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s0010 107.1 Introduction

p0015 The geomagnetic field acts both as an umbrella, shielding us

from cosmic radiation, and as a window, offering one of the

few glimpses of the inner workings of the Earth. Ancient

records of the geomagnetic field can inform us about the

geodynamics of the early Earth and changes in boundary con-

ditions through time. Thanks to its essentially dipolar nature,

the geomagnetic field has acted as a guide, pointing to the axis

of rotation, thereby providing latitudinal information for both

explorers and geologists. A complete understanding of the

geomagnetic field requires not only a description of the direc-

tion of field lines over the surface of the Earth but also infor-

mation about its strength. While directional information is

relatively straightforward to obtain, intensity variations are

much more difficult and are the subject of this chapter.

p0020 In his treatise, De Magnete, published in 1600, William

Gilbert described variations in field strength with latitude

based on the sluggishness or rapidity with which a compass

settled on the magnetic direction. Magnetic intensity was first

measured quantitatively in the late 1700s by French scientist

Robert de Paul, although all records were lost in a shipwreck.

Systematic measurement of the geomagnetic field intensity

began in 1830 (see, e.g., Stern, 2003 for a review). Despite

studies of the geomagnetic field that included some mention

of its strength, stretching back to at least the time of Gilbert,

basic questions such as what is the average field strength and

whether there are any predictable trends remain subject to

debate. To study field intensity in the past requires us to use

‘accidental’ records; we rely on geologic or archaeological

materials, which can reveal much about the behavior of the

Earth’s magnetic field in ancient times.

p0025 There have been several fine reviews of the field of paleointen-

sity (see, e.g., Valet, 2003) and the subject is developing very

rapidly. Paleointensity data derived from archaeologicalmaterials

will be considered elsewhere (Chapter 103). This chapter will

review the theoretical basis for paleointensity experiments in igne-

ous and sedimentary environments especially with regard to

experimental design. We will then turn to new and updated exist-

ing databases. Finally, we will highlight current topics of interest.

s0015 107.2 Theory of Paleointensity

p0030 In principle, it is possible to determine the intensity of ancient

magnetic fields because the primary mechanisms by which

rocks become magnetized (e.g., thermal, chemical, and detrital

remanent magnetizations or TRM, CRM, and DRM, respec-

tively) can be approximately linearly related to the ambient

field for low fields such as the Earth’s. Thus, we have by

assumption

MNRM ’ aancHanc

and

Mlab ’ alabHlab [1]

where alab and aanc are dimensionless constants of proportion-

ality, MNRM and Mlab are natural and laboratory remanent

magnetizations, respectively, and Hanc and Hlab are the

magnitudes of the ancient and laboratory fields, respectively.

If alab and aanc are the same, we can divide the two equations

and rearrange terms to get

Hanc ¼MNRM

Mlab
Hlab

p0035In other words, if the laboratory remanence has the same

proportionality constant with respect to the applied field as the

ancient one, the remanences are linearly related to the applied

field, and the natural remanence (NRM) is composed solely of

a single component, all one needs to do to get the ancient field

is to measure MNRM, give the specimen a laboratory proxy

remanence Mlab, and multiply the ratio by Hlab.

p0040In practice, paleointensity is not so simple. The remanence

acquired in the laboratory may not have the same proportion-

ality constant as the original remanence (e.g., the specimen has

altered its capacity to acquire remanence or was acquired by a

mechanism not reproduced in the laboratory). The assump-

tion of linearity between the remanence and the applied field

may not hold true. Or the NRM may have multiple compo-

nents acquired at different times with different constants of

proportionality.

p0045In Sections 107.3 and 107.4, we will discuss the assump-

tions behind paleointensity estimates and outline various

approaches for getting paleointensity data. We will start by

considering thermal remanences and then address deposi-

tional ones. (To our knowledge, no one has deliberately

attempted paleointensity using other remanence types such as

chemical or viscous remanences.) In Section 107.5, we will

briefly consider ways in which these remanences can be com-

promised by remagnetization processes. Section 107.6 con-

siders how paleointensity data can be evaluated as to their

reliability and Section 107.7 reviews the published data and

database initiatives. We concentrate here on data prior to the

Holocene as the Holocene is the subject of a separate chapter in

this volume Au10. Finally, Section 107.8 highlights some of the

major issues posed by the paleointensity data.

s0020107.3 Paleointensity with Thermal Remanence

p0050It appears that Folgheraiter (1899) was the first to propose that

normalized thermal remanences of pottery be used to study the

ancient magnetic field, although K€onigsberger and/or Thellier

is most often given credit. K€onigsberger (1936) described an

experimental protocol for estimating the ratio of NRM to a

laboratory-acquired TRM (Figure 1(a)) and assembled data

from igneous and metamorphic rocks that spanned from the

Precambrian to the present (Figure 1(b)). He noted that with

few exceptions, the ratio MNRM/Mlab decreased with increasing

age and discussed various possible explanations for the trend,

including changing geomagnetic field strength and shaking by

earthquakes. His preferred reason for the trend in normalized

remanence, however, was that magnetized bodies lose their

magnetism over time, a phenomenon we now recognize as

magnetic viscosity. In fact, K€onigsberger believed that the

trend in normalized remanence could be used to date rocks

(see also Koenigsberger, 1938a,b). It was Thellier (1938) who

argued strongly for the use of the thermal remanences of
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archaeological artifacts normalized by laboratory TRMs for

studying the past magnetic fields.

p0055 K€onigsberger’s approach was largely empirical; he knew

that TRMs were proportional to the magnetic fields in which

they cooled and that remanences tended to decay over time

and he was well aware of the relationship between coercivity

and thermal blocking. Nonetheless, he had very few tools at his

disposal to discriminate among the myriad possible explana-

tions for his observed trend that the NRM/TRM ratio appeared

to decay with increasing age. For example, he did not call on

apparent polar wander to explain deviant directions, relying

instead on the idea that parts of lava flows tend to cool below

their Curie temperatures before they stop moving.

p0060 The theoretical basis for how ancient magnetic fields might

be preserved was clarified with the work of Nobel Prize winner

(Néel, 1949, 1955). Modern theory of TRM is discussed in

detail in Chapter 102 (see also Tauxe et al., 2010 and a recent

review by Valet, 2003), but we review the essential ideas here.

p0065 Briefly, a magnetized rod in the absence of a magnetic field

will tend to be magnetized in one of several (often two) ‘easy’

directions. In order to overcome the intervening energy barrier

and get from one easy direction to another, a magnetic particle

must have energy sufficient to leap through some intervening

‘hard’ direction. According to the Boltzmann distribution law,

the probability of a given particle having an energy e is propor-
tional to e�e/kT where k is the Boltzmann constant and T is the

temperature in kelvin (yielding thermal energy for the product

kT ). Therefore, it may be that at a certain time, the magnetic

moment may have enough thermal energy to flip the sense of

magnetization from one easy axis to another.

p0070If we had a collection of magnetized particles with some

initial statistical alignment of moments giving a net remanence

Mo, the random flipping of magnetic moments from one easy

axis to another over time will eventually lead to the case where

there is no preferred direction and the net remanence will have

decayed to zero. The rate of approach to magnetic equilibrium

is determined by the ‘relaxation time,’ which describes the

frequency of moments flipping from one easy axis to another.

p0075Relaxation time according to the Néel theory is given by

t¼ 1

C
exp

anisotropy energy½ �
thermal energy½ � ¼ 1

C
exp

Kv½ �
kT½ � [2]

where C is a frequency factor with a value of something like

1010 s�1, v is volume, and K is an ‘anisotropy constant.’

Equation [2] is sometimes called the Néel equation.

p0080The energy barrier for magnetic particles to flip through a

‘hard direction’ into the direction of the applied field H (the

anisotropy energy) requires less energy than to flip the other

way, so relaxation time must be a function of the applied field.

The more general equation for relaxation time is given by

t¼ 1

C
exp

Kv½ �
kT½ � 1� H

Hc

� �2
[3]

where H and Hc are the applied field and the field required to

overcome the anisotropy energy and change the moment of

the particle (known as the ‘coercivity’).
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Figure 1f0010 (a) Example of thermal normalization experiment of Koenigsberger (1938a,b). A specimen is heated to given temperature and cooled in a
field of +0.4 Oe (40 mT) (e.g., step #1). Then, the specimen is heated to same temperature and cooled in field of�0.4 Oe (e.g., step #2). The two curves
can be decomposed to give Mnrm and Mlab, the ratio of which was termed Qnt by K€onigsberger. (b) Qnt data for a number of specimens compiled by
K€onigsberger (1938b). The specimen from (a) is labeled #13. These data were interpreted by K€onigsberger to reflect the decay of magnetic remanence
with time.
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p0085 From eqn [2], we know that t is a strong function of

temperature. As described by Néel (1955), there is a very

sharply defined range of temperatures over which t increases

from geologically short to geologically long timescales (see

Dunlop and €Ozdemir (1997) and Tauxe et al. (2010) for

more details). Taking reasonable values for magnetite, the

most common magnetic mineral, we can calculate the varia-

tion of relaxation time as a function of temperature for a cubic

grain of width¼25 nm as shown in Figure 2. At room temper-

ature, such a particle has a relaxation time of longer than the

age of the Earth, while at a few hundred degrees centigrade, the

grain has a relaxation time that allows the magnetization to flip

frequently between easy axes and can maintain an equilibrium

with the external field. Such populations will have a slight

statistical preference for the direction of the applied field

because of the small difference in relaxation time between

directions closer to the applied field direction from eqn [3].

