of
Gram-negative bacteria, also known as
metabolic endotoxemia (Fig. 1). LPSs can
act on a specific pathogen-associated mo-
lecular pattern (PAMP)—toll-like receptor 4
(TLR4)—throughout the body to elicit a
proinflammatory immune response that
negatively affects glucose homeostasis. A
series of studies have suggested a potential
role for A. muciniphila in mediating some
of the effects of alterations in the GM on
systemic inflammation through actions on
TLR4 and the gut barrier; however, less evi-
dence is available on its role in mediating
effects on glucose metabolism in metabolic
disease (143–146). However, much more
research is needed to determine whether
metabolite sensing by PAMPs other than
TLR4 is implicated in regulating host-
microbe cross talk and gut barrier integrity
(147) in humans.

In parallel, the accumulation of proin-
flammatory macrophages (Fig. 1), CD8ab
T-cell infiltration, and reduced IgA1 im-
mune cells are observed in the intestines
of individuals with obesity (148–150), con-
tributing to insulin resistance (149,150).
GM modulation strategies could mitigate
the adverse gut immune effects of hyper-
caloric diets. For example, reducing the
proportion of proinflammatory macro-
phages and increasing type 3 innate lym-
phoid cells and regulatory T cells are
associated with improved glucose metab-
olism. Nonetheless, understanding the
precise molecular mechanisms driving
microbe-immune interactions in the gut
and their translation to humans will also
require extensive future research.

Knowledge Gaps, Challenges, and
Possibilities
Reductionist approaches are required to
progress from correlations of bacterial
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phylotypes/strains with metabolic pheno-
type (e.g., diabetes) to mechanistic and
causal relationships. However, many of
the earlier analyses performed in epidemi-
ological studies do not have sufficient res-
olution (i.e., 16S rRNA gene short
amplicon sequencing only provides accu-
rate identification at the genus level but
not at the species, strain, and functional
levels) (151), and deep-sequencing whole-
genome metagenomics, coupled with
strain-level analyses, are needed to iden-
tify bacteria and their functions that are
linked to diseases and thereby to cor-
rectly downsize further causality and
mechanistic studies (152).
The complexity of the GM and the

multitude of possible phylotypes and
microbial networks associated with spe-
cific phenotypes in population studies
also make it difficult to test all possible
hypotheses experimentally. Advanced
statistics (e.g., MR and mediation analy-
sis) and machine learning methods are
helping to establish causal inferences in
human studies, but further validation
stages are still needed to provide direct
evidence of causality. For this purpose,
the use of rodent models in which con-
founding variables (e.g., genetic back-
ground, microbial communities, and diet)
can be controlled is key to clearly identi-
fying the effects caused by the precise
microbe investigated (namely, a bacterial
strain or metabolite).
The use of whole fecal microbiota

transplantation (FMT) or co-housing ex-
periments in which the microbiota of
rodents with different phenotypes are in-
terexchanged have substantially helped to
unravel cause and effect in whole commu-
nities of microorganisms (2,153). None-
theless, the results of those trials could be
biased by limitations in study design. For
example, bias could arise in relation to the
limited number of donors selected and
the possible variations in rodent response
to microbes from a different donor spe-
cies (e.g., lack of colonization or persis-
tency of part of the microbial population
or failure in replicating host-microbe inter-
actions of the original host in which the
microbiota co-evolved) and consequent
differences in physiological effects (154).
Moreover, identifying the key micro-

bial actors driving a health or disease
phenotype and the nonactive players
within the community is a rather com-
plex undertaking. Specific components
of the GM could play a role per se or

in coordination with other community
members (155). Furthermore, correla-
tions and causal relationships between
GM components and disease could also
depend on the specific host (e.g., dis-
ease predisposition) and environmental
context (e.g., dietary patterns), which
can vary in different geographical loca-
tions and population groups (11).

