
UC Santa Barbara
NCGIA Technical Reports

Title
Connecting ARC/INFO and SNACTor Project Report (91-11)

Permalink
https://escholarship.org/uc/item/51w800q4

Authors
Shapiro, Stuart C.
Chalupsky, Hans
Chou, Hsueh-cheng

Publication Date
1991-06-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/51w800q4
https://escholarship.org
http://www.cdlib.org/

Connecting ARC/INFO and SNACTor

Project Report

June 1991

Stuart C. Shapiro, Hans Chalupsky, and Hsueh-cheng Chou

National Center for Geographic Information and Analysis
State University of New York, Buffalo

Buffalo, NY, USA

National Center for Geographic Information and Analysis

Report 91-11

Connecting ARC/INFO* and SNACTor

Project Report1

Stuart C. Shapiro2, Hans Chalupsky2

and Hsueh-cheng Chou3

National Center for Geographic Information and Analysis

June 10, 1991

Abstract

This report describes an interface between ARC/INFO, a geographic information management system, and SNACTor, the
SNePS acting component. It also shows a small example interaction that demonstrates how ARC/INFO and SNACTor can interact
using the new interface, and how more sophisticated future applications can make use of its functionality. The interface was designed
and implemented during a two-month research project carried out in Summer, 1990 at the State University of New York at Buffalo.

1 The Problem

The problem tackled in this project was to interface ARC/INFO[2, 3], a commercially available geographic information
management system that is widely used among geographers all over the world, and SNACTor[4, 7, 8], the acting component of
SNePS[5, 6]. SNePS is the Semantic Network Processing System, a knowledge representation and reasoning system developed by
Stuart C. Shapiro et al. at the State University of New York at Buffalo. The main motivation for interfacing these two systems is to
study how a knowledge representation system such as SNePS with its powerful representation and inference, mechanisms can be used
to develop more sophisticated and (human) user friendly interfaces to database systems such as ARC/INFO.

The main technical problem that had to be solved in this project was to interface two very different systems that are similar in
one respect: They are not designed to be called from other programs. ARC/INFO is a collection of programs written in FORTRAN
with two main components, (1) ARC, the module that handles all geography specific computations, and that gives a frame from which
a variety of other programs can be called to perform various tasks such as editing, plotting, etc., and (2) INFO, a relational database
management system that is used to store and access geographical databases in a variety of ways. ARC/INFO is a standalone system
that was not designed to communicate with other programs, but rather give the user all functionality that s/he needs from within the
ARC/INFO environment on a variety of different hardware and operating systems platforms.

SNePS and SNACTor on the other hand, are systems written in Common Lisp. They are similar to ARC/INFO in the respect,
that it is not possible to "call" them from within another program, because the startup of the Common Lisp environment takes to long
and because of the state information that accumulates and that is necessary for proper operation. What had to be done was to define a
communication medium and a protocol with which these two different systems could communicate.

2 Scope of the Project

The scope of the project was to define and implement an interface between the two systems, and to develop a small
demonstration that shows how the two systems can interact using the interface. This demonstration shows some features of how an
interaction with a geographic information management system could be done in a small and simple example. It was not the intention
to develop a full fledged natural language interface to ARC/INFO.

3 Description of the Interface

3.1 General Interaction Between ARC/INFO and SNACTor

The basic idea underlying the design of the interface is to run ARC/INFO and SNACTor in two separate processes and have
them communicate on some medium via some simple protocol, instead of calling ARC/INFO or subroutines of it from SNACTor

* ARC/INFO is a registered trademark of Environmental Systems Research Institute (ESRI), Inc., Redlands, CA
1 This work was supported in part by the National Science Foundation Grant No. SES-88-10917 to the NCGIA, and in part

by a grant to the authors from the Environmental Systems Research Institute.
2 Principal affiliation: Department of Computer Science
3 Principal affiliation: Department of Geography

directly. The motivation for not doing the latter was that during a typical ARC/INFO session a lot of internal state information is
acquired and automatically taken care of. If SNACTor would call ARC/INFO subroutines directly, it would have to manage all this
state information by itself, which would amount to rewriting parts of the ARC/INFO functionality within SNACTor. Another reason
for choosing the protocol design is portability. Calling FORTRAN subroutines from Common Lisp is different for every
implementation of Common Lisp. The protocol design, however, allows SNACTor to be run in various different Common Lisps yet
still allowing communication with ARC/INFO without having to change the interface.

The communication medium chosen is the file system. Commands from SNACTor to ARC/INFO are issued by generating
little command files, results from command executions in ARC/INFO are brought back into SNACTor via watch files (a special
mechanism provided by ARC/INFO to record ARC/INFO interactions, very similar to the script facility in UNIX4).5 The reasons for
choosing the file system as a medium were portability and simplicity. Portability, because the interface to the file system is nicely
standardized in Common Lisp, and simplicity, because it was easier to write a simple communication program this way then, say,
writing a full fledged server/client package that communicates via Internet ports. Even though our solution does not give a fully
transparent communication across the network, it is possible to run ARC/INFO and SNACTor on different machines as long as the file
system of one machine on which either ARC/INFO or SNACTor are running is visible from the other machine, e.g., by remote
mounting via NFS (the network file system).