p0090 The temperature at which t is equal to about 102–103 s is

defined as the blocking temperature, Tb. At or above the block-

ing temperature, but below the Curie temperature (the temper-

ature at which all spontaneous magnetization is lost), a

population of these grains is in equilibrium with the applied

field and is called ‘superparamagnetic.’ Further cooling

increases the relaxation time such that the magnetization is

effectively blocked and the rock acquires a thermal remanence.

p0095Consider a lava flow that has just been extruded (see

Figure 3). First, the molten lava solidifies into rock. While

the rock is above the Curie temperature, there is no remanent

magnetization; thermal energy dominates the system. As the

rock cools through the Curie temperature of its magnetic

phase(s), exchange energy (the energy that encourages elec-

tronic spins to align with each other) becomes more important

and the rock acquires a magnetization. The magnetization,

however, is free to track the prevailing magnetic field because

anisotropy energy is still less important than the energy

encouraging alignment with the magnetic field (the magneto-

static energy). At this high temperature, the magnetic moments

in the lava flow are superparamagnetic and tend to flop from

one easy direction to another, with a slight statistical bias

toward the direction with the minimum angle to the applied

field (Figure 3(c)). The equilibrium magnetization of super-

paramagnetic grains is only slightly aligned, and the degree of

alignment is a quasilinear function of the applied field for low

fields like the Earth’s. The magnetization approaches satura-

tion at higher fields, depending on the details of the controls

on anisotropy energy like shape, size, and mineralogy.

s0025107.3.1 Linearity Assumption

p0100From theory, we expect thermal remanences of small single

domain particles to be approximately linearly related to the

applied field for low fields like the Earth’s. However, as particle

size increases, TRMs can become quite nonlinear even at rela-

tively low fields (see Figure 4). Predicted TRM curves with

respect to the applied field for randomly oriented populations

of single domain particles ranging in size from 20 to 100 nm

widths are plotted in Figure 4(a). We calculated these curves

assuming quasi-equidimensional grains (1.5:1) and highly

elongate grains (10:1). For the elongate grains, the TRM is

predicted to be distinctly nonlinear even for the 80 nm parti-

cles. (The approximate range of the present Earth’s field is

shown as the shaded box.) Particles of magnetite larger than

about 90 nm will have more complicated remanent states

(flower, vortex, and multidomain) and will not necessarily
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Figure 3f0020 (a) Picture of lava flow courtesy of Daniel Staudigel. (b) While the lava is still well above the Curie temperature, crystals start to form but
are nonmagnetic. (c) Below the Curie temperature but above the blocking temperature, certain minerals become magnetic, but their moments
continually flip among the easy axes with a statistical preference for the applied magnetic field. As the lava cools down, the moments become fixed,
preserving a thermal remanence. (b and c) Modified from animation of Genevieve Tauxe available at http://magician.ucsd.edu/Lab_tour/movs/TRM.mov.
Reproduced from Tauxe (2005).
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follow the predicted curves, which are based on single domain

theory.

p0105 We note in passing that Kletetschka et al. (2006) had pos-

tulated that multidomain particles have TRMs that are highly

nonlinear at fields below some threshold value with linear

behavior at higher field values. This behavior was observed

using a Schonstedt oven, which has very poor field control,

and we were unable to reproduce the observations in the SIO

laboratory, which has excellent field control; linear behavior

was observed in fields as low as 10 nT (Yongjae Yu, personal

communication).

p0110 Figure 4(b) shows the effect of having a distribution of grain

sizes. We calculated curves for populations with normally

distributed particle widths (all with 10:1 elongation) with mean

widths of 80 and 100, respectively. The effect of the distribution

of particle sizes is depression of the TRMbelow that for a uniform

distribution because smaller particles havemuch lower TRMs at a

given field strength that the effect is asymmetrical. (The difference

between 80 and 100 nmwidths at, say, 100 mT is much less than

the difference between 60 and 80 nm at the same field. Note also

that grains smaller than about 20 nm are superparamagnetic at

room temperature and do not contribute to the TRM at all, so

distributions that include small particles will have suppressed

TRMs relative to their theoretical saturation remanences.)

p0115Dunlop and Argyle (1997) discovered strongly nonlinear

TRM acquisition behavior in synthetic specimens with mean

Comp. by: PPonraj Stage: Proof Chapter No.: 107 Title Name: TGP2RegularTrue
Date:23/7/14 Time:21:46:27 Page Number: 5

0 50 100 150 200

TR
M

/s
IR

M

0.0

0.2

0.4

0.6

0.8

1.0

20 nm

40 nm

40 nm

60 nm

60 nm80 nm

80 nm
100 nm

100 nm

1.5:1:1

10:1:1

0 50 100 150 200
mo H (mT)

0.0

0.2

0.4

0.6

0.8

1.0

TR
M

/s
IR

M

100 nm
80 nm 

All 10:1:1

100 nm ± 50

80 nm ± 40

(a)

(b)

Range of
present field

Figure 4f0025 Predicted thermal remanent magnetization (TRM) expressed as a fraction of saturation for various particle sizes and distributions of
magnetite. Note the nick point for which the linearity assumption fails is a strong function of particle size, but linearity holds true for equant particles in
fields less than a hundred mT. Strongly elongate particles will behave in a more nonlinear fashion.

TGP2: 00107
Paleointensities 5

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier and
typesetter SPi. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.



Comp. by: PPonraj Stage: Proof Chapter No.: 107 Title Name: TGP2RegularTrue
Date:23/7/14 Time:21:46:27 Page Number: 6

grain sizes in the single domain grain range. Although their lab

fieldsweremostlymuchhigher than those of the Earth’s field (up

to 9 mT!), the results should give practitioners of paleointensity

pause. Moreover, Selkin et al. (2007) had found nonlinear TRM

behavior in natural specimenswith single domain behavior, and

the nonlinearity is distinct in fields as low as 50 mT.
p0120 The modeling exercises shown Figure 4 and the experimen-

tal results of Dunlop and Argyle (1997) and Selkin et al. (2007)

suggest that it would be a wise practice to incorporate a test of

TRM linearity into paleointensity experiments as a matter of

routine. If the relationship between TRM and applied field is

known empirically, then biased results can be corrected to the

true ancient intensity.

s0030 107.3.2 Alteration During Heating

p0125 The second assumption for absolute paleointensity determina-

tions is that the laboratory and ancient proportionality con-

stants are the same (i.e., alab¼aanc in eqn [1]). Simply

measuring the NRM and giving the specimen a total TRM

does nothing to test this assumption. For example, alteration

of the specimen during heating could change the capacity to

acquire thermal remanence and give erroneous results with no

way of assessing their validity.

p0130 There are several ways of checking the ability of the speci-

men to acquire thermal remanence in paleointensity experi-

ments. The most commonly used are experiments that employ

stepwise replacement of the NRM with a laboratory thermal

remanence (K€oenigsberg/Thellier–ThellierAu11 , or KTT family of

experiments) and those that compare anhysteretic remanence

before and after heating (‘Shaw’ family of experiments). Other

approaches attempt to prevent the alteration from occurring,

for example, by heating in controlled atmospheres or vacuum

or by using microwaves to heat just the magnetic phases,

leaving the rest of the specimen cool. Another approach is to

find materials that are particularly resistant to alteration (e.g.,

submarine basaltic glass or single plagioclase crystals). Finally,

some methods attempt to normalize the remanence withAu12 IRM

and avoid heating altogether. We will briefly describe each of

these in turn, beginning with the KTT family of experiments.

s0035 107.3.2.1 KTT family of experiments
p0135 Detection of changes in the proportionality constant caused by

alteration of the magnetic phases in the rock during heating

has been a goal in paleointensity experiments since the earliest

days. As we have already seen (Figure 1(a)), Koenigsberger

(1936, 1938a,b) heated specimens up in stages, progressively

replacing the NRM with partial thermal remanences (pTRMs),

an experiment that was elaborated on by Thellier (1938) and

Thellier and Thellier (1959). The so-called KTT approach is

particularly powerful when lower-temperature steps are

repeated, to verify directly that the ability to acquire a thermal

remanence has not changed.

p0140 The stepwise approach relies on the assumption that pTRMs

acquired by cooling between any two temperature steps (e.g.,

500 and 400 �C in Figure 5) are independent of those acquired

between any other two temperature steps. This assumption is

called the ‘law of independence’ of pTRMs. The approach also

assumes that the total TRM is the sum of all the independent

pTRMs (see Figure 5), an assumption called the ‘law of

additivity.’

