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Abstract

Essays on Estimation of a Nonlinear Commodity Price Model without a Closed-form
Solution

by

Di Zeng
Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor Brian D. Wright, Chair

This thesis is about estimation of classic and modified versions of the rational expecta-
tions competitive storage model in the tradition of Gustafson (1958) (the storage model
for short), an important economic theory of price determination of storable primary com-
modities.

The first chapter proposes and evaluates a procedure for approximating the optimal
instruments under the context of the classic storage model. This procedure involves
calibrating the unknown, true conditional variance function of price disturbance in the
optimal instrument using the counterpart of an auxiliary storage model. Monte Carlo
simulation suggests that this procedure brings small-sample efficiency gain relative to the
benchmark Generalized Method of Moments (GMM) estimator of Deaton and Laroque
(1992) and a few other alternatives at the sample size of 100. Its performance is also robust
to parameterizations of the auxiliary model within moderate range from the true. This
chapter also studies the estimators that require no preliminary estimation, which provide
preliminary estimates for the proposed and other infeasible estimators. I find that a
well-performing preliminary estimator does not contain instruments of lagged-more-than-
one price or increasing transformations of lag prices, and does not use estimated optimal
weighting matrix or adopt the continuous-updating approach of Hansen, Heaton and
Yaron (1996). Therefore, an instrument of a constant plus reciprocal of lag one price and
an identity weighting matrix in general form a good preliminary estimator.

Chapter 2 addresses two concerns about the usefulness of the theory of storage. While
commodity speculators can induce serial dependence in price, Deaton and Laroque (1992,
1995 and 1996) argue that speculation explains only a small fraction of the observed
autocorrelation in the actual data. Furthermore, the expected rate of return on storage
implied by previous econometric estimates is implausibly small. This chapter addresses
these two concerns about the validity of the theory of speculative storage by recognizing
the downward trend in real price. The existence of a unique non-stationary equilibrium is
proved for a rational-expectations competitive-storage model with a trend, and testable
implications of the model are also derived. I show that, when a downward price trend in
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part or all of the sample is ignored, the autocorrelation coefficient in price tends to be
overestimated while the expected rate of return tends to be underestimated. Finally, I
offer an empirical illustration of the trending storage model using annual corn price over
the period from 1961 to 2005.

Chapter 3 discusses the empirical implications of the distributional misspecification of
two nonlinear least squares estimators of a modified storage model with unbounded prices.
The existence of infrequent, extremely low harvest generates extremely high cutoff price
which is difficult to pass in finite periods. Meanwhile, due to the tiny chance of such
events, it is easy for the practitioners to ignore them during the estimation and apply
a false storage model with relatively low cutoff price. This chapter studies how such
misspecification can affect the empirical implications of estimating the storage model.
Surprisingly, I find that misspecified econometric models yield better estimates for the
real interest rate; and the estimated cutoff price, actually captures the sharp turning
point of the equilibrium price function. Therefore, though misspecified, the estimates are
practically useful. Nevertheless, it is also emphasized that such interesting property of the
two estimators should by no means be understood as a defense of ignoring the infrequent
influential event in the asset pricing problems.

Mathematical proofs for general results and further discussions of a few econometric
issues can be found in the Appendices. While a few theoretical results have been derived,
this thesis relies heavily on Monte Carlo simulation and numerical functional approxima-
tion. Numerical methods turn out to be a convenient and many times necessary tools
to study small-sample econometric problems when asymptotic results cannot provide an
accurate approximation to the exact sampling.
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Chapter 1

Improving Small-sample Estimation
of a Nonlinear Commodity Storage
Model without Closed Solution
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1.1 Introduction
The dramatic ascent of world food prices during 2007-08 and the ongoing “food vs.

fuel” debate generated great interest in assessing the empirical relevance of the rational ex-
pectations competitive storage model in the tradition of Gustafson (1958). Empirical test
of this important commodity pricing theory was pioneered by Deaton and Laroque (1992)
using the Generalized Method of Moments (GMM). This empirical approach can estimate
two important parameters, the real interest rate implied in the commodity market and a
reference price level above which speculative storage is zero.

Despite its popularity among asset pricing problems, reliable GMM estimation of the
storage model is challenging. First, the model does not yield a closed-form solution,
so the parametrically testable structure is limited. Second, data are also limited: since
high-frequency short-time-span data commonly seen in empirical finance contains much
noise and does not include enough influential commodity booms, this literature usually
uses low-frequency long-time-span data such as annual average prices. Also, since struc-
tural changes in commodity markets are common, time relevant inference further restricts
sample size. One consequence of these empirical difficulties, as asserted by Deaton and
Laroque (1992), is that the “discount rates are notoriously hard to estimate”.

In the context of the storage model, I propose a procedure for approximating the infea-
sible optimal instrument with which a GMM estimator attains the asymptotic Cramér-Rao
bound for the given conditional restriction. This procedure involves calibrating the un-
known, true conditional variance function of disturbance in the optimal instrument using
the numerically represented counterpart of an auxiliary storage model. The rescaling is
conducted by first estimating a reference point on the true conditional variance function
and then rescaling the auxiliary conditional variance function to align its counterpart with
the estimated one. In principle, such rescaling can provide a reasonable approximation to
the true function even when the chosen auxiliary model is quite different from the true.
The most advantage of this procedure is that the important features of the true function
that cannot be evaluated directly are largely maintained, if not exactly, without being
affected too much by the small-sample limitation. Using numerical experiments, I show
that this procedure is small-sample efficient relative to the benchmark estimator of Deaton
and Laroque (1992) and a few other alternatives; performance of the result instrument is
also robust to parameterizations of the auxiliary model within moderate range from the
true. This chapter also investigates the small-sample performance of basic instruments
that contain no unknown part. I find: 1) iterative use of the estimated optimal weighting
matrix undermines small-sample performance and so does the continuous updating ap-
proach; 2) instruments formed by lag one prices perform better than those including also
older prices; and 3) decreasing functions of lag one price perform better than increasing
ones, particularly the commonly used lag-one price itself in the literature.

The proposed procedure constructs an approximant to the optimal instrument estima-
tor given preliminary estimates. The study of the basic instruments attempts to locate
a reliable simple estimator that requires no preliminary step. The two merge when the
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latter feeds preliminary estimates to the former. As a result, this chapter offers a complete
picture of the proposed method as well as a reliable simple estimator if convenience of
application is strongly preferred.

Other than its practical usefulness, this chapter contributes also from a few method-
ological perspectives. First, it provides insights to indirectly implement the infeasible
optimal instruments, use of which is complicated by the fact that the conditional expec-
tation within does not have known functional form. Nonparametric methods provide a
way to circumvent this difficulty but can become unreliable when sample size is seriously
limited (Anatolyev 2007). The proposed approach, though in the end introduces ineffi-
ciency, is justified if the data situation is not going to change soon. It can provide more
stable approximations, with much less estimation effort, over time series filtrations, than
those from approaches which result in instruments that can be seriously sample-dependent
at small sample size.

Second, this chapter offers an alternative to the simulation-based methods to improve
the finite-sample properties of the GMM estimators. The need for knowing the exact
functional form of conditional restrictions limits the applicability of GMM estimators to
asset pricing problems. As a result, the simulation-based methods of moments, which
numerically represent the moments that cannot be evaluated directly using an auxiliary
model, have been developed and proposed. Michaelides and Ng (2000), however, found
that the performance of such methods in estimating the storage model is sensitive to
choice of auxiliary models and inferior to the Pseudo Maximum Likelihood (PML) esti-
mator. Cafiero, et al. (2010) found that PML does not perform as well as the Deaton
and Laroque’s (1992) GMM estimator in inferring the reference price level when the real
interest rate is fixed at its true value. This chapter brings finite-sample efficiency gain to
Deaton and Laroque’s estimator with robustness to specifications of the auxiliary model.
Moreover, unlike the simulation-based methods, since the proposed procedure works only
with instruments, misspecification of the conditional variance function cannot alter con-
sistency.

Third, this chapter adds evidence to the literature on finite-sample behavior of the
GMM estimators. For example, while I confirm poor small-sample performance of the
estimated optimal weighting matrix in line with the finding of Hansen Heaton and Yaron
(1996), I also find that the continuous-updating estimator they propose does not work
well. Moreover, my examination of lag-length provides evidence of small-sample efficiency
loss caused by using lag price beyond the degree of freedom, to the contrary of what
asymptotic theory would suggest. Finally, I relate the observed advantage of instruments
with decreasing functions of lag one price over other transformations to the instruments’
implicit effect of weighting residuals and the fact that the conditional variance function
is weakly increasing in lag one price in storage model.

The rest of the chapter is organized as follows. Section 2 reviews the storage model.
Section 3 introduces the estimator and the approximating method. Section 4 evaluates
the proposed method and section 5 studies basic instruments. Section 6 concludes. Math-
ematical proofs and some extra simulations can be found in the appendix.
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1.2 Review of the Storage Model
Consider a competitive market for a single storable commodity. Time is discrete. The

real price of the commodity at period t is pt. There are two types of agents, consumers
whose excess demand for the commodity depends only on its current price and inventory
holders who store the commodity from one period to the next. Both types of agents have
rational expectations.

The exogenous, stochastic excess supply at period t is ωt. The non-stochastic, contin-
uous, strictly decreasing inverse consumption demand function is f (·). The consumption
at period t is therefore ct = f−1 (pt).

Inventory holders have access to a simple constant returns storage technology: one unit
of commodity stored at t yields (1− ρ) units at t + 1, where ρ is the deterioration rate.
Let xt denote the inventory at period t. Then the availability at period t is zt = ct+xt and
the equation of motion is zt+1 = (1− ρ)xt + ωt+1. An important feature of the storage
model is the emphasis on the constraint that market as a whole cannot hold negative
physical inventories, i.e. xt ≥ 0, ∀t ≥ 0.

Assuming that inventory holders are risk neutral and competitive, and have access to a
perfect capital market where the rate of interest is r, the planner’s problem corresponding
to the decentralized economy is to maximize the sum of discounted future surplus streams
with respect to xt:

Vt (zt) =
ˆ zt−xt

0
f (q) dq +

∞∑
j=t+1

1
(1 + r)j−t

Et

[ˆ zt+1−xt+1

0
f (q) dq

]
(1.1)

s.t. xt ≥ 0 and zt+1 = (1− ρ)xt + ωt+1,

where Et [·] is the conditional expectation on the available information at period t.
The Euler equation is

xt > 0 if 0 = ∂V (zt)
∂xt

= −f (xt) + 1− ρ
1 + r

Etf (ct+1) ; (1.2)

xt = 0 if 0 ≥ ∂V (zt)
∂xt

= −f (xt) + 1− ρ
1 + r

Etf (ct+1) . (1.3)

Denoting γ ≡ (1 + r) / (1− ρ), rearranging of the equation above yields:

xt > 0 if f (ct) = 1
γ
Etf (ct+1) ; xt = 0 if f (ct) ≥

1
γ
Etf (ct+1) . (1.4)

Since f (·) is strictly decreasing, the Euler equation can be compactly written as:

pt = f (ct) = max
{
f (zt) ,

1
γ
Etf (ct+1)

}
, (1.5)
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s.t. zt+1 = (1− ρ)
(
zt − f−1 (pt)

)
+ ωt+1.

This Euler condition says if carrying forward one unit generates profits in expectation,
inventory holders will store until the current price equals the expected forward price after
due allowance for carrying cost; If holding inventories generates expected loss to begin
with, nothing will be stored and all available supply will be consumed.

Suppose the equilibrium at period t+ 1 is a function pt+1 (·) of the state variable zt+1.
Then, pt (·), the equilibrium at period t satisfies:

pt (z) = max
{
f (z) , 1

γ
Etpt+1

{
ωt+1 + (1− ρ)

(
z − f−1 (pt (z))

)}}
. (1.6)

Denote p∗t ≡ γ−1Etpt+1 (ωt+1). Since pt (·) and pt+1 (·) are weakly decreasing, we have
the following relation:

Etpt+1 = γpt, if pt ≤ p∗t ;Etpt+1 = γp∗, if pt > p∗t . (1.7)

Under certain regularity conditions, there exists a unique stationary rational expecta-
tions equilibrium. That is, pt (z) = pt+1 (z) , ∀t ≥ 0 and ∀z ≥ 0. Then, assuming i.i.d.
ωt, we must have p∗t ≡ p∗, ∀t ≥ 0. Thus, we have the following auto-regressive relation:

ut = pt − γmin {p∗, pt−1} , t ∈ N. (1.8)

I numerically solve a storage model backwards under: f (c) = 600−5c, r = 5%, ρ = 0,
ωt i.i.d. standard normal with mean 100 and standard deviation 10 (see Figure 1.1). The
implied cutoff price is p∗ = 114.1243, depicted as the kink on the price function.

Let ζ (pt) denote the function of variance of pt+1 in terms of pt:

ζ (pt) ≡ V ar [p ((1− ρ) s (pt) + ωt+1)] , (1.9)

where p (·) is the equilibrium price function, s (·) the optimal storage rule and ωt+1 the
random harvest shock at t+ 1. Specifically, s (pt) ≡ p−1 (pt)− f−1 (pt).

Under the parameterization above, I numerically solve for the conditional distribution
of forward price given current price (see Figure 1.2). We can easily see that higher
current price leads to larger variation at higher price level. We also see that when the
current prices are higher than the cutoff price (120 and 150 in the figure), the conditional
distributions of forward prices are identical because carry-in stocks are identical at zero
for periods following stock-out observations. This figure is a very clear presentation of
conditional heteroskedasticity we face in the estimation of the storage model.

I also plot the conditional variance function (see Figure 3). This function is continuous,
strictly increasing and strictly convex below the cutoff price and flat beyond it, consistent
with the observation in Figure 1.2. Knowing the conditional variance function can greatly
facilitate estimation. For example, it gives the weight required in the weighted least
squares. Unfortunately, as we have seen, this function can only be represented numerically
and unknown in practice.
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Figure 1.1: Equilibrium price function
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Figure 1.2: Conditional price distributions
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Figure 1.3: Conditional variance function of price disturbance
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1.3 The GMM Estimators of the Storage Model
Discrete-time models of the optimizing behavior of economic agents often lead to first-

order conditions of the form:

Et−1ut (θ0) = 0, t ∈ N, (1.10)

where θ0 is the true parameter.
In the case of the storage model, θ0 = (γ, p∗) and

ut (θ0) = pt − γmin {p∗, pt−1} , t ∈ N. (1.11)

Let zt denote a q × 1 vector of variables with finite second moments. The variableszt
are in the agent’s information set Ωt−1 and observed by the econometricians. Define the
process φt (θ0) by:

φt (θ0) = ut (θ0)⊗ zt, t ∈ N, (1.12)

where ⊗ is the Kronecker product. Then, we must have:

Et−1φt (θ0) = 0, t ∈ N. (1.13)

By the law of iterated expectation, we have the unconditional moment conditions:

Eφt (θ0) = 0, t ∈ N. (1.14)

Let
gT (θ) = 1

T

T∑
t=1

φt (θ) , (1.15)

where θ ∈ Θ, the parameter space.
Then, θ0 can be estimated by choosing θ ∈ Θ to minimize the objective function given

by
gT (θ)

′
WTgT (θ) , (1.16)

where WT is a positive semi-definite matrix that converges to a constant positive definite
matrix. For given unconditional moment conditions, asymptotic efficiency bound is at-
tained if optimal weighting matrix is used. In the current context, a consistent estimator
for the optimal weighting matrix is: (

Z
′

T D̂TZT
)−1

(1.17)

where
ZT = [z1, ..., zT ] , D̂T = Diag

{
û2

1, ..., û
2
T

}
,

and ût is residual from previous consistent estimation. Iteration using previous consistent
estimates is one way to apply the optimal weighting matrix. Another is to estimate it
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simultaneously with the sample moments, as in the continuous updating approach of
Hansen, Heaton and Yaron (1996).