A simple handshake protocol is used, where SNACTor acts as a master -and ARC/INFO as a slave. ARC/INFO waits for a
command to be issued, SNACTor issues a command and waits for a result to be generated, ARC/INFO executes the command,
generates a result file and waits for the next command to be issued, SNACTor reads the result file, acts accordingly and generates the
next command and so on. Synchronization is achieved via file existence tests.

3.1.1 The Interface Directory

As mentioned above the communication medium chosen is the file system. All communication is done by writing files to and
reading files from an interface directory. This directory has to be accessible from ARC/INFO as well as SNACTor which is trivially
achieved if both processes run on the same machine. If the two programs run on separate machines one machine must be able to read
from and write to the file system of the other machine.

The interface directory has to be defined for ARC/INFO as well as SNACTor to allow proper communication. This can be
done by editing pathname variables in files that will be described below.

3.1.2 The ARC/INFO side

The ARC/INFO side of the communication makes use of AML, the Arc Macro Language[l]. AML provides control
constructs and a variety of functions that allow one to write programs containing arbitrary ARC/INFO commands. These programs
can be run inside ARC/INFO just as ordinary commands (UNIX shell scripts provide a similar mechanism). What ARC/INFO does is
to periodically look into the interface directory for a file nextcommand.aml. If it exists it executes it, records the output of the
execution into a file comout. log and then deletes the file nextcommand. aml. Then it waits for a new file nextcommand.
aml to be generated.

What we have here is a simple command loop. Read a command, execute it, print the results and wait for the next command.
This algorithm itself is defined in an AML script called command-loop. aml. Before interaction with SNACTor can start
ARC/INFO has to be started and command-loop. aml has to be executed. A special UNIX shell script arcloop has been
written that does all this for the user, so all s/he has to do to start the ARC/INFO side of the communication is to call arcloop at the
UNIX prompt.

Here is what command-loop. aml does:

clear the interface directory
repeat

if (EXISTS nextcommand.aml) then
run nextcommand.aml
delete nextcommand.aml

else

4 UNIX is a trademark of AT&T Bell Laboratories.
5 The interface described in this report was developed under the UNIX operating system. There will be various UNIX

specific terms used throughout this document. A basic familiarity with the UNIX operating system is assumed.

sleep for a second
until (EXISTS exit)
return from command-loop.aml

In the first step it clears the interface directory, i.e., it deletes nextcommand.aml and exit files that might have existed in
the directory from previous runs. Then it starts the main part of the command loop. Note that there is nothing in the algorithm that
deals with recording of results. This is handled by the file nextcommand. aml itself and the command loop does not have to know
about this part. The "sleeping" in the else part of the if statement is to break the loop and free the cpu for other things (otherwise the
endless looping itself may use up a lot of cpu cycles). The termination criterion is the existence of an exit file. Once this file has
been created by SNACTor the command loop will terminate and return to the ARC/INFO top-level.

3.1.3 The nextcommand.aml file

Here is what an actual nextcommand.aml file generated by SNACTor looks like:

&args interface
&watch %interface%/comout.log
ARCPLOT
&watch &off
&return

The symbols starting with an ’&’ are special AML directives. The nextcommand. aml file takes one parameter called
interface. It supplies the location of the interface directory. The &watch directive turns on the recording of command output. The
output will be sent to the file comout. log in the interface directory. Then the actual ARC/INFO command (ARCPLOT in our
example) gets executed. After that output recording is turned off which will close the file comout. log and make sure that only
output of the command issued in this nextcommand.aml file appears in comout. log. Then the command terminates and
returns to command-loop. aml (see above) where the file nextcommand. aml will be deleted in the immediately following
step.

3.1.4 The SNACTor side

The SNACTor side of the communication is defined in the Common Lisp file driver.lisp. The central function defined
in this file is the function execute-command. Here is its definition and the definition of an auxiliary function that it uses (the
variables *nextcom* and *comout-name* hold actual pathnames as their values):

(defun wait-for-completion ()
"Waits until the file nextcommand.aml gets deleted by the

AML command loop running in the ARC process. Returns once
nextcommand.aml does not exist anymore."

(loop (unless (probe-file *nextcom*)
(return))

 ;;give system some time to breathe
 (sleep 0.1)))

(defun execute-command (command-string)

"Takes a COHMAND-STRING and writes a file nextcommand-aml into the
communication interface directory. The command loop running in the ARC
process waits for this file, executes it and deletes it. The output generated
by the command gets written to a command output (watch) file. This allows to
get results back into the LISP process."

(wait-for-completion)
(with-open-file (nextcom *nextcom* :direction :output)
;;nextcommand.aml takes as an argument the name of the communication
;;directory viewed from the ARC process, into which ARC will
;;write the comout file
(format nextcom

"&args interface-%
&watch %interface%/-a-%

-a-%-
&watch &off-%
&return-%"
comout-name command-string))

(wait-for-completion))

Suppose we want to send the command ARCPLOT to the ARC/INFO process. What we have to do is to evaluate
(execute-command "AMPLOT") in our Lisp process. Then execute-command does the following: (1) It waits for the
completion of a command that might currently be executed by the ARC/INFO process. Completion is indicated by the non-existence
of the file nextcommand. aml (remember, in the command-loop algorithm described above nextcommand.aml gets deleted
immediately after its execution). (2) After the preceding command got completed execute-command generates a file
nextcommand. aml that contains ARCPLOT as its main command (see above for description of nextcommand. aml)(3) It
waits for the completion of the current command in the ARC/INFO process and returns after that.