p0145There are several possible ways to progressively replace the

NRM with a pTRM in the laboratory. In the original KTT

method (see, e.g., Figure 1(a)), the specimen is heated to

some temperature (T1) and cooled in the laboratory field

Blab. After measurement of the combined remanence, what is

left of the NRM plus the new laboratory pTRM is

M1 ¼MNRM +MpTRM

p0150Then, the specimen is heated a second time and cooled

upside down (in field �Blab). The second remanence is

therefore

M2 ¼MNRM�MpTRM

p0155Simple vector subtraction allows the determination of the

NRM remaining at each temperature step and the pTRM gained

(see Figure 6(a)). These are nowadays plotted against each other

in what is usually called an ‘Arai plot’ (Nagata et al., 1963) as in

Figure 6(b). The KTT method implicitly assumes that a magne-

tization acquired by cooling from a given temperature is entirely

replaced by reheating to the same temperature (i.e., Tb¼Tub), an

assumption known as the ‘law of reciprocity.’

p0160As magnetic shielding improved, more sophisticated

approaches were developed. In the most popular paleointen-

sity technique (usually attributed to Coe, 1967), we substitute

cooling in zero field for the first heating step. This allows the

direct measurement of the NRM remaining at each step. The

two equations now are

M1 ¼MNRM

and

M2 ¼MNRM +MpTRM
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Figure 5 f0030Laws of independence and additivity. Partial thermal
remanences (pTRMs) acquired by cooling between two temperature
steps are independent from one another and sum together to form the
total TRM. Reproduced from McElhinny MW (1973) Paleomagnetism
and Plate Tectonics. Cambridge: Cambridge University Press Au3.
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p0165 The laboratory MpTRM in this ‘zero-field/infield’ (or ZI)

method is calculated by vector subtraction. Alternatively, the

first heating and cooling can be done in the laboratory field

and the second in zero field (Aitken et al., 1988; see also Valet

et al., 1998), here called the ‘infield/zero-field’ or (IZ) method.

p0170 In all three of these protocols, lower-temperature infield

cooling steps can be repeated to determine whether the rema-

nence carrying capacity of the specimen has changed. These

steps are called ‘pTRM checks.’ Differences between the first

and secondMpTRMs at a given temperature indicate a change in

capacity for acquiring thermal remanences and are grounds for

suspicion or rejection of the data after the onset of such a

change. Some have proposed that paleointensity data can be

‘fixed’ even if the pTRM checks show significant alteration (e.g.,

McClelland and Briden, 1996; Valet et al., 1996). The argu-

ment is that if pTRM checks can be brought back in accordance

with the original pTRM measurements using a correction fac-

tor, then if that same correction factor is applied to all subse-

quent pTRM measurements, the effect of the alteration has

been accounted for and the data can be considered ‘reliable.’

We consider this correction to carry some risk and ‘corrected’

data should be clearly marked as such.

p0175 Despite its huge popularity and wide spread use, the

approach of progressively replacing the NRM with a thermal

remanence has several drawbacks. Alteration of the ability to

acquire a pTRM is not the only cause for failure of the assump-

tion of equality of alab and aanc. Both experiment (Bol’shakov

and Shcherbakova, 1979; Shcherbakova et al., 2000) and the-

ory (e.g., Dunlop and Xu, 1994; Xu and Dunlop, 1994) suggest

that the essential assumption of equivalence of blocking and

unblocking temperatures may break down for larger particles.

p0180 Micromagnetic modeling of hysteresis behavior can shed

some light on what might be going on. In simulated hysteresis

experiments, particles can be subjected to a large DC applied

magnetic field, sufficient to completely saturate them. As the

field is lowered, certain particles form vortex structures at some

applied field strength (see Figure 7). These vortex structures are

destroyed again as the field is ramped back up to saturation.

However, the field at which the vortex is destroyed is higher

than the field at which it formed. This is the phenomenon

responsible for ‘transient hysteresis’ (see Fabian, 2003; Yu

and Tauxe, 2005).

p0185One can imagine that something similar to transient hyster-

esis could occur if we cooled a particle from its Curie

temperature and then heated it back up again. Just below the

Curie temperature, the particle would be in a saturated state

(because the magnetization is quite low and the vortex structure

is just an attempt by the particle to reduce its external field). As

the specimen cools down, the magnetization grows. At some

temperature, a vortex structure may form. As the specimen is

heated back up again, the vortex may well remain stable to

higher temperatures than its formation temperature by analogy

to the behavior in the simulated hysteresis experiment.

p0190If the particle is large enough to have domain walls in its

remanent state, then the scenario is somewhat different and

not easily tractable by theory (see Chapter 102). At just below

its Curie temperature, the particle is at saturation. As the par-

ticle cools, domain walls will begin to form at some tempera-

ture. The remanent state will have some net moment because

the domain walls are distributed such that there is incomplete

cancelation leaving a small net remanence, proportional to the

applied field for moderate field strengths. As the temperature

ramps up again, the walls ‘walk around’ within the particle

seeking to minimize the magnetostatic energy and are not

destroyed until temperatures very near the Curie temperature.

p0195The fact that blocking and unblocking of remanence occur

at different temperatures in some particles means that a

pTRM blocked at a given temperature will remain stable to

higher temperatures; the unblocking temperature is not equal

to the blocking temperature. This means that alab 6¼aanc and

the key assumptions of the KTT-type methods are not met.

The Arai plots may be curved (see Dunlop and €Ozdemir,

1997, for a more complete discussion), and if any portion of

the NRM/TRM data are used instead of the entire temperature

spectrum, the result could be biased. For example, the lower-

temperature portion might be selected on the grounds that the

higher-temperature portion is affected by alteration or the

higher-temperature portion might be selected on the grounds

that the lower-temperature portion is affected by viscous rem-

anence. Both of these interpretations would be wrong.
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p0200 In order to detect inequality of blocking and unblocking

and the presence of unremoved portions of the pTRM known

as ‘high-temperature pTRM tails,’ several embellishments to

the KTT-type experiment have been proposed and more are

on the way. In one modification, a second zero-field step is

inserted after the infield step in the ZI method. This so-called

pTRM tail check (e.g., Riisager and Riisager, 2001) assesses

whether the pTRM gained in the laboratory at a given temper-

ature is completely removed by reheating to the same temper-

ature. If not, the specimen is said to have a ‘pTRM tail,’ a

consequence of an inequality of the unblocking temperature

Tub and the original blocking temperature Tb in violation of the

law of reciprocity and grounds for rejection. A second modifi-

cation is to alternate between the IZ and ZI procedures (the

so-called ‘IZZI’ method first conceived with AgNés Genevey

and described by Yu et al., 2004). The IZZI method is also

extremely sensitive to the presence of pTRM tails and may

obviate the need for the pTRM tail check step. An example of

a complete IZZI experiment is shown in Figure 8.

p0205There are several other violations of the fundamental

assumptions that require additional tests and/or corrections

in the paleointensity experiment besides alteration or failure

of the law of reciprocity. For example, if the specimen is aniso-

tropic with respect to the acquisition of thermal remanence,

the anisotropy tensor must be determined and the intensity

corrected (e.g., Fox and Aitken, 1980). The detection and cor-

rection for anisotropy can be very important in certain paleo-

magnetic (and archaeomagnetic) materials. The correction

involves determining the TRM (or the anhysteretic remanence

(ARM) proxy) anisotropy tensor and matrix multiplication to

recover the original magnetic vector (see Selkin et al., 2000, for

a more complete discussion). Moreover, because the approach
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Figure 7f0040 Example of irreversible behavior when particle is brought from a saturated state at high field to zero fields and back up again. A vortex
structure forms on the descending curve in the simulated hysteresis loop at the sharp drop in magnetization at about 40 mT (labeled ‘(a)’). A snapshot of
the micromagnetic state is shown to the lower left. This feature intensifies as the field drops to zero, resulting in a loss of magnetization. When the
field ramps back up again, the vortex remains stable well past its formation field (labeled ‘(b)’). A snapshot of the micromagnetic state on the ascending
curve is shown in the lower right. The vortex is not destroyed until a higher field, when the loop is closed. Reproduced from Yu and Tauxe (2004)Au4 .
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to equilibrium is a function of time, slower cooling results in a

larger TRM; hence, differences in cooling rate between the

original remanence acquisition and that acquired in the labo-

ratory will lead to erroneous results (e.g., Halgedahl et al.,

1980). Compensating for differences in cooling rate is rela-

tively straight forward if the original cooling rate is known

and the specimens behave according to single domain theory.

Alternatively, one could take an empirical approach in which

the rock is allowed to acquire a pTRM under varying cooling

rates (e.g., Genevey and Gallet, 2003), an approach useful for

cooling rates of up to a day or two.

s0040 107.3.2.2 Shaw family of experiments
p0210 The previous section was devoted to experiments in which

detection of nonideal behavior is done by repeating various

temperature steps. In this section, we will consider an alterna-

tive approach, long in use in paleointensity studies, which

employs the laboratory proxy ARM. The so-called Shaw

method (e.g., Shaw, 1974) is based on ideas first explored by

van Zijl et al. (1962a,b). In its simplest form, we measure the

NRM and then progressively demagnetize the NRM with alter-

nating fields (AFs) to establish the coercivity spectrum of the

specimen prior to heating. The specimen is then given an ARM

MARM1
ð Þ by subjecting the specimen to progressively higher

peak AFs, which decay in the presence of a small bias field.