One reductionist approach that could
aid in establishing the causal role of mi-
crobes in metabolic disease is the use of
defined microbial communities in gnoto-
biotic mouse models of diabetes (156).
This approach consists of assembling a
defined community of well-characterized
and genetically tractable microbes, which
is then used to colonize gnotobiotic mice.
This so-called defined microbiota ap-
proach allows for the manipulation of a
specific microbial feature in the back-
ground of a complex, yet manageable, mi-
crobial community to determine whether
specific microbial functions play a causa-
tive role in the pathogenesis of diabetes
and related complications.

Intervention studies with specific bac-
teria in the ecosystem, as well as more
sophisticated strategies that deplete spe-
cific microbial components or functions,
are ideal for providing evidence of causal-
ity (157,158). However, even if a particular
bacterial genus and species has been cor-
related with a specific disease phenotype
in a relatively reproducible manner in epi-
demiological studies (159) and proven to
be causally involved in an intervention
trial, differences between species, and
even between strains, may also lead to
different outcomes. As explained above,
small genomic and phenotypic differences
between strains belonging to the same
species can translate into functional differ-
ences affecting the host phenotype (e.g.,
with regard to their immunomodulatory
effects) (160). Therefore, the results of ef-
ficacy and mechanistic analyses deduced
from studies performed with a specific
strain cannot be systematically general-
ized to all strains of the given species.

Historically, the study of the impact
of GM on human disease has been fo-
cused on the large intestine microbiota
because the human colon is the site in
the body with the highest abundance of
microbes and the most accessible intes-
tinal section. The contribution of the
large intestine microbiota to the patho-
genesis of metabolic disease has been
demonstrated by FMT studies in mouse

models of obesity and related complica-
tions (2,153). However, it is important
to note that the small intestine over-
shadows the large intestine with regard
to metabolic regulation. The small intes-
tine is home to EECs that produce GLP-1
and other incretin hormones, which are
key glucose metabolism regulators (161).
The small intestine epithelium also plays
an essential role in glucose and fat up-
take and metabolism, protecting the
host from features of metabolic dys-
function (162,163), and the small intes-
tine microbiota is a regulator of EEC
function and nutrient absorption, me-
tabolism, and secretion (164,165). Thus,
microbiota-host interactions in the small
intestine would be expected to contrib-
ute to diabetes pathogenesis. Recent
work in mouse models has determined
that specific members of the small in-
testine microbiota can inhibit lipid se-
cretion by enterocytes and limit serum
triglyceride concentrations during the
consumption of a Western-style obeso-
genic diet (166). Additionally, the small
intestine microbiota in rodents has been
demonstrated to affect nutrient-induced
gut-brain signaling, which regulates glu-
cose homeostasis (167,168).

Despite their importance, host-micro-
biota interactions in the small intestine
and their relevance to diabetes are
understudied because of limitations in
the process of acquiring small intestine
microbiota samples from humans and
the reduced abundance of microbes in
this portion of the digestive tract. Novel
technologies to overcome technical limita-
tions in the study of the small intestinal
microbiota are discussed further in TECHNO-

LOGICAL AND METHODOLOGICAL ADVANCEMENTS.
GM fluctuation, especially related to di-

etary intake, should be considered when
establishing what are normal and what
are dysfunctional microbiota changes for
metabolic health. The GM mirrors individ-
uals’ habitual diet and daily choices.There-
fore, longitudinally considering dietary
history and GM variations over multiple
days could help to fine-tune associations
and infer causal relationships regarding
the metabolic health of individuals (169).
Moreover, daily oscillations of the GM re-
lated to eating patterns also affect its func-
tional roles, such as appetite regulation
and postprandial responses to food intake,
with potential long-term effects on meta-
bolic health and diabetes risk. For exam-
ple, mouse studies have shown that daily
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oscillations in GM composition are re-
quired to maintain the circadian release
of GLP-1, which in turn is required to
achieve appropriate circadian control of
metabolic homeostasis (170). In humans,
type 2 diabetes and obesity are corre-
lated with alterations of GM circadian
rhythms (171), suggesting that daily os-
cillations are relevant to understanding
the role of the GM in controlling energy
homeostasis.

