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Nonlinear interactions in physical systems make analyzing the dynamics challenging. Multiple-

scale analyses are asymptotic perturbation techniques useful for analyzing nonlinear systems that possess

scale-separation between the relevant physical scales. Graphene is a two-dimensional lattice of carbon

atoms which exhibits many unique electrical properties, such as a viscous, hydrodynamic regime where the

electrons become strongly interacting. We consider both the Dirac fluid and Fermi liquid regimes in gated

graphene, and we investigate the one-dimensional propagation of electronic solitons. By leveraging the

scale-separation between the wave-propagation time scale and nonlinear-interaction time scale, we utilize

a multiple-scale analysis to derive a Korteweg–de Vries (KdV)–Burgers equation governing the wave’s

evolution. We numerically solve the KdV–Burgers equation and analyze the viscous decay and entropy

xvi



production. Finally, we propose experimental realizations of these effects to measure the shear viscosity of

graphene.

Surface water waves also possess nonlinear interactions and permit nonlinear, periodic waves

of permanent form known as Stokes waves in intermediate- and deep-water. Wind forcing causes wave

growth and decay, but it can also influence wave shape. To study the effect of wind on the shape of these

nonlinear Stokes waves, we again utilize scale-separation between the wave-propagation time scale and

the nonlinear-interaction time scale. We then analytically solve the resulting system for three different

wind-induced surface pressure profiles (Jeffreys, Miles, and generalized Miles) to calculate the wind-induced

changes to the wave’s shape statistics, growth rate, and phase speed. These results are constrained by

existing large eddy simulations and are consistent with prior laboratory experiments.

Shallow water supports surface waves known as solitary waves that balance nonlinearity and

dispersion. By applying the same Jeffreys-type surface pressure forcing, we analyze the effect of wind on

shallow-water wave shape. Another multiple-scale analysis yields a KdV–Burgers equation for the wave’s

profile, and we solve this numerically to investigate the wave’s skewness and asymmetry resulting from

the solitary waves’s wind-induced, bound, dispersive tail. Extending this analysis to a planar, sloping

bathymetry instead yields a variable-coefficient KdV–Burgers equation. Numerically solving this equation

reveals the interaction of wind-forcing and shoaling on wave growth, width change, and rear-shelf generation.

xvii



Chapter 1

Effects of dissipation on solitons in the

hydrodynamic regime of graphene

1.1 Abstract

We use hydrodynamic techniques to analyze the one-dimensional propagation of solitons in gated

graphene on an arbitrary uniform background current. Results are derived for both the Fermi liquid and

Dirac fluid regimes. We find that these solutions satisfy the Korteweg-de Vries-Burgers equation. Viscous

dissipation and ohmic heating are included, causing the solitons to decay. Experiments are proposed to

measure this decay and thereby quantify the shear viscosity in graphene.

1.2 Introduction

Graphene offers a promising platform to realize and explore the hydrodynamics of electrons [4].

Graphene serves as an excellent model system for theorists due to its simple electronic band structure;

likewise, it is utilized by experimentalists for the relative ease of manufacturing pure samples. In certain

thermodynamic regimes, the electrons in graphene become strongly interacting; hydrodynamics is a useful

tool to study strongly interacting systems not amenable to ordinary perturbation methods. Hydrodynamics

is applicable when systems rapidly thermalize and when both the mean-free path (lee) and mean-free time

(τee) are short compared to the relevant length and time scales of the problem [5]. When a system is

in this regime, the main observables are conserved quantities: these are precisely the objects tracked by
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hydrodynamics.

Graphene has two different hydrodynamic regimes. When the chemical potential µ is much

larger than the temperature, kBT ≪ µ, graphene behaves like an ordinary conductor and is described

by Fermi liquid theory. First discovered by Landau [6] in 1959, Fermi liquid theory treats the electrons

as a non-interacting Fermi gas and then turns on interactions adiabatically; thus, Fermi liquids exhibit

weakly interacting quasiparticles. The excitations, no longer pure electron states, are instead described

as quasiparticles. Though weak interactions imply long mean-free paths, graphene can actually exhibit

hydrodynamic effects in this regime. The electrons in graphene only weakly interact with phonons (which

typically disrupt the hydrodynamic signature), so it is still possible to have lee ≪ lphonon. Likewise,

graphene samples can be made very pure; therefore, the impurity scattering distances can be made large

compared to the mean-free path as well (lee ≪ limp).

In the opposite limit—i.e. when µ ≪ kBT—graphene enters a strongly coupled state known as

a Dirac fluid (also known as a “quantum critical regime”). In the Fermi liquid regime, the presence of

a Fermi surface imposes strong kinematic constraints on the possible scattering pathways; this prevents

electrons far from the Fermi surface from interacting strongly. However, near charge neutrality, the Fermi

surface shrinks, allowing electrons to interact strongly. The bare coupling constant α0 gives a measure

of this interaction strength. In the Dirac regime of graphene, α0 can be of order unity; renormalization

reveals the coupling to be marginally irrelevant, but for many laboratory conditions, it can still be on the

order of 0.1 to 0.5: see Lucas and Fong [4] for more details. This strong coupling makes Dirac fluids ideal

candidates for hydrodynamic analysis.

A hydrodynamic analysis of electron motion in graphene is governed by a number of phenomeno-

logical parameters. A derivative expansion can be utilized to derive the hydrodynamic equation [4]. The

first-order corrections contain three such parameters: the shear viscosity η, the bulk viscosity ζ, and

the “intrinsic” conductivity σQ. These cannot be predicted from the hydrodynamic theory and must be

measured or calculated microscopically.

A number of experiments have measured the value of intrinsic conductivity [7, 8]. Similarly,

there have been a number experimental proposals [9–12] for measuring η. While there have been a few

measurements [13, 14] of η in the Dirac regime, many of the proposals—such as negative nonlocal resistance

measurements [11]—only apply to the Fermi regime [4]. Therefore, different hydrodynamic predictions

would be useful for investigating η in Dirac fluids.

Solitons—disturbances that propagate without changing shape, even after interacting with each
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other—serve as prototypical hydrodynamics phenomena amenable to analytic tools. Solitons are made

possible when dispersion balances focusing-nonlinearities. Graphene’s hydrodynamic regime supports

collective electron/hole sound waves called “first-sound” modes [15] or “demons” [16]; these sound modes can

become solitons if dispersion balances focusing. Akbari-Moghanjoughi [17] analyzed solitons and periodic

waves in both the 2D and 3D completely degenerate (T = 0) Fermi regimes. Solitons are permitted due

to the inherently nonlinear nature of the hydrodynamic equations; to capture this behavior, a Bernoulli

pseudo-potential was used to analyze the fully nonlinear equations. However, while this method predicted

some parameters—such as minimum propagation speeds—it did not generate an analytic expression for

the soliton’s profile.

A different approach to studying solitons was presented by Svintsov et al. [18] using standard pertur-

bation theory. This produced a Korteweg-de Vries (KdV) equation to describe the solitons’ propagation and

generated analytic approximations to the disturbances’ shapes. Unlike the analysis of Akbari-Moghanjoughi

[17], this linearized approach lacked a dispersive term to balance the nonlinearities. Instead, the graphene

was placed on a gated substrate; this provided a weak dispersive force that permitted the formation of

solitons.

While the analysis of solitons by Svintsov et al. [18] provided a more concrete result, it was limited

to inviscid Fermi liquids. The present study will extend the results to include the Dirac regime as well.

Whereas Svintsov et al. [18] used kinetic theory, we will instead treat the system using a systematic

hydrodynamic expansion. Additionally, this paper will extend the results of both Svintsov et al. [18]

and Akbari-Moghanjoughi [17] by including the effects of dissipation. This allows us to propose new

experiments to measure the viscosity of the electron fluid. The derivation presented here is applicable to

either the Dirac (µ≪ kBT ) or Fermi (kBT ≪ µ) regime, though it is unable to interpolate between the

two. Nevertheless, our proposal offers an advantage over transport measurements in that its interpretation

is less theory-laden.

In § 1.3 we will derive the governing equations. Section 1.4 will be devoted to the subtle aspects of

normalization. Next, § 1.5 will detail the perturbation expansion for the special case of stationary solitons.

Section 1.6 extends the analysis to the more general case of solitons on an arbitrary background flow. We

will provide a short analysis of the results in § 1.7. Finally, in § 1.8, we will detail potential experimental

setups using these solitons to measure graphene’s viscosity.
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1.3 Governing Equations

The electrons in graphene satisfy a pseudo-relativistic dispersion relation [4]

ε(p) = ±vF |p| , (1.1)

with p the momentum, vF ≈ c/300 the Fermi velocity, and ε(p) the energy density. This equation is valid

near a Dirac point at p = 0, and deviates from linearity when |p|a/ℏ ≈ 1/2 with a the distance between

adjacent carbon atoms in the graphene.

Given the pseudo-relativistic dispersion, it is natural to write the conserved currents in relativistic

notation with xµ = (vF t,x)
µ and ∂µ = (∂t/vF ,∇)µ. Ignoring impurity and phonon scattering, the

equations of motion are [4]

∂µJ
µ = 0 , (1.2)

∂µT
µν =

1

vF
F νµJµ . (1.3)

Here, Tµν is the energy-momentum tensor, and Fµν is the electromagnetic tensor (including self-

interactions). Additionally, Jµ is the charge 4-current 1. Note that we will be using Gaussian units

with e = |e| positive. Finally, we will include a factor of vF in the time-like components of four-vectors,

like xµ = (vF t,x)
µ, so that the metric gµν = diag(−1, 1, 1, 1)µν is dimensionless.

It is often preferable to write these equations in terms of more conventional quantities such as

the fluid 3-velocity u and the (rest-frame) number density of charge carriers, n = (nel − nhol), with nel

(nhol) the number density of electrons (holes). To do so, Jµ and Tµν are expanded in the small parameter

leeδ. In this equation, lee is the electron-electron scattering mean free path and δ is a characteristic inverse

length scale of the observables. Since δ ∼ ∂ (with the partial derivative acting on slow observables) this is

called the derivative expansion: see Lucas and Fong [4] for more details.

The expansions for Tµν and Jµ become unwieldy at higher orders, but truncating at order leeδ 2

1Note that some of our variable definitions differ from those of Lucas and Fong [4] to better match
usual conventions. The relevant changes (with the variables of Lucas and Fong [4] subscripted with L) are
Jµ = −eJµ

L , Fµ,ν = −Fµν
L /e, and σQ = e2σQ,L.

2Note that, as mentioned previously, δ ∼ ∂; the factor of lee is implicit in the definitions of the dissipative
coefficients σQ, η, and ζ [4].
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we find [4]

Jµ = −enuµ +
σQ
e
Pµν

(︂
∂νµ− µ

T
∂νT + eFνρu

ρ
)︂
, (1.4)

Tµν = (ε+ P )
uµ

vF

uν

vF
+ Pgµν − ηPµρPνα

(︁
∂ρuα

+ ∂αuρ −
2

d
gρα∂βu

β
)︁
− ζPµν∂αu

α ,

(1.5)

with ε the energy density P pressure, µ chemical potential, and temperature T in the rest frame. We

have defined the spacelike projection operator Pµν := gµν + uµuν/v2F and used uµuµ = −v2F to write the

four-velocity as uµ = γ(vF ,u) with γ = 1/
√︁

1− (|u|/vF )2 a Lorentz factor. Further, we have chosen the

Landau frame, where

uµJ
µ = env2F and uµT

µν = −εuµ . (1.6)

It is sometimes more instructive to write-out four-vectors in terms of their three-vector and

time-like components. For instance, Jµ is

J0 = −γenvF +
σQ
e

[︂Tγ2
vF

(︄
|u|2

v2F

∂

∂t
+ u · ∇

)︄(︂µ
T

)︂
+ γe

E · u
vF

]︂
, (1.7)

J = −γenu+
σQ
e

[︂
T

(︃
∇+ γ2

u

v2F
D

)︃(︂µ
T

)︂
+ γe

(︃
E+

u

vF
×B

)︃]︂
. (1.8)

where D := ∂t + u · ∇ is a material derivative.

To facilitate comparison with the existing literature, it is useful to re-write the spacelike components

as vF∂νT iν − ui∂νT
0ν = vFF

µiJµ − uiFµ0Jµ. Thus, our system becomes

∂µJ
µ = 0 , (1.9)

∂νT
0ν = Fµ0Jµ , (1.10)

vF∂νT
iν − ui∂νT

0ν = vFF
µiJµ − uiFµ0Jµ . (1.11)
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1.3.1 Ideal Fluid

It is illuminating to temporarily consider the dissipationless case σQ = η = ζ = 0. We are then

able to write (1.9)–(1.11) in three-vector notation as

∂

∂t
(γn) +∇ · (γnu) = 0 , (1.12)

∂

∂t

(︁
γ2(ε+ P )

)︁
+∇ ·

(︁
γ2(ε+ P )u

)︁
− ∂P

∂t
=

− γneE · u ,
(1.13)

γ2
(ε+ P )

v2F

(︃
∂u

∂t
+ u · ∇u

)︃
+

(︃
u

v2F

∂P

∂t
+∇P

)︃
=

− neγ

(︃
E+

u

vF
×B− u

vF
E · u

vF

)︃
.

(1.14)

Then, it is clear that (1.9)–(1.11) represent charge, energy, and 3-momentum conservation, respectively.

1.3.2 Phonons and Heat Flow

We have neglected the interactions (emission, absorption, and scattering) with phonons in our

governing equations, (1.9)–(1.11); we will now attempt to justify that choice. First, we consider the

momentum equation (1.11).

The hydrodynamic regime is relevant when the electron-electron interaction time tee is the smallest

timescale: tee ≪ tchar ≪ td with tchar the soliton’s propagation timescale and td its dissipation timescale.

Following the standard prescription [4, 8, 19, 20], we will neglect phonon-induced momentum relaxation in

the momentum conservation equation, (1.11), if the phonon-induced momentum-relaxation time t(p)e-ph is

much longer than the other timescales of interest, tee ≪ td ≪ td ≪ t
(p)
e-ph.

To support the claim that such a regime exists, we now present sample numerical values that

satisfy such a timescale hierarchy. Nevertheless, we stress that this is simply an example; the derivation

in the remainder of the paper will be valid over a wide range of experimental parameters; see § 1.B for

further details.

The electron-electron scattering time in the Dirac regime is [4]

tee ∼ 0.1 ps ×
(︃

100 K
T

)︃
. (1.15)

At T = 60 K, this gives tee = 0.17 ps. Using the sample values chosen in § 1.8, we find (cf. § 1.8.2) a
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characteristic propagation time of tchar = 6.5 ps. In that same section, we calculate a decay time of

td ≈ 44 ps. Finally, the electron-phonon momentum-relaxation time for acoustic phonons (with speed

vs = 2 × 104 m s−1) is given by [21]

t
(p)
e-ph ∼ 10 ps

(T/100 K)
√︁
n/(1012 cm−2)

. (1.16)

This yields t(p)e-ph = 280 ps. Therefore, we see that we have tee ≪ tchar ≪ td ≪ te-ph. Thus, with the

experimental values chosen here, phonon-induced momentum relaxation can be neglected from (1.11).

Importantly, as shown in recent experiments [8], there does appear to exist an experimentally

realizable regime where the requisite hydrodynamic condition tee ≪ tchar ≪ t
(p)
e-ph holds. Indeed, these

experiments motivate us to suggest that such an approximation might be valid. Nevertheless, it would be

useful to have a more refined estimate of the rate at which momentum and energy are lost to phonons.

Isothermal vs. Adiabatic

Now we consider the effect of phonons on the energy conservation equation (1.10). The energy

conservation equation implicitly assumes our system is adiabatic: that is, the absence of energy sources/sinks

presumes that heat neither enters nor leaves the system. In general, we could include terms (such as

coupling to phonons) representing heat gain/loss. Instead, we could consider the opposite limit involving

rapid heat transfer with the environment resulting in isothermal conditions. Under this assumption, the

energy conservation equation is no longer needed; rather, the thermodynamic relations of § 1.3.3 could be

used to relate our dynamic variables P and n, since T would no longer be dynamical. Therefore, (as in

the case of Newton’s calculation of sound-speed in air) it is important to determine whether adiabatic or

isothermal conditions are more applicable.

The most likely thermalization pathway would involve energy loss to phonons: the soliton’s location

in the middle of the sample minimizes heat advection through the edge contacts; similarly, radiative cooling

is far too slow to thermalize the system on relevant timescales 3. Indeed, if the graphene is placed on a

substrate, phonons are responsible for the majority of the heat transfer to the environment [23, 24].

3The Stefan-Boltzmann law would give a power loss rate of Pr = σε
[︁
(T0 + T1)

4 − T 4
0

]︁
≈ 4σεT 3

0 T1,
with σ = 5.67 × 10−8 W m−2 K−4 and ε ≤ 1 graphene’s emissivity. Using ε ≈ 1 % [22], T0 = 60 K, and
T1 = 0.1T0 = 6.0 K, we find a power loss density of Pr = 2.9 × 10−7 kWcm−2.

As we will calculate in § 1.8.3, graphene has a specific heat of cs = 4.5 × 10−9 J cm−2 K−1. Therefore,
the soliton’s temperature will change at a rate of Pr/cs = 65 K s−1. Hence, it would take approximately
T1cs/Pr = 93 ms for the system to thermalize with the environment via radiation.
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For the isothermal condition to be applicable, the electrons must quickly lose energy to the

environment: that is, the energy-relaxation time t(ε)e-ph must satisfy t(ε)e-ph ≤ tee ≪ tchar ≪ t
(p)
e-ph. However,

single-phonon interactions are unlikely to extract heat quickly enough. Each phonon with wavenumber k

carries a momentum ℏk while the electron fluid has momentum density u(ε+ P )/v2F ∼ uε/v2F . Likewise,

phonons have energy ℏkvs with sound speed vs, while the electrons have energy density ε. Recall that

we require the electron-electron momentum exchange rate ṗee to be much greater than the electron-

phonon momentum relaxation rate ṗe-ph in order for hydrodynamics to be valid: ṗee ≫ ṗe-ph. However,

multiplying by vs and re-writing in terms of the energy exchange rates yields ε̇eeuvs/v2F ≫ ε̇e-ph. Given that

vs ≈ 2 × 104 m s−1 ≪ vF for acoustic phonons [25] and u ≈ 4.0 × 105 m s−1 ∼ vF for our system, we see

that ε̇ee ≫ ε̇e-ph. Hence, if phonon-induced momentum relaxation can be neglected, so can phonon-induced

energy relaxation.

For isothermal conditions to be applicable, other thermalization pathways must be available. For

instance, multiphonon supercollisions [25] can increase the energy flux relative to the momentum flux.

However, under the assumption of weak phonon coupling, we can ignore the influence of multiphonon

processes. Therefore, in the absence of other energy-relaxation mechanisms, it appears that adiabatic

conditions are more appropriate for our system, with tee ≪ tchar ≪ t
(p)
e-ph ≪ t

(ε)
e-ph.

In the body of this paper, we will use isothermal conditions: these are more common in the

literature [17, 18] and are somewhat simpler. Nevertheless, adiabatic conditions appear to be more practical

and are used for the derivation in § 1.C.

1.3.3 Thermodynamics

Currently, our system, (1.9) and (1.11), is underdetermined. This can be remedied by including a

thermodynamic equation of state to relate ε and P .

In graphene, the photon-like dispersion relation for the electrons gives the pressure as P = εd,

with d the dimension of the system (d = 2 for graphene) [4]. Graphene has a natural energy scale at which

the band structure’s curvature becomes relevant. However, for temperatures much lower than this scale,

Λ ∼ 104 K, there are only two energy scales in the problem: kBT and µ. Therefore, from dimensional

analysis, the pressure must be expressed as [4]

P (µ, T ) =
(kBT )

d+1

(ℏvF )d
F

(︃
µ

kBT

)︃
, (1.17)
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for a function F subject to constraints imposed by the positivity of the entropy density s = ∂P/∂T ≥ 0.

Additionally, since our system is charge conjugation symmetric with µ→ −µ, F must be an even function.

In the Dirac regime (µ≪ kBT ), P can be expanded as

P (µ, T ) =
(kBT )

d+1

(ℏvF )d
[︂
CD
0 + CD

1

(︃
µ

kBT

)︃2

+ CD
2

(︃
µ

kBT

)︃4

+ . . .
]︂
. (Dirac: 18)

Similarly, the carrier density can be expressed as

n(µ, T ) =
∂P

∂µ
=

(kBT )
d

(ℏvF )d
µ

kBT

[︂
2CD

1

+ 4Cd
2

(︃
µ

kBT

)︃2

+ . . .
]︂
. (Dirac: 19)

Instead, in the Fermi regime (µ≫ kBT ), we can write P as

P (µ, T ) =
|µ|d+1

(ℏvF )d
[︂
CF
0 + CF

1

(︃
kBT

µ

)︃2

+ CF
2

(︃
kBT

µ

)︃4

+ . . .
]︂
. (Fermi: 20)

Likewise, the carrier density is given by

n(µ, T ) = (d+ 1)
|µ|d sgnµ
(ℏvF )d

[︂
CF
0 +

d− 1

d+ 1
CF
1

(︃
kBT

µ

)︃2

+
d− 3

d− 1
CF
2

(︃
kBT

µ

)︃4

+ . . .
]︂
. (Fermi: 21)

Throughout the remainder of this paper, we will generically write C0, C1, etc; the current regime

of interest will determine whether to use CD or CF . Explicit expressions for these coefficients are given in

§ 1.A. It is important to reiterate that, for our isothermal system, T is not a dynamical quantity dependent

on space or time, but is merely a parameter.
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1.3.4 Electrostatics

While our electron fluid moves in d-dimensions (d = 2 for graphene), we will assume the electro-

magnetic field propagates in d+ 1 dimensions (i.e. 3-space for graphene, as usual). We are only concerned

with the electric potential ϕ since the magnetic terms are smaller by a factor of vF /c ≈ 1/300. The

self-interaction of the charge distribution n(x, t) generates an electric potential in the Lorenz gauge as

− 1

c2
∂2ϕ

∂t2
+∇2ϕ = −4πJ0 = −4π[−en(x, t)γ] . (1.22)

Note that we are using the d+1-dimensional Laplacian. Neglecting the 1/c2 time derivative gives Poisson’s

equation. For instance, with d = 2; this gives

ϕ(x, t) = −e
∫︂
n(y, t)γ

|x− y|
d3y . (1.23)

Making the quasi-static approximation that ∂t/∂x ≪ c—so we can neglect electrodynamic effects like

∂tA—we find

E = e

∫︂
(x− y)n(y, t)γ

|x− y|3
d3y . (1.24)

This equation is highly non-local in n, and using it in the energy-momentum tensor equation would produce

a complicated integro-differential equation. While we can deal with this (via a Fourier transform) for the

linear approximation, going to higher orders would necessarily involve convolutions.

The main problem with this setup is that the Coulomb force is long-ranged; we can simplify this

by using conducting gates. Since the electric field lines must be normal to conductors, placing conductors

directly above and below the graphene will force E to be nearly normal to the graphene [18, 26]. Therefore,

the x-component Ex will necessarily be small and can be handled perturbatively.

We impose gates a distance d1 above and d2 below the sample and fill the intervening space with

a dielectric of relative permittivity κ. This gives a potential (in d = 2) of the form [18]

ϕ =
−αℏvF d1d2
eκ(d1 + d2)

(︃
1 +

d1d2
3

∂2

∂x2

)︃
(γn) + O(di∂x)

4
. (1.25)

Naturally, the electric field is given by the negative gradient of ϕ. Here, we have assumed that di∂x ≪ 1.

Furthermore, we have replaced 4πe2/ℏvF with α(T ), the renormalized coupling constant; this accounts for
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the effect of screening and is given by [4]

α(T ) =
4

(4/α0) + ln
(︁
104 K/T

)︁ , (1.26)

with α0 ≈ 1 depending on the graphene’s substrate. For the Dirac regime at T = 60 K considered

throughout this paper, this gives α ≈ 0.439.

For convenience, we will define the collection of coefficients

A :=
αℏvF d1d2
κ(d1 + d2)

, (1.27)

so that the potential is given as

ϕ = −A
e

(︃
1 +

d1d2
3

∂2

∂x2

)︃
(γn) + O(di∂x)

4
. (1.28)

While (1.27) only applies for d = 2, we will use ϕ given by (1.28) for arbitrary dimension, with an

appropriately chosen A.

The first term on the right-hand side of (1.28) represents the electric potential from a uniform

charge density. The second term is a weakly non-local correction that causes a weak dispersion.

1.4 Dimensions, Units, and Regime of Interest

It will be helpful in the following sections to be rather precise in specifying a nondimensionalization

scheme. For convenience, we will choose units where kB = ℏ = vF = e = 1. We still have one dimension

unspecified; in order to fully specify our unit system, we will choose an arbitrary reference length lref = 50 nm;

this is chosen so that T is nondimensionalized to roughly unity (see below) 4.

In later sections, we will be performing a perturbation expansion to solve the nonlinear system

of equations. There, we will use expansions of the form f = f0 + εf1 + f2ε
2 + . . . with ε ≪ 1 a small

parameter representing the size of perturbations.

Choosing the order of the problem’s variables is very important. When collecting terms in

perturbation theory, we assume that all variables and constants are order O(1); the relative magnitude of

4After choosing ℏ = vF = kB = e = 1, all quantities will be expressed in various powers of length. If the
parameters have been chosen correctly, there will exist a characteristic length Ξ shared by all quantities.
It is most convienent to choose lref = Ξ, though it is not strictly necessary—choosing lref otherwise will
multiply all terms in each equation by the same factor of lref/Ξ.

11



terms is given solely by powers of ε. Let us emphasize that, unlike the choice of parameters to normalize

above, this choice of nondimensionalization is physically relevant and determines our regime of interest.

Nondimensionalization sets the relative size of different terms and corresponds to a specification of

our location in parameter space. Indeed, this choice dictates which terms and processes are relevant and

which are negligible. Equivalently, this process can be viewed through the lens of dimensional analysis.

Our system has seventeen variables (5 dynamic n, u, ε, P , and µ; 11 static: x, t, kBT , di, κ, σQ/e2, η, ζ,

ℏ, vF , and lref; and the previously defined perturbation scale ε). In total, there are 3 independent physical

units (mass, length, and time). Therefore, the Buckingham Pi theorem implies there are 14 dimensionless

parameters.

However, these 14 dimensionless parameters are not all independent. Our 3 thermodynamic

equations (ε = Pd, as well as the definitions of P and n) reduce this number to 11. Furthermore, we have

not yet specialized to solitons: in § 1.B, we will use dominant balance to impose 4 additional restrictions

arising from our conservation equations, (1.9)–(1.11). This leaves a total of 7 independent nondimensional

parameters: ε, m, p, q, O(σQℏ), O
(︁
ηldref/ℏ

)︁
, and O

(︁
ζldref/ℏ

)︁
, as defined in § 1.B 5.

Naturally, investigations of the Fermi and Dirac regimes entail different nondimensionalizations.

Additionally, even without a set regime, there are different nondimensionalization choices highlighting

different areas of parameter space. Section 1.B outlines a general nondimensionalization using dominant

balance that encompasses various parameter spaces in both the Dirac and Fermi regimes. For concreteness,

we will examine one particular nondimensionalization in the Dirac regime in this section. Nevertheless,

the equations and solutions generated in the remainder of the paper are largely similar for both the Dirac

and Fermi regimes; we will explicitly highlight the few terms that do differ between the two regimes. The

nondimensionalization utilized in the Fermi regime is laid out in § 1.B.1.

1.4.1 Dirac Nondimensionalization

We will denote nondimensional variables with a caret. Restricting to the Dirac regime and using

a bit of foresight, we will choose to nondimensionalize the dynamical and thermodynamic variables as
5As discussed in § 1.B.3, we could introduce three additional microscopic equations and eliminate η, ζ,

and σQ/e2 as independent quantities. However, we will refrain from doing so.
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follows:
n = ε(d+2)/4n̂l−d

ref , u = ûvF ,

ε = ε(d+1)/4ε̂ℏvF l−d−1
ref , P = ε(d+1)/4P̂ℏvF l−d−1

ref ,

µ = ε3/4µ̂ℏvF l−1
ref , and T = ε1/4T̂ℏvF l−1

ref k
−1
B .

(1.29)

Here, we made use of the fact that we are in the Dirac regime (µ/T ≪ 1) and the thermodynamic equations

of § 1.3.3 by ensuring

O
(︁
nldref

)︁
= O

(︄
µld+1

ref
ℏvF

(︃
T lref
ℏvF

)︃d−1
)︄

(1.30)

and

O

(︄
Pld+1

ref
ℏvF

)︄
= O

(︃
kBT lref
ℏvF

)︃d+1

. (1.31)

Note that we took µ to be small but finite; as we will see later, taking µ to be identically zero causes

disturbances to be “frozen” in place.

The gating distance will be normalized as di = lrefd̂iε
−(d+3)/4. The electrostatic coefficient A

[defined for d = 2 in (1.27)] is normalized as A = Âε−(d+3)/4ℏld−1
ref vF .

The dissipative “intrinsic” conductivity σQℏ/e2 represents another non-dimensional parameter in

our problem. In the hydrodynamic regime for d = 2, we have [27]

σQ
e2

≈ 0.760

2πℏα(T )2
, (1.32)

with α(T ) given by (1.26). We see that for T ≈ 60 K, we have σQ = 0.20e2/ℏ. Therefore, σQℏ/e2 is now a

second small parameter (in addition to ε). To make progress with our perturbation expansion we need to

fix the magnitude of σQℏ/e2 relative to ε. Since we will later choose ε ∼ 0.1, we see that σ̂Q = 0.20 ≈
√
0.1.

Thus, we will nondimensionalize σQ as σQ = σ̂Qε
1/2e2l2−d

ref /ℏ.

According to Lucas and Fong [4], near the charge neutrality point with d = 2, the shear viscosity

is given by

η ≈ 0.45
(kBT )

2

ℏv2Fα(T )2
. (1.33)

For T ≈ 60 K, we have ηl2ref/ℏ = 1.1. Therefore, we will choose η = ε0η̂ℏl−d
ref . Though the bulk viscosity ζ

is expected to be much smaller than η (due to approximate scale invariance), our setup is only sensitive to

ζ + 2η(1− 1/d); therefore, we will simply choose ζ = ε0ζ̂ℏl−d
ref as well. We can safely take ζ̂ → 0 without

affecting the derivation.

In performing a derivative expansion, it is assumed that the relevant variables (n, ε, etc) vary on
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length scales ξ ≫ lee. If we normalize the length scales by ξ as x = x̂ξ, then the derivatives are normalized

according to § 1.B as
∂

∂x
=

1

ξ

∂

∂x̂
=
lref
ξ

1

lref

∂

∂x̂
= ε(d+5)/4 1

lref

∂

∂x̂
. (1.34)

For the remainder of this paper, carets denoting normalized variables will be dropped for convenience.

Note that, in addition to our perturbation expansion in terms of ε, we have already made use of

two other expansions: one for ϕ expanding in (∂xdi)
2 and one for P (µ, T ) expanding in (µ/T )2. Using

these normalizations, we see that both (∂xdi)
2 and (µ/T )2 are of order ε, so all perturbation expansions in

the problem have the same accuracy.

1.5 Perturbation Expansion

To analyze (1.9)–(1.11), it will be useful to expand the dependent variables in a perturbation

series:

u = u0 + εu1 + ε2u2 + . . . , (1.35)

P = P0 + εP1 + ε2P2 + . . . , (1.36)

n = n0 + εn1 + ε2n2 + . . . . (1.37)

1.5.1 Perturbative Thermodynamics

We will be using the thermodynamic relationships of § 1.3.3 to write µ and T in terms of n

and P ; however, since T is non-dynamical, it will only have a constant T0 component, but not a T1(x, t)

contribution. It is useful to define m as the order of (µ0/T0)
2; that is, εm := O(µ/(kBT ))

2. For the

nondimensionalization specified in § 1.4, m = 1.

Expanding the thermodynamic variables and collecting powers of ε yields the following relations
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for the Dirac regime:

P0 = T d+1
0 C0 , (Dirac: 38)

n0 = 2T d−1
0 µ0C1 , (Dirac: 39)

P1 = P0

[︄
C1
C0

(︃
µ0

T0

)︃2

δm,1

]︄
, (Dirac: 40)

n1 = n0

[︄
µ1

µ0
+ 2

C2
C1

(︃
µ0

T0

)︃2

δm, 1

]︄
, (Dirac: 41)

P2 = P0

[︄
T2
T0

(d+ 1)
(d+ 1)d

2

+ 2
C1
C0
µ1

µ0

(︃
µ0

T0

)︃2

δm, 1

+
C2
C0

(︃
µ0

T0

)︃4

δm,1 +
C1
C0

(︃
µ0

T0

)︃2

δm,2

]︄
,

(Dirac: 42)

n2 = n0

[︄
µ2

µ0
+
T2
T0

(d− 1)

+ 6
C2
C1
µ1

µ0

(︃
µ0

T0

)︃2

δm,1

+ 3
C3
C1

(︃
µ0

T0

)︃4

δm,1 + 2
C2
C1

(︃
µ0

T0

)︃2

δm,2

]︄
,

(Dirac: 43)

with δa,b the Kronecker delta function.

Similarly, for the Fermi regime, we find

P0 = |µ0|d+1C0 , (Fermi: 44)

n0 = |µ0|d sgn(µ0)C0(d+ 1) , (Fermi: 45)

P1 = P0

[︄
µ1

µ0
(d+ 1) +

C1
C0

(︃
T0
µ0

)︃2

δm,−1

]︄
, (Fermi: 46)

n1 = n0

[︄
µ1

µ0
d+

C1
C0
d− 1

d+ 1

(︃
T0
µ0

)︃2

δm,−1

]︄
, (Fermi: 47)

P2 = P0

[︄
µ2

µ0
(d+ 1) +

µ2
1

µ2
0

(d+ 1)d

2

+
C1
C0

(d− 1)
µ1

µ0

(︃
T0
µ0

)︃2

δm,−1

+
C2
C0

(︃
T0
µ0

)︃4

δm,−1 +
C1
C0

(︃
T0
µ0

)︃2

δm,−2

]︄
,

(Fermi: 48)
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n2 = n0

[︄
µ2

µ0
d+

µ2
1

µ2
0

d(d− 1)

2

+
C1
C0

(d− 1)(d− 2)

d+ 1

µ1

µ0

(︃
T0
µ0

)︃2

δm,−1

+
C2
C0
d− 3

d+ 1

(︃
T0
µ0

)︃4

δm,−1 +
C1
C0
d− 1

d+ 1

(︃
T0
µ0

)︃2

δm,−2

]︄
.

(Fermi: 49)

Using these equations, we can now write µ and P in terms of n at each order. In particular, we

find
P1

P0
=
n1
n0
K0 +

C1
C0

(︃
µ0

T0

)︃2m(︃
δm,1 +

1

d
δm,−1

)︃
. (1.50)

Here, we have defined K0 as

K0 =

⎧⎪⎪⎨⎪⎪⎩
0 m > 0 (Dirac regime)

(d+ 1)/d m < 0 (Fermi regime)
. (1.51)

As a side note, it is straightforward to show with thermodynamic identities that K0 is the leading order

term in the ratio of bulk modulus B to pressure P ; that is, K0 = B0/P0.

1.5.2 Conservation Equations

First, let us investigate a scenario with a constant, uniform background flow u0 ̸= 0 chosen such

that the perturbations are stationary in the laboratory frame. This will both simplify the mathematics

and be experimentally interesting. To accomplish this, we will only permit variations on long timescales

(this will be important when including dissipation). Mathematically, we accomplish this by normalizing

the time variable as t = εt̂1ξ/vF such that ∂t1 = εO(∂x̂).

Expanding the governing equation, we find Leading Order:

∂

∂x

(︁
γ2n0u1 + u0n1

)︁
= 0 , (1.52a)

∂

∂x

(︁
γP1 + u0γ

3(ε0 + P0)u1 + γAn0n1 + γ3An2
0u0u1

)︁
= 0 . (1.52b)
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First-Order Correction:

∂

∂x

(︁
γ2n0u2 + u0n2

)︁
=

− γ2
(︁
u0γ

2(2 + u20)n0u1 + n1 + n0u0u1
)︁∂u1
∂x

− γ2u1
∂n1
∂x

+ γu0AσQ
∂2n1
∂t0∂x

+ γAσQ
∂2n1
∂x2

+ γ3u0AσQn0

(︃
∂2u1
∂x2

+ u0
∂2u1
∂t0∂x

)︃
+Θ(−m)γσQ

∂2

∂x2

(︃
µ1 −

T0
µ0
T1

)︃
,

(1.53a)

∂

∂x

(︁
γP2 + u0γ

3(ε0 + P0)u2 + γAn0n2 + γ3An2
0u0u2

)︁
=

− γ3
(︁
u0(ε1 + P1) + (1 + u20)u1γ

2(ε0 + P0)
)︁∂u1
∂x

−An1γ
∂n1
∂x

+An0u0u1γ
3 ∂n1
∂x

− γAn0
d1d2
3

∂3n1
∂x3

−An2
0(1 + u20)u1γ

5 ∂u1
∂x

−An2
0u0γ

3 d1d2
3

∂3u1
∂x3

−An0u0u1γ
3 ∂n1
∂x

− 2An0u0n1γ
3 ∂u1
∂x

+ γ4
[︃
ζ + 2η

(︃
1− 1

d

)︃]︃(︃
u20
∂2u1
∂t20

+ 2u0
∂2u1
∂t0∂x

+
∂2u1
∂x2

)︃
.

(1.53b)

Here, we have defined γ = 1/
√︁
1− u20 (with vF = 1) and used the electrostatic coupling A according to

(1.28). Additionally, we have used the Heaviside function

Θ(−m) =

⎧⎪⎪⎨⎪⎪⎩
0 m > 0 (Dirac regime)

1 m < 0 (Fermi regime)
. (1.54)

1.5.3 Leading Order Equations

Using the thermodynamic relation ε = Pd, the leading order equations can be manipulated as

γ2d

(︃
An0 +

P0K0

n0

)︃[︁
(1.52a)

]︁
− γdu0

[︁
(1.52b)

]︁
yielding

0 = γ2d
[︁
An2

0 + γ2P0

(︁
K0 − u20(d+ 1)

)︁]︁
u1 . (1.55)

We want nontrivial perturbations u1 ̸= 0, so we require the terms in square brackets to vanish. We see

that this gives an equation for u0 required to make the leading order solutions time-independent:

u0 = ±

√︄
[K0/(d+ 1)] + [An2

0/P0(d+ 1)]

1 + [An2
0/P0(d+ 1)]

. (1.56)
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It is easy to check that u20 < 1 for d ̸= 1; this is required, otherwise γ = 1/
√︁
1− u20 would be imaginary.

Additionally, if we restrict to solutions bounded in x, we can require each term inside ∂x from

(1.52a) and (1.52b) to be zero, giving

u1 = − u0
γ2n0

n1 + U1 . (1.57)

Here, we have included a constant, uniform current U1(x, t0, t1) = U1; this will allow us—at the next

order—to cancel the disturbance’s propagation speed (similar to our use of u0 at this order).

1.5.4 First-Order Corrections

Now, we can do the same for the first-order corrections. Manipulating them as before,

γ2d

(︃
An0 +

P0K0

n0

)︃[︁
(1.53a)

]︁
− γdu0

[︁
(1.53b)

]︁
,

gives

γ2d
[︁
An2

0 + γ2P0

(︁
K0 − u20(d+ 1)

)︁]︁
u2 = RHS . (1.58)

Here, the right-hand side (RHS) depends only on n1, u1, ε1 and P1. However, inserting our solution for u0

causes the left-hand side to vanish, giving us our desired compatibility condition on n1. Thus, we have the

compatibility equation

A∂n1
∂t1

+ F ∂n1
∂x

+ Bn1
∂n1
∂x

+ C ∂
3n1
∂x3

= G ∂
2n1
∂x2

, (1.59)
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with

A = 2γ2
P0d

n0
u20(d+ 1−K0) , (1.60a)

B = −γ2 P0

n20d
u0

(︂
d2u20[4(d+ 1)−K0(d+ 3)]

+ (d+ 1)Θ(−m)−K0d
2
)︂
,

(1.60b)

C = −Add1d2
3

n0u0 , (1.60c)

F = γ2
P0d

n0
u0

(︄
2U1γ

2(d+ 1−K0)u0

+
C1
C0

(︃
µ0

T0

)︃2m
[︄
u20(d+ 1)

(︃
1

d
δm,−1 + δm,1

)︃

−
(︃
d− 1

d2
δm,−1 + 2δm,1

)︃]︄)︄
,

(1.60d)

G =
γ3

n0

(︄
σQγ

2

(︃
P0

n0

)︃2

u20(d+ 1)(d+ 1−K0)

×

⎡⎢⎢⎣du20 +Θ(−m)−K0
d

d+ 1⏞ ⏟⏟ ⏞
=0

⎤⎥⎥⎦
+ du20

[︃
ζ + 2η

(︃
1− 1

d

)︃]︃)︄
,

(1.60e)

This is known as the KdV-Burgers (KdVB) equation. Note the underbraced term in G vanishes in both

the Dirac and Fermi regimes.

1.5.5 Ideal Fluid

Before tackling the full KdVB equation, it is beneficial to consider the simpler inviscid problem

with σQ = η = ζ = 0. In this case, we find G = 0 and the KdV-Burgers equation reduces to the KdV

equation. The KdV equation has soliton solutions of the form

n1(x, t1) = c1 sgn(BC) sech2
(︄√︄

c1|B|
12|C|

×
[︃
x−

(︃
c1|B|
3|A|

sgn(AC) + F
A

)︃
t1

]︃)︄
,

(1.61)

for arbitrary, order-1 constant c1 > 0.
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Substituting the coefficients, we find

n = n0 + εc1 sgn(BC) sech2
(︃
x+ vt

W

)︃
, (1.62)

with

v = −ε
(︃
c1|B|
3|A|

sgn(AC) + F
A

)︃
, (1.63)

and

W =

√︄
12|C|
c1|B|

. (1.64)

Let us seek a soliton which is stationary in the laboratory frame; we have already accomplished

∂t0n1 = 0 by a choice of u0; we can similarly set ∂t1n1 = 0 by an appropriate choice of U1. If we choose U1

so that F = −c1B/3 sgnBC, then the soliton is stationary:

n = n0 + εc1 sgn(BC) sech2
(︂ x
W

)︂
. (1.65)

1.5.6 Dissipation

Now, we return to the full KdVB equation (1.59). It does not appear that the KdV-Burgers

equation with G ̸= 0 has an analytic, solitonic solution. However, if G ≪ (A,B, C), then an approximate

solution is given by (1.62) but with time-dependent c1, as described in Mei et al. [28]. For clarity, we

can factor out this smallness as G = δG̃ so that δ ≪ 1 and G̃ is the same order as A. Then, another

short multiple scales expansion for n1 can be done in δ = O(G/A). To be consistent with our original

perturbation series, we require that ε≪ δ ≪ 1.

As usual, we expand n1 as n1 = n
(0)
1 + δn

(1)
1 and ∂t1 = ∂τ0 + δ∂τ1 . Then, to leading order, the

equation

L0n
(0)
1 := A∂τ0n

(0)
1 + F∂xn(0)1 +

B
2
∂x

(︂
n
(0)
1

)︂2
(1.66)

+ C∂3xn
(0)
1 = 0 , (1.67)

where we have again defined the linear operator L1 acting on n
(1)
1 . This is the ordinary KdV equation;

therefore, n(0)1 has the solution given by (1.61) with order-1 free parameter c1 > 0.

At next order in δ, we must allow the constant c1 to become time-dependent on a slow time-scale
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c1 = c1(τ1). Then, our equation is

L1n
(1)
1 := A∂τ0n

(1)
1 + F∂xn(1)1 + B∂x

(︂
n
(0)
1 n

(1)
1

)︂
+ C∂3xn

(1)
1

= −A∂τ1n
(0)
1 + G̃∂2xn

(0)
1 , (1.68)

where we have again defined the linear operator L1 acting on n(1)1 .

For certain inhomogeneous terms in (1.68), it is possible to generate secular (i.e. unbounded)

growth; since this is clearly no longer a localized solution, we wish to avoid this. Here, we will utilize a

multiple scales approach, though it will differ slightly from the method used in § 1.6 since the homogeneous

operator L0 is nonlinear. Following the example of Mei et al. [28], we note that L0 and −L1 are adjoints:

∫︂
dx
(︂
n
(1)
1 L0n

(0)
1 + n

(0)
1 L1n

(1)
1

)︂
= 0 . (1.69)

Then, substituting the right-hand sides of (1.67) and (1.68), we get the compatibility condition

∫︂
n
(0)
1

(︂
A∂τ1n

(0)
1 − G̃∂2xn

(0)
1

)︂
dx = 0 . (1.70)

Inserting the soliton solution for n(0)1 , we get an equation for c1(τ1):

ċ1 = −c
2
1|B|G̃
|C|A

4

45
. (1.71)

Then, solving this equation and converting back to time t1 gives

c1(t1) =
c1(0)

1 + t1
td

with td =
45A|C|

4c1(0)G|B|
, (1.72)

with c1(0) the initial value of the parameter c1(t1). Recall that this is derived under the assumption that

ε≪ O(G/A) ≪ 1.