For given conditional moment conditions, the optimal instrument gives rise to the
asymptotically efficient estimator whose asymptotic variance cannot be reduced by adding
additional instruments.1 For no-arbitrage condition (or Euler equation) of stochastic
dynamic rational expectations models, if the innovation can be written in the form of:
ut (θ0) = yt − f (xt, θ0), the optimal instrument takes the form:2

∂f (xt, θ0) /∂θ′

Et−1 [u2
t (θ0)] . (1.18)

For the storage model, the optimal instrument is: min {p∗0, pt−1}
E [u2

t (θ0) |pt−1] ,
γ0I{p∗0≤pt−1}

E [u2
t (θ0) |pt−1]

 . (1.19)

Figure 1.4 plots the numerically solved optimal instrument under the same numerical
parameterization as before. Theory predicts that most prices will be below the cutoff
price. Thus, the segment of the optimal instrument that will be applied most is the part
below the cutoff price.

Application of the optimal instrument is complicated by its requirement of knowing
the exact functional form of the conditional variance. For models without closed solution,
this is difficult to satisfy.

The unknown parameters in the optimal instrument can either be replaced by prelimi-
nary estimates in the plug-in sense or estimated simultaneously with the sample moments
in the continuous-updating sense.

The conditional expectations can be estimated either non-parametrically or parametri-
cally by imposing an auxiliary parameterization. When data are abundant non-parametric
approaches are reasonable choices. In contrast, while parametric estimation by imposing
an auxiliary parameterization will in the end introduce inefficiency, the basic insight of
this approach is justified if the data situation is not going to change soon. The difficulty,
however, lies at the choice of an appropriate auxiliary parameterization.

Naturally, an appropriate parameterization can come from a storage model with a
parameterization that is most likely different from the true model. I propose to use the
calibrated conditional variance function of an auxiliary storage model in place of the
true conditional variance function in the optimal instrument. Specifically, denote the

1Amemiya (1977) provided the optimal instrument for a nonlinear simultaneous equation model with
homoscedastic and serially uncorrelated errors. Hansen (1985) derived the optimal instruments for a
conditional mean model with dependent observations. Chamberlain (1987) found that the optimal in-
strument estimator attains the semi-parametric efficiency bound for conditional moment restrictions.

2See Hansen (1985), Hansen, Heaton and Ogaki (1988). A nice survey can be found in Anatolyev
(2007).
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Figure 1.4: Optimal instrument to estimate storage model
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true model as Model I and the auxiliary model for approximating Model I’s conditional
variance function as Model II. Let ζII (·) denote the numerically represented conditional
variance function of Model II. I propose to approximate the conditional variance function
of Model I using: (

p∗I
p∗II

)2

· ζII
(
pt−1 ·

p∗II
p∗I

)
, (1.20)

where pt is the observable prices of Model I and, p∗I and p∗II are the cutoff prices of Model
I and II, respectively. Note, however, that:

Lemma 1. For given conditional moment conditions, a GMM estimator with instrument
z is equivalent to the GMM estimator with instrument c⊗ z for any non-zero constant c.

Proof. Trivial.

Then, it is equivalent to replace the conditional variance function of Model I by

ζ̂I (pt−1; p∗I , p∗II) = ζI

(
pt−1 ·

p∗II
p∗I

)
. (1.21)

Thus, the instrument for estimating Model I implied by the approximating method above
is  min {p∗I , pt−1}

ζ̂I (pt−1; p∗I , p∗II)
,
γII{p∗I≤pt−1}

ζ̂I (pt−1; p∗I , p∗II)

 , (1.22)

where p∗II is known once Model II is chosen, and p∗I and γI can be replaced by previous
consistent estimates.

The asymptotics of the resulting estimator is standard.

1.3.1 The Robustness of the Approximating Method
While in practice the auxiliary model (i.e., Model II) is chosen with necessary discrep-

ancy from the unknown true model (i.e., Model I), various parameterizations may actually
share the same (up to a scalar) or similar conditional variance function. In the following
analysis, I first rely on the theory of under-identification to show the equivalence of the
conditional variance function of Model II to those implied by a range of parameterizations.
I then numerically compare ζ̂I (pt−1) with the true conditional variance function when the
auxiliary model is outside the equivalence set.

Let xi, fi, pi (·) and pi, i = I, II denote the quantity variable, the inverse demand
function, the equilibrium price function and price of Model i. We have the following
equivalence result:

Proposition 2. If Γ is an additive monotonic transformation on the real line, xII = ΓxI
and fII (xII) = λfI (xI) , λ > 0, then λpI (xI) = pII (xII) and ζII (pII) = λ2ζI (pI).



13

Proof. See Appendix A.

Examples of the proposition include:

• Changing the price units: xI = xII and λ > 0.

• Shifting and rescaling quantities: Suppose Model I and II are identical except for
quantity units. They have inverse demand function f (c) = (Ac+B)η, where η < 0.
Then, if xII = xI/σ + (α−1 − 1) · B/A, by Proposition 2, αηpI (xI) = pII (xII) and
ζII (pII) = α2ηζI (pI).

Therefore, for Model I and II satisfying the conditions in Proposition 1, the rescaled
conditional variance function of Model II and the conditional variance function of Model
I are equivalent in GMM estimation.

Of course, there is no reason to believe that Model I and II will fall into the equivalence
set as defined in Proposition 2. It is necessary to numerically study the quality of the
approximating method for Model I and II that fall outside the equivalence set. Let Model
I have the same parameterization as in previous numerical examples so we can focus on
the parameterizations of Model II in Table 1.1.

Table 1.1: Perturbation of Parameterizations of the Auxiliary Model
a b r µ σ p∗

Model I
0 600 5 0.05 100 10 114.1243

Model II
1 600 4.5 0.05 100 10 156.9690
2 600 5.5 0.05 100 10 72.5473
3 600 5 0.04 100 10 116.4020
4 600 5 0.06 100 10 112.0491
5 600 5 0.05 100 8 109.2842
6 600 5 0.05 100 12 119.1011

Note. p∗ is calculated after solving the model under the corresponding parameterization.

I present the rescaled conditional variance function of Model II together with that of
Model I. For ease of comparison, I align their kinks.

From Figure 1.5, we see that the rescaled conditional variance function is more sensitive
to changes in b: 10% perturbation in b generates bigger swing of the rescaled conditional
variance function than 20% perturbation in other parameters. Even so, in general, we do
not see any disturbing change in the rescaled conditional variance function following the
perturbations in the covered range.

It is important, however, to clarify that the above comparison assumes knowing the
kink of the conditional variance function of Model I, which, in practice, has to be esti-
mated. The estimated kink can be inaccurate at small sample size, and thus the rescaled
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Figure 1.5: Aligned conditional variance functions under various parameterizations
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conditional variance function of Model II can be more different from the true than in
Figure 1.5. Therefore, the actual performance of the proposed method must be tested
using Monte Carlo simulation.

1.4 The Performance of the Approximate Optimal
Instrument

I denote as OIV the true optimal instrument estimator (known in simulation), DL1
the Deaton and Laroque (1992) estimator, DL2 a two-step GMM estimator uses DL1
as first step and estimated optimal weighting matrix for second step, BIV an estimator
that uses instrument

[
1, p−1

t−1

]
and identity weighting matrix, and AOIVi, i=0,1,...,6, the

GMM estimators using the proposed approximate optimal instrument whose functional
form is from Model i in Table 1.1. The unknown parameter in the approximate optimal
instrument is replaced by BIV. I will argue in the next section why BIV is chosen as the
preliminary estimator.

In this and all the later simulations, the parameterization is the same as the numerical
examples in the last section unless specially notified. The total number of replications
for each experiment is 10000 and sample size for each replication is always 100, small but
about the size of reliable world annual average commodity prices. In each table, 25%, 50%
and 75% stand for the 25, 50 and 75 percentile values of each collection of estimates, STD
stands for the standard deviation of each collection and RMSE, the root mean square
error, is a statistic for the average deviations of the estimates from the true. RMSE will
be the major criterion for evaluating estimators, while sometimes I pay closer attention
to percentile values.

By comparing OIV with others, we can obtain some idea about how big the gap is
between asymptotic efficiency and the small-sample practice. By comparing DL1 with
AOIVi, we know if the proposed method is after all useful. By comparing among AOIVi,
we know how sensitive the performance is to the misspecification of the conditional vari-
ance function. The simulation result is reported in Table 1.2.

First of all, the small-sample performance of the true optimal instrument is not the
best for either γ or p∗: all AOIVi are better in estimating both parameters and all other
estimators except DL2 are better in estimating p∗ under the RMSE criterion.

Tauchen (1996) found that just-identified estimator with true optimal instruments ex-
hibits smaller mean bias than the over-identified two-step estimator with optimal weight-
ing matrix, but produces larger standard deviation. The finding here is the opposite for
estimating γ, while for estimating p∗, OIV produces smaller mean bias and standard de-
viation than DL2. Given that his work is under a different context and his sample size is
50 and 75 while mine 100, it is difficult to extract deep insight from this comparison. But
since the optimal instrument is efficient asymptotically by definition, sample size should
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Table 1.2: The performance of approximate optimal instrument
γ = 1.05

Mean 25% 50% 75% STD RMSE
OIV 1.0543 1.0422 1.052 1.0635 0.0169 0.0174
DL1 1.0551 1.0397 1.0522 1.0675 0.0216 0.0222
DL2 1.0532 1.0383 1.0502 1.0651 0.0209 0.0211
BIV 1.0542 1.0408 1.0518 1.0649 0.0185 0.0190

AOIV0 1.0537 1.0419 1.0517 1.0629 0.0164 0.0168
AOIV1 1.0540 1.0420 1.0518 1.0633 0.0166 0.0170
AOIV2 1.0532 1.0409 1.0511 1.0629 0.0170 0.0173
AOIV3 1.0539 1.0421 1.0518 1.0632 0.0164 0.0168
AOIV4 1.0536 1.0418 1.0515 1.0628 0.0164 0.0168
AOIV5 1.0538 1.0420 1.0517 1.0631 0.0164 0.0169
AOIV6 1.0536 1.0418 1.0515 1.0629 0.0164 0.0168

p∗ = 114.124
Mean 25% 50% 75% STD RMSE

OIV 112.797 107.249 112.529 117.964 8.658 8.759
DL1 112.218 106.124 111.401 117.484 8.544 8.753
DL2 110.475 104.517 109.651 115.589 8.447 9.202
BIV 112.316 106.687 111.689 117.405 7.934 8.137

AOIV0 113.095 107.336 112.558 118.137 8.395 8.458
AOIV1 113.052 107.297 112.529 118.110 8.398 8.466
AOIV2 113.202 107.385 112.559 118.290 8.464 8.514
AOIV3 113.064 107.316 112.559 118.118 8.388 8.454
AOIV4 113.120 107.336 112.573 118.153 8.405 8.464
AOIV5 113.072 107.329 112.556 118.110 8.394 8.460
AOIV6 113.118 107.346 112.570 118.167 8.401 8.461
Note. 10000 replications with sample size 100.
For AOIVi, the first step instrument is always

[
1, p−1

t

]
.
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matter for its actual performance.3
Second, all approximate optimal instrument estimators work satisfactorily. They pro-

duce smaller RMSE than all other estimators, except that BIV yields smaller RMSE for
p∗.

The relative performance of AOIVi and BIV, however, makes comparison between
them difficult. On one hand, BIV produces more reliable estimates of p∗ under the RMSE
criterion. This advantage justifies the use of BIV as the preliminary estimator: it provides
accurate estimate of the kink and therefore better rescaling of the auxiliary conditional
variance function. On the other hand, AOIVi enjoys great advantage in estimating γ over
all others including BIV: the RMSE of AOIV0 is 24% smaller than that of DL1 and 11.6%
smaller than that of BIV.

A closer scrutiny reveals that AOIVi produces closer mean, 25 percentile and median
to the true cutoff price than BIV. But, it tends to have a thicker right tail as evident by
its further 75 percentile value, and bigger standard deviation and RMSE. Therefore, if
outlier estimates of p∗ are abandoned or an upper bound for it is imposed in estimation,
AOIVi may outperform BIV in estimating p∗.

Given that AOIVi is designed to approximate OIV, it is surprising to see that AOIVi
performs better than its true counterpart. This is particularly interesting when compared
with Angrist and Krueger (1995), Altonji and Segal (1996), and Angrist, Imbens and
Krueger (1999), who blamed the correlation between the estimates from the first stage
and error terms of the second stage for small-sample bias. My simulation suggests that
such correlation may not always hurt second-step estimation.

Equally important is that the performance of AOIVi is not very sensitive to the mis-
specification of the conditional variance function. The range of variation in RMSE is
within 0.0005 for γ and 0.06 for p∗, or about 3% and 0.7% of their smallest RMSEs,
respectively. In contrast, the difference in RMSE between DL1 and DL2 are easily over
0.01 for γ and 0.4 for p∗. This result should not be surprising as we have seen above that
the conditional variance functions of disturbances under various parameterizations do not
disturbingly different when their kinks are aligned. Given the satisfactory performances
of all AOIVi, such robustness to specifications of auxiliary model obviously adds credits
to the proposed method.

Nevertheless, it is still important to be aware that the variation in b of the inverse
demand function, f (c) = a−b·c, tends to affect the estimation more than equal percentage
changes in other parameters. This is consistent with the observation above that change in

3That the asymptotic optimal instrument is not performing well at small-sample size is not difficult
to understand. We know that the covariance matrix of θT satisfies

Cov (θT ) ≥ ∂E [θT ]
∂θ

[I (θ)]−1
(
∂E [θT ]
∂θ

)′

,

where I (θ0) is the Fisher information matrix. If E (θT ) ≡ θ, the Cramér-Rao bound reduces to Cov (θT ) ≥
[I (θ)]−1, and is attained asymptotically by a consistent estimator with optimal instrument. At finite
sample ∂E [θT ] /∂θ is not always identity and thus the asymptotic optimal instrument is not efficient.



18

b tends to swing the rescaled conditional variance function the most. How much this can
hurt the applicability of the method is difficult to measure without specifying a procedure
for choosing the auxiliary model. If the axillary model is implied by ML estimates using
the same data, then the effect might be limited because change in b ceteris paribus should
noticeably alters the price dynamics (evident by the relatively big consequent change in
the conditional variance function) and this should restrain ML estimate of b from going
too far from the true.4

Also worth mentioning is the choice of the preliminary estimator for the proposed
method. As the preliminary estimator for AOIVi, BIV is already better than the Deaton
and Laroque (1992) estimator. If the practitioners prefer a simple estimator, then BIV
can be a good choice. A natural question then, either for a complete evaluation of the
proposed method or for the sake of finding a simple good estimator, is what properties a
good basic instrument, that does not contain unknown part and is ready to use, should
have. This will be answered seriously in the next section.

1.5 The Performance of the Basic Instrument
Deaton and Laroque (1992) used the basic instruments [1, pt−1, pt−2, pt−3] and a subop-

timal weighting matrix which would be optimal if disturbances were not heteroskedastic.5
Although this format has been standard in the literature, a few concerns are natural even
without any econometric investigation. First, since the optimal weighting matrix is jus-
tified at least asymptotically, it would be natural to ask if application of it to estimating
storage model can be helpful. Second, being essentially a Markovian model, given lag
one price, previous information is irrelevant. Then, why include lag one to three in the
instrument at the same time? Third, theory predicts, as we have seen above, that the
conditional variance function is (weakly) increasing in price. Then, doesn’t a decreas-
ing function of lag price provide better weigh of the residual than the lag price itself?
Formally, I ask, at small sample size:

1. If iterative use of estimated optimal weighting matrix is helpful?

2. If including in the instruments prices with more than one lag is necessary?

3. What simple transformations of lag prices perform well?

The answers will jointly point out that BIV is a good preliminary estimator.
Before we proceed, it is important to clarify that the relation between the quality of

preliminary estimation and that of the final stage is not clear. As we have seen, the true
OIV was not performing the best. Nevertheless, searching for a “well-biased” preliminary

4Of course, misspecification in ML estimation is a concern. It is difficult to gauge its effect on
the estimation of the inverse demand function without serious investigation. Fortunately, because the
proposed method works only with the instruments, serious misspecification will not alter consistency.

5Chambers and Bailey (1996) used up to lag 6 and 12 and suboptimal weighting matrix.
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estimator seems not a promising question. We proceed with the belief that a reliable
preliminary estimator is in general beneficial; after all, it is useful by itself. Appendix C
contains some extra simulations about this issue.