Note that execute-command does not deal with retrieving or printing of results. After command execution
execute-command returns and control is back at the caller. The caller might then choose to read the file comout. log to
process results. This can be done using the function print-result. print-result takes a stream as an argument. If the
supplied value is NIL the result will be returned as a string. If the result is not handled it will be overwritten during the next call to
execute -command.

Calling the function stop-arc will generate an exit file and terminate the ARC/INFO command loop (see above).

3.2 An Example Interaction of ARC/INFO and SNACTor

The following is an annotated demonstration showing a simple example interaction with the system. The file arcdemo.
lisp defines this example, and you can run it by using the demo command of SNePS-2.1. The output shown below has been edited
to save space6, but it stems from an actual run using the new interface. User input is shown at “*” or “:” prompts. The system's
response follows after the user input separated by a blank line.

This example shows only the SNACTor part of the interaction. ARC/INFO actions resulting from commands sent to
ARC/INFO from SNACTor will not be shown, because they involve drawing of maps or input from the mouse. These ARC/INFO
actions will be described at the appropriate places.

At this point ARC/INFO is running (assuming a startup procedure as described in the appendix). It was started with the
command arcloop and is waiting for commands from SNACTor. An example database with different coverages has been installed
(this example database and how it can be installed is described in [3]). A basic familiarity with the example database, its coverages
and concepts as well as with basic concepts of ARC/INFO is assumed.

Now we start SNePS-2.1 and run die demonstration. The first three SNePSUL commands (SNePSUL is the SNePS User
Language) deal with initializations. They reset the net, define a set of relations that will be needed later on, and a path that will be used
in subclass/superclass reasoning.

> (sneps)

Welcome to SNePS-2.1

Copyright 1984, 88, 89 by Research Foundation of State University of Now York

10/28/1990 21:39:24

* (demo "-/snactor/arcdomo.lisp")

File -/snactor/arcdemo.lisp is now the source of input.

* (resetnet t)

6 Timing information and excess blank lines have been removed, some lists have been "prettified" to overcome problems of

Lisp's pretty-printer

Net reset

* ; Arc labels for predicates and relations

(= (define action lex objectl object2 object3 sub sup agent component
presumably act plan goal effect then else condition until
do member class object property rel argl arg2 precondition
relation attribute translations value translated-value
) NEW-RELATIONS)

(ACTION LEX OBJECT1 OBJECT2 OBJECT3 SUB SUP AGENT COMPONENT PRESUMABLY ACT
PLAN GOAL EFFECT THEN ELSE CONDITION UNTIL DO MEMBER CLASS OBJECT
PROPERTY REL ARGI ARG2 PRECONDITION RELATION ATTRIBUTE
TRANSLATIONS VALUE TRANSLATED-VALUE)

* (define-path class (compose class (kstar (compose sub- sup))))

CLASS implied by the path (COMPOSE CLASS (KSTAR (COMPOSE SUB- SUPM
CLASS- implied by the path (COMPOSE (KSTAR (COMPOSE SUP- SUB)) CLASS-)

Now we are ready to read in the grammar and the lexicon. The grammar used is almost identical to the grammar developed by Sy Ali
(see [8]), apart from one little extension that allows for arbitrary quoted strings. The need for this will be explained later. The lexicon
defines words used in descriptions of plans and actions7.

* (- (lexin ‘/snactor/arclex.dat"))

undefined- (NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL)
(arc arcplot table hand)

* (- (atnin ‘/snactor/arcgram.dat"))

State S processed.
State RESPONDI processed.
………….
State GTHRESH processed.
State END processed.

Atnin read in states: (END GTHRESH ………….RESPONDI S)

Now we set some variables that control input reading behavior as well as various forms of tracing. In this example all tracing has been
turned off to save space. For debugging purposes it is possible to "fake" actions, i.e., to not actually send commands to ARC/INFO
and just print them instead. We do not want to fake actions in this demonstration.

* (- (setq parser:  *TERMTNATING -PUNCTUATION-FLAG*  ‘(“.””!””?”)
snip: *INFERTRACE* nil
parser:: *DEBUG* nil))

* (- (setf *PLANTRACE* (if (y-or-n-p "Plantrace?")
(if (Y-or-n-p "Surface?")

'surface
t))))

Plantrace?(Y or N): n

* (- (setf *JUST-FAKE-IT*  (Y-or-n-p "Fake actions?")))

7 The demonstration uses the old morphological analyzer englex. lisp. The new implementation could not be used because of

some differences in behavior.

Fake actions?(Y or N): n

Now we tell SNACTor about a set of primitive actions, i.e., actions that will not be further decomposed before they are
executed. The effect of a primitive action is defined as a piece of Lisp code to be executed whenever the primitive action gets
executed. The first set is a set of actions whose definitions already come with the SNACTor package. The second set is defined via the
function declare-primactions, a function that declares all the primitive actions which were defined specifically for this
demonstration.

* (describe
(assert member ((build lex "susequence")

(build lex “snif")
(build lex "sniterate”)
(build lex "achieve")
(build lex "believe")
(build lex "forget"))

 class (build lex "primitive")))

(M8! (CLASS (M7 (LEX primitive)))
(MEMBER (M1 (LEX ansequence))

(M2 (LEX snif))
(M3 (LEX sniterate))
(M4 (LEX achieve))
(M5 (LEX believe))
(M6 (LEX forget))))

(M8!)