Sex also seems to contribute to GM
variations, although its relevance for
predicting health associations and their
underlying mechanisms are underinves-
tigated. The epidemiology and patho-
physiology of obesity and associated
cardiometabolic disorders such as type 2
diabetes have a sex dimorphism that
may be related to not only the role of
sex hormones in fat distribution, metab-
olism, and immunity but also differences
in the GM (172). Studies in mouse mod-
els suggest reciprocal interactions be-
tween sex hormones and the GM. On
one hand, the GM may regulate the pro-
duction and/or metabolism of sex hor-
mones (i.e., testosterone and estrogens),
as proven in a nonobese diabetic mouse
model of type 1 diabetes (173). On the
other hand, physiological effects of sex
hormones (e.g., on immunity and intesti-
nal transit) may affect the GM (174).
Therefore, sex should be considered a
confounding variable in epidemiological
studies and in the design of mechanistic
studies using mouse models because, to
date, most preclinical studies have been
carried out exclusively in males.

TECHNOLOGICAL AND
METHODOLOGICAL
ADVANCEMENTS

Separating phenomenology from actual
biology in the microbiome field requires
tools and approaches to identify mecha-
nisms that deconvolute whether the mi-
crobiome may be a driver of, or offer
therapeutic opportunities for, metabolic
diseases. Here, we discuss the most
promising technological developments
for advancing the field.

Model Systems
When comparingmodel systems for study-
ing the relationship between the GM and
metabolic diseases, it is essential to con-
sider both traditional models (e.g., germ-
free [GF] and gnotobiotic mice) and

emerging technologies (e.g., organs-on-
a-chip and nonmurine GF models such
as zebrafish and pigs).

GF animals have been used widely to
investigate the role of the human GM in
obesity and diabetes (1,173,175). These
animals, which are born without any mi-
crobiota, allow for the interrogation of
interventions in the absence of a micro-
biome. As a result, we can gain insight
into whether the microbiome is neces-
sary for a given biological process.

Gnotobiotic disease models are es-
tablished by colonizing GF mice with ei-
ther an entire GM via donor stool or
specific isolated bacterial strains (176).
Studies have demonstrated that GF ani-
mals, when inoculated with fecal micro-
biota from individuals with obesity and
type 2 diabetes, successfully replicated
disease phenotypes, providing evidence
for the involvement of the GM in meta-
bolic diseases (2,59,177). Additionally, an
overgrowing endotoxin-producing bacte-
rium, Enterobacter cloacae B29, isolated
from the gut of a person with morbid
obesity and diabetes, induced obesity,
fatty liver, and insulin resistance in GF
C57BL/6J mice that were otherwise resis-
tant to high-fat diet–induced metabolic
defects. Knocking out the endotoxin-pro-
ducing gene in the B29 bacterial strain or
the Tlr4 gene in C57BL/6J mice prevented
the metabolic defects, underscoring the
causal relationship between specific gut
bacteria and host responses in the initia-
tion and progression of metabolic disease
(178–180).

However, certain concepts have been
perpetuated about GF mice that are the
result of studying only one genotype.
For example, GF C57BL/6J mice are
resistant to diet-induced obesity (175),
whereas GF Swiss Webster mice are not
(181); therefore, because the majority
of GF mouse studies use C57BL/6J mice,
it has been stated as fact that GF mice
in general have to eat more than con-
ventional mice to maintain weight. The
divergent responses of these models to
high-fat diets underscore the impor-
tance of genetic background in research
outcomes (182).