1.5.1 The Estimated Optimal Weighting Matrix
I begin with the one-step estimator of Deaton and Laroque (1992) (denoted as DL1),

and three two-step GMM estimators using estimated optimal weighting matrix with one
to three times of iterations (denoted as DL2, DL3 and DL4, respectively). I also include a
continuous-updating estimator (denoted as CU), developed in Hansen, Heaton and Yaron
(1996), with the same instrument as DL1 and DL2, and a much simpler just-identified
estimator with instrument [1, pt−1] and identity weight.

From Table 1.3, iterative use of the estimated optimal weighting matrix undermines
estimation of the cutoff price by producing more downward biases without improving γ
much. In contrast, the much simpler just-identified estimator with instrument [1, pt−1] and
identity weighting matrix (see last column of Table 1.3) provides more reliable estimates
of p∗ than any other estimator, and comparable performance in estimating γ.

Table 1.3: The performance of estimated optimal weighting matrix
DL1 DL2 DL3 DL4 CU [1, pt−1]

γ
(= 1.05)

Mean 1.0551 1.0532 1.0535 1.0537 1.0536 1.0552
25% 1.0397 1.0382 1.0385 1.0387 1.0386 1.0401
50% 1.0522 1.0502 1.0504 1.0506 1.0506 1.0523
75% 1.0675 1.0651 1.0654 1.0655 1.0654 1.0672
STD 0.0215 0.0209 0.0214 0.0215 0.0212 0.0210
RMSE 0.0222 0.0211 0.0216 0.0218 0.0215 0.0216

p∗

(= 114.1243)

Mean 112.2180 110.4749 110.0101 109.8623 114.8467 112.1399
25% 106.1238 104.5170 103.9877 103.8366 104.3398 106.2537
50% 111.4010 109.6509 109.1442 108.9626 109.9735 111.3853
75% 117.4835 115.5890 115.1465 115.0076 116.8952 117.2435
STD 8.5436 8.4473 8.6054 8.6835 23.9268 8.2960
RMSE 8.7533 9.2015 9.5380 9.6727 23.9365 8.5297

Note. 10000 replications with sample size 100.

Our observation is consistent with the finding of, for example, Hansen, Heaton and
Yaron (1996), which under the context of CCAPM suggests that further iterating the
second step of the two-step GMM estimator can undermine estimation.

This problem was attributed to the correlation between the estimated optimal weight-
ing matrix and error terms in the second step at finite sample size (Altonji and Segal,
1996). The estimated optimal weighing matrix is calculated using previous estimates from
the same sample used in the second step and thus correlation occurs.6

6Similar problem exists for 2SLS estimators: the fitted variables from the first stage correlate with
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Two solutions were proposed. The first is the split sample estimator, using different
segments of the sample to estimate the moments and the weights. It was proposed by
Angrist and Krueger 1995 for 2SLS estimators and adapted to GMM by Altonji and Segal
(1996). The second is the jackknife estimator, proposed by Angrist, Imbens and Krueger
(1999) originally for 2SLS; Donald and Newey (2000) showed that the CU estimator has
a jackknife interpretation.

The split sample approach is not applicable here: the sample size is already too small.
Neither does the jackknife approach, as evident by poor performance of CU in estimating
p∗ from Table 1.3. This provides some support to this chapter’s emphasis on choosing
appropriate instruments to improve small-sample estimation.

This emphasis is also reasonable from asymptotic perspective: the GMM estimator
attaining the efficiency bound for given conditional restriction by choosing optimal instru-
ments is efficient relative to a GMM estimator attaining the efficiency bound for given
unconditional conditions by choosing the optimal weighting matrix (Davidson and McK-
innon, 1993, p.604). When the optimal instrument implies a just-identified estimator as
in our case, the weighting matrix is irrelevant as long as it is positive definite and the
derivative of sample moments w.r.t. parameters has full rank. Therefore, at least for
large sample size, as far as parameter estimation is concerned, weighting matrix is not
important.

1.5.2 Lag length in Instruments
I compare performance of instruments that include prices with various lags. In these

estimations, a one-step estimator with sub-optimal weighting matrix in the format of
Deaton and Laroque (1992) is used except for the just-identified case, where identity
weighting matrix is used.7

From Table 1.4, we see that including additional lags undermines estimation. The
RMSE is increasing in lag length for both parameters. The 25 and 75 percentile values
suggest that the distribution of the estimator is more concentrated around the true for
fewer lags.

In the context of CCAPM, Tauchen (1986) found strong evidence at sample size of
50 and 75 that the mean bias increases with an increasing lag length of instrument. His
finding was largely confirmed by Kocherlakota (1990), Ferson and Foerster (1994), and
Hansen, Heaton and Yaron (1996). Here, adding more lags seems to bring more dispersion
without affecting mean biases much.

From an asymptotic view when disturbance displays conditional heteroskedasticity or
serial correlation, use of additional instruments typically delivers increased asymptotic
efficiency. But, first, this does not necessarily apply to small-sample case. For exam-
ple, West et al. (2009) proposed an instrumental variable estimator of linear models

the error terms in the second stage at finite sample size (Angrist and Krueger, 1995; Angrist, Imbens and
Kruger, 1999).

7By the result above, iteration with estimated optimal weighting matrix is not useful.
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Table 1.4: The performance of instruments with various lag lengths
Lag length: 1 2 3 4 [1, pt−2]

γ
(= 1.05)

Mean 1.0552 1.0550 1.0551 1.0551 1.0655
25% 1.0401 1.0398 1.0397 1.0396 1.0352
50% 1.0523 1.0521 1.0522 1.0521 1.0561
75% 1.0672 1.0674 1.0675 1.0677 1.0848
STD 0.0210 0.0214 0.0216 0.0219 0.0492
RMSE 0.0216 0.0220 0.0222 0.0225 0.0516

p∗

(= 114.1243)

Mean 112.1399 112.2429 112.2180 112.2122 114.8727
25% 106.2537 106.2017 106.1238 106.1151 100.3094
50% 111.3853 111.4456 111.4010 111.3925 108.5347
75% 117.2435 117.4756 117.4835 117.4499 121.3292
STD 8.2960 8.5038 8.5436 8.6040 24.3166
RMSE 8.5297 8.7090 8.7533 8.8135 24.3269

Note. 10000 replications with sample size 100.

with conditionally heteroskedastic disturbances to “exploit information in all lags of in-
struments, unconstrained by degrees of freedom limitations”. Their simulation indicated
large finite-sample efficiency relative to alternative estimators for sample size over 1000.
The performance, however, deteriorates dramatically when sample size reduces to 250.
The analysis here provides evidence of efficiency loss of using instruments with lag length
over one at sample size of 100, for a nonlinear Markovian model with conditionally het-
eroskedastic, serial uncorrelated disturbances.

Second, adding more lags does not necessarily increase efficiency. There is in fact
a small literature, related to the concept of “redundant instruments” of Breusch, et al.
(1999), describes how efficiency gains may result from using finite lags (Kim et al., 1999;
Broze et al., 2001). A set of instruments is redundant relative to a given set of instruments
if adding the former to the latter does not increase asymptotic efficiency. West (2002)
provided an integrate treatment of Kim et al. (1999) and Broze et al. (2001), and
emphasized that whether there is efficiency gain from using more lags depends on the form
of conditional heteroskedasticity. Unfortunately, their result does apply here directly.8
More importantly, the result instrument optimal in the subclass they considered still
requires preliminary estimation, which comes back to the situation we face here.

To obtain some insights on this problem, assume the cutoff price is known, then sample
8Particularly, it can be proved that a requirement of theorem 2 of West (2002), Eu2

tut−kut−j = 0, j 6=
k, is not satisfied in the storage model.
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moment becomes:

1
T

T∑
t=1


(pt − γmin {p∗0, pt−1}) · 1

(pt − γmin {p∗0, pt−1}) · pt−1
...

(pt − γmin {p∗0, pt−1}) · pt−s

 , (1.23)

Thus,
BIAS =

(
G
′
WG

)−1
G
′
WΨ (θ0) (1.24)

where G = T−1∑T
t=1 min {p∗0, pt−1} ⊗ [1, pt−1, . . . , pt−s]

′
and W is weight matrix. The

convenience of this simplification lies in that its right hand side does not contain the
estimator.9 Then, distribution of the bias is simply that of the second component on the
right hand side.

Figure 1.6 plots the distributions of the bias for instruments with various lag length
when sub-optimal weighting matrix is used. It is illuminating to see that the four distribu-
tions are indistinguishable. This strongly suggests that at small sample size, when lag-one
price is already in the instrument, adding older prices is meaningless. This seems echoing
the very implication of Markovian models: given latest information, older information is
irrelevant (though they are valid instruments).

Also note that at small sample size the numerator in the bias formula above is not
small. This implies that if the probability of nearly-zero denominator is relatively big,
bias can be severe. Simulation just showed that including less relevant instruments deteri-
orates the distribution of the small-sample bias by introducing more dispersion. It is then
reasonable to conjecture that, at small sample size, less relevant (in the limit) instrument
not only implies lower mean of but also more volatile correlation coefficients between it
and the variable to be instrumented. Then, if correlation coefficient is a measure of how
useful an instrument is, such property of less relevant instrument suggests that the extra
instability it introduces can easily offset its limited contribution (if there is).

Specifically, pt−s, s ≥ 2 is a valid instrument and relevant in the mean or the limit
sense.10 But, at small sample size, when the correlation coefficient specified above is
far from converging, its dispersed distribution renders its mean not informative. This is
strongly confirmed by Figure 1.7 which presents the distributions of correlation coefficient
between pt−s and min {p∗0, pt−1} for s from 1 to 4. It can be seen easily that less relevant

9A formal treatment of the problem requires approximation to the finite sample bias. At large sample
size, this can be done by applying the Mean Value Theorem to the first-order condition of the estimation
problem, and relying on consistency for simplification. It is difficult to do so at finite sample size in
nonlinear cases because the estimator enters the approximation expression. For linear regression, Buse
(1992) derived an expression for the approximate bias of instrument estimator at finite sample.

10In GMM, if the instruments Zt are relevant, then E [ut (θ)⊗ Zt] 6= 0 for θ 6= θ0. If it is nearly 0 for
θ 6= θ0, then θ is weakly identified (Stock, Wright and Yogo, 2002). Even the lag-three price does not suffer
from weak identification with plentiful data. It can be easily shown that the large-sample approximant to
E [ut (θ) pt−3] around the true parameter has significant negative gradient in both directions. For details
see Appendix B.
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Figure 1.6: Bias of γ if p∗ is fixed at its true value vs. lag length in instrument
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instrument tends to have lower mean but much larger deviation and therefore higher
chance of getting near 0.

Lacking formal treatment, this analysis justifies at small sample size the use of small
set of instrument and the necessity of treating instrument relevance as a distribution
rather than just a mean value.

1.5.3 Transformation of Instruments
To be focused, I only investigate transformations of instruments of lag one price.

Specifically, I compare the performances of instruments that contain various powers of
pt−1 and a constant one.

From Table 1.5, the performance in estimating γ improves as the power of lag one
price decreases from 2 to -1.5: the RMSE for γ is reduced by 21%. Other statistics also
improve as the power falls from 2 to -1.5: The mean bias reduced by a dramatic 51.7% and
median bias is reduced by an incredible 95.8%. The trend in RMSE, however, is reversed
when the power reduces further -2, as evident by the significant increase in value.

Table 1.5: The performance of instruments with various various powers of lag one price
power of pt−1: 2 1 0.5 -0.5 -1 -1.5 -2

γ
(= 1.05)

Mean 1.0558 1.0552 1.0548 1.0544 1.0542 1.0528 1.0505
25% 1.0394 1.0401 1.0403 1.0406 1.0408 1.0396 1.0384
50% 1.0524 1.0523 1.0521 1.0518 1.0518 1.0501 1.0463
75% 1.0685 1.0672 1.0664 1.0652 1.0649 1.0622 1.0543
STD 0.0228 0.0210 0.0202 0.0190 0.0185 0.0183 0.0220
RMSE 0.0235 0.0216 0.0208 0.0195 0.0190 0.0185 0.0220

p∗

(= 114.124)

Mean 112.067 112.140 112.198 112.285 112.316 113.044 115.128
25% 105.809 106.264 106.417 106.624 106.687 107.293 107.527
50% 111.229 111.385 111.543 111.632 111.689 112.362 111.692
75% 117.417 117.244 117.259 117.264 117.405 118.240 121.253
STD 8.7839 8.2960 8.1322 7.9577 7.9342 8.3219 11.0701
RMSE 9.0213 8.5297 8.3578 8.1672 8.1373 8.3219 11.1149

Note. 10000 replications with sample size 100.

As to p∗, from power 2 to -1 the incremental improvement is diminishing: when the
power falls from 1 to 0.5, the RMSE falls by more than 0.17, while when it falls from -0.5
to -1, RMSE reduces by merely 0.03. Like the case for γ, there seems to have a turning
point: when the power falls to -1.5, the RMSE increases to about the level at power 0.5;
when the power further reduces to -2, the RMSE becomes even bigger than at power 1.
Other statistics exhibit the same trend: they all improve until the power moves further
negative from minus one.

Figure 1.8 repeats the exercise of Figure 1.6 for instruments of various powers of lag
one price the distributions of small-sample bias in estimating γ when the cutoff price



25

Figure 1.7: Lag vs. correlation coefficient as measure of instrument relevance
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Figure 1.8: Bias of γ if p∗ is fixed at its true value vs. powers of lag one price in instrument
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is fixed at the true. As the power decreases from 2 to -1, the distribution becomes
more concentrated around 0: when the power is 2 the distribution has mean -0.0029 and
standard deviation 0.0287, but when it reduces to -1 the mean becomes -0.0006 and the
standard deviation becomes 0.0206. This general pattern is consistent with estimation
of γ in Table 1.5. Obviously, a very simple transformation of basic instrument can yield
dramatic improvement in estimation at small sample size, but at the same time tricky
because the effects are not monotonic and the optimal level of transformation is generally
unknown.

If there is an optimal power of lag one price in the class of instruments considered,
then under the current parameterization it should be between -1.5 and -0.5 for p∗ and
between -1 and -2 for γ. It is far beyond the scope of this chapter to find the exact optimal
power for given parameterization. Even if we know it, it most likely will contain unknown
part that requires preliminary estimation and then we come back to the current situation.
Therefore, practically, it would be reasonable to just find a specific simulation-proved
power that works satisfactorily within a range of parameterizations.

Moreover, the complication is not as serious as it seems. As mentioned above, Table
1.5 suggests that, for example, the estimation of p∗ improves at a diminishing rate when
the power decreases to -1. Thus, the performances at power -1 and at the optimal power
may be close for estimating the cutoff price. Therefore, -1 may work well enough in
practice. This justifies the use of

[
1, p−1

t−1

]
in the preliminary estimator in section 4, and

of course it is also well-performing itself.
The dramatic change in performance due to a simple transformation of instrument

requires further discussion. Usually, two conditions, validity and relevance, of instruments
receive the most attention. But, instrument estimation also accommodates the idea of
weighting the residuals. In the storage model, conditional variance of disturbance is
weakly increasing the lag price, then using the lag one price as instrument means residual
with large conditional variance is up weighted, while using the inverse lag one price means
it is down weighted.

Recall that the basic insight of weighted least squares is to give less weight to the less
precise measurements, then the advantage of inverse lag one price as instrument over lag
one price itself is not difficult to understand. In fact, simple derivation will reveal that
the first order condition of the nonlinear least squares with the reciprocal conditional
variance of the disturbance as weight is the sample moment of the GMM estimator with
the optimal instrument. Of course, this optimal instrument is infeasible and this chapter
just offered a method to approximate it.

1.6 Conclusion
This chapter exploits the potential of GMM estimators of the rational expectations

competitive storage model by investigating the small-sample performance of various in-
struments. I propose a method to approximate the infeasible optimal instruments, which



28

is shown numerically to bring small-sample efficiency relative to the benchmark GMM
estimator in the empirical literature of storage model. I also identify a reliable simple
estimator that requires no preliminary estimation. This work is practically relevant and
interesting from a methodological perspective.