* (- (declare-primactions))

(tell do-one say type do-all issue clear execute start interpret noop send
stop)

The SNePS node described below defines a mapping between landuse codes used in the tables defining the Landuse
coverage and their corresponding translations which are more intelligible for humans. This mapping will be used later when we try to
identify a certain region on a map.

(describe
(assert relation landuse

attribute lu-code
translations ((build value 100 translated-value Urban)

(build value 200 translated-value Agriculture)
(build value 300 translated-value Brushland)
(build value 400 translated-value Forest)

 (build value 500 translated-value Water)
(build value 700 translated-value Barren))))

(M29! (ATTRIBUTE LU-CODE)
(RELATION LANDUSE)
(TRANSLATIONS (M23 (TRANSLATED-VALUE URBAN)

(VALUE 100))
(M24 (TRANSLATED-VALUE AGRICULTURE)

(VALUE 200))
(M26 (TRINSLATED-VALUE BRUSHLAND)

(VALUE 300))
(M26 (TRANSLATED-VALUE FOREST)

(VALUE 400))
(M27 (TRANSLATED-VALUE WATER)

(VALUE 500))
(M28 (TRANSLATED-VALUE BARREN)

(VALUE 700))))

After resetting some internal parser variables we are ready to start up the parser. The prompt will be ": " from now on.

* (- (reset-all))

* (- (parse -1))

ATN parser initialization...

Input sentences in normal English orthographic convention. May go beyond a
line by having a space followed by a <CR> To exit parser, write -end.

Now we tell SNACTor about the domain. We will define some basic concepts and terminology. The next sentence, for
example, tells SNACTor that Landuse belongs to the class polygon coverages. This will allow us later on to make assertions
about polygon coverages that will automatically apply to Landuse as an instance of this class.

The responses of SNACTof the form “I understand that...". These responses are not just echoed input, they rather are
generated from the SNePS nodes constructed during the parsing of the sentence with the help of a generation grammar. The generated
sentence will match the input sentence if the input was properly understood by SNACTor.

: Landuse is a polygon coverage.

I understand that Landuse is a polygon coverage.

Define the class to which the Streams coverage belongs.
 : Streams is a line coverage.

I understand that Streams is a line coverage.

The next sentences define subclass/superclass relationships between different types of coverages.

: Polygon coverages are coverages.

I understand that polygon coverages are coverages.

: Line coverages are coverages.

I understand that line coverages are coverages.

Now we tell SNACTor about peculiarities of the ARC/INFO environment. For example, that arc is a program and that
arcplot is an embedded program. This is important later on, because, for example, before arcplot can be invoked arc (the frame
program) has to be active.

: Arc is a program.

I understand that arc is a program.

: Arcplot is an embedded program.

I understand that arcplot is an embedded program.

: Embedded programs are programs.

I understand that embedded programs are programs.

We have to tell SNACTor about tile different states ARC/INFO can be in. For example, if arcplot is running (it is an
embedded program) certain commands that are only valid in the frame program arc cannot be executed. I.e., arcp1ot is active and
arc is not. Now, if a certain program needs arcp1ot to be active it should activate it if necessary. Activating means starting it if
arc is active. A more complicated case with more than one embedded program could require quitting the other embedded program
and then starting arcplot. We will not need this for our example. The connections between starting, stopping and activity of
programs is defined as a set of effects of the actions start and stop. I.e., a sentence of the form After ... ing a ... P
defines P as an effect of the mentioned action.

 : After starting a program the program is active.

I understand that after performing start on a program, the program is active.

: After stopping a program the program is not active.

I understand that after performing stop on a program, the program is not
active.

: After starting an embedded program arc is not active.

I understand that after performing start on a embedded program, arc is not
active.

: After stopping an embedded program arc is active.

I understand that after performing stop on a embedded program, arc is active.

Here is an interesting sentence: It describes a conditional plan. SNACTor can use it in the following way: Suppose it wants to
activate arcplot. It will try to find a plan that tells it how to do this. It will find the plan described below because arcplot is of
the class embedded program. Then it checks whether the plan is applicable by examining whether its condition holds. If so it
executes the plan.

: If arc is active then
a plan to achieve that an embedded program is active is to start
the embedded program.

I understand that if arc is active then a plan to achieve that a embedded
program is active is by performing start on the embedded program.

Now we tell SNACTor how to plot a coverage. We do this using a special set of primitive actions that allow us to assemble a
complex ARC/INFO command in a pseudo natural language style. The three primitive actions say, issue and send work very
much like write, write-line and write plus send. The objects of the actions are collected until a send is encountered. Then the
collected items are coerced into a single command and sent to ARC/INFO. This feature uses the extension of the grammar that allows
reading of arbitrary quoted strings.

The nice thing about this method is that we do not have to define a primitive action for every slightly different ARC/INFO
action that we want to perform. It also allows us to say things such as issue the coverage which will result in the right
coverage name depending on the coverage that was used to instantiate the plan.

Note that in the plan below we hardcoded lu-code landuse.lut even though we use the general coverage as an
argument to polygonshades. This was done for simplicity and because we knew that for this demonstration this plan would be
used only to plot the Landuse coverage.