The use of ARM has been justified because it is in many ways

analogous to the original TRM (see Chapter 102). MARM1
is

then progressively demagnetized to establish the original rela-

tionship between the coercivity spectrum of the MNRM (pre-

sumed to be a thermal remanence) and ARM prior to any

laboratory heating.

p0215As with the KTT-type methods, MNRM is normalized by a

laboratory thermal remanence. But in the case of the Shaw-type

methods, the specimen is given a total TRM, MTRM1
ð Þ, which is

AF demagnetized as well. Finally, the specimen is given a

second ARM MARM2
ð Þ and demagnetized for the last time.

p0220The general experiment is shown in Figure 9(a) and 9(b). If

the first and second ARMs do not have the same coercivity

spectrum as in Figure 9(b), the coercivity of the specimen

has change and the NRM/TRM ratio is suspect.

p0225Rolph and Shaw (1985) suggested that the ratio

MARM1
=MARM2

at each demagnetizing step be used to ‘correct’

for the alteration bias of MTRM1
by

MTRM*
1
¼MTRM1

MARM1

MARM2

p0230So doing can in some cases restore linearity between NRM

and TRM as shown in Figure 9(c).

p0235Valet and Herrero-Bervera (2000) argued that only data

requiring no correction and utilizing the entire coercivity spec-

trum should be used. They further pointed out that many

specimens are required to lend credibility to a paleointensity

experiment. As the former requirement generally leaves very

few specimens, Valet and Herrero-Bervera reasoned that a

quicker experimental procedure would ultimately result in

more acceptable data, hence a better overall outcome, even if

the results from many experiments are discarded. To speed up

the measurement process, they employed a truncated Shaw

method in which no ARMs are imparted, but both the NRM

and the laboratory TRM are completely demagnetized using

AFs. Linearity of the two when plotted as in Figure 9(a) is

taken as the sole criterion for acceptance.

p0240Tsunakawa and Shaw (1994) suggested that a tendency for

chemical alteration could also be detected if the specimen is

heated to above the Curie temperature twice, each followed by

AF demagnetization (see Figure 9(d)–9(f )). During the sec-

ond heating step, the specimen is left at high temperature for a

longer period of time than the first heating step to encourage

alteration to continue so that it may be detected by the

method. If the slope MTRM1
=MTRM*

2
differs by more than exper-

imental error, the experimental results are rejected.

p0245The issue of contamination of the remanence by multi-

domain particles has also been considered in the Shaw-type

methods. It has long been known (Ozima et al., 1964) that

specimens can lose much of their remanence by cooling to

temperatures below about �160 �C and warming in zero field.

This behavior is generally attributed to magnetocrystalline-

dominated remanences cycling through the so-called Verwey

transition at which the axis of magnetocrystalline anisotropy

changes, erasing the magnetic memory of these particles (see,

e.g., Dunlop and €Ozdemir, 1997). This behavior is frequently

assumed to occur most readily in multidomain particles; hence,

their contribution could be minimized if specimens are pre-

treated to low temperatures (low-temperature demagnetization,
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Figure 8f0045 Data from an IZZI experiment. Circles are the pTRM gained at
a particular temperature step versus the NRM remaining. Solid
symbols are those included in the slope calculation. Blue (darker)
symbols are the infield–zero-field steps (IZ) and the brown (lighter)
symbols are the zero-field–infield steps (ZI). The triangles are the pTRM
checks and the squares are the pTRM tail checks. The difference
between the pTRM check and the original measurement is di as shown by
the horizontal bar labeled d450. The difference between the first NRM
measurement and the repeated one (the pTRM tail check) is shown by the
vertical bar labeled D500. The vector difference sum (VDS) is the sum
of all the NRM components (tall vertical bar labeled VDS). The NRM
fraction is shown by the vertical dashed bar. The insets are the vector
components (x, y, z) of the zero-field steps. The solid symbols are (x, y)
pairs and the open symbols are (x, z) pairs. The specimen was unoriented
with respect to geographic coordinates. The laboratory field was
applied along the z-axis in the infield steps. Redrawn from Tauxe L and
Staudigel H (2004) Strength of the geomagnetic field in the Cretaceous
Normal Superchron: New data from submarine basaltic glass of the
Troodos Ophiolite. Geochemistry, Geophysics, Geosystems 5(2):
Q02H06. http://dx.doi.org/10.1029/2003GC000635.
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or LTD) prior to measurement. Yamamoto et al. (2003) and

Yamamoto and Tsunakawa (2005) argued that one of the major

causes of failure in paleointensity experiments is the effect of

multidomain particles, which violate the essential assumption

that the original blocking temperature is the same as the labo-

ratory unblocking temperature. They therefore treat specimens

to LTD prior to AF demagnetization of each remanence. This

‘LTD-DHT Shaw’ method gave improved results for the other-

wise disappointingly difficult Hawaiian 1960 lava flow (see, e.g.,

Tanaka and Kono, 1991; Valet, 2003; Valet and Herrero-Bervera,

2000).

p0250 The LTD-DHT Shaw experiment assumes that mainly, the

multidomain particles are affected by the LTD step. However,

Carter-Stiglitz et al. (2002, 2003) found that single domain

magnetites can and do lose substantial remanence by LTD as

well. This behavior means that LTD treatment may demagne-

tize part of the desired as well as the undesired NRM. It is

possible that the SD remanence removed by LTD may be the

low coercivity contribution and unimportant to the

paleointensity.

p0255 The primary reasons stated for using the Shaw method are

that (1) it is faster and (2) because the specimen is only heated

once (albeit to a high temperature), alteration is minimized.

The first rationale is no longer persuasive because modern

thermal ovens have high capacities and the KTT method is

certainly not slower than the Shaw method on a per specimen

basis. This is particularly true for the LTD-DHT Shaw method

as this experiment takes approximately 8 h to complete per

specimen. The second rationale may have some validity. The

key features of any good experiment are the built-in tests of the

important assumptions.

s0045 107.3.3 Methods That Minimize Alteration

p0260 Several alternative approaches have been proposed in which

instead of detecting nonideal behavior such as alteration, they

attempt to minimize it. These methods include reducing the

number of heating steps required (as in the Shaw methods),

heating specimens in controlled atmospheres, reducing the

time at temperature by, for example, measuring the specimens

at elevated temperature, and using microwaves to excite spin

moments as opposed to direct thermal heating. Finally, there

has been some effort put into finding materials that resist

alteration during the heating experiments.

s0050107.3.3.1 Reduced number of heating steps
p0265Kono and Ueno (1977) described in detail a single heating per

temperature step method suggested by Kono (1974) whereby

the specimen is heated in a laboratory field applied perpendic-

ular to the NRM. MpTRM is obtained by vector subtraction.

Reducing the number of heatings can reduce the alteration to

some extent. However, this method has only rarely been

applied because it can only be used for strictly univectorial

NRMs (an assumption that is difficult to test with the data

generated by this method) and requires rather delicate posi-

tioning of specimens in the furnace or fancy coil systems that

generally have a limited region of uniform field, reducing the

number of specimens that can be analyzed in a single batch.

While pTRM checks are possible with this method, they neces-

sitate additional heating steps and are not generally performed.

p0270A second strategy for reducing the number of heating steps

was proposed by Hoffman et al. (1989) and modified by

Hoffman and Biggin (2005) (see also Dekkers and B€ohnel,

2006). In the Hoffman–Biggin version, at least five specimens

from a given cooling unit are sliced into four specimens each,

one of which is dedicated to rock magnetic analysis. The

remaining specimens (at least 15) are heated a total of five

times giving remanence measurements M1�M5. (Please note

that bold face parameters are vectors, while normal text vari-

ables are scalars, in this case the magnitudes.) In the first three

heating steps, the specimens are treated to increasingly high

temperatures (T0, T1, and T2) and cooled in zero field. The first
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study of the Hawaiian 1960 lava: Implications for possible causes of erroneously high intensities. Geophysical Journal International 153(1): 263–276.
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heating step ostensibly removes any secondary overprint (e.g.,

a VRM, viscous remanent magnetization) and M1 serves as the

baseline for normalizing all subsequent steps so that data from

different specimens can be combined. After the three zero-field

heating steps, the specimens are heated again to T2 and cooled

with the laboratory field switched on between T2 and T0 after

which it is switched off. This treatment step gives the pTRM

acquired between T2 and T0 by vector subtraction of M4�M3.

The fifth heating step is to T1 followed by a zero-field cooling.

This final step serves to supply both the pTRM acquired

between T2 and T1 by vector subtraction of M4�M5 and a

kind of ‘pseudo pTRM check’ step as explained later.

p0275 In interpreting results, there are two data points from each

specimen with estimates for NRM remaining versus pTRM

gained, denoted T1 and T2. The NRM remaining part of T1
and T2 are ratios M2/M1 and M3/M1, respectively. The pTRMs

gained at T1 and T2 are jM5�M4j/M1 and jM4�M3j/M1.