Additionally, we can solve the KdV-Burgers equation numerically for arbitrary G; this shows

similar behavior to the analytic approximation (cf. figures 1.1 and 1.2). That is, the soliton slowly decays

as it progresses.
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Figure 1.1. Solitonic solution to KdV-Burgers. Values used were A = 0.88, B = −0.70, C = −0.060,
F = −1.1, and G = 0.53 with the height normalized to 4.0 × 108 cm−2. This choice of parameters gives
a soliton propagating in the +x direction and a counter-current u0 in the −x direction (indicated by
the arrow).
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Figure 1.2. Solitonic solution to KdV-Burgers showing decay as a function of time. Values used
were A = 0.88, B = −0.70, C = −0.060, F = −1.1, and G = 0.53 with the height normalized to
4.0 × 108 cm−2.
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1.6 Multiple Scales Expansion

Now, we wish to study the previous solitonic solution in more generality. Here, we will allow for

an arbitrary uniform, time-independent background current u0.

As we have seen previously, the nonlinearities affect the propagation velocity v (cf. (1.63)). This

is an example of a singular perturbation and requires the use of singular perturbation theory. Singular

methods such as Poincaré-Lindstedt are only applicable to steady or periodic solutions. Since we are

interested in decaying solutions, we need to make use of the method of multiple scales. Note that this

approach is similar to that employed by Akbari-Moghanjoughi [29] in the study of partially degenerate

electron-ion plasmas.

First, unlike the previous section, we will nondimensionalize the timescale so that ∂t = ∂x. Now, if

we introduce a series of timescales t0 = t, t1 = εt, t2 = ε2t, . . . each presumed independent, the chain rule

gives
∂

∂t
=

∂

∂t0
+ ε

∂

∂t1
+ ε2

∂

∂t2
+ . . . . (1.73)

Further, we now assume that each variable is a function of all time scales: n = n(x, t0, t1, t2, . . .).

If we again restrict to 1D motion and collect terms by powers of ε we get the following equations:

Leading Order:

∂n1
∂t0

+ γ2n0u0
∂u1
∂t0

+ u0
∂n1
∂x

+ n0γ
2 ∂u1
∂x

= 0 , (1.74a)

γ3(ε0 + P0)
∂u1
∂t0

+ γu0
∂P1

∂t0
+ u0γ

3(ε0 + P0)
∂u1
∂x

+ γ
∂P1

∂x
+An0γ

∂n1
∂x

+An2
0u0γ

3 ∂u1
∂x

= 0 , (1.74b)

First-Order Correction:

∂n2
∂t0

+ γ2n0u0
∂u2
∂t0

+ u0
∂n2
∂x

+ n0γ
2 ∂u2
∂x

= RHS , (1.75a)

γ3(ε0 + P0)
∂u2
∂t0

+ γu0
∂P2

∂t0
+ u0γ

3(ε0 + P0)
∂u2
∂x

+ γ
∂P2

∂x
+An0

∂n2
∂x

= RHS . (1.75b)

Again, we have used the electrostatic coupling A according to (1.28). See § 1.D for the terms on the

right-hand side.

Notice that, as is often the case for multiple scales analyses, the linear operator acting on n1, u1,

etc in (1.74a) and (1.74b) is identical to the linear operator acting on n2, u2, etc in (1.75a) and (1.75b).

Furthermore, since this operator is linear, we do not need to employ the operator formalism of § 1.5.6, but
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can instead use a linear algebraic approach similar to § 1.5 (with the addition of another timescale, t1).

1.6.1 Leading Order Equations

Using ε = Pd and combining equations like

γ2d

[︄
An0

∂

∂x
+
P0K0

n0

(︃
u0

∂

∂t0
+

∂

∂x

)︃]︄[︁
(1.74a)

]︁
− γd

(︃
∂

∂t0
+ u0

∂

∂x

)︃[︁
(1.74b)

]︁
gives

0 = γ2d

(︄
−γ2P0(d+ 1− u20K0)

∂2u1
∂t20

− 2γ2P0u0(d+ 1−K0)
∂2u1
∂t0∂x

+
{︁
An2

0 + γ2P0

[︁
−u20(d+ 1) +K0

]︁}︁∂2u1
∂x2

)︄
.

(1.76)

This wave equation has solutions f(x+ v0t0) + g(x− v0t0) with v0 given by

v
(±)
0 =

−u0(d+ 1−K0)

d+ 1− u20K0
± 1

γ(d+ 1− u20K0)
(1.77)

×

√︄
K0(d+ 1)

γ2
+
An2

0

P0
(d+ 1− u20K0) . (1.78)

We will take the (+) sign so that v0 = v
(+)
0 ; the other can be recovered by taking u0 → −u0 and v0 → −v0.

Further, we restrict to unidirectional solutions u1(x, t0, t1) = f(x± v0t0, t1) for a definite choice of ±; here,

we choose (+) as well—the other propagation direction can be recovered by taking v0 → −v0.

For stationary perturbations (v0 = 0), we can solve for u0 to recover the result from § 1.5:

u0 = ±

√︄
[K0/(d+ 1)] + [An2

0/P0(d+ 1)]

1 + [An2
0/P0(d+ 1)]

. (1.79)

For reference, the velocity of propagation in the absence of a background flow (u0 = 0) is

v0 = ±
√︃

1

d+ 1

√︄
K0 +

An20
P0

. (1.80)

In general, n1, u1, and P1 have traveling wave solutions; neglecting solutions of the form f(x−
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u0t0, t1) that are simply advected by the background current, we find solutions given by

n1(x, t0, t1) = n1(x+ v0t0, t1) + F1(t1) , (1.81a)

u1(x, t0, t1) = − (u0 + v0)

n0γ2(1 + u0v0)
n1(x+ v0t0, t1)

+ F2(t1) ,

. (1.81b)

Here, we have arbitrary functions F1(t1) and F2(t2); by imposing boundary conditions n1 = 0 at x = ±∞,

we set F1 = 0. We will allow U1(t2) := F2(t2) to remain arbitrary; this uniform background current can be

superimposed on the soliton solution as in § 1.5 if desired 6.

Now, we can also see why it was important to take µ0 ≪ T0 small but finite. Had µ = 0 identically,

then the thermodynamic relations would require n0 = 0. Then, the leading order charge conservation

equation (1.74a) would give ∂t0n1 + u0∂xn1 = 0; i.e. charge density perturbations are simply advected

along by the background flow. That is, the density perturbations lack any dynamic propagation and are

“frozen-in.” Since the other dependent variables are proportional to n1, we see P1 and u1 are similarly

affected. Hence, if we want a dynamic disturbance, we require µ0 ̸= 0; intuitively, this is understandable as

there are no net charge carriers at the Dirac point.

1.6.2 First-Order Corrections

Now considering the first-order corrections, preventing secular growth of the higher-order terms

(i.e. n2, u2, etc) requires imposing a compatibility condition on the lower-order terms (i.e. n1, u1, etc). We

can manipulate the system as

γ2d

[︄
An0

∂

∂x
+
P0K0

n0

(︃
u0

∂

∂t0
+

∂

∂x

)︃]︄[︁
(1.75a)

]︁
− γd

(︃
∂

∂t0
+ u0

∂

∂x

)︃[︁
(1.75b)

]︁
6Note that it is possible to generate a stationary soliton by appropriate choice of F1 instead, though

the resulting coefficients will be different.
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which gives

γ2d

(︄
−γ2P0(d+ 1− u20K0)

∂2u2
∂t20

− 2γ2P0u0(d+ 1−K0)
∂2u2
∂t0∂x

+
{︁
An2

0 + γ2P0

[︁
−u20(d+ 1) +K0

]︁}︁∂2u2
∂x2

)︄

= LOT ,

(1.82)

where LOT represents lower-order terms (i.e. n1, u1, etc).

It is instructive here to change variables to χ(±)
0 = x+ v

(±)
0 t0. Then, the equation becomes

γ4P0d
(︁
d+ 1− u20K0

)︁(︂
v
(+)
0 − v

(−)
0

)︂2
× ∂

∂χ
(−)
0

∂

∂χ
(+)
0

u2

= LOT

(1.83)

This is where we encounter an apparent problem. Upon inserting our solutions for the lower-order terms,

we find the right-hand side depends on products and derivatives of f
(︂
χ
(+)
0

)︂
. This implies that the LOT

are solely functions of χ(+)
0 .

However, we see that functions of the form f(χ(+)) are also solutions to the homogeneous equation

in (1.82) due to the presence of the ∂
χ
(−)
0

operator.

So, products and derivatives of f(χ(+)
0 ) appear as inhomogeneous forcing terms that give rise

to secular terms. For instance, terms proportional to f (4)
(︂
χ
(+)
0

)︂
give rise to solutions of the form

χ
(−)
0 f (3)

(︂
χ
(+)
0

)︂
. This grows unbounded in χ

(−)
0 —and hence, in time t. This will eventually cause

|u2| > |u1|, invalidating the perturbation expansion. Thus, unless the LOT vanish identically, they will

give rise to χ(±)
0 -secular terms in u2—i.e. solutions growing unbounded in t0 or x.

Hence, we require the right-hand side to vanish and we are left with the desired compatibility

equation:

0 =
∂

∂χ
(+)
0

(KdVB[n1]) . (1.84)
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Here, (KdVB[n1]) represents the Korteweg-de Vries-Burgers equation, discussed earlier, acting on n1:

A′ ∂n1
∂t1

+ F ′ ∂n1

∂χ
(+)
0

+ B′n1
∂n1

∂χ
(+)
0

+ C′ ∂
3n1

∂χ
(+)
0

3 − G′ ∂
2n1

∂χ
(+)
0

2n1 = 0 ;

(1.85)

see § 1.E for the functional form of the coefficients.

The solution to the KdV-Burgers equation was already derived in § 1.5.6 and is simply reiterated

here for convenience:

n1

(︂
χ
(+)
0 , t1

)︂
= c1(t1) sgn(B′C′) sech2

(︄√︄
c1|B′|
12|C′|

×
[︃
χ
(+)
0 −

(︃
c1|B′|
3|A′|

sgn(A′C′) +
F ′

A′

)︃
t1

]︃)︄
, (1.86)

where

c1(t1) =
c1(0)

1 + t1/td
(1.87)

with

td =
45A′|C′|

4c1(0)|B′|G′ , (1.88)

with c1(0) the initial amplitude of the soliton.

1.7 Analysis

Nondimensionalizing helped ensure that all quantities were order O(1) and any information about

their magnitude was solely contained in ε prefactors. However, having ordinary, dimensional expressions is

more useful for comparing with experiments or existing literature. Therefore, the KdV-Burgers coefficients

are written in terms of ordinary, dimensional variables in §§ 1.E and 1.F 7. Note that the coefficients are

still dimensionless and order unity 8.
7A few terms were simplified using Kronecker deltas in §§ 1.E and 1.F. For instance, substituting the

dimensional expressions into G′ generates an ε−q term multiplying σQ and an ε−p term multiplying η and
ζ. However, these can be neglected: as mentioned at the end of § 1.B, σQ carries an implicit δq,0 while η
and ζ have implicit δq,0 and δq,0O(ζ)/O(η), respectively. Similarly, the thermodynamic contribution of F ′

has a factor of ε−m2

; however, given the presence of the Kronecker deltas, this is equivalent to ε−1.
8Actually, as written, the coefficients in §§ 1.E and 1.F have all had a common factor of

εp/2−q/2
√︁

O(σQ)/O(η) removed for brevity.
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The observables that characterize the system, to this order, are the amplitude, width, speed, and

decay period of the soliton. The amplitude is simply given by

|n1| = l−d
ref ε

(d+2)/4εc1(t) sgn(B′C′) := nmax . (1.89)

We can use nmax to eliminate c1 in the following expressions 9. Furthermore, we will factor out the explicit

factors of ε and lref from the KdV-Burgers coefficients; we will denote the original, order unity, coefficients

with a caret. Then, we can write the speed as

v := v0 − εvF

(︄
c1B̂′

3Â′
sgn(B′C′) +

F̂ ′

Â′

)︄

= v0 −
nmaxB′

3A′ − vF
F ′

A′ . (1.90)

Similarly, the width is given by

W := ξ

⌜⃓⃓⃓
⎷12

⃓⃓⃓
Ĉ′
⃓⃓⃓

c1

⃓⃓⃓
B̂′
⃓⃓⃓ =√︃ 12C′

nmaxB′ . (1.91)

Finally, the soliton decays with

nmax(t) := l−d
ref ε

(d+6)/4c1(t) sgn(B′C′) =
nmax(0)

1 + t/td
, (1.92)

and decay period

td :=
1

ε

45Â′
⃓⃓⃓
Ĉ′
⃓⃓⃓
ξ

4c1(0)Ĝ′ ˆ|B|′vF
=

45A′C′

4nmax(0)vFG′B′ . (1.93)

Here, nmax(0) is the initial value of nmax. The factor of ε in the first equality came from converting our

t̂1/t̂d to tεξ/t̂dvF := t/td.

We see that, upon re-dimensionalizing, c1 and ε never appear alone. Therefore, simply defining

nmax as their combination causes all ε and c1 to drop out, showing that this is a one-parameter family of

solutions. Note that these results hold in general for all nondimensionalizations specified in § 1.B. Similarly,

notice that the factors of lref have all canceled: the observables are all independent of lref, as they must be

since lref is arbitrary.

As mentioned in § 1.4, not all of the system’s parameters are independent. It is helpful to re-iterate

here which can be set freely. Taking into account the thermodynamic relations, one experimentally useful
9Hence, c1 is the normalized, order-unity analog of nmax.
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set of independent parameters would be T0, n0, nmax(0), u = u0 + εU1, d1, d2, and κ.

1.7.1 Relation to Previous Results

As mentioned in the introduction, Svintsov et al. [18] performed a similar perturbative analysis of

solitons, though that analysis was restricted to the inviscid, Fermi liquid regime. It is straightforward to

compare the inviscid results presented in § 1.5.5 to those of Svintsov et al. [18].

First, our results for v0 in the case of no background flow, u0 = 0, are in agreement for the regime

where µ/T ≫ 1 and µ/T > 0, but they differ otherwise. However, this is to be expected: in setting up the

problem, Svintsov et al. [18] neglect the contribution of holes. If the contribution of holes is included in

their thermodynamic quantities, then our results are in agreement in both Fermi regimes, |µ/T | ≫ 1.

Nevertheless, the leading-order Dirac-regime speed v0 used by Svintsov et al. [18] and derived in

Svintsov et al. [30] has a minor error. There, the terms ik2Σ2
jvF /ω⟨p

−1
j ⟩, with j = e or h for electrons/holes,

appear in (28) and (29) of Ref. [30]. These terms arise from the ∇(vF ⟨pj⟩)/2 terms in the momentum

conservation equations, (8) and (9) of Ref. [30]. This corresponds to our pressure terms ∇Pj (though we

combine Pe and Ph as P = Pe + Ph). The issue arises when Svintsov et al. [30] restricts to leading order

terms when calculating v0. As we showed in (1.50), ∇P/P ∼ ε2 in the Dirac regime (i.e. K0 = 0), while

the inclusion of these ik2Σ2
jvF /ω⟨p

−1
j ⟩ terms in Svintsov et al. [30] implicitly assumes ∇P/P ∼ ε. On

removing these terms from the leading-order equations, the results Svintsov et al. [30] are consistent with

ours.

Furthermore, the Fermi-Dirac distribution function chosen by Svintsov et al. [18] differs from the

one chosen by Lucas and Fong [4] (and hence, used in this paper): Svintsov et al. [18] chose f(p) as

f(p) =
1

1 + exp((ε(p)− u · p− µ)/kBT )
, (1.94)

while Lucas and Fong [4] chose the manifestly covariant

f(p) =
1

1 + exp((pνuν − µ)/kBT )
, (1.95)

with pν = (|p|,p) and uν = (1,u)/
√︂
1− |u|2/v2F . This choice of distribution function is preferable as it

preserves the form of the dispersion relation ε = vF |p| under Lorentz boosts (with γ = 1/
√︁

1− (u/vF )2).

After accounting for these differences, our results are nearly in agreement. A few typographical
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errors 10 remain in the KdV equation and corresponding soliton solution and dispersion relation of Svintsov

et al. [18]. After repairing these errors, we have consistent solutions and dispersion relations.

It is worth noting Svintsov et al. [18] also use an isothermal assumption, though it is not directly

stated; this assumption is utilized when stating the formula 11

dε

ε
= 2ξ

dn

n
+ (3− 4ξ)

dT

T
, (1.101)

with ξ := n2/ε⟨ε−1⟩, and ⟨ε−1⟩ ≠ ε−1 is the average inverse energy. While ε depends on both n and T

the corresponding formula for dε /ε in Svintsov et al. [18] only has the dn /n term. In the Fermi regime,

|µ/T | ≫ 1 and ξ = 3/4, so this is a valid simplification. However, in the Dirac regime, ξ ≪ 1, and the

dT /T term cannot be neglected unless the system is isothermal, dT = 0.

10The sign of the β2 term multiplying u∂xu in (16) of Ref. [18] should be flipped. Additionally, the
expression for F (ν) in (26) should read

F (ν) = s̃20 −
β2

2
− β2

0

1 + ν

− β2
0β

2

(1 + ν)2
5− 6ξ

1− β2
+
νβ2

0(3− 4ξ)

(1 + ν)2
.

(1.96)

In the KdV equation, (27), the coefficient of the ν∂ζν term should be

(1− ξ)

(︃
2s̃20 −

4

3
ξ + 4β2

0

)︃
. (1.97)

Also, the solution to the KdV equation, (28), should be

δn(z) = δnmax cosh
−2

[︄
z

2

√︄
2

d1d2

s20
2s20 − v2F

δnmax

n0

]︄
, (1.98)

with (29) changed to

δnmax = 3
n0
2

u20 − s20
s20

, (1.99)

with corrections highlighted in bold.
For the u0 ̸= 0 case, (34) should be adjusted by flipping the sign of the γ term multiplying the u0∂xδu

term. Furthermore, the dispersion relation, (36), should read

s± =
u0(2− 2ξ0 + γ)±

√︂
s20(1 + γ) + u20

[︁
(2− 2ξ0 + γ)2 − (1 + γ)

(︁
3− 10

3 ξ0 + γ
)︁]︁

1 + γ
. (1.100)

11Note that Svintsov et al. [18] include factors of γ in the definitions of ε and n; here, they have been
factored out to match our definitions.

30



1.7.2 Role of gating

Our setup involves the use of conducting gates to screen the electrostatic interactions and make

the problem local, and hence more mathematically tractable. However, Akbari-Moghanjoughi [17] instead

considered solitons in ungated graphene; that analysis was restricted to the inviscid, T = 0 Fermi regime

with no background flow 12. While Akbari-Moghanjoughi [17] also derived solitonic solutions, a number of

the properties differed markedly from those derived here.

First, Akbari-Moghanjoughi [17] found that there exists a critical propagation velocity vc that

separates periodic, wavelike solutions (v < vc) and solitonic solutions (v > vc). This was found to be

vc = 3/
√
38 for d = 2 and vc = 2/3 for d = 3. However, there appears to be a small error in the derivation:

(7) for ϕ involves a term n−2/3 which should be n−3/2. Repeating the derivation with this change shows

that the critical propagation velocity is actually vc = 1/
√
d. Our (u0 = 0, Fermi regime) solutions have

velocity

v =
1√
d

√︄
1 +

An2
0d

P0(d+ 1)
+ εv1 ≥ 1√

d
= vc , (1.102)

where we have used the fact that sgn v1 = sgn v0. Thus, we see that our soliton’s speeds are bounded below

by the critical speed, while Akbari-Moghanjoughi [17] found that solitons speeds should be bounded above

by the critical speed.

Another difference involves the relation between the soliton height and speed. Using our expression

for v1, we found that the total speed with u0 = 0 is

v = v0

(︃
1 + ε

c1|B|
3|v0A|

)︃
(1.103)

while the soliton height is εc1, with a free parameter c1 > 0 13. Thus, increasing the height corresponds to

increasing the speed, and vice versa. However, Akbari-Moghanjoughi [17] found that increasing the height

causes the speed to decrease. Nevertheless, we both find the same, inverse relation between the height and

width (as required by total charge conservation).

Furthermore, Akbari-Moghanjoughi [17] finds only dark (n1/n0 < 0) solitons. However, our

12Note that Akbari-Moghanjoughi [17] uses a different terminology. There, the term “Dirac fluid” refers
to massless fermions (as in graphene) while “Fermi liquid” refers to massive fermions. Both of these are
dealt with in the completely degenerate T = 0 limit. By contrast, we follow the terminology of Lucas and
Fong [4] to analyze both a “Fermi liquid” (kBT ≪ µ) and “Dirac fluid” (µ ≪ kBT ) regime for massless
fermions. Therefore, the “Dirac” results in Akbari-Moghanjoughi [17] correspond to our T = 0 Fermi
regime, while the “Fermi” results correspond to massive fermions not discussed here. Interestingly, bilayer
graphene can induce such an effective mass for the quasiparticle excitations [31].

13Here we used the fact that sgn(A′C′) = sgn(v0) for u0 = 0
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solutions only give bright (n1/n0 > 0) solitons. Referring to (1.86), we have sgn(n1) = sgn (B′C′). Here, we

will consider the Dirac (m > 0) and Fermi (m < 0) cases separately. For the Dirac regime, with K0 = 0, it

is readily apparent that B′C′ (cf. § 1.E) is positive, yielding bright solitons.

Showing that the same holds true in the Fermi regime, with K0 = (d + 1)/d, is more involved.

Using the expressions for B′ and C′ from § 1.E, we see

sgn

(︃
n1
n0

)︃
= sgn

(︁
3d(u0 + v0)

2 − (1 + u0v0)
2
)︁
. (1.104)

We see that this is clearly positive when u0 = 0; using the expression for v0, we find it only crosses zero 14

when u0 is given by

u0 = ±1 or
√︁

2λ(3d− 1) + 4± λ
√
3d

2− λ

or −
√︁
2λ(3d− 1) + 4± λ

√
3d

2− λ
,

(1.105)

with λ := An2
0/P0(d+ 1) as before. Finally, it can be checked that each of these solutions are larger (in

magnitude) than unity; that is, B′C′ does not cross zero in the range u0 ∈ (−1, 1). Thus, for |u0| < 1, we

find that n1/n0 > 0, and only bright solitons are permitted. Note that the adiabatic B′ and C′ coefficients

in § 1.F are identical to their isothermal Fermi counterparts: therefore, the same reasoning shows the

adiabatic system only has bright solutions, too.

Thus, it appears that a number of our findings are directly opposed to those of Akbari-Moghanjoughi

[17]. While one might be tempted to compare the results of Akbari-Moghanjoughi [17] with our solutions

by taking the gating distance di → ∞, various quantities (e.g. v0, W , etc) would no longer be order-1,

violating our expansion assumptions. Instead, it appears that the presence or absence of gates can create

qualitatively different results. However, this should not be surprising: the electric field with gates is given

by derivatives of the density E ∝ ∂xn+ (d1d2/3)∂
3
xn+ . . .. On the other hand, the electric field without

gates is given by the anti-derivative of n: E(x) ∝
∫︁
dy n(x)/|x− y|2. More specifically, the x-k Fourier

transform of the electric potential with gates is ϕ̂ ∝ (1− k2d1d2/3+ . . .)n̂; highly-dispersive, large k-modes

increase the electric field’s magnitude. The potential without gates is ϕ̂ ∝ −n̂/k2, so large k-modes decrease

the electric field’s magnitude. Given that this is the only difference between the setup of the two problems,

it appears that this is the origin of the differences in the results 15.
14Note that this expression has a removable singularity at u0 = 0; however, the double-sided limit exists

and is 0.
15A number of other minor differences exist between our work and that of Akbari-Moghanjoughi [17]:

there, velocities were normalized by c, giving vc = c/
√
d. However, we found it more useful to normalize

by vF—yielding vc = vF /
√
d. This difference arose because Akbari-Moghanjoughi [17] chose to define
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1.7.3 Energy and Entropy

It is interesting to determine the rate of energy loss by the soliton to dissipation. We can accomplish

this by integrating the KdV-Burgers equation (1.59). Using (1.81b) to replace n1 with u1, we get (with

new coefficients denoted by primes)

A′∂t1u1 + F ′∂xu1 + C′∂3xu1 + B′u1∂xu1 = G′∂2xu1 . (1.106)

Multiplying this equation by u1 gives

1

2
A′∂t1u

2
1 +

1

2
F ′∂xu

2
1

+ C′∂x
(︁
u1∂

2
xu1
)︁
− 1

2
C′∂x(∂xu1)

2
+

1

3
B′∂xu

3
1

= G′∂x(u1∂xu1)− G′(∂xu1)
2
.

(1.107)

If we integrate once over all of x-space and impose boundary conditions u1 = ∂xu1 = 0 at x = ±∞, we

find
1

2

(︃
∂t1 +

F ′

A′ ∂x

)︃∫︂
dxu21 = −G′

A′

∫︂
dx (∂xu1)

2
. (1.108)

The left-hand side represents the time rate-of-change of the kinetic energy in a moving reference frame;

this is more easily seen if the background current U1 is removed so F ′ = 0.

Using the expressions for A′ and G′ (cf. § 1.E), the right-hand side is negative semi-definite for the

case with no background flow u0 = 0. Thus, we see that—as expected—the viscosity causes the kinetic

energy to decrease.

When u0 ≠ 0, it is more difficult to see that G′/A′ ≥ 0, as it must be for viscosity to remove

energy. Here, we will again treat the Dirac and Fermi regimes separately. Starting with the Dirac case and

uµ = (c,u)/
√︁
1− (u/c)2 following Zhu and Ji [32], while we defined uµ = (vF ,u)/

√︁
1− (u/vF )2. Again,

the choice of vF , as opposed to c, is preferred since it preserves the form of the dispersion relation. Replacing
the original choice of uµ (involving c) with our choice (involving vF ) in Akbari-Moghanjoughi’s derivation
yields vc = vF /

√
d, i.e. our minimum propagation speed.

Finally, our expressions for the pressure differ slightly: it appears Akbari-Moghanjoughi [17] considered
only g = 2 spin degeneracy in (4), rather than graphene’s g = 4 spin/valley degeneracy. This only
affects the normalization constant (A2D or A3D in, for example, (11)), and the subsequent conclusions are
unaffected.
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using the expressions for A′ and G′ from § 1.E, we find

sgn

(︃
G′

A′

)︃
= sgn

(︄
σQγ

2

(︃
P0

n0

)︃2
(u0 + v0)

4

1 + u0v0
(d+ 1)2

+ (u0 + v0)
2

[︃
ζ + 2η

(︃
1− 1

d

)︃]︃)︄
,

(1.109)

The only questionable term is σQ/(1 + u0v0). This term is positive for

|u0| <
1√︁

1 + [An2
0/P0(d+ 1)]

. (1.110)

However, it blows up when |u0| → 1/
√
1 + λ, with λ := An2

0/P0(d+ 1). This causes u1 and P1 to become

unbounded and invalidates our perturbation expansion. Thus, |u0| < 1/
√
1 + λ is a constraint on the

allowed parameters that make our derivation consistent. Under this constraint, A′G′ ≥ 0 in the Dirac

regime, as it must be.

In the Fermi regime, we instead have

sgn

(︃
G′

A′

)︃
= sgn

⎛⎜⎜⎝σQγ2(︃P0

n0

)︃2

(d+ 1)
(u0 + v0)

2

(1 + u0v0)

+
d

d+ 1

(u0 + v0)
2
[︁
ζ + 2η

(︁
1− 1

d

)︁]︁
(u0 + v0)[v0(d− u20) + u0(d− 1)]

⎞⎟⎟⎠ .

(1.111)

It is easy to show 16 that (u0+ v0)[v0(d−u20)+u0(d− 1)] > 0 for d > 1 and |u0| < 1; recall that we already

required |u0| < 1, otherwise γ = 1/
√︁
1− u20 would blow up. Therefore, the η and ζ terms are positive.

As in the Dirac regime, we also have a σQ/(1 + u0v0) term. Though v0 is different in the Fermi

regime, the same reasoning also shows that this quantity is similarly positive for |u0| < 1/
√
1 + λ. Thus,

as long as |u0| < 1/
√
1 + λ, we see that our theory is well-defined, A′G′ ≥ 0, and viscosity causes energy to

decrease, as required by the second law of thermodynamics. Finally, note that the adiabatic G′ in § 1.F

differs slightly from this isothermal Fermi G′; nevertheless, it shares the same questionable terms. Thus,

the same exact reasoning shows G′/A′ ≥ 0 for the adiabatic regime 17.

16This can be seen by noting that the expression is positive for u0 = 0 and only crosses zero at ±1,
±
√
1 + λd, or ±

√
1 + λd/

√
1 + λ, with λ := An2

0/P0(d + 1). These are each greater than (or equal to)
unity for d ≥ 1; therefore, the entire expression is non-negative for |u0| ≤ 1.

17The µ0n0 term is non-negative because sgnµ0 = sgnn0; cf. (Dirac: C143).
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To further investigate the soliton’s decay, it is helpful to analyze entropy generation. Lucas and

Fong [4] provide the following formula 18 for the divergence of the entropy current sµ

∂µs
µ =

1

T
∂µuν

[︁
ηPµρPνα

(︁
∂ρuα + ∂αuρ −

2

d
gρα∂βu

β
)︁

+ ζPµν∂αu
α
]︁
+
σQ
T

(︂
T∂µ

µ

T
+ Fµρu

ρ
)︂

× Pµν
(︂
T∂ν

µ

T
+ Fνρu

ρ
)︂
.

(1.112)

For simplicity, consider the case with no background flow, u0 = U1 = 0. Upon implementing our

usual nondimensionalization in the Dirac regime (cf. § 1.4) we see the highest-order terms are

∂µs
µ =

η

T0
∂iuj1

[︁
∂i(u1)j + ∂j(u1)i −

2

d
gij∂ku

k
1

]︁
+

ζ

T0

(︁
∂ku

k
1

)︁2 (1.113)

Then, restricting to 1-dimensional motion and using our thermodynamic relations and first-order solutions,

we find

∂µs
µ = (∂xn1)

2

[︃
ζ + 2η

(︃
1− 1

d

)︃]︃
v20
T0n20

+ O(ε) . (1.114)

We see that entropy is generated at locations where the derivative of n1 is largest: for solitons,

this occurs at the leading and trailing faces (figure 1.3). Further, as the soliton spreads out, the entropy

production slows over time (figure 1.4). Finally, for the Dirac regime, σQ-induced entropy production is

suppressed to sub-leading order; η and ζ are the main producers of entropy.

1.8 Experimental Proposal

Here, we will briefly detail the applicability of this theory to experiment.

1.8.1 Values of Parameters

It has been more convenient to deal with nondimensional variables throughout the derivation.

However, we now convert back to dimensionful quantities to better understand their physical magnitude.

It is worth emphasizing that this conversion is dependent on the nondimensionalization we chose. The

values calculated in this section are specific to the Dirac regime nondimensionalization laid out in § 1.4; a
18Note that we have added an additional factor to the σQ term in order to account for the electrostatic

interactions.
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Figure 1.3. The entropy production ∂µsµ (a) and soliton charge density n1 (b) at select times. Values
used were A = 0.88, B = −0.70, C = −0.060, F = −1.1, and G = 0.53 with the height normalized to
4.0 × 108 cm−2.
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Table 1.1. Values of the various parameters in terms of the small parameter ε. Sample values are given
for ε = 0.1 and dimension d = 2.

ε-dependence

Sample
Nondim.
Value

Sample
Dim. Value

n0 εn̂0 4 × 1010 cm−2 1.0 4.0 × 109 cm−2

di ε−5/4d̂i 50 nm 1.0 890 nm
A ε−5/4Â 5.3 × 10−36 J m2 0.22 2.1 × 10−35 J m2

T0 ε1/4T̂0 150 K 0.70 60K
P0 ε3/4T̂ 3

0 8.4 × 10−7 N m−1 1.1T̂ 3
0 5.9 × 10−8 N m−1

µ0 ε3/4 n̂0

T̂0
2.1 × 10−21 J 1.1 n̂0

T̂0
6.1 × 10−22 J

σQ ε1/2σ̂Q 0.24 kΩ−1 0.63 0.048 kΩ−1

η η̂ 4.2 × 10−20 kg s−1 1.1 4.8 × 10−20 kg s−1

similar analysis could be performed for the Fermi regime nondimensionalization specified in § 1.B.1.

The dimensional and nondimensional values of the various parameters in the problem are listed in

table 1.1. For the remainder of this section, we will specialize to dimension d = 2. Note that we are using

the values vF = c/300 [4] and lref = 50 nm. For computing the sample values, we have chosen ε = 0.1. We

see that all of the nondimensional parameters are approximately equal to unity, as required. However,

there are a few points to note.

In previous experiments, the distance between the graphene and the gates di (i = 1, 2) was usually

on the order of 300 nm [33]. We require a larger gate distance of di = 890 nm corresponding to d̂i = 1.0.

The static dielectric constant κ must be chosen relative to d1 and d2. For the remaining normalizations to

be consistent, we require κ ≈ 1. That is, the graphene should be suspended from its contacts with vacuum

filling the gap between the graphene sheet and the conducting gates.

It is important to reiterate the way we nondimensionalized the intrinsic conductivity. At a

temperature of 60 K, σQ/e2 has a fixed value of 0.20ℏ−1. We needed to relate the relative sizes of

nondimensional parameters ε and σQℏ/e2 to solve the problem. Our derivation assumed ε ∼ 0.1, so that

ε1/2 ∼ σQℏ/e2. This fixes the value of σ̂Q as σ̂Q = 0.20ε−1/2.

Notice that if ε is increased, then the numerical value of σ̂Q decreases; hence, the intrinsic

conductivity becomes a higher-order correction and drops out of our first-order solutions. Conversely, if

ε is decreased, σ̂Q could grow large and require a different nondimensionalization for σQ. For ε small

enough, it would be more appropriate to take σQ = ε0σ̂Qe
2/ℏ. This alternative would require different

nondimensionalizations for all variables (cf. § 1.B); nevertheless, similar solutions would result (though the

viscosity would no longer appear in the first-order corrections). Similar considerations also apply for η,
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though it is considerably simpler given that ηldref/ℏ ≈ 1.

It is also useful to determine the values of the parameters appearing as coefficients in the KdV

and KdV-Burgers equations (i.e. A, B, C, and G). For instance, consider the case with v0 = 0, u0 > 0, and

U1 = 0; we will also set ζ = 0 and choose c1 = 1.0. Using the above values and the bare thermodynamic

coefficients C0 and C1 (cf. § 1.A), we find A = 0.88, B = −0.70, C = −0.060, F = −1.1, and G = 0.53 (cf.

figure 1.1). Importantly, we see that B, C, and G are all roughly the same order, implying nonlinearity,

dispersion, and dissipation are equally important.

1.8.2 Source and Signal

As we discussed in § 1.4, the characteristic length of the disturbance ξ is related to lref as

ξ = lref/ε
(d+5)/4. For d = 2 and ε = 0.1 with graphene’s lref = 50 nm, we find a pulse width of approximately

2.8 µm. For the u0 = 0 case, the propagation speed is approximately v = 0.43vF ∼ 0.43c/300, giving a

bandwidth of roughly v/ξ = 150 GHz.

If we consider the stationary soliton case v0 = 0, we need to source a background current u0 ≠ 0 to

counteract its propagation. In § 1.5, we found that u0 = 0.40vF = 4.0 × 105 m s−1; with a charge density

of n0 = 4.0 × 109 cm−2, we need a current density of K0 = |en0u0| = 2.5 Am−1.

As shown previously, the system has a (dimensional) characteristic decay time of

td =
45lrefA|C|

4ε11/4vFG|B|
. (1.115)

Inserting the previously chosen values for these coefficients, we find td ≈ 44 ps.

To estimate the magnitude of the signal, we first calculate the background chemical potential

µ0 = ε3/4ℏvF l−1
ref µ̂0 = 6.1 × 10−22 J. From this, we find the background voltage V0 = µ0/e = 3.8 mV. Then,

the signal voltage V1 = µ1/e would be a factor of ε ∼ 0.1 smaller, or 380 µV.

1.8.3 Joule Heating

For the non-propagating case (v0 = 0), a large uniform background current u0 flows through the

graphene; this will cause Joule heating of the entire sample due to graphene’s resistance. It is worthwhile

to verify that this heating occurs sufficiently slowly so as not to interfere with the soliton’s propagation

and decay.
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Figure 1.5. Side view of the proposed experimental setup; the graphene is sandwiched between two
layers of dielectric, and further sandwiched between two conducting gates. A source and sink on either
edge of the graphene generate the background current u0. The pulse generator produces the soliton and
the detector detects it.

The power produced, per unit area, by Joule heating is

PJ = K2
0ρ , (1.116)

with resistivity ρ and surface current density K0. As a worst-case scenario, assuming the graphene does

not lose any heat to the environment, this power goes solely towards heating the graphene.

The specific heat of graphene [34] at 60 K is approximately 60 mJ g−1 K−1. Given an atomic mass

of 12.01 gmol−1 for carbon and an atomic density of 6.3 mol cm−2 for carbon atoms in graphene [35], we

find a specific heat of cs = 4.5 × 10−9 J cm−2 K−1.

Therefore, the soliton’s temperature will change at a rate of PJ/cs = 3.0 Kns−1. Given that the

suggested experiment would be measuring the soliton’s temperature anomaly T1 = εT0, it would only be

sensitive to Joule heating after a temperature change of similar magnitude had been generated. Hence, it

would take approximately T1cs/PJ = 2.0 ns for the system to heat appreciably. Given that this time is

long compared to the characteristic timescales of the problem (tchar and td), we are justified in neglected

Joule heating.

Notice that the characteristic Joule-heating time is also long compared to the electron-phonon

scattering time; this implies the electrons and graphene lattice would thermalize relatively quickly compared

to the Joule heating time. This is why we utilized the specific heat of the entire graphene system (electrons

and lattice) as opposed to the specific heat of only the electrons.

1.8.4 Experimental Setup

The solitonic solutions we have derived offer a means to experimentally measure the viscosity η of

graphene. In particular, the viscous coefficients σQ, η, and ζ all enter into the coefficient we have denoted
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G. Therefore, if the value of G can be measured, then the viscosity can be determined.

Referring to the expression for G, we see that η only appears in the combination ζ + 2η(1− 1/d);

hence, it is this quantity that can be determined from experiment. In practice, we expect ζ ≪ η, and thus

this procedure offers an estimate for η [4]. Furthermore, determining η from G requires knowing the values

of all the other parameters P0, n0, etc. Most of these are experimentally determined and hence known; the

only other necessary quantity is the intrinsic conductivity σQ. Previous measurements of this quantity

exist [7, 8]; therefore, it can be treated as a known quantity.

An initial disturbance needs to be generated in the graphene; for instance, this can be accomplished

via a short voltage spike produced by a thin contact placed laterally atop the sample (cf. figure 1.5). It is

well known that the KdV equation causes a localized profile to split into a series of left- and right-moving

solitons [36] sorted by height. After the disturbance is allowed to propagate a sufficient distance, the

individual solitons should have separated enough to be separately distinguished. The actual population of

solitons generated by the pulse will be dependent on the contact’s shape and voltage profile: the distribution

of soliton heights and widths can be determined by the inverse scattering transform [37].

Given that the solitons represent a localized change in the charge density, it should be possible

to detect them with a voltmeter; a voltage time-series could then reconstruct the soliton profile. The

dissipative terms cause two measurable effects: a change in the propagation speed and a decay of the

soliton’s height. This requires measuring either the soliton’s speed or amplitude as a function of time.

Depending on the particular experimental setup, one effect might be more accessible than the other. Next,

we describe two possible experimental setups.

No Propagation

Without a background current u0 = 0, the soliton propagates at a speed v ≈ vF ≈ c/300. Such

a fast propagation speed could make measurement difficult. One way to mitigate this is to impose a

counter-current u0 in the opposite direction of propagation; as detailed in § 1.5, it is possible to choose

a background current u0 + εU1 such that the soliton is stationary in the laboratory frame v0 + εv1 = 0.

Doing this should make obtaining the height measurements much easier. In fact, the speed measurements

are still feasible in this setup since the dissipation causes v1, and hence the control current U1, to decay

over time.

One possible barrier to implementation of this method is the boundary condition of graphene. So

far, we have neglected boundary effects by assuming one-dimensional propagation; depending on graphene’s
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boundary conditions, this might not be justified. Graphene most likely satisfies one of two possible

boundary conditions [38]: either a no-slip boundary (u = 0) or no-stress (no normal velocity gradient,

i.e. [n̂ · ∇]u = 0 with n̂ the boundary unit normal). If the actual boundary is no-slip, our 1-dimensional

propagation assumption is violated; in this case, the sample must be sufficiently wide to ignore edge effects,

or a different experimental setup (cf. the next section) is needed. Conversely, a no-stress boundary permits

our one-dimensional soliton solution. There is some experimental evidence that no-stress boundaries are the

correct boundary type [4], and theory predicts that weakly disordered edges at low temperature (T ≲ 40 K)

have a slip-length on the order of 50 µm. Therefore, it is plausible that, for graphene samples of width at

most ∼ 100 µm, a no-stress boundary condition is appropriate, allowing for large u0 counter-current.

No Background Current

If graphene instead possesses a no-slip boundary condition, a different experimental method will

be needed. For this setup, we will not use a background flow, u0 = 0. Then, the boundary conditions are

mostly irrelevant, since the fluid velocity is now of order O(u1) = εvF and can therefore be made small.

For this setup, height measurements are more suitable; after one decay period τ0, the height decreases by a

factor of 1
2 while the propagation velocity changes by a factor of δv/v0 = 1

2ε≪ 1.

Following the method proposed by Coelho et al. [39], we recommend periodically producing a

voltage pulse and measuring a set distance away. By averaging over many realizations, it should be possible

to obtain a wave profile. This could be repeated at a few locations, thereby measuring the decay rate as a

function of downstream position.

This method is likely more difficult experimentally given that it requires taking measurements

at multiple locations sequentially. However, it has the benefit of being theoretically sound regardless of

graphene’s boundary conditions.

1.9 Conclusion

Graphene offers a fantastic environment for studying strong-coupling phenomena. Hydrodynamic

analysis presents a useful set of tools for analyzing the long-wavelength physics in such a clean, strongly-

coupled system. The Fermi liquid regime has much in common with ordinary metals and has been the

focus of many experiments in graphene; meanwhile, the Dirac fluid regime hosts a number of intriguing

phenomena. When graphene is placed in a hydrodynamic regime, the electrons obey relativistic Navier-

Stokes equations and can form solitonic solutions. An ordinary perturbation expansion was used to derive
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the special case of a stationary soliton on a background counter flow. Additionally, a full multiple scales

asymptotic analysis was utilized to treat the general case with arbitrary background flow. These methods

furnished analytic approximations to the shape and speed of the predicted solitons. This analysis did not

deal with the boundary conditions of the fluid flow; this offers an interesting avenue for future research.

By including dissipation in our system, we were able to model the decay of the solitons. The

analysis showed that dissipation causes both a decay of the soliton’s height as well as its speed. This decay

rate offers a means to experimentally measure dissipation in the hydrodynamic regime of graphene. The

results of this paper help elucidate the connection between solitons in the Fermi and Dirac regimes of

graphene and put forward a new method for measuring hydrodynamically relevant parameters such as the

intrinsic conductivity and shear viscosity.
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1.A Thermodynamic Coefficients

Following Lucas and Fong [4], we can derive the pressure for weak coupling, starting from the

grand canonical ensemble for a free Fermi gas in d dimensions

P (µ, T ) = −ΦG

V
=
kBT

V

∑︂
A,p

ln(ZA,p)

= kBT
∑︂
A

∫︂
ddp

(2πℏ)d
ln
(︂
1 + e(qAµ−εA(p))/kBT

)︂
= −4(kBT )

d+1Ωd−1(d− 1)!

(2πℏvF )d
(︁
Lid+1(−eµ/kBT )

+ Lid+1(−e−µ/kBT )
)︁
.

(1.117)
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Here, we have ΦG the grand potential, Z = exp(−ΦG/kBT ) the grand partition function, and V the volume.

We made use of the fact that, for a free Fermi gas, the grand partition function is separable over modes (A

and p): Z =
∏︁

A,p ZA,p. Additionally, we have the excitation energy εA(p) = vF |p|, Ωd−1 = 2πd/2/Γ(d/2)

the surface area of a unit (d − 1)-sphere, Γ is the gamma function, and Lid the polylogarithm of order

d+ 1. Note that the sum over species runs over spin/valley degeneracy (giving a factor of 4) as well as

electrons/holes with qA = ±1. More specifically,
∑︁

A ln(ZA) = 4 ln(Z1(µ, T )) + 4 ln(Z1(−µ, T )).

Likewise, the carrier density is given by

n(µ, T ) =
∂P

∂µ
=

4(kBT )
dΩd−1(d− 1)!

(2πℏvF )d

×
(︁
−Lid(−eµ/kBT ) + Lid(−e−µ/kBT )

)︁
. (1.118)

We can develop series (asymptotic) expansions in Dirac (Fermi) regimes.

In the Dirac regime (µ≪ kBT ), the polylogarithm can be approximated as [41]

Lis(−ez) = −
∞∑︂
k=0

η(s− k)
zk

k!
, (1.119)

for |z| < π, with η the Dirichlet eta function. Thus, the pressure is given by

P (µ, T ) = 8
(kBT )

d+1Ωd−1(d− 1)!

(2πℏvF )d

×
∞∑︂
k=0

η(d+ 1− 2k)

(2k)!

(︃
µ

kBT

)︃2k

= 8
(kBT )

d+1Ωd−1(d− 1)!

(2πℏvF )d

[︄
η(d+ 1)

+
η(d− 1)

2

(︃
µ

kBT

)︃2

+ O
(︃

µ

kBT

)︃4
]︄
,

(1.120)
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and the carrier density is

n(µ, T ) =
8µ(kBT )

d−1Ωd−1(d− 1)!