Note also that there is a bug in the generation below. Instead of generating ... performing say on the coverage. . .
it generates ... performing say on Landuse…,i.e., it grabs an instance instead of a generic reference.

: A plan to plot a polygon coverage is to issue "clear"
and then say "mapextent" and then issue the coverage
and then say "polygonshades" and then say the coverage
and then send "lu-code landuse.lut".

I understand that a plan for performing plot on a polygon coverage is by
performing issue on clear and then performing say on mapextent and then
performing issue on Landuse and then performing say on polygonshades and then
performing say on Landuse and then performing send on lu-code landuse.lut.

Here is a precondition for plotting (see also the discussion above). A sentence of the form Before ... ing a P
will attach P as a precondition to the action mentioned in the sentence, i.e., before the action can be executed P has to be satisfied. If P
is not satisfied, SNACTor will try to find a plan to achieve P.

: Before plotting a coverage arcplot must be active.

I understand that before performing plot on a coverage, arcplot must be
active.

Here is an effect of plotting:

: After plotting a coverage the coverage is displayed.

I understand that after performing plot on a coverage, the coverage is
displayed.

We cannot, say "After clearing the display no coverage is displayed" and get the implication that
after clearing the display all of them are considered as not displayed, hence we have to formulate this effect, as a.
conditional plan:

: If a coverage is displayed then after clearing the display the coverage is
not displayed.

I understand that if a coverage is displayed then after performing clear on
display, the coverage is not displayed.

How do you display a coverage? Plot. it..

: A plan to achieve that a coverage is displayed is to plot the coverage.

I understand that a plan to achieve that a coverage is displayed is by
performing plot on the coverage.

The main task of this demonstration is to display the Landuse coverage, a map that indicates different uses of the various
regions with different colors and shadings, and then point at some region and have ARC/INFO identify it, i.e., say what use the
particular region has.

Here we tell SNACTor some things about identifications. First a little trick: We define this region as a member of the
class region. This will allow us later to say "Identify this region" and use a plan dial talks about regions in general.

: This region is a region.

I understand that this region is a region.

The following conditional plan describes how to identify a region. The condition says that it applies only if some polygon
coverage is displayed. Then we have a collection of says and sends to assemble the necessary ARC/INFO command.

There is one new primitive action in this plan: The action tell. It allows us to send a message to the user just before the
identification command is executed in ARC/INFO (that is why tell is the last, command before the send). The motivation for this
is that the user has to be told that action on his or her part is required and that s/he has to move the mouse and click on some polygon.

The approach chosen here to handle the multi-modality of the ARC/INFO SNACTor interaction is very primitive. A real
application should handle this more smoothly which is a nontrivial problem to solve.

: If a polygon coverage is displayed then a plan to identify a region is to
say "identify" and then say the coverage and then tell "Move the mouse over
the coverage until cross hairs appear-%

and then choose an area by clicking on it"
and then send "polys *" and then interpret the region on the coverage.

I understand that if a polygon coverage is displayed then a plan
for performing identify on a region is by performing say on identify
and then performing say on Landuse and then performing tell on
Move the mouse over the coverage until cross hairs appear

and then choose an area by clicking on it
and then performing send on polys * and then performing interpret
on the region and Landuse.

Now we have told SNACTor enough to able to actually do a few things. First we send a few initialization commands to
ARC/INFO to enable it to find coverage files, and to tell it what kind of graphics hardware we are using.

The Now doing: ... Indicates that the shown command is actually sent to the ARC/INFO process and executed there.

: Send "kworkspace /uo/grads/hana/getstart/data".

I understand that you want me to perform
send on kworkspace /uO/grads/hans/getstart/data.

Now doing: kworkspace /uO/grads/hans/getstax-t/data

: Send "&station 9999".

I understand that you want me to perform send on &station 9999.

Now doing: &station 9999

Initially, arc is active because we started ARC/INFO with the command arcloop.

: Arc is active.

I understand that arc is active.

Now we tell SNACTor to plot a coverage. Note that in order to plot a coverage it first had to find a plan for doing this. A
precondition for plotting was that arcplot had to be active. Another plan told it that when arc is active arcp1ot can be activated
by just issuing the command. This inference led to the execution of arcplot. The second Now doing ... just shows an instantiation
of the plan for plotting.

: Plot Landuse.

I understand that you want me to perform plot on Landuse.
Now doing: arcplot

Now doing: clear
mapextent Landuse
polygonshades Landuse lu-code landuse.lut

At this point ARC/INFO has actually displayed a nice colorful map of the Landuse coverage. Now we want to identify
some region on this map. Admittedly, Identify this region is a very poor way of expressing that the user wants to know
something about a region on the current, display. But a more appropriate way would require quite a few extensions to the current
grammar. That is why we did it in this simple fashion.

Again, SNACTor first tries to find a plan that describes how an identification can be done (see the conditional plan above). It
finds one, verifies that some polygon coverage is actually displayed and hence executes an instantiation of the plan. Right after the
message the user can move cross hairs over the coverage by moving the mouse. Clicking on an area will result in highlighting of the
region and generating a result that contains a row of the table that describes the attributes of the polygons in the Landuse coverage.
This result is then read by SNACTor, interpreted and translated using the landuse code translation table defined at the beginning of the
example, and then the user is told the kind of region s/he pointed at. In our example it was brushland.