Because all remanences are normalized by the NRM remaining

after zero-field cooling from T0 (M1) measured for each spec-

imen, we can combine data from the different specimens

together on a single Arai-like plot (see Figure 10).

p0280 Hoffman and Biggin (2005) had several criteria that help

screen out ‘unreliable’ data. First, they require that the direc-

tions of the zero-field steps trend to the origin on an orthogo-

nal plot and have low scatter. This helps eliminate data for

which the characteristic remanence has not been isolated

(although three zero-field steps are not generally considered

sufficient for this purpose). Second, they require the y-intercept

to be between 0.97 and 1.03 and that the correlation coeffi-

cient must be �0.97. If the T1 data are displaced from the line

connecting the T2 point and a y-intercept of 1.0, then the

specimen may have altered during laboratory heating (e.g.,

open symbols in Figure 10) and can be rejected.

p0285 Noting that the results of the multispecimen procedure

when applied to the 1971 Hawaiian flow (shown in Figure 10)

were significantly different than the known field (37 mT),

Hoffman and Biggin (2005) suggested that the data, which

are heavily influenced by data from a single, low blocking

temperature specimen (green symbols in Figure 10), could be

reweighted to remove the bias. Furthermore, they proposed

averaging all the data by accepted specimen and including

the y-intercept in the calculation. These modifications yielded

a concordant result with the known field within error. Finally,

they redefined many of the parameters typically used in

paleointensity experiments (see Section 107.6) for use with

the multispecimen method.

p0290The primary advantage of the multispecimen approach put

forward by Hoffman and Biggin (2005) is the speed with

which measurements can be made, allowing many more spec-

imens to be analyzed. While the method may be fast, it loses

multiple pTRM checks and any ability to assess the equivalence

of blocking and unblocking. Moreover, the method strongly

emphasizes the lower blocking temperature portion of the

blocking temperature spectrum (especially in the moment cor-

rected version). This means that the remanence is contami-

nated by viscous or multidomain remanences leading to a

concave downward curve in the Arai plot; the multispecimen

result will overestimate the true value of the paleointensity.

Finally, it is experimentally very difficult to turn the laboratory

field off precisely when the specimen’s internal temperature is

T0 because only the oven temperature is known and the spec-

imen temperature lags behind that of the oven by variable and

unknown amounts, depending on the exact disposition of the

specimens in the oven. This bias will lead to scatter and con-

tribute to a systematic bias (the field will always be turned off

at too high a temperature, thereby underestimating the pTRM

gained).

p0295On the positive side, the presentation of all specimen data

on a single Arai diagram (also proposed by Chauvin et al.,

2005) is an interesting modification of the traditional Arai

diagram. Plotting all the KTT data from specimens from a

given cooling unit on a single Arai diagram allows instant

assessment of the reproducibility of data and of course can be

done with traditional experimental results.

s0055107.3.3.2 Use of controlled atmospheres to reduce
alteration

p0300Alteration during heating is caused by oxidation (or reduction)

of the magnetic minerals in the specimen. There have been

several strategies to reduce this effect with varying degrees of

success. Thellier (1938) tried using vacuum and nitrogen atmo-

spheres. Taylor (1979) developed a technique for paleointen-

sity determination that encapsulated specimens in silica glass.

By placing an oxygen ‘getter’ such as titanium in the evacuated

glass tube along with the specimen, he suggested that oxygen

fugacity could be maintained and alteration would be reduced.

This technique was tested by Sugiura et al. (1979) who claimed

some improvement in experimental results on lunar glass spec-

imens. Valet et al. (1998) performed paleointensity experi-

ments by heating in argon atmospheres and cooling in

nitrogen atmospheres. They reported a significant improve-

ment in their argon results over those performed in air. More

recently, Kissel and Laj (2004) also used a furnace with a

controlled argon atmosphere to minimize alteration, and

Mochizuki et al. (2004) incorporated heating in a vacuum to

the LTD-DHT Shaw experiments, a practice that has been
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adopted as routine for this method in subsequent investiga-

tions and successfully recovered the historical field for samples

from the 1986 Oshima lava flow in Japan. The difficulties of

heating and cooling in vacuum and controlled atmospheres

are (1) difficulty in achieving a uniform and reproducible

temperature in the oven and (2) unintended oxidation or

reduction reactions. It appears that reduction in alteration

can be achieved using these techniques, although the over-

whelming majority of paleointensity experiments are done

in air.

s0060 107.3.3.3 Measurement at elevated temperature
p0305 Boyd (1986) suggested that measurements could be made

more rapidly if they were measured at elevated temperatures

instead of cooling back to room temperature for measurement.

The idea was that alteration could be detected immediately and

the experiment aborted, before wasting time finishing the

entire measurement sequence. A variant of the method using

an infield–infield approach was applied to the 1960 Hawaiian

lava flow and the 2.2 ka Kotaki pyroclastic fAu13 low by Tanaka et al.

(1995a,b). In the case of the historical flow where the ‘ancient’

field is known (36 mT), the method overestimated the true field

by 13%. The idea of measuring at elevated temperatures was

warmed up by Le Goff and Gallet (2004) who developed a

vibrating sample magnetometer equipped with magnetic field

coils, which allow the specimen to be measured at temperature

and in controlled fields, greatly speeding up the measurement

process and, one hopes, reducing the effects of cooling rate

and specimen alteration. This method has been applied in

archaeomagnetic studies with great success (e.g., Gallet and

Le Goff, 2006).

s0065 107.3.3.4 Use of microwaves for thermal excitation
p0310 Until now, we have not concerned ourselves with HOW the

magnetic moment of a particular grain flips its moment. Ear-

lier, we mentioned ‘thermal energy’ and left it at that. But how

does thermal energy do the trick?

p0315 An external magnetic field generates a torque on the elec-

tronic spins, and in isolation, a magnetic moment will respond

to the torque in a manner similar in some respects to the way a

spinning top responds to gravity: the magnetic moment will

precess about the applied field direction, spiraling in and

come to a rest parallel to it. Because of the strong exchange or

superexchange coupling in magnetic phases, spins tend to be

aligned parallel (or antiparallel) to one another, and the spira-

ling is done in a coordinated fashion, with neighboring spins as

parallel as possible to one another. This phenomenon is known

as a ‘spin wave.’

p0320 Raising the temperature of a body transmits energy (via

‘phonons’) to the electronic spins, increasing the amplitude

of the spin waves. This magnetic energy is quantized in

‘magnons.’ In the traditional KTT experiment, the entire spec-

imen is heated, and the spin waves are excited to the point that

some may flip their moments as described in Section 107.3.

p0325 As in most kitchens, there are two ways of heating things

up: the conventional oven and the microwave oven. In the

microwave oven, molecules with certain vibrational frequen-

cies (e.g., water) are excited by microwaves. These heat up,

passing their heat on to the rest of the pizza (or whatever). If

the right microwave frequency is chosen, ferromagnetic

particles can also be excited directly, inviting the possibility

of heating only the magnetic phases, leaving the matrix alone

(e.g., Walton et al., 1993). The rationale for developing this

method is to reduce the degree of alteration experienced by the

specimen because the matrix often remains relatively cool,

while the ferromagnetic particles themselves get hot. (The

magnons get converted to phonons, thereby transferring the

heat from the magnetic particle to the matrix encouraging

alteration, but there may be ways of reducing this tendency

(see Walton, 2004).)

p0330The same issues of nonlinearity, alteration, reciprocity,

anisotropy, cooling rate differences, etc. arise in the microwave

approach as in the thermal approach. Ideally, the same exper-

imental protocol could be carried out with microwave ovens as

with thermal ovens. In practice, however, it has proved quite

difficult to repeat the same internal temperature, making dou-

ble (or even quadruple) heatings problematic although pro-

gress toward this end may have been made (e.g., B€ohnel et al.,

2003). It is likely that the issues of reciprocity of blocking and

unblocking in the original (thermally blocked) and the labo-

ratory (microwave unblocked) and differences in the rate of

blocking and unblocking will remain a problem for some time

as they have for thermally blocked remanences.

p0335Concerns were raised by Valet (2003) and Le Goff and

Gallet (2004) that the theoretical equivalence between thermal

unblocking and microwave unblocking has not yet been

explained. In fact, Walton (2005) pointed out that resonance

within the magnetic particles is wavelength-dependent. This

raises the possibility that unblocking may occur in an entirely

different manner in microwave processes than in thermal ones

(by chords instead of scales to use a musical metaphor) leading

to serious questions about the applicability of the method for

recovery of paleointensity estimates.

p0340With improvements in the ability to repeat internal temper-

ature steps, the microwave method has been adapted to a

variety of experimental protocols without a loss in experimen-

tal quality (e.g., Biggin et al., 2007; Hill et al., 2002; Yamamoto

and Shaw, 2008). The results of Yamamoto and Shaw (2008)

provide further encouragement as their investigations recov-

ered the laboratory field and only slightly overestimated the

historical field value of the Hawaiian 1970 lava flow using a

microwave version of the LTD-DHT Shaw protocol.

s0070107.3.3.5 Using materials resistant to alteration
p0345Another very important approach to the paleointensity prob-

lem has been to find and exploit materials that are themselves

resistant to alteration. There are an increasing variety of prom-

ising materials, ranging from quenched materials, to single

crystals extracted from otherwise alteration-prone rocks, to

very slowly cooled plutonic rocks (e.g., layered intrusions).

Quenched materials include volcanic glasses (e.g., Pick and

Tauxe, 1993, 1994), metallur Au14gical slag (e.g., Ben-Yosef et al.,

2008a,b, Au152009; Shaar et al., 2010, 2011a,b), and welded tuffs

( Au16Gee et al., 2010). Single crystals of plagioclase or other sili-

cates extracted from igneous rocks (Tarduno et al., 2006, 2007,

2010) can yield excellent results, while the lava flows them-

selves may be prone to alteration or other nonideal behavior.