(2πℏvF )d

×
∞∑︂
k=0

η(d− 1− 2k)

(2k + 1)!

(︃
µ

kBT

)︃2k

=
8µ(kBT )

d−1Ωd−1(d− 1)!

(2πℏvF )d
[︂
η(d− 1)

+
η(d− 3)

6

(︃
µ

kBT

)︃2

+ O
(︃

µ

kBT

)︃4]︂
.

(1.121)

For instance, for d = 2, we find

P =
(kBT )

3

(ℏvF )2

[︄
4η(3)

π
+

2 ln(2)

π

(︃
µ

kBT

)︃2

+ O
(︃

µ

kBT

)︃4
]︄
, (1.122)

and

n =
µ(kBT )

(ℏvF )2

[︄
4 ln(2)

π
+

1

6π

(︃
µ

kBT

)︃2

+ O
(︃

µ

kBT

)︃6
]︄
. (1.123)

Instead, in the Fermi regime (µ≫ kBT ), an asymptotic expansion of the polylogarithm is given

by [41]

Lis(−ez) = −2

⌊s/2⌋∑︂
k=0

η(2k)

(s− 2k)!
(z)s−2k + O

(︁
e−z
)︁
, (1.124)

for Re{z} ≫ 1, while Lis(− exp(−z)) is sub-dominant and therefore can be neglected. Thus, we find

P (µ, T ) =
8|µ|d+1

Ωd−1

(2πℏvF )d

×
⌊(d+1)/2⌋∑︂

k=0

η(2k)(d− 1)!

(d+ 1− 2k)!

(︃
kBT

µ

)︃2k

=
8|µ|d+1

Ωd−1

(2πℏvF )d

[︄
1

2(d+ 1)d

+
π2

12

(︃
kBT

µ

)︃2

+ O
(︃
kBT

µ

)︃4
]︄
,

(1.125)
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and the carrier density is

n(µ, T ) =
8|µ|d sgn(µ)Ωd−1

(2πℏvF )d

×
⌊d/2⌋∑︂
k=0

η(2k)(d− 1)!

(d− 2k)!

(︃
kBT

µ

)︃2k

=
8|µ|d sgn(µ)Ωd−1

(2πℏvF )d

[︄
1

2d

+
π2(d− 1)

12

(︃
kBT

µ

)︃2

+ O
(︃
kBT

µ

)︃4
]︄
,

(1.126)

Again, for d = 2, we have

P =
|µ|3

(ℏvF )2

[︄
1

3π
+
π

3

(︃
kBT

µ

)︃2

+ O
(︃
kBT

µ

)︃4
]︄
, (1.127)

and

n =
µ2 sgn(µ)

(ℏvF )2

[︄
1

π
+
π

3

(︃
kBT

µ

)︃2

+ O
(︃
kBT

µ

)︃4
]︄
. (1.128)

Thus, we find the following coefficients

CF
0 =

8|µ|d+1
Ωd−1

(2πℏvF )d
1

2(d+ 1)d
(1.129)

CF
1 =

8|µ|d+1
Ωd−1

(2πℏvF )d
π2

12
(1.130)

and

CD
0 = 8

(kBT )
d+1Ωd−1(d− 1)!

(2πℏvF )d
η(d+ 1) (1.131)

CD
1 = 8

(kBT )
d+1Ωd−1(d− 1)!

(2πℏvF )d
η(d− 1)

2
. (1.132)

When screening is not negligible, these coefficients get renormalized. For instance, the Dirac

coefficients for d = 2 and T → 0 become [42]

CD
0 = 8

(kBT )
3Ω1

(2πℏvF )2
η(3)

(︃
α(T )

α0

)︃2

(1.133)

CD
1 = 8

(kBT )
3Ω1

(2πℏvF )2
η(1)

2

(︃
α(T )

α0

)︃2

, (1.134)
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with α(T ) given in (1.26).

1.B General Nondimensionalization

A critical aspect of these derivations was the correct choice of nondimensionalization scheme.

Depending on the physical regime of interest (Fermi vs. Dirac) as well as the relative size of terms (e.g.

how large ε is compared to σQℏ/e2), different nondimensionalization choices may be appropriate. To

elucidate the relationship between these various schemes a single, general nondimensionalization can be

performed. In this section, we will use a unit system in which ℏ = vF = kB = lref = e = 1. Note: we are

only nondimensionalizing (ℏ = 1, etc), but not normalizing; i.e. we are not requiring that all quantities are

unity (unlike the quantities denoted earlier by carets).

For convenience, the main results are collected here:

O(µ) = ε
1
2 q−

1
2p+

1
2m+ 1

2 |m|

√︄
O(η)

O(σQ)
,

O(T ) = ε
1
2 q−

1
2p+

1
2 |m|

√︄
O(η)

O(σQ)
,

O(P ) = ε
d+1
2 q− d+1

2 p+ d+1
4 m+ d+1

4 |m|

√︄
O(η)

O(σQ)

d+1

,

O(n) = ε
d
2 q−

d
2 p+

d+1
4 m+ d+1

4 |m|

√︄
O(η)

O(σQ)

d

,

O(∂x) = ε1+
d+1
2 q− d−1

2 p+ d+1
4 m+ d+1

4 |m|

⌜⃓⃓⎷ O(η)
d−1

O(σQ)
d+1

,

O(di) = ε−
1
2−

d+1
2 q+ d−1

2 p− d+1
4 m− d+1

4 |m|

√︄
O(σQ)

d+1

O(η)
d−1

,

O(u) = 1 ,

O(A) = ε
−d+1

2 q+ d−1
2 p− d+1

4 m− d+1
4 |m|

√︄
O(σQ)

O(η)

d−1

.

(1.135)

Here, we have defined four parameters 19: d the spatial dimension, m ∈ Z \ {0}, p ∈ N ≥ 0, and q ∈ N ≥ 0.

19 Note that one combination of parameters is not allowed in this derivation: m < −1 and q = 0. Owing
to the thermodynamic relations, m < −1 implies that T1 will depend on density and pressure of the form
n1+|m| and P1+|m|. We are able to manipulate the results for m = −1 (cf. § 1.C.4) to handle these n2 and
P2 terms. However, for m < −1, these terms cannot be eliminated. If q > 0, then µ1 and T1 do not appear
in our first-order corrections, so this is acceptable; if q = 0, we would have these n1+|m| and P1+|m| terms
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The parameter m is defined as

εm := O
(︃

µ

kBT

)︃2

, (1.136)

and represents the “Dirac” or “Fermi” quality of the system: m > 0 corresponds to increasingly strong

“Dirac”-character while m < 0 is more “Fermi”-like. The parameter p measures the importance of the shear

terms η: if p = 0, the shear terms enter our first-order correction equations while, for p > 0, it enters at

the (p+ 1)-order correction equations and thus are not considered in our analysis. Likewise, the parameter

q measures the importance of the conductive terms σQ: if q = 0, the conductive terms enter our first-order

correction equations, but they are higher order for q > 0.

The KdV-Burgers coefficients specified in §§ 1.E and 1.F and throughout the paper assume

p = q = 0. When using other choices of p and q, it is important to replace η → ηδp,0, ζ → ζδp,0O(ζ)/O(η),

and σQ → σδq,0. This ensures that only the relevant dissipative coefficients appear.

Note that we have specified O(u) = 1 to allow for large background flows O(u0) = 1. Nevertheless,

these results still apply if u0 = 0 (no background flow), in which case u ∼ εu1 and O(u) = ε. Additionally,

these nondimensionalizations assume that u < 1 is small enough that γ = 1/
√
1− u2 is order O(γ) = 1.

Finally, note that we have assumed O(η) ≥ O(ζ).

1.B.1 Parameter Choice

For concreteness, the main paper utilizes a Dirac regime nondimensionalization of m = 1 and

p = q = 0 with O(η) = 1 and O(σQ) = ε1/2.

We also highlight additional terms in the multiple scales expansion arising from the Fermi regime.

These come about from a nondimensionalization with m = −1 and p = q = 0 with O(η) = O(σQ) = 1.

The alternate derivation for small ε mentioned in § 1.8 would correspond to m = p = 1 and q = 0

with O(η) = O(σQ) = 1.

It is worth highlighting that different choices of O(σQ) and O(η) do not affect the calculated results

or observables (cf. § 1.B.3). Likewise, the parameters m, p, and q have minimal, straightforward effects on

the results: p determines whether η and ζ terms appear in G′; q determines if σQ appears in G′; and m

determines the form of P1, and thus F ′ 20. Otherwise, the results are independent of the choice of m, p,

and q. To wit, these choices do not even affect the ε-order of observable quantities; see § 1.7.

Using the definition of A, it is easy to check that κ ≥ 1 satisfies O(κ) = ε−1/2−qO(σQ)O(α) ≥ 1;

which cannot be eliminated.
20Furthermore, m < −1 precludes the choice of q = 0; see footnote 19.
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this provides a constraint on the allowed parameters. For ε = 0.1, q = 0, O(σQ) = ε1/2, and O(α) = 1 used

throughout the main text, we find O(κ) = 1, consistent with our choice of κ = 1.

1.B.2 Entropy Divergence

In § 1.7.3, we found that the entropy divergence only depended on the η and ζ terms, to this

order. Using our expressions for the generalized nondimensionalization, we can investigate what occurs for

different parameter regimes.

Recall that (1.112) showed that

O(∂νs
ν) =

1

O(T )
O(∂xu)

2
[O(η) + O(ζ)]

+
O(σQ)

O(T )
[O(∂xµ) + O(F xρuρ)]

2
.

(1.137)

Restricting our attention, as usual, to u < 1 such that γ = 1/
√
1− u2 ≈ 1, we see that O(Fiρu

ρ) =

O(Ex) = O(∂xϕ) = O(∂xAn). Thus, using the results from § 1.B, we have

O(∂νs
ν) =

O(η)O(∂x)
2
ε2−p

O(T )

[︂
εp +

O(ζ)

O(η)
εp

+ εq + εq+
1
2m+ 1

2 |m| + εq+m+|m|
]︂
.

(1.138)

Here, the terms in the square brackets represent the η, ζ, σQE2
x, σQEx∂xµ, and σQ(∂xµ)2 terms respectively.

Hence, we recognize that increasing p causes the η and ζ terms to be less relevant, while increasing q does

the same to the σQ terms. Furthermore, the leading factor of µ/T for the σQ terms in (1.112) causes these

terms to be higher order when m > 0 (i.e. when µ/T is small), as expected. Finally, note that 1.135 were

defined under the assumption O(η) ≥ O(ζ), so O(ζ)/O(η) in (1.138) can be, at most, unity.

1.B.3 Order of Dissipative Coefficients

Notice that we have left O(σQ) and O(η) undetermined. There is some subtlety in choosing these

parameters. This most obvious manner to proceed involves using existing theoretical predictions [4] for
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their magnitude 21; for instance, in d = 2,

η ≈

⎧⎪⎪⎨⎪⎪⎩
0.45T 2

α2 Dirac .

3µ2|n|
64πα2 ln(α−1)T 2 Fermi ,

(1.139)

and

σQ =

⎧⎪⎪⎨⎪⎪⎩
0.12
α2 Dirac ,

1 Fermi ,
(1.140)

with α ≈ 4/ ln
(︁
104 K/T

)︁
. Ignoring logarithmic corrections, these will then generate compatibility conditions

on the parameters m, p, and q. Nevertheless, such a choice is only valid in the infinitesimal ε limit: we

must assume ε is small enough that all the numerical prefactors—like 3/64π ≈ 0.015 for η in the Dirac

regime—are considered order-1 (i.e. O
(︁
ε0
)︁
). If ε is large enough that, for instance, 3/64π ≈ ε, then this

assumption breaks down.

Alternatively, one could instead calculate the numerical values for σQ and η from the existing

theories. For instance, in § 1.4, we calculated σQ = 0.20 for our choices of parameters. This value can

then be compared to the expected value of ε to determine the correct scaling. Continuing our example,

assuming ε ≈ 0.1, we found σQ ≈ ε1/2. While this method is somewhat more ad hoc than the previously

described one, it has the benefit that it is now valid in a neighborhood of the desired ε rather than for

solely infinitesimal ε. This is the method used in the main text since we are considering ε small but finite.

1.B.4 Derivation: Dominant Balance

Now, we will derive the results given at the beginning of § 1.B. These results follow from the

application of dominant balance.

First, we define a small nondimensional parameter ε≪ 1 as our expansion parameter: that is, all

terms will be expanded in integer powers of ε as y = y0+ εy1+ . . .. Further, we will assume that all leading-

order quantities are uniform in space and constant in time (i.e. y(x, t) = y0 + εy1(x, t) + . . .). This implies

that derivatives will always generate one extra factor of ε: O(∂µy(x, t)) = O(∂µεy1(x, t)) = εO(∂µ)O(y).

Next, we introduce the parameter m ∈ Z \ {0} as

εm := O
(︂µ
T

)︂2
. (1.141)

21Note that the expression for σQ in the Fermi regime lacks numerical factors; see Müller et al. [43] for
the exact expression for the (screened) Fermi case.
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We require that m be an integer since it enters in an asymptotic expansion of the equation of state P (µ, T );

since our main equations are expanded in integer powers of ε, we must also have this asymptotic expansion

in integer powers of ε. Also, notice we used the square of µ/T ; it is easily seen that the asymptotic

expansion of P (µ, T ) only involves even powers of µ/T since it is an even function of µ/T 22. Thus, we

see that the Dirac regime follows when m > 0 and the Fermi case corresponds to m < 0; the m = 0

case is excluded because then the thermodynamic equation of state (cf. (1.117)) cannot be expanded in a

series/asymptotic expansion.

With this definition, we are able to collapse the two different nondimensionalizations of the

pressure. From the thermodynamic equation of state (1.117), we see that O(P ) = O(T )
d+1 for Dirac and

O(P ) = O(µ)
d+1 for Fermi. Therefore, we have O(P ) = ε(d+1)m/4+(−d−1)|m|/4O(T )

d+1 in general. Likewise,

the charge density can be nondimensionalized as O(n) = ε|m|/2O(P )/O(T ) = ε(d+1)m/4+(−d+1)|m|/4O(T )
d.

Now, we begin using dominant balance to impose restrictions based on our desire that certain

terms appear at certain orders. Here, we must use some foresight about which terms the equations will

contain. To ensure that we have wavelike solutions, we want the terms appearing in the leading order

equations to match those in § 1.6. Since we want the dispersive electromagnetic terms d1d2∂3xn to appear

at as first-order corrections, this means the nondispersive electromagnetic term ∂xn must appear at leading

order. Thus, the two electromagnetic terms must differ by one factor of ε: this imposes O(di) = ε1/2/O(∂x);

this is our first assumption. Requiring the nondispersive electromagnetic term to enter at leading order

enforces O(∂xP ) = O(An∂xn) yielding our second assumption: O(A) = ε(−d−1)m/4+(d−3)|m|/4O(T )
−d+1.

Next, we wish the leading order equations to be satisfied even if u0 = 0. Setting u0 = 0

and performing a dominant balance on the leading charge conservation equation (1.74a) gives O(∂t) =

O(u)O(∂x), our third requirement. Another dominant balance on the leading momentum conservation

equation (1.74b) yields O(u) = 1, our fourth and final requirement.

Moving onto the shear- and bulk-viscosity terms, we introduce a second parameter p ∈ N ≥ 0.

This parameter is defined such that p = 0 ensures that the shear/bulk viscosities appear in our first-order

correction equations, p = 1 would push these terms to second-order corrections, and so on. Since we are only

concerned with first-order corrections, this means shear/bulk viscosity is relevant for p = 0 and irrelevant

for p > 0. This is implemented by imposing O(ε∂xP ) = ε−pO
(︁
η∂2xn

)︁
, yielding O(∂x) = εp+1O(P )/O(η).

Finally, we introduce one more parameter q ∈ N ≥ 0 controlling the order at which the intrinsic

conductivity σQ appears. Similar to the parameter p, the parameter q = 0 yields σQ terms at first-order while

22Equivalently, Lucas et al. [42] prove P (µ, T ) only involves even powers by recognizing that the equation
of state is charge conjugation invariant.
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q > 0 corresponds to higher-order terms (which will be neglected in this analysis). It is easy to check that of

the two σQ terms, the electromagnetic term O(F νρuρ) = O(A∂xn) is always larger than the thermoelectric

term O(T∂x(µ/T )) ≤ O(A∂xn). Thus, we introduce the parameter q as O(ε∂tn) = ε−qO
(︁
σQ∂

2
xAn

)︁
. This

implies that O(T ) = εq/2−p/2+|m|/2√︁O(η)/O(σQ). Using these various relations reproduces the results

given at the beginning of § 1.B.

1.C Adiabatic System

Here, we can utilize the same nondimensionalization laid out in § 1.B for the isothermal system.

This follows because the derivation in § 1.B.4 required that the leading order equations still be satisfied

when u0 = 0. However, it is easy to show that, when u0 = 0, the leading order energy conservation

equation (1.156b) is equivalent to the leading order charge conservation equation (1.156a) combined with

the isothermal relation between P and n. Thus, the leading order, u0 = 0 adiabatic system is equivalent to

the leading order, u0 = 0 isothermal system, and the previous nondimensionalization carries over.

Here, we will redo the multiple scales derivation using the adiabatic assumption. Therefore, we

will now include the energy conservation equation (1.10) and allow T to vary dynamically. As we did in

§ 1.6, we expand all of the dynamic variables (including T ) in a perturbation expansion.

1.C.1 Perturbative Thermodynamics

We will be using the thermodynamic relationships of § 1.3.3 to write µ and T in terms of n and P .

Expanding the thermodynamic variables and collecting powers of ε yields the following relations for the

Dirac regime:

P0 = T d+1
0 C0 , (Dirac: C142)

n0 = 2T d−1
0 µ0C1 , (Dirac: C143)

P1 = P0

[︄
T1
T0

(d+ 1) +
C1
C0

(︃
µ0

T0

)︃2

δm,1

]︄
, (Dirac: C144)

n1 = n0

[︄
µ1

µ0
+
T1
T0

(d− 1) + 2
C2
C1

(︃
µ0

T0

)︃2

δm,1

]︄
, (Dirac: C145)
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P2 = P0

[︄
T2
T0

(d+ 1) +
T 2
1

T 2
0

(d+ 1)d

2

+
C1
C0

(︃
2
µ1

µ0
+ (d− 1)

T1
T0

)︃(︃
µ0

T0

)︃2

δm,1

+
C2
C0

(︃
µ0

T0

)︃4

δm,1 +
C1
C0

(︃
µ0

T0

)︃2

δm,2

]︄
,

(Dirac: C146)

n2 = n0

[︄
µ2

µ0
+
T2
T0

(d− 1) +
T 2
1

T 2
0

(d− 1)(d− 2)

2

+
µ1

µ0

T1
T0

(d− 1)

+ 2
C2
C1

(︃
3
µ1

µ0
+ (d− 3)

T1
T0

)︃(︃
µ0

T0

)︃2

δm,1

+ 3
C3
C1

(︃
µ0

T0

)︃4

δm,1 + 2
C2
C1

(︃
µ0

T0

)︃2

δm,2

]︄
(Dirac: C147)

Similarly, for the Fermi regime, we find

P0 = |µ0|d+1C0 , (Fermi: C148)

n0 = |µ0|d sgn(µ0)C0(d+ 1) , (Fermi: C149)

P1 = P0

[︄
µ1

µ0
(d+ 1) +

C1
C0

(︃
T0
µ0

)︃2

δm,−1

]︄
, (Fermi: C150)

n1 = n0

[︄
µ1

µ0
d+

C1
C0
d− 1

d+ 1

(︃
T0
µ0

)︃2

δm,−1

]︄
, (Fermi: C151)

P2 = P0

[︄
µ2

µ0
(d+ 1) +

µ2
1

µ2
0

(d+ 1)d

2

+
C1
C0

(︃
2
T1
T0

+ (d− 1)
µ1

µ0

)︃(︃
T0
µ0

)︃2

δm,−1

+
C2
C0

(︃
T0
µ0

)︃4

δm,−1 +
C1
C0

(︃
T0
µ0

)︃2

δm,−2

]︄
,

(Fermi: C152)

n2 = n0

[︄
µ2

µ0
d+

µ2
1

µ2
0

d(d− 1)

2

+
C1
C0
d− 1

d+ 1

(︃
2
T1
T0

+ (d− 2)
µ1

µ0

)︃(︃
T0
µ0

)︃2

δm,−1

+
C2
C0
d− 3

d+ 1

(︃
T0
µ0

)︃4

δm,−1 +
C1
C0
d− 1

d+ 1

(︃
T0
µ0

)︃2

δm,−2

]︄ (Fermi: C153)

In the Dirac regime, we can invert these relations to write µ and T in terms of P and n, treating
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these as the independent variables at each order. However, in the Fermi regime, this perturbation expansion

introduces a peculiarity. The P0 and n0 equations do not contain T0; therefore, rather than giving the

value of T0, these equations provide a constraint on P0 and n0:

P0 =
|n0|(d+1)/d

|C0|1/d(d+ 1)(d+1)/d
sgnC0 . (Fermi: C154)

Similarly, the P1(x, t) and n1(x, t) equations only depend on a single dynamical variable µ1(x, t) (but not

T1(x, t)); therefore, these also give a restriction on P1 and n1 to ensure that T0(x, t) = T0 is independent

of x and t:
P1

P0
=
n1
n0

d+ 1

d
+

C1
C0

1

d

(︃
T0
µ0

)︃2

δm,−1 . (1.155)

This requirement will be utilized later.

1.C.2 Conservation Equations

If we again restrict to 1D motion and collect terms by powers of ε we get the following equations:

Leading Order:

∂n1
∂t0

+ γ2n0u0
∂u1
∂t0

+ u0
∂n1
∂x

+ n0γ
2 ∂u1
∂x

= 0 , (1.156a)

γ2
∂ε1
∂t0

+ γ2u20
∂P1

∂t0
+ 2u0(ε0 + P0)γ

4 ∂u1
∂t0

+ (1 + u20)(ε0 + P0)γ
4 ∂u1
∂x

+ u0γ
2 ∂

∂x
(ε1 + P1)

+An0u0γ
2 ∂n1
∂x

+An2
0u

2
0γ

4 ∂u1
∂x

= 0 , (1.156b)

γ3(ε0 + P0)
∂u1
∂t0

+ γu0
∂P1

∂t0
+ u0γ

3(ε0 + P0)
∂u1
∂x

+ γ
∂P1

∂x
+An0γ

∂n1
∂x

+An2
0u0γ

3 ∂u1
∂x

= 0 , (1.156c)

First-Order Correction:

∂n2
∂t0

+ γ2n0u0
∂u2
∂t0

+ u0
∂n2
∂x

+ n0γ
2 ∂u2
∂x

= RHS , (1.157a)

γ2
∂ε2
∂t0

+ γ2u20
∂P2

∂t0
+ 2u0(ε0 + P0)γ

4 ∂u2
∂t0

+ (1 + u20)(ε0 + P0)γ
4 ∂u2
∂x

+u0γ
2 ∂

∂x
(ε2 + P2) +An0u0γ

∂n2
∂x

= RHS , (1.157b)

γ3(ε0 + P0)
∂u2
∂t0

+ γu0
∂P2

∂t0
+ u0γ

3(ε0 + P0)
∂u2
∂x

+ γ
∂P2

∂x
+An0

∂n2
∂x

= RHS . (1.157c)

Again, we have used the electrostatic coupling A according to (1.28). See § 1.D for the terms on the

right-hand side.
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1.C.3 Leading Order Equations

Using ε = Pd and combining equations like

(︃
∂

∂t0
+ u0

∂

∂x

)︃{︄
Adn0γ

2 ∂

∂x

[︁
(1.156a)

]︁
+

(︃
u0

∂

∂t0
+

∂

∂x

)︃[︁
(1.156b)

]︁
− γ

(︃
(d+ u20)

∂

∂t0
+ u0(d+ 1)

∂

∂x

)︃[︁
(1.156c)

]︁}︄

gives

0 = γ2
(︃
∂

∂t0
+ u0

∂

∂x

)︃{︄
γ2(d+ 1)P0(u

2
0 − d)

∂2u1
∂t20

− 2γ2(d+ 1)P0u0(d− 1)
∂2u1
∂t0∂x

+
[︁
Adn20 + γ2(d+ 1)P0(1− du20)

]︁∂2u1
∂x2

}︄
.

(1.158)

This wave equation has solutions f(x+ v0t0) + g(x− v0t0) with v0 given by

v
(±)
0 = −u0(d− 1)

d− u20
±

√
d

(d− u20)γ
2

√︄
1 +

An2
0γ

2(d− u20)

P0(d+ 1)
. (1.159)

We will take the (+) sign so that v0 = v
(+)
0 ; the other can be recovered by taking u0 → −u0 and v0 → −v0.

Further, we restrict to unidirectional solutions u1(x, t0, t1) = f(x± v0t0, t1) for a definite choice of ±; here,

we choose (+) as well—the other propagation direction can be recovered by taking v0 → −v0.

For stationary perturbations (v0 = 0), we can solve for u0:

u0 = ±

√︄
(1/d) + [An2

0/P0(d+ 1)]

1 + [An2
0/P0(d+ 1)]

. (1.160)

For reference, the velocity of propagation in the absence of a background flow (u0 = 0) is

v0 = ± 1√
d

√︄
1 +

Adn20
(d+ 1)P0

. (1.161)

In general, n1, u1, and P1 have traveling wave solutions; neglecting solutions of the form f(x−
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u0t0, t1) that are simply advected by the background current, we find solutions given by

n1(x, t0, t1) = n1(x+ v0t0, t1) + F1(t1) , (1.162a)

u1(x, t0, t1) = − (u0 + v0)

n0γ2(1 + u0v0)
n1(x+ v0t0, t1)

+ F2(t1) ,

(1.162b)

P1(x, t0, t1)

P0
=
d+ 1

d

n1(x+ v0t0, t1)

n0
+ F3(t1) . (1.162c)

Here, we have arbitrary functions F1(t1), F2(t2), and F3(t2); by imposing boundary conditions n1 = 0 at

x = ±∞, we set F1 = 0. We will allow U1(t2) := F2(t2) to remain arbitrary; this uniform background

current can be superimposed on the soliton solution as in § 1.5 if desired 23. In the Dirac regime, we can

impose P1 = 0 at x = ±∞ to set F3 = 0; however, for the Fermi regime, requiring that T0(x, t) = T0

independent of (x, t) restricts the relationship between P1 and n1. Hence, we will write F3 as

F3(t1) = δm,−1
1

d

C1
C0

(︃
T0
µ0

)︃2

. (1.163)

1.C.4 First-Order Corrections

Now considering the first-order corrections, preventing secular growth of the higher-order terms

(i.e. n2, u2, etc) requires imposing a compatibility condition on the lower-order terms (i.e. n1, u1, etc). We

can manipulate the system as

(︃
∂

∂t0
+ u0

∂

∂x

)︃{︄
Adn0γ

2 ∂

∂x

[︁
(1.157a)

]︁
+

(︃
u0

∂

∂t0
+

∂

∂x

)︃[︁
(1.157b)

]︁
− γ

[︃
(d+ u20)

∂

∂t0
+ u0(d+ 1)

∂

∂x

]︃[︁
(1.157c)

]︁}︄
23Note that it is possible to generate a stationary soliton by appropriate choice of F1 or F3 instead,

though the resulting coefficients will be different.
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+ δm,−1γ
1

2

C0
C1
σQ(d+ 1)

n0

µ3
0

T 2
0

(︃
∂

∂x
+ u0

∂

∂t0

)︃2
(︄

−
(︃
∂

∂x
+ u0

∂

∂t0

)︃[︁
(1.157b)

]︁
+ γ

[︃
(d+ u20)

∂

∂t0
+ u0(d+ 1)

∂

∂x

]︃[︁
(1.157c)

]︁
+

Adn20
P0(d+ 1)

∂

∂x

{︁
γu0

[︁
(1.157c)

]︁
−
[︁
(1.157b)

]︁}︁)︄

to obtain

γ4P0(d+ 1)(d− u20)

[︄(︃
∂

∂t0
+ u0

∂

∂x

)︃

− δm,1γ
1

2

C0
C1
σQ(d+ 1)

n0

µ3
0

T 2
0

(︃
∂

∂x
+ u0

∂

∂t0

)︃2
]︄

×
(︃
v
(+)
0

∂

∂x
− ∂

∂t0

)︃(︃
v
(−)
0

∂

∂x
− ∂

∂t0

)︃
u2

= LOT ,

(1.164)

where LOT represents lower-order terms (i.e. n1, u1, etc).

It is instructive here to change variables to χ(±)
0 = x+ v

(±)
0 t0. Then, the equation becomes

γ4P0(d+ 1)
(︁
d− u20

)︁(︂
v
(+)
0 − v

(−)
0

)︂2
×

{︄[︄∑︂
±

(︂
u0 + v

(±)
0

)︂ ∂

∂χ
(±)
0

]︄

− δm,−1γ
3σQ
π2n0d

µ3
0

T 2
0

[︄∑︂
±

(︂
1 + u0v

(±)
0

)︂ ∂

∂χ
(±)
0

]︄2}︄

× ∂

∂χ
(−)
0

∂

∂χ
(+)
0

u2

= LOT

(1.165)

This is where we encounter an apparent problem. Upon inserting our solutions for the lower-order terms,

we find the right-hand side depends on products and derivatives of f
(︂
χ
(+)
0

)︂
. This implies that the LOT is

solely a function of χ(+)
0 .

However, we see that functions of the form f(χ(+)) are also solutions to the homogeneous equation

in (1.164) due to the presence of the ∂
χ
(−)
0

operator.

So, products and derivatives of f(χ(+)
0 ) appear as inhomogeneous forcing terms that give rise

to secular terms. For instance, terms proportional to f (4)
(︂
χ
(+)
0

)︂
give rise to solutions of the form
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χ
(−)
0 f (3)

(︂
χ
(+)
0

)︂
. This grows unbounded in χ

(−)
0 —and hence, in time t. This will eventually cause

|u2| > |u1|, invalidating the perturbation expansion. Thus, unless LOT vanishes identically, it will give rise

to χ(±)
0 -secular terms in u2—i.e. solutions growing unbounded in t0 or x.

Hence, we require the right-hand side to vanish and we are left with the desired compatibility

equation:

0 = (u0 + v0)
∂2

∂χ
(+)
0

2 (KdVB[n1])

− δm,−1γ
1

2

C0
C1
σQ(d+ 1)(1 + u0v0)

2

n0

µ3
0

T 2
0

× ∂3

∂χ
(+)
0

3 (KdVB[n1])
⃓⃓⃓⃓
σQ=0

. (1.166)

Here, (KdVB[n1]) represents the Korteweg-de Vries-Burgers equation, discussed earlier, acting on n1:

A′ ∂n1
∂t1

+ F ′ ∂n1

∂χ
(+)
0

+ B′n1
∂n1

∂χ
(+)
0

+ C′ ∂
3n1

∂χ
(+)
0

3 − G′ ∂
2n1

∂χ
(+)
0

2n1 = 0 ;

(1.167)

see § 1.F for the functional form of the coefficients. Likewise, (KdVB[n1]
⃓⃓
σQ=0

) represents the Korteweg-de

Vries-Burgers equation without σQ terms.

It is interesting to note the similarities and differences between the adiabatic KdV-Burgers

coefficients (§ 1.F) and the isothermal coefficients (§ 1.E). For most of the coefficients (A′, B′, and C′), the

adiabatic coefficients are identical to the isothermal Fermi (m = −1) coefficients. The (1+u0v0)C1/C0 term

in F ′ differs slightly between the adiabatic Fermi case (coefficient (d+ 1)/d2) and isothermal Fermi case

(coefficient (d− 1)/d2); the adiabatic Dirac case is completely absent (δm,−1) compared to the isothermal

Dirac case. Interestingly, the adiabatic η and ζ terms in G′ matches the isothermal Fermi terms, while the

adiabatic σQ term matches the isothermal Dirac one.

1.C.5 Solving the Compatibility Equation

In the Fermi regime (m = −1), the compatibility equation (1.166) no longer has the simple,

decaying soliton solution derived in § 1.5.6. This can certainly be solved numerically. Additionally, we can

generate an approximate solution if we assume that O(σQ) ≪ 1, (but ≫ ε to prevent them from falling to

the next order in our perturbation expansion) and use the same trick as we did in § 1.5.6. Namely, we
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factor out a small parameter δ ∼ O(σQ) from σQ = δσ̃Q. Then, O(σ̃Q) = 1, and we can expand in factors

of δ.

Then, another short multiple scales expansion for n1 can be done in δ = O(G/A). To be consistent

with our original perturbation series, we require that ε≪ δ ≪ 1. As usual, we expand n1 as n1 = n
(0)
1 +δn

(1)
1

and ∂t1 = ∂τ0 + δ∂τ1 . Then, to leading order, we have

(u0 + v0)∂
2

χ
(+)
0

(KdVB[n(0)1 ])

⃓⃓⃓⃓
σ̃Q=0

= 0 . (1.168)

This is satisfied by the KdVB equation,

L0n
(0)
1 := A′∂τ0n

(0)
1 + F ′∂

χ
(+)
0
n
(0)
1 +

B′

2
∂
χ
(+)
0

(︂
n
(0)
1

)︂2
+ C′∂3

χ
(+)
0

n
(0)
1 − G′

⃓⃓⃓⃓
σ̃Q=0

∂2
χ
(+)
0

n
(0)
1

= 0 .

(1.169)

Now, we further assume that η and ζ are small; specifically, we assume O(η) ≪ 1, ε≪ O(δ) ≪ O(ζ). Then,

the solution was found in § 1.5.6 upon replacing G′ with G′
⃓⃓
σ̃Q=0

:

n
(0)
1

(︂
χ
(+)
0 , τ0

)︂
= c1(τ0) sgn(B′C′) sech2

(︄√︄
c1|B′|
12|C′|

×
[︃
χ
(+)
0 −

(︃
c1|B′|
3|A′|

sgn(A′C′) +
F ′

A′

)︃
τ0

]︃)︄
, (1.170)

where

c1(τ0) =
c1(0)

1 + τ0/τ
(0)
d

(1.171)

with

τ
(0)
d =

45A′|C′|
4c1(0)|B′| G′

⃓⃓
σ̃Q=0

. (1.172)

As mentioned above, we have assumed O(δ) ≪ O
(︂
G′/A′

⃓⃓
σ̃Q=0

)︂
≪ 1, so 1/τ

(0)
d ≪ 1.

At the next order in δ, we must allow the constant c1(0) to become time-dependent on a slow
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time-scale c1(0) = c1(0, τ1). Now, our equation is

(u0 + v0)∂
2

χ
(+)
0

(︂
A′∂τ0n

(1)
1 + F ′∂

χ
(+)
0
n
(1)
1

+ B′∂
χ
(+)
0

(︂
n
(0)
1 n

(1)
1

)︂
+ C′∂3

χ
(+)
0

n
(1)
1

)︂
= (u0 + v0)∂

2

χ
(+)
0

(︂
−∂t1A′n

(0)
1 + ∂4

χ
(+)
0

G′n
(0)
1

)︂
− δm,−1γ

1

2

C0
C1
σQ(d+ 1)(1 + u0v0)

2

n0

µ3
0

T 2
0

× ∂χ
(+)
0

3
(KdVB[n(0)1 ])

⃓⃓⃓⃓
σ̃Q=0

= (u0 + v0)∂
2

χ
(+)
0

(︂
−∂t1A′n

(0)
1 + ∂2

χ
(+)
0

G′n
(0)
1

)︂
.

(1.173)

In the last line, we used the fact that n(0)1 satisfies the KdVB
⃓⃓
σ̃Q=0

equation to simplify the right-hand side.

Integrating twice and dropping constants of integration (we want n(0)1 = n
(1)
1 = 0 to be a solution) gives

L1n
(1)
1 := A′∂τ0n

(1)
1 + F ′∂

χ
(+)
0
n
(1)
1 + B′∂

χ
(+)
0

(︂
n
(0)
1 n

(1)
1

)︂
+ C′∂3

χ
(+)
0

n
(1)
1

= −∂t1A′n
(0)
1 + ∂2

χ
(+)
0

G′n
(0)
1 .

(1.174)

As before, we note that L0 and −L1 are adjoints:

∫︂
dχ

(+)
0

(︂
n
(1)
1 L0n

(0)
1 + n

(0)
1 L1n

(1)
1

)︂
= 0 . (1.175)

Thus, we get the compatibility condition

(u0 + v0)

∫︂
n
(0)
1

(︂
A′∂τ1n

(0)
1 − G′∂2xn

(0)
1

)︂
dχ

(+)
0 = 0 , (1.176)

which yields the equation

∂τ1c1(0, τ1) = −c1(0, τ1)
2|B′|G̃′

|C′|A′
4

45
. (1.177)

Then, solving this equation and converting back to time t1 gives

c1(0, t1) =
c1(0, 0)

1 + t1/t
(1)
d

(1.178)
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with

t
(1)
d =

45A′|C′|
4c1(0, 0)|B′|G′ , (1.179)

with c1(0, 0) the initial value of the parameter c1(t0, t1). Combined with the result for c1(t0, t1) ((1.171)

and (1.172)),

c1(t0, t1) =
c1(0, t1)

1 + t0/t
(0)
d

(1.180)

with

t
(0)
d =

45A′|C′|
4c1(0, t1)|B′| G′

⃓⃓
σQ=0

, (1.181)

we now have a complete solution.

1.D Full Equations

All quantities are expressed in normalized, nondimensional form according to the procedures laid

out in § 1.4 and § 1.B. The energy conservation equations ((1.182b) and (1.183b)) are only used for the

adiabatic setup.

Leading Order:

∂n1
∂t0

+ γ2n0u0
∂u1
∂t0

+ u0
∂n1
∂x

+ n0γ
2 ∂u1
∂x

= 0 , (1.182a)

γ2
∂ε1
∂t0

+ γ2u20
∂P1

∂t0
+ 2u0(ε0 + P0)γ

4 ∂u1
∂t0

+ (1 + u20)(ε0 + P0)γ
4 ∂u1
∂x

+ u0γ
2 ∂

∂x
(ε1 + P1)

+An0u0γ
2 ∂n1
∂x

+An2
0u

2
0γ

4 ∂u1
∂x

= 0 , (1.182b)

γ3(ε0 + P0)
∂u1
∂t0

+ γu0
∂P1

∂t0
+ u0γ

3(ε0 + P0)
∂u1
∂x

+ γ
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First-Order Corrections:
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1.E Isothermal KdV-Burgers

All quantities are expressed in dimensional form; to get the dimensionless expressions, simply set

vF = ℏ = lref = kB = e = 1 and remove all factors of ε. See § 1.A for the values of C0 and C1 and § 1.B for
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the O expressions. The KdV-Burgers equation is given by
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0/P0)[v2F (d+ 1)− u20K0]

v2F (d+ 1)− u20K0
. (1.190)

If we impose v0 = 0, then the coefficients take the form given in (1.60). If instead we impose
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u0 = U1 = 0, they take the form
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1.F Adiabatic KdV-Burgers

All quantities are expressed in dimensional form; to get the dimensionless expressions, simply set

vF = ℏ = lref = kB = e = 1 and remove all factors of ε. See § 1.A for the values of C0 and C1 and § 1.B for

the O expressions. The KdV-Burgers equation is given by
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with
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If we impose v0 = 0, then the coefficients take the form given in (1.60). If instead we impose

u0 = U1 = 0, they take the form
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Chapter 2

Wind-induced changes to surface

gravity wave shape in deep to

intermediate water

2.1 Abstract

Wave shape (i.e. skewness or asymmetry) plays an important role in beach morphology evolution,

remote sensing and ship safety. The wind’s influence on ocean waves has been extensively studied

theoretically in the context of growth, but most theories are phase averaged and cannot predict wave shape.

Most laboratory and numerical studies similarly focus on wave growth. A few laboratory experiments

have demonstrated that wind can change wave shape, and two-phase numerical simulations have also

noted wind-induced wave-shape changes. However, the wind’s effect on wave shape is poorly understood,

and no theory for it exists. For weakly nonlinear waves, wave-shape parameters are the phase of the

first harmonic relative to the primary frequency (or harmonic phase HP, zero for a Stokes wave) and

relative amplitude of the first harmonic to the primary wave. Here, surface pressure profiles (denoted

Jeffreys, Miles and generalized Miles) are prescribed based on wind–wave generation theories. Theoretical

solutions are derived for quasi-periodic progressive waves and the wind-induced changes to the HP, relative

harmonic amplitude, as well as the already known phase speed changes and growth rates. The wave-shape

parameters depend upon the chosen surface pressure profile, pressure magnitude and phase relative to
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the wave profile and non-dimensional depth. Wave asymmetry is linked to the non-dimensional growth

rate. Atmospheric large eddy simulations constrain pressure profile parameters. The HP predictions are

qualitatively consistent with laboratory observations. This theory, together with the HP and relative

harmonic amplitude observables, can provide insight into the actual wave surface pressure profile.

2.2 Introduction

The shape of surface gravity waves plays a role in many physical phenomena. Wave shape is

described by the third-order statistical moments, skewness and asymmetry [e.g. 44, 45]. Wave skewness

represents a wave’s vertical asymmetry, while wave asymmetry corresponds to its horizontal asymmetry.

These two parameters are integral in determining sediment transport direction (onshore vs. offshore) and

magnitude [e.g. 46–48], which play key roles in beach morphodynamics [e.g. 49, 50]. Wave shape is also

pertinent in remote sensing, where wave skewness modulates the returned waveform in radar altimetry [e.g.

51–53] and wave asymmetry affects the thermal emissions measured in polarimetric radiometry [e.g. 54–56].

Additionally, these wave-shape parameters play a role in determining ship response to wave impacts [e.g.

57, 58]. Waves propagating on a flat bottom are ordinarily symmetric, although a number of processes can

create asymmetry. While some wave asymmetry-inducing phenomena, such as wave shoaling [e.g. 59, 60]

and vertically sheared currents [e.g. 61, 62], are well understood, the wind’s effect on wave shape is still

poorly understood.

The influence of wind on ocean waves has been extensively studied, although primarily in the

context of wave growth. An initial investigation by Jeffreys [63] was based on a sheltering hypothesis, where

separated airflow resulted in reduced pressure on the wave’s leeward side, causing wave growth. While

conceptually simple, this mechanism has largely fallen out of favour because such separation only seems

to occur near breaking [64] or for steep waves under strong winds [e.g. 65, 66]. Nevertheless, Jeffreys’s

theory has inspired some recent work; Belcher and Hunt [67] developed a fully turbulent model wherein

the sheltering effect causes a thickening of the boundary layer and wave growth, even without separation.

Later treatments utilized different physical mechanisms such as resonant forcing by incoherent, turbulent

eddies [68], vortex forcing from vertically sheared airflow [e.g. 69, 70] and non-separated sheltering [e.g. 67].

Janssen [71] provides an extensive overview of the relevant developments in wind–wave generation theory.

When deriving energy and momentum fluxes from air to water, these seminal theories of wave growth [e.g.

67, 68, 70] utilized a phase-averaging technique, which removes wave-shape information. Thus, although

these wind–wave interaction theories focused on the wave growth rate, no theoretical work has investigated
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the effect of wind on wave shape in a physically consistent manner.

Measurements and numerical simulations have also been used to investigate the dependence of wave

growth on wind speed. Field measurements [e.g. 72–74] and laboratory experiments [e.g. 75–77] have been

used to parameterize how quickly intermediate- and deep-water waves grow under various wind conditions,

including short fetch [e.g. 78] and strong wind conditions [e.g. 79]. Note that direct measurements of wave

surface pressure (related to growth) are notoriously difficult [e.g. 80]. Similarly, numerical simulations

have also been used to predict wind-induced growth rates. Early numerical atmospheric models used

the Reynolds-averaged Navier–Stokes equations [e.g. 81, 82] to calculate the energy loss of the wind

field. However, these early simulations could only approximate turbulence through a Reynolds-averaging

process. Recent studies have analysed the turbulence behaviour in detail. Particle image velocimetry and

laser-induced fluorescence have been used for turbulence measurements in laboratory experiments and

have revealed turbulent structures above the waves [e.g. 83–85]. This turbulent behaviour has also been

captured through direct numerical simulations of the governing equations [e.g. 86–88] and by parameterizing

subgrid-scale processes in large eddy simulations [LES, e.g. 89–91]. When solving for the atmospheric

dynamics, many of these simulations prescribed a static sinusoidal wave shape while focusing on the

evolution of the wind field, as well as energy and momentum transfers. Therefore, any wind-induced

changes to wave shape were not captured.

While there has been much research regarding wind-induced wave growth, wave shape has

seen relatively little work. Coupled air–water simulations [e.g. 92, 93] and two-phase (air and water)

simulations [e.g. 94, 95] have begun incorporating dynamically evolving waves into their analyses. These

directly model the evolution of both the air and wave fields in a coupled manner in contrast to simulations

prescribing a fixed wave shape. Furthermore, some also qualitatively consider how wave shape evolves

under the influence of wind [e.g. 96–98]. However, theses analyses are focused on other parameters and

do not quantify precisely how the wave shape changes. Additionally, there have been a small number

of field measurements [e.g. 99] and laboratory experiments [100, 101] that have directly investigated

how wind affects wave shape. It was found that the skewness and asymmetry depended on wind speed

for mechanically generated waves in relatively deep [100] or intermediate and shallow [101] water. In

particular, the wave asymmetry [100], skewness [99] and energy ratio of the first harmonic (frequency 2f)

to the primary wave (frequency f) [101] all increased with wind speed. It would be beneficial to develop a

theory that explains these experimental findings.