: Identify this region.

I understand that you want me to perform identify on this region.

*** Move the mouse over the coverage until cross hairs appear and then choose
an area by clicking on it

Now doing: identify Landuse polys *

This area on the coverage Landuse is brushland.

This example showed the two-way nature of the interaction between ARC/INFO and SNACTor, i.e., that, commands can be
sent to ARC/INFO and that results of these commands can be read and interpreted by SNACTor after the command got executed.

Now we clear the display to show that conditional plans are actually conditional.

: Clear the display.

I understand that you want me to perform clear on display.

Now doing: clear

At this point the Landuse coverage has disappeared and the display is clear. When we try again to identify a region nothing
happens because the condition of the plan that describes identification, that is that some polygon coverage must be displayed, is not
met.

: Identify this region.

I understand that you want me to perform identify on this region.

:

4 Conclusion

We have described an interface between ARC/INFO, a geographic information management system, and SNACTor, the
SNePS actinn component. We demonstrated how ARC/INFO and SNACTor can interact by means of an example interaction
developed as part of the project. Here are a few of the many interesting questions that have to be answered before a full fledged
natural language frontend to ARC/INFO can be developed, for example, how much of the information contained in the ARC/INFO
database has to be copied in one form or the other into the SNACTor knowledge base for proper operation (as done in the mapping
between land usage codes and more humanly readable translations thereof), and how much of it can SNACTor find out itself by
consulting the ARC/INFO database directly? Another question is how to handle the multi-modal interaction between the
ARC/INFO-SNACTor system and the user? Even our simple demonstration showed the need for proper synchronization of natural
language input and output, identification of regions with help of a mouse, and presentation of database information in graphic as well
as tabular form. A lot more research and the development of bigger and more realistic applications is needed to provide answers to
those questions.

5 Acknowledgment

The authors thank David Mark for his encouragement, advice, and help in obtaining funding.

References

[1] "AML Users Guide", manual, Vos.1&1, ESRI, Inc., Redlands, CA

[2] "ARC/INFO Users Guide”,manuals, Vols.1&2, ESRI, Inc., Redlands, CA

[3] "Understanding GIS: The ARC/INFO Method", an introductory tutorial, ESRI, Inc., Redlands, CA

[4] Kumar D., Ali S.S., Haas J. and Shapiro S.C. "The SNePS acting system", in K.E. Bettinger and G. Srikantan, eds.,
Proceedings of the Fifth Annual University at Buffalo Graduate Conference on Computer Science, pp. 91-100, 1990

[5] Shapiro S.C. "The SnePS semantic network processing system", in N.V. Findler, ed., Associative Networks: The
Representation and Use of Knowledge by Computers, pp. 179-203, Academic Press, New York, 1979

[6] Shapiro S.C., Rapaport. W.J. "SNePS considered as a fully intensional propositional semantic network", in N. Cercone and
G. McCalla, eds., The Knowledge Frontier, pp. 263-315, Springer Verlag, New York, 1987

[7] Shapiro S.C. "Representing Plans and Acts", in Proceedings of the Third Annual Workshop on Conceptual Graphs. The
American Association for Artificial Intelligence, Menlo Park, CA, 1988

[8] Shapiro S.C., Woolf., Kumar D., Ali S.S., Sibun P., Forster D., Anderson S., Pustejovesky J. and Haas J. “Discussing, using,
and recognizing plans-Project Report”, Technical Report, North East Artificial Intelligence consortium, 1989

A Appendix

A.1 Interface Installation

We will assume that the ARC/INFO system has been installed and that you have access to an up-to-date version of
SNePS-2.1. You need to have the following files to set up proper communication between ARC/INFO and SNACTor:

command-loop.amlthe ARC/INFO command loop
arcloopshell script that starts ARC plus

command loop
driver.lispthe Lisp side of the interface

The following files are necessary to run SNACTor and have it communicate with ARC/INFO, as well as running the example
interaction described in this document:

arcgram.datthe GATN grammar used in the example interaction
arclex.datthe lexicon used in the example interaction
arcinfo.lispdefines primitive actions used in example
arcdemo.sneps2lthe demo file defining the example interaction
load-arc-snactor.lispa load file for the ARC/INFO - SNACTor system
nlib.lisplibrary functions for the parser
plantrace.lispplan trace utilities
snactor-imports.lispsymbols imported into SNACTor
anactor2l.lispmain SNACTor code
.sunviewa simple .sunview file

In the current releasc SNePS-2.1 all these files reside in the ... /demo/snactor directory of the SNePS-2.1 tree. For the
following let us assume you have copied all the files into the directory /u0/snactor. You have to decide what directory to use as
an interface directory. We could use /u0/snactor but it is better to have a separate directory. Let us assume its name is
/u0/interfce. NOTE Use directory names that do not contain upper-case letters, because ARC/INFO cannot handle them!

In order to install the system you have to edit the pathname definitions in the following files:

A.1.1 arcloop

arcloop is a shell script that starts up ARC/INFO and then starts the command loop inside arc. There are two shell
variables whose values you have to edit according to the directories you choose. Here is what they should look like for our example
values:

set interfacedir = /u0/interface
set snactordir = /u0/snactor

A.1.2 command-loop.ami

This is the AML file that defines the ARC/INFO command loop. If you always run arcloop to run ARC/INFO you do not
have to edit this file. However, if you want to run ARC/INFO in an interactive fashion and you want to execute command- loop.
aml you might want to edit the value of the variable default-interface. For our example it should look like this:

&s default-interface /u0/interface

The value of this variable will be used as the directory if no directory was supplied to command-loop.aml as an
arguement.