The availability of additional GF mod-
els, such as pigs and zebrafish, comple-
ment the use of GF mice. GF pigs and
piglets offer more human-relevant in-
sights than do mice when developing
human microbiota–associated gnotobi-
otic models (183), although the space

required to house them is prohibitive
for many institutions or limits studies to
using just a few animals. GF zebrafish,
on the other hand, have proven useful
for studies of the GM and distinct host
cellular developmental stages (184). The
transparency of the fish body and the
ability to fluorescently tag and image
different cell types in the presence of
different bacteria, as well as the ease of
housing and propagating zebrafish, is
advantageous for investigating specific
questions (185). These models do not fully
replicate human physiology, but they allow
longitudinal and invasive sampling in tightly
controlled conditions, which is important
when asking mechanistic questions.

Organs-on-a-chip, such as the gut-on-a-
chip, offer more human-relevant systems
because they can be derived directly from
human tissue or blood-derived induced
pluripotent stem cells, which retain the
genetic signature of the host; thus, they
enable the study of complex human tis-
sues and cellular interactions in a con-
trolled environment (186). Recent efforts
have demonstrated the ability to seed the
gut-on-a-chip with microbiota in a semi-
anaerobic environment (187), and many
groups are now testing the efficiency of
seeding increasingly complex communi-
ties on these chips. Although the gut-on-
a-chip model lacks some key cell types
such as immune cells, major advances
include the ability to connect different
organ chips such as the gut-chip and neu-
ron-chip (188) to model gut-brain interac-
tions. Creative uses of organs-on-a-chip to
study the microbiome will continue to
emerge and are likely to fill important
gaps to complement animal models.

Understanding of Bacterial Genes
and Functions
The ability to sequence and assemble
whole genomes of bacteria is an enor-
mously powerful approach for identifying
lineages and the relatedness of bacterial
strains and for identifying putative path-
ways involved in a given bacterial pheno-
type that may have relevance in human
health or disease. If we think about the
mechanisms of human disease that have
been elucidated from the study of geneti-
cally manipulated mice, it is not hard to
imagine the wealth of information to be
gained from doing the same in bacteria.
The ability to knock out and manipulate
bacterial genes is not new. Nearly 80 years
of bacterial genetics have clarified how
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pathogens colonize the gut epithelium
and secrete toxins, leading to diseases
such as cholera, how they share informa-
tion with each other to adapt to different
environments, and how nutritional selec-
tion drives their composition in a host.
E. coli can be considered the bacterial ver-
sion of the C57BL/6 mouse; its genetics
are well-defined and easily engineered
(189–191), and it has become the work-
horse for testing the effect of modifications
in a given environment. However, the com-
mensal GM consists of far more diversity
than just E. coli; thus, researchers are ac-
tively seeking a deeper understanding of
GM genetics, using, for example, Bacter-
oides and Clostridium as representative or-
ganisms (192,193), as numerous human
and mouse studies have demonstrated
the important roles of these organisms in
health and disease.
Advanced computational tools, including

artificial intelligence, have shed new light
on unannotated parts of a bacterial ge-
nome by predicting the three-dimensional
structures of proteins, a task greatly ad-
vanced by technologies such as AlphaFold2
(194,195). By analyzing these structures,
researchers can infer possible functions
based on their shapes and binding sites.
These potential roles can be confirmed by
experimental validation in biochemical and
microbiological studies (196). This knowl-
edge, especially regarding how proteins in-
fluence metabolic pathways, is crucial for
linking microbial activity to health condi-
tions such as diabetes, offering insights
into disease mechanisms and potential
therapeutic targets.

Reference-Free Data Analysis
The most critical issue with current
database-dependent approaches in micro-
biome sequencing analysis is their limita-
tion in detecting novel or understudied
microbes (197). When microbial commu-
nity samples are analyzed using databases
based on reference genomes from well-
characterized bacteria, sequences that do
not match are overlooked or misclassified.
This process results in a biased view of
the microbial ecosystem, potentially miss-
ing crucial components that could have
significant roles in health and disease,
including diabetes. Therefore, advancing
microbiome research necessitates the de-
velopment and use of methods that can
uncover and characterize these underrep-
resented microbial entities.