In this paper, we develop a theory coupling wind to dynamically evolving intermediate- and
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deep-water waves (kh ≥ 1 with k the wavenumber and h the water depth). We consider the fluid domain

beneath a periodic, progressive wave that is forced by a prescribed, wave-dependent surface pressure profile.

That is, the atmosphere is not treated dynamically. Determining the wind’s effect on wave shape requires

a nonlinear theory. As the surface boundary conditions for gravity waves are nonlinear, the equations are

solved using a multiple-scale perturbation analysis where the wave steepness ε := a1k (with a1 the primary

wave’s amplitude) is small and new, slower time scales are introduced over which the nonlinearities act

[see, for example, 102]. This formalism has been used to derive the canonical Stokes waves, which are

periodic, progressive waves of permanent form in intermediate and deep water [103]. By introducing a

surface pressure-forcing term, we will derive solutions of the form

η = a1 exp(i(kx− ωt)) + a2 exp(i[2(kx− ωt) + β]) + . . . , (2.1)

with the real part implied. Here, η is the wave height, ω is the complex wave frequency, and a1k = ε and

a2k = O
(︁
ε2
)︁

are the non-dimensional amplitudes of the primary wave and first harmonic, respectively.

We have defined a new parameter, the ‘harmonic phase’ (or HP) β, which is analogous to the biphase,

a statistical tool [59]. Both wave skewness and asymmetry depend on the HP β and relative harmonic

amplitude a2/(a21k). For example, both skewness and asymmetry are zero for linear waves with a2/(a21k) = 0.

For deep-water (kh≫ 1) Stokes waves without wind forcing, a2/(a21k) = 1/2 gives non-zero skewness, but

β = 0 yields no phase difference between the primary wave and first harmonic in (2.1). Indeed, unforced

Stokes waves are exactly symmetric at all orders [104].

Three surface pressure profiles, derived from the theories of Jeffreys [63] and Miles [69], are included

in the perturbation expansion. Using the method of multiple scales, Stokes wave-like solutions are derived,

giving the wave-shape (via a2/(a
2
1k) and β) dependence on the wind-induced surface pressure profile.

Additionally, wave growth will result from the fact that Im{ω} is no longer zero [e.g. 69]. These solutions

reduce to unforced Stokes waves when the pressure forcing vanishes.

In § 2.3, we set up the equations and define the different pressure profiles used. Section 2.4 begins

the general derivation covering a range of realistic pressure magnitudes, which is continued in § 2.A. As a

key aspect to the derivation, the non-dimensional pressure p′ is included in the leading-order equations

(p′ = O(ε)), which is the most general approach by allowing the substitution of p′ → εp′ or p′ → ε2p′,

generating weaker p′ = O
(︁
ε2
)︁

and p′ = O
(︁
ε3
)︁

solutions (cf. § 2.A.6). Section 2.5 details the results of

this analysis. In § 2.6, we clarify the solutions’ time scale validity, relate the pressure parameters to LES

simulations, compare our results to laboratory observations and compare the surface pressure form with
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existing data. Section 2.A extends the general derivation to higher orders in ε to demonstrate a weak

amplitude dependence of the shape parameters.

2.3 Theoretical background

2.3.1 Governing equations

Here, we specify the equations governing the water dynamics. Homogeneous, incompressible fluids

satisfy the incompressible continuity equation,

∇ · u = 0, (2.2)

within the fluid. We assume irrotational flow and write the water velocity u in terms of a velocity potential

ϕ as u = ∇ϕ. We define a coordinate system with z = 0 at the initial mean water level, positive z upward

and gravity pointing in the −z direction. We assume planar wave propagation in the +x direction and

uniform in the y direction. Then, the incompressibility condition becomes Laplace’s equation,

∂2ϕ

∂x2
+
∂2ϕ

∂z2
= 0. (2.3)

Assuming uniform water depth with a flat bottom located at z = −h, we impose a no-flow bottom

boundary condition
∂ϕ

∂z
= 0 at z = −h. (2.4)

Finally, the standard surface boundary conditions [e.g. 105] are the kinematic boundary condition

∂ϕ

∂z
=
∂η

∂t
+
∂ϕ

∂x

∂η

∂x
at z = η, (2.5)

and the dynamic boundary condition

0 =
p

ρw
+ gη +

∂ϕ

∂t
+

1

2

(︃
∂ϕ

∂x

2

+
∂ϕ

∂z

2)︃
at z = η. (2.6)

Here, g is the acceleration due to gravity, ρw the water density, η(x, t) the surface profile and p(x, t) the

surface pressure evaluated at z = η. Note that we have absorbed the Bernoulli constant from (2.6) into ϕ

using its gauge freedom ϕ→ ϕ+ f(t) for arbitrary f(t). In § 2.3.3 we specify the surface pressure profiles.
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2.3.2 Assumptions

Our analysis is characterized by a number of non-dimensional parameters. The wave slope ε := a1k,

assumed small, will order our perturbation expansion. Additionally, we will restrict our attention to

intermediate and deep water by requiring that the non-dimensional depth kh ⪆ 1 so that the Ursell

parameter is small, ε/(kh)3 ≪ 1. An additional parameter is the non-dimensional surface pressure

magnitude induced by the wind discussed in §§ 2.3.3 and 2.3.4. We seek waves with wavelength λ := 2π/k

travelling in the x direction that are periodic in x and quasi-periodic in t

η(x, t) = η(x+ λ, t) = η(θ, t) and ϕ(x, z, t) = ϕ(x+ λ, z, t) = ϕ(θ, z, t), (2.7)

with θ defined for right-propagating waves (Re{ω(t)} > 0) as

θ := kx−
∫︂

Re{ω(t)} dt , (2.8)

which is analogous to the standard kx− Re{ω}t, but allows for a complex, time dependent frequency ω(t).

Additionally, we neglect surface tension σ by restricting to wavelengths λ≫ 2 cm, implying a large Bond

number (ρg/k2σ ≫ 1). Furthermore, we assume no mean Eulerian current. Finally, we seek a solution of a

single primary wave and its bound harmonics. Including additional primary waves permits us to study the

wind’s effect on sideband instabilities [e.g. 106] but is beyond the scope of this work.

In the dynamic boundary condition (2.6), we incorporated the normal stress (surface pressure) but

neglected the shear stress as it is usually significantly smaller than the normal stress [e.g. 90, 107, 108].

Additionally, we note that surface shear stresses cause a slight thickening of the boundary layer, which is

equivalent to a pressure phase shift on the remainder of the water column [109]. Therefore, we can include

the effect of shear stresses through a phase shift in the pressure relative to the wave profile. Hence, in this

investigation we only consider pressures acting normal to the wave surface.

The irrotational assumption was motivated by our assumption that vorticity-generating wind shear

stresses are small. Additionally, any such vorticity is constrained to a thin boundary layer just below the

wave surface [109]. Finally, viscous forces vanish—necessary for Bernoulli’s equation (2.6)—for any flow

that is both irrotational and incompressible (with constant viscosity; e.g. Fang [110]). Thus, we will assume

irrotational, inviscid flow throughout the fluid interior.
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2.3.3 Surface pressure profiles

Here, we define the surface pressure profiles used in the analysis. The Jeffreys [63] theory yields a

(‘Jeffreys’) surface pressure profile,

pJ(x, t) = sρaU
2 ∂η(x, t)

∂x
, (2.9)

with ρa the air density, U a characteristic wind speed and s an empirical, unitless constant. Although the

Miles mechanism is now favoured for gently sloping waves or weak winds [66], the Jeffreys mechanism is

still relevant for steep, strongly forced waves [e.g. 65]. The simple, analytic form of the Jeffreys forcing also

lends itself well to theoretical treatments. Indeed, many treatments [e.g. 111–113] approximate the Miles

forcing by a wave slope coherent pressure p ∝ ∂η/∂x equivalent to our Jeffreys-type forcing (2.9).

The Miles [69] theory of wind–wave growth gives a (‘Miles’) surface pressure profile of the form

pM (x, t) =
(︂
α̃+ iβ̃

)︂
ρaU

2kηa(x, t), (2.10)

with α̃ and β̃ empirical, unitless constants. Additionally, ηa the analytic representation of η, where the

analytic representation of a real function f(x) is f(x) + if̂(x) with f̂(x) the Hilbert transform of f(x) (for

our purposes, only two representations will be relevant: the analytic representation of cos(x) is exp(ix)

and that of sin(x) is −i exp(ix)). This theory was developed for a linear, sinusoidal (i.e. primary) wave

without harmonics. Note that (2.10) shifts each harmonic exp(imkx) by the same phase, tan−1(β̃/α̃), but

by a different distance, m tan−1(β̃/α̃)/k, distorting the pressure profile relative to η. This pressure profile

gives no wave-shape change at leading order (§ 2.A.5) and, since wind-induced shape changes have been

observed experimentally, they will not be discussed further here.

Another suitable generalization, capturing the motivation behind the Miles profile, is specifying

the surface pressure as phase shifted relative to η. This prescription is more appropriate for nonlinear

waves since all harmonics are shifted the same distance. Thus, we define another (‘generalized Miles’)

surface pressure profile as

pG(x, t) = rρaU
2kη(kx+ ψP , t), (2.11)

with r a new, unitless constant and a new parameter, the ‘wind phase’ ψP , which corresponds to the phase

shift between the wave and pressure profile, has been introduced. As the surface pressure is elevated on

the wave’s windward (relative to the leeward) side, ψP > 0 corresponds to wind blowing from the left,
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assuming ψP ∈ (−π, π]. Note that the wind phase ψP is a free parameter for the pressure profile. Although

ψP likely depends on other factors such as wave age, determining such a relationship is outside the scope

of this work. For a single primary wave, we treat ψP as a fixed parameter (for a given wind speed) which

is assumed known—possibly from experiments or simulations (cf. § 2.6.2).

To facilitate comparison, the various pressure profiles are written in a common form. Inspired

by similarities in (2.9)–(2.11), we define a non-negative pressure magnitude constant, P , which implicitly

encodes the wind speed. For instance, (2.9)–(2.11) suggest

P ∝ ρaU
2, (2.12)

although this form serves only as motivation, and the particular U dependence will be immaterial to

our analysis. Since the definition of ε := a1k implies k|η| = O(ε), we see from the various definitions

(2.9)–(2.11) that

O(|p|) = O(εP ). (2.13)

We will define PJ for the Jeffreys profile such that

pJ(x, t) = ±PJ
∂η(x, t)

∂x
, (2.14)

with the plus sign for wind blowing from the left. Likewise, we will rewrite the generalized Miles profile as

pG(x, t) = PGkη(kx+ ψP , t). (2.15)

The constant P is subscripted to denote Jeffreys (PJ) or generalized Miles (PG) when the distinction is

relevant. In § 2.4, these two surface pressure profiles, (2.14) and (2.15), are expanded in a Fourier series

to yield simpler equations. Expanding an arbitrary function f(x) in a Fourier series as the real part of

f(x) =
∑︁

m=0 f̂m exp(imkx) with m ∈ N yields

p̂J,m(t) = ±ikmPJ η̂m(t), (2.16)

p̂G,m(t) = kPG exp(imψP )η̂m(t). (2.17)

Therefore, we will generically write

p̂m(t) = kP̂mη̂m(t), (2.18)
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Figure 2.1. (a) Non-dimensional, right-propagating Stokes wave kη (2.19) as a function of phase
θ = kx−ωt with ε = 0.2. (b) Normalized surface pressure profiles p(θ) as described in (2.14) and (2.15);
see legend. The maximum pressure magnitude is normalized to unity (arbitrary units), and a value of
ψP = π/2 was chosen to facilitate comparison with the Jeffreys profile with ψP positive corresponding
to wind blowing to the right.

with P̂m = mPJ exp(iψP ) and ψP = ±π/2 for Jeffreys and P̂m = PG exp(imψP ) for generalized Miles

profiles. Although we highlight these two forcing profiles, we stress the derivation’s generality. The results

apply to any pressure profile (2.18) that results from a convolution of η(x, t) with a time-independent

function f(x), each yielding a specific P̂m. For example, P̂m could be chosen to match numerical simulations

(cf. § 2.6.4).

To make these definitions concrete and contrast the different forcing types, a deep-water, second-

order Stokes wave

kη(θ) = ε cos(θ) +
1

2
ε2 cos(2θ) (2.19)

is shown for ε = 0.2 in figure 2.1(a) with phase θ = kx−ωt. The Stokes wave profile is used to compute both

(unity normalized) surface pressure profiles (figure 2.1(b)). These two pressure profiles, (2.14) and (2.15),

are largely similar to each other, although differences arise due to the Stokes wave harmonics. The

derivative in the Jeffreys profile (blue figure 2.1(b)) multiplies each Fourier harmonic by its wavenumber,
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mk, enhancing higher frequencies. In contrast, the wind phase ψP , measured left from θ = 0 to the pressure

maximum, shifts the entire pressure waveform relative to the surface waveform η for the generalized Miles

profile (orange, figure 2.1(b)). The LES numerical simulations of Hara and Sullivan [90] and Husain et al.

[108] show ψP ≈ 3π/4 for a variety of wind speeds (§ 2.6.2). However, in figure 2.1(b), ψP = π/2 is chosen

for the generalized Miles profiles to facilitate comparison with the Jeffreys case (for which ψP = ±π/2).

2.3.4 Determination of pressure magnitude P

We will use existing experimental data to determine the magnitude of P in various contexts.

Assuming a logarithmic wind profile, Miles [69] derived the wave-energy growth rate γ, normalized by the

(unforced, linear, deep-water) wave frequency f∞0 , for the pressure profile pM (2.15)

γ

f∞0
= 2πβ̃

ρa
ρw

U2

(c∞0 )2
= 2π

PG

ρw(c∞0 )2
sin(ψP ), (2.20)

where, c∞0 =
√︁
g/k is the unforced, linear, deep-water phase speed, ρw is the water density and (2.12) is

used to define PG. Using the value ψP = 3π/4 from Hara and Sullivan [90] and Husain et al. [108] gives

PGk/(ρwg) = 0.23(γ/f∞0 ).

Furthermore, we use empirical data relating wind speed U to growth rate to constrain the PG

pressure magnitude constant in deep water. Figure 2.2 shows the energy growth rate γ/f∞0 as a function

of inverse wave age, u∗/c∞0 with u∗ the friction velocity. The empirical observations of γ/f∞0 versus u∗/c∞0

in deep water collapse onto a curve permitting a conversion from u∗/c
∞
0 to γ/f∞0 and yielding PGk/(ρwg)

(2.20).

Here, we consider |p|k/(ρwg) = O(ε) to O
(︁
ε3
)︁
, or Pk/(ρwg) = O(1) to O

(︁
ε2
)︁
—cf. (2.13). If we

assume ε ≈ 0.1, ψP ≈ 3π/4, and ρa/ρw = 1.225 × 10−3, then (2.20) shows we are considering growth rates

γ/f∞0 ≈ 4 × 10−2 to 4. Referring to figure 2.2, we see these reside mostly in the laboratory measurement

regime, corresponding to u∗/c∞0 ≈ 5 × 10−1 to 5. We can approximate U10 using logarithmic boundary

layer theory [e.g. 115]

u∗ =
κU10

ln[(10 m)/z0]
, (2.21)

with κ ≈ 0.4 the von Kármán constant and z0 ≈ 1.4 × 10−5 the surface roughness parameter for 2 m long,

0.1 m high deep-water waves, as one might have in a wave tank [116]. Substituting these values, we find

U10 ≈ 34u∗, (2.22)
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Figure 2.2. Non-dimensional, deep-water wave-energy growth rate γ/f∞
0 versus inverse wave age,

u∗/c
∞
0 with u∗ the wind’s friction velocity and c∞0 =

√︁
g/k the unforced, linear, deep-water phase

speed. The filled symbols represent laboratory measurements while the hollow symbols represent field
measurements [from 114]. The solid line represents the fit parameterized by Banner and Song [111].
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yielding U10/c
∞
0 ≈ 1 × 101 to 1 × 102, or U10 ≈ 3 × 101 m s−1 to 3 × 102 m s−1 assuming a deep-water

dispersion relation.

It is interesting to examine the pressure-forcing magnitudes used previously. Phillips [68] modelled

wave growth using a different mechanism, but the pressure forcing was included at the same order as

η. That is, |p|k/(ρwg) = O(ε), or Pk/(ρwg) = O(1), implying γ/f∞0 = O(1). Referring to figure 2.2,

this corresponded to strongly forced waves and a fast wind (u∗/c∞0 = O(1)). Other theoretical works

have used |p|k/(ρwg) = O
(︁
ε2
)︁

[e.g. 106, 113, 117] or |p|k/(ρwg) = O
(︁
ε3
)︁

[e.g. 118–120], corresponding to

Pk/(ρwg) = O(ε) and Pk/(ρwg) = O
(︁
ε2
)︁
, respectively. Thus, the choices of Pk/(ρwg) = O(1) to O

(︁
ε2
)︁

are all relevant in the literature.

2.3.5 Multiple-scale expansion

As mentioned in § 2.3.2, we will utilize an asymptotic expansion in the small wave slope ε := a1k

to prevent secular terms in this singular perturbation expansion. While nonlinear wave theories often use

an ordinary Stokes expansion (i.e. a Poincaré–Lindstedt, or strained coordinate, expansion), this does not

permit the complex frequencies required for wave growth. Instead, we employ the method of multiple

scales and replace t by a series of slower time scales depending on ε such that t0 = t, t1 = t/ε, etc, yielding

∂

∂t
=

∂

∂t0
+ ε

∂

∂t1
+ . . . . (2.23)

Additional time scales t2 and t3, inversely proportional to ε2 and ε3 respectively, are required in the O
(︁
ε4
)︁

derivation of § 2.A. This is exclusively a temporal multiple-scale expansion. While a spatial multiple-scale

analysis would also permit the study of surface pressure effects on modulational instabilities [106], we solely

focus on the wind-induced shape change of a single wave.

As discussed in § 2.3.4, the non-dimensional pressure forcing can have magnitudes ranging

from Pk/(ρwg) = O(1) to O
(︁
ε2
)︁
. Writing Pk/(ρwg) = O(εn) for n = 0 to 2, we will show that the

derivation must be solved to O
(︁
εn+2

)︁
to demonstrate shape change. Many theoretical treatments using

Pk/(ρwg) = O
(︁
ε2
)︁

only utilize O
(︁
ε3
)︁

equations like the nonlinear Schröedinger (NLS) equation [e.g. 119,

120] or Davey–Stewartson equation [e.g. 118]. Therefore, no shape change would be derived without

going to higher order. In contrast, both Brunetti et al. [113] and Brunetti and Kasparian [106] coupled

a moderately strong wind Pk/(ρwg) = O(ε) to a slowly varying wave train and derived an O
(︁
ε3
)︁

forced

NLS equation. Although solved at sufficiently high order to show wind-induced shape changes, neither
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reported results for the first harmonic. Instead, these focused on wind-forced wave packet evolution, with

Brunetti et al. [113] finding various envelope solitons for the primary wave and Brunetti and Kasparian

[106] deriving an enhancement of the primary wave’s modulational instability.

In §§ 2.A and 2.4, we include the pressure in the leading-order equations, i.e. Pk/(ρwg) = O(1),

which is the most general case. The leading-order contributions to the shape parameters β and a2/(a21k)

are found at O
(︁
ε2
)︁
, while the higher-order corrections occur at O

(︁
ε4
)︁

(§ 2.A). From the full O
(︁
ε4
)︁

solution,

shape changes for Pk/(ρwg) = O(ε) or Pk/(ρwg) = O
(︁
ε2
)︁

can be found by substituting P → εP or

P → ε2P , respectively (cf. § 2.A.6).

2.3.6 Non-dimensionalization

Non-dimensional systems are useful in perturbation expansions. Here, a standard non-dimensionalization

[e.g. 121] is performed by defining new non-dimensional, order-unity primed variables

x =
x′

k
,

t =
t′√
gk
,

z =
z′

k
,

h =
h′

k
,

η = ε
η′

k
,

Φ = εΦ′
√︃

g

k3
,

⎫⎪⎪⎬⎪⎪⎭ (2.24)

Notice the ε factor in the equations for η and ϕ since these are assumed small. Unlike in the standard Stokes

wave problem, the surface pressure must also be non-dimensionalized. As shown in (2.13), O(|p|) = εO(P ).

Thus, we find p and P (as well as their Fourier transforms) are non-dimensionalized by

(p, p̂) = O
(︃
εPk

ρwg

)︃
ρwg

k
(p′, p̂′), (2.25)

(P, P̂m) = O
(︃
Pk

ρwg

)︃
ρwg

k
(P ′, P̂ ′

m), (2.26)

with p′(x, t) and P ′ (as well as their Fourier transforms) now order unity and dimensionless. For the

remainder of the paper, primes will be dropped and all variables will be assumed non-dimensional and

order unity, except where explicitly stated.

2.4 Derivation of wave-shape parameters

We now couple a prescribed surface pressure profile (2.18) to the nonlinear wave problem (2.3)–(2.6)

to derive the wind’s effect on wave shape. In this section, we will ultimately find an expression for the
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non-dimensional surface profile of the form

η = εA1(t1, . . .) exp(i(x− ω0t0)) + ε2A2(t1, . . .) exp(i[2(x− ω0t0) + β]) + . . . , (2.27)

where the real part is implied and ω0 is the leading-order approximation to ω defined in (2.8). Note

that we are not assuming this as a functional form for η, but are only giving a preview of our final

result. A comparison of non-dimensional (2.27) with dimensional (2.1) shows we will have (ignoring

the time dependence; cf. § 2.A.4) a1 = εA1, a2 = ε2A2/k, etc, so A2/A
2
1 = a2/(a

2
1k). Both the HP β

and a2/a21 encode information about the wave shape. We take the ratio a2/a21 because we will find that

a2 ∝ exp(2 Im{ω0}t0) while a1 ∝ exp(Im{ω0}t0). As we are mainly interested in the shape, the growth is

removed by using the ratio a2/a21.

Now, expanding our non-dimensional variables in an asymptotic series of ε, we have

η =

∞∑︂
n=1

εnηn(x, t0, t1, . . .), (2.28)

ϕ =

∞∑︂
n=1

εnϕn(x, z, t0, t1, . . .), (2.29)

p =

∞∑︂
n=1

εnpn(x, t0, t1, . . .). (2.30)

Choosing Pk/(ρwg) = O(1) gives p1 ̸= 0. Laplace’s equation (2.3) and the bottom boundary condition

(2.4) are linear and—unlike when spatial multiple scales are employed [e.g. 121]—can be satisfied identically.

Laplace’s equation is solved via a Fourier transform and, with the bottom boundary condition, has solution

(real part implied)

ϕn(x, z, t0, t1, . . .) = ϕ̂n,0(t0, t1, . . .) +
cosh[m(z + h)]

sinh(mh)
exp(imx)ϕ̂n,m(t0, t1, . . .), (2.31)

with arbitrary m ∈ N>0 and arbitrary functions ϕ̂n,0(t0, t1, . . .) and ϕ̂n,m(t0, t1, . . .). Note that we imposed

the no-mean-current condition by choosing ⟨u⟩ = ⟨∂xϕ⟩ = 0 at each order n, with ⟨·⟩ the spatial average

over one wavelength. Furthermore, to express the surface pressure profile pn in terms of the surface height
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ηn (cf. (2.18)), all variables are written as Fourier series

ηn(x, t0, t1, . . .) =

m=n∑︂
m=0

exp(imx)η̂n,m(t0, t1, . . .), (2.32)

ϕn(x, z, t0, t1, . . .) =

m=n∑︂
m=1

exp(imx)ϕ̂n,m(t0, t1, . . .)
cosh(m(z + h))

sinh(mh)
+ ϕ̂n,0(t0, t1, . . .), (2.33)

pn(x, t0, t1, . . .) =

m=n∑︂
m=0

exp(imx)p̂m,n(t0, t1, . . .). (2.34)

Aside from the pressure expansion, this follows the standard Stokes expansion methodology [e.g. 102].

Other texts, such as Mei et al. [121], treat the Stokes expansion using both slow time and spatial scales,

but such spatial expansions are outside the scope of this paper (cf. § 2.3.2). Recall that we previously

related (cf. (2.18)) the Fourier transform of the surface pressure to the surface profile,

p̂m,n(t0, t1, . . .) = P̂mη̂m,n(t0, t1, . . .). (2.35)

Thus, p has higher-order corrections because η has higher-order Stokes-like corrections.

We now expand the kinematic (2.5) and dynamic (2.6) boundary conditions in ε and collect terms

order by order.

O(ε) :

∂η1
∂t0

− ∂ϕ1
∂z

= 0 (2.36)

η1 +
∂ϕ1
∂t0

+ p1 = 0, (2.37)

O
(︁
ε2
)︁
:

∂ϕ2
∂z

− ∂η2
∂t0

=
∂η1
∂t1

+
∂η1
∂x

∂ϕ1
∂x

− η1
∂2ϕ1
∂z2

, (2.38)

η2 +
∂ϕ2
∂t0

+ p2 = −∂ϕ1
∂t1

− η1
∂ϕ1
∂zt0

− 1

2

(︃
∂ϕ1
∂x

)︃2

− 1

2

(︃
∂ϕ1
∂z

)︃2

, (2.39)
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O
(︁
ε3
)︁
:

∂ϕ3
∂z

− ∂η3
∂t0

=
∂η2
∂t1

+
∂η1
∂t2

+
∂η2
∂x

∂ϕ1
∂x

+
∂η1
∂x

∂ϕ2
∂x

+ η1
∂η1
∂x

∂2ϕ1
∂z∂x

− η1
∂2ϕ2
∂z2

− 1

2
η21
∂3ϕ1
∂z3

− η2
∂2ϕ1
∂z2

,

(2.40)

η3 +
∂ϕ3
∂t0

+ p3 = −∂ϕ1
∂t2

− ∂ϕ2
∂t1

− 1

2
η21

∂3ϕ1
∂z2∂t0

− η1
∂2ϕ2
∂z∂t0

− η2
∂2ϕ1
∂z∂t0

− η1
∂2ϕ1
∂z∂t1

− ∂ϕ1
∂x

∂ϕ2
∂x

− η1
∂ϕ1
∂x

∂2ϕ1
∂x∂z

− ∂ϕ1
∂z

∂ϕ2
∂z

− η1
∂ϕ1
∂z

∂2ϕ1
∂z2

,

(2.41)

O
(︁
ε4
)︁
:

∂ϕ4
∂z

− ∂η4
∂t0

= −∂η1
∂t3

− ∂η2
∂t2

− ∂η3
∂t1

− ∂η1
∂x

∂ϕ3
∂x

− ∂η2
∂x

∂ϕ2
∂x

− ∂η3
∂x

∂ϕ1
∂x

+ η3
∂2ϕ1
∂z2

−
(︃
∂η1
∂x

∂2ϕ1
∂x∂z

− ∂2ϕ2
∂z2

)︃
η2 −

(︃
∂η1
∂x

∂2ϕ2
∂x∂z

+
∂η2
∂x

∂2ϕ1
∂x∂z

− ∂2ϕ3
∂z2

)︃
η1 +

∂3ϕ1
∂z3

η1η2

−
(︃
1

2

∂η1
∂x

∂2ϕ1
∂x∂z

− 1

2

∂3ϕ2
∂z3

η21 −
1

6

∂4ϕ1
∂z4

η31

)︃
,

(2.42)

η4 +
∂ϕ4
∂t0

+ p4 = −∂ϕ1
∂t3

− ∂ϕ2
∂t2

− ∂ϕ3
∂t1

− ∂ϕ1
∂x

∂ϕ3
∂x

− 1

2

(︃
∂ϕ2
∂x

)︃2

− ∂ϕ1
∂z

∂ϕ3
∂z

− 1

2

(︃
∂ϕ2
∂z

)︃2

− ∂2ϕ1
∂t0∂z

η3 −
(︃
∂2ϕ1
∂t1∂z

+
∂2ϕ2
∂t0∂z

+
∂ϕ1
∂x

∂2ϕ1
∂x∂z

+
∂ϕ1
∂z

∂2ϕ1
∂z2

)︃
η2

−
(︃
∂2ϕ1
∂t2∂z

+
∂2ϕ2
∂t1∂z

+
∂2ϕ3
∂t0∂z

+
∂ϕ1
∂x

∂2ϕ2
∂x∂z

+
∂ϕ2
∂x

∂2ϕ1
∂x∂z

+
∂ϕ1
∂z

∂2ϕ2
∂z2

+
∂ϕ2
∂z

∂2ϕ1
∂z2

)︃
η1

− ∂2ϕ1
∂t0∂z

η1η2 −

(︄
1

2

∂2ϕ1
∂t1∂z

+
1

2

∂2ϕ2
∂t0∂z

+
1

2

∂ϕ1
∂x

∂2ϕ1
∂x∂z

+
1

2

(︃
∂2ϕ1
∂x∂z

)︃2

+
1

2

∂ϕ1
∂z

∂3ϕ1
∂z3

+
1

2

(︃
∂2ϕ1
∂z2

)︃2
)︄
η21 −

1

6

∂2ϕ1
∂t0∂z

η31 .

(2.43)

We solve these equations to O
(︁
ε2
)︁

here and O
(︁
ε4
)︁

in § 2.A.

2.4.1 The O(ε) equations

Proceeding to first order in ε, the linearized boundary conditions are

∂ϕ1
∂z

− ∂η1
∂t0

= 0, (2.44)

∂ϕ1
∂t0

+ η1 + p1 = 0. (2.45)
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Inserting the Fourier transforms (2.32)–(2.34) and the pressure profile (2.18) gives

m = 1 Fourier component:

ϕ̂1,1 −
∂η̂1,1
∂t0

= 0, (2.46)

∂ϕ̂1,1
∂t0

coth(h) + η̂1,1 + P̂1η̂1,1 = 0, (2.47)

m = 0 Fourier component:

−∂η̂1,0
∂t0

= 0, (2.48)

∂ϕ̂1,0
∂t0

+ η̂1,0 + P̂0η̂1,0 = 0. (2.49)

The m = 0 Fourier equations are solved by η̂1,0 = ϕ̂1,0 = 0 when placing the initial mean water level ⟨η⟩ at

z = 0. Combining the m = 1 equations (2.46) and (2.47) to eliminate η̂1,1 gives

∂2ϕ̂1,1
∂t20

coth(h) +
(︂
1 + P̂1

)︂
ϕ̂1,1 = 0. (2.50)

This is the usual, finite-depth, linear operator on ϕ̂1,1 modified by the presence of P̂1, showing that

ϕ̂1,1(t0, t1, . . .) is harmonic. Using a bit of foresight to define the constants, we write

ϕ̂1,1 = −iω0A1(t1) exp(−iω0t0), (2.51)

giving

ϕ1 = −iω0A1(t1) exp(i(x− ω0t0))
cosh(z + h)

sinh(h)
, (2.52)

where

ω0 = ±
√︃

tanh(h)
(︂
1 + P̂1

)︂
. (2.53)

We choose the (+) sign, corresponding to waves propagating to the right. While A1(t1) and exp(−iω0t0)

always appear together and could be simply left as a single, t0-dependent variable A(t0, t1) ∈ C, we find it

instructive to explicitly write the t0-dependence. Inserting this into the surface boundary conditions gives
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equations for η1,

∂η̂1
∂t0

= −iω0A1(t1) exp(−iω0t0), (2.54)

η̂1 + P̂1η̂1 = coth(h)ω2
0A1(t1) exp(−iω0t0). (2.55)

This gives

η1 = A1(t1) exp(i(x− ω0t0)). (2.56)

It is instructive to consider the real and imaginary parts of ω0

Re{ω0} =

√︃
tanh(h)

2

√︄
1 + Re

{︂
P̂1

}︂
+

√︃
1 +

⃓⃓⃓
P̂1

⃓⃓⃓2
+ 2Re

{︂
P̂1

}︂
, (2.57)

Im{ω0} = sgn
(︂
Im
{︂
P̂1

}︂)︂√︃ tanh(h)

2

√︄
−1− Re

{︂
P̂1

}︂
+

√︃
1 +

⃓⃓⃓
P̂1

⃓⃓⃓2
+ 2Re

{︂
P̂1

}︂
. (2.58)

Notice that the pressure causes growth (Im{ω0} > 0) for wind in the direction of the waves (Im{P̂1} > 0)

and decay (Im{ω0} < 0) for opposing wind (Im{P̂1} < 0). Likewise, observe that an applied pressure,

P̂1 ̸= 0, modifies the dispersion relation (2.57). This phenomenon was also derived by Jeffreys [63] and

Miles [69] for Pk/(ρwg) = O(ε), which we can reproduce by substituting P̂1 → εP̂1 in (2.57) and (2.58).

2.4.2 The O(ε2) equations

Proceeding to second order, the kinematic and dynamic boundary conditions are

∂ϕ2
∂z

− ∂η2
∂t0

=
∂η1
∂t1

+
∂η1
∂x

∂ϕ1
∂x

− η1
∂2ϕ1
∂z2

, (2.59)

∂ϕ2
∂t0

+ η2 + p2 = −∂ϕ1
∂t1

− η1
∂2ϕ1
∂z∂t0

− 1

2

(︃
∂ϕ1
∂x

)︃2

− 1

2

(︃
∂ϕ1
∂z

)︃2

. (2.60)

By inserting the Fourier transforms (2.32)–(2.34), we can express p2 using (2.35). Inserting the first-order

solutions (2.52) and (2.56) and collecting harmonics yields

m = 1 Fourier component:

ϕ̂2,1 −
∂η̂2,1
∂t0

=
∂A1

∂t1
exp(−iω0t0), (2.61)

∂ϕ̂2,1
∂t0

coth(h) + (1 + P̂1)η̂2,1 = iω0
∂A1

∂t1
exp(−iω0t0) coth(h), (2.62)
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m = 2 Fourier component:

2ϕ̂2,2 −
∂η̂2,2
∂t0

= iω0A
2
1 exp(−2iω0t0) coth(h), (2.63)

∂ϕ̂2,2
∂t0

coth(2h) + (1 + P̂2)η̂2,2 =
1

4
ω2
0A

2
1 exp(−2iω0t0)

(︁
2− csch2(h)

)︁
, (2.64)

m = 0 Fourier component:

−∂η̂2,0
∂t0

= 0, (2.65)

∂ϕ̂2,0
∂t0

+ η̂2,0 =
1

4

(︂
2Re

{︁
ω2
0

}︁
− |ω0|2

(︁
2 + csch2(h)

)︁)︂
|A1|2|exp(−iω0t0)|2. (2.66)

Eliminating the various η̂2,m to get equations solely in terms of ϕ̂2,m gives

m = 1 Fourier component:

∂2ϕ̂2,1
∂t20

coth(h) + (1 + P̂1)ϕ̂2,1 = 2
(︂
1 + P̂1

)︂∂A1

∂t1
exp(−iω0t0), (2.67)

m = 2 Fourier component:
∂2ϕ̂2,2
∂t20

coth(2h) + 2(1 + P̂2)ϕ̂2,2 = −i
1

2
ω0A

2
1

{︂[︁
2− csch2(h)

]︁
ω2
0

− 2
(︂
1 + P̂2

)︂
coth(h)

}︂
exp(2iω0t0),

(2.68)

m = 0 Fourier component:

∂2ϕ̂2,0
∂t20

=
1

2

(︂
2Re

{︁
ω2
0

}︁
− |ω0|2

(︁
2 + csch2(h)

)︁)︂
|A1|2 exp(2 Im{ω0}t0) Im{ω0}. (2.69)

Preventing secular terms in ϕ̂2,1 requires that ∂t1A1 = 0. This is consistent with standard, unforced Stokes

waves: Stokes corrections to the unforced wave frequency first occur at O
(︁
ε2
)︁
, meaning we would only

expect A1 to have a t2-dependence (which we also observe, cf. § 2.A.1). Solving (2.67)–(2.69) for ϕ̂2,m and

transforming back to ϕ2 via (2.31) gives

ϕ2 = i
ω0

4
A2

1 coth(h)

(︁
2− csch2(h)

)︁
ω2
0 − 2

[︂
1 + P̂2

]︂
coth(h)(︁

2 + csch2(h)
)︁
ω2
0 −

[︂
1 + P̂2

]︂
coth(h)

exp(2i(x− ω0t0))
cosh[2(z + h)]

sinh(2h)

+
1

8 Im{ω0}

(︂
2Re

{︁
ω2
0

}︁
− |ω0|2

(︁
2 + csch2(h)

)︁)︂
|A1|2(exp(2 Im{ω0}t0)− 1).

(2.70)

We have included a constant term −1 in exp(2 Im{ω0}t0) − 1 so that ϕ2 remains finite if P → 0 (i.e.

Im{ω0} → 0). We have also dropped the homogeneous solution, which would only amount to redefining

the linear solution, A1.
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The surface boundary conditions are now solely equations for η̂2,m

∂η̂2,2
∂t0

= −i
1

2
ω3
0A

2
1 exp(−2iω0t0)

(︁
2 + 3 csch2(h)

)︁
coth(h)(︁

2 + csch2(h)
)︁
ω2
0 −

[︂
1 + P̂2

]︂
coth(h)

(2.71)

[︂
1 + P̂2

]︂
η̂2,2 =

1

4

[︂
1 + P̂2

]︂
A2 exp(−2iω0t0)

(2 + 3 csch2(h)) coth(h)ω2
0(︁

2 + csch2(h)
)︁
ω2
0 −

[︂
1 + P̂2

]︂
coth(h)

, (2.72)

and η̂2,0 = η̂2,1 = 0. These have the solution

η2 =
1

4
A2

1 exp(2i(x− ω0t0))
(︁
2 + 3 csch2(h)

)︁
coth(h)

(︄
1− coth2(h)

[︄
P̂2 − P̂1

1 + P̂1

]︄)︄−1

(2.73)

Note that we chose η̂2,0 = 0 since we imposed η = 0 at t = 0 with our choice of the mean water

level as our initial datum in § 2.3.1. It is interesting to note that, when η = 0 initially, it remains zero for

all times. This implies that the mean water level does not change over time. Another choice of datum

occasionally used [e.g. 122] is the mean energy level (MEL), defined such that ∂tϕ = 0 [e.g. 123]. However,

even if we chose ∂tϕ = 0 initially by adding a constant A to η2 and a term −At0 to ϕ2, (2.70) shows that

the MEL would still vary with time.

Redimensionalizing, we find

η = ε
A1

k
exp(i(x− ω0t0)) + ε2

A2
1

k
exp(2i(x− ω0t0))C2,2 + O

(︁
ε3
)︁
, (2.74)

where the complex C2,2 is the pressure-induced (or wind-induced) correction to the first harmonic

C2,2 :=
1

4

(︁
2 + 3 csch2(h)

)︁
coth(h)

(︄
1− coth2(h)

[︄
P̂2 − P̂1

1 + P̂1

]︄)︄−1

. (2.75)

Note that A2
1|C2,2|/k is the quantity denoted A2 in (2.27).

We have now found the primary wave η̂m=1 = εη̂1,m + O
(︁
ε3
)︁

and first harmonic η̂m=2 = ε2η̂2,2 +

O
(︁
ε3
)︁
. Therefore, the amplitudes of the primary wave and first harmonic are respectively

a1 := |η̂m=1| = ε
|A1(t2)|

k
exp(Im{ω0}t0) + O

(︁
ε3
)︁
, (2.76)

a2 := |η̂m=2| = ε2
⃓⃓
A2

1(t2)
⃓⃓

k
exp(2 Im{ω0}t0)|C2,2|+ O

(︁
ε3
)︁
. (2.77)
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Hence, in order to cancel the t0-dependence, we define the relative harmonic amplitude shape parameter as

a2
a21k

:=

⃓⃓⃓⃓
η̂m=2

η̂2m=1k

⃓⃓⃓⃓
. (2.78)

With this definition, (2.74) becomes

η = a1 exp(i(x− Re{ω0}t0)) + a2 exp(i[2(x− Re{ω0}t0) + β]) + O
(︁
ε3
)︁
, (2.79)

where we have absorbed the complex phase of A1 into exp(ix) (redefining the x = 0 location) and defined

the harmonic phase β as the complex angle of η̂m=2/η̂
2
m=1

β := tan−1

(︄
Im
{︁
η̂m=2/η̂

2
m=1

}︁
Re{η̂m=2/η̂2m=1}

)︄
. (2.80)

In general, both β and a2/(a21k) will have an expansion in ε since η̂m=2 will have higher-order corrections.

For instance, the HP β has expansion β = β0 + εβ1 + . . .. Inserting our solution (2.74) into (2.80) gives β0,

which is just the complex angle of C2,2 at this order

β0 = tan−1

⎛⎝ Im
{︂[︂

P̂2−P̂1

1+P̂1

]︂}︂
tanh2(h)− Re

{︂[︂
P̂2−P̂1

1+P̂1

]︂}︂
⎞⎠

= tan−1

⎛⎜⎝ Im
{︂[︂
P̂2 − P̂1

]︂(︂
1 + P̂ ∗

1

)︂}︂
⃓⃓⃓
1 + P̂1

⃓⃓⃓2
tanh2(h)− Re

{︂[︂
P̂2 − P̂1

]︂(︂
1 + P̂ ∗

1

)︂}︂
⎞⎟⎠,

(2.81)

with an asterisk representing the complex conjugate. Similarly, using (2.78) shows that the leading-order

term of a2/(a21k) is just |C2,2|

a2
a21k

= |C2,2| =
2 + 3 csch2(h)

4
coth(h)

⃓⃓⃓⃓
⃓1− coth2(h)

[︄
P̂2 − P̂1

1 + P̂1

]︄⃓⃓⃓⃓
⃓
−1

. (2.82)

Without wind (P̂1 = P̂2 = 0), C2,2 is real and equals (2+3 csch2(h)) coth(h)/4, or 1/2 in deep water. Thus,

P̂1 = P̂2 = 0 reproduces the usual Stokes waves values of a2/(a21k) = 1/2 in deep water and β = 0.

Asymmetry and skewness are common shape parameters that depend on β and a2/(a
2
1k). The
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skewness S and asymmetry A are defined as

S :=
⟨η3⟩

⟨η2⟩3/2
, (2.83)

A :=
⟨H{η}3⟩
⟨η2⟩3/2

, (2.84)

with ⟨·⟩ the spatial average over one wavelength and H{·} the Hilbert transform (in x). The average of any

Fourier component exp(imx) over a wavelength is zero for all m ̸= 0 ∈ N. Therefore, only combinations

wherein the x-dependence cancels will contribute. Inserting our solution for η (2.79) into the skewness and

asymmetry definitions (2.83) and (2.84) yields

S =
3√
2
ε|A1| exp(Im{ω0}t0)

a2
a21k

cos(β0) + O
(︁
ε2
)︁
, (2.85)

A = − 3√
2
ε|A1| exp(Im{ω0}t0)

a2
a21k

sin(β0) + O
(︁
ε2
)︁
. (2.86)

By solving the kinematic and dynamic boundary conditions to O
(︁
ε2
)︁
, we have generated the

leading-order terms for β and a2/(a21k). We continue this analysis by solving to O
(︁
ε4
)︁

in § 2.A, deriving the

first non-trivial correction to β (2.164), a2/(a21k) (2.163) and the complex frequency ω (2.170). Additionally,

going to O
(︁
ε4
)︁

also extends our solutions to weaker wind conditions. As outlined in § 2.3.5, we can

substitute P → εP or P → ε2P to generate shape parameters for weaker winds Pk/(ρwg) = O(ε) or

Pk/(ρwg) = O
(︁
ε2
)︁
, respectively (§ 2.A.6). In this way, we find the shape parameters’ dependence on our

non-dimensional parameters (kh, ε, P and ψP ) and demonstrate weak time and amplitude dependence

over a range of wind conditions from strong Pk/(ρwg) = O(1) to relatively weak Pk/(ρwg) = O
(︁
ε2
)︁
.

2.5 Results

Now, we present the main results of this theory. The harmonic phase β, harmonic magnitudes a1

and a2, and complex frequency ω depend on the four non-dimensional parameters: the wave steepness

ε := a1k, water depth kh, pressure magnitude constant Pk/(ρwg) and wind phase ψP . To reduce the

non-dimensional parameter range, we keep a fixed ε = 0.2. Recall (§ 2.3.2) the requirement of ε/(kh)3 ≤ 1,

such that the expansion remains properly ordered, implies kh ≥ 0.5, although we keep kh ≥ 1. Note

that taking kh to ∞ yields solutions on infinite depth. The pressure magnitude constant P is PJ or PG,

corresponding to the choice of pressure profile. For both solutions, taking P → 0 recovers the unforced
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Stokes wave.

For the remainder of the paper, we will revert to dimensional variables. In particular, the pressure

constant P is dimensional again and not necessarily order unity. Replacing the multiple time scales with

the true time t in our solution (2.79), we obtain a surface height profile η of the form

kη = (a1k) exp(iθ) + (a1k)
2 a2
a21k

exp(i(2θ + β)) + . . . , (2.87)

with the real part implied and θ defined in (2.8). Note that the growth of the harmonics means that these

solutions are only valid for finite time (cf. § 2.6.1).

2.5.1 Harmonic phase, relative harmonic amplitude and wave shape

The wave shape is a function of the harmonic phase β, quantifying the relative phase shift between

the primary wave and first harmonic, and the relative harmonic ratio a2/(a21k). The solutions for these

parameters are extended to O
(︁
ε2
)︁

in § 2.A.3, applying to all pressure profiles satisfying (2.18) with

magnitude Pk/(ρwg) = O(1) to O
(︁
ε2
)︁
. We now specialize these results to the two pressure profiles of

interest.

The full, O
(︁
ε2
)︁
-accurate Jeffreys harmonic phase βJ (2.164) is depicted in figures 2.3(a,4a,5a).

To develop a better understanding of its functional dependence, we can consider simpler, limiting cases.