Parts of layered intrusions (e.g., Selkin et al., 2000) can also

perform extremely well during the paleointensity experiment.
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p0350 While some articles have called the reliability of submarine

basaltic glass results into question (e.g.,Au17 Heller et al., 2002),

Tauxe and Staudigel (2004), Bowles et al. (2005), Bowles et al.

(2011), and Tauxe et al. (2013) addressed these concerns in

great detail, and the reader is referred to those papers and the

references therein for a thorough treatment of the subject.

There is no basis in experiment or theory for questioning the

origin of remanence of submarine basaltic glass.

s0075 107.3.4 Methods for Non-Single Domain Remanences

p0355 We have already noted several approaches intended to detect

and/or remove the effect of pTRM tails (e.g., the pTRM tail

check of Riisager and Riisager, 2001, the IZZI method of Yu

et al., 2004, and the LTD-DHT Shaw method of Yamamoto

et al., 2003). Dekkers and B€ohnel (2006) argued that their

multispecimen procedure (‘multispecimen parallel differential

pTRM method’), which employs a single heating/cooling step

with the laboratory field oriented parallel to the NRM, can be

used on specimens of any domain state. The fundamental

assumption of this method is the assumed linearity of pTRM

with applied field, which the authors claim is independent of

domain state. As already discussed, this may not be true, par-

ticularly for multidomain grains. Fabian and Leonhardt (2010)

experimentally showed that the original protocol of Dekkers

and B€ohnel overestimates paleointensity for intermediateAu18 PSD

andMD grain sizes, and they proposed a modified protocol for

correcting potential domain state-dependent effects including

pTRM tail. On the other handAu19 , de Groot et al. (2012) observed

underestimates of paleointensity even when the modified pro-

tocol was used, for which they considered that changes in

magnetic domain due to heating are responsible.

p0360 Another approach for eliminating the effect of pTRM tails is

to compare unblocking temperature of the original NRM with

unblocking temperature of a laboratory-induced TRM. This

method was tried first by Wilson (1961) and was recently

rediscovered by Muxworthy (2010). The so-called WilsonAu20

method compares continuous measurement of the NRM

while demagnetizing by heating with that of a full TRM

induced in a known field. In order to get around the problem

of pTRM tails, which persist to blocking temperatures higher

than the temperature at which they were acquired (high-

temperature tails) or, more insidiously, become demagnetized

at temperatures lower than they were acquired (low-

temperature tails), the Wilson method first demagnetizes the

NRM and then demagnetizes a laboratory remanence and

compares the two unblocking spectra. In this method, the

measurements are done as a continuous thermal demagnetiza-

tion (measuring the remanence at high temperature), and so

this method is faster than the standard Thellier-type methods

in which the samples must first be cooled and measured at

room temperature. The problem with this method is that alter-

ation of the sample may occur in the first demagnetization and

can never be detected.

p0365 Sbarbori et al. (2009) took a different approach. They first

completed a set of IZZI experiments on a suite of samples from

Isla Socorro, Mexico. Some specimens had curved Arai plots

but passed all the alteration checks and had magnetizations

that trended straight to the origin. They interpreted these as

having multidomain magnetic carriers and thought to

circumvent the problem by imparting a second TRM and

repeating the IZZI experiment in order to plot unblocking

temperature against unblocking temperature. However, the

second experiment yielded straight Arai plots and the initial

curved behavior could not be reproduced. Although there was

no evidence for chemical alteration (all pTRM checks passed),

the domain state of the specimen had clearly changed. None-

theless, this type of approach may be useful in some cases in

which the curved Arai plots can be reproduced. If there is a

straight line between the natural and laboratory remanence

unblocking spectra, pTRM checks pass in both experiments,

and the NRM trends directly to the origin, there may be a way

to determine paleointensity from multidomain remanences

that are unbiased. Worryingly, Shaar et al. (2011b) found

that multidomain remanences tend to underestimate the

ancient field strength even if the total NRM is used, implying

that the NRM decayed in a manner not predicted by the Néel

theory (Néel, 1949) and that no paleointensity method can

recover the ancient field strength for MD remanences.

p0370Wang and Kent (2013) embellished the method of direct

comparison of unblocking of the NRM with unblocking of the

laboratory TRM in a protocol they call ‘back-zero-forth’ or BZF.

In this protocol, the NRM of the specimens is first treated to

infield cooling along one axis (B), followed by zero-field cool-

ing (Z) and then by a second infield cooling step with the field

applied along the opposite direction (F). This mimics the

traditional infield–infield method of K€onigsberger (1936)

and embeds the IZ approach of Aitken et al. (1988) Au21and a ZI

similar to the Coe (1967) approach (except for the presence of

pTRM tails generated by the field–infield step Au22). After the initial

BZF treatment, the specimens are given a total TRM in a labo-

ratory field and the BZF experiment is repeated. The unblock-

ing of the NRM is plotted against the unblocking of the

laboratory TRM, similar to the Sbarbori et al. (2009) and

Muxworthy (2010) approaches. This new BZF protocol enables

comparison of the II, IZ, and ZI protocols. As in the much less

labor-intensive IZZI protocol, the influence of MD grains may

be detected and the second BZF experiment may allow the MD

effect to be corrected.

s0080107.3.5 Use of IRM Normalization

p0375Sometimes, it is difficult or impossible to heat specimens

because they will alter in the atmosphere of the lab or the

material is too precious to be subjected to heating experiments

(e.g., lunar samples and some archaeological artifacts). Looking

again at Figure 4 suggests an alternative for order of magnitude

guesstimates for paleointensity without heating at all. TRM nor-

malized by a saturation remanence (IRM) is quasilinearly

related to the applied field up to some value depending on

mineralogy and grain-size population.

p0380Several investigators (e.g., Cisowski and Fuller, 1986;

Gattacceca and Rochette, 2004; Kletetschka et al., 2004) have

advocated the use of IRM normalization of the NRMs of lunar

and meteorite samples to estimate paleointensity. Cisowski

and Fuller (1986) argued that, especially when both rema-

nences were partially demagnetized using AF demagnetization,

the NRM:IRM ratio gave order of magnitude constraints on

absolute paleointensity and reasonable relative paleointensity

estimates. Their argument is based on monomineralic suites of
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rocks with uniform grain size. They further argued optimisti-

cally that multidomain contributions can be eliminated by the

AF demagnetization.

p0385 As can be seen by examining Figure 4, at best, only order of

magnitude estimates for absolute paleointensity are possible.

The monomineralic and uniform grain-size constraints make

even this unlikely. Finally, multidomain TRMs and IRMs do

not behave similarly under AF demagnetization, the former

being much more stable than the latter. Nonetheless, if

magnetic uniformity can be established, it may in fact be

useful for establishing relative paleointensity estimates as is

done routinely in sedimentary paleointensity studies (see

Section 107.6). The caveats concerning single component rem-

anences are still valid, and perhaps, complete AF demagnetiza-

tion of the NRM would be better than a single ‘blanket’

demagnetization step. Moreover, we should bear in mind

that for larger particles, TRM can be strongly nonlinear with

applied field at even relatively low fields (30 mT) according to

the experimental results of Dunlop and Argyle (1997) (see also

Figure 1(a) of Kletetschka et al., 2006). The problem with the

IRM normalization approach is that domain state, linearity of

TRM, and nature of the NRM cannot be assessed. The results

are therefore difficult to interpret in terms of ancient fields.

s0085 107.4 Paleointensity with Depositional Remanences

p0390 Sediments become magnetized in quite a different manner

than igneous bodies. Detrital grains are already magnetized,

unlike igneous rocks, which crystallize above their Curie

temperatures. Magnetic particles that can rotate freely will

turn into the direction of the applied field, which can result

in a DRM. Sediments are also subject to postdepositional

modification through the action of organisms, compaction,

diagenesis, and the acquisition of VRM, all of which will affect

the magnetization and our ability to tease out the geomagnetic

signal. In the following, we will consider the syndepositional

processes of physical alignment of magnetic particles in viscous

fluids (giving rise to the primary DRM) and then touch on the

postdepositional processes important to paleointensity in sed-

imentary systems.

s0090 107.4.1 Physical Alignment of Magnetic Moments
in Viscous Fluids

p0395 The theoretical and experimental foundation for using DRM

for paleointensities is far less complete than for TRM. Tauxe

(1993) reviewed the literature available through 1992 thor-

oughly and the reader is referred to that paper for background

(see also Valet, 2003). In the last decade, there have been

important contributions to both theory and experiment and

we will outline our current understanding here.

p0400 Placing a magnetic moment m in an applied field B results

in a torque G on the particle G¼m�B. The magnitude of the

torque is given by G¼mB sin y, where y is the angle between

the moment and the magnetic field vector. This torque is what

causes compasses to align themselves with the magnetic field.

The torque is opposed by the viscous drag and inertia and

the equation of motion governing the approach to alignment is

I
d2y
dt2

¼�l
dy
dt

�mBsiny [4]

where l is the viscosity coefficient opposing the motion of the

particle through the fluid and I is the moment of inertia.