This chapter is simulation-based. A few interesting observations lack formal treatment.
The procedure to choose the auxiliary model and the relation to the final performance is
generally unknown. The rescaling technique in this chapter is validated by the existence
of an estimable kink on the conditional variance function. Application of the technique
to other models requires special knowledge to find an estimable reference point as a
benchmark for rescaling.
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Chapter 2

Price Behavior under a Trending
Commodity Storage Model: Theory,
Simulation and Empirical Evidence
from the World Corn Market
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2.1 Introduction
This chapter develops a model to understand the dynamics of commodity prices specif-

ically considering the trend in price. This topic is of great policy and welfare relevance.
For example, it is relevant to development and food security especially during a time of
expansion of biofuels, as many less-developed countries depend heavily on exports of a
few primary commodities while at the same time being vulnerable to surges in the prices
of foods. A better understanding of the behavior of commodity price is essential for
the formulation of trade policies, agricultural policies, and the designs of mechanisms for
risk-sharing and warning systems for potential food price spike.

This model, in contrast to previous literature, is able to fit the empirical patterns
in prices and resulting inventory fluctuations quite well and, unlike existing models, is
applicable to important questions involving structural changes in commodity markets. It
highlights the role of speculation in explaining the short-run dynamics of prices. The esti-
mation results obtained by fitting this model to the actual price data are more reasonable
than those in the literature, and useful to financial and policy analysis.

The behavior of speculators can explain many important features of commodity prices.
By buying cheap and selling dear, commodity speculators can induce positive autocorre-
lation in price, a stylized fact in the historical price data. The inventories they carry have
an asymmetric effect on price, which explains the skewness and kurtosis in the empirical
price distribution. These inventories may run out (i.e., a stockout may occur) after a row
of bad harvests, leaving the market unprotected. This explains the infrequent but violent
price spikes observed in most commodity markets. Given these observations, it would be
surprising if speculation is irrelevant to the short-run dynamics of commodity price.

However, there is not yet a consensus among economists. Deaton and Laroque (1992,
1995, and 1996) and others (e.g., Ng and Ruge-Murcia 2000) argue that the behavior
of risk neutral rational expectations speculators is “incapable of generating the high de-
gree of serial correlation of most commodities”, unless the autocorrelation coefficients of
production are “almost as large as the autocorrelation in prices themselves”. They also
find that the expected real rates of return on storage implied in the commodity mar-
kets “are all implausibly small”.1 One consequence of such disappointment is Deaton
and Laroque’s (2003) turning “away from inventory as an explanation for the short-run
dynamics of prices”. This shift in understanding of price behavior might well influence
policy responses to relevant issues including those mentioned above.

I re-investigate this issue and find that the previous literature may be missing an
important factor.2 The claim regarding the autocorrelation in price is based on comparison
of the implications of the trendless speculative model with the properties of price samples

1The response of the literature to this problem was passive. In much of the literature, the real rate is
assumed at a heuristic level rather than estimated. For example, it is fixed at 5% in Deaton and Laroque
(1995, 1996).

2For other problems with the numerical and empirical methods of Deaton and Laroque (1995, 1996)
see Cafiero, et al. (2010, 2011).
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that most likely contain a downward trend (see Figure 2.1).3 Their inference regarding the
expected real rate of return is based on fitting a trendless econometric model to the likely
trending data. Their approach may be internally inconsistent if a trend exists because
commodity speculators with rational expectations cannot ignore the price trend when
making arbitrage decisions, and so the trend must reveal itself in the price dynamics.

I show that ignoring even a mild downward trend in only a fraction of the sample can
significantly upward bias the sample autocorrelation coefficient in price and, downward
bias the implied expected real rate of return. On the other hand, speculation recognizing
a trend is able to produce price autocorrelation, estimated ignoring trend, that reaches
the previously observed level, without any serial dependence in production other than
an upward trend. In contrast, if speculation is absent, a reasonable level of price trend
induces limited price autocorrelation, estimated also ignoring trend. These observations
suggest that recognizing a real trend can re-establish the role of speculation in explaining
the short-run dynamics of prices. This work is a step further from Cafiero, et al. (2011)
which was the first successful reexamination of the autocorrelation problem.4 This work
also is the first attempt in the literature to address the problem with inferring the expected
real rate of return.5

To derive the above results is nontrivial. There are several challenges that I am able
to address. First, it is difficult to directly solve for a unique non-stationary equilibrium
to a trending dynamic forward-looking model. Second, at limited sample size, the effects
of ignoring trend are entangled with small-sample bias. How to separate them? All these
concerns are well resolved using both analytical and numerical methods.

I show using market data how I obtain empirical support from the world corn market
over the period 1961 - 2005. The expected real rate of return estimated recognizing
trend (i.e., 1.86%) falls into the range of long run estimates of riskless real rate of the
U.S. economy (i.e., about 2%)6. In contrast, if a trend is ignored, the estimate is much

3Despite the recent rapid ascent of world food prices, the agricultural productivity change that out-
paced the growth in population and per capita income has led to decades of downward trend in real prices
of many major food commodities. The average real price of corn from 2001 to 2010 was about half of
that from 1961 to 1970 (see Figure 2.1). Meanwhile, the world production of corn in 2010 was more than
four times of that in 1961. In contrast, the world population was a little more than doubled during the
same period. Accordingly, the world per capita production of corn in 2010 was almost as twice as that
in 1961 (See Figure 2.2). Therefore, Deaton and Laroque (1992, 1995 and 1996) which used price sample
over 1900-1987 ignored the downward trend that likely exists in (at least) the last 27 years of their price
sample. Of course, this is somewhat “Monday morning quarterback”: when looking only at the sample
over 1900-1987, the last 27 years does not necessarily exhibit an obvious downward trend.

4Another implication of Cafiero et al. (2011) is that any inaccurate numerical component during the
investigation of commodity prices can have consequences for our understanding of price behavior. This
lesson will be strictly followed in this work.

5The response of the literature to this problem was passive. In much of the literature, the real rate is
assumed at a heuristic level rather than estimated. For example, it is fixed at 5% in Deaton and Laroque
(1995, 1996).

6While it is not truly risk-free, the Treasury Inflation Protected Security (TIPS) is the nearest thing
to a safe long-term investment. The 10-year TIPS yield was about 2%.
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Figure 2.1: Real world prices for corn
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Figure 2.2: Per capita world corn production
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Figure 2.3: Stock to use ratio for world corn
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closer to zero (i.e., 0.84%). Ignoring trend is also shown to upward bias the first-order
autocorrelation coefficient by 47% and the second-order coefficient by 300%.7 Finally,
ignoring trend suggests no stocksouts in the world corn market beyond the 1970s while
recognizing it implies stockouts that are well aligned with historical lows of the stock-to-
use ratio (excluding China) in the 70s, 80s and 90s (see Figure2.3).

Section 2 of this paper shows that one way to solve a trending dynamic forward-looking
model is to assume a given trend in the underlying stochastic production process, and this
trend, for a given demand function, can be factored out of the Euler equation and become
trend in price, or vice versa. If the detrended Euler equation defines a unique solution
to a stationary model, then the equilibrium of the trending model can be recovered by
adding the trend to the equilibrium of the corresponding stationary model. Therefore, the
existence of a unique solution to a trending storage model requires the trends in real price
and productivity to be mutually determined. This imposes extra restrictions in empirical
exercises involving trends if both price and quantity data are to be used.8

Under the model developed in section 2, section 3 shows using numerical methods that
ignoring the downward price trend creates an artificially high chance that below- (above-)
average price induces below- (above-) average price. Simulation shows that this applies
when the trend exists in the entire sample or only part of it. Clearly, part of the high
observed price autocorrelation can be an illusion from ignoring trend.

Section 3 also addresses the effects of ignoring the price trend on inference of the ex-
pected real rate of return. When arbitrage opportunities are fully exploited, forward price
expectations are current prices plus marginal storage cost multiplied by a multiplicative
factor that greater than unity. Without admitting a convenience yield of storage, the
multiplicative factor equals the expected real rate of return adjusted by an (arguably
negligible) physical deterioration rate. Section 3 shows that an estimator for the multi-
plicative factor ignoring the downward price trend may be downward biased.

In section 3, numerical experiments are used to separate the effects of ignoring the
trend from those of small sample bias. These experiments confirm that the former is
indeed a main source of the previous inconsistency between the theory and observation.

Section 4 and 5 fit the implied autoregression of price to the world corn price from 1961,
when the green revolution was about to begin, to 2005, right before the dramatic biofuel
expansion, using three Generalized Method of Moments (GMM) estimators that approach
the price trend differently. The first estimator works with the autoregression of detrended
price and the price trend simultaneously. The second estimator adopts the conventional

7If we focus instead on the period over 1900 - 1987, then ignoring the price trend over the sub-
sample 1961 - 1987 assuming that earlier data is trendless upward biases the 1st and 2nd order sample
autocorrelation coefficients by about 23% and 150%, respectively.

8There is a rich literature on the examination of the Prebisch (1950) and Singer (1950) hypotheses.
For example, using ample data, Harvey et al. (2010) show that 11 commodities have significant downward
trends over all or some fraction of the sample period. The yield trend has been intensively studied as
well. This paper combines these two trends with internal consistency under the framework of rational
expectations competitive storage.
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approach of estimating the autoregressive relation using previously detrended data. The
third estimator ignores the price trend and is presented for comparison. The first and
second estimators produce similar implications for stockouts but the second yields an
implausibly high estimate for the multiplicative factor. A numerical experiment provides
support to the finite-sample superiority of the first estimator over the second and helps
rule out the estimates of the latter. Finally, the empirical result of the third estimator
makes little economic sense.

Unfortunately, while the simultaneous estimator attains smaller standard errors than
previous methods using more efficient instruments, the standard error is still too large for
conclusive inference at the sample size of merely 45.9 This motivates the use of the more
efficient approach like Maximum Likelihood (ML) and/or incorporating information in
the quantity data in the future work.

Section 6 concludes with a summary of results of the paper and a list of limitations.

2.2 A Model of Commodity Storage with Trend
Consider a competitive market for a storable commodity. Time is discrete. There

are two types of agents: consumers and storers. Supply response to price is ignored for
simplicity. Departing from the classic model of commodity storage, the current model
explicitly incorporates productivity change and population growth.

For given consumption demand, the price trend reflects the productivity trend and
vice versa. Since price data is used for estimation, we specify the price trend and leave
the productivity trend to be determined.

Price trend

We assume that the series of real price pt contains an exponential trend:

pt = λtζt, t ≥ 0, (2.1)

where ζt is stationary and λ ∈ (0, 1) is a constant decay factor. Naive as it seems, this
type of trend actually captures the essence of many more sophisticated trends. With a
constant decay rate over time, this price trend can be easily estimated.

9The instrument for the simultaneous estimator is inspired by Chapter 1 of this thesis which shows
that the small-sample performance of GMM estimators of the storage model is sensitive to the choice of
the instruments. It shows that the lag prices, the instruments used in previous methods, are inefficient in
that they put more weight on price disturbances observed with higher volatility. It proposes an instrument
which involves calibrating the unknown optimal instrument at which the asymptotic variance covariance
matrix attains the semi-parametric efficiency bound.
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Quantity variables

Risk neutral, profit-maximizing storers with rational expectations carry total stocks
of Xt from period t to the next with a physical deterioration rate δ ∈ (0, 1). Storers have
access to a perfect capital market at a real interest rate r.

The availability Zt is the production Yt plus the carry-in from the last period (1− δ)Xt−1,
and will be divided into consumption Ct and carry-out Xt, i.e.,

Zt = Yt + (1− δ)Xt−1 = Ct +Xt. (2.2)

Equilibrium price functions

Let ct ≡ Ct/Nt be the per capita consumption at period t, whereNt is the population at
period t. Let f (ct) be the per capita inverse consumption demand. Then, the equilibrium
of the decentralized economy can be characterized using a social planer’s maximization
problem of the sum of expected flows of social surplus:

max
Xt

ˆ Zt−Xt

0
f (ct) dCt +

∞∑
j=t+1

1
(1 + r)j−t

Ej−1

[ˆ Zj−Xj

0
f (cj) dCj

]
(2.3)

s.t. Zt+1 = Yt+1 + (1− δ)Xt = Ct+1 +Xt+1, Xt ≥ 0, ∀t ≥ 0.

The first-order conditions are:

Xt > 0 if 0 = −f (ct) + 1− δ
1 + r

Etf (ct+1) , (2.4)

Xt = 0 if 0 ≥ −f (ct) + 1− δ
1 + r

Etf (ct+1) . (2.5)

When Xt = 0, everything is consumed (i.e., Ct = Zt).
Let zt ≡ Zt/Nt be the per capita availability, then the first-order conditions above can

be expressed compactly as:

f (ct) = max
{
f (zt) ,

1− δ
1 + r

Etf (ct+1)
}
. (2.6)

Imagine that the equilibrium at period t+ 1 is a function pt+1 (·) of the state variable
zt. Let yt ≡ Yt/Nt be the per capita production. Then the equilibrium at period t is a
function pt (·) satisfying:

pt (zt) = max
{
f (zt) ,

1− δ
1 + r

Etpt+1

(
yt+1 + 1− δ

nt+1

(
zt − f−1 (pt (zt))

))}
, (2.7)

where nt+1 = Nt+1/Nt is the population growth rate from period t to t+ 1.



38

Let γ ≡ (1 + r) / (1− δ). The Euler equation (2.7) implies the following autoregressive
relation of prices:

γpt = Etpt+1 if pt ≤ p∗t ; (2.8)
γp∗t = Etpt+1 if pt > p∗t , (2.9)

where γp∗t = Etpt+1 (yt+1). Expressions (2.8) and (2.9) can be written compactly as:

Etpt+1 = γmin {p∗t , pt} . (2.10)

Recall that pt = λtζt, thus (2.10) becomes:

Etζt+1 = γmin
{
p∗t
λt
, ζt

}
. (2.11)

Implications for consumption demand and productivity trend

Following Bobenrieth and Bobenrieth (2010), I assume the inverse per capita con-
sumption demand implied by a Hyperbolic Absolute Risk Aversion utility function:

p = f (c) = (A−B · c)1/η . (2.12)

This function accommodates linear (when η = 1) and constant elasticity (when A = 0)
demand.

Given (2.12), the price trend (2.1) implies the following trend in per capita production:

yt = λtηεy,t +
(
1− λtη

) A
B
, t ≥ 0. (2.13)

To see this, define:

εz,t ≡ λ−tη
(
zt −

(
1− λtη

) A
B

)
; (2.14)

ζt (εz,t) ≡ λ−tpt

(
λtηεz,t +

(
1− λtη

) A
B

)
. (2.15)

Then, the functional equation (2.7) can be rewritten as:

ζt (εz,t) = max
{
f (εz,t) ,

λ

γ
Etζt+1

(
εy,t+1 + 1− δ

nt+1λη

(
εz,t − f−1 (ζt (εz,t))

))}
. (2.16)

When λ/γ < 1 and (1− δ) /nt+1λ
η is stationary, the functional equation (2.16) has a

unique solution ζ (z) by the fixed point theorem. It is easy to see that ζ (zt) is the unique
stationary rational expectations equilibrium of a stationary dynamic model. We call this
trendless model the hidden model.
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The solution algorithm above involves factoring the productivity trend out of the
Euler equation. The process is reversible because of the uniqueness of the solution to the
hidden model. A similar technique can be seen in Deaton (1991) in the context of saving
under a liquidity constraint. In the literature on storage, productivity change induced
price trend was introduced in Bobenrieth, et al. (2010) and homogeneous income growth
(more relevant for oil than for grains) by Dvir and Rogoff (2010). The current model
emphasizes productivity growth, incorporates population growth and does not consider
income growth in modeling.

Testable autoregressive relation of price

It is important to realize that the hidden model and the observable trending model
enter stock-outs always at the same time, i.e.,

∀t ≥ 0, Zt −Ntf
−1 (pt (zt)) = 0⇐⇒ εz,t − f−1 (ζt (εz,t)) = 0. (2.17)

That is,
p∗t = λtζ∗t , t ≥ 0,

where ζ∗t is the cutoff price of the hidden model. This is useful because (2.11) can now
be rewritten as:

Etζt+1 = γmin {ζ∗t , ζt} . (2.18)
If εy,t+1and the deviation from the constant expected growth rate in population are

further assumed to be i.i.d., ζ∗t will be constant over time, i.e., ζ∗t ≡ ζ∗. Then, when
price can be detrended properly, we are able to estimate γ/λ and ζ∗ using the limited
information estimators such as the GMM. Since λ is known after detrending, we can
obtain estimate for γ and recover the trending cutoff price of the observable model by
adding trend to ζ∗.