For very small wave steepnesses, ε≪ 1, the leading-order correction (2.81) is

βJ = ± tan−1

(︃
Pk/(ρwg)

tanh2(kh)− sech2(kh)P 2k2/(ρ2wg
2)

)︃
+ O(ε), (2.88)

with the ± corresponding to the sign of ψP = ±π/2 in the pressure profile. If, instead of assuming ε≪ 1,

we expand (2.164) considering a weak pressure forcing Pk/(ρwg) ≪ 1, we find

βJ = ± Pk

ρwg
coth2(kh) + O

(︁
ε3
)︁
. (2.89)

The full, O
(︁
ε2
)︁
-accurate generalized Miles βG (2.164) is also depicted in figures 2.3(a,4a,5a). For very
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Figure 2.3. (a) Harmonic phase β (2.80) and (b) relative harmonic amplitude a2/(a21k) (2.78) versus
wind phase ψP . Results are shown for Jeffreys and generalized Miles profiles with kh = ∞, ε = 0.2 and
pressure magnitude constants Pk/(ρwg) = 0.01, 0.1 and 1, as indicated in the legend. The Jeffreys βJ is
only shown at ψP = π/2 as that is its implied ψP . All results are plotted using the full, O

(︁
ε2
)︁
-accurate

expressions (2.163) and (2.164). The grey lines are the results for a fourth-order unforced Stokes wave,
and the green dotted line represents ψP = 3π/4 used in many of the other plots and supported by
numerical simulations from Hara and Sullivan [90] and Husain et al. [108].
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Figure 2.4. (a) Harmonic phase β (2.80) and (b) relative harmonic amplitude a2/(a21k) (2.78) versus
non-dimensional pressure magnitude constant Pk/(ρwg). Results are shown for Jeffreys and generalized
Miles profiles, as indicated in the legend, with kh = ∞, ε = 0.2 and ψP = 3π/4 (for generalized Miles).
All results are plotted using the full, O

(︁
ε2
)︁
-accurate expressions (2.163) and (2.164), which include the

Pk/(ρwg) ≪ 1 limits for β (2.89) and (2.91), as well as for a2/(a21k) (2.93) and (2.95). The grey lines
are the results for a fourth-order unforced Stokes wave.
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Figure 2.5. (a) Harmonic phase β (2.80) and (b) relative harmonic amplitude a2/(a21k) (2.78) versus
non-dimensional depth kh. Results are shown for Jeffreys and generalized Miles profiles, as well as
unforced (i.e. no wind) Stokes waves, with ε = 0.2, pressure magnitude constant Pk/(ρwg) = 1 and
ψP = 3π/4 (for generalized Miles). All results are plotted using the full, O

(︁
ε2
)︁
-accurate expressions

(2.163) and (2.164). The grey lines are the results for a fourth-order unforced Stokes wave with kh = ∞.
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small ε≪ 1, we have the approximation

βG = tan−1

⎛⎝[︃2 cos(ψP )− 1 +
Pk

ρwg

]︃
Pk

ρwg
sin(ψP )

[︄
−
(︃
Pk

ρwg

)︃2

cos(ψP )− 1

− Pk

ρwg
(cos(2ψP ) + cos(ψP )) +

(︄
1 + 2

Pk

ρwg
cos(ψP ) +

(︃
Pk

ρwg

)︃2
)︄(︁

2− sech2(kh)
)︁]︄−1

⎞⎠
+ O(ε).

(2.90)

Instead of requiring ε≪ 1, we can expand (2.164) while considering a weak pressure forcing Pk/(ρwg) ≪ 1

to find

βG =
Pk

ρwg
(sin(2ψP )− sin(ψP )) coth

2(kh) +
1

2

(︃
Pk

ρwg

)︃2

coth4(kh)
(︂
sin(4ψP )

− 4 sin(3ψP ) + 3 sin(2ψP ) + 2 sech2(kh)[sin(3ψP )− sin(2ψP )]
)︂
+ O

(︁
ε3
)︁
.

(2.91)

Next, we consider the relative harmonic amplitude, a2/(a21k). The full, O
(︁
ε2
)︁
-accurate Jeffreys

relative harmonic amplitude (2.163) is shown in figures 2.3(b,4b,5b), but we can approximate it for very

small ε≪ 1 as (2.82)

(︃
a2
a21k

)︃
J

=
2 + 3 csch2(kh)

4
coth(kh)

√︄
1 + P 2k2/(ρ2wg

2)

1 + P 2k2/(ρ2wg
2) csch4(kh)

. (2.92)

Inserting a weak wind Pk/(ρwg) ≪ 1 in (2.163) instead of requiring ε≪ 1 yields

(︃
a2
a21k

)︃
J

=
2 + 3 csch2(kh)

4
coth(kh)

(︄
1 +

1− csch4(kh)

2

(︃
Pk

ρwg

)︃2
)︄

+ (a1k)
2A+ O

(︁
ε3
)︁
, (2.93)

with A only a function of kh and defined in (2.161). We now have the direct appearance of the amplitude

a1k with an implicit time dependence due to growth. The full, O
(︁
ε2
)︁
-accurate generalized Miles a2/(a21k)G

(2.163) is also plotted in figures 2.3(b,4b,5b). We can simplify a2/(a21k)G by assuming a very small wave

steepness ε≪ 1

(︃
a2
a21k

)︃
G

=
2 + 3 csch2(kh)

4
coth(kh)

⃓⃓⃓⃓
1− coth2(kh)

[exp(iψP )− 1]Pk/(ρwg)

exp(−iψP ) + Pk/(ρwg)

⃓⃓⃓⃓−1

+ O(ε). (2.94)
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Instead of assuming very small ε, we can approximate (2.163) by assuming Pk/(ρwg) ≪ 1 to give

(︃
a2
a21k

)︃
G

=
2 + 3 csch2(kh)

4
coth(kh)

(︄
1 +

Pk

ρwg
[cos(2ψP )− cos(ψP )] coth

2(kh)

+
1

2

(︃
Pk

ρwg

)︃2

(cos(ψP )− 1)
{︂
3 coth2(kh) cos(3ψP )− 4 cos(2ψP )

− 4 cos(ψP )− 3− csch2(kh)
}︂
coth2(kh)

)︄
+ (a1k)

2A+ O
(︁
ε3
)︁
.

(2.95)

Note that we see a weak amplitude dependence (i.e. a1k terms) appearing in some of these results, such as

(2.93) and (2.95). This amplitude dependence is implicitly present in figures 2.3–2.5 since they show the

full, O
(︁
ε2
)︁

results (2.163) and (2.164) which encode this dependence. However, we do not show the β and

a2/(a
2
1k) dependence on ε as these effects are O

(︁
ε2
)︁
, or approximately 4 % of the leading-order effects in

figures 2.3–2.5.

Figure 2.3 shows the influence of wind phase ψP on β and a2/(a
2
1k) for both the Jeffreys and

generalized Miles profiles with kh = ∞ and ε = 0.2 for a range of pressure magnitudes Pk/(ρwg) = 0.01,

0.1 and 1. For the strongest pressure forcing Pk/(ρwg) = 1, both the Jeffreys and generalized Miles

profiles induce a harmonic phase magnitude |β| up to π/4 (figure 2.3a). The Jeffreys value of βJ = π/4

is placed at ψP = π/2 to correspond with its restriction that ψP = ±π/2. The generalized Miles HP β

increases from zero at ψP = 0 (figure 2.3a) to roughly π/16 for the largest pressure, before decreasing

to approximately −π/4 and passing through zero near ψP = π/2. The weaker pressure forcings show a

much reduced β range, cross β = 0 at somewhat smaller values of ψP and yield much smaller β for large

wind phase angles. The angle ψP = 3π/4 is denoted by a dashed line in figure 2.3, and this ψP is utilized

hereafter, as suggested by Hara and Sullivan [90] and Husain et al. [108].

The relative harmonic amplitude shows opposing behaviour for the two forcing types in figure 2.3(b).

The Jeffreys a2/(a21k)J = 0.7 for the strongest wind is enhanced relative to the deep-water Stokes value

a2/(a
2
1k) = 1/2, while the generalized Miles value is suppressed a2(a21k)G ≤ 1/2 for most values of ψP . As

in figure 2.3(a), the weaker pressure magnitudes give correspondingly smaller changes to a2/(a21k), although

the small Pk/(ρwg) do slightly enhance a2/(a21k) for large ψP . It is worth noting that the strongest

pressure Pk/(ρwg) = 1 suppresses the first harmonic a2 as ψP → π, making the wave more linear. However,

as discussed in § 2.6.2, ψP ≈ π is usually observed for very weak winds. As the Pk/(ρwg) = 0.1 and 0.01

lines in figure 2.3(b) show, weaker winds show no such linearization. Note that figure 2.3 only depicts

ψP ≥ 0 since β (2.81) is antisymmetric and a2/(a21k) (2.82) is symmetric about ψP = 0. This is seen by
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noticing ψP → −ψP =⇒ P̂m → P̂ ∗
m.

The wave-shape parameters show a particularly rich dependence on the pressure magnitude

Pk/(ρwg) (figure 2.4). While both Jeffreys and generalized Miles yield non-zero harmonic phase β for small

pressures (figure 2.4a), they have opposite responses for large Pk/(ρwg). The Jeffreys profile increases

steadily, reaching 3π/8 for Pk/(ρwg) = 3. Instead, the generalized Miles profile first decreases, reaching a

minimum of approximately −π/4 at Pk/(ρwg) = 0.6 and then increasing to small, positive values. The

relative harmonic amplitude shows (figure 2.4b) virtually no change from the deep-water Stokes value

of 1/2 until Pk/(ρwg) = 0.3. Then, the Jeffreys profile increases rapidly, attaining a2/(a21k)J = 1.7 for

Pk/(ρwg) = 3. Contrarily, the generalized Miles profile decreases and asymptotes to a2/(a21k)G ≈ 0.2.

Finally, the non-dimensional depth kh also modulates the wind’s effect on wave shape. For the

chosen values of Pk/(ρwg) = 1 and ψP = 3π/4, the generalized Miles βG ≈ −π/4 while Jeffreys βJ ≈ +π/4

for large kh (figure 2.5a). However, as kh decreases, both values grow in magnitude with βJ increasing

faster, nearly reaching βJ = π/2 at kh = 1. Thus, the shallower depth kh strongly enhances the effect of

wind on β. The wind’s influence on a2/(a21k) is less pronounced. Notice that the unforced Stokes wave also

has a depth dependence for a2/(a21k) (dashed line in figure 2.5b). Although the relative harmonic amplitude

is enhanced for small kh in all three cases (Jeffreys, generalized and unforced Stokes), both pressure

profiles grow slower than the unforced Stokes wave. That is, the pressure forcing appears to counteract

shoaling-induced a2/(a21k) enhancement to some extent. Figure 2.5(b) also highlights the importance of

restricting to kh ≥ 1. As kh decreases, a2 becomes large compared to a1 and the perturbation expansion

could become disordered. This figure highlights a trend where Jeffreys and generalized Miles profiles

exhibit opposite responses to the wind: namely, Jeffreys yields positive β and an enhanced a2/(a
2
1k),

while generalized Miles gives a negative β and a suppressed a2/(a21k). This difference is also apparent in

figure 2.4, wherein β and a2/(a
2
1k) increase with increasing pressure magnitude for Jeffreys, while they

decrease (at least initially) for the generalized Miles profile. This can be attributed to different choices

of ψP (ψP = π/2 for Jeffreys, but ψP = 3π/4 for generalized Miles), as well as different effects on higher

harmonics, including the derivative in the Jeffreys profile enhancing higher harmonics.

Both the harmonic phase and the relative harmonic amplitude determine the wave shape. We

consider their combined influence by plotting the surface profile under the action of the generalized Miles

pressure profile, with ε = 0.2 to emphasize the pressure-induced shape changes. Figure 2.6(a) shows

how the surface profile η versus phase θ varies with Pk/(ρwg) = 0, 0.1 and 0.2 for wind blowing to

the right. The Pk/(ρwg) = 0 profile has skewness (2.85) S = 0.6 and asymmetry (2.86) A = 0, as
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Figure 2.6. Wave profile kη versus phase θ for ε = 0.2, ψP = 3π/4 and the generalized Miles pressure
profile for (a) kh = 1.0 and variable Pk/(ρwg) (see legend) and (b) Pk/(ρwg) = 0.1 and variable kh
(see legend).
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expected for a kh = 1 Stokes wave. The Pk/(ρwg) = 0.1 profile deviates only slightly from the unforced

profile. However, the Pk/(ρwg) = 0.2 profile shows a noticeable horizontal asymmetry, with both skewness

S = 0.4 and asymmetry A = 0.3 that are fundamentally different from a Stokes wave. This follows from

figure 2.4(a) with kh = ∞ since Pk/(ρwg) = 0.1 generates a somewhat small βG ≈ −12°, while βG ≈ −27°

is significantly larger for Pk/(ρwg) = 0.2. Instead, (2.91) can be used when kh = 1 to calculate βG ≈ −19°

for Pk/(ρwg) = 0.1 and βG ≈ −45° for Pk/(ρwg) = 0.2. Note that the larger pressure magnitudes cause

the crest to shrink. This is to be expected, since the magnitude of the first harmonic a2/a21k decreases as

Pk/(ρwg) increases for the generalized Miles profile (figure 2.3b). We can also see that increasing the depth

kh decreases the influence of wind on asymmetry (figure 2.6b). The kh = ∞ profile (S = 0.2, A = 0.04) is

less asymmetric than the kh = 1 profile, in agreement with figure 2.5.

2.5.2 Phase speed and growth rate

In addition to influencing wave shape, the pressure-forcing terms also affect the phase speed, as

predicted by Jeffreys [63] and Miles [69]. We normalize the phase speed c = Re{ω}/k by the unforced,

linear phase speed c0 =
√︁
g tanh(kh)/k. The complete fractional phase speed change ∆c/c0 is given in

(2.171). If we consider very small waves ε≪ 1, then (2.171) simplifies considerably

∆c

c0
=

|c| − |c|
⃓⃓
P=0

c0

=
1√
2

⌜⃓⃓⎷
1 +

Pk

ρwg
cos(ψP ) +

√︄
1 +

(︃
Pk

ρwg

)︃2

+ 2
Pk

ρwg
cos(ψP )− 1 + O

(︁
ε2
)︁
,

(2.96)

with ψP = ±π/2 for the Jeffreys profile. If, instead of very small waves, we assume the forcing is weak,

Pk/(ρwg) ≪ 1, we find

∆c

c0
=

1

2

Pk

ρwg
cos(ψP )−

1

8

(︃
Pk

ρwg

)︃2

cos(2ψP )

+
8 cosh4(kh)− 8 cosh2(kh) + 9

16 sinh4(kh)

(︃
(a1k)

2 − (a1k)
2

⃓⃓⃓⃓
P=0

)︃
+ O

(︁
ε3
)︁
,

(2.97)

For these limiting cases, we find that both surface pressure profiles generate the same change to the phase

speed. This is unsurprising since, at leading order, both pressure profiles are equivalent (if ψP = ±π/2).

The a21 term is the amplitude dispersion due to nonlinearity described by Stokes [103].

As shown in § 2.4, the different harmonics grow at different rates. Here, we will discuss the growth

rate of the primary wave. It is conventional to describe the energy growth rate, γ := ∂tE/E, rather than
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the amplitude growth rate, ∂tη/η = Im{ω}. However, since E ∝ η2, they are related as γ = 2 Im{ω}. The

complete non-dimensional growth rate γ/f0 is given in (2.172). For very small waves, ε ≪ 1, (2.172)

simplifies to

γ

f0
=

4π Im{ω}
c0k

= 2
√
2π sgn

(︃
Pk

ρwg
sin(ψP )

)︃
×
√︂

−1− P cos(ψP )k/(ρwg) +
√︁
1 + P 2k2/(ρ2wg

2) + 2P cos(ψP )k/(ρwg) + O
(︁
ε2
)︁
,

(2.98)

with f0 = Re{ω0}/(2π) = c0k/(2π) the unforced, linear wave frequency. Instead of assuming very small

waves, if we consider weak wind forcing Pk/(ρwg) ≪ 1, we find

γ

f0
= 2π

Pk

ρwg
sin(ψP )−

π

2

(︃
Pk

ρwg

)︃2

sin(2ψP ) + O
(︁
ε3
)︁
. (2.99)

Both Jeffreys [63]—with ψP = π/2—and Miles [69] calculated the growth rate to leading order for weak

pressure forcing Pk/(ρwg) = O(ε); (2.99) matches their results. Naturally, if P → 0, we find γ → 0, as

there is no growth.

Notice that, for both the Jeffreys and generalized Miles profiles, the HP β and growth rate are

related for very small waves (ε≪ 1) with weak wind (Pk/(ρwg) ≪ 1) as

⎛⎝β0,J
β0,G

⎞⎠ =
Pk

ρwg

⎛⎝ ±1

sin(2ψP )− sin(ψP )

⎞⎠ coth2(kh) + O
(︃
ε
Pk

ρwg

)︃

=
1

2π

γ

f0

⎛⎝ 1

(2 cos(ψP )− 1)

⎞⎠ coth2(kh) + O
(︃
ε
Pk

ρwg

)︃
.

(2.100)

The connection with wave asymmetry (related to β) suggests a deeper link between wave growth and wave

shape. This is potentially analogous to shoaling, weakly nonlinear waves that both grow and becomes

asymmetric.

2.6 Discussion

2.6.1 Time scale validity

Here, we discuss the time scale validity of our results. As asymptotic expansions must stay ordered

to remain consistent, the solution’s O(ε) term must be larger than the O
(︁
ε2
)︁

term as ε→ 0. However, as
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shown in (2.76) and (2.77), the O
(︁
ε2
)︁

first harmonic grows faster than the O(ε) primary wave, resulting in

a disordered expansion in finite time. As the first harmonic grows faster than the primary wave by a factor

of exp(Im{ω0}t), consistency requires that this exponent remain O(1) as ε→ 0, i.e.

t Im{ω0} = O(1). (2.101)

Since O(Im{ω0}) = O(Pk/(ρwg)), redimensionalizing shows our results are restricted to

t

T∞
0

≤ O
(︃
Pk

ρwg

)︃−1

, (2.102)

with the characteristic, unforced, linear, deep-water wave period T∞
0 = 2π/

√
gk. For the case considered

here with Pk/(ρwg) = O(1), this implies the solution may only be valid for a few characteristic waves

periods T∞
0 . However, for weaker winds, the temporal range of validity is extended. For Pk/(ρwg) = O

(︁
ε2
)︁
,

the solution is well ordered for time intervals O
(︁
T∞
0 /ε2

)︁
, assuming the solution is calculated to O

(︁
ε3
)︁

accuracy with a frequency ω accurate to order ε2.

The shape parameters β and a2/(a
2
1k) change very little over time. To leading order, the pri-

mary wave (2.76) grows like η̂m=1 ∝ exp(Im{ω0}t0) while the first harmonic (2.77) goes as η̂m=2 ∝

exp(2 Im{ω0}t0). By dividing η̂m=2/(η̂
2
1k) in (2.78) and (2.80), our shape parameters β (2.81) and a2/(a21k)

(2.82) are constant for time intervals of the length O(T∞
0 ). Even the higher-order corrections (§ 2.A) for

a2/(a
2
1k) (2.163) and β (2.164) show very little temporal variation during the valid time scales where

t Im{ω0} = O(1). In contrast, the skewness (2.85) and asymmetry (2.86) show a stronger time scale depen-

dence, with exp(t Im{ω0}) appearing at leading order. Nevertheless, our restriction that t Im{ω0} = O(1)

ensures that, over the solution’s range of temporal validity, the skewness and asymmetry do not vary

substantially.

2.6.2 Using LES to constrain the surface pressure

LES simulations of the airflow over a single, static, sinusoidal (i.e. no harmonics), deep-water wave

by Husain et al. [108] [see also 90] allow estimation of the two unknown parameters: pressure magnitude

Pk/(ρwg) and wind phase ψP . The Husain et al. [108] simulations were based on the laboratory experiments

of Buckley and Veron [124] and explored a variety of surface roughnesses kz0, wave steepnesses ε and wind

speeds u∗/c∞0 . We consider the simulation [108] with intermediate surface roughness kz0 = 1.35 × 10−3,

appreciable wave slope ε = 0.2 and young waves u∗/c∞0 = 0.71 (figure 2.7). The non-dimensional surface
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Figure 2.7. LES modelled non-dimensional, perturbation air pressure over a right-propagating linear
surface gravity wave as a function of non-dimensional phase kx and height kz. This simulation has
non-dimensional surface roughness kz0 = 1.35 × 10−3, wave steepness ε = 0.2 and inverse wave age
u∗/c

∞
0 = 0.71. The red line denotes the wind phase ψP , as measured from the wave crest to the high

pressure location. Reproduced from figure 2b of Husain et al. [108].

perturbation pressure p′H varies over a range of ±20 with the maximum shifted ≈ 3π/4 windward of the

crest (red bar in figure 2.7), yielding our choice of ψP ≈ 3π/4. The Husain et al. [108] value of ψP ≈ 3π/4

is also qualitatively consistent with the surface pressure and wind phase reported by Donelan et al. [125].

Note that ψP appears to be a function of wind speed (or pressure magnitude). Donelan et al. [125],

Hara and Sullivan [90] and Husain et al. [108] suggest ψP ≈ 3π/4 for inverse wave ages uc/c0 ≈ 0.19 to 0.71.

In contrast, numerical simulations find ψP ≈ π for very small inverse wave ages u∗/c0 ≤ 0.09 [e.g. 87, 126].

According to figure 2.2, this corresponds to a growth rate γ/f∞0 ≤ 10−3 ⪅ ε4 for ε = 0.2. Given that our

analysis is limited to Pk/(ρwg) = O
(︁
ε2
)︁

or stronger (cf. § 2.A.6), these weak winds are outside the scope

of our analysis.

In regards to the pressure magnitude, Husain et al. [108] non-dimensionalized pressure with the

air density and friction velocity,

p′H =
p

ρau2∗
, (2.103)

whereas we non-dimensionalized p′ by ρw, g and k. Thus, converting p′H to p′ we find

p′ =
pk

ρwg
=

p

ρau2∗

u2∗
(c∞0 )2

ρa
ρw

=
u2∗

(c∞0 )2
ρa
ρw
p′H ≈ 5.0 × 10−4p′H. (2.104)

With u∗/c
∞
0 = 0.71 [108] and ρa/ρw ≈ 10−3, p′ ≈ 10−2 and |p′| ≈ 7 × 10−3. Using their value of

ε = 0.2 then gives |p|k/(ρwg) ≈ ε3, or Pk/(ρwg) ≈ ε2. Interestingly, the non-dimensional pressure

magnitude for this simulation is consistent with that inferred from the u∗/c∞0 versus γ/f0 relationship

(figure 2.2), where we see that u∗/c∞0 = 0.7 =⇒ γ/f0 = 0.1. Using (2.20) and ψP = 3π/4 gives
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Pk/(ρwg) = γ/[2πf0 sin(ψP )] = 2 × 10−2. That is, Pk/(ρwg) ≈ ε2. This can be compared to our results

for weak wind Pk/(ρwg) ≪ 1, such as (2.91) and (2.95) truncated to εO(Pk/(ρwg)) = O
(︁
ε3
)︁
. Thus, the

results of Husain et al. [108] provide an estimate for ψP and a Pk/(ρwg) consistent with our theoretical

development. However, the appropriate, specific pressure profile (Jeffreys or generalized Miles) remains to

be determined; cf. § 2.6.4.

2.6.3 Comparison of theory to laboratory wave-shape observations

Here, we compare our predicted harmonic phase to the laboratory experiments in Leykin et al. [100].

We cannot compare to Feddersen and Veron [101] as their kh ≤ 1.2, and the u∗/c0 to γ/f0 relationship

(figure 2.2) needed for determining Pk/(ρwg) is for deep water. In Leykin et al. [100], laboratory wind-

generated surface gravity waves with ε ≈ 0.15 and kh = 2.5 had a quasi-linear relationship between the

biphase β at the peak frequency (the statistical analogue of our harmonic phase β) and the inverse wave

age u∗/c0 (figure 2.8). For comparison, our pressure magnitude Pk/(ρwg) must be converted to an inverse

wave age u∗/c0 (§ 2.3.4). We assume the deep-water relationship between u∗/c0 and γ/f0 (figure 2.2) holds

for kh = 2.5, which is parameterized [111] as (figure 2.2, solid line)

γ

f0
= 32.5(2π)

ρa
ρw

(︃
u∗
c0

)︃2

. (2.105)

Using (2.20), we can relate γ/f0 to Pk/(ρwg) for deep water to give

Pk

ρwg
=

32.5

sin(ψP )

ρa
ρw

(︃
u∗
c0

)︃2

(2.106)

allowing comparison between theory and laboratory observations.

Using (2.106), the measured inverse wave ages u∗/c0 = 0.5 to 1.5 correspond to pressure mag-

nitudes Pk/(ρwg) = 0.01 to 0.1, or Pk/(ρwg) = O
(︁
ε2
)︁

to O(ε). Therefore, our results for weak forcing

Pk/(ρwg) ≪ 1 are applicable here (cf. § 2.A.6). Assuming a generalized Miles pressure profile with

ψP = 3π/4, the predicted and measured β are in qualitative agreement (compare red curve to symbols in

figure 2.8). We emphasize that (2.106), relying on the conversion between u∗/c0 and γ/f0 from figure 2.2, is

only approximate and is of questionable applicability for water depth kh = 2.5. If the conversion coefficient

were a factor of 3 larger, the results would match reasonably well. We also note that the relatively high

wind speeds (u∗ up to 1.7 m s−1) likely caused additional physical processes, such as whitecapping or

microbreaking, to occur. Such dissipative processes are not considered in our theoretical treatment.
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Figure 2.8. Harmonic phase β versus inverse wave age u∗/c0 (symbols) for the Leykin et al. [100]
laboratory experiments. The black, dashed line is the Leykin et al. [100] linear fit. Theoretical HP β
(solid red) are given for the generalized Miles pressure profile with ψP = 3π/4, kh = 2.5 and ε = 0.15,
and conversion of u∗/c0 to Pk/(ρwg) is given by (2.106) (cf. § 2.6.3).

2.6.4 The surface pressure profile

Most theoretical treatments of wind-induced wave growth utilize a linear theory with monochromatic

waves [e.g. 67, 69, 127]. In this scenario, for the same ψP , the pressure profiles considered are identical at

leading order and one need not distinguish between, for instance, the Jeffreys or generalized Miles profiles.

However, when considering higher-order corrections to the higher harmonics, differences arise and care

must be taken when choosing the pressure profile.

Direct measurements of the surface pressure profile are challenging and rare [125]. However, our

theory can offer insight by comparing the profiles’ differing effects on wave-shape parameters to simulations

and measurements of wind-forced waves, which have found a non-zero β [100, 101]. Both Feddersen and

Veron [101] and Leykin et al. [100] measure a harmonic phase β < 0 for co-aligned wind and waves. However,

the Jeffreys profile gives a positive β while the generalized Miles profile with ψP ≈ 3π/4 gives a negative β

(figures 2.3a,4a). Additionally, the Jeffreys requirement of ψP = ±π/2 appears inconsistent with numerical

simulations showing ψP ≈ 3π/4 [90, 108]. Among the profiles considered here, the generalized Miles case

best reproduces the results of wave-shape experiments.

Throughout the derivation, we have maintained a rather general surface pressure profile p(x, t),

namely any time-independent convolution with η (i.e. p̂m ∝ η̂m, cf. § 2.3.3). Coupled air–water simula-

tions [e.g. 92, 93] offer the possibility of extracting realistic wave shapes and surface pressures, which could
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then be compared to our theory. However, LES atmospheric simulations over purely sinusoidal waves yield

surface pressure profiles that are not purely sinusoidal (e.g. [90, figure 7] or [108, figure 6]). Although this

is counter to our assumption that p̂m ∝ η̂m, it could be remedied by extending our small ε theory to allow

pressures with Fourier representations p̂m = kP̂mη̂m + k2
∑︁

n P̂m,nη̂nη̂m + . . . . Additional surface pressure

complexity is likely generated if LES atmospheric simulations used a Stokes wave profile instead of a single

sinusoid. Finally, allowing the wind, via surface pressure profiles, to affect wave shape, as we have done,

likely induces further changes back to the airflow and surface pressure profile. That is, the air and water

phases are coupled. Although this study relied on prescribed surface pressures, it lays the groundwork

for a weakly nonlinear coupled theory. Future work will attempt to couple the wind and waves directly,

providing insight into the surface pressure profile and the related wave shape and growth.

2.7 Summary

Here, we derive a theory for the wind’s effect on the shape of surface gravity waves. The influence

of the wind on ocean waves has been studied in great detail theoretically, numerically and observationally

in the context of wave growth. A few laboratory and numerical experiments have shown that wind can

also influence wave shape, although no theory for this effect exists. Two key, weakly nonlinear wave-shape

parameters are the harmonic phase β, encoding the relative phase between the primary wave and first

harmonic (zero for unforced Stokes waves), and the relative harmonic amplitude a2/(a21k). These two

parameters can also be converted to the more conventional skewness and asymmetry. Motivated by prior

wind–wave generation theories, two surface pressure profiles (Jeffreys and generalized Miles) based on

convolutions with the wave profile η are prescribed. A multiple-scale perturbation analysis is performed

for the small wave steepness ε := a1k. The deep- to intermediate-water theoretical solutions are derived

for quasi-periodic progressive waves yielding the wind-induced changes to β and a2/(a
2
1k) as well as

higher-order corrections to the previously known growth and phase speed changes. These parameters are

functions of the four non-dimensional parameters: the wave steepness a1k, depth kh, pressure magnitude

Pk/(ρwg) and wind phase ψP . By substituting the pressure magnitude P with P → εP or P → ε2P , our

derivation permits a variety of pressure magnitudes (i.e. wind speeds).

The relative harmonic ratio a2/(a21k) displays a strong dependence on the forcing type, enhanced

for Jeffreys but suppressed for generalized Miles. The harmonic phase β has more complicated behaviour,

including a local minimum for the generalized Miles case as a function of the pressure magnitude. Despite

restricting our analysis to intermediate and deep water, we find decreasing kh enhances the wind’s effect
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on wave shape. This suggests pressure forcing could play a larger role in wave shape for shallow-water

waves. We also find direct relationships between growth rates and β for the pressure profiles considered.

Atmospheric large eddy simulations constrain both the pressure magnitude P and wind phase ψP . Using

the constrained ψP , our HP predictions are qualitatively consistent with laboratory observations. Only the

generalized Miles profile could reproduce the observed sign for β, suggesting that generalized Miles surface

pressure profiles best represent the actual wave surface pressure profile. Future studies will investigate the

shallow-water limit. Other avenues for future work include dynamically coupling the air and wave field.

Such an approach would obviate the need to impose a specified pressure profile, increasing the applicability

of the theory.
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2.A Strong forcing: Pk/(ρwg) = O(1) continued

2.A.1 The O(ε3) equations

In § 2.4, we derived the leading-order contributions to the HP β and relative amplitude a2/(a21k).

Now, we will extend this derivation to the next non-zero correction. This will reveal a weak amplitude and

time dependence to these shape parameters. Furthermore, by finding β and a2/(a21k) accurate to O
(︁
ε2
)︁
, we

can substitute P → εP yielding solutions with Pk/(ρwg) = O(ε), or P → ε2 generating Pk/(ρwg) = O
(︁
ε2
)︁

results (§ 2.A.6). However, the expressions begin to become unwieldy. Therefore, we will only sketch the
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derivation. The third-order equations give

∂ϕ3
∂z

− ∂η3
∂t0

=
∂A1

∂t2
exp(i(x− ω0t0))

+A1|A1|2 KIN3,1 exp(i(x− ω0t0))|exp(−iω0t0)|2 +A3
1 KIN3,3 exp(3i(x− ω0t0)),

(2.107)

∂ϕ3
∂t0

+ η3 + p3 = iω0
∂A1

∂t2
exp(i(x− ω0t0)) coth(h)

+A1|A1|2 DYN3,1 exp(i(x− ω0t0))|exp(−iω0t0)|2 +A3
1 DYN3,3 exp(3i(x− ω0t0)),

(2.108)

with the real part implied. Here, KIN3,1,KIN3,3,DYN3,1,DYN3,3 ∈ C are constants that do not depend

on A1, x, tn or z (these dependencies have been explicitly factored out) and are composed entirely of

known quantities from previous orders. In general, KINn,m and DYNn,m are the constants (depending on

h, ψP and P̂m only) for the nth order, mth Fourier component (i.e., exp(imkx)) term from the kinematic

or dynamic boundary condition, respectively. See § 2.B for their expressions.

Once again, inserting our Fourier transforms (2.32)–(2.34), we find

m = 1 Fourier component:

ϕ̂3,1 −
∂η̂3,1
∂t0

=
∂A1

∂t2
exp(−iω0t0) +A1|A1|2 KIN3,1 exp(−iω0t0)|exp(−iω0t0)|2, (2.109)

coth(h)
∂ϕ̂3,1
∂t0

+ (1 + P̂1)η̂3,1 = iω0
∂A1

∂t2
exp(−iω0t0) coth(h)

+A1|A1|2 DYN3,1 exp(−iω0t0)|exp(−iω0t0)|2,
(2.110)

m = 3 Fourier component:

3ϕ̂3,3 −
∂η̂3,3
∂t0

= A3
1 KIN3,3 exp(−3iω0t0), (2.111)

coth(3h)
∂ϕ̂3,3
∂t0

+ (1 + P̂3)η̂3,3 = A3
1 DYN3,3 exp(−3iω0t0). (2.112)

Eliminating ϕ̂3,m gives

m = 1 Fourier component:

coth(h)
∂2η̂3,1
∂t20

+ (1 + P̂1)η̂3,1 = −
(︃
−iω0 +

∂

∂t0

)︃
∂A1

∂t2
exp(−iω0t0) coth(h)

+A1|A1|2[(iω0 − 2 Im{ω0}) coth(h)KIN3,1 +DYN3,1] exp(−iω0t0)|exp(−iω0t0)|2,
(2.113)

m = 3 Fourier component:

coth(3h)
∂2η̂3,3
∂t20

+ 3(1 + P̂3)η̂3,3 = 3A3
1[iω0 coth(3h)KIN3,3 +DYN3,3] exp(−3iω0t0). (2.114)
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Notice that we did not evaluate the ∂/∂t0 derivative in the (∂/∂t0 − iω0) of (2.113). We will discuss this

momentarily.

Preventing secular terms requires that coefficients of exp(−iω0t0) for m = 1 vanish. Thus, we

require

coth(h)

(︃
−iω0 +

∂

∂t0

)︃
∂A1

∂t2
exp(−iω0t0)

= A1|A1|2 exp(−iω0t0) exp(2 Im{ω0}t0)[(iω0 − 2 Im{ω0}) coth(h)KIN3,1 +DYN3,1].

(2.115)

Here, we encounter an issue: given that A1(t2, t3, . . .) is explicitly not a function of t0, there is no

(non-trivial) way to satisfy the t0 dependence of this compatibility condition.

We encounter this issue because the growth on the fast time scale affects the period of the slower

time scales. This could be dealt with formally if we had allowed the fast time scale t0 to modulate the

slower time scales by defining our multiple-scale expansion with additional, fast time scale dependencies

dt′0
dt

= 1, .
dt′1
dt

= εµ1(t
′
0), .

dt′2
dt

= ε2µ2(t
′
0), . . . . , .

dt′n
dt

= εnµn(t
′
0), (2.116)

with the primes to make our new time scales distinct from the originally defined ones. Then, we can

choose the form of µn to remove secular terms. This modified multiple-scale approach is similar to the one

specified in Pedersen [128].

Using this freedom to remove these problematic secularities, we would find that

µn(t
′
0) = exp(n Im{ω0}t′0). (2.117)

This method would eliminate the need to be careful about the (∂/∂t′0 − iω0) ∂A1/∂t
′
2 term previously

mentioned, and would eliminate the exp(2 Im{ω0}t′0) term we are attempting to deal with currently. Later,

to re-express the solution in terms of t, a simple integration yields

t′n =
εn

n Im{ω0}
(exp(n Im{ω0}t)− 1). (2.118)

where we required that t′n = 0 at t = 0. Note that t′0 is not a special case; treating n as a continuous

variable and taking the limit n→ 0 recovers t′0 = t.

Note that, since our previous solutions had no t1 dependence, making this change to t2 does not

alter any of our previous conclusions. Furthermore, we will see that only the even time scales (t2, t4, etc)
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need this treatment. Since we are only considering time scales up to t3, we will only make this replacement

for t2.

Making this redefinition, our compatibility conditions becomes

coth(h)

(︃
−iω0 +

∂

∂t0

)︃
∂A1

∂t′2
exp(−iω0t0) exp(2 Im{ω0}t0)

= A1|A1|2 exp(−iω0t0) exp(2 Im{ω0}t0)[(iω0 − 2 Im{ω0}) coth(h)KIN3,1 +DYN3,1],

(2.119)

which simplifies to

∂A1

∂t′2
= A1|A1|2

(iω0 − 2 Im{ω0})KIN3,1 +tanh(h)DYN3,1

−2iω0 + 2 Im{ω0}

:= −iA1|A1|2 COMB3,1,

(2.120)

where we defined

COMB3,1 := i
(iω0 − 2 Im{ω0})KIN3,1 +tanh(h)DYN3,1

−2iω0 + 2 Im{ω0}
. (2.121)

Now, if we assume a solution of the form

A1(t
′
2) = ρ(t′2) exp(iψ(t

′
2)), (2.122)

with ρ(t′2), ψ(t′2) ∈ R, (2.121) yields

∂ρ

∂t′2
+ iρ

∂ψ

∂t′2
= −iρ3 COMB3,1 . (2.123)

Collecting real and imaginary parts and solving yields

A1(t
′
2) = A′

1 exp

[︃
i
1

2
ln
(︂
1− 2|A′

1|
2
t′2 Im{COMB3,1}

)︂Re{COMB3,1}
Im{COMB3,1}

]︃
÷
√︂
1− 2|A′

1|
2
t′2 Im{COMB3,1},

(2.124)

with A′
1(t3) ∈ C. Later, converting back to t will give

A1(t) = A′
1 exp

{︃
i

2
ln

[︃
1− ε2|A′

1|
2
(exp(2 Im{ω0}t)− 1)

Im{COMB3,1}
Im{ω0}

]︃
Re{COMB3,1}
Im{COMB3,1}

}︃
÷

√︄
1− ε2|A′

1|
2(︁
exp(2 Im{ω0}t)− 1

)︁ Im{COMB3,1}
Im{ω0}

.

(2.125)
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Note that if p→ 0, then COMB3,1 reduces to the real quantity

COMB3,1

⃓⃓⃓⃓
p=0

= ω0
8 cosh4(h)− 8 cosh2(8) + 9

16 sinh4(h)
. (2.126)

With the compatibility condition solved, the m = 1 equation reduces to the homogeneous equation. For

simplicity, we will choose η̂3,1 = 0.

Substituting (2.120) and our solution for η̂3,1 into the surface boundary conditions allows us to

solve for ϕ̂3,1. Assuming a solution of the form

ϕ̂3,1 = C3,1A1|A1|2 exp(−iω0t0) exp(2 Im{ω0}t0), (2.127)

yields

C3,1 =
−iω0 KIN3,1 +tanh(h)DYN3,1

−2iω0 + 2 Im{ω0}
. (2.128)

The second harmonic (m = 3) equation is solved for η̂3,3 as usual. Then, substituting this solution

into the surface boundary conditions permits solving for ϕ̂3,3.

Thus, we have the solutions

ϕ3 = C3,1A1|A1|2 exp(2 Im{ω0}t0) exp(i(x− ω0t0))
cosh(z + h)

sinh(h)

+ C ′
3,3A

3
1 exp(3i(x− ω0t0))

cosh[3(z + h)]

sinh(3h)
,

(2.129)

η3 = C3,3A
3
1 exp(3i(x− ω0t0)), (2.130)

with

C3,1 =
−iω0 KIN3,1 +tanh(h)DYN3,1

−2iω0 + 2 Im{ω0}
, (2.131)

C ′
3,3 =

(︂
1 + P̂3

)︂
KIN3,3 −3iω0 DYN3,3

−9ω2
0 coth(3h) + 3

(︂
1 + P̂3

)︂ , (2.132)

C3,3 = 3
iω0 coth(3h)KIN3,3 +DYN3,3

−9ω2
0 coth(3h) + 3

(︂
1 + P̂3

)︂ . (2.133)

With no correction to the first harmonic η̂m=2, we continue to the next order.
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2.A.2 The O(ε4) equations

Finally, going to fourth order, we have

∂ϕ4
∂z

− ∂η4
∂t0

=
∂A1

∂t3
exp(i(x− ω0t0))

+ KIN4,0 |A1 exp(−iω0t0)|4 +KIN4,2A
2
1 exp(2i(x− ω0t0))|A1 exp(−iω0t0)|2

+KIN4,4A
4
1 exp(4i(x− ω0t0)),

(2.134)

∂ϕ4
∂t0

+ η4 + p4 = iω0
∂A1

∂t3
exp(i(x− ω0t0)) coth(h)

+ DYN4,0 |A1 exp(−iω0t0)|4 +DYN4,2A
2
1 exp(2i(x− ω0t0))|A1 exp(−iω0t0)|2

+DYN4,4A
4
1 exp(4i(x− ω0t0))

(2.135)

Here, KIN4,0,KIN4,2,KIN4,4,DYN4,0,DYN4,2,DYN4,4 ∈ C are constants that do not depend on A1, x, tn

or z (these dependencies have been explicitly factored out) and are composed entirely of known quantities

from previous orders. See § 2.C for their expressions.

Inserting the Fourier transforms (2.32)–(2.34) gives

m = 2 Fourier component:

2ϕ̂4,2 −
∂η̂4,2
∂t0

= A2
1|A1|2 KIN4,2 exp(2i(x− ω0t0))|exp(−iω0t0)|2, (2.136)

∂ϕ̂4,2
∂t0

coth(2h) + (1 + P̂2)η̂4,2 = A2
1|A1|2 DYN4,2 exp(2i(x− ω0t0))|exp(−iω0t0)|2, (2.137)

m = 4 Fourier component:

4ϕ̂4,4 −
∂η̂4,4
∂t0

= A4
1 KIN4,4 exp(4i(x− ω0t0)), (2.138)

∂ϕ̂4,4
∂t0

coth(4h) + (1 + P̂4)η̂4,4 = A4
1 DYN4,4 exp(4i(x− ω0t0)), (2.139)

m = 0 Fourier component:

−∂η̂4,0
∂t0

= |A1|4 KIN4,0 |exp(−iω0t0)|4, (2.140)

∂ϕ̂4,0
∂t0

+ η̂4,0 = |A1|4 DYN4,0 |exp(−iω0t0)|4, (2.141)

m = 1 Fourier component:

ϕ̂4,1 −
∂η̂4,1
∂t0

=
∂A1

∂t3
exp(−iω0t0), (2.142)

∂ϕ̂4,1
∂t0

coth(h) + (1 + P̂1)η̂4,1 = iω0
∂A1

∂t3
exp(−iω0t0) coth(h). (2.143)

107



Again, eliminating η̂4 gives

m = 2 Fourier component:
∂2ϕ̂4,2
∂t20

coth(2h) + 2(1 + P̂2)ϕ̂4,2 = A2
1|A1|2 exp(−2iω0t0) exp(2 Im{ω0}t0)

×
[︂
(1 + P̂2)KIN4,2 +2(−iω0 + Im{ω0})DYN4,2

]︂
.

(2.144)

m = 4 Fourier component:

∂2ϕ̂4,4
∂t20

coth(4h) + 4(1 + P̂4)ϕ̂4,4 = A4
1 exp(−4iω0t0)

[︂
(1 + P̂4)KIN4,4 −4iω0 DYN4,4

]︂
. (2.145)

m = 0 Fourier component:

∂2ϕ̂4,0
∂t20

= |A1|4 exp(4 Im{ω0}t0)[KIN4,0 +4 Im{ω0}DYN4,0]. (2.146)

m = 1 Fourier component:

∂2ϕ̂4,1
∂t20

coth(h) + (1 + P̂1)ϕ̂4,1 = 2
(︂
1 + P̂1

)︂∂A1

∂t3
exp(−iω0t0). (2.147)

Preventing secular terms requires that ∂t3A1 = 0. These can be solved as usual for ϕ̂4,m. Using the surface

boundary conditions, the solutions for η̂4,m can then be determined as well.

The only terms worth discussing are the zero modes, ϕ̂4,0 and η̂4,0. While η̂4,0 has physical meaning

(this is a component of the setup or setdown), ϕ̂4,0 has a gauge freedom. We may add a constant term (in

x, z and t0), as well as a term proportional to t0, without affecting any observables. Using this freedom,

we will choose these two free constants such that the η̂4,0 → 0 and ϕ̂4,0 → 0 as P → 0.