Assembling genomes de novo from
metagenomic sequencing data is a pow-
erful approach in microbiome research
that involves constructing genomes di-
rectly from sequencing reads without
relying on reference databases (197).
This method uses advanced computa-
tional algorithms to piece together DNA
fragments from a sample, allowing the
identification of genetic material from
a wide range of organisms, including
those not previously sequenced or cata-
loged. By assembling these genomes,
researchers can discover novel species
and uncover new gene functions, signifi-
cantly expanding our understanding of
microbial diversity and its potential roles
in various environments, including the
human body. This approach is particularly
useful in revealing the full spectrum of
microbial life, including rare or unknown
species that might play crucial roles in
health and disease.

Access to the Small Intestine
Microbiota
The small intestine is the primary site of
nutrient uptake, enterohepatic recycling,
and intestinal hormone stimulation; thus,
it is essential to gain a deep understand-
ing of microbial function in this region of
the body. However, most of our knowl-
edge of human microbiomes has been
based on stool samples and the colonic
microbiota because accessing the small
intestine microbiota is challenging, even
with modern endoscopy methods.

Recent advances use innovative meth-
ods such as ingestible capsules that sam-
ple intestinal material throughout the GI
tract (198). Because each capsule is trig-
gered by a different pH along the gut, this
method can provide a microbial atlas of
intestinal communities. These tools are
being further refined and commercially
developed for use in both diagnostics and
research. One caveat, however, is that
there is potential for microbes to continue
growing after the sample has been col-
lected within a capsule, thus giving an
inaccurate representation of the native
microbiome community. Additionally, these
and other capsules have been developed
for sampling in the fasting state, leaving the
study of postprandial responses still limited,
although these responses are likely impor-
tant to reach a complete understanding of
microbial contributions to the regulation of
glucose metabolism. Addressing these is-
sues is crucial for ensuring the reliability

and accuracy of microbiome studies with
such devices.

Isozyme and Small Molecule Screens
Isozyme and small molecule screens in mi-
crobiome research are crucial for identify-
ing specific bacterial products that can
be targeted therapeutically. Microbial iso-
zymes are enzymes that have different
molecular structures but catalyze the
same reaction as the host enzymes.
Screening these products can reveal varia-
tions in microbial metabolism that might
influence health and potentially interfere
with medications, as in the case of bacte-
rial DPP-4 isozymes (33). Small molecule
screens focus on identifying bioactive
compounds produced by microbes (199).
These compounds can have significant ef-
fects on host pathophysiology (140,200).
By identifying specific isozymes and small
molecules, researchers can target them
for degradation or enhancement, offering
potential therapeutic strategies for dis-
eases such as diabetes.

POTENTIAL GM-BASED
DIAGNOSTICS AND THERAPIES IN
DIABETES

As described above, no diagnostic and
generalized fecal microbiota taxonomic
signature has been found for type 1 or
type 2 diabetes (86,201). Future re-
search should therefore move toward
strain-level studies in large prospective
populations and, when possible, focus
on functional profiling of intestinal mi-
crobes along the GI tract (198), with
special attention to stable isotope pre-
cursors to study production and sub-
strate fluxes of important microbially
produced metabolites in different GI re-
gions (202).

High-Fiber Diets and SCFA-Based
Treatments
With regard to GM-based therapies for di-
abetes, high-fiber diets have been shown
to be effective in controlling blood glucose
levels and reducing insulin resistance in
both type 1 and type 2 diabetes (203,204).
Although the direct mode of action of die-
tary fiber via the GM remains to be shown,
these trials underscore the potential im-
portance of including GM modulation
strategies as part of diabetes intervention
trials, especially for the production of ben-
eficial metabolites such as SCFAs (205).
However, as noted above, intervention
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trials of oral SCFA butyrate supplementa-
tion have shown no effect on glycemic
control or other markers of diabetes regu-
lation in either type 1 or type 2 diabetes
(116,122,123,206), probably because the
site of delivery does not mimic endoge-
nous production. For other SCFAs, includ-
ing propionate and acetate, data are too
scarce to draw any conclusions regarding
possible effects onmetabolic regulation.