Throughout the rest of the paper, the i.i.d. assumption above will be maintained.
There are two reasons for this assumption. First, since we want to understand how the
introduction of a price trend in the storage model can affect the autocorrelation in price, it
is reasonable to assume away the factors in the production process other than an upward
trend that can also contribute serial dependence in price. Second, if serial dependence
in εy,t+1 is introduced, multiple cutoff prices will be implied (see Deaton and Laroque
1995, 1996); inferring all these cutoff prices using limited information estimators requires
plentiful of data, which is unrealistic in the current situation, and ad hoc assumptions on
the autocorrelation in εy,t+1.10

Finally, noting that (2.18) does not depend on the specifications of the demand and the
productivity trend, estimation with (2.18) is robust to those specifications. If, however,

10By assuming a periodic harvest process, Chambers and Bailey (1996) estimated a storage model with
multiple cutoff prices using a GMM estimator. Deaton and Laroque (1995, 1996) estimated a storage
model with a first-order Markovian harvest using a Pseudo ML estimator. Both the state variable and
the transition matrix of the harvest process were specified before the actual estimation.
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quantity data were ever to be used, specifications of demand and productivity trend
become crucial. For example, when A = 0, exponential price trend reflects exponential
per capita production. This trend is restrictive in that it requires the level and the
volatility of per capita production to grow at a common rate. From Figure 2.2, while
there seems a mild exponential trend in the level, the volatility seems to stabilize over the
recent decades. Despite its common use in the literature, the exponential trend in the per
capita production may not be a satisfactory approximation.

2.3 Empirical Implications of Ignoring the Price Trend

2.3.1 Estimating Autocorrelation in Price Ignoring Trend
Define the k-th sample autocorrelation coefficient for sample {pt}Tt=0 as:

∑T−k
t=1 (pt − p̄) (pt+k − p̄)∑T

t=1 (pt − p̄)2 , k = 0, 1, 2, . . . , K. (2.19)

Writing in this way, I assume that the applied econometrician ignores the price trend.
To see this, note that the population autocorrelation coefficient for the price process pi
between time s and t is defined as:

E [(pt − µt) (ps − µs)]
σtσs

. (2.20)

where µi and σi is the mean and standard deviation of the price at time i, respectively.
When pt is exponentially downward trending, i.e., pt = λtζt where ζt is stationary, we have
µt = λtEζt and σt = Std (ζt) (Std stands for standard deviation), and (2.20) becomes:

E [(ζt − Eζt) (ζs − Eζs)]
Std (ζt)Std (ζs)

. (2.21)

which is the population autocorrelation coefficient of the detrended price ζt. That is,
the population correlation efficient of the trending price and its detrended counterpart
should be the same, and thus to estimate the population correlation coefficient, proper
detrending must be done.

If, however, the applied econometrician fails to recognize the trend in price, he will use
(2.19) to estimate the population autocorrelation coefficient. This estimate, of course, will
not converge to what he would think. We will see that applying (2.19) to the downward
trending price implied by the storage model in the last section can create illusion of high
autocorrelation coefficient in price even when the downward trend is weak.

From the last section, the trending price can be generated by first numerically solving
the hidden model and then adding the trend to the sequence of stationary prices implied
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by the hidden model. We have seen that, for a given detrended harvest process, such gen-
erated price is equivalent to the trending price generated by directly feeding corresponding
expanding harvest to the trending equilibrium price functions

Specifically, for given initial de-trended availability εz,0 and numerically represented
stationary equilibrium price function of the hidden storage model, we can calculate the
implied storage at period 0 for period 1 and the implied equilibrium price ζ0. Given
a random generated de-trended harvest, we can calculate using the dynamic motion of
the de-trended quantities to obtain the total de-trended supply of period 1. Then, we
calculate the implied storage for period 3 and the implied price at period 2. Iteration
with such procedure can generate a sequence of stationary prices. Adding the exponential
trend to the stationary price produces the trending prices we are going to work with. Note
that the effect of the trend was incorporated into the solution of the associated de-trended
model as its discount rate and depreciation rate both contain the decay factor of the trend
(see the Euler equation below). For the rest of the section, I will focus on the following
parameterizations: the per capita inverse demand function is: f (c) = c−4, or the constant
price elasticity is −0.25. The ex-ante real rate of return is 2%. For simplicity, I ignore the
depreciation rate and storage fee. Let the de-trended harvest shock be i.i.d. log-normal
associated with the normal distribution with mean 0 and standard deviation 0.1. Assume
that the population growth rate is 1%, i.e.,n = 1.01. I will experiment with three values
of λ: 0.97, 0.98, and 0.99, or 3%, 2% and 1% annual decay rate of real prices.

For given decay rate of price, λ, we first use the standard approach of backward
solution to solve the following Euler equation of the hidden trend-less storage model:

ζt (εz,t) = max
{
f (εz,t) ,

λ

γ
Etζt+1

(
εy,t+1 + λ0.25

1.01
(
εz,t − f−1 (ζt (εz,t))

))}
. (2.22)

Using the procedure mentioned above and for initial de-trended availability that equals
the mean harvest, I generate sequences of prices with the designated trend.

Figure 2.4 and Figure 2.5 plots the paths of mean sample auto-correlation coefficients
of 5000 simulations for each value of λ and for both trending and corresponding de-
trended prices. In Figure 2.4, we can easily see that the paths of the trending prices
increase to high levels very fast, while the counterparts of the de-trended prices approach
much smaller numbers.

We know that the observed first-order sample autocorrelation coefficients, calculated
assuming stationarity, of the major commodities like corn and wheat are in the range
between 0.6 and 0.9 and the second-order are in the range between 0.4 and 0.8 (see Table
1 of Deaton and Laroque 1992).

We can easily see in Figure 2.4 and Figure 2.5 that the paths of both the median and
mean sample autocorrelation coefficients in the trending prices reach the above observed
levels very fast, while those of the detrended prices approach smaller numbers and those
of the prices without storage remain at low levels. This observation provides support to
the argument that recognizing trend can help externalize the observed autocorrelation.
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The illusion of high autocorrelation comes from that the downward trend pushing down
the later segment of price below its time average, creating an artifact that below mean
price tends to induce below mean price. Since the earlier prices are generally larger in
magnitude, while the time average of an exponentially downward trending price becomes
small as the sample size increases, it will still remain above some later segments of price
in the sample. If the time average is incorrectly treated as a legitimate estimate for the
mean of price process, these below-time-average segments of price produce more positive
elements in the summation in the numerator of (2.19) than if the downward trend is
recognized. Moreover, this upward bias on the sample correlation coefficient from ignored
trend is exaggerated by the fact that the denominator of (2.19) is smaller than if the
downward trend is recognized.

From Figure 2.4 and Figure 2.5 we also observe, as expected, that stronger trend
introduces higher sample autocorrelation coefficients in the trending prices. The order
reversed for the detrended prices. This is because stronger trend implies higher deteriora-
tion rate of the hidden model, 1− λ0.25/1.01, and higher discount rate λ/γ, both making
the intertemporal dependency of the detrended model weaker.

The previous analysis of the price autocorrelation has focused on the sample period
over 1900 - 1987, a large fraction of which might contain negligible trend while the rest
exhibits a stronger trend. To take into account of this possibility, I modify the simulation
by introducing a trend only starting from the 61st observation.11 γ is fixed at 1.02 for
the entire sample. For simplicity, I assume that the trend is introduced to the market as
a surprise. Then until it actually starts the market behaves as if there will not be any
structure change.

Counterparts to Figure 2.4 and Figure 2.5 are Figure 2.6 and Figure 2.7. It is surpris-
ing that trending price in only a small fraction of the sample can still upward bias the
autocorrelation coefficients to a level that is seriously misleading.

From Figure 2.6 and Figure 2.7, the median (mean) sample first-order autocorrelation
coefficient given that the partial trend is ignored is upward biased from 0.464 (0.459) to
0.577 (0.558), or about 24%, at sample size of 88 and for the decay factor 0.97. Instead,
when the decay factor is 0.98, the distortion for the first-order is from 0.509 (0.494) to
0.578 (0.557), smaller but still about 13-14% upward bias. When the trend is 0.99, the
distortion becomes less important (about 0.024 in magnitude).

The result for the second-order autocorrelation coefficient is more striking: about 46%
upward bias for the decay factor 0.97, 26% for 0.98, and about 10% for 0.99, for both
mean and median at sample size of 88.

The above observations seriously question the legitimacy of the previous challenges
against the storage model in terms of implied price autocorrelation.

11The U.S. corn yield begins to have an obvious upward trend since about 1940. The trend becomes
stronger since around 1960. Strictly speaking, a reasonable simulation analysis requires taking into
account of the trend in the 1940s and 1950s. The limited data for this two decades, however, renders
inference of the trend over this period unreliable. I assume, for simplicity, that this fraction of the sample
has no trend. After all, taking into account of this weaker trend tends to enhance the current argument.
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Understandably, the hypothesis of stationarity would be difficult to reject statistically
at small sample size and when the trend is only mild and/or exists in only a small fraction
of the sample. Deaton and Laroque (1992) defended their stationarity assumption in the
following way:

“Although we would not wish to claim that all of these prices are stationary,
none exhibit any obvious trends, even over such a long period of time.”12

Should they have had a slightly longer data they would have noticed that the real prices
for major grains exhibited an obvious downward trend since at least 1961. The above
analysis suggests that ignoring even a mild trend in only a small fraction of the sample
can create an illusion of high sample autocorrelation in limited periods. While the basic
mechanism creating such an illusion is simple, this small-sample observation is important
as it warns of effects that ignoring just a mild partial trend can have on the development
of a body of empirical literature.

2.3.2 Estimating the Autoregression of Price Ignoring Trend
If the applied econometrician fails to recognize the downward price trend, he would

attempt to estimate γ by minimizing a quadratic form of the following expression:

ũt+1 = pt+1 − γmin {p∗, pt} , t ≥ 0. (2.23)

Working with (2.23) will yield an inconsistent estimator of γ.
To see this, imagine that the applied econometrician attempts to estimate γ using a

simple approach of taking average of the ratios between pt+1 and min {p∗, pt}. That is,
for given p∗and given sample {pt}Tt=0, γ is estimated using:

γ̂T = 1
T

T−1∑
t=0

pt+1

min {p∗, pt}
. (2.24)

Recall that pt = λt0ζt, where λ0 is the true decay factor. Then (2.24) can be rewritten
as:

γ̂T = 1
T

T−1∑
t=0

λ0ζt+1

min
{
p∗

λt0
, ζt
} . (2.25)

For simplicity, we assume that ζt is bounded.13 Then, for given p∗, there exists a finite
time N such that the min

{
p∗

λt0
, ζt
}
equals ζt for all t > N .

12Cafiero et al. (2011) follow Deaton and Laroque (1992, 1995 and 1996) in ignoring any possible
trends.

13It can be proved that the ergodic set of the total availability of the hidden model has an upper bound,
implying a lower bound on the detrended price. For linear demand, for example, the detrended price
should also have an upper bound.
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Then, we have that,

γ̂ = 1
T

N∑
t=0

λ0ζt+1

min
{
p∗

λt0
, ζt
} + T −N

T

1
T −N

T∑
t=N+1

λ0ζt+1

ζt
. (2.26)

It is easy to see that the first component of (2.26) converges to zero as T →∞ because
the summation in it is bounded from above by the assumed bound over ζt.

By the Ergodic Theorem, and the stationary and boundedness of ζt+1/ζt, the second
component of (2.26) is converging as well:

T −N
T

1
T −N

T∑
t=N+1

λ0ζt+1

ζt

p→ λ0E∞

[
ζt+1

ζt

]
, (2.27)

where E∞ denotes the expectation according to the limit distribution of ζt+1/ζt and
p→

denotes convergence in probability.
Recall that by (2.10) we have:

λ0E∞

[
ζt+1

ζt

]
= γ0E∞

[
min

{
ζ∗0
ζt
, 1
}]

, (2.28)

where ζ∗0 denotes the true cutoff price of the hidden model.
Because min

{
ζ∗0
ζt
, 1
}
≤ 1 and with positive chance it is strictly smaller than one, we

have the probability limit of γ̂T is smaller than the true, i.e.,

p lim
T→∞

γ̂T < γ0.

That is, γ̂T is downward biased.
The insight behind the above discussion should extend to more general estimators of

(21) and should be valid even when ζt is unbounded under certain restrictions on the right
tail of the distribution of detrended price.

Noting that Deaton and Laroque (1992) found their estimates of the multiplicative
factor to be implausibly small, I conduct a Monte Carlo analysis to study the effects of
ignoring a partial trend on the finite-sample performance of their GMM estimator.14

Specifically, I compare the distributions of the estimates for γ in the case when there
is no trend at all in the entire sample with the cases when the trend starts at the 51st
and 61st observation (I assume again that the trend is introduced as a surprise). Such
experiment design can help us separate the effects of the small-sample bias from those of
ignoring the partial trend. At sample size of 88, the bias of the estimates can be severe
even when the econometric model is correctly specified. If the correctly specified estimator
still tend to underestimate γ, then the claim that the implausibly small estimates of the

14The GMM estimator in Deaton and Laroque (1992) works with the autoregression of stationary price
and uses lagged one to three prices plus a constant as instruments.
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Table 2.1: Effects of ignoring a partial trend on estimating γ
True 25% 50% 75%

No trend in the entire sample
1.02 1.0174 1.0219 1.0269

Trend starts at the 51st observation
1.02 1.0049 1.0089 1.0132

Trend starts at the 61st observation
1.02 1.0059 1.0100 1.0144

Note. The 25%, 50% and 75% stand for the 25, 50 and 75 percentile values.

multiplicative factor in Deaton and Laroque (1992) are due to ignoring the partial trend
in their data is significantly weakened.

In this experiment, the true γ for the entire sample is fixed at 1.02. The harvest
is i.i.d. standard normal discretized into 10 nodes using Gauss quadrature. The inverse
demand function is p = 10− b. The population growth rate is 1.01 for the entire sample.
When the trend starts, the decay factor is 0.975. To be consistent with Deaton and
Laroque (1992), the sample size is always 88. I simulate 1000 sequences and then apply
the GMM estimator in Deaton and Laroque (1992) to those sequences. The properties of
the collections of estimates for γ in all cases are reported in Table 2.1.

We see very clearly that ignoring the partial trend rather than the small-sample bias
is the main source that the estimator tends to underestimate γ. This is evident by the
fact that the 75 percentile values of the two cases with a partial trend are smaller than the
true, meaning that at least 75 percent of the estimates are downward biased. In contrast,
the empirical distribution of the estimates of γ when there is no trend has roughly equal
weights on both sides of the true.

In line with the observations about the sample autocorrelation, this numerical analysis
also shows that ignoring a mild partial trend can have significant effects on empirical
results. This offers further support, besides the asymptotic result above, to the conjecture
that the implausibly small estimates for the multiplicative factor in Deaton and Laroque
(1992) are due to ignoring a downward trend starting at least from the year 1961.

2.4 The GMM Estimators
A GMM estimator of the trending storage model can work with three conditions: the

autoregressive relation of detrended prices, and the trends in real prices and per capita
productions. Following the conventional belief in the literature that global quantity data
are unreliable, we only work with the first two conditions of real prices.
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First, we have the autoregressive relation of detrended real prices:

u1,t = pt
λt
− γ

λ
min

{
ζ∗,

pt−1

λt−1

}
. (2.29)

Second, the process of real price contains an exponential trend:

pt = λtζt.

Taking natural logarithm on both sides and rearranging yields:

ln pt = E∞ ln ζt + t ln λ+ (ln ζt − E∞ ln ζt) , (2.30)

where E∞ stands for the mean according to the limit distribution of ln ζt.
Denoting α ≡ E∞ ln pt and u2,t ≡ ln ζt − α, we have:

u2,t = ln pt − α− t ln λ. (2.31)

In the rest of this section, I introduce three GMM estimators: Estimator I, II and III.
I and II recognize the price trend while III ignores it. I propose the use of I and the other
two are presented for comparison.

Estimator I

Similar to the strategy of Eichenbaum and Hansen (1990), our first estimator works
with the autoregressive relation of price and the trend in real price simultaneously.