Nagata (1961) solved this equation by neglecting the inertial

term (which is orders of magnitude less important that the

other terms) as

tan
y
2
¼ tan

yo
2
e �mBt=lð Þ [5]

where yo is the initial angle between m and B. He further

showed that by setting l¼8pr3� where r is the particle radius

and � is the viscosity of water (�10�3 kg m�1 s�1), the time

constant g of eqn [5] over which an initial yo is reduced to 1/e

of its value is

g¼ l
mB

¼ 6�

MB
[6]

where M is the volume normalized magnetization.

p0405Now we must choose values �,M, and B. As noted by many

authors since Nagata himself (see discussion by Tauxe et al.,

2006), plugging in reasonable values for �, M, and B and

assuming isolated magnetic particles, the time constant is

extremely short (ms). The simple theory of unconstrained rota-

tion of magnetic particles in water, therefore, predicts that

sediments with isolated magnetic particles should have mag-

netic moments that are fully aligned and insensitive to changes

in magnetic field strength. Yet even from the earliest days of

laboratory redeposition experiments (e.g., Johnson et al.,

1948; see Figure 11(a)), we have known that depositional

remanence (DRM Au23) can have a strong field dependence and

that DRMs are generally far less than saturation magnetizations

(�0.1%). Much of the research on DRM has focused on

explaining the strong field dependence observed for laboratory

redepositional DRM.

p0410The observation that DRM is usually orders of magnitude

less than saturation and that it appears to be sensitive to

changing geomagnetic field strengths implies that the time

constant of alignment is much longer than predicted by eqn

[6]. To increase g, one can either increase viscosity or decrease

magnetization.

p0415One can increase g by using the viscosity in the sediment

column (e.g., Denham and Chave, 1982) instead of the water

column. However, something must act to first disrupt the

alignment of particles prior to burial, so calling on changes in

viscosity is at best an incomplete explanation.

p0420There are several ways of increasing g by reducing the value
of M hence inhibiting the alignment in the first place. For

example, one could use values for M much lower than the

saturation magnetizations of common magnetic minerals

(e.g., Collinson, 1965; Stacey, 1972). However, even using

the magnetization of hematite, which is two orders of magni-

tude lower than magnetite, results in a time constant of align-

ment that is still less than a second.

p0425There are two mechanisms by which the time constant of

alignment can be reduced, which account for experimental

results of laboratory redeposition experiments: Brownian

motion and flocculation. Collinson (1965) called on Brownian

motion to disrupt the magnetic moments by analogy to
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paramagnetic gases. Reasonable parameter assumptions suggest

that particles smaller than about 100 nm will be affected by

Brownian motion suggesting a possible role in DRM of isolated

magnetite grains free to rotate in water. Furthermore, Yoshida

and Katsura (1985) presented experiments on themagnetization

of suspensions in response to applied fields that were entirely

consistent with a Brownian motion model. Flocculation was

fingered by Shcherbakov and Shcherbakova (1983) (see also

Katari and Bloxham, 2001) who noted that in saline environ-

ments, sedimentary particles tend to flocculate and that isolated

magnetic particles would be highly unlikely. When magnetic

moments are attached to nonmagnetic ‘fluff,’ it is the net mag-

netization of the floc that must be used in eqn [6], that is, much

smaller than the magnetization of the magnetic mineral alone.

p0430 The role of water chemistry (e.g., pH and salinity) has been

investigated by several authors since the early 1990s (Au24 Katari

and Tauxe, 2000; Lu et al., 1990; Tauxe et al., 2006; van

Vreumingen, 1993a,b). In Figure 11(b), we replot data from

one of the van Vreumingen experiments. The data were

obtained by depositing a synthetic mixture of kaolinite, illite,

and maghemite under various conditions of salinity. There is

an intriguing increase in intensity with small amounts of NaCl

followed by a dramatic decrease in intensity, which stabilizes

for salinities greater than about 4 ppt.

p0435 Both the increase and the decrease in intensity (solid line)

can be explained in terms of Brownianmotion and flocculation,

which is encouraged by increasing salinity. The initial increase in

intensity with small amounts of NaCl could be the result of the

maghemite particles adhering to the clay particles, increasing

viscous drag, hence reducing the effect of Brownianmotion. The

subsequent decrease in intensity with higher salinities could be

caused by building composite flocs with decreased net

moments, hence lowering the time constant of alignment. The

decrease in net moment with increasing flocculation was also

supported by the redeposition experiments of Lu et al. (1990),

Katari and Tauxe (2000), and Tauxe et al. (2006).

p0440 There are therefore two completely different systems when

discussing DRM: ones in which magnetic particles remain

isolated (e.g., freshwater lakes; see Figure 12(a)) and ones in

which flocculation plays a role (e.g., marine environments; see

Figure 12(b)). For the case of magnetite in freshwater, Brow-

nian motion may well be the dominant control on DRM

efficiency. In saline waters, the most important control on

DRM is the size of the flocs in which the magnetic particles

are embedded. In the following, we briefly explore these two

very different environments.

s0095107.4.1.1 Nonflocculating environments
p0445In freshwater, we expect to have isolated magnetic particles

whose magnetic moments would presumably be a saturation

remanence. The overwhelming majority of laboratory redepo-

sition experiments have been done in deionized water (e.g.,

Kent, 1973; Lovlie, 1974) and hence are in the nonflocculating

regime. However, only a few studies have attempted to model

DRM using a quantitative theory based on Brownian motion

(e.g., Collinson, 1965; King and Rees, 1966; Stacey, 1972;

Yoshida and Katsura, 1985). Here, we outline the theory to

investigate the behavior of DRM that would be expected from a

Brownian motion mechanism (henceforth a Brownian rema-

nent magnetization or BRM).

p0450To estimate the size of particles affected by Brownian

motion, Collinson used the equation

1

2
mBf2 ¼ 1

2
kT [7]

where f is the Brownian deflection about the applied field

direction (in radians), k is the Boltzmann constant

(1.38�10�23 J K�1), and T is the temperature in kelvin. The

effect of viscous drag on particles may also be important when

the magnetic moments of the particles are low (see Coffey et al.

(1996) for a complete derivation), for which we have

f2

d
¼ kT

4p�r3

where d is the time span of observation (say, 1 s). According to

this relationship, weakly magnetized particles smaller than

Comp. by: PPonraj Stage: Proof Chapter No.: 107 Title Name: TGP2RegularTrue
Date:23/7/14 Time:21:46:30 Page Number: 15

In
cl

in
at

io
n 

(°
)

Salinity (ppt)(b)(a)

M
 (1

0-5
 A

m
2 

kg
-1

)

In
te

ns
ity

 (m
A

 m
-1

)

70

60

50

40

30

20

10

0

70

60

50

40

30

0
B/Bo

0
0

5

10

15

20

25

30

4 8 12 4 8

Figure 11f0060 (a) Depositional remanence versus applied field for redeposited glacial varves. Bo was the field in the lab. Data from Johnson et al. (1948).
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about a micron will be strongly affected by Brownian motion.

Particles that have a substantial magnetic moment, however,

will be partially stabilized (according to eqn [7]) and might

remain unaffected by Brownian motion to smaller particle

sizes (e.g., 0.1 mm). In the case of isolated particles of magne-

tite, therefore, we should use eqn [7] and BRM should follow

the Langevin equation for paramagnetic gases, that is,

BRM

sIRM
¼ coth

mB

kT

� �
� kT

mB
[8]

p0455 To get an idea of how BRMs would behave, we first find m

from Mr (here, we use the results from micromagnetic model-

ing of Tauxe et al. (2002)). Then, we evaluate eqn [8] as a

function of B for a given particle size (see Figure 13(a)). We

can also assume any distribution of particle sizes (e.g., that

shown as the inset to Figure 13(b)) and predict BRM/sIRM for

the distribution (blue line in Figure 13(b)). It is interesting to

note that BRMs are almost never linear with the applied field

unless the particle sizes are very small.

p0460 BRMs would be fixed when the particles are no longer free to

move. The fixing of this magnetization presumably occurs dur-

ing consolidation, at a depth (knownas the lock-in depth)where

the porosity of the sediment reduces to the point that the parti-

cles are pinned (seeFigure 12(a)). Below that, themagnetization

may be further affected by compaction (e.g., Deamer and

Kodama, 1990) and diagenesis (e.g., Roberts, 1995).

s0100 107.4.1.2 Flocculating environments
p0465 DRM in flocculating environments (saline waters) has been

studied in the laboratory by Lu et al. (1990), van Vreumingen

(1993a,b), Katari and Tauxe (2000), and Tauxe et al. (2006)

and theoretically by Shcherbakov and Shcherbakova (1983),

Katari and Bloxham (2001), and Tauxe et al. (2006). We sum-

marize the current state of the theory in the following.