The solutions at this order are

ϕ4 = C ′
4,2A

2
1|A1|2 exp(2i(x− ω0t0)) exp(2 Im{ω0}t0)

cosh[2(z + h)]

sinh(2h)

+ C ′
4,4A

4
1 exp(4i(x− ω0t0))

cosh[4(z + h)]

sinh(4h)

+ C ′
4,0

(︃
|A1|4 exp(4 Im{ω0}t0)−

⃓⃓⃓
Ã1

⃓⃓⃓4)︃
+ t0C4,0

⃓⃓⃓
Ã1

⃓⃓⃓4
,

(2.148)

η4 = C4,2A
2
1|A1|2 exp(2i(x− ω0t0)) exp(2 Im{ω0}t0) + C4,4A

4
1 exp(4i(x− ω0t0))

+ C4,0

(︃
|A1|4 exp(4 Im{ω0}t0)−

⃓⃓⃓
Ã1

⃓⃓⃓4)︃
,

(2.149)
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with

C4,0 = − KIN4,0

4 Im{ω0}
= 0, (2.150)

C4,2 =
(iω0 − Im{ω0}) coth(2h)KIN4,2 +DYN4,2

2(−iω0 + Im{ω0})2 coth(2h) +
(︂
1 + P̂2

)︂ , (2.151)

C4,4 =
iω0 coth(4h)KIN4,4 +DYN4,4

−4ω2
0 coth(4h) +

(︂
1 + P̂4

)︂ , (2.152)

C ′
4,0 =

KIN4,0 +4 Im{ω0}DYN4,0

16 Im{ω0}2
, (2.153)

C ′
4,2 =

(︂
1 + P̂2

)︂
KIN4,2 +2(−iω0 + Im{ω0})DYN4,2

4(−iω0 + Im{ω0})2 coth(2h) + 2
(︂
1 + P̂2

)︂ , (2.154)

C ′
4,4 =

(︂
1 + P̂4

)︂
KIN4,4 −4iω0 DYN4,4

−16ω2
0 coth(4h) + 4

(︂
1 + P̂4

)︂ . (2.155)

Here, Ã1 := A1

⃓⃓
P=0

is the additive ‘constant’ we were permitted from the m = 0 equation; note that Ã1

could still be a function of slower time scales t1, t′2, etc. As mentioned previously, a term, linear in t0,

was included in ϕ̂4,0. This was necessary in order to include the Ã1 term in η̂4,0, ensuring that the C4,0

setdown term vanishes as t→ 0, as required by our choice of z = 0 datum at the initial mean water level.

In addition, note that KIN4,0 = 0 (cf. § 2.C) implies the setdown term C4,0 is identically zero for all times.

For reference, the full solution for η is

η = Re
{︂
εA1 exp(i(x− ω0t0)) + ε2A2

1C2,2 exp(2i(x− ω0t0)) + ε3A3
1C3,3 exp(3i(x− ω0t0))

+ ε4
(︂
A4

1C4,4 exp(4i(x− ω0t0)) +A2
1|A1|2 exp(2 Im{ω0}t0) exp(2i(x− ω0t0))

)︂}︂
+ O

(︁
ε5
)︁
,

(2.156)

with A1(t2) given by (2.124). At this order, we have a correction to the first harmonic η̂m=2, which will

modify our shape parameters.

2.A.3 Shape parameters

Now, we can calculate the shape parameters when pressure enters at leading order. Recall that

we are seeking two parameters—the HP β, and the relative harmonic amplitude, a2/(a21k) (with a2 the

amplitude of the complete first harmonic, and a1 the amplitude of the complete primary wave).
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The primary wave is simply

ηm=1 = εA1 exp(i(x− ω0t0)) + O
(︁
ε5
)︁
, (2.157)

with A1(t
′
2) given by (2.124).

The first harmonic has two components. We calculated the O
(︁
ε2
)︁

contribution in (2.73), and the

O
(︁
ε4
)︁

contribution in (2.149). Combining these, we have the first harmonic

ηm=2 = ε2A2
1 exp(2i(x− ω0t0))C2,2 + ε4A2

1|A1|2 exp(2i(x− ω0t0)) exp(2 Im{ω0}t0)C4,2

+ O
(︁
ε5
)︁ (2.158)

with C2,2 defined in (2.75) as

C2,2 :=
1

4

(︁
2 + 3 csch2(h)

)︁
coth(h)

1 + P̂1

1 + P̂1 − coth2(h)
[︂
P̂2 − P̂1

]︂ , (2.159)

and C4,2 defined in (2.151) as

C4,2 =
(iω0 − Im{ω0}) coth(2h)KIN4,2 +DYN4,2

2(−iω0 + Im{ω0})2 coth(2h) +
(︂
1 + P̂2

)︂ . (2.160)

See § 2.D for the full expression. Note that if p→ 0, then C4,2 reduces to the real quantity

C4,2

⃓⃓⃓⃓
p=0

:= A =
tanh(h)

384

(︁
272 + 856 csch2(h) + 512 csch4(h)

− 558 csch6(h)− 567 csch8(h)− 81 csch10(h)
)︁
.

(2.161)

To find the relative harmonic amplitude and HP, we will need to calculate the ratio of the first

harmonic, η̂m=2, to the primary wave, η̂m=1, squared (cf. (2.78) and (2.80)):

η̂m=2

η̂2m=1

= C2,2 + ε2|A1|2 exp(2 Im{ω0}t0)C4,2 + O
(︁
ε3
)︁
. (2.162)
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Now, the relative harmonic amplitude (2.78), a2/(a21k), is the magnitude of this quantity,

a2
a21k

=
⃓⃓⃓
C2,2 + ε2|A1|2 exp(2 Im{ω0}t0)C4,2

⃓⃓⃓
+ O

(︁
ε3
)︁

= |C2,2|

(︄
1 + ε2|A1|2 exp(2 Im{ω0}t0)

Re
{︁
C4,2C

∗
2,2

}︁
|C2,2|2

)︄
+ O

(︁
ε3
)︁
,

(2.163)

with an asterisk representing the complex conjugate. We can see that the O
(︁
ε2
)︁

correction grows as a

function of the fast time scale, t0, as well as the slow time scale, t′2 (through its A1(t2) dependence).

Likewise, the HP β is the complex angle (2.80) of (2.162)

β := tan−1

⎛⎝ Im
{︂
C2,2 + ε2|A1|2 exp(2 Im{ω0}t0)C4,2

}︂
Re
{︂
C2,2 + ε2|A1|2 exp(2 Im{ω0}t0)C4,2

}︂
⎞⎠+ O

(︁
ε3
)︁

≈ β0 + ε2|A1|2 exp(2 Im{ω0}t0)
Re{C2,2} Im{C4,2} − Im{C2,2}Re{C4,2}

Re{C2,2}2 + Im{C2,2}2
+ O

(︁
ε3
)︁
,

(2.164)

with β0 given in (2.81) by

β0 = tan−1

⎛⎜⎝ Im
{︂[︂
P̂2 − P̂1

]︂(︂
1 + P̂ ∗

1

)︂}︂
⃓⃓⃓
1 + P̂1

⃓⃓⃓2
tanh2(h)− Re

{︂[︂
P̂2 − P̂1

]︂(︂
1 + P̂ ∗

1

)︂}︂
⎞⎟⎠. (2.165)

Notice that β also has a weak time dependence appearing at O
(︁
ε2
)︁
. Additionally, both β and a2/(a

2
1k)

display a weak amplitude, ε|A1|, dependence. Finally, as given in (2.83) and (2.84), the skewness S and

asymmetry A of a wave are defined as

S :=
⟨η3⟩

⟨η2⟩3/2
, (2.166)

A :=
⟨H{η}3⟩
⟨η2⟩3/2

, (2.167)

with ⟨·⟩ the spatial average over one wavelength and H{·} the Hilbert transform (in x). In § 2.4, we only

calculated the O(ε) contribution for brevity. Using the full solution (2.156) for η would yield a solution

accurate up to and including O
(︁
ε3
)︁

terms.

2.A.4 Complex frequency

After deriving our solutions (2.157) and (2.158), it is useful to repackage them in a more conventional

notation. Therefore, we will gather the entire time dependence into a complex phase Θ ∈ C, from which
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we can extract a complex, time dependent frequency ω(t) ∈ C giving both propagation and growth. From

(2.125), we can write the entire t-dependence of A1(t) as a complex phase

A1(t) = A′
1 exp

{︄
i
1

2

COMB3,1

Im{COMB3,1}
ln
[︂
1− ε2|A′

1|
2
(exp(2 Im{ω0}t)− 1)

× Im{COMB3,1}
Im{ω0}

]︃}︄
+ O

(︁
ε4
)︁
.

(2.168)

Therefore, the entire complex phase Θ of the first harmonic ηm=1 = A′
1 exp(iΘ) is

Θ := kx− ω0t+ i
1

2

COMB3,1

Im{COMB3,1}
ln

[︃
1− ε2|A′

1|
2
(exp(2 Im{ω0}t)− 1)

× Im{COMB3,1}
Im{ω0}

]︃
+ O

(︁
ε4
)︁
.

(2.169)

Now, we define the full, complex frequency as

ω := −∂Θ
∂t

= ω0 + ε2|A′
1|

2
exp(2 Im{ω0}t) COMB3,1 +O

(︁
ε4
)︁
. (2.170)

Notice that the time dependence of ω is a manifestation of the (time-dependent) amplitude dispersion of

unforced Stokes waves. Then, the phase speed is the real part of ω,

c := Re{ω} = Re{ω0}+ ε2|A′
1|

2
exp(2 Im{ω0}t)Re{COMB3,1}+ O

(︁
ε4
)︁
, (2.171)

while the growth rate is the imaginary

γ := Im{ω} = Im{ω0}+ ε2|A′
1|

2
exp(2 Im{ω0}t) Im{COMB3,1}+ O

(︁
ε4
)︁
. (2.172)

It is natural to define the (dimensional) harmonic amplitudes an of (2.156) as containing the

growth time dependence

a1(t) := |η̂m=1| = ε
|A′

1|
k

exp(Im{Θ}) + O
(︁
ε5
)︁
, (2.173)

a2(t) := |η̂m=2| = ε2
|A′

1|
2

k
exp(2 Im{Θ})

[︂
1 + ε2|A1|2 exp(2 Im{ω0}t)

]︂
+ O

(︁
ε5
)︁

= ε2
|A′

1|
2

k
exp(2 Im{Θ})

[︁
1 + (a1k)

2
]︁
+ O

(︁
ε5
)︁
,

(2.174)

where we made the approximation Im{ω0}t0 ≈ Im{Θ} in the final line. This leaves the propagation time
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dependence given by the (real) phase

θ := Re{Θ} = kx−
∫︂

Re{ω} dt , (2.175)

such that the dimensional solution is

kη = (a1k) exp(iθ) + (a1k)
2 a2
a21k

exp(i(2θ + β)) + . . . . (2.176)

2.A.5 Miles profile

The Miles surface pressure defined in (2.10) has a Fourier representation, similar to (2.16) and (2.17),

given by

p̂M,m(t) = kPM exp(i sgn(m)ψP )η̂m(t), (2.177)

or P̂m = PM exp(i sgn(m)ψP ), with PM the constant P for the Miles profile. For this profile, the leading-

order correction to the first harmonic C2,2 (2.74) reduces to the unforced Stokes result (P̂1 = P̂2 = 0).

Indeed, the leading-order HP β0 (2.81) vanishes for any pressure profile of the form P̂2 = α+ P̂1(1 + α),

with α ∈ R (Miles is α = 0). Thus, the Miles pressure profile has no impact on leading-order wave shape.

Note that, for the Miles profile, the higher-order correction C4,2 differs from the unforced case, giving a

small O
(︁
ε2
)︁

change to the shape parameters. Given that leading-order wind-induced shape changes have

been measured [e.g. 100, 101], the Miles profile appears to be an inappropriate pressure profile.

2.A.6 Weaker wind forcing

In §§ 2.A.1 and 2.A.2 we performed the derivation up to O
(︁
ε4
)︁

with a strong pressure forcing

Pk/(ρwg) = O(1). This yielded expressions (2.163), (2.164) and (2.170) for a2/(a21k) β, and ω ∈ C accurate

to O
(︁
ε3
)︁
. However, it is occasionally useful to consider weaker winds, such as Pk/(ρwg) = O(ε) or O

(︁
ε2
)︁
,

as discussed in § 2.3.4. These results can be generated by substituting P → εP or P → ε2P , respectively,

into (2.163), (2.164) and (2.170) and dropping terms O
(︁
ε3
)︁

or higher. We have also performed the derivation

assuming a priori that Pk/(ρwg) = O
(︁
ε2
)︁

(not included here), which gives identical results to O
(︁
ε2
)︁

to

the more general solution (§§ 2.A and 2.4) after converting back to the true time t. This further confirms

the wide parameter range of the Pk/(ρwg) = O(1) derivation (§§ 2.A and 2.4).
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2.B The O
(︁
ε3
)︁

coefficients

Here, we give the full expressions for third-order coefficients, KIN3,m and DYN3,m, defined in

(2.107) and (2.108) as the coefficients of the lower-order terms’ m-th harmonics in the kinematic and

dynamic boundary conditions, respectively. Recall that P̂m was defined in (2.18) as the pressure’s Fourier

coefficient multiplying the m-th harmonic of the wave profile: p̂m(t) = kP̂mη̂m(t). The expressions are

given as Maple code, and we represent the pressure Fourier coefficients P̂1, P̂2, and P̂3 as P1, P2, and P3,

respectively. Likewise, we represent ω by omega, h by h and i by I.

KIN3,1 =

1/4∗ I ∗(((3/4+(P1−1/4∗P2) ) ∗ cosh (h)^4+(−1/4+(−1/2∗P1+1/4∗P2) ) ∗ cosh (h)^2+1/4∗P1

+1/4)∗abs(1+P1) +1/2∗((P2+1)∗ cosh (h)^4+(P1+1)∗ cosh (h)^2−1/2∗P1−1/2) ∗(P1+1)

) ^3/((1/2+(P1−1/2∗P2) ) ∗ cosh (h)^2−1/2∗P1−1/2)/omega/ s inh (h) / cosh (h)

KIN3,3 =

3/8∗ I ∗(3∗ cosh (h)^2−1)∗( cosh (h)^2∗P2+cosh (h)^2+2∗P1+2)∗omega^2/(2∗ cosh (h)^2∗

P1−cosh (h)^2∗P2+cosh (h)^2−P1−1)/ s inh (h)^2

DYN3,1 =

−(((P1+1)∗ cosh (h)^4+(−3/4∗P1+1/4∗P2−1/2)∗ cosh (h)^2−1/8∗P1−1/8)∗P1∗abs(1+P1)

+1/2∗(((P1+1/4∗P2^2−3/4)∗abs (P1)^2+(P1^2^2+(−3/2∗P2^2−1/2)∗P1−5/4∗P2−5/4)

∗P1) ∗ cosh (h)^2−5/2∗(P1+1)^2∗P1) ∗( cosh (h)+1)∗( cosh (h)−1) ) ∗abs (A1)^2^2/ s inh

(h)^2/P1/(2∗ cosh (h)^2∗P1−cosh (h)^2∗P2+cosh (h)^2−P1−1)

DYN3,3 =

−1/8∗(4∗ cosh (h)^4∗P1−7∗cosh (h)^4∗P2−3∗cosh (h)^4−18∗cosh (h)^2∗P1+9∗cosh (h)^2∗

P2−9∗cosh (h)^2+15∗P1+15)∗(P1+1)^2∗ ep s i l o n ^3∗A1^3/(2∗ cosh (h)^2∗P1−cosh (h)

^2∗P2+cosh (h)^2−P1−1)/ s inh (h)^2

Recall that COMB3,1 is defined in (2.121) as the combination of KIN3,1 and DYN3,1 formed by

eliminating ϕ̂3,1. This grouping appears often in the 4th-order coefficients and governs the higher-order

corrections to the phase speed (2.171) and growth rate (2.172). Therefore, we give its expression here and

represent it in Maple code by C3.

COMB3,1 =
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1/6∗(1/2∗P1∗(8∗ cosh (h)^4∗P1−2∗cosh (h)^4∗P2+6∗cosh (h)^4−6∗cosh (h)^2∗P1+2∗cosh

(h)^2∗P2−4∗cosh (h)^2+P1+1)∗abs(1+P1) +1/4∗(((−8∗P1+2∗P2)^2−6)∗abs (P1)

^2+(4∗P1^3−2∗P1^2∗P2)^2−2∗P1^2−4∗P1) ∗ cosh (h)^4−5/2∗((−2/5+(−3/5∗P1+1/5∗P2

) ) ∗abs (P1)^2+(P1∗(P1−3/5∗P2)+4/5∗P1−2/5∗P2) ∗P1) ∗ cosh (h)^2+2∗(P1^2−1/8∗abs

(P1)^2+7/8∗P1) ∗(P1+1) ) ^3∗(P1+1)/((1+(−P2+2∗P1) ) ∗ cosh (h)^2−P1−1)/ cosh (h) /

P1/omega/(P1−1/3∗abs(1+P1)+1)/ s inh (h)

2.C The O
(︁
ε4
)︁

coefficients

Here, we give the full expressions for fourth-order coefficients, KIN4,m and DYN4,m, defined in

(2.134) and (2.135) as the coefficients of the lower-order terms’ m-th harmonics in the kinematic and

dynamic boundary conditions, respectively.

KIN4,2 =

1/2∗(P1+1)∗(−2∗( cosh (h)^2+1/2) ∗(1/2∗ I ∗ s inh (h) ∗C3∗((2/3+(P1−1/3∗P3) ) ∗ cosh (h)

^2−2/3+(−3/4∗P1+1/12∗P3) ) ∗ cosh (h) ∗omega+I ∗((2/3+(P1−1/3∗P3) ) ∗(9/8+(P1

+1/8∗P2) ) ∗ cosh (h) ^4−13/8∗(29/39+(P1−10/39∗P3) ) ∗(P1+1)∗ cosh (h) ^2+3/4∗(P1

+1)∗(31/36+(P1−5/36∗P3) ) ) ^3)∗P1∗abs(1+P1)+3∗ I ∗ s inh (h) ∗(P1+1)∗( cosh (h)

^2+1/2)∗C3∗P1∗((2/3+(P1−1/3∗P3) ) ∗ cosh (h)^2−2/3+(−3/4∗P1+1/12∗P3) ) ∗ cosh (h)

∗omega+I ^3∗(((25/36+(P1^2+(−5/18∗P3−1/12∗P2) ∗P1+1/18∗P2∗P3) +(59/36∗P1

−2/9∗P3−1/36∗P2) ) ∗abs (P1)^2−1/2∗(−5/9+(P1^2+(2/3∗P3−2∗P2) ∗P1+7/6∗P2∗P3) ∗

P1^3+(−1/3∗P1^2+(55/18∗P3−8/3∗P2) ∗P1+19/18∗P2∗P3)^2+(−16/9∗P1+41/18∗P3

−7/9∗P2) ) ∗P1) ∗ cosh (h) ^6+(−17/12∗(10/17+(P1^2+(−23/102∗P3−4/17∗P2) ∗P1

+5/102∗P2∗P3) ^2+(157/102∗P1−3/17∗P3−19/102∗P2) ) ∗abs (P1)^2+25/8∗P1∗(−8/75+

P1∗(P1^2+(−18/25∗P2−4/15∗P3) ∗P1+11/75∗P2∗P3) ^3+(39/25∗P1^2+(−64/225∗P3

−89/75∗P2) ∗P1+28/225∗P2∗P3) ^2+(107/225∗P1−1/25∗P3−22/45∗P2) ) ) ∗ cosh (h)

^4+(23/48∗(16/23+(P1^2+(−5/69∗P3−6/23∗P2) ∗P1+2/69∗P2∗P3)^2+(5/3∗P1−1/23∗

P3−16/69∗P2) ) ∗abs (P1) ^2−73/16∗(104/219+(P1^2+(−18/73∗P2−17/73∗P3) ∗P1

+2/73∗P2∗P3) ∗P1^3+(529/219∗P1^2+(−283/657∗P3−32/73∗P2) ∗P1+16/657∗P2∗P3)

^2+(1244/657∗P1−44/219∗P3−128/657∗P2) ) ∗P1) ∗ cosh (h) ^2+3/32∗(P1+1)

∗((25/27+(P1−2/27∗P3) ) ∗abs (P1) ^2+20∗(239/270+P1∗(P1−29/180∗P3) ^2+(17/9∗P1

−89/540∗P3) ) ∗P1) ) ) /omega/ s inh (h) ^2/((1/2+(P1−1/2∗P2) ) ∗ cosh (h)^2−1/2∗P1
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−1/2)/P1/(−3∗P1+abs(1+P1)−3)/((2/3+(P1−1/3∗P3) ) ∗ cosh (h)^2−2/3+(−3/4∗P1

+1/12∗P3) )

KIN4,4 =

1/4∗ I ∗((8/9+(P1^3+(−4/3∗P2+5/9∗P3) ∗P1^2+2/3∗(2/3∗P3+P2) ∗P2∗P1−4/9∗P2^2∗P3)

^3+(20/9∗P1^2+(−8/9∗P2+14/9∗P3) ∗P1+2/9∗P2∗(−2∗P3+P2) ) ^2+(23/9∗P1−4/9∗P2

+5/9∗P3) ) ∗ cosh (h)^8+(−5/9+(−59/12∗P1^3+(85/12∗P2+11/12∗P3) ∗P1^2−49/24∗P2

∗(146/147∗P3+P2) ∗P1+31/72∗P2^2∗P3)^3+(−27/4∗P1^2+(145/18∗P2−7/36∗P3) ∗P1

−29/18∗P2∗(P2+21/29∗P3) )^2+(−203/72∗P1+11/6∗P2−49/72∗P3) ) ∗ cosh (h)

^6+(11/6+(81/8∗P1^3+(−33/4∗P2−185/72∗P3) ∗P1^2+P2∗(P2+59/36∗P3) ∗P1−1/9∗P2

^2∗P3) ^3+(176/9∗P1^2+(−\463/36∗P2−7/2∗P3) ∗P1+8/9∗P2∗(P2+51/32∗P3) )

^2+(91/8∗P1−29/6∗P2−25/24∗P3) ) ∗ cosh (h) ^4−361/48∗(P1+1)∗(530/1083+(P1

^2+(−129/361∗P2−73/361∗P3) ∗P1+53/1083∗P2∗P3) ^2+(520/361∗P1−334/1083∗P2

−166/1083∗P3) ) ∗ cosh (h) ^2+57/32∗(P1+1)^2∗(436/513+(P1−77/513∗P3) ) )^3∗ cosh (

h) ∗omega/ s inh (h) ^3/((2/3+(P1−1/3∗P3) ) ∗ cosh (h)^2−2/3+(−3/4∗P1+1/12∗P3) )

/((1/2+(P1−1/2∗P2) ) ∗ cosh (h)^2−1/2∗P1−1/2)^2

KIN4,0 =

0

DYN4,2 =

−1/4∗((−C3∗ s inh (h) ∗ ( (P2+1)∗ cosh (h)^4+(P1+1)∗ cosh (h)^2−1/2∗P1−1/2)∗P1∗((2/3+(

P1−1/3∗P3) ) ∗ cosh (h)^2−2/3+(−3/4∗P1+1/12∗P3) ) ∗ cosh (h) ∗omega−1/6∗(((7/6+((

P2+1/3∗P3) ∗P1−1/6∗P2∗P3)^2+(4/3∗P1+5/6∗P2+1/6∗P3) ) ∗abs (P1)^2+15∗P1

∗(59/45+P1∗(P1^2+(−1/2∗P2+4/15∗P3) ∗P1+7/15∗P2∗P3) ^3+(83/30∗P1^2+(−7/15∗P2

+46/45∗P3) ∗P1+41/90∗P2∗P3) ^2+(1/45∗P2+67/90∗P3+139/45∗P1) ) ) ∗ cosh (h)

^8+(7/2∗(5/21+(P1^2+(−13/28∗P2−17/42∗P3) ∗P1+3/28∗P2∗P3) ^2+(95/84∗P1−5/14∗

P2−\25/84∗P3) ) ∗abs (P1)^2−165/4∗P1∗(2/9+P1∗(P1^2+(−8/55∗P3−93/110∗P2) ∗P1

+7/30∗P2∗P3) ^3+(127/66∗P1^2+(−78/55∗P2−23/990∗P3) ∗P1+37/165∗P2∗P3)

^2+(52/45∗P1−32/55∗P2+56/495∗P3) ) ) ∗ cosh (h) ^6+(−11/2∗(7/11+(P1^2+(−2/11∗P2

−5/22∗P3) ∗P1+1/22∗P2∗P3) ^2+(35/22∗P1−3/22∗P2−2/11∗P3) ) ∗abs (P1)^2+63∗P1

∗(2/7+(P1^2+(−16/63∗P3−13/28∗P2) ∗P1+5/84∗P2∗P3) ∗P1^3+(79/36∗P1

^2+(−215/252∗P2−3/7∗P3) ∗P1+1/18∗P2∗P3) ^2+(187/126∗P1−11/28∗P2−5/28∗P3) ) ) ∗
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cosh (h) ^4+(2∗(73/96+(P1^2+(−3/16∗P2−7/96∗P3) ∗P1+1/48∗P2∗P3) ^2+(167/96∗P1

−1/6∗P2−5/96∗P3) ) ∗abs (P1)^2−747/16∗P1∗(1538/2241+(P1^2+(−18/83∗P3−6/83∗P2

) ∗P1+2/249∗P2∗P3) ∗P1^3+(1993/747∗P1^2+(−32/249∗P2−947/2241∗P3) ∗P1

+16/2241∗P2∗P3) ^2+(5278/2241∗P1−128/2241∗P2−463/2241∗P3) ) ) ∗ cosh (h)

^2−1/48∗((P3^2+1)∗abs (P1)^2+(−486∗P1^3+72∗P1^2∗P3)^2+(−900∗P1^2+73∗P1∗P3)

−413∗P1) ∗(P1+1) ) ^3)∗abs(1+P1) −3∗(P1+1)∗(−C3∗ s inh (h) ∗ ( (P2+1)∗ cosh (h)^4+(P1

+1)∗ cosh (h)^2−1/2∗P1−1/2)∗P1∗((2/3+(P1−1/3∗P3) ) ∗ cosh (h)^2−2/3+(−3/4∗P1

+1/12∗P3) ) ∗ cosh (h) ∗omega−1/3^3∗(((3/2+(P1+1/2∗P2) ) ∗(7/6+(P1+1/6∗P3) ) ∗abs (

P1)^2+(11/6+P1∗(P1^2+(7/6∗P3−17/4∗P2) ∗P1+13/6∗P2∗P3) ^3+(11/12∗P1

^2+(−35/6∗P2+14/3∗P3) ∗P1+9/4∗P2∗P3)^2+(−3/2∗P2+43/12∗P3+5/3∗P1) ) ∗P1) ∗ cosh

(h)^8+(1/2∗(−2/3+(P1^2+(−5/4∗P3−1/2∗P2) ∗P1+1/12∗P2∗P3)^2+(1/4∗P1−5/12∗P2

−7/6∗P3) ) ∗abs (P1)^2−49/4∗P1∗(1/21+(P1^2+(−67/294∗P3−51/49∗P2) ∗P1+85/294∗

P2∗P3) ∗P1^3+(71/42∗P1^2+(−521/294∗P2−17/147∗P3) ∗P1+2/7∗P2∗P3) ^2+(109/147∗

P1−36/49∗P2+16/147∗P3) ) ) ∗ cosh (h) ^6+(−35/16∗(4/5+(P1^2+4/105∗P2∗P3−5/21∗P1

∗P3) ^2+(37/21∗P1+4/105∗P2−1/5∗P3) ) ∗abs (P1) ^2+425/16∗(148/425+P1∗(P1

^2+(−111/425∗P3−162/425∗P2) ∗P1+24/425∗P2∗P3) ^3+(967/425∗P1^2+(−12/17∗P2

−569/1275∗P3) ∗P1+4/75∗P2∗P3) ^2+(122/75∗P1−418/1275∗P2−16/85∗P3) ) ∗P1) ∗ cosh

(h) ^4+(17/32∗(15/17+(P1^2+(10/51∗P3−6/17∗P2) ∗P1+2/51∗P2∗P3) ^2+(94/51∗P1

−16/51∗P2+4/17∗P3) ) ∗abs (P1) ^2−597/32∗(1274/1791+P1∗(P1^2+(−328/1791∗P3

−18/199∗P2) ∗P1+2/199∗P2∗P3) ^3+(4832/1791∗P1^2+(−32/199∗P2−72/199∗P3) ∗P1

+16/1791∗P2∗P3) ^2+(1439/597∗P1−\128/1791∗P2−322/1791∗P3) ) ∗P1) ∗ cosh (h)

^2+3/16∗((7/9+(P1−2/9∗P3) ) ∗abs (P1)^2+18∗P1∗(293/324+P1∗(P1−5/36∗P3)

^2+(23/12∗P1−49/324∗P3) ) ) ∗(P1+1) ) ) ) /( cosh (h)+1)/ s inh (h) /(−3∗P1+abs(1+P1)

−3)/((1/2+(P1−1/2∗P2) ) ∗ cosh (h)^2−1/2∗P1−1/2) /( cosh (h)−1)/P1/((2/3+(P1

−1/3∗P3) ) ∗ cosh (h)^2−2/3+(−3/4∗P1+1/12∗P3) ) / cosh (h)

DYN4,4 =

1/8∗((4/9+(P1^3+(7/9∗P3−19/6∗P2) ∗P1^2+19/12∗(2/3∗P3+P2) ∗P2∗P1−29/36∗P2^2∗P3)

^3+(11/18∗P1^2+(−19/9∗P2+47/18∗P3) ∗P1+7/9∗P2∗(−5/7∗P3+P2) )^2+(−\5/9∗P2

+37/36∗P3+31/36∗P1) ) ∗ cosh (h)^10+(−5/9+(−115/12∗P1^3+(46/3∗P2+53/36∗P3) ∗P1

^2−14/3∗P2∗(P2+20/21∗P3) ∗P1+4/3∗P2^2∗P3)^3+(−215/18∗P1^2+(152/9∗P2−3/2∗P3

) ∗P1−10/3∗P2∗(8/15∗P3+P2) )^2+(−17/4∗P1+38/9∗P2−59/36∗P3) ) ∗ cosh (h)
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^8+(145/36+(581/24∗P1^3+(−1067/48∗P2−439/72∗P3) ∗P1^2+347/96∗P2∗(P2

+482/347∗P3) ∗P1−47/96∗P2^2∗P3) ^3+(6379/144∗P1^2+(−773/24∗P2−1033/144∗P3) ∗

P1+25/8∗P2∗(97/75∗P3+P2) ) +(7087/288∗P1−263/24∗P2−451/288∗P3) ) ∗ cosh (h)

^6+(−671/72+(−2257/96∗P1^3+(363/32∗P2+1447/288∗P3) ∗P1^2−1/2∗P2∗(P2

+499/144∗P3) ∗P1+1/18∗P2^2∗P3)^3+(−15599/288∗P1^2+(5747/288∗P2+2395/288∗P3

) ∗P1−4/9∗P2∗(467/128∗P3+P2) )^2+(−1441/36∗P1+157/18∗P2+241/72∗P3) ) ∗ cosh (h)

^4+26/3∗(1753/2496+(P1^2+(−129/832∗P2−103/624∗P3) ∗P1+7/312∗P2∗P3)

^2+(4193/2496∗P1−331/2496∗P2−89/624∗P3) ) ∗(P1+1)∗ cosh (h) ^2−105/128∗(P1+1)

^2∗(788/945+(P1−157/945∗P3) ) ) ^3∗(P1+1)/ cosh (h) /((2/3+(P1−1/3∗P3) ) ∗ cosh (h)

^2−2/3+(−3/4∗P1+1/12∗P3) ) /((1/2+(P1−1/2∗P2) ) ∗ cosh (h)^2−1/2∗P1−1/2)^2/ s inh

(h)^3

DYN4,0 =

−I /C3∗((−13/6∗ I ∗((−3/13^2∗C3^2∗abs (P1)^4+P1∗ ( (P1+1)∗abs (C3)^2−C3^2∗(P1

+19/13) ) ∗abs (P1)^2+P1^2∗((3/13∗P1^2^2+19/13∗P1+16/13)∗abs (C3)^2−C3^2∗(P1

+16/13) ) ) ∗ cosh (h) ^2−3/13∗(P1^2+abs (P1)^2+2∗P1)∗(−C3^2∗abs (P1) ^2+((P1+1)∗

abs (C3)^2−C3^2)∗P1) ) ∗P1∗ cosh (h) ∗ ( (P1−1/2∗P2+1/2)∗ cosh (h)^2−1/2∗P1−1/2)∗

s inh (h) ∗ ( (2∗ abs (P1)^2∗P2+P1∗(−abs (P2)^2+P2) ) ∗ cosh (h)^2−P2∗( abs (P1)^2+P1) )

∗omega+19/24∗ I ∗(P1+1)∗P1∗((100/19∗(67/100+(P1−33/100∗P2) ) ∗P2^3∗abs (P1)

^6+146/19∗P1∗(−65/146∗(101/130+(P1−29/130∗P2) ) ∗abs (P2)^2+(411/292+P1∗(P1

−91/146∗P2) ^2+(218/73∗P1−351/292∗P2) ) ∗P2)^2∗abs (P1)^4+26/19∗P1

^2∗(−\34/13∗(147/68+P1∗(P1−11/34∗P2) ^2+(61/17∗P1−3/4∗P2) ) ∗abs (P2)^2+P2

∗(87/13+P1^2∗(P1−8/13∗P2)^3+11∗P1∗(P1−96/143∗P2) ^2+(252/13∗P1−123/13∗P2) )

) ∗abs (P1)^2+P1^3∗(−7/19∗(100/7+P1^2∗(P1−1/2∗P2)^3+171/14∗P1∗(P1−58/171∗P2

) ^2+(193/7∗P1−40/7∗P2) ) ∗abs (P2)^2+(32/19+P1^2∗(P1−25/38∗P2)^3+245/38∗P1∗(

P1−188/245∗P2) ^2+(154/19∗P1−100/19∗P2) ) ∗P2) ) ∗ cosh (h) ^8+(−260/19∗(97/130+(

P1−33/130∗P2) ) ∗P2^3∗abs (P1)^6−425/19∗P1∗((( −167/850∗P1+79/1700∗P2)

^2−3/20)∗abs (P2) ^2+(3267/1700+P1∗(P1−253/850∗P2) ^2+(284/85∗P1−1219/1700∗

P2) ) ∗P2)^2∗abs (P1)^4−59/19∗P1^2∗(−229/118∗(420/229+P1∗(P1−64/229∗P2)

^2+(728/229∗P1−143/229∗P2) ) ∗abs (P2)^2+(2017/118+P1^2∗(P1−39/118∗P2)

^3+893/59∗P1∗(P1−260/893∗P2) ^2+(2001/59∗P1−399/59∗P2) ) ∗P2) ∗abs (P1)

^2−45/19∗P1^3∗(−14/45∗(78/7+P1^2∗(P1−17/56∗P2)^3+87/8∗P1∗(P1−54/203∗P2)
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^2+(157/7∗P1−4∗P2) ) ∗abs (P2)^2+(376/45+P1^2∗(P1−61/180∗P2) ^3+1721/180∗P1∗(

P1−500/1721∗P2) ^2+(323/18∗P1−52/15∗P2) ) ∗P2) ) ∗ cosh (h) ^6+(315/38∗(517/630+(

P1−113/630∗P2) ) ∗P2^3∗abs (P1) ^6+261/19∗P1∗(−25/522∗(43/50+(P1−7/50∗P2) ) ∗

abs (P2)^2+(206/87+P1∗(P1−20/261∗P2) ^2+(962/261∗P1−103/261∗P2) ) ∗P2)^2∗abs (

P1)^4+67/38∗P1^2∗(−127/134∗(223/127+P1∗(P1+10/127∗P2) ^2+(364/127∗P1

−4/127∗P2) ) ∗abs (P2)^2+P2∗(3379/134+P1^2∗(P1−11/134∗P2)^3+1176/67∗P1∗(P1

−4/49∗P2) ^2+(2961/67∗P1−253/67∗P2) ) ) ∗abs (P1) ^2+107/76∗P1

^3∗(−27/107∗(68/9+P1^2∗(P1−1/9∗P2) ^3+205/27∗(P1+4/205∗P2) ∗P1+389/27∗P1) ∗

abs (P2)^2+P2∗(1400/107+P1^2∗(P1−8/107∗P2) ^3+1230/107∗P1∗(P1−53/615∗P2)

^2+(2629/107∗P1−204/107∗P2) ) ) ) ∗ cosh (h) ^4+(12/19∗P2^3∗(31/48+(P1−17/48∗P2)

) ∗abs (P1) ^6+179/76∗P1∗((−19/179^2∗P1−19/179)∗abs (P2)^2+(193/179+P1∗(P1

−60/179∗P2) ^2+(423/179∗P1−111/179∗P2) ) ∗P2)^2∗abs (P1)^4+5/76∗P1^2∗((−12^3∗

P1^2−158/5^2∗P1−98/5)∗abs (P2)^2+(47+P1^2∗(P1−3/5∗P2)^3+62∗P1∗(P1−63/155∗

P2) ^2+(591/5∗P1−174/5∗P2) ) ∗P2) ∗abs (P1)^2+1/19∗P1^3∗((−1/4^4∗P1^3−63/4^3∗

P1^2−71/2^2∗P1−20)∗abs (P2)^2+(18+P1^2∗(P1−3/4∗P2)^3+32∗P1∗(P1−33/64∗P2)

^2+(213/4∗P1−20∗P2) ) ∗P2) ) ∗ cosh (h) ^2−7/76∗(P1+1)∗( abs (P1)^2+P1) ∗(89/14∗ abs

(P1) ^4^2+(233/14∗P1^2^2+411/14∗P1) ∗abs (P1)^2+P1^2∗(P1^2^2+261/14∗P1+24) ) ∗

P2) ∗C3^3)∗abs(1+P1)+1/12∗ I ∗P1∗ s inh (h) ∗ cosh (h) ∗(P1+1)∗(2∗P1∗ cosh (h)^2−P2∗

cosh (h)^2+cosh (h)^2−P1−1)∗( abs (P1)^2+P1) ∗(2∗ abs (P1)^2∗ cosh (h)^2∗P2−abs (P2

)^2∗ cosh (h)^2∗P1−abs (P1)^2∗P2+P2∗P1∗

cosh (h)^2−P1∗P2) ∗(−13∗C3^2∗abs (P1)^2∗ cosh (h)^2−3∗C3^2∗ cosh (h)^2∗P1^2+3∗abs (

P1)^2∗abs (C3)^2∗ cosh (h)^2+13∗abs (C3)^2∗ cosh (h)^2∗P1^2+10∗C3^2∗abs (P1)

^2−16∗C3^2∗ cosh (h)^2∗P1+16∗abs (C3)^2∗ cosh (h)^2∗P1−10∗abs (C3)^2∗P1^2+10∗C3

^2∗P1−10∗abs (C3)^2∗P1) ∗omega−67/24∗ I ∗(P1+1)∗( abs (P1)^2+P1) ∗C3

∗((26/67∗(19/26+(P1−7/26∗P2) ) ∗P2^3∗abs (P1) ^6+146/67∗P1∗(−8/73∗(25/32+(P1

−7/32∗P2) ) ∗abs (P2)^2+(245/292+P1∗(P1−34/73∗P2) ^2+(143/73∗P1−171/292∗P2) ) ∗

P2)^2∗abs (P1) ^4+100/67∗P1^2∗(−91/100∗(94/91+P1∗(P1−22/91∗P2) ^2+(192/91∗P1

−29/91∗P2) ) ∗abs (P2)^2+(77/50+P1^2∗(P1−13/20∗P2)^3+109/25∗P1∗(P1−61/109∗P2

) ^2+(126/25∗P1−193/100∗P2) ) ∗P2) ∗abs (P1)^2+P1^3∗(−33/67∗(100/33+P1^2∗(P1

−29/66∗P2)^3+117/22∗P1∗(P1−34/117∗P2) ^2+(82/11∗P1−40/33∗P2) ) ∗abs (P2)^2+P2

∗(32/67+P1^2∗(P1−101/134∗P2)^3+411/134∗P1∗(P1−98/137∗P2) ^2+(174/67∗P1

119



−100/67∗P2) ) ) ) ∗ cosh (h) ^8+(−59/67∗(45/59+(P1−14/59∗P2) ) ∗P2^3∗abs (P1)

^6−425/67∗P1∗(−39/850∗(61/78+(P1−17/78∗P2) ) ∗abs (P2) ^2+(1721/1700+P1∗(P1

−229/850∗P2) ^2+(893/425∗P1−609/1700∗P2) ) ∗P2)^2∗abs (P1)^4−260/67∗P1

^2∗((−253/520∗P1∗(P1−64/253∗P2)^3+(−P1+81/520∗P2)^2−25/52)∗abs (P2)

^2+(323/104+P1^2∗(P1−167/520∗P2)^3+71/13∗P1∗(P1−91/355∗P2) ^2+(2001/260∗P1

−157/130∗P2) ) ∗P2) ∗abs (P1)^2−194/67∗P1^3∗(−33/97∗(26/11+P1^2∗(P1−79/264∗P2

) ^3+1219/264∗(P1−286/1219∗P2) ∗P1^2+(133/22∗P1−28/33∗P2) ) ∗abs (P2)

^2+(188/97+P1^2∗(P1−255/776∗P2) ^3+3267/776∗P1∗(P1−280/1089∗P2)

^2+(2017/388∗P1−78/97∗P2) ) ∗P2) ) ∗ cosh (h) ^6+(1/2∗(107/134+(P1−27/134∗P2) ) ∗

P2^3∗abs (P1) ^6+261/67∗P1∗(−11/1044∗(8/11+(P1−3/11∗P2) ) ∗abs (P2)

^2+(205/174+P1∗(P1−127/1044∗P2) ^2+(196/87∗P1−205/1044∗P2) ) ∗P2)^2∗abs (P1)

^4+315/134∗P1^2∗(−8/63∗(53/40+P1∗(P1+1/8∗P2) ^2+(12/5∗P1+1/20∗P2) ) ∗abs (P2)

^2+P2∗(2629/630+P1^2∗(P1−5/63∗P2) ^3+1924/315∗P1∗(−7/74∗P2+P1) ^2+(47/5∗P1

−389/630∗P2) ) ) ∗abs (P1) ^2+517/268∗P1^3∗(−113/517∗(204/113+P1^2∗(P1−7/113∗

P2)^3+412/113∗P1∗(P1−1/103∗P2)^2+506/113∗P1) ∗abs (P2)^2+(1400/517+P1^2∗(P1

−43/517∗P2) ^3+2472/517∗P1∗(P1−223/2472∗P2) ^2+(3379/517∗P1−204/517∗P2) ) ∗P2

) ) ∗ cosh (h) ^4+(5/268∗(4/5+(P1−1/5∗P2) ) ∗P2^3∗abs (P1) ^6+179/268∗P1

∗((−3/179^2∗P1−3/179)∗abs (P2)^2+(128/179+P1∗(P1−60/179∗P2) ^2+(310/179∗P1

−63/179∗P2) ) ∗P2)^2∗abs (P1)^4+12/67∗P1^2∗((−5/4^3∗P1^2−21/8^2∗P1−11/8)∗abs

(P2)^2+P2∗(71/16+P1^2∗(P1−19/48∗P2)^3+141/16∗P1∗(P1−158/423∗P2)

^2+(197/16∗P1−71/24∗P2) ) ) ∗abs (P1) ^2+31/268∗P1^3∗((−17/31^4∗P1^3−111/31^3∗

P1^2−174/31^2∗P1−80/31)∗abs (P2)^2+P2∗(72/31+P1^2∗(P1−19/31∗P2)^3+193/31∗

P1∗(P1−98/193∗P2) ^2+(235/31∗P1−80/31∗P2) ) ) ) ∗ cosh (h) ^2−89/536∗(P1+1)∗( abs (

P1)^2+P1) ∗(14/89∗ abs (P1) ^4^2+(233/89∗P1^2^2+261/89∗P1) ∗abs (P1)^2+P1^2∗(P1

^2^2+411/89∗P1+336/89) ) ∗P2) ^3) /(P1+1)/ cosh (h) /((2∗ abs (P1)^2∗P2+P1∗(−abs (

P2)^2+P2) ) ∗ cosh (h)^2−P2∗( abs (P1)^2+P1) ) /(−1/3∗P1∗(13∗ abs (P1)^2+3∗P1^2+16∗

P1) ∗abs(1+P1) +1/3∗( abs (P1)^2+P1) ∗(3∗ abs (P1)^2+13∗P1^2+16∗P1) ) /P1/( cosh (h)

+1)/((1+(2∗P1−P2) ) ∗ cosh (h)^2−P1−1)/ s inh (h) /( cosh (h)−1)
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2.D The full C4,2 expression

Here, we give the full expression for C4,2, defined in (2.151) as the coefficient of the O
(︁
ε4
)︁

correction

to the m = 2 harmonic of η.