Conventional and Next-Generation
Probiotics
Probiotic therapies for diabetes can be di-
vided into conventional probiotics, partic-
ularly Lactobacillus and Bifidobacterium
strains, which have a history of use for
human consumption in fermented foods
or supplements to promote health, and
next-generation probiotics, which are
strains of new bacterial species recently
identified as indigenous members of the
human GM. These strains are associated
with health, and their presence is dimin-
ished in disease settings (76,207). With
regard to the conventional probiotics,
prospective randomized controlled trials
(RCTs) in new-onset type 1 diabetes are
ongoing (NCT03961854, NCT03961347,
NCT04769037, and NCT05767450), and
a smaller trial has shown only moderate
effects in longstanding type 1 diabetes
(208). However, an open-label trial of pro-
biotics (strains of Bifidobacterium, Lactoba-
cillus, and Streptococcus salivarius) found
beneficial effects on susceptibility to and
progression of type 1 diabetes in siblings
of people with type 1 diabetes (209). In
type 2 diabetes, a recent meta-analysis
described some efficacy of these probi-
otic strains in metabolic control and re-
duced insulin resistance (210).

With regard to next-generation probi-
otics, fewer data have been generated in
humans. For example, despite specific
strains (e.g., Akkermansia) having been
associated with a healthy metabolic phe-
notype (211), an RCT intervention with
A. muciniphila did not identify strong
metabolic effects (143). This finding could
be the result of a lack of a causal role of
these tested strains in the metabolic syn-
drome, reduced viability upon passage
through the stomach (212,213), inade-
quate dosages, or a lack of engraftment
when introduced in the human gut (214).
Because the small intestine is important
for the pathophysiology of both type 1
and type 2 diabetes, further analyses of
small intestinal microbiota from individuals

with type 1 (215) and type 2 (216,217) dia-
betes are needed, with defined combina-
tions of next-generation probiotic strains
studied as possible interventions for diabe-
tes. However, this effort should consider
conditions of bacterial strain engraftment,
ecological or functional dependencies on
other bacterial members, and potential re-
dundancies in functionality, as shown by a
meta-analysis of FMT (218).

Donor FMT
Until such investigations with defined
combinations of strains are completed,
donor FMT might provide insight into the
magnitude of effect of modulating the
GM and the effect of such modulation on
the pathophysiology and potential revers-
ibility of diabetes. de Groot et al. (219) re-
cently published research on the efficacy
of fresh FMT in maintaining residual b-cell
function and dampening autoimmunity in
new-onset type 1 diabetes. Other studies
have been performed for type 2 diabetes
and insulin resistance, showing a modest
effect of FMT on insulin resistance and
nonalcoholic fatty liver disease (216,217,
220–223), whereas one study showed
no effect on these parameters (224). Ad-
ditionally, a combined intervention of
encapsulated donor FMT and fiber sup-
plementation showed beneficial effects
on glucose metabolism, suggesting the
possible need to design interventions
not only with synthetic bacterial strain
consortia but also with dietary support
(e.g., fiber to nourish the bacterial strains)
(221). Finally, studies evaluating whether
autologous FMT after lifestyle interven-
tion could help prevent weight regain
have suggested that diet-induced changes
in low-abundance bacteria might be re-
sponsible for weight loss maintenance,
which could guide more precise interven-
tions with less ethical burden and lower
risks of transmitting diseases (225).