A.1.3 driver.lisp

This file defines the Lisp side of the communication. You have to edit the definition of the variable
interface-directory. For our values should look like this:

(defvar *interface-directory* “/u0/interface")

You can achieve the same effect without actually editing the file if you execute the following form after you have loaded
SNePS-2.1 but before you load SNACTor:

(setq snepsul::*interface-directory* “/u0/interface")

A.1.4 Telling SNePS-2.1 where to find SNACTor files

If you copied the ARC/INFO-SNACTor files in a directory of your own you have to tell SNePS-2.1 the proper mapping
between the logical pathname sneps2l: demo; snactor; and its physical location. You can do this by setting the following
variable before you load SNePS-2.1:

(setq user::*sneps2l-iiser-transiations*
'(("demo; snactor; *. *. *" "/u0/snactor/*.*")))

A.2 Starting Up

We will assume that ARC/INFO has been installed for you and that you have access to a set of database files that define
coverages. In the example below we will use the training set coverages used in [3].

Assuming that you have installed SNACTor files according to the instructions given above, you can interaction of
ARC/INFO and SNACTor by doing the following:

1) Start ARC/INFO. Assuming that you work on a Sun workstation you have to start sunview first. So do this:

% cd /u0/snactor # or whatever your snactor directory is
% sunview
% arcloop # in a shell window in sunview

IMPORTANT: arc and its command-loop.aml have to be active BEFORE the first call to execute-command in
SNACTor. So, make sure that you always start arc first.

2) Then start your favorite Common Lisp and load SNePS-2.1 and SNACTor by doing the following:

> (load "-snwiz/bin/sueps2l") ;; or whatever is necessary to load SNePS-2.1
> (load "snaps2l:demo;snactor;load-arc-snactor")

This will load SNePS-2. 1, and then load all the files that define SNACTor. These files will also get compiled unless you
already have compiled versions. Now you are ready to go.

	NCGIA-cover.pdf
	Fundamental Research in Geographic Information
	What is the NCGIA?
	What are Research Initiatives?
	Summaries of NCGIA’s Research Initiatives
	Acknowledgement

	Table of Contents
	Author Index
	Technical Paper 88-1
	Table of Contents

	Technical Paper 88-2
	Table of Contents

	Technical Paper 88-3
	Table of Contents

	Technical Paper 89-1
	Report 89-2
	Table of Contents

	Preface and Acknowledgements
	EXECUTIVE SUMMARY
	Report 89-2A
	Table of Contents

	Report 89-3
	Table of Contents
	APPENDICES

	Report 89-4
	Technical Paper 89-5
	Technical Paper 89-6
	Technical Report 89-7
	TABLE OF CONTENTS

	Technical Paper 89 - 8
	Preface

	Technical Report 89-9
	Preface
	TABLE OF CONTENTS

	Report 89-10
	Preface and Acknowledgements

	Report 89-11
	TABLE OF CONTENTS
	PREFACE AND ACKNOWLEDGEMENTS

	Technical Report 89-12
	Table of Contents
	Preface

	Technical Paper 89-13
	Technical Paper 89-14
	Acknowledgements

	Technical Report 89-15
	Preface and Acknowledgements

	Technical Report 90-1
	PREFACE AND ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES

	Report 90-2
	ABSTRACT
	PREFACE AND ACKNOWLEDGEMENTS

	Report 90-3
	Acknowledgements
	Abstract
	Table of Contents

	Report 90-4
	Report 90-5
	Table of Contents
	Preface and Acknowledgements

	NCGIA Technical Paper 90-6
	Technical Report 90-7
	Preface

	Report 90-8
	Preface
	Abstract
	Table of Contents

	Technical Report 90-9
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES

	Technical Report 90- 10
	Table of Contents
	Preface and Acknowledgements

	Technical Paper 90-11
	Report 90-12
	Preface and Acknowledgements

	Report 90-13
	Table of Contents
	Preface-and -Acknowledgements

	Report 91-1
	TABLE OF CONTENTS
	PREFACE

	Technical Report 91-2
	Abstract
	Contents
	List of Figures

	Technical Report 91-3
	ACKNOWLEDGEMENT
	ABSTRACT
	CONTENTS
	LIST OF TABLES
	LIST OF FIGURES

	Report 91-4
	Abstract
	Contents

	Technical Paper 91-5
	ABSTRACT

	Report 91-6
	Technical Report 91-7
	Report 91-8
	Technical Paper 91-9
	Report 91-10
	Report 91-11
	Report 91-13
	Technical Report 91-14
	Preface
	Table of Contents

	Technical Paper 91-15
	Technical Paper 91-16
	Table of Contents

	Technical Report 91-17
	Table of Contents
	Preface and Acknowledgernents
	Abstract