C4,2 =

−8∗((−1/72∗P1∗C3∗ s inh (h) ∗ cosh (h) ∗(12∗P1∗ cosh (h)^2−4∗cosh (h)^2∗P3+8∗cosh (h)

^2−9∗P1+P3−8)∗(6∗ cosh (h)^4∗P1+cosh (h)^4∗P2+7∗cosh (h)^4+P1∗ cosh (h)^2+cosh (

h)^2−2∗P1−2)∗omega−4/3^3∗((1/8∗(8/9+(P1^2+(1/12∗P2−2/9∗P3) ∗P1+1/36∗P2∗P3)

^2+(67/36∗P1+1/9∗P2−7/36∗P3) ) ∗abs (P1) ^2+(145/144+(P1^2+(−5/24∗P3+1/16∗P2)

∗P1+1/24∗P2∗P3) ∗P1^3+(143/48∗P1^2+(17/96∗P2−29/72∗P3) ∗P1+13/288∗P2∗P3)

^2+(17/144∗P2−55/288∗P3+859/288∗P1) ) ∗P1) ∗ cosh (h) ^8+(−1/6∗(25/32+(P1

^2+(−5/64∗P2−1/6∗P3) ∗P1+5/192∗P2∗P3) ^2+(337/192∗P1−5/96∗P2−9/64∗P3) ) ∗abs (

P1)^2−53/32∗P1∗(37/53+(P1^2+(−34/159∗P3−49/212∗P2) ∗P1+41/636∗P2∗P3) ∗P1

^3+(563/212∗P1^2+(−43/106∗P2−725/1908∗P3) ∗P1+32/477∗P2∗P3) ^2+(2243/954∗P1

−82/477∗P2−\26/159∗P3) ) ) ∗ cosh (h) ^6+(13/384∗(8/13+(P1^2+(−6/13∗P2+2/39∗P3)

∗P1+1/39∗P2∗P3) ^2+(62/39∗P1−17/39∗P2+1/13∗P3) ) ∗abs (P1) ^2+59/64∗(30/59+P1

∗(P1^2+(−21/118∗P3−45/118∗P2) ∗P1+8/177∗P2∗P3) ^3+(877/354∗P1^2+(−130/177∗

P2−164/531∗P3) ∗P1+49/1062∗P2∗P3) ^2+(1054/531∗P1−187/531∗P2−23/177∗P3) ) ∗P1

) ∗ cosh (h) ^4−19/128∗(P1+1)∗(−3/19∗(25/27+(P1−2/27∗P3) ) ∗abs (P1)

^2+(113/171+(P1−11/57∗P3) ∗P1^2+(94/57∗P1−31/171∗P3) ) ∗P1) ∗ cosh (h) ^2−3/64∗(

P1+1)^2∗(1/8∗ abs (P1)^2+(35/36+(P1−11/72∗P3) ) ∗P1) ) ) ∗abs(1+P1)+1/288∗C3∗

s inh (h) ∗ cosh (h) ∗(P1+1)∗(12∗P1∗ cosh (h)^2−4∗cosh (h)^2∗P3+8∗cosh (h)^2−9∗P1+

P3−8)∗(4∗ cosh (h)^4∗abs (P1)^2+36∗cosh (h)^4∗P1^2+12∗cosh (h)^4∗P1∗P2+52∗cosh

(h)^4∗P1+12∗cosh (h)^2∗P1^2+12∗cosh (h)^2∗P1−abs (P1)^2−15∗P1^2−16∗P1) ∗omega

−1/12∗(P1+1)^3∗((−12∗(8/9+(P1^2+(1/12∗P2−2/9∗P3) ∗P1+1/36∗P2∗P3) ^2+(67/36∗

P1+1/9∗P2−7/36∗P3) ) ∗abs (P1)^2+P1∗(−25/3+(P1−1/3∗P3) ∗(P1+5/2∗P2) ∗P1

^3+(−41/6∗P1^2+(19/6∗P2+7/6∗P3) ∗P1−7/6∗P2∗P3)^2+(1/3∗P2+7/6∗P3−95/6∗P1) ) )

∗ cosh (h) ^8+(17∗(151/204+(P1^2+(−7/68∗P2−19/102∗P3) ∗P1+1/34∗P2∗P3)

^2+(349/204∗P1−5/68∗P2−8/51∗P3) ) ∗abs (P1) ^2+17/4∗(106/51+(P1^2+(−19/51∗P3

−36/17∗P2) ∗P1+31/51∗P2∗P3) ∗P1^3+(230/51∗P1^2+(−206/51∗P2−15/17∗P3) ∗P1

+37/51∗P2∗P3) ^2+(93/17∗P1−92/51∗P2−20/51∗P3) ) ∗P1) ∗ cosh (h)
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^6+(−19/4∗(34/57+(P1^2+(−15/38∗P2−5/114∗P3) ∗P1+2/57∗P2∗P3) ^2+(89/57∗P1

−41/114∗P2−1/114∗P3) ) ∗abs (P1) ^2−131/8∗(200/393+(P1^2+(−40/131∗P3−54/131∗

P2) ∗P1+7/131∗P2∗P3) ∗P1^3+(337/131∗P1^2+(−116/131∗P2−224/393∗P3) ∗P1

+25/393∗P2∗P3) ^2+(814/393∗P1−182/393∗P2−100/393∗P3) ) ∗P1) ∗ cosh (h) ^4+99/8∗(

P1+1)∗(−29/198∗(80/87+(P1−7/87∗P3) ) ∗abs (P1)^2+P1∗(71/99+P1∗(P1−4/27∗P3)

^2+(1013/594∗P1−3/22∗P3) ) ) ∗ cosh (h)^2−9/8∗(P1+1)∗( −7/12∗((P1−4/63∗P3)

+59/63)∗abs (P1)^2+(P1∗(P1−1/36∗P3) ^2+(25/18∗P1+1/108∗P3) +23/54)∗P1) ) ) ∗

cosh (h) /((1+(2∗P1−P2) ) ∗ cosh (h)^2−P1−1)/ s inh (h) /( cosh (h)+1)/((1/18∗( −54∗P1

^2+4∗P1∗P2−2∗abs (P1)^2−52∗P1) ∗ cosh (h)^2+3/2∗P1^2+1/18∗abs (P1)^2+14/9∗P1) ∗

abs(1+P1) +1/6∗(P1+1)∗(6∗ cosh (h)^2∗abs (P1)^2+18∗cosh (h)^2∗P1^2−4∗cosh (h)

^2∗P1∗P2+20∗cosh (h)^2∗P1−3∗abs (P1)^2−9∗P1^2−12∗P1) ) /( cosh (h)−1)/((8+(12∗

P1−4∗P3) ) ∗ cosh (h)^2−8+(−9∗P1+P3) )
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Chapter 3

Wind-induced changes to surface

gravity wave shape in shallow water

3.1 Abstract

Wave shape (e.g. wave skewness and asymmetry) impacts sediment transport, remote sensing and

ship safety. Previous work showed that wind affects wave shape in intermediate and deep water. Here, we

investigate the effect of wind on wave shape in shallow water through a wind-induced surface pressure

for different wind speeds and directions to provide the first theoretical description of wind-induced shape

changes. A multiple-scale analysis of long waves propagating over a shallow, flat bottom and forced by a

Jeffreys-type surface pressure yields a forward or backward Korteweg–de Vries (KdV)–Burgers equation

for the wave profile, depending on the wind direction. The evolution of a symmetric, solitary-wave initial

condition is calculated numerically. The resulting wave grows (decays) for onshore (offshore) wind and

becomes asymmetric, with the rear face showing the largest shape changes. The wave profile’s deviation

from a reference solitary wave is primarily a bound wave and trailing, dispersive, decaying tail. The onshore

wind increases the wave’s energy and skewness with time while decreasing the wave’s asymmetry, with the

opposite holding for offshore wind. The corresponding wind speeds are shown to be physically realistic,

and the shape changes are explained as slow growth followed by rapid evolution according to the unforced

KdV equation.
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3.2 Introduction

The study of wind and ocean wave interactions began with Jeffreys [63] and continues to be an

active field of research [e.g. 125, 129, 130]. Many theoretical studies [e.g. 63, 68, 69] focus on calculating

wind-induced growth rates and often employ phase-averaging techniques. However, experimental [e.g. 100,

101] and theoretical [e.g. 131] studies have shown wind can also influence wave shape, quantified by third-

order shape statistics such as skewness and asymmetry, corresponding to vertical and horizontal asymmetry,

respectively. Furthermore, while many numerical studies on coupled wind and waves employ sinusoidal

water waves and therefore neglect wind-induced shape changes [e.g. 90, 108], some recent numerical studies

have incorporated wind-induced changes to the wave field using coupled air–water simulations [e.g. 92, 93]

or direct numerical simulations of two-fluid flows [e.g. 88, 132]. Wave shape influences sediment transport,

affecting beach morphodynamics [e.g. 46, 49], while wave skewness affects radar altimetry signals [e.g. 52]

and asymmetry influences ship responses to wave impacts [e.g. 57].

Waves in shallow water, where kh ≪ 1 (with h the water depth, k = 2π/λ the wavenumber

and λ the wavelength), differ qualitatively from those in intermediate (kh ∼ 1) to deep (kh≫ 1) water.

For waves with small amplitudes a0 ≪ h, leveraging the small parameters a0/h ∼ (kh)2 ≪ 1 yields the

Boussinesq equations with weak dispersion and nonlinearity. When dispersion balances nonlinear focusing,

a special class of waves, known as solitary waves, are formed and appear in environments ranging from

nonlinear optical pulses [e.g. 133] to astrophysical dusty plasmas [e.g. 134]. These well-understood waves

are often used to study fluid dynamical [e.g. 135–138] and engineering [e.g. 139–141] contexts owing to

their simplicity. One of the simplest equations displaying solitary waves is the Korteweg–de Vries (KdV)

equation, which incorporates dispersion and nonlinearity. When augmented with a dissipative term, this

becomes the KdV–Burgers equation, with applications to damped internal tides [e.g. 142], electron waves

in graphene [e.g. 143] and viscous flow in blood vessels [e.g. 144]. While field observations [e.g. 145] have

investigated the wind-induced growth of shallow-water waves, the interaction of wind and shallow-water

waves has not yet been formulated into a simple equation such as the KdV–Burgers equation.

The influence of wind on wave shape has been previously investigated in intermediate and deep

water [131]. However, the coupling between wind and wave shape has not yet been investigated in shallow

water. To investigate wind and surface wave interactions in shallow water over a flat bottom, we introduce

a wind-induced pressure term to the Boussinesq equations in § 3.3. The resulting KdV–Burgers equation

governs a solitary wave’s evolution, which we solve numerically to yield the wave’s energy, skewness and

asymmetry in § 3.4. We calculate the wind speed, discuss the asymmetry and compare our results to
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intermediate- and deep-water waves in § 3.5.

3.3 Derivation of the KdV–Burgers equation

3.3.1 Governing equations

We treat the flow as irrotational and inviscid and neglect surface tension. Furthermore, we restrict

ourselves to planar wave propagation in the +x direction. Finally, we choose a coordinate system with

z = 0 at the mean water level and a horizontal, flat bottom located at z = −h. Then, the incompressibility

condition and standard boundary conditions are

0 = ϕxx + ϕzz on − h < z < η, (3.1)

0 = ϕz on z = −h, (3.2)

ϕz = ηt + ϕxηx on z = η, (3.3)

0 =
p

ρw
+ gη + ϕt +

1

2

[︁
ϕ2x + ϕ2z

]︁
on z = η. (3.4)

Here, η(x, t) is the wave profile, ϕ(x, z, t) is the flow’s velocity potential related to the velocity u = ∇ϕ,

p(x, t) is the surface pressure, g is the gravitational acceleration and ρw is the water density. We used the

ϕ gauge freedom to absorb the Bernoulli ‘constant’ C(t) in the dynamic boundary condition. We seek a

solitary, progressive wave which decays at infinity, η(x, t) → 0 as |x| → ∞, with similar conditions on u.

We choose a coordinate system where the average bottom horizontal velocity vanishes,

∂ϕ

∂x
= 0 on z = −h, (3.5)

with the overline a spatial average f := limL→∞
∫︁ L

−L
f dx /(2L). Additionally, we assume the surface

pressure p(x, t) is a Jeffreys-type forcing [63],

p(x, t) = P
∂η(x, t)

∂x
. (3.6)

Here, P is proportional to (U − c)2, with c the wave’s nonlinear phase speed and U the wind speed (cf.

§ 3.5.1). Note that P > 0 corresponds to (‘onshore’) wind in the same direction as the wave while P < 0

denotes (‘offshore’) wind opposite the wave. We use a Jeffreys forcing for its analytic simplicity and clear

demonstration of wind–wave coupling. Jeffrey’s separated sheltering mechanism is likely only relevant in
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special situations (e.g. near breaking, [64], or for steep waves under strong winds, [65, 66]). Additionally,

numerical simulations of sinusoidal waves suggest the peak surface pressure is shifted approximately 135°

from the wave peak, while Jeffreys would give a 90° shift [108]. However, a fully dynamic coupling between

wind and waves — necessary for an accurate surface pressure over a non-sinusoidal, dynamic water surface

— is outside the scope of this paper. Furthermore, the applicability of Jeffreys forcing to extreme waves

means our theory could apply to the wind forcing of rogue waves in shallow water [146].

3.3.2 Non-dimensionalization

We non-dimensionalize our system with the known characteristic scales: the horizontal length

scale L over which η changes rapidly, expressed as an effective wavenumber kE := 2π/L; the (initial) wave

amplitude a0 = H0/2 (i.e. half the wave height H0); the depth h; the gravitational acceleration g; and the

wind speed U , expressed as a pressure magnitude P ∝ ρa(U − c)2, with ρa ≈ 1.225 × 10−3ρw the density

of air. Denoting non-dimensional variables with primes, we have

x =
x′

kE
= h

x′
√
µE

,

z = hz′,

t =
t′

kEc0
=

t′
√
µE

√︄
h

g
,

P = εP ′ ρwg

kE
=

ε
√
µE

P ′ρwc
2
0,

η = a0η
′ = hεη′,

ϕ = ϕ′
a0
kE

√︃
g

h
=

ϕ′ε
√
µE

c0h,
(3.7)

with linear, shallow-water phase speed c0 =
√
gh. Our system’s dynamics is controlled by three small,

non-dimensional parameters: ε := a0/h, µE := (kEh)
2 and PkE/(ρwg). We will later require O(ε) =

O(µE) = O(PkE/(ρwg)). Now, our non-dimensional equations take the form

0 = µEϕ
′
x′x′ + ϕ′z′z′ on − 1 < z′ < εη′, (3.8)

0 = ϕ′z′ on z′ = −1, (3.9)

ϕ′z′ = µEη
′
t′ + εµEϕ

′
x′η′x′ on z′ = εη′, (3.10)

0 = εP ′η′x′ + η′ + ϕ′t′ +
1

2

(︃
εϕ′.2x′ +

ε

µE
ϕ′.2z′

)︃
on z′ = εη′. (3.11)

We will drop the primes throughout the remainder of this section for readability.
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3.3.3 Boussinesq equations, multiple-scale expansion, KdV equation and ini-

tial condition

Here, we modify the Boussinesq equation’s derivation provided by Mei et al. [121] or Ablowitz

[102] by including the surface pressure forcing in (3.4). Taylor expanding the velocity potential ϕ about the

bottom, z = −1, and applying Laplace’s equation (3.8) and the bottom boundary condition (3.9) yields

an expansion of ϕ in terms of µE ≪ 1 and the velocity potential at the bottom, φ := ϕ
⃓⃓
z=−1

. This ϕ

expansion can be substituted into the two remaining boundary equations, (3.10) and (3.11), to give the

Boussinesq equations with a pressure forcing term,

∂tη + ∂2xφ+ ε∂x(η∂xφ)−
1

6
µE∂

4
xφ = O

(︁
µ2
E

)︁
, (3.12)

∂tφ+ εP∂xη + η − 1

2
µE∂t∂

2
xφ+

1

2
ε(∂xφ)

2
= O

(︁
µ2
E

)︁
. (3.13)

Further, we will now assume O(ε) = O(µE) ≪ 1.

We now expand t using multiple time scales tn = εnt for n = 0, 1, so all time derivatives become

∂t → ∂t0 + ε∂t1 . Then, we write η and φ as asymptotic series of ε,

η(x, t) =

∞∑︂
k=0

εkηk(x, t0, t1) and φ(x, t) =

∞∑︂
k=0

εkφk(x, t0, t1, ). (3.14)

Now, we will reduce the Boussinesq equations, (3.12) and (3.13), to the KdV equation following a similar

method to Mei et al. [121] and Ablowitz [102]. Collecting order-one terms O
(︁
ε0
)︁

from (3.12) and (3.13)

gives a wave equation for η0 and ϕ0. The right-moving solutions are

φ0 = f0(x− t0, t1) and η0 = f ′0(x− t0, 1) with f ′0 :=
∂f0(θ, t1)

∂θ

⃓⃓⃓⃓
θ=x−t0

. (3.15)

Continuing to the next order of perturbation theory, we retain terms of O(ε),

∂η1
∂t0

+
∂2φ1

∂x2
= −∂η0

∂t1
− ∂

∂x

(︃
η0
∂φ0

∂x

)︃
+

1

6

µE

ε

∂4φ0

∂x4
, (3.16)

η1 +
∂φ1

∂t0
= −P ∂η0

∂x
− ∂φ0

∂t1
+

1

2

µE

ε

∂3φ0

∂t0∂2x
− 1

2

(︃
∂φ0

∂x

)︃2

. (3.17)

Inserting our leading-order solutions for η0 and φ0, eliminating η1 and preventing resonant forcing of φ1
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gives the KdV–Burgers equation,

∂η0
∂t1

+
3

2
η0
∂η0
∂x

+
1

6

µE

ε

∂3η0
∂x3

= −P 1

2

∂2η0
∂x2

. (3.18)

Note that (3.18) has a rescaling symmetry, with µE → λ2µE equivalent to taking (x, t0, t1, P ) →

(x, t0, t1, P )/λ. Therefore, we fix the length scale (equivalently, kE) by choosing µE = 6ε. Note that

incorporating slowly varying bottom bathymetry ∂xh = O(ε) can yield an equation of the form (3.18) with

spatially varying coefficients [e.g. 147, 148], although such an analysis is outside the scope of this study.

For offshore wind, the pressure term P∂2xη0 acts as a positive viscosity causing damping, and

(3.18) is the (forward) KdV–Burgers equation with P < 0. However, for onshore wind, the viscosity is

negative and causes wave growth, yielding the backward KdV–Burgers equation with P > 0. The backward

KdV–Burgers equation is ill posed in the sense of Hadamard because the solution is highly sensitive to

changes in the initial condition [149]. While a finite-time singularity (i.e. wave breaking) is likely, the

multiple-scale expansion used to derive (3.18) is only valid for time intervals of O(1/ε), and we limit our

analysis to short times removing the need to regularize the solution.

The solitary-wave solutions of the unforced (P = 0) KdV equation exist due to a balance of

dispersion ∂3xη0 with focusing nonlinearity η0∂xη0 and have the form [e.g. 121]

η0 = H0 sech
2
(︂ x
∆

)︂
with ∆ =

√︃
8

H0
, (3.19)

in a co-moving frame with H0 > 0 an order-one parameter. For reference, unforced solitary waves travel

relative to the laboratory frame with non-dimensional, nonlinear phase speed [e.g. 121]

c = 1 + ε
H0

2
(3.20)

We use (3.19) for our initial condition and choose H0 = 2 so the initial, dimensional amplitude a0 is half

the wave height (cf. § 3.3.2). Note that the unforced KdV equation also has periodic solutions known as

cnoidal waves. For a fixed height, these cnoidal waves have a smaller characteristic wavelength 1/kE than

solitary waves and can be studied by choosing larger µE > 6ε (cf. § 3.5.3). However, wind-induced shape

changes are more readily understood when considering solitary waves owing to their reduced number of

free parameters (i.e. µE). Furthermore, since solitary waves are well understood and highly relevant to

fluid dynamical systems [e.g. 136–139], we will restrict our analysis to solitary waves for brevity and clarity.
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The wind-forcing term P∂2xη0 in (3.18) disrupts the solitary wave’s balance of dispersion and nonlinearity,

inducing growth/decay and shape changes. The KdV–Burgers equation has no known solitary-wave

solutions, so we will solve it numerically.

3.3.4 Numerics and shape statistics

To solve (3.18) numerically, we will use the Dedalus spectral solver [150] which implements a

generalized tau method with a Chebyshev basis. Since the onshore wind, P > 0 case is ill posed, we

require an implicit solver, so time stepping is done with coupled four-stage, third-order Diagonally Implicit

Runge–Kutta and Explicit Runge–Kutta schemes. The spatial domain has a length of L = 80, and we

require η0 = 0 at x′ = −40 and η0 = ∂xη0 = 0 at x′ = 40. We employ Nc = 1600 Chebyshev coefficients

and zero padding with a scaling factor of 3/2 to prevent aliasing of nonlinear terms. This corresponds to

Nx = 2400 spatial points with spacing ∆x = 7.7 × 10−5 to 7.9 × 10−2 for an average spacing of ∆x = 0.05.

The simulation runs from t1 = 0 to t1 = T = 10, since the multiple-scale expansion of § 3.3.3 is only accurate

for times of O(1/ε). Adaptive time stepping is employed such that the Courant–Friedrichs–Lewy number

is (∆t)max(η0)/(∆x) = 1. For the unforced case, this corresponds to ∆t ≈ 7.86 × 10−3, increases to

1.04 × 10−2 for P = −0.25 and decreases to 4.73 × 10−4 for P = 0.25. We found that linearly ramping up P

from 0 at t1 = 0 to its full value at t1 = ε, or full, dimensional time T0 = 1/(
√
ghkE) (i.e. the time required

to cross the inverse, effective wavenumber 1/kE , or ‘wave-crossing time’) did not qualitatively modify the

results, so we do not utilize such a ramp-up here. The spectral solver results in high numerical accuracy,

with the normalized root-mean-square difference between the unforced (P = 0) profile η0 at t′1 = 10 and

the initial condition η(0)0 is 2 × 10−13, and the normalized wave height change is 1− [max(η0)−min(η0)]/[︂
max(η

(0)
0 )−min(η

(0)
0 )
]︂
= −1 × 10−13.

We quantify the wave shape with the wave’s energy E, skewness S and asymmetry A,

E := ⟨η20⟩, S :=
⟨η30⟩

⟨η20⟩3/2
and A :=

⟨H
{︁
η30
}︁
⟩

⟨η20⟩3/2
, with ⟨f⟩ := 1

L

∫︂ L/2

−L/2

f dx . (3.21a–c)

Here, H(f) is the Hilbert transform of f , defined as the imaginary part of F−1(F(f)2U) with U the unit

step function and F the Fourier transform. Since these definitions depend on the domain size L, we

normalize the energy E and skewness S by their initial values.
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Figure 3.1. Solitary-wave evolution under (a) onshore and (b) offshore wind-induced surface pressure
in the frame of the unforced solitary wave. Non-dimensional wave height η/h versus non-dimensional
distance x/h for ε = 0.1, µE = 0.6, |PkE/(ρwgε)| = 0.25 and non-dimensional slow times t′1 =
tε
√
ghkE = 0, 5 and 10, as indicated in the legend. Only a subset of the full spatial domain is shown.

The arrows denote the wave propagation (phase speed) and wind direction.

3.4 Results

We study the pressure magnitude’s effect on solitary-wave evolution and shape by varying the

KdV–Burgers equation’s (3.18) one free parameter, PkE/(ρwgε), with emphasis on the contrast between

onshore (P > 0) and offshore wind (P < 0). We revert to denoting non-dimensional variables with primes

and dimensional ones without.

The wave profile η/h snapshots in figure 3.1 qualitatively show how the wave shape evolves over

non-dimensional slow time t′1 = tε
√
ghkE in the unforced solitary wave’s frame. The onshore wind generates

wave growth, apparent at the wave crest (figure 3.1a), whereas the offshore wind causes decay (figure 3.1b).

The wind also changes the phase speed, with the wave’s acceleration (deceleration) under an onshore

(offshore) wind visible by the advancing (receding) of the crest. This is expected due to the (unforced)

solitary wave’s nonlinear phase speed (3.20) dependence on the wave height H.

In shallow water, wave growth/decay and phase speed changes are well-known wind effects [e.g. 69,

145], but wind-induced wave shape changes [131] have not been previously studied for shallow-water systems.

Such changes are visible in figure 3.1 where, despite the wave starting from a symmetric, solitary-wave

initial condition, the wind induces a horizontal asymmetry in the wave shape, particularly on the rear face
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Figure 3.2. The non-dimensional profile change ∆η/h between the surface profile and reference
solitary wave (3.19) under (a) onshore and (b) offshore Jeffreys forcing versus non-dimensional reference
wave-centred distance x̃/h. Results are shown for ε = 0.1, µE = 0.6, |PkE/(ρwgε)| = 0.25 and non-
dimensional slow times t′1 = tε

√
ghkE = 0, 5 and 10, as indicated in the legend. Only a subset of the

full spatial domain is shown. The arrows denote the direction of wave propagation (phase speed) or
wind direction.

(x < 0) of the wave. The offshore wind (figure 3.1b) raises the rear base of the wave (near x/h = −5)

relative to its initial profile (purple line), but the onshore wind (figure 3.1a) depresses the rear face and

forms a small depression below the still water level at tε
√
ghkE = 5 (blue line) which widens and deepens

at tε
√
ghkE = 10 (green line). Finally, the onshore wind (figure 3.1a) increases the maximum wave-slope

magnitude with time while the offshore wind (figure 3.1b) decreases it, although the windward side of the

wave becomes steeper than the leeward side for both winds (up to 8 % steeper for the time period shown).

Although the equation is ill posed in the sense of Hadamard, the smooth solutions show that our solution

is acceptable up to the current time and thus we are justified in neglecting a regularization scheme.

To further examine the wind-induced wave asymmetry, we fit η to a reference solitary-wave profile

ηref (3.19) by minimizing the L1 difference, yielding the reference height Href(t1) and peak location xref(t1).

The profile change is defined as ∆η(x) := η − ηref and is shown as a function of the reference wave-centred

distance x̃ := x− xref in figure 3.2. Notice that the profile change begins near the front face of the wave

and has extrema for negative x̃′ but with opposite signs for onshore and offshore winds. Additionally, the

magnitude of the extrema decay with distance in the −x̃ direction. Finally, note that the onshore (offshore)

wind generates a small peak (trough) at x̃ = 0 and two small troughs (peaks) near x̃/h = ±3, with the
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Figure 3.3. Solitary-wave shape statistics under onshore and offshore Jeffreys forcing versus non-
dimensional slow time t′1 = tε

√
ghkE = 0–10. The (a) energy (normalized by the initial energy), (b)

skewness (normalized by the initial skewness) and (c) asymmetry are defined in (3.21a–c). Results
are shown for ε = 0.1, µE = 0.6 and pressure magnitude |PkE/(ρwgε)| up to 0.25, as indicated in the
legend. The solid black line is the unforced case, P = 0, and shows no growth or asymmetry and a
constant skewness.

x̃ < 0 extrema larger than the x̃ > 0 one. This is analogous to a dispersive tail, well known in KdV-type

systems [e.g. 136], and its appearance here helps explain the pressure-induced shape change (cf. § 3.5.2).

The effect of wind on wave shape is quantified by the time evolution of wave shape statistics

— energy, skewness and asymmetry — for onshore and offshore wind (figure 3.3). We plot all cases for

initial steepness ε = 0.1 up to slow time tε
√
ghkE = 10, corresponding to 10/ε = 100 wave-crossing times,

T0 = 1/(
√
ghkE). The unforced case (P = 0) displays constant shape statistics and zero asymmetry, as

expected. The normalized energy E/E0 shows different growth/decay rates: the onshore wind (P > 0)

causes accelerating wave growth while the offshore wind (P < 0) causes slowing wave decay (figure 3.3a).

The energy of the unforced wave is virtually unchanged, with a normalized energy change of 1− E/E0 =

−1 × 10−13 at t′1 = 10. The onshore (offshore) wind causes the wave to become more (less) skewed over

time, with the normalized skewness nearly symmetric about unity with respect to ±P . Finally, the onshore

wind causes a backwards tilt and negative asymmetry while the offshore wind increases the asymmetry and
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causes a forward tilt, which was also seen in figure 3.1. Notice that |A| is larger for onshore winds than

offshore winds. Since the definitions of the skewness and asymmetry are insensitive to waveform scaling

η → λη, this effect is not simply caused by the wave’s growth/decay. Instead, the onshore wind generates

a larger dispersive tail (figure 3.2), which is the asymmetric wave component.

3.5 Discussion

3.5.1 Wind speed estimation

We now relate the non-dimensional pressure magnitude PkE/(ρwg) = O(ε) to the wind speed.

First, we need a relationship between the surface pressure and wave energy E (3.21a–c), which we can

approximate using the standard procedure [e.g. 121] of multiplying the (non-dimensional, denoted by

primes) KdV–Burgers equation (3.18) by η′0 and integrating from x′ = −∞ to ∞ to obtain

∂

∂t′1

∫︂ ∞

−∞
η′

2
0 dx

′ =

∫︂ ∞

−∞
P ′
(︃
∂η′0
∂x′

)︃2

dx′ . (3.22)

The left integral is the non-dimensional energy (3.21a–c), so re-dimensionalizing and converting back to

the full time t gives the energy growth rate γ,

γ

c0kE
:=

1

c0kEE

∂E

∂t
=
PkE
ρwg

⟨(∂xη)2⟩
⟨(kEη)2⟩

=
1

5

PkE
ρwg

, (3.23)

with ⟨(∂xη)2⟩/⟨(kEη)2⟩ = 1/5 evaluated with the initial, solitary-wave profile (3.19) and the linear, shallow-

water phase speed c0 =
√
gh coming from the re-dimensionalization of t′ = tc0kE (3.7). Alternatively, a

secondary multiple-scale approximation of the forward KdV–Burgers equation has been used previously to

derive the energy growth rate for solitary waves as [143]

E ∝ 1

(1− γt)
2 with γ := b

[︃
PkE
ρwg

]︃
c0kE , (3.24)

with analytically derived b = 2/15. Numerically fitting (3.24) to our calculated energy instead yields

b = 0.10081 ± 0.00003, similar to the analytic approximation. Note that the exponential energy growth

(3.23) correctly approximates (3.24) for small times γt≪ 1, and both expressions are consistent with the

observed accelerating (decelerating) energy change for P > 0 (P < 0) in figure 3.3.

Next, Jeffreys’s ([1925]) theory relates the growth rate of periodic waves to the wind speed Uλ/2,
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measured at a height equal to half the wavelength z = λ/2, as

γ

ck
= Sλ/2

ρa
ρw

(︃
Uλ/2

c
− 1

)︃⃓⃓⃓⃓
Uλ/2

c
− 1

⃓⃓⃓⃓
, (3.25)

with Sλ/2 a small, non-dimensional sheltering parameter potentially dependent on ε, µE and Uλ/2/c.

For simplicity, we approximate the nonlinear phase speed c (given non-dimensionally in (3.20)) by its

leading-order term c0 =
√
gh, yielding an error of only 10 % in the subsequent calculations. Combining

this approximation of (3.25) with (3.23) gives

Uλ/2 = c0

(︄
1±

√︄
1

5

⃓⃓⃓⃓
PkE
ρwg

⃓⃓⃓⃓
ρw
ρa

1

Sλ/2

)︄
. (3.26)

Here, the ± corresponds to onshore (+) or offshore (−) winds. Note that changing the wind direction (i.e.

± sign) while holding the surface pressure magnitude |PkE/(ρwg)| constant means onshore wind speeds⃓⃓
Uλ/2

⃓⃓
will be larger than offshore wind speeds.

We can evaluate (3.26) for the parameters of § 3.4: ε = 0.1, µE = 0.6 and Pk/(ρwgε) = 0.25.

Donelan et al. [125] parameterized Sλ/2 for periodic shallow-water waves with a dependence on airflow

separation: Sλ/2 = 4.91ε
√
µ for our non-separated flow (according to their criterion), with µ := (kh)2.

Assuming this holds approximately for solitary waves, we choose λ = 2π/kE = 20 m to calculate the

wind speed at z = λ/2 = 10 m. This choice corresponds to a depth of h = 2.5 m and initial wave height

H0 = 0.5 m and yields a wind speed of U10 = 22 m s−1, a physically realistic wind speed for strongly forced

shallow-water waves. Weaker wind speeds will induce smaller surface pressures and thus take longer to

change the wave shape.

3.5.2 Physical mechanism of asymmetry generation

Our initial, symmetric solitary waves (3.19) are permanent-form solutions of the unforced KdV

equation. More generally, any initial solitary wave which does not exactly solve the KdV equation will

evolve into a solitary wave and a trailing, dispersive tail according to the inverse scattering transform [e.g.

121]. In our system, the pressure continually perturbs the system away from the unforced KdV soliton

solution resulting in a trailing, bound, dispersive tail (figure 3.2), which is responsible for the wave

asymmetry. To see this, consider an initial, symmetric profile η. The pressure forcing term P∂2xη preserves

the initial symmetry and induces a symmetric bound wave after a short time ∆t′1 ≪ 1. This is apparent

when considering the non-dimensional KdV–Burgers equation (3.18) in the unforced solitary wave’s frame
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(figure 3.1) at the initial time,

∂η′0
∂t1

⃓⃓⃓⃓
t′1=0

= −P ′ ∂
2

∂x2

[︃
sech2

(︃
x′

2

)︃]︃
(3.27)

=⇒ η′0(x
′,∆t′1) = (2− P ′∆t′1) sech

2

(︃
x′

2

)︃
+ P ′∆t′1

3

2
sech4

(︃
x′

2

)︃
. (3.28)

The P ′∆t′1 terms generate a small bound wave with a peak (trough) at x′ = 0 and troughs (peaks)

symmetrically in front and behind the wave peak for onshore (offshore) wind. As time increases, the

continual pressure forcing causes the bound wave to grow and lengthen behind the wave, as is apparent in

figure 3.2 (e.g. x̃/h = −20 to 3 for P ′ = 0.25 and t′1 = 10).

The small numerical value |P ′| = 0.25 ≪ 1 used in § 3.4 allows us to consider the wave’s evolution

as two steps with time scale separation. First, the pressure generates a bound wave (3.28) on the slow time

scale, and then the wave evolves a dispersive tail on the fast time scale according to the inverse scattering

transform of the unforced KdV equation. The dispersive tail in figure 3.2 (e.g. located left of x̃/h = −20

for P ′ = 0.25 and t′1 = 10) is analogous to the ubiquitous dispersive tails in prior studies on shallow-water

solitary waves, such as figures 8(b) and 8(c) of Hammack and Segur [136]. However, unlike dispersive tails

generated from initial conditions which fail to satisfy the KdV equation, our tail is continually forced and

lengthened by the wind forcing. Finally, interactions with the trailing, dispersive tail are responsible for

lengthening the bound wave (3.28) behind, rather than ahead, of the solitary wave. Hence, the disturbance

induced by the pressure forcing (3.28) has two effects on the wave. First, the wind slowly generates a

bound wave which changes the height and width of the initial solitary wave, which is reflected in the

growth (decay) and narrowing (widening) under onshore (offshore) winds in figure 3.1. Second, it quickly

generates an asymmetric, dispersive tail behind the wave (figure 3.2), producing a greater shape change on

the wave’s rear face (figure 3.1). Finally, the different wind directions (i.e. pressure forcing signs) change

the sign of the bound wave and dispersive tail and, hence, the sign of the asymmetry in figure 3.3.

3.5.3 Comparison to intermediate and deep water

Zdyrski and Feddersen [131] investigated the effect of wind on Stokes-like waves in intermediate to

deep water. This study, with wind coupled to waves in shallow water, finds qualitative agreement with

those intermediate- and deep-water results. The shallow-water asymmetry magnitude increases as the

pressure magnitude P increases (figure 3.3), and figure 4(a) of Zdyrski and Feddersen [131] displayed a

similar trend for the corresponding Jeffreys pressure profile, with positive (negative) pressure increasing
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(decreasing) the asymmetry. Although Zdyrski and Feddersen [131] compared their theoretical predictions

to limited experimental results with kh > 1, there are no appropriate experiments on wind-induced changes

to wave shape in shallow water for comparison with our results. In addition to the Jeffreys pressure profile

employed here, Zdyrski and Feddersen [131] also utilized a generalized Miles profile, only applicable to

periodic waves, wherein the pressure was proportional to η shifted by a distance parameter ψP /k. Future

investigations could couple a higher-order Zakharov equation [e.g. 151] to a Jeffreys-type pressure forcing

or to an atmospheric large eddy simulation, as was done for deep water by Hao and Shen [93]. Although

this analysis focuses on solitary waves, we also investigated the effect of wind on periodic waves using

the cnoidal-wave KdV solutions as initial conditions. Wind-forced cnoidal waves displayed qualitatively

similar shape changes with stronger onshore (offshore) wind causing the energy and skewness to increase

(decrease) while the asymmetry decreased (increased) with time. Furthermore, results were qualitatively

similar across multiple classes of cnoidal waves with different values of µE , implying that these results

apply rather generally.

3.6 Conclusion

Prior results [131] in intermediate and deep water demonstrated that wind, acting through a wave-

dependent surface pressure, can generate shape changes that become more pronounced in shallower water.

Here, we produced a novel analysis of wind-induced wave shape changes in shallow water using a multiple-

scale analysis to couple weak wind with small, shallow-water waves, i.e. a0/h ∼ (kEh)
2 ∼ Pk/(ρwg) ≪ 1.

This analysis produced a KdV–Burgers equation governing the wave profile η, which we then solved

numerically with a symmetric, solitary-wave initial condition. The deviations between the numerical results

and a reference solitary wave had the form of a bound, dispersive tail, with differing signs for onshore

and offshore wind. The tail’s presence and shape are the result of a symmetric, pressure-induced shape

change evolving under the inverse scattering transform. We also estimated the energy, skewness and

asymmetry as functions of time and pressure magnitude. For onshore wind (positive P ), the wave’s energy

and skewness increased with time while asymmetry decreased, while offshore wind produced the opposite

effects. Furthermore, these effects were enhanced for strong pressures, and they reduced to the unforced

case for P = 0. The shape statistics found here show qualitative agreement with the results in intermediate

and deep water. Finally, the wind speeds corresponding to these pressure differences were calculated and

found to be physically realistic.
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Chapter 4

Wind-induced changes to shoaling

surface gravity wave shape

4.1 Abstract

Unforced shoaling waves experience growth and changes to wave shape, and wind-forced waves on

a flat-bottom likewise experience growth/decay and changes to wave shape. However, the combination of

shoaling and wind-forcing, particularly relevant in the near shore environment, has rarely been investigated.

Here, we consider small-amplitude, shallow-water solitary waves propagating up a gentle, planar bathymetry

forced by a weak, Jeffreys-type wind-induced surface pressure. We derive a variable-coefficient Korteweg–de

Vries–Burgers equation governing the surface profile’s evolution and solve it numerically using a Runge-

Kutta third-order finite difference solver. The simulations run until convective pre-breaking, and we find

that offshore winds weakly enhance the ratio of pre-breaking height to depth as well as pre-breaking slope.

Onshore winds have a strong impact on narrowing the wave peak, and wind also modulates the rear shelf

formed behind the wave. Furthermore, wind strongly affects the width of the pre-breaking zone, with

larger effects for smaller beach slopes. After converting our pressure magnitudes to physically realistic

wind speeds, we observe qualitative agreement with prior laboratory and numerical experiments.
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4.2 Introduction

Wind couples to surface gravity waves leading to wave growth and decay as well as changes to wave

shape. However, many aspects of wind-wave coupling are not yet fully understood. Since the sheltering

theory of wind-wave coupling by Jeffreys [63], a variety of mechanisms for wind-wave interactions have been

put forward, often with a focus on calculating growth rates [e.g. 68, 69]. Furthermore, these theories have

been tested by many studies in the laboratory [e.g. 76, 85, 152, 153] and the field [e.g. 74, 125]. Similarly,

numerical studies have modeled the airflow above waves using methods such as large eddy simulations [e.g.

89, 90, 108] or modeled the combined air and water domain using Reynolds-averaged Navier Stokes (RANS)

solvers [e.g. 95] or direct numerical simulations [e.g. 88, 132].

While wave growth rates and airflow structure have received much attention, wind-induced wave

shape changes have been less studied. Unforced, weakly nonlinear waves on flat bottoms (e.g. Stokes,

cnoidal, and solitary waves) are horizontally symmetric about the peak (i.e. zero asymmetry) but are not

vertically symmetric (i.e. non-zero skewness, [e.g. 104, 154]). Laboratory experiments of wind blowing over

periodic waves have demonstrated that wave asymmetry increases with onshore wind speed in intermediate-

water [e.g. 100] and deep-water [e.g. 101]. Theoretical studies have likewise shown that wind-induced

surface pressure induces wave shape changes in both deep [131] and shallow [155] water. However, the

influence of wind on wave shape has not yet been investigated for waves on a sloping bottom.

In contrast, the shoaling of unforced waves up a beach is a relatively well-studied phenomenon that

causes wave growth and shape change. Field observations have revealed the importance of nonlinearity

in wave shoaling and its relation to skewness and asymmetry [e.g. 59, 156]. Additionally, laboratory

experiments of waves shoaling on planar beach slopes yield how the wave height and wave shape evolve with

distance up the beach [e.g. 157–159]. Furthermore, numerical studies have investigated wave shoaling all

the way to wave breaking. A variety of methods have been utilized, including pseudo-spectral models [e.g.

160], fully nonlinear potential flow boundary element method solvers [e.g. 161, 162], large eddy simulation

volume of fluid methods [e.g. 162] and two-phase direct numerical simulations of both the air and water [e.g.

163]. Theoretical [e.g. 164] and numerical [e.g. 162] investigations of wave breaking have shown that

convective wave breaking depends on the surface water velocity u and the phase speed c and occurs when

the Froude number Fr := u/c is approximately unity. The type of wave breaking (e.g. spilling, plunging,

surging, etc.) is related to the beach slope β, initial wave height H0 and initial wave width L0 through the

Iribarren number ir := β/
√︁
H0/L0 [e.g. 165, 166].

There have been extremely few studies looking at the combined effects of wind and shoaling of
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surface gravity waves. Experimental studies have found that onshore wind increases the surfzone width [e.g.

167] and decreases the wave height-to-water depth ratio at breaking [e.g. 168], with offshore wind having the

opposite effect. Additionally, numerical studies using two-phase RANS solvers of wind-forced solitary [e.g.

97] and periodic [e.g. 98] breaking waves have demonstrated that increasingly onshore winds enhance the

wave height at all points prior to breaking. Furthermore, only Feddersen and Veron [101] have investigated

the combined influence of wind and shoaling on wave shape, demonstrating that onshore winds enhance

the shoaling-induced asymmetry while offshore winds reduce it. Nevertheless, a theoretical description

of wind-induced changes to wave shoaling (e.g. wave shape, breaking location, etc.) has not yet been

developed.

Therefore, this study will derive a simplified, theoretical model for wind-forced shoaling waves

that takes the form of a variable-coefficient Korteweg–de Vries (KdV)–Burgers equation. The standard

KdV equation describes unidirectional wave propagation with weak nonlinearity and dispersion in shallow,

flat-bottomed domains [e.g. 136]. It has localized solutions which propagate without changing shape

by balancing nonlinearity and dispersion known as solitary waves [e.g. 121]. Furthermore, arbitrary

disturbances will decay into a number of discrete solitary waves as well as an oscillatory, dispersive

tail [e.g. 136]. When the bottom bathymetry is allowed to vary, the coefficients of the KdV equation

are no longer constant and the system is described by a variable-coefficient KdV (vKdV) equation [e.g.

169, 170]. The deformation of solitary waves propagating on a sloping-bottom vKdV system has been

studied both analytically [e.g. 137] and numerically [e.g. 160] with solitary wave initial conditions becoming

deformed and gaining a rear “shelf” for small enough slopes [e.g. 137]. Alternatively, if the flat-bottomed

KdV equation is augmented with a wind-induced surface pressure forcing, the KdV–Burgers equation

results [131]. These waves gain a dispersive tail similar to KdV non-solitary waves, but these tails grow

continually and change polarity depending on the wind direction [131].

In this work, we begin by applying a wind-induced pressure forcing over a sloping bathymetry to

derive a vKdV–Burgers equation and determining a convective pre-breaking condition in § 4.3. We will

then solve the resulting vKdV–Burgers equation numerically using a third-order Runge-Kutta solver and

investigate the changes to wave shape and pre-breaking location in § 4.4. Finally, we discuss the relationship

between pressure and wind speed as well as the connection of our findings to previous laboratory and

numerical studies in § 4.5.
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4.3 vKdV–Burgers equation derivation and model setup

4.3.1 Governing equations

We derive a vKdV–Burgers equation for wind-forced shoaling waves by considering incompressible,

irrotational, inviscid flows and neglecting surface tension. We restrict our attention to planar, two-

dimensional waves propagating in the +x-direction. Additionally, we choose the +z-direction to be

vertically upwards with the z = 0 datum at the mean water level and impose a bottom bathymetry at

z = −h(x). The standard incompressibility, bottom boundary, kinematic boundary and dynamic boundary

conditions are

0 =
∂2ϕ

∂x2
+
∂2ϕ

∂z2
on − h < z < η , (4.1)

∂ϕ

∂z
= −∂h

∂x

∂ϕ

∂x
on z = −h, (4.2)

∂ϕ

∂z
=
∂η

∂t
+
∂ϕ

∂x

∂η

∂x
on z = η , (4.3)

0 =
p

ρw
+ gη +

∂ϕ

∂t
+

1

2

[︄(︃
∂ϕ

∂x

)︃2

+

(︃
∂ϕ

∂z

)︃2
]︄

on z = η . (4.4)

We have introduced the wave profile η(x, t), the velocity potential ϕ(x, z, t) derived from the water velocity

u = ∇ϕ, the surface pressure p(x, t), the gravitational acceleration g and the water density ρw which is

much larger than the air density ρa ≈ 1.225 × 10−3ρw. Additionally, we removed the Bernoulli constant

from the dynamic boundary condition by using the ϕ gauge freedom. Next, to examine the wind’s effect

on shoaling waves, we impose the analytically-simple Jeffreys-type surface pressure p(x, t) forcing [63]:

p(x, t) = P
∂η(x, t)

∂x
. (4.5)

The pressure constant P ∝ ρa(U − c)2 depends on the wave phase speed c and wind speed U (cf. § 4.5.1).

For a wave propagating towards the shore, onshore winds yield P > 0 while offshore winds give P < 0.

The application of a Jeffreys-type forcing to the flat-bottom KdV equation was discussed in Zdyrski and

Feddersen [155].