Overall, donor FMT is a more diffuse
approach than interventions with tar-
geted strains or metabolites (226). Addi-
tionally, there are differences in mode
of fecal material administration (capsules
vs. fresh FMT), intestinal pH (e.g., due to
antacids), and colonic transit time in ex-
isting data sets, and the amount of fecal
microbiota administered also seems to
affect engraftment of donor bacterial
strains (218,227). These factors preclude
generalization of the results of studies
to date. We therefore advocate further

standardization of intestinal microbiota
composition measurements (228), with
strict dietary monitoring. Also, better stan-
dardization is needed in human studies of
FMT-based interventions. In this context,
production of lyophilized capsules for FMT
must follow Good Manufacturing Practi-
ces to maintain viability and ensure ade-
quate shelf life (229).

Nevertheless, based on its wide avail-
ability and general safety (provided that
donors are adequately screened [230]),
FMT could provide clinicians with new
treatment modalities for diabetes until
interventions with defined combinations
of strains are available, especially if next-
generation probiotics can be spiked in do-
nor fecal microbiota to boost therapeutic
efficacy (231). However, these interven-
tions should adhere to the international
Nagoya Protocol on Access to Genetic Re-
sources and the Fair and Equitable Sharing
of Benefits Arising From Their Utilization
to the Convention on Biological Diversity
(232), which seeks to prevent researchers
or their institutions from financially capi-
talizing (at the expense of vulnerable in-
dividuals or populations) on identified
bacterial strains as next-generation pro-
biotics. With regard to trial outcomes for
diabetes and GM-based therapies, using
dynamic measurements of glucose me-
tabolism over time (e.g., mixed-meal tests
or continuous glucose monitoring) could
provide better insights into the interac-
tions between the GM, diet, and glucose
homeostasis during both FMT and admin-
istration of defined strain combinations.

New insights into the GM are increas-
ingly associating it with diabetes in hu-
mans, although the microbiome of the
small intestine remains understudied.
Intervention studies with FMT in hu-
mans have been able to dissect associa-
tions from causality and have indeed
shown some clinical benefit, although
the contrast between, on average, rela-
tively small therapeutic effects and ethi-
cal concerns (233) preclude widespread
practical use of this treatment option in
diabetes clinical care. Additional studies
are thus needed of prospective associa-
tions between the GM and diabetes in
multiethnic cohorts. Alongside this effort,
the therapeutic potential of synthetic GM-
derived bacterial strains and/or communi-
ties and engineered systems for targeting
intestinal delivery of identified metabo-
lites in diabetes should be explored.
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CONCLUSIONS

Over the past two decades, alterations
in the GM have been associated with
aberrant glucose metabolism and stea-
tosis in individuals with diabetes. Larger
sample sizes in epidemiological studies
have now started to show the magni-
tude and possible consistency of corre-
lations between the GM and human
metabolic traits of relevance to obesity
and/or type 2 diabetes; however, for
type 1 diabetes, the picture is much less
clear.
Interaction with diabetes medications

in relation to ethnicity and dietary in-
take should be taken into account more
rigorously in future studies. Moreover, in
recent years, more insights have been
gained into the function of the GMbeyond
just its composition, and this information
nicely dovetails with earlier reports of links
between specific metabolites, including
SCFAs, BCAAs and bile acids, and obesity
and diabetes.
With regard to GM composition, only

a few studies have addressed the role
of phages and fungi and the interac-
tions between these inhabitants and
bacterial strains in diabetes. It is clear
that future studies also need to focus
on small intestine microbiota function
as well as developing adequate bioinfor-
matic pipelines and correctly assembling
genomes (Table 1).
We must also take into account that

most data to date have been generated
in mouse studies whose relevance to
human diabetes needs further confir-
mation because of the large differences
between mice and humans in diet, ge-
netics, and life span. Nevertheless, hu-
man intervention studies of single strains
and FMT in the setting of human diabe-
tes have shown a range of clinical meta-
bolic effects (compared with the more
consistent effects of medications) but
without serious side effects. In conclu-
sion, after almost two decades of study,
we must still look to future efforts to illu-
minate the clinical diagnostic and thera-
peutic applicability of GM research to
human diabetes.
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