Specifically, we estimate (γ, ζ∗, λ, α) by minimizing (vIZI)
′
WI (vIZI) where:

vI = [u1,2, ..., u1,T , u2,1, . . . , u2,T ]
′
; (2.32)

ZI =



1 min {ξ, p0}−1 I{ξ≤p0} 0 0
... ... ... ... ...
1 min

{
ξ, pT−1

λT−1

}−1
I{ξ≤ pT−1

λT−1} 0 0
0 0 0 1 1

T... ... ... ... ...
0 0 0 1 T−1

T


, (2.33)

and WI is the weighting matrix.15 The parameter ξ is an initial guess of the cutoff price.
I specifically defined it as

ξ ≡ Percentile

{ pt
λtOLS

}T
t=0

, µ

 , (2.34)

15Variable t/T is used as instrument for trend estimation as in Eichenbaum and Hansen (1990).
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the µ percentile value of the sample price. In the other words, the percentage µ is a rough
guess of the stock-out rate of the sample price.

The specification of the second and third column of the instrument matrix roughly
approximates the optimal instrument, with which a GMM estimator of the storage model
attains the semi-parametric efficiency bound for the conditional restriction of price dis-
turbance. Their resemblance of the functional properties of the optimal instrument is
expected to bring some finite-sample efficiency gain.16

In practice, I choose µ = 0.85. We can first use the OLS implied decay factor, λOLS, to
construct the instrumental matrix ZI and sub-optimal weighting matrix

(
Z
′
IZI

)−1
, with

which we can obtain a vector of preliminary estimates. I then update the instrumental
matrix by replacing ξ with the preliminary estimate of ζ∗ and λOLS with the preliminary
estimate of λ, and calculate the estimated optimal weighting matrix for the second round
of estimation. I repeat such updating until the estimates become stable.

The Appendix will provide a robustness check to the value of µ and the number of
iterations for this and the rest two estimators. There, we will see that for all three
estimators the estimates starting either from µ = 0.85 or 0.90 become the same after a
few iterations. This suggests that all the three estimators are robust to the value of µ
within the studied range conditional on a given number iterations is reached.17

Estimator II

The conventional empirical approach to trending data would first detrend the price
data and then estimate the autoregressive relation of the detrended price using the pre-
viously detrended price data. With λOLS known from detrending, we can rewrite (2.29)
as:

uII1,t = pt
λtOLS

− γ

λOLS
min

{
ζ∗,

pt−1

λt−1
OLS

}
. (2.35)

We can estimate (γ, ζ∗) by minimizing (vIIZII)
′
WII (vIIZII) where:

vII =
[
uII1,1, ..., u

II
1,T

]
; (2.36)

ZII =


1 min {ξ, p0}−1 I{ξ≤p0}
... ... ...
1 min

{
ξ, pT−1

λT−1

}−1
I{ξ≤ pT−1

λT−1}

 , (2.37)

and WII is the weighting matrix.
16For details, see Chapter 1 of this thesis. While Chapter 1 proposed a more sophisticated instrument,

it also suggests that any function of lag-one price with functional properties that resemble those of the
optimal instrument can be a good choice.

17The estimation of the variance-covariance matrix for this estimator should recognize the trend as
well. We refer to Eichenbaum and Hansen (1990) and do not repeat here.
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The parameter ξ is defined as in (2.34). In practice, to be consistent with Estimator
I, I choose µ = 0.85. And, similar to Estimator I, I first use λOLS, together with µ, to
construct the instrument matrix and the sub-optimal weighting matrix, with which we
can obtain preliminary estimates. I then update the instrument matrix and the implied
optimal weighting matrix and estimate again. I iterate until the estimates become stable.

Note that, when updating using previous estimates, we only update the cutoff price
in the instrument matrix and the weighting matrix. Unlike in Estimator I, we do not
update the decay factor λ as it is always fixed at λOLS and never estimated again. This is
the major difference between the Estimator I and II and an important feature of two-step
estimators in general.1819

While both Estimator I and II recognize trend, we should pay attention to their relative
finite-sample performances. Since Estimator II remains a popular empirical strategy to
the trending data while Estimator I is not common, a numerical study of the performances
of the two at finite sample-size is interesting and useful.

Such comparison of empirical strategies is particularly important to the empirical
literature of the storage model where only small sample data are available.20 I offer a
numerical comparison of Estimator I and II in the next section.

Estimator III

Assuming no trend, the auto-regressive relation of price (2.29) reduces to its classic
form:

uIII1,t = pt − γmin {ζ∗, pt−1} . (2.38)
18Ignoring the first step in calculating the standard errors can lead to inconsistent standard errors for

the second step. Theorem 6.2 of Newey and McFadden (1994) states that the first step estimator affects
the second step standard errors if and only if inconsistency in the first step leads to inconsistency in the
second step (page 2180, Newey and McFadden, 1994). In the current situation, if the first step estimator
of the decay factor is inconsistent, we will not have consistent estimation of γ and ζ∗ in the second step.
Therefore, calculation of standard errors of the second step of the Estimator II must incorporate variance
of the first step estimator (page 2183, Newey and McFadden, 1994).

19Under some conditions, the first step is super-consistent. However, it is unclear that if it is super-
consistent in all importance cases of the storage model. For example, in the model considered in Bobenri-
eth, et al. (2008), the stationary price is unbounded and its expectation is approaching to infinity. When
their model is the detrended counterpart of the trending storage model considered here, it is unclear if
the intercept of the OLS detrending is infinite or not.

20Since high-frequency short-time-span data commonly seen in empirical finance contains much noise
and does not include enough influential commodity booms, the empirical literature of storage model
usually uses low-frequency long-time-span data such as annual average prices. Also, since structure
changes like technical improvement in commodity markets are common, time relevant inference further
restricts sample size. The sample size in Deaton and Laroque (1992, 1995 and 1996) is 88, in Cafiero et
al. (2010) 89, and in Chambers and Bailey (1996) 384 (324 for coffee) but they have more parameters to
estimate.
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Then, we can estimate (γ, ζ∗) by minimizing (vIIIZIII)
′
WIII (vIIIZIII) where:

vIII =
[
uIII1,1 , ..., u

III
1,T

]
; (2.39)

ZIII =


1 min {ξ, p0}−1 I{ξ≤p0}
... ... ...
1 min {ξ, pT−1}−1 I{ξ≤pT−1}

 , (2.40)

and WIII is weighting matrix.
Since trend is assumed out, we have accordingly

ξ ≡ Percentile
(
{pt}Tt=0 , µ

)
. (2.41)

Fixing µ at 0.85 again and using the weighting matrix
(
Z
′
IIIZIII

)−1
, we can obtain

preliminary estimates of ζ∗ and a vector of residuals. As usual, we iterate to update the
instrument matrix and the weighting matrix until the estimates reside. By ignoring the
price trend, the calculation of the standard errors of the Estimator III is standard and
wrong.

2.5 Empirical Result for the World Corn Market
The world annual average nominal price index for corn is from an updated version of

the Pfaffenzeller, et al. (2007) data set, which is itself an update of the Grilli and Yang
(1988) data set.21 The real corn price is obtained by deflating the nominal price index
using the MUV-G5 index, a manufacture unit value index of the G5 countries, from the
same data set. The U.S. CPI is another popular deflator. If the U.S. CPI were used, the
downward trend in the real price for corn would be stronger because the U.S. CPI grows
much faster than the MUV-G5 in the recent decades. Therefore, switching to the U.S.
CPI would mostly likely make the arguments in this chapter stronger.

I choose to use the sample period over 1961 - 2005. The green revolution was already
widely applied at the year of 1961. The U.S. corn yield actually started to grow signifi-
cantly since the 1940s, but still at a slower rate than after the 1961. At 2005, the projected
corn use for ethanol experienced a dramatic increase from the previous projections for the
year 2006 and beyond. This sudden shift in projection may shift the expectation of the
forward-looking storers. Given all these considerations, the sample period 1961 -2005 is
chosen for the following empirical exercise.

The estimation result is reported in Table 2.2. Figure 2.8 plots the real prices of corn
together with the implied cutoff prices under all three specifications. If the current price
is above the estimated cutoff price, a stock-out is predicted.

From Table 2.2, all three specifications imply seven stock-outs in the relevant period.
But, the timing of the stockouts when trend is ignored is actually quite different from the

21The data set is available at http://www.stephan-pfaffenzeller.com/cpi.html.

http://www.stephan-pfaffenzeller.com/cpi.html.
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Table 2.2: Estimation result of the trending storage model

Parameters: Recognize Trend No Trend
I II III

γ 1.0186 1.0394 1.0084
(0.0253) (0.0146) (0.0268)

ζ∗ 1.9248 1. 9368 1.3683
(0.1326) (0.1045) (0.0861)

λ 0.9753 0.9751
(0.0016) (0.0022)

α 0.4725 0.4763
(0.0479) (0.0565)

S.O. 7 7 7
JT 2.5277 2.1511 0.1733

(0.8881) (0.8575) (0.3228)
Note. Standard errors in parentheses.
In the final row, probability values in parentheses.
JT stands for the over-identifying test value.

other two. From Figure 2.8, when no trend is assumed, all the stockouts are concentrated
in the first 16 years while all later prices are far below the constant cutoff price. This
immediately implies that the world corn market is perfectly safe beyond the 70s. This is
strongly inconsistent with the actual stock-to-use ratios (without China), whose historical
lowest level occurs during the mid-90s boom (see Figure 2.3).22 We know that the theory
of storage suggests that the stock-to-use ratio is negatively correlated with price. Even
though this simple model cannot capture all market disturbances, it is still hard to believe
that the historical lowest stock-to-use ratio and a commodity market that is far from stock-
out could have coexisted at the same time.23 Therefore, the empirical implications for

22In the current model, stock-out simply means there is no speculative inventory. The estimation result
suggests that there were seven occasions within the relevant period that the global corn speculative stocks
are zero. The reported stocks data, however, are never zero. There are a few possible explanations. First,
the reported stocks data contain non-speculative part, for example, the essential or “working stocks” that
may only response to the growth of the economy rather than the short-run dynamics of prices, and the
public reserves that may not managed entirely through the market. Second, Bobenrieth, et al. (2008)
showed that when the production distribution has an atom at zero and the price at zero consumption
is infinite, the cutoff price is infinite and there will be no stockout at all. Under the truth of their
model, estimating the cutoff price is meaningless. Nevertheless, even with infinite cutoff price the market
demand curve can still be highly nonlinear around some given price level and the estimated cutoff price
may capture this point. In a heuristic sense, the “cutoff price” estimated in this way is still useful. For
details regarding this issue see Chapter 2 of this thesis.

23In fact, we can also expect in general that if no trend is assumed when there is in fact a downward
trend, implied stock-outs will always concentrate in earlier years of the sample. Replication of Deaton and
Laroque (1992) using the updated data shows that most implied stock-outs are in the first few decades
in the last century.
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stock-outs of assuming no trend seem to make little economic sense.
In contrast, the implied trending cutoff prices under specifications I and II when the

trend is recognized both identify three clusters of stock-outs, each at one of the three
well-known commodity booms in the second half of the last century. The implied cutoff
prices under I and II are close as evident in Figure 2.8. This is consistent with the similar
estimates of ζ∗and λ under I and II in Table 2.2. We also observe that the difference
between the two cutoff prices becomes smaller as year goes by. This is, of course, an
immediate implication of the exponential downward trend. It is also interesting to observe
that the 2004 price almost reached the cutoff price under both I and II, but the price
dropped in 2005. If there were not a good harvest in the marketing year 2004/05 (see
Figure 2.2), corn market would have easily entered stock-out in 2005 and would have even
less preparation for the later dramatic biofuel expansions.

Comparison among the estimates of γ in Table 2.2 is illuminating. Particularly, when
no trend is assumed, the estimate of γ is very close to one, consistent with the finding of
Deaton and Laroque (1992). Usually, such small estimate will invoke discussions about
the existence of convenience yield. However, as we see in section 3, it may be explained
as well by that a (partial) downward trend in real price is ignored. Taking the trend
away before/during estimating the auto-regression of price disturbance is expected to
yield larger estimate.

This is easily confirmed in Table 2.2. The estimated γ is 1.0394 under II and 1.0186
if I is used. The implied real interest rate using II would be too high for risk-neutral
speculators. In contrast, a real interest rate of 1.86% (neglecting deterioration rate)
implied by the simultaneous approach is in the very acceptable range without resorting
to the existence of a convenience yield.

The over-identifying statistics also give interesting results. While we fail to reject none
of the specifications, the test result that ignoring trend seems to fit the data quite well
should be trusted. This artifact should be due to the failure of the over-identifying test
in detecting trend misspecifications.

Unfortunately, the large standard error of the estimate of γ makes above compari-
son less conclusive. At such small sample size, we simply cannot avoid such problem.
Nevertheless, though I fail to fully resolve the problem with inferring the expected real
rate of return, the proposed estimator succeeds in attaining smaller standard error of the
previous methods using smaller sample size. This is indeed encouraging progress.

Implied sample autocorrelation coefficients in the corn price

Table 2.3 presents the sample autocorrelation coefficients for the real price for corn
for cases when the trend is recognized and ignored, and for the sample period 1961 - 2005
and 1900 - 1987.

Applying (2.19) directly to the corn real price gives the first- and the second-order
sample autocorrelation coefficients at 0.8785 and 0.7443, respectively. Applying (2.19) to
the corn real price after it is detrended using the estimated λ of Estimator I yields first-
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Figure 2.8: Implied cutoff prices
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Table 2.3: Implied sample autocorrelation coefficients in the real price for corn
AC(1) AC(2)

1961 - 2005, trend over the entire sample
ignore trend 0.8785 0.7443
recognize trend of I 0.5965 0.1758
recognize trend of II 0.5954 0.1735
upward bias about 47% about 300%

1900 - 1987, trend over sub-sample 1961 - 1987
ignore trend 0.6488 0.3945
recognize trend of I 0.5253 0.1672
recognize trend of II 0.5255 0.1673
upward bias about 23% about 150%
Note. The AC(1) and AC(2) over 1900 - 1987 when trend is ignored is
different from those in Deaton and Laroque (1992) because they deflated
using U.S. CPI rather than MUV-G5.

and second-order sample autocorrelation coefficients at 0.5965 and 0.1758, respectively.
If the estimated λ from Estimator II is used for detrending, the implied first- and second-
order sample autocorrelation coefficients in price become 0.5954 and 0.1735. Both are
smaller than if the trend is ignored as expected.

Noting that Deaton and Laroque’s (1992, 1995, 1996) claim about the inability of
their speculative model to generate the observed high autocorrelation in price is based on
the data over the period 1900 - 1987, I conduct another check using their sample period
assuming that the sub-sample from 1900 to 1960 is trendless and the rest follows the trend
above estimated using the sample over 1961 - 2005.24

Applying (2.19) directly to the real corn price from 1900 to 1987 yields the first- and
second-order sample autocorrelation coefficients at 0.6488 and 0.3945, respectively.25 De-
trending the sub-sample 1961 - 1987 using the estimated λ of Estimator I yields first- and
second-order sample autocorrelation coefficients at 0.5253 and 0.1672, respectively. If the
λ estimated using Estimator II is used, the first- and second-order sample autocorrelation
coefficients become 0.5255 and 0.1673, respectively.

In sum, ignoring the price trend over the period 1961 - 2005 upward biases the first-
and second-order sample autocorrelation coefficients by about 0.28 and 0.57, or 47% and

24This assumption is obviously ad hoc. For example, the US corn yield started to take off at 1940
though at a lower rate than after 1961. While 21 years of annual data from 1940 to 1960 is too small
to accurately infer the trend over that period, taking into account of this lesser trend as well will likely
enhance the current argument.

25Because this paper uses MUV for deflation whereas Deaton and Laroque (1992, 1995, and 1996) use
U.S. CPI, the sample autocorrelation coefficients directly calculated from the data without detrending
are different in the two.
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Table 2.4: Small-sample performance of Estimator I and II
Model Parameters Percentiles Estimator I Estimator II

Low capital cost
γ = 1.02 25% 1.0162 1.0011

75% 1.0594 1.0695

ζ∗ = 1.4074 25% 1.1186 1.2103
75% 1.5207 1.9086

High capital cost
γ = 1.04 25% 1.0277 1.0211

75% 1.0863 1.1075

ζ∗ = 1.3485 25% 1.0783 1.1933
75% 1.5049 1.9478

Note: 25% and 75% stand for the 25 and 75 percentile values of the estimates.