4.3.2 Model domain and model parameters

The model domain (figure 4.1) consists of an initial flat section 20 units long at a depth of h0 = 1

and transitions smoothly at x = 0 into a planar beach region with constant slope β and characteristic
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z

x
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c U

Figure 4.1. A schematic showing the (periodic) simulation domain and relevant length scales. The blue
line represents the water surface and wave profile η, and the solid black line is the bottom bathymetry
h(x). The solitary wave initial condition has an effective half-width L0 and height H0 and begins with
its peak on the far left side, in the middle of flat region of depth h0. The initial wave then propagates
to the right with phase speed c up the beach with slope β until it reaches pre-breaking (cf. § 4.3.6). The
positive/negative wind speed U corresponds to an onshore/offshore wind forcing.

beach width Lb := h0/β, as defined by Knowles and Yeh [160]. The bathymetry then smoothly transitions

to a flat plateau 40 units long at a depth of h = 0.1 followed by a downward slope with slope −β. Finally,

there is another flat section at a depth of h0 = 1 before the domain wraps periodically.

The initial condition will be a KdV solitary wave with height H0 and width L0 following Knowles

and Yeh [160], and L0 will be specified later. The solitary wave begins centered on the left boundary, in

between the two flat, deep, 20 unit-long sections. From the defined dimensional quantities, we specify four

non-dimensional parameters,

ε0 :=
H0

h0
, µ0 :=

(︃
h0
L0

)︃2

, P0 :=
P

ρwgL0
, γ0 :=

L0

Lb
. (4.5a–d)

Here, ε0 is the non-dimensional initial wave height, µ0 is the square reciprocal of the non-dimensional

initial wave width, P0 is the non-dimensional pressure magnitude (normalized by the initial wave width),

and γ0 is ratio of the initial wave width to the beach width. Note that the wave-to-beach width parameter

γ0 is related to the beach slope β as γ0 = β/
√
µ0. Together, these four non-dimensional parameters control

the system’s dynamics.

4.3.3 Non-dimensionalization

We non-dimensionalize our system’s variables using the characteristic scales described in § 4.3.2: the

initial depth h0; the initial wave’s height H0; the initial wave’s horizontal length scale L0; the gravitational

acceleration g; and the pressure magnitude P . Using primes for non-dimensional variables, we normalize
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as Zdyrski and Feddersen [155] did and define

x = L0x
′ = h0

x′
√
µ0

,

z = h0z
′ ,

t =
t′L0√
gh0

=
t′

√
µ0

√︄
h0
g
,

h = h′h0 ,

η = H0η
′ = h0ε0η

′ ,

ϕ = ϕ′H0L0

√︃
g

h0
=
ϕ′ε0√
µ0

√︂
gh30 .

(4.6)

We will later assuming the non-dimensional parameters ε0, µ0, γ0 and P0 are small to leverage a perturbative

analysis. For the constant slope β beach profile, the spatial derivative of the bathymetry is also small

∂x′h′ = β/
√
µ0 = γ0 ≪ 1 (the factor of √µ0 comes from the different non-dimensionalizations of h and x).

However, perturbation analyses is simplest when all non-dimensional variables are O(1). Therefore, we

leverage the two, horizontal length scales L0 and Lb (cf. § 4.3.2) to define a non-dimensional, stretched

bathymetry h̃′ that depends on x/Lb = γ0x
′ as h̃′(γ0x′) = h′(x′). Then, denoting derivatives with respect

to γ0x′ using an overdot, the derivative of h̃ is ̇̃
h′ := ∂γ0x′ h̃′(γ0x

′) = O(1), and the small slope becomes

explicit as ∂x′h′ = γ0
̇̃
h′.

Now, the non-dimensional equations take the form

0 = µ0
∂2ϕ′

∂x′2
+
∂2ϕ′

∂z′2
on − 1 < z′ < ε0η

′ , (4.7)

∂ϕ′

∂z′
= −µ0γ0

̇̃
h′
∂ϕ′

∂x′
on z′ = −h̃′(γ0x′) , (4.8)

∂ϕ′

∂z′
= µ0

∂η′

∂t′
+ ε0µ0

∂ϕ′

∂x′
∂η′

∂x′
on z′ = ε0η

′ , (4.9)

0 = ε0P0
∂η′

∂x′
+ η′ +

∂ϕ′

∂t′
+

1

2

[︄
ε0

(︃
∂ϕ′

∂x′

)︃2

+
ε0
µ0

(︃
∂ϕ′

∂z′

)︃2
]︄

on z′ = ε0η
′ . (4.10)

For the remainder of § 4.3, we remove the primes for clarity.

4.3.4 Boussinesq equations, multiple-scale expansion and vKdV–Burgers equa-

tion

We follow the conventional Boussinesq equation derivation presented in, e.g., Mei et al. [121] or

Ablowitz [102]. The two modifications we include are the weakly sloping bottom, similar to the treatment

in Johnson [169] and Mei et al. [121], and the inclusion of a pressure forcing like that of Zdyrski and

Feddersen [155]. For the sake of brevity, we only detail the relevant differences here. First, we expand the
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velocity potential in a Taylor series about the bottom z = −h(x) as

ϕ(x, z, t) =

∞∑︂
n=0

[︂
z + h̃(γ0x)

]︂n
ϕn(x, t) . (4.11)

Substituting this expansion into the incompressibility equation (4.7) and bottom boundary condition (4.8)

and assuming µ0 ≪ 1 gives ϕ as a function of the velocity potential evaluated at the bottom φ := ϕ0. If we

further assume that the bottom is very weakly sloping γ0 ∼ µ0 ≪ 1, this simplifies to

ϕ = φ− µ0
1

2
(z + h̃)2∂2xφ+ O

(︁
µ2
0, γ

2
0 , γ0µ0

)︁
. (4.12)

Note that the assumption γ0 ∼ µ0 ≪ 1 implies a moderate slope β = γ0
√
µ0 ∼ µ

3/2
0 and is used by several

other authors [e.g. 137, 160, 169]. For reference, if µ0 = γ0 = 0.1, then this implies a physically realistic

β = 0.03. Svendsen and Hansen [170] compares this moderate slope to other theoretical derivations using

larger or smaller slopes.

Substituting this ϕ expansion (4.12) into the kinematic and dynamic boundary conditions (4.9)

and (4.10) yields Boussinesq-type equations with a pressure forcing term,

∂tη +
(︂
h̃+ ε0η

)︂
∂2xφ +

(︂
γ0

̇̃
h+ ε0∂xη

)︂
∂xφ− µ0

1

6
h̃3∂4xφ = O

(︁
µ2
0, γ

2
0 , γ0µ0

)︁
, (4.13)

P0∂xη + η + ∂tφ− 1

2
µ0h̃

2∂2x∂tφ+
1

2
ε0(∂xφ)

2
= O

(︁
µ2
0, γ

2
0 , γ0µ0

)︁
. (4.14)

Note that replacing h̃ with the total depth htotal = h̃+ ε0η shows that these are equivalent to the flat-

bottomed Boussinesq equations with htotal = 1 + ε0η. In other words, any sloping-bottom terms ̇̃
h only

appear in the combination ∂xhtotal = γ0
̇̃
h+ ε0∂xη. This is expected since the only sloping-bottom term

µ0γ0
̇̃
h∂xϕ in the governing equations (4.7)–(4.10) was dropped when we neglected terms of O

(︁
µ2
0, γ

2
0 , γ0µ0

)︁
.

Since the bathymetry varies on the slow scale x/γ0, we expand our system in multiple spatial

scales xn = γn0 x for n = 0, 1, 2, . . ., so the derivatives become

∂

∂x
→ ∂

∂x0
+ γ0

∂

∂x1
+ . . . , (4.15)

and the bathymetry is a function of the long spatial scale h̃ = h̃(x1). Then, we expand η and φ in
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asymptotic series of ε0

η(x, t) →
∞∑︂
k=0

εk0ηk(t, x0, x1, . . .) , φ(x, t) →
∞∑︂
k=0

εk0φk(t, x0, x1, . . .) . (4.15a,b)

Similar to Johnson [169], we replace x0 and t with left- and right-moving coordinates translating with

speed c̃(x1) dependent on the stretched coordinate x1:

ξ+ = −t+
∫︂ x0 dx′0

c̃(γ0x′0)
, ξ− = t+

∫︂ x0 dx′0
c̃(γ0x′0)

. (4.16)

Then, we replace the derivatives ∂t and ∂x0
with

∂

∂t
=

∂

∂ξ−
− ∂

∂ξ+
,

∂

∂x0
=

1

c̃

(︃
∂

∂ξ−
+

∂

∂ξ+

)︃
. (4.17)

Now, we will assume that ε0 ∼ P0 ∼ µ0 ≪ 1 and follow the standard multiple-scale technique [e.g. 102,

121]. The order-one terms O
(︁
ε00
)︁

from (4.13) and (4.14) yield wave equations for ϕ0 and η0

∂2ϕ0
∂η+∂η−

= 0 ,
∂2η0

∂η+∂η−
= 0 , (4.17a,b)

with right-moving solutions

φ0 = f0(ξ+, x1) and η0 = ∂ξ+f0(ξ+, x1) , (4.18)

propagating with the slowly varying, linear shallow-water phase speed c̃(x1) =
√︂
h̃(x1). Continuing to

O(ε0) of the asymptotic expansion gives

− ∂η1
∂ξ+

+
∂η1
∂ξ−

+
∂2φ1

∂ξ2+
+ 2

∂2φ1

∂ξ+∂ξ−
+
∂2φ1

∂ξ2−
= −2

γ0
ε0
c̃
∂2φ0

∂ξ+∂x1
+

∂c̃

∂x1

∂φ0

∂ξ+

− 1

c̃2
η0
∂2φ0

∂ξ2+
− γ0
ε0

̇̃
h

c̃

∂φ0

∂ξ+
− 1

c̃2
∂η0
∂ξ+

∂φ0

∂ξ+
+
µ0

ε0
h̃
1

6

∂4φ0

∂ξ4+
,

(4.19)

η1 −
∂φ1

∂ξ+
+
∂φ1

∂ξ−
= − α

ε0
p0 −

1

2

µ0

ε0
h̃
∂3φ0

∂3ξ+
− 1

2c̃2

(︃
∂φ0

∂ξ+

)︃2

. (4.20)

Eliminating η1 from these equations gives

4
∂2ϕ1

∂ξ+∂ξ−
= −2

γ0
ε0
c̃
∂η0
∂x1

− γ0
ε0

∂c̃

∂x1
η0 − 3

1

c̃2
η0
∂η0
∂ξ+

− 1

3

µ0

ε0
c̃2
∂3η0
∂ξ3+

− 1

c̃

P0

ε0

∂2η0
∂ξ2+

. (4.21)
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The left-hand operator ∂2/∂ξ−∂ξ+ is the same as the O(1) differential operator (4.17a,b). Therefore,

the right-hand side must vanish to prevent ϕ1 from developing secular terms. Thus, the right-hand side

becomes the variable-coefficient Korteweg–de Vries–Burgers (vKdV–Burgers) equation

γ0
ε0
c̃
∂η0
∂x1

+
1

2

γ0
ε0

∂c̃

∂x1
η0 +

3

2

1

c̃2
η0
∂η0
∂ξ+

+
1

6

µ0

ε0
c̃2
∂3η0
∂ξ3+

+
1

2c̃

P0

ε0

∂2η0
∂ξ2+

= 0 . (4.22)

Finally, multiplying (4.22) by ε, adding the O(1) differential equation ∂ξ−η0 = 0 derived from (4.17a,b),

and transforming back to the original, non-dimensional variables x and t yields

∂η0
∂t

+ c
∂η0
∂x

+
1

2

∂c

∂x
η0 +

3

2
ε0

1

c
η0
∂η0
∂x

+
1

6
µ0c

5 ∂
3η0
∂x3

+
1

2
P0c

∂2η0
∂x2

= 0 . (4.23)

The pressure term P0∂
2
xη0 functions as a damping, positive viscosity for offshore P0 < 0 wind, making (4.23)

a (forward) vKdV–Burgers equation. Conversely, onshore P0 > 0 wind causes a growth-inducing, negative

viscosity giving the backward vKdV–Burgers equation. The backward, constant-coefficient KdV–Burgers

equation is ill posed in the sense of Hadamard [149]. Though it is possible the backward vKdV–Burgers

equation is also ill posed for certain bathymetries h̃, this is irrelevant here owing to the finite time it takes

the wave to reach the beach.

4.3.5 Initial conditions

Our initial condition will be the solitary-wave solutions of the unforced (P0 = 0), flat-bottom

KdV equation. These waves balance the KdV equation’s nonlinearity η0∂xη0 and dispersion ∂3xη0 terms,

propagate without changing shape and require that the height H0 and width L0 satisfy H0L
2
0 = constant.

Therefore, we now fix the previously unspecified L0 by choosing µ0 = (3/4)ε0 so L0 acts like an effective

half-width for the solitary wave initial condition [e.g. 121]

η0 = sech2 (x) , (4.24)

While the unforced KdV equation also possesses periodic solutions called cnoidal waves, we only consider

solitary waves here.
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4.3.6 Convective breaking criterion

The asymptotic assumptions used to derive the vKdV–Burgers equation (4.23) fail when the wave

gets too large. Therefore, we require a condition to determine when the simulations should stop. We

use a convective “pre-breaking” condition similar to that derived by Brun and Kalisch [164] for solitary

waves on a flat-bottom depending on the wave velocity profile u(x, t) at the surface and the phase speed c.

They utilized the local Froude number Fr := ε0u(x, t)/c, with the ε0 coming from non-dimensionalization,

and defined convective breaking to occur wherever maxx(Fr) = 1, where maxx represents the maximum

over x. However, when the Froude number approaches the breaking value of unity, our weakly-nonlinear

asymptotic assumption used to derive the vKdV–Burgers equation are violated. Thus, we instead stop our

simulations at the smaller pre-breaking Froude number Frpb := 1/3 and define the pre-breaking time tpb as

the first time this condition is met:

max
x

(Fr) := max
x

(︃
ε0
u(x)

cadi

)︃
= Frpb :=

1

3
. (4.25)

Likewise, we define xpb as the location on the wave where Fr = Frpb, which will be very near the wave

peak. To calculate Fr, we need to estimate u(x, t) and c.

As the solitary wave propagates on a slope, the wave evolves over time and the phase speed c can

be ambiguous. One option is to use the adiabatic approximation derived by [137] for unforced solitary

waves on very gentle slopes:

cadi =
√︂
h(xpeak)

(︃
1 +

ε0
2

η(xpeak)

h(xpeak)

)︃
, (4.26)

with xpeak the location of the wave peak. Alternatively, Derakhti et al. [162] used large eddy simulations

to numerically investigate unforced solitary wave breaking on slopes ranging from β = 0.2 to 0.005 for

two different forms of c. They found wave breaking at maxx(Fr) = 0.85 when using the speed of the

numerically-tracked wave peak cpeak. However, they also found that the shallow-water approximation

cshallow =
√︁
h(xpeak) + ε0η(xpeak) (equivalent to cadi to O

(︁
ε20
)︁
) was within 15 % of cpeak near breaking.

Therefore, we will use (4.26) owing to its simplicity and theoretical foundation. Finally, though these

studies all considered unforced solitary waves, our results will show that cadi varies approximately 3 %

across pressure magnitudes P0 for our simulations, so this is a valid approximation.

We now derive the wave velocity profile u(x, z, t) = ∇ϕ by modifying the example of Brun and

Kalisch [164] to include sloping bathymetry and pressure forcing. We begin by combining the vKdV–Burgers
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equation (4.23) and kinematic boundary condition (4.13) to eliminate ∂tη and yield

c̃2
∂2φ

∂x2
− c̃

∂η

∂x
+ ε0

(︃
η
∂2φ

∂x2
+
∂η

∂x

∂φ

∂x
− 3

2

1

c̃
η
∂η

∂x

)︃
− P0

1

2
c̃
∂2η

∂x2

− µ0

(︃
1

6
c̃6
∂4φ

∂x4
+

1

6
c̃5
∂3η

∂x3

)︃
+ γ0

(︃
2c̃

∂c̃

∂x1

∂φ

∂x
− 1

2
η
∂c̃

∂x1

)︃
= 0 .

(4.27)

Assuming an ansatz

∂φ

∂x
=

1

c̃
η + ε0A(x, t) + γ0B(x, t) + µ0C(x, t) + P0D(x, t) (4.28)

=⇒ ∂2φ

∂x2
=

1

c̃

∂η

∂x
+ ε0

∂A

∂x
+ γ0

(︃
∂B

∂x
− 1

c̃2
η
∂c̃

∂x1

)︃
+ µ0

∂C

∂x
+ P0

∂D

∂x
, (4.29)

we insert (4.28) and (4.29) into (4.27), drop terms of O
(︁
ε2
)︁

and solve for A, B, C, and D by using the

independence of ε0, γ0, µ0 and P0:

A = − 1

4c̃3
η2 , B = − c̃′

2c̃2

∫︂ x

+∞
η(x′) dx′ , C =

c̃3

3

∂2η

∂x2
, D =

1

2c̃

∂η

∂x
. (4.29a–d)

Note that A represents the nonlinear contribution, B the effect of shoaling, C the dispersive effect, and D

the pressure forcing. Finally, the Taylor expansion of ϕ(x, z) (4.12) gives the fluid velocity at the surface

u(x, t, z = ε0η) = ∂xϕ as

u(x, t) = ∂xφ− µ0
1

2
c̃4∂3xφ

=
1

c̃
η − ε0

1

4c̃3
η2 + P0

1

2c̃

∂η

∂x
− µ0

c̃3

6

∂2η

∂x2
− γ0

c̃′

2c̃2

∫︂ x

∞
η(x′) dx′ .

(4.30)

Therefore, the Froude number is calculated as

Fr :=
εu(x, t)√︁
h(xpeak)

(︃
1 +

ε0
2

η(xpeak)

h(xpeak)

)︃−1

, (4.31)

with u(x, t) given by (4.30), and (4.25) defines our pre-breaking condition.

4.3.7 Numerics

The vKdV–Burgers equation (4.23) lacks analytic, solitary-wave-type solutions, so we solve it

numerically using a third-order explicit Runge-Kutta adaptive time-stepper with the error controlled by a

second-order Runge-Kutta method as implemented in SciPy [171]. We discretize the spatial domain using

148



Table 4.1. Range of non-dimensional parameters simulated.

Parameter Range

ε0 0.2
µ0 0.15

|P/(ρwgL0ε0)| 0.003125, 0.00625, 0.0125, 0.025, 0.05
β 0.01, 0.015, 0.02, 0.025

a fourth-order finite difference method on a periodic domain with grid spacing dx = 0.05. We employ

adaptive time stepping to keep the relative error below 10−6 and the absolute error below 10−3 at each

step. For all cases, the average time-step is ∆t ≈ 2 × 10−3. The pressure is initially turned off until the

solitary wave is one unit (i.e. a half-width L0) away from the start of the beach slope. The pressure is

linearly ramped up to its full value over the time it takes the wave to cross a full-width 2L0. For numerical

stability, we included a biviscosity νbi∂
4
xη0 with νbi = 1 × 10−5.

We validated the solver against the unforced, flat-bottom analytical solution and had a normalized

root-mean-square error of 3.9 × 10−4 after non-dimensional time t = 100 (longer than the longest simula-

tion) as well as a normalized wave height change of 1− [max(η0)−min(η0)]/
[︂
max(η

(0)
0 )−min(η

(0)
0 )
]︂
=

2.4 × 10−4. Furthermore, the results were qualitatively consistent with the simulations of Knowles and Yeh

[160] of an unforced solitary wave shoaling on a slope. Finally, the simulation reproduced the finding of

Knowles and Yeh [160] that small waves (ε0 ≪ 1) on weak slopes (γ0 ≪ 1) yield Green’s Law for the wave

height H(x) := maxt(η) ∝ h(x)1/4 (with maxt the maximum over time t), while moderate waves (ε0 < 1)

on very weak slopes (γ0 ≪ 1) give Miles’ adiabatic law H(x) ∝ h(x)−1 [172].

The vKdV–Burgers equation (4.22) is determined by two non-dimensional parameter combinations:

the pressure term P0/ε0 and the shoaling term γ0/ε0. Recall that the dispersive term µ0/ε0 is a redundancy

which we fixed by specifying L0 (cf. § 4.3.5). We investigate this two-dimensional parameter space

by choosing ε0 = 0.2 and µ0 = 0.15 and varying the beach slope β = 0.01 to 0.025 and pressure

P = 0.003125 to 0.05 (cf. § 4.5.1 for a discussion of the size of P ). This yields a total of 20 simulations

(table 4.1). Note that (4.22) demonstrates changing ε0 → λε0 is equivalent to γ0 → γ0/λ in the wave’s

co-moving reference frame. Therefore, solutions for waves with different initial heights ε0 can be generated

from our solutions to the vKdV–Burgers equation in the lab frame (4.23) by scaling the height, boosting,

and adjusting γ0. We also note that the asymptotic expansion assumed P0 ∼ ε0, or P/(ρwgL0ε0) ∼ 1,

but the pressure values we are using (table 4.1) are smaller than unity. Nevertheless, multiple-scale

expansions are often accurate outside their parameters’ validity ranges, and this constraint would be

satisfied asymptotically for smaller values of ε0.
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4.3.8 Shape statistics

When stopping the simulations at tpb (§ 4.3.6), we are interested in determining the wave location

xpb at pre-breaking. To estimate how xpb changes, we first calculate the shoreline xshore as the location

where the bathymetry would intersect z = 0 if it had a constant slope β without our shallow plateau. Then,

we calculate the pre-breaking zone width as xpz := xpb − xshore. For a given beach slope β, we will analyze

the change in pre-breaking zone width relative to the unforced case ∆xpz := xpz − xpz
⃓⃓
P=0

normalized

by the unforced pre-breaking zone width xpz
⃓⃓
P=0

. This global statistic ∆xpb/(xpb
⃓⃓
P=0

) determines the

variance in pre-breaking locations as a fractional change of the pre-breaking zone width.

Additionally, we will investigate four more shape statistics that vary as the wave propagates. The

first three are local shape parameters defined at each location x. First, we directly examine the maximum

Froude number maxt(Fr) expressed in (4.31). Second, we investigate the maximum height relative to the

local water depth maxt(η)/h(x) at each location x. Third, we consider the maximum slope maxt(|∂η/∂x|).

Both the relative height and maximum slope contribute to the convective breaking criterion (4.25). Finally,

we introduce a global shape parameter, the full width of the wave at half of the wave’s maximum (FWHM)

LW (t) normalized by the local water depth h(x). For our unforced KdV solitary wave initial condition

(4.24), the FWHM divided by the initial depth is LW /h0 = 2 cosh−1(
√
2)/

√
µ0. We seek to compare this

global shape parameter defined at each point in time t with the local parameters defined at each point

in space. Therefore, we define LW (x) = LW (tpeak(x)) at the time tpeak(x) when the wave peak passed

location x.

4.4 Results

Now, we use the results of the numerical simulations to investigate the effect of wind on solitary

wave shoaling. We will present shape statistics (§ 4.3.8) for the 20 different runs (table 4.1) to detail the

wave shape changes and pre-breaking behavior across the parameter space. For the remainder of the paper,

we will utilize dimensional variables for easier comparison to experiments and observations.

4.4.1 Profiles of shoaling solitary waves with wind

First, we qualitatively investigate the effect of varying pressures P and bathymetric slopes β on

solitary-wave shoaling by examining the wave profile η/h0, normalized by the initial depth h0, at three

different times t (figure 4.2) corresponding to when the solitary wave first feels the slope (t = 0), the time
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Figure 4.2. Shoaling solitary-wave η evolution under (a,b) onshore P > 0, (c,d) unforced P = 0 and
(e,f ) offshore P < 0 wind-induced surface pressure versus non-dimensional distance x/h0 as the wave
propagates up the (g ,h) planar bathymetry. The profile times shown depend on the Froude number
(4.31) and therefore vary between the panels. The first profile (purple) occurs when the peak is located
at x = −L0 where the pressure begins turning on, and the time is defined so t = 0 here. The last profile
(green) occurs when the convective pre-breaking condition maxx(Fr) = Frpb = 1/3 is met (cf. § 4.3.6),
and the middle profile (blue) occurs at a time halfway between the first and last profiles. Both columns
have ε0 = 0.2 and µ0 = 0.15, and the left-column forced cases (a,e) have |P/(ρwgL0ε0)| = 0.05 and
β = 0.015 while the right-column forced cases (b,f ) use |P/(ρwgL0ε0)| = 0.025 and β = 0.25. The x’s
denote the locations with the highest Froude number (4.31), and the x’s on the last profiles (green) are
the pre-breaking locations xpb. We only display a subset of the full spatial domain.
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of pre-breaking (t = tpb) and half-way between (t = tpb/2). We note that these t = 0 wave profiles (purple

in figure 4.2) are nearly identical to the sech2(x/L0) initial condition (4.24) since the waves have only

propagated over a flat bottom (figures 4.2g ,h) and the pressure has not yet been turned on. Halfway to

pre-breaking (t = tpb/2, blue), the solitary wave has grown through shoaling with a steeper front face (+x

side) and increased asymmetry for all P and β. At the time of pre-breaking (t = tpb, green) the solitary

wave has increased in height, steepened, and gained a substantial rear shelf for all P and β. Onshore wind

(P > 0) reinforces the shoaling-based wave growth and yields relatively narrow peak widths for both β

(figures 4.2a,b). In contrast, offshore wind (P < 0) reduces the wave shoaling but results in wider peak

widths (figures 4.2a,b). These differences in wave-shoaling result in the offshore-forced (P < 0) solitary

wave reaching pre-breaking (xpb, x’s in figure 4.2) farther onshore (shallower water) than the onshore-forced

(P > 0) solitary wave. Similarly, the larger beach slope (β = 0.025, figures 4.2b,d ,f ) causes waves to

reach xpb in less horizontal distance, though they pre-break in shallow water than the milder beach slope

(β = 0.015) waves. At t = tpb, the rear shelf is wider and extends higher up the rear face for offshore winds

(≈ 0.1h0 in figure 4.2e) than for onshore winds (≈ 0.07h0 in figure 4.2a). As the control case, the unforced

(P = 0) solitary wave has xpb located between the onshore and offshore wind cases with an intermediate

rear shelf. Finally, the milder slope (β = 0.015) has a sharper, more pronounced rear shelf while the steeper

slope (β = 0.025) has a more gently sloping rear shelf.

We next investigate the impact of onshore (figures 4.3a,c,e) and offshore (figures 4.3b,d ,f ) wind on

shoaling waves’ slopes ∂xη and wave velocity profiles u/
√
gh0. The wave slope (figures 4.3c,d) highlights

the shoaling- and wind-induced shape changes by accentuating the front-rear asymmetry. At t = 0 (purple

figures 4.3a,b), the wave slope has odd-parity about the peak. However, as the wave propagates onshore,

both the front and rear face steepen, though the front face steepens more dramatically. The influence

of the wind is most noticeable in three aspects: the offshore-forced wave (P = −0.05, figure 4.3b) is

10 % smaller than the onshore forced wave (P = 0.05, figure 4.3a); the offshore-forced rear-face wave

slope (figure 4.3d) is 15 % smaller than the onshore-forced wave slope (figure 4.3c), though the front-face

slope is only 2 % smaller; and the trailing shelf’s slope extends further behind the offshore-forced wave

(≈ 8h0, figure 4.3d) than the onshore-forced wave (≈ 5h0, figure 4.3c). The wave velocity profile u/
√
gh0

((4.30), figures 4.3e,f ) nearly mirrors the wave profile (figures 4.3a,b), as is expected given that u ∝ η

to leading order (4.30). Finally, the phase speed cadi (red, (4.26)) decreases as the wave shoals which

enhances convective pre-breaking, though it only varies 3% between onshore and offshore wind. Note, in

figures 4.3(e,f ), cadi is multiplied by Frpb = 1/3 so that the intersection of the red curve with the wave
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Figure 4.3. Shoaling solitary-wave (a,b) non-dimensional profile η/h0, (c,d) slope ∂η/∂x (e,f ) and
non-dimensional wave velocity profile u/

√
gh0 under (a,c,e) onshore and (b,d ,f ) offshore wind-induced

surface pressure as the wave propagates up the (g ,h) planar bathymetry. Values are shown versus non-
dimensional distance x/h0 for ε0 = 0.2, µ0 = 0.15, |P/(ρwgL0ε0)| = 0.05, β = 0.015 and non-dimensional
times t

√
gh/L0 indicated in the legends. The red lines in (e,f ) represent the phase speed cadi (4.26) at

each location multiplied by the pre-breaking Froude number Frpb = 1/3. The x’s denote the locations
with the highest Froude number, and the x’s on the last (green) profiles are the pre-breaking locations
xpb. The squares are the locations of the maximum slope magnitude |∂η/∂x|, and the upside-down
triangles represent the locations of the maximum wave velocity profile. We only display a subset of the
full spatial domain.
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velocity profile occurs at xpb, the location of pre-breaking.

4.4.2 Shape statistics with shoaling and variations of pre-breaking zone width

with wind

Building on the previous qualitative descriptions of the wave profile, slope, and wave velocity

profile, we also quantify the change in the shoaling wave’s shape parameters for onshore and offshore

P (figure 4.4). First, we consider the maximum Froude number maxt(Fr) as a function of non-dimensional

position x/h0 (figure 4.4a). In the flat region (x < 0), the maximum Froude number is maxt(Fr) = 0.1818,

and it increases as the waves shoal to the pre-breaking value maxt(Fr) = Frpb = 1/3 (light gray line).

The wind has a significant impact on the location of pre-breaking xpb, with onshore wind (red) causing

the Froude number to increase faster and xpb to occur farther offshore than offshore wind (blue) does.

This can also be seen in figures 4.3(e,f ), where the maximum velocities u/
√
gh0 (upside-down triangles),

which are proportional to maxt(Fr), are growing faster for the onshore wind (figure 4.3e) than the offshore

wind (figure 4.3f ). Notably, at a fixed location x/h0, the maxx(Fr) varies substantially (e.g. 0.25 to 0.30

at x/h0 = 20). In addition, we consider the maximum height at a fixed location maxt(η) normalized by

the local water depth h(x) (figure 4.4b). For all pressures P , the solitary wave increases in height, but the

onshore wind enhances this growth while the offshore wind partially suppresses it. Again, this is apparent

in the evolution of the maximums η(xpeak)/h0 in figure 4.2, which are closely approximated by the x’s

(since xpeak ≈ xpb). Since Fr ∝ η to leading order, the relative height at pre-breaking is approximately

0.41 for all P (figure 4.4b) with offshore-forced wave slightly larger (1%) than onshore-forced waves.

Figure 4.4(c) shows the evolution of the maximum wave slope magnitude maxt |∂xη|, corresponding

to the front face’s slope (figures 4.3c,d). Like the relative height (figure 4.4b), the steepness is enhanced by

onshore wind P > 0, suppressed for offshore wind P < 0, and approaches nearly the same pre-breaking

value of 0.14 for all wind speeds, being only 1 % larger for offshore winds than onshore winds. Finally,

we examine the FWHM LW , normalized by the local water depth h(x) (figure 4.4d). While LW /h(x)

decreases from its initial value of 4.55 for all pressure magnitudes, there is significant variation in the

pre-breaking value. For our parameters, LW /h(x) changes nearly 16 % more for onshore wind (P = 0.05)

than offshore wind (P = −0.05) from start to pre-breaking. Figures 4.3(a,b) show that the rear shelf

does not rise to half the wave height, so the FWHM does not incorporate the shelf’s width. Instead, the

onshore-forced narrowing is occurring in the top region above the shelf. Hence, while the relative height

and slope at pre-breaking are largely similar for all the wind speeds, the FWHM at pre-breaking is strongly
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Figure 4.4. Shoaling solitary-wave shape statistics under onshore and offshore pressure forcing versus
non-dimensional distance x/h0. The (a) Froude number maxt(Fr) (4.31), (b) maximum height normalized
by the local water depth maxt(η)/h(x), (c) maximum slope maxt(|∂η/∂x|) and (d) full width at half
maximum normalized by the local water depth LW /h(x) (cf. § 4.3.8) are displayed at each location
along the (g) planar bathymetry. Results are shown for ε0 = 0.2, µ0 = 0.15, β = 0.015 and pressure
magnitude |P/(ρwgL0ε0)| up to 0.05, as indicated in the legend. The solid black line is the unforced
case, P = 0. The light gray line on (a) represents the convective pre-breaking Froude number Frpb = 1/3
at which the simulations were stopped.
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Figure 4.5. The fractional change in pre-breaking zone width ∆xpz compared to the unforced case
xpz

⃓⃓
P=0

(cf. § 4.3.8) versus the non-dimensional pressure magnitude P/(ρwgL0ε0). The results are
shown for beach slopes β = 0.01–0.025 as indicated in the legend.

affected by the wind speed indicating wind effects on shoaling shape.

We also investigate the change in the pre-breaking zone width ∆xpz (§ 4.3.8) as a function of

pressure P/(ρwgL0ε0) for four different values of the beach slope β (figure 4.5). First, ∆xpz is linearly

related to the pressure magnitude, and the wind has a larger effect on ∆xpz for smaller beach slopes, with

P/(ρwgL0ε0) = −0.05 changing the pre-breaking zone width by approximately 5% for the smallest slope

β = 0.01. This is because the wind has more time to affect the wave before it reaches pre-breaking. This

wind-induced change in pre-breaking location is visible in figure 4.2, where the breakpoint xpb (x’s on

green profiles) occurs closer to the shoreline (+x direction) for offshore winds P < 0. Additionally, we

note that for the smallest slope β = 0.01, the change in pre-breaking zone width appears asymmetric

with respect to pressure, with offshore P/(ρwgL0ε0) = −0.05 yielding a 23 % larger change than onshore

P/(ρwgL0ε0) = 0.05.

4.4.3 Normalized pre-breaking wave shape changes induced by wind and

shoaling

As figure 4.4 quantified the shape statistics at pre-breaking for all x, we now directly investigate

the effect of pressure P and shoaling β on pre-breaking wave shape by normalizing each pre-breaking wave
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P/(ρwgL0ε0) = −0.05 pressure magnitude. The light gray line shows where the FWHM is measured.
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profile η by its maximum height maxx(η) and aligning the pre-breaking locations xpb/h0 (figure 4.6). For

a fixed slope (figure 4.6a), the front wave faces at pre-breaking are qualitatively very similar and match

an unforced solitary wave of the same height. However, wind strongly affects the rear shelfs observed in

figure 4.2. The offshore winds (blue) cause the shelf to be thicker and extend higher up the rear wave face

than the offshore wind (reds) do, though the shelf intersects z = 0 at (x − xpb)/h0 = −10 for all wind

speeds.

We also consider the wave shape at breaking for different values of the beach slope β with a fixed

onshore (figure 4.6b) or offshore (figure 4.6c) wind. Furthermore, the rear face shows that bottom slope

β impacts the rear shelf differently than pressure P/(ρwgL0ε0) does. While the shelf intersected z = 0

at the same location for all wind speeds (figure 4.6a), increasing β causes the intersection point (i.e. the

base of the shelf) to move forward and closer to the peak. Finally, the offshore wind (figure 4.6c) causes a

noticeably larger shelf than the onshore wind (figure 4.6b) for the weakest slope β = 0.01 (purple), with a

similar pattern observed in figure 4.3(a) (β = 0.015) compared to figure 4.3(b) (β = 0.025). However, this

difference is much smaller for the steeper (green) slopes, implying that stronger shoaling partially suppresses

the wind-induced shape change because there is less time for pressure to act prior to pre-breaking.

4.5 Discussion

4.5.1 Wind Speed

Our derivation in § 4.3 coupled wind to the wave’s motion through the use of a surface pressure (4.5).

The resulting vKdV–Burgers equation (4.23) had a wind-induced term dependent on the pressure magnitude

constant P/(ρwgL0ε0). We analyzed the evolution and pre-breaking of solitary waves parameterized by

different values of P (§ 4.4). While the usage of P was the most natural since it is the physical coupling

between wind and waves (in the absence of viscous tangential stress), measuring the surface pressure is

challenging in field observations or lab experiments [e.g. 85, 125]. Therefore, we also consider the evolution

and pre-breaking of the shoaling solitary waves as a function of the wind speed U . Zdyrski and Feddersen

[155] did this by considering a surface pressure acting on a flat-bottom KdV solitary wave initial condition

(equivalent to our (4.24)) with dimensional form

η = εh sech2

(︄√︃
3ε

4

x

h

)︄2

, (4.32)
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Table 4.2. Wind speeds as functions of pressure P/(ρwgLε) and local depth h for solitary waves (4.32)
with ε = 0.2. Uonshore corresponds to P > 0 and Uoffshore to P < 0. The conversion from P/(ρwgLε) to
U is given in (4.33).

|P/(ρwgLε)| h[m] Uonshore[m s−1] Uoffshore[m s−1] h[m] Uonshore[m s−1] Uoffshore[m s−1]

0 2.5 4.9 4.9 1 3.1 3.1
0.0031 2.5 8.7 1.2 1 5.5 0.73
0.0063 2.5 10 −0.41 1 6.5 −0.26
0.013 2.5 13 −2.6 1 7.9 −1.7
0.025 2.5 16 −5.8 1 9.9 −3.6
0.050 2.5 20 −10 1 13 −6.5

with non-dimensional height ε = H/h and width L = 2h/
√
3ε in water of depth h. They used energy

growth rate considerations and a non-separated parameterization by Donelan et al. [125] for periodic,

shallow-water waves to approximate the wind speed as

U√
gh

= 1±

√︄
1

5

⃓⃓⃓⃓
P

ρwghε

⃓⃓⃓⃓
ρw
ρa

2

4.91
= 1±

√︄
1

5

⃓⃓⃓⃓
P

ρwgLε

⃓⃓⃓⃓
ρw
ρa

4

4.91
√
3ε
, (4.33)

where U is measured at a height of half the solitary wave’s width. Note that the radicand differs by a

factor of 2 from Zdyrski and Feddersen [155] owing to the different definitions of ε. Even though (4.33) was

originally applied to flat-bottomed KdV solitary waves (4.24), our assumption that γ = L/Lb ≪ 1 implies

that the bathymetry is approximately flat over the wave’s width 2L. Therefore, we use (4.33) to translate

between the pressure P/(ρwgL0ε0) and the wind speed U at any point on the sloping bathymetry by using

the local ε and h and relating the initial pressure to the local pressure P/(ρwgLε) = (ε0L0/εL)P/(ρwgL0ε0).

Table 4.2 shows the onshore (P > 0) and offshore (P < 0) wind speeds corresponding to the

pressures used in our simulations for two representative depths h. It shows that the pressure magnitudes

in our simulations correspond to physically reasonable wind speeds, with onshore U up to 13 m s−1 for

water 1 m deep or 20 m s−1 for water 2.5 m deep. Notice that unforced waves with P = 0 correspond to a

wind speed of U =
√
gh, or a wind that is moving with the wave at its linear phase speed c =

√
gh. In

particular, this means that onshore P > 0 and offshore P < 0 winds with the same pressure magnitude |P |

will have different wind speed magnitudes |U |. Additionally, note that keeping P fixed implies that the

wind speed U changes as the wave shoals. This is mostly due to the decrease in the phase speed U ∝
√
gh,

with higher-order effects coming from the ε and L dependence of the radicand in (4.33). Finally, note that

as the wave shoals and ε increases, the height at which the wind speed is measured z = L/2 = h/
√
3ε

decreases.

We now re-examine our results regarding the pre-breaking zone width (figure 4.5) in terms of
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Figure 4.7. The fractional change in pre-breaking zone width ∆xpz compared to the unforced case
xpz

⃓⃓
U=0

(cf. § 4.3.8) versus the non-dimensional wind speed U/
√︁
gh(xpb) normalized by the local,

shallow-water phase speed
√︁
gh(xpb) and evaluated at a height of half the solitary wave width L. The

results are shown for beach slopes β = 0.01–0.025.

the wind speed U/
√︁
gh(x) using (4.33). In addition to changing the abscissa of the plot (figure 4.7), we

also modify the definition of the change in pre-breaking zone width ∆xpz := xpz − xpz
⃓⃓
U=0

by comparing

and normalizing each pre-breaking zone width to the U = 0 case rather than the P = 0 case. This

transformation changes the initially straight lines of figure 4.5 into approximate pairs of upward- and

downward-facing
√︁

∆xpz curves shifted to the right by one unit (figure 4.7). Furthermore, we see that

∆xpz is now much flatter for onshore winds (U > 0) than for equal magnitude offshore winds (U < 0).

This is due to the inflection point of the unforced case (P = 0) being shifted to the right at U/
√
gh = 1.

4.5.2 Relationship to previous laboratory experiments and models

Previous laboratory experiments investigated wind’s effect on the breaking characteristics of

shoaling, periodic waves [e.g. 167, 168]. Douglass [167] considered waves with initial height H0/h0 = 0.3

and initial inverse wavelength h0/λ0 = 0.1 under wind speeds of up to U/
√
gh0 = ±2.3 on a beach with

slope 0.04 while King and Baker [168] considered waves with initial height H0/h0 = 0.2 and initial inverse

wavelength h0/λ0 = 0.3 with wind speeds of up to U/
√
gh0 = ±1.1 on a beach with slope 0.05. Douglass

[167] measured how wind speed changes the width of the surf width for periodic waves. Directly comparing

our figure 4.7 to figure 2 of Douglass [167], we see many qualitative similarities, including the flatter response
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near U = 0 and a stronger response for offshore winds (U < 0) than the corresponding onshore winds

(U > 0). The laboratory studies also found that the relative breaking heightH(xbreak)/h(xbreak), normalized

by the breaking depth, decreased by as much as 40 % for offshore wind speeds of U/
√︁
gh(xbreak) = 4 and

increased by up to 10 % for onshore wind speeds of U/
√︁
gh(xbreak) = −2 compared to the unforced case [e.g.

167, 168]. Likewise, over those same wind speed ranges of U/
√︁
gh(xpb) = 1± 3, our simulations found that

the relative pre-breaking height H(xpb)/h(xpb) varied by approximately 1 % between onshore and offshore

winds (figure 4.4b), qualitatively consistent with the laboratory experiments. Numerical studies have also

investigated the effect of wind on the breaking of shoaling solitary [e.g. 97] and periodic [e.g. 98] waves

using a RANS k–ε model to simulate both the air and water. Xie [97] considered solitary waves with initial

height H0/h0 = 0.28 on a beach slope of 0.05 with onshore winds of up to U/
√
gh0 = 3, while Xie [98]

investigated periodic waves with initial height H0/h0 = 0.3175 and initial inverse wavelength h0/λ0 = 0.02

on a beach slope of 0.029 forced by onshore winds up to U/
√
gh0 = 2. These studies determined that the

(absolute) maximum wave heights maxt(η)/h0 increased with increasing onshore wind at each location

x < xbreak, consistent with our findings in figure 4.4(b). Furthermore, we can infer from their wave profiles

at different wind speeds that the breaking depth h(xbreak) increased for onshore winds compared to offshore

winds, again consistent with our findings.

Our results qualitatively agree with prior experimental and numerical results [97, 167, 168], and the

quantitative mismatch can be partly explained by the different non-dimensional parameters. Douglass [167],

Xie [97], and Xie [98] all used larger initial waves (ε0 ≈ 0.3), so non-linear effects were likely more important.

Likewise, all of the laboratory and numerical experiments discussed used steeper beach slopes, likely further

enhancing shoaling and nonlinear interactions. Additionally, while the surfzone width change is nearly

five times larger for Douglass [167] than for our simulations over the same wind speed range, Douglass

[167] investigated waves that were actually breaking, while we stopped our simulations at pre-breaking

maxx(Fr) = Frpb = 1/3, significantly before actual breaking maxx(Fr) ≈ 1, so we expect smaller changes

to the surfzone width. We further expect that, as the waves proceed closer to breaking, the difference

between surf zone widths for onshore and onshore winds will increase, bringing our results closer to those

of Douglass [167].

4.6 Conclusion

While shoaling-induced changes to wave shape are well-understood, the interaction of wind-induced

and shoaling-induced shape changes has not been extensively studied. Utilizing a Jeffreys-type wind-induced

161



surface pressure, we defined four non-dimensional parameters that controlled our system: the initial wave

height ε0, the inverse wavelength squared µ0, the pressure strength P0, and the wave-to-beach width ratio

γ0. We leveraged these small parameters to reduce the forced, variable-bathymetry Boussinesq equations

to a variable-coefficient Korteweg–de Vries–Burgers equation for the wave profile η. We also extended the

convective breaking criterion of Brun and Kalisch [164] to include pressure and shoaling. A third-order

Runge-Kutta solver determined the time evolution of a solitary wave initial condition up a planar beach

under the influence of onshore and offshore winds. Stopping the simulations at a pre-breaking Froude

number of 1/3 revealed that the pre-breaking relative height and maximum slope are largely independent

of wind speed, but onshore winds cause a narrowing of the waves. The width of the pre-breaking zone

is strongly modulated by wind speed, with offshore wind decreasing the pre-breaking zone width by

approximately 5 % for the mildest beach slopes. Investigating the wave shape at pre-breaking revealed that

the front of the wave is relatively unchanged and matches an unforced solitary wave, while the rear shelf is

strongly affected by wind speed and bottom slope. By leveraging the relationship between surface pressure

P and wind speed U , we directly compared our results to existing experimental and numerical results. We

found qualitative agreement in surf width changes and wave height changes, and expect better quantitative

agreement as the waves propagate closer to breaking. These results suggest that wind significantly impacts

wave breaking, and our simplified model highlights the relevant physics. Future avenues of research could

include deriving coupled equations for both the water and air motions to more accurately predict the

surface pressure distribution.
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