	Technical Report 91-18
	Table of Contents
	Preface and Acknowledgernents

	Report 91-19
	Abstract

	Technical Report 91-21
	TABLE OF CONTENTS
	Preface

	Technical Paper 91-22
	PREFACE AND ACKNOWLEDGEMENTS

	Technical Report 91-23
	Table of Contents
	PROJECT SUMMARY

	Technical Report 91-24
	Preface
	Table of Contents
	Abstract

	NCGIA Technical Paper 91-26
	Table of Contents

	Technical Report 91-27
	PREFACE
	TABLE OF CONTENTS

	Technical Paper 92-1
	ABSTRACT

	NCGIA Technical Report 92-2
	Table of Contents
	List of Figures
	Abstract
	Acknowledgements

	Report 92-3
	Table of Contents
	Preface and Acknowledgments
	EXECUTIVE SUMMARY

	Report 92-4
	Contents
	OVERVIEW

	Technical Paper 92-5
	Table of Contents for I-9 Specialist Meeting, Tech Report 92-5
	Acknowledgments

	NCGIA Report 92-6
	Technical Report 92-7
	Preface

	Technical Report 92-8
	ABSTRACT

	Technical Report 92-9
	Technical Report 92-10
	ACKNOWLEDGEMENTS

	Report 92-11
	Table of Contents
	Acknowledgments

	Technical Report 92-12
	A GLOSSARY OF GIS TERMINOLOGY: 92-13
	TECHNICAL REPORT 93-1
	Technical Report 93-2
	PREFACE
	TABLE OF CONTENTS
	BACKGROUND

	Technical Report 93-3
	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS

	Technical Report 93-4
	Technical Report 93-5
	TABLE OF CONTENTS
	PREFACE

	Technical Report 93-6
	ACKNOWLEDGEMENTS
	ABSTRACT
	Table of Contents
	List of Tables
	List of Figures
	List of Appendices

	Technical Report 93-7
	TABLE OF CONTENTS

	Technical Paper 93-8
	Table of Contents

	Report 93-9
	Table of Contents
	Preface and Acknowledgments
	EXECUTIVE SUMMARY

	Technical Report 93-10
	TABLE OF CONTENTS

	Technical Report 93-11
	Acknowledgements:

	NCGIA Technical Report 93-12
	Preface

	Report 94-1
	PREFACE AND ACKNOWLEDGEMENTS
	Table of Contents

	Report 94-2
	Preface
	Table of Contents

	Report 94-3
	Acknowledgments

	Technical Report 94-4
	Report Summary

	Technical Report 94-5
	Technical Report 94-6
	Technical Report 94-7
	ABSTRACT
	TABLE OF CONTENTS

	Technical Report 94-8
	Report 94-9
	Executive Summary
	Acknowledgments

	Technical Report 94- 10
	Preface

	Technical Report 95-1
	Acknowlegements
	Appendices

	Technical Report 95-2
	Technical Report 95-3
	Preface
	TABLE OF CONTENTS

	Technical Report 95-4
	Abstract

	Technical Report 95-5
	Technical Report TR-95-6
	ACKNOWLEDGMENTS
	ABSTRACT

	Report 95-7
	Table of Contents
	Abstract

	Report 95-8
	Table of Contents
	Abstract

	Technical Report 95-9
	Technical Report 95-10
	TABLE OF CONTENTS

	Technical Report 95-11
	Author's Note and Acknowledgements
	Abstract

	Technical Report 95-12
	Abstract

	Technical Report 95-13
	Abstract
	Acknowledgments
	Outline

	Report 95-14
	TABLE OF CONTENTS
	PREFACE AND ACKNOWLEDGMENTS

	Technical Report 95-15
	Table of Contents
	Executive Summary

	Technical Report 96-1
	TABLE OF CONTENTS

	Technical Report 96-2
	Abstract

	Technical Report 96-3
	ACKNOWLDEGMENTS
	Table of Contents
	ACRONYMS

	Summary Project Technical Report 96-4
	Abstract
	Disclaimer
	Contents

	Technical Report 96-5
	Technical Report 96-6
	Report # 96-7
	TABLE OF CONTENTS
	ACKNOWLEDGMENTS
	LIST OF PARTICIPANTS
	EXECUTIVE SUMMARY

	Technical Report 96-8
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures

	Technical Report 96-9
	Table of Contents

	Technical Report 96-10
	ACKNOWLEDGMENTS

	Technical Report 96-11
	Abstract

	Technical Report 96-12
	Preface
	Table of Contents

	Technical Report 97-1
	NCGIA Technical Report 97-2
	Table of Contents

	Technical Report 97-3
	Technical Report 97-4
	Table of Contents

	Annual Report Year 1
	Annual Report Year 2
	Annual Report Year 3
	Annual Report Year 4
	Annual Report Year 5
	Annual Report Year 6
	Annual Report Year 7
	Annual Report Year 8
	NCGIA RESEARCH INITIATIVE 1
	NCGIA Initiative 2
	Research Initiative 3
	NCGIA RESEARCH INITIATIVE 4
	NCGIA RESEARCH INITIATIVE 5:
	NCGIA RESEARCH INITIATIVE 6
	Research Initiative 7
	NCGIA RESEARCH INITIATIVE 9
	Research Initiative 12:
	NCGIA Initiative 13
	Research Initiative 14:
	SPATIAL ANALYSIS USING GIS
	Object-Oriented Database Technology for
	NCGIA Annual GIS Bibliography for 1991
	NCGIA Annual GIS Bibliography for 1992
	NCGIA Annual GIS Bibliography for 1993