3 times, respectively, and ignoring a partial trend in the price sample over the period 1900
- 1987 can still upward bias the first- and second-order sample autocorrelation coefficients
by about 23% and 1.5 times, respectively. Such great distortion raises serious concerns on
much of the previous comparisons between the observed and the simulated autocorrelation
coefficients assuming no trend.26

1.86% or 3.94%? A numerical comparison between Estimator I and II

Using the same numerical method in section 3, I simulate 2000 sequences of 50-period
trending prices and carry out a small numerical comparison between small-sample perfor-
mances of Estimator I and II. The per capita inverse demand is assumed to be f (c) = 1−c,
the population growth rate is 1%, the decay factor in price is 0.98, and the harvest is i.i.d.
standard normal discretized into 20 nodes using the Gauss Hermite quadrature. Physical
deterioration is ignored for simplicity. I experiment with two real interest rates: 2%,
which is close to the estimation result of Estimator I, and 4%, close to that of II. The
true ζ∗ is 1.4074 for r = 2% and 1.3458 for r = 4%.

Applying the two estimators to each sequence of the simulated prices, I produce two
collections of estimates for each parameter. The statistical properties of the collections
for γ and ζ∗ are reported in Table 2.4.

It is easy to see that Estimator I performs better in estimating γ as evident by its
closer 25 and 75 percentile values to the true. Though its 25 percentile values for ζ∗ is too
small, the 75 percentile value of II for ζ∗ is way off. So, it would be reasonable to say that
Estimator I is also better in estimating ζ∗. This exercise suggests that the Estimator II
tends to have, in general, more biased estimate for γ and as a result provides some support
to my previous conjecture that the estimate of γ using Estimator I is more reliable.

26The upward bias for the second-order autocorrelation coefficients are much larger than what we
observe from the simulation analysis in section 3. This myth is left unsolved in this chapter. I conjecture
that this may be related to the frequency of the corn price I used here.
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Implied ex-post real rates of return

Using the estimates obtained above, we can calculate the sequence of the implied
ex-post real rates of return using: pt

min
{
ζ̂∗λ̂t−1, pt−1

}

T

t=1

, (2.42)

where λ̂ and ζ̂∗ are estimates of Estimator I or II (see Figure 2.9).
Because the cutoff prices implied by I and II are very close, the sequences of ex-post

real rates of return are also close as expected and so are their time averages (denoted by
the horizontal lines in Figure 2.9). The simple time average of the ex-post real rates of
return implied by I is 1.0160 and by II is 1.0155, both of which are much closer to the
estimated γ using I than using II.

The discrepancy between these averages and the estimates of γ should not be surpris-
ing: the procedure to obtain those estimates involves implicitly weighting the residuals
using the instruments and explicitly weighting the sample moments using the weighting
matrix, whereas the calculation of the simple time averages here is naive. At large sample
size, those averages should be closer to the GMM estimates of γ.

2.6 Conclusion
This chapter analyzes and estimates a model of rational expectations competitive

storage with a price trend, which implies a serial correlation in price. I study the short-run
dynamics of the price implied by this model particularly focusing on the first- and second-
order autocorrelation coefficients and the expected rate of return. I present the empirical
results of three GMM estimators and discuss their implications. This work provides
further support for the theory of storage and a new perspective on the price behavior
in commodity markets. The comparison and discussion of the empirical strategies is
interesting from the methodological point of view, as well as practically relevant.

Besides the relatively large standard error of the estimated multiplicative factor, an-
other limitation of this paper is that the production response to price is ignored. While
introducing responsive production is theoretically possible (see Scheinkman and Schecht-
man, 1983; Wright and Williams, 1982, 1984), introducing additional parameters in es-
timation at such a small sample size would be practically difficult. The effects of this
over-simplification, however, could be mitigated by the fact that the estimated short run
production elasticity to price may be small.

A third limitation is the neglect of income growth, though it would be difficult to
believe that the consumption of grains increases at the same rate of income. Indeed, the
income elasticities of demand for grains are likely to be lower than for petroleum. We
could follow a strategy similar to Dvir and Rogoff (2010) by assuming that the aggre-
gate production is homogeneous to an exponentially decreasing proportion of the world
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Figure 2.9: Implied ex-post real rates of return
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real GDP. Nevertheless, without any affirmative theoretical or empirical support to this
homogeneity assumption, we refrained from doing so. What has to be kept mind is that
estimation using only price would be the same in either case.

Finally, the substitution effects among the major crops are ignored. The only well-
founded multiple commodity storage model was developed by Nishimura and Stachurski
(2009). Estimation of it is necessarily challenging.
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Chapter 3

The Empirical Implications of
Ignoring the Probability of Extreme
Events: The Small-sample
Performance of two Misspecified
NLS Estimators of a Commodity
Storage Model
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3.1 Introduction
Proponents of limited-information estimators emphasize their robustness to distribu-

tional specifications that are not necessarily clear to the applied econometricians and thus
must be assumed heuristically in the full-information estimators. Yet, the distributional
robustness of the limited-information estimators is limited: some distributional changes
may result in structural changes in the conditional restrictions on which those estima-
tors are based. This chapter addresses the performance and empirical implications of
limited-information estimation beyond the robustness to distributional specifications. In
the context of commodity storage with a small probability that excess supply is zero, I
show that misspecified estimators that ignore this small-chance event can perform better
at finite-sample size. This is by no means a defense of the misspecification but a strong
signal that in finite samples such misspecification can be hard to identify and proper
interpretations of empirical results that recognize the potential of such misspecification
would be necessary.

Our working model is a modified version of the commodity storage model in the tra-
dition of Gustafson (1958). Its conventional counterpart satisfactorily explains important
features of important features of commodity prices like skewness and infrequent but vio-
lent spikes (Williams and Wright, 1991; Deaton and Laroque, 1992). Estimation of the
classic version was pioneered by Deaton and Laroque (1992) using a GMM estimator.
This approach can estimate two important parameters: the real interest rate implied in
the commodity market and the cutoff price, a price level above which the speculative
stocks is depleted and the (current) backwardation occurs. It is usually believed that this
approach is robust to specifications of the distribution of harvest shock and the demand
curve.

Nevertheless, its robustness fails on potentially important dimension: the existence
of extremely infrequent, extremely low harvest shock. With unbounded price and an
atom at zero in the distribution of the harvest shock, the storage model implies that the
commodity is continuously stored or equivalently the cutoff price above which stock-out
occurs is at infinity. This type of model is studied in Bobenrieth, et al., (2002, 2004,
2008, and 2012). In contrast, the classic storage model where harvest shock is bounded
away from 0 and/or price is bounded from above implies a finite cutoff price which can
be passed a couple times within limited periods. The real interest rate, however, enters
the auto-regression of price of both models.

Under the classic model, the cutoff price can be estimated using limited-information
estimators whereas in the modified model estimating it is meaningless. The tiny chance
of the occurrence of the extreme events renders their observation difficult within finite
periods and thus easily ignored by the applied econometricians. But their extreme im-
pacts can make the implied price behavior systematically different at far horizons. To
understand the welfare and policy effects of such potential misspecification, we must un-
derstand how it effects the estimates based on each model as well as what the “wrong”
estimates are capturing if they capture anything at all.



64

Assuming that the modified model is the true model, I numerically study the distri-
bution of the estimators with and without recognition of the small probability at zero
harvest. I find that, surprisingly, a misspecified estimator better estimates the real rate
of interest and the (wrongly) estimated cutoff price actually captures the sharp turn of
the equilibrium price function. The pessimistic implication is that just by observing finite
price sample, it would be difficult to distinguish the two models though their economic
implications on price behavior are dramatically different at far horizons. The somewhat
comforting implication is that because the sharpest turning point represents the point that
the conditional variance of forward price disturbance dramatically changes, information
of this “wrong” cutoff price turns out to be useful.

It is important to clarify that misspecification in this chapter is a relative term. It
is unclear that as the sample size increase whether the estimator for the “wrong” cutoff
price will go to infinity, the true cutoff price, or will stay around the sharp turning point
of the equilibrium price function.1 How the two estimators studied in this chapter behave
at large sample size is of course an important and interesting question to ask in the future
work.

The rest of the chapter is organized as follows. Section 2 introduces the modified
commodity storage model. Section 3 numerically studies the performance and empirical
implications of the two misspecified estimator, and section 4 concludes.

3.2 A Commodity Storage Model with an Atom at
Zero Harvest

Consider a competitive market for a single storable commodity. Time is discrete. All
agents have rational expectations.

The harvest is assumed as an exogenous i.i.d. disturbance ω ∈ [0, ω̄], 0 < ω̄ < ∞,
and ω has a mixed discrete-continuous distribution with a countable set of atoms, one of
which is at zero. More precisely, the distribution of ω is of the form

αLd + (1− α)Lc, (3.1)

where α ∈ (0, 1), Ld is a discrete distribution that has an atom at 0, and Lc is an absolutely
continuous distribution, with continuous derivative when restricted to its support [0, ω̄].

Assume that there is a continuum of identical producers, a continuum of identical
storers, and a continuum of identical consumers; each of the three has total measure of
one. Let ω′ be the next period’s harvest. Storers can hold output from one period to the
next, and the sole cost of storage is the cost of of capital invested. Given storage x, the
next period’s total available supply is z′ ≡ x+ ω

′
.

Producers and storers are risk neutral and have a common constant discount factor
δ ≡ 1/ (1 + r), where r > 0 is the discount rate.

1The author thanks Michael Jansson to point this out.



65

The utility function of the representative consumer U : R+ → R+ is continuous, once
continuously differentiable, strictly increasing and strictly concave. It satisfies U (0) = 0,
U
′ (0) = ∞. The inverse consumption demand curve is then f = U

′ . We assume U has
finite upper bound, and thus total revenue cf (c) is also bounded.

The perfectly competitive market yields the same solution as the surplus maximization
problem. The Bellman equation for the surplus problem is:

v (z) = max
x

{
U (z − x) + δE

[
v
(
z
′)]}

, subject to (3.2)

z
′ = x+ ω

′
,

x ≥ 0, z − x ≥ 0,

where E [·] denotes the expectation with respect to next period’s harvest ω′ .
By standard results (see for example Stockey and Lucas with Prescott, 1989), v is

continuous, strictly increasing, strictly concave, and the optimal policy function x (z) is
single valued and continuous.

Consumption and price are given by the function c (z) ≡ z−x (z), p (z) ≡ f (z − x (z)).
The policy function x satisfies the Euler conditions:

f (z − x (z)) ≥ δE
[
v
′ (
x (z) + ω

′)]
, with equality if x (z) > 0, (3.3)

and the envelope condition v′ (z) = f (z − x (z)).
Given initial available supply z > 0, condition (3.3) implies that z′ > 0 and x

(
z
′
)
> 0,

and this arbitrage condition holds with equality in the current period and for the indefinite
future.

Letting γ = δ−1,
Etpt+1 = γpt. (3.4)

Since stocks are always positive, there is no stock-out and the auto-regression of price
is:

pt+1 = γpt + ut+1, ∀t ≥ 0, (3.5)

where ut+1 is innovation, i.e., Etut+1 = 0, ∀t ≥ 0.
In contrast, in the classic storage model,

Etpt+1 = γmin {p∗, pt} , (3.6)

where p∗, the cutoff price, is defined as

p∗ = γ−1Etpt+1 when xt = 0. (3.7)

That is, when the storage at period t is zero, the discounted expected forward price is a
constant and depends only on the forward harvest and the equilibrium price function. The
cutoff price p∗ is the minimum price such that stock-out occurs. In the other words, for
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all current prices that are higher than p∗, the stocks are zero and the discounted expected
forward price is p∗.

Therefore, the auto-regressive relation of the classic storage model is:

pt+1 = γmin {pt, p∗}+ ut+1, ∀t ≥ 0. (3.8)

It is important to realize that in the modified, p∗ can be understood as at infinity.
In the following analysis, I assume that the modified model is the true. For conve-

nience, the modified model is called the atom model and the classic model the non-atom
model.

3.3 Simulation Analysis

3.3.1 Generation of Simulated Prices
To generate sequences of price under the atom model, we first need to solve the atom

model. The solution algorithm is complicated by the fact that the price function and the
price are unbounded under the truth of the model. To avoid this difficulty, I approximate
the price function only starting from a extremely small positive number in the state
space, i.e., the availability. And, when using the backward solution algorithm to solve for
the second to last equilibrium price function, I shift slightly the last period equilibrium
price function, i.e., the inverse demand function itself, to avoid facing infinite forward
price. This shift will not alter the convergence to the stationary equilibrium as the fixed
point theorem predicts that the equilibrium price functions should converge to the unique
stationary rational expectations equilibrium starting from any initial price function.

For the rest of the chapter, the following parameterization is used: the inverse demand
function is f (c) = c−2; the real interest rate is 0.04 and the deterioration rate is ignored
for simplicity; the harvest shock is the log-normal with mean 1 and standard deviation 1
with 1% of the mass redistributed to the origin.

Figure 3.1 shows the equilibrium price function in log-log space and linear-log space.
We can see while there is always storage as evident by the fact that the equilibrium price
and the inverse demand never merge, the distance between the two becomes very small
at relatively high price levels.

Figure 3.1 also gives the curvature of the equilibrium price function under two formulas
specified in the figure. It is important to observe that the equilibrium price function
has a sharp turning point around which the shrinking rate of the speculative storage
dramatically decreases. This property gives the impression that the equilibrium price
function has a kink just like the equilibrium price function of the non-atom storage model.

Figure 3.2 presents the distribution of the logarithm of the simulated prices. As we
can see, there are very rare but extremely violent jumps in the price series. Figure 3.3
shows that the distribution of the corresponding simulated total availabilities. Consistent
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with huge price jumps, there is a very small chance that the availability hits extremely
low levels.

3.3.2 The NLS Estimators
We consider two nonlinear least squares (NLS) estimators. The Level estimator which

works directly with the price disturbance:

ut+1 = pt+1 − γmin {p∗, pt} , ∀t ≥ 0. (3.9)

The Ratio estimator which works instead with the auto-regression of price change ratios:

vt+1 = pt+1

pt
− γmin

{
p∗

pt
, 1
}
, ∀t ≥ 0. (3.10)

In the atom model, p∗ = ∞ and then the minimum structure in the above two auto-
regressive relations reduces to γpt. Since we have assumed that the atom model is the
true, the applied econometrician who assumes the false model will attempt to estimate
the cutoff price p∗, which in principle should be at infinity. The estimates under either
case are obtained by minimizing the sum of squared errors above. The level estimator for
the parameters under the misspecification are denoted as p∗L,M and γL,M while under the
correct specification the estimator for γ is denoted as γL,C . The ratio estimator for the
model parameters under the misspecification are denoted as p∗R,M and γR,M while under
the correct specification the estimator for γ is denoted as γR,C .

3.3.3 Estimation of the Inverse Discount Rate
I study the distribution of estimates of the NLS estimators using Monte Carlo Simu-

lation by estimating each sequence using the two estimators under both misspecified and
correctly specified estimators. By doing so, I can obtain approximate distributions of
estimators for both gamma and the cutoff price.

I first study the estimation of the inverse discount rate. Table 1 reports the perfor-
mance of both Level and Ratio estimators with misspecification. In this and the following
simulations, the parameterization is the same as for the numerical examples in the last
section unless specially notified. The total number of replications for each experiment
is 10000 and sample size for each replication is always 100, small but about the size of
reliable world annual average commodity prices. In each table, 25%, 50% and 75% stand
for the 25, 50 and 75 percentile values of each collection of estimates, STD stands for the
standard deviation of each collection and RMSE, the root mean square error, a statis-
tic for the average deviations of the estimates from the true. For p∗, the RMSE is not
calculated.