p0470Katari and Bloxham (2001) rearranged eqn [5] by replacing

time with settling distance l, a parameter that is more easily

measurable in the laboratory using the empirical relationship

of settling velocity to radius of Gibbs (1985). They got

tan
y
2
¼ tan

yo
2
exp �mBl=8:8p�r3:78

� �
[9]

p0475As in Nagata (1961), a magnetic moment m making an

initial angle yo with the applied field B will begin to turn

toward the direction of the magnetic field. After time t (or

equivalently, settling distance, l), the moment will make an

angle y with the field. Tauxe et al. (2006) showed that the

new coordinates of m (x0, y0, z0) are related to the initial values

(xo, yo, zo) by

x0 ¼ cosy, y0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�x2o
1 + z2o=y

2
o

� �
s

, and z0 ¼ y0
zo
yo

[10]

p0480From the preceding, we can make a simple numerical model

to predict the DRM for an initially randomly oriented assem-

blage of magneticmoments, after settling through l. For an initial

set of simulations, Tauxe et al. (2006) followed Katari and Blox-

ham, using the viscosity of water, m of 5 fAm2 (where femto

(f )¼10–15), and a settling length l of 0.2 m. In Figure 14(a) and

14(b), we show the predicted DRM curves as a function of

magnetic field and radius. We see that particles, in general, are

either nearly aligned with the magnetic field or nearly random

with only a narrow band of radii in between the two states for a

given value of B. Increasing B increases the size for which parti-

cles can rotate into the field, giving rise to the dependence of

DRM intensity on applied field strength. Taking a given particle
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size and predicting DRM as a function of the applied field

(Figure 14(b)) determines the opposite behavior for DRM

than the Brownian motion theory (Figure 13) in that the larger

the floc size, the weaker the DRM and also the more linear with

respect to the applied field. The theories of Brownian motion,

which predicts low DRM efficiency for the smallest particles

increasing to near saturation values for particles around 0.1 mm
and composite flocs theory, which predicts decreased
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saturation remanence. Redrawn from Tauxe L, Steindorf J, and Harris A (2006) Depositional remanent magnetization: Toward an improved theoretical
and experimental foundation. Earth and Planetary Science Letters 244: 515–529.
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DRM efficiency for larger floc sizes, can therefore explain the

experimental data of van Vreumingen (1993a,b) shown in

Figure 11(b).

p0485 The flocculation model of DRM makes specific predictions

that can in principle be tested if the model parameters can be

estimated or controlled. Tauxe et al. (2006) tested the theory

by dispersing natural sediments in settling tubes to which

varying amounts of NaCl had been introduced. Prior to dis-

persal, each specimen of mud was given a saturation IRM. They

measured DRM as a function of floc size (increasing salinity

enhanced floc size) and the applied field (see Figure 14(c)). In

general, their results suggest the following: (1) The higher the

NaCl concentration, the lower the net moment (confirming

previously published efforts); (2) the higher the salinity, the

faster the particles settled (a well-known phenomenon in

coastal environments; see, e.g., Winterwerp and Kestern,

2004); (3) the higher the applied field, the higher the DRM,

although a saturation DRM (sDRM) appears to be nearly

achieved in the 1 ppt NaCl set of tubes by 30 mT (Figure 14(c));

and (4) the relationship of DRM to B was far from linear

with applied field in all cases. Moreover, in the Katari and

Bloxham (2001) model of DRM, a single magnetic particle

is assumed to be embedded in each floc; hence, the mag-

netization of the flocs is independent of floc size. In this

view, the sDRM should equal the sum of all the individual

flocs, that is, sIRM in the case of these experiments. sDRM

was well below sIRM in all experiments (see, e.g., Figure 14(c))

and no Katari–Bloxham-type model can account for the

results.

p0490 Tauxe et al. (2006) modified the simple theory of Katari and

Bloxham (2001) by incorporating the understanding of floc-

culation from the extensive literature on the subject. In nature,

flocs are formed by coalescing of ‘fundamental flocs’ into

composite flocs. Each fundamental floc would have tiny mag-

netic particles adhering to them and would have the sIRM

imparted prior to settling. As the composite flocs grow by

chance encounters with other flocs, the net moment of the

composite floc will be the vector sum of the moments of the

fundamental flocs (see, e.g., inset to Figure 14(d)). They mod-

eled the magnetization of flocs as a function of floc radius

(assuming a quasispherical shape) through Monte Carlo sim-

ulation, an example of which is shown in Figure 14(d). By

choosing reasonable log-normal distributions of flocs for set-

tling tube, their model predicts the curves shown in Figure 14

(c), in excellent agreement with the redeposition data.

p0495 A critical aspect of the work of Van Vreumingen (1993a,b)

remained unexplained by the theoretical work of Tauxe et al.

(2006) and that was the dependence of the inclination on the

salinity (dashed line in Figure 11). To explain this, Mitra and

Tauxe (2009) reprised the idea of ‘plates and spheres’ of King

(1955) and incorporated it into the model of Tauxe et al.

(2006) using the numerical approximation of Heslop (2007).

Instead of using plates and spheres, however, Mitra and Tauxe

(2009) assumed a population of slightly elongate flocs with a

continuous size distribution (Figure 15). They separated the

sizes into two groups: one was small enough to respond

mainly to magnetic torques (group M) with a net moment

essentially parallel to the applied field and the other was con-

trolled by hydrodynamic torques (group H attaining hydrody-

namic stability while settling (with long axes on average

horizontal)). Group H magnetic moments attempt to align

with the field, but the net moment is biased shallow. When

the flocs become too large to maintain equilibrium with the

field, their net magnetization is essentially zero. Therefore, the

net magnetic declination of group H flocs tracks the field

azimuth, but the net inclination is near zero (Figure 15).

The net magnetic moments of both groups of flocs contribute

to the observed DRM (Figure 15). In reality, a floc is not

expected to behave according to the simple scheme of particles

aligning through action of a magnetic torque, as envisaged in

the model, but it would instead follow a complicated trajectory

under the simultaneous influence of magnetic and hydro-

dynamic torques (Heslop, 2007). However, the average

behavior of an ensemble of flocs can be approximated by this

simple conceptual model. Mitra and Tauxe (2009) used this

model to successfully simulate the laboratory results shown in

Figure 11(b).

s0105107.4.2 Postdepositional Processes

p0500It appears that by combining the effects of Brownian motion

for nonflocculating environments and a composite floc model

for flocculating environments, we are on the verge of a quan-

titative physical theory that can account for the acquisition of

depositional remanence near the sediment/water interface. At

some point after deposition, this DRM will be fixed because no

further physical rotation of the magnetic particles in response

to the geomagnetic field is possible. The depth at which

moments are pinned is called the lock-in depth. If lock-in

depth is selective and some magnetic particles would be fixed

while others remain free, there will be some depth (time)

interval over which remanence is fixed, resulting in some tem-

poral smoothing of the geomagnetic signal. Physical rotation

of particles in response to compaction can also change the

magnetic remanence. Other processes not involving post-

depositional physical rotation of magnetic particles including

‘viscous’ (in the sense of magnetic viscosity) remagnetization

and diagenetic alteration resulting in a chemical remanence

may also modify the DRM. All of these processes influence the

intensity of remanence and hamper our efforts to decipher the

original geomagnetic signal. We will briefly discuss the effects

specific to sediments in the following; chemical alteration and

viscous remagnetization effect both TRMs and DRMs and will

be addressed in Section 107.5.

p0505The ‘standard model’ of depositional remanence (DRM)

acquisition was articulated, for example, by Verosub (1977)

and Tauxe (1993). In this view, detrital remanence is acquired

by locking in different grains over a range of depths. This

phased lock-in leads to both significant smoothing and an

offset between the sediment/water interface and the fixing of

the DRM.Many practitioners of paleomagnetism still adhere to

this concept of DRM, which stems from the early laboratory

redeposition experiments, which were carried out under non-

flocculating conditions (see Section 107.4.1). Several studies

on natural marine sediments (e.g., deMenocal et al., 1990;

Kent and Schneider, 1995; Lund and Keigwin, 1994; see also

Channell et al., 2004) are frequently cited, which suggest a

high degree of mobility of magnetic particles after deposition

resulting in sedimentary smoothing and delayed remanence

acquisition.
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p0510 The work of deMenocal et al. (1990) called for a deep lock-

in depth of up to �16 cm for marine sediments based on a

compilation of deep-sea sediment records with oxygen iso-

topes and the Matuyama–Brunhes boundary (MBB). However,

Tauxe et al. (1996) updated the compilation with twice the

number of records and, using the same logic, concluded that,

on average, the magnetization is recorded within the top few

centimeters. This is supported by coincidence of 10Be produc-

tion peak and relative paleointensity low during the Iceland

Basin excursion in twoAu26 ODP cores from the Atlantic Ocean

(Knudsen et al., 2008).

p0515 Several papers have revived the deep lock-in debate (e.g.,

Bleil and von Dobeneck, 1999; Channell et al., 2004). The

former used a complicated lock-in model to explain results

not observed anywhere else (substantial reversely magnetized

intervals in apparently late Brunhes age equatorial sediments).

The latter noted that in North Atlantic drift deposits, the mid-

point of the MBB is ‘younger’ isotopically than records with

lower sedimentation rates, implying a deep lock-in. However,

drift deposits by nature collect sediments from a large catch-

ment area. A particular bit of plankton from the surface waters

of the North Atlantic will be transported along the bottom for

some time before it finds a permanent home in the drift. The

age offset between the isotopic (acquired at the surface) and

magnetic ages (acquired at the final point of deposition) obvi-

ates the need for a deep lock-in depth.

p0520The most quoted examples of significant smoothing in

natural sediments are those of Lund and Keigwin (1994) and

Kent and Schneider (1995). On close examination, the evi-

dence is weak. Lund and Keigwin (1994) postulated that the