It is easy to see that the Ratio estimator is much better in estimating the inverse
discount rate. The RMSE square error is 32.18% smaller than that of the Level estimator.
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Figure 3.2: Distribution of logarithm of simulated prices
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Figure 3.3: Distribution of simulated availabilities
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The mean, 25, 50, and 75 percentiles values of the Ratio estimator are also closer to the
true. One possible reason for this is that the conditional heteroskedasticity of the process
of price-change-ratio disturbance is less strong than that of the price disturbance. The
disturbance of the Ratio estimator is equivalent to the disturbance of the Level estimator
re-weighted using the inverse lag-one price. We know that the conditional variance of
price disturbance is increasing in the lag-one price, so dividing by the lag-one price down-
weights the disturbance with high conditional variance. Therefore, the Ratio estimator is
a variance stabilized Level estimator. Chapter 2 of this thesis studies the performance of
inverse lag-one price as instrument under the GMM framework. A similar result relative
to constant instrument is obtained.

Table 2 reports the estimation result under the correction specification. In this ex-
periment, both estimators only estimate γ and recognize that p∗ is infinite. The RMSE
of the Level estimator is much smaller than that of the Ratio estimator. But this should
not be understood as an evidence for the superiority of the Level estimator of the Ratio
one. A closer scrutiny to the percentile values reveal that the Ratio estimator actually
yields more estimates that are closer to the true. The larger RMSE and STD of the Ratio
estimator may be due to a few extreme outlier estimates. The existence of these extreme
outliers offsets the advantage of the Ratio estimator that more of its outcomes are closer
to the true.

Comparison with the result in Table 1 yield, surprisingly, that the estimation of the
inverse discount rate is better under the misspecification. The percentile values of the
both the Level and the Ratio estimators with misspecification are closer to the true than
without misspecification. This seems to suggest that it could be better to use misspecified
model either intentionally or unintentionally regarding estimating γ.

One possible explanation is that putting a p∗ in the disturbance ignores the case where
price increases in expectation at the inverse discount rate starting from very high prices.
Despite its validity, testing this implication of the atom model at small sample is difficult.
The chance of a further price increase starting from extremely high price almost cannot
be observed within finite periods. Therefore, most price change starting from extremely
high price is negative and thus significantly drags down the estimate of γ. As a result,
restricting the effects of those big dives by lowering the its starting value maybe helpful
in estimation of γ.

3.3.4 Distribution of Misspecified Estimator of p∗

The distribution of the estimates for p∗ and their relation to the curvature of the price
function are presented in Figure 3.4 and Figure 3.5 under two formulas of curvature.

We see that the range from 25% to 75% of the estimator distribution matches the
peak of the curvature of the price function. It seems that, though the econometric model
is misspecified and estimating the p∗ is meaningless in principle, the estimates seem to
represent the sharp turn of the equilibrium price function.

This should not be surprising if it were combined with the result in 3.1 aforementioned.
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Table 3.1: The small-sample performance: misspecified
γ = 1.04 p∗0 =∞ γ = 1.04 p∗0 =∞
γL,M p∗L,M γR,M p∗R,M

Mean 1.0682 1.0328 1.0620 1.0263
25% 1.0149 0.9962 1.0173 0.9910

Median 1.0218 1.0247 1.0236 1.0191
75% 1.0297 1.0595 1.0310 1.0524
STD 0.3703 0.0617 0.2508 0.0588
RMSE 0.3713 / 0.2518 /
Note. 10000 replications with sample size 100.

Table 3.2: The small-sample performance: correctly specified
γ = 1.04 p∗0 =∞ γ = 1.04 p∗0 =∞
γL,C γR,C

Mean 0.9581 / 1.0382 /
25% 0.9938 / 1.0029 /

Median 0.9953 / 1.0040 /
75% 0.9966 / 1.0053 /
STD 0.1770 / 0.2423 /
RMSE 0.1950 / 0.2423 /
Note. 10000 replications with sample size 100.
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The sharp turn on the equilibrium price function of the atom model resembles the kink on
the equilibrium price function of the non-atom model, and vice versa. Under the truth of
the atom model, the misspecified estimator can be heuristically understood as abstracting
the sharp turning region into a single point. This explanation is sound particularly because
the limited information estimator does not distinguish the inverse demand function and
the equilibrium price function.

This observation is important for two reasons: first, the pessimistic implication is
that by just observing a price sample, it would be difficult to distinguish the two models
though their economic properties are systematically different at far horizon; and second,
the somewhat comforting implication is that because the sharpest turning point represents
the point that the conditional variance of forward price disturbance dramatically changes,
information of this “wrong” cutoff price is in fact practically useful.

3.4 Conclusion
This chapter shows that misspecification can be a relative concept regarding estimation

performance. The misspecified estimator of the atom model can be more relevant and
useful at small sample size than the correctly specified estimator. Such observation should
generalize to cases where the cutoff price is finite but extremely high.

This, however, should not be understood as a defense of ignoring the infrequent ex-
treme events in the empirical analysis in asset pricing problems. That the misspecified
estimators behaves as if it is abstracting the sharp turning region into a single point is an
explanation for the interesting observation above but never a solution to the difficulty of
empirically testing the atom model at finite-sample size. Future work on this is obviously
warranted.
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Mathematical Proof for Chapter 1
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Proof. Let pII (·) denote the unique function that satisfies the Euler equation of Model
II:

pII (xII) = max
{
fII (xII) ,

1
γ
EpII

(
(1− ρ)

(
xII − f−1

II (pII (xII) + ωII)
))}

.

Let g (xII) ≡ λpI (xI). If

fII (xI) = λfI (λfI (xI)) .

Thus,

max
{
fII (xII) ,

1
γ
EpII

(
(1− ρ)

(
xII − f−1

II (pII (xII) + ωII)
))}

= max
{
λfII (xII) ,

1
γ
Eg ◦ Γ

(
(1− ρ)

(
xI − f−1

I (pI (xI) + ωI)
))}

= max
{
λfI (xI) ,

λ

γ
EpI

(
(1− ρ)

(
xI − f−1

I (pI (xI) + ωI)
))}

=λpI (xI) = g (xI) .

By uniqueness of pII (·),

g (xII) = fII (xI) = λfI (xI) .

Then,

f−1
I (pII) = Γf−1

I (pI) ,
p−1
II (pII) = Γp−1

I (pI) .

Therefore,

ζII (pII) = V ar
(
pII

(
(1− ρ)

(
p−1
II (pII)− f−1

II (pII)
)

+ ωII
))

= V ar
(
pII ◦ Γ

(
(1− ρ)

(
p−1
I (pI)− f−1

t (pI)
)

+ ωI
))

= V ar
(
λfI

(
(1− ρ)

(
p−1
I (pI)− f−1

t (pI)
)

+ ωI
))

= λ2ζI (pI)
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Appendix B

Further Discussion on “Weak”
Instrument
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In this appendix, I show that lag-three price does not suffer from the problem of weak
instrument/identification as defined in (Stock, Wright and Yogo, 2002). In GMM, the
parameter vector θ is identified by the conditional mean restrictions E [u (yt, θ0)] = 0,
where θ0 is the true value for θ and zt is a vector of instruments; this in turn implies
E [u (yt, θ0)⊗ zt] = 0. If the instruments are relevant, then E [u (yt, θ)⊗ zt] 6= 0 for θ 6= θ0,
a necessary condition for θ to be identified. If E [u (yt, θ)⊗ zt] is nearly 0 for θ 6= θ0, then
θ is weakly identified. The current problem is different. Indeed, even lag-three price does
not suffer from weak identification with plentiful data. To show this, I plot in Figure
B.1 the large sample approximant to E [ut (θ) pt−3] in a neighborhood around the true
parameter. The surface has significant negative gradient in both directions. Although the
gradient in the direction of p∗ is less negative than in the direction of γ (as evident from
the contour plot beneath the surface), it is far from being nearly zero.
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Figure B.1: Large sample approximation to E [ut (θ) pt−3]



86

Appendix C

Further Discussion on Choosing
Preliminary Estimator
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Here, I briefly investigate the relation between the performances of the proposed
method and the preliminary estimator. In the following table, I present the final per-
formances when various preliminary estimators are used, assuming that the auxiliary
model is the same as the true. The preliminary estimator in the last column uses instru-
ment [1, pt−1] and identity weighting matrix. The simulated sample used here is exactly
the same as in the main context. For convenience, I also copy down the performance of
AOIV0 when BIV is used in the preliminary step.

Regarding estimating γ, the performance when using BIV as the preliminary estimator
is obviously superior over the other two under the RMSE criterion. Its 25 and 75 percent
values are also closest to the true though its median is bigger than that when DL1 is used.

Regarding estimating p∗, using BIV is better than using DL1 but worse than using
[1, pt−1] under the RMSE criterion. It is interesting, however, to observe that from mean
and the percentile values, using [1, pt−1] tends to lower estimate p∗, but its STD and
RMSE are smaller. This suggests that using BIV or DL1 tends to generate fatter tails.
Again, like the comparison between BIV and AOIVi in the main context, if bounds of
p∗ is imposed in estimation to forbid the estimates going into unrealistic regions, using
BIV may outperform using [1, pt−1]. Imposing bounds may also improve the performance
when using DL1 in the preliminary step, but it is unclear that how much this can reduce
its relatively large RMSE.

Table C.1: The performance of the proposed method w.r.t. various preliminary estimators
Preliminary estimator: BIV DL1 [1, pt−1]

γ
(= 1.05)

Mean 1.0537 1.0524 1.0544
25% 1.0419 1.0381 1.0409
50% 1.0517 1.0503 1.0520
75% 1.0629 1.0642 1.0649
STD 0.0164 0.0197 0.0188
RMSE 0.0168 0.0199 0.0193

p∗

(= 114.1243)

Mean 113.095 113.809 112.245
25% 107.336 107.688 106.434
50% 112.558 113.092 111.654
75% 118.137 119.064 117.402
STD 8.395 8.927 8.141
RMSE 8.485 8.932 8.355

Note. 10000 replications with sample size 100.
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Appendix D

Robustness Check of Estimation
Result of Chapter 2
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Table D.1 to D.6 present estimation results with respect to number of iterations for all
specifications and µ = 0.85, 0.90. For I and II result becomes stable and robust to µ after
3 iterations. The general pattern is the same for III, except that the convergence is slower
when µ = 0.9. For any given number of iteration and µ, estimate for γ is smaller under I
than under II and bigger than under III, suggesting that the order of the estimated γ is
a result of the systematic difference among the three estimators.

Table D.1: Sensitivity to number of iterations, specification I, µ = 0.85
#

Iteration:
γ ζ∗ λ α S.O. JT

0 1.0037 1.9375 0.9757 0.4630 7 2.8719
(0.0267) (0.1340) (0.0016) (0.0476) (0.9099)

1 1.0165 1.9290 0.9752 0.4726 7 2.5319
(0.0253) (0.1329) (0.0016) (0.0479) (0.8884)

2 1.0183 1.9254 0.9753 0.4725 7 2.5277
(0.0253) (0.1326) (0.0016) (0.0479) (0.8881)

3 1.0186 1.9249 0.9753 0.4725 7 2.5277
(0.0253) (0.1326) (0.0016) (0.0479) (0.8881)

4 1.0186 1.9248 0.9753 0.4725 7 2.5277
(0.0253) (0.1326) (0.0016) (0.0479) (0.8881)

5 1.0186 1.9248 0.9753 0.4725 7 2.5277
(0.0253) (0.1326) (0.0016) (0.0479) (0.8881)

Note. Standard errors in parentheses. In the final column, probability values in parentheses.
JT stands for the over-identifying test value.
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Table D.2: Sensitivity to number of iterations, specification I, µ = 0.90
#

Iteration:
γ ζ∗ λ α S.O. JT

0 1.0059 1.9204 0.9756 0.4632 7 2.8181
(0.0268) (0.1338) (0.0016) (0.0477) (0.9068)

1 1.0168 1.9284 0.9752 0.4726 7 2.5307
(0.0253) (0.1328) (0.0016) (0.0479) (0.8883)

2 1.0184 1.9253 0.9753 0.4725 7 2.5277
(0.0253) (0.1326) (0.0016) (0.0479) (0.8881)

3 1.0186 1.9249 0.9753 0.4725 7 2.5277
(0.0253) (0.1326) (0.0016) (0.0479) (0.8881)

4 1.0186 1.9248 0.9753 0.4725 7 2.5277
(0.0253) (0.1326) (0.0016) (0.0479) (0.8881)

5 1.0186 1.9248 0.9753 0.4725 7 2.5277
(0.0253) (0.1326) (0.0016) (0.0479) (0.8881)

Note. Standard errors in parentheses. In the final column, probability values in parentheses.
JT stands for the over-identifying test value.

Table D.3: Sensitivity to number of iterations, specification II, µ = 0.85
#

Iteration:
γ ζ∗ λ α S.O. JT

0 1.0286 1.9368 0.9751 0.4763 7 2.3199
(0.0155) (0.1063) (0.0022) (0.0565) (0.8723)

1 1.0382 1.9368 0.9751 0.4763 7 2.1557
(0.0146) (0.1047) (0.0022) (0.0565) (0.8580)

2 1.0393 1.9368 0.9751 0.4763 7 2.1515
(0.0146) (0.1045) (0.0022) (0.0565) (0.8576)

3 1.0394 1.9368 0.9751 0.4763 7 2.1512
(0.0146) (0.1045) (0.0022) (0.0565) (0.8575)

4 1.0394 1.9368 0.9751 0.4763 7 2.1511
(0.0146) (0.1045) (0.0022) (0.0565) (0.8575)

5 1.0394 1.9368 0.9751 0.4763 7 2.1511
(0.0146) (0.1045) (0.0022) (0.0565) (0.8575)

Note. Standard errors in parentheses. In the final column, probability values in parentheses.
JT stands for the over-identifying test value.
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Table D.4: Sensitivity to number of iterations, specification II, µ = 0.90
#

Iteration:
γ ζ∗ λ α S.O. JT

0 1.0186 1.9614 0.9751 0.4763 7 2.5073
(0.0153) (0.1057) (0.0022) (0.0565) (0.8867)

1 1.0374 1.9368 0.9751 0.4763 7 2.1608
(0.0146) (0.1048) (0.0022) (0.0565) (0.8584)

2 1.0392 1.9368 0.9751 0.4763 7 2.1517
(0.0146) (0.1045) (0.0022) (0.0565) (0.8576)

3 1.0394 1.9368 0.9751 0.4763 7 2.1512
(0.0146) (0.1045) (0.0022) (0.0565) (0.8575)

4 1.0394 1.9368 0.9751 0.4763 7 2.1511
(0.0146) (0.1045) (0.0022) (0.0565) (0.8575)

5 1.0394 1.9368 0.9751 0.4763 7 2.1511
(0.0146) (0.1045) (0.0022) (0.0565) (0.8575)

Note. Standard errors in parentheses. In the final column, probability values in parentheses.
JT stands for the over-identifying test value.

Table D.5: Sensitivity to number of iterations, specification III, µ = 0.85
#

Iteration:
γ ζ∗ λ α S.O. JT

0 1.0030 1.3756 7 0.2103
(0.0297) (0.0883) (0.3535)

1 1.0084 1.3684 7 0.1733
(0.0268) (0.0861) (0.3228)

2 1.0084 1.3683 7 0.1733
(0.0268) (0.0861) (0.3228)

3 1.0084 1.3683 7 0.1733
(0.0268) (0.0861) (0.3228)

4 1.0084 1.3683 7 0.1733
(0.0268) (0.0861) (0.3228)

5 1.0084 1.3683 7 0.1733
(0.0268) (0.0861) (0.3228)

Note. Standard errors in parentheses. In the final column, probability values in parentheses.
JT stands for the over-identifying test value.
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Table D.6: Sensitivity to number of iterations, specification III, µ = 0.90
#

Iteration:
γ ζ∗ λ α S.O. JT

0 1.0000 1.4477 3 2.0265
(0.0275) (0.1221) (0.8454)

1 1.0000 1.5814 2 1.7716
(0.0245) (0.1259) (0.8168)

2 1.0000 1.6389 1 1.8949
(0.0240) (0.1856) (0.8313)

3 1.0075 1.3669 7 0.1752
(0.0268) (0.0861) (0.3245)

4 1.0084 1.3683 7 0.1733
(0.0268) (0.0861) (0.3228)

5 1.0084 1.3683 7 0.1733
(0.0268) (0.0861) (0.3228)

Note. Standard errors in parentheses. In the final column, probability values in parentheses.
JT stands for the over-identifying test value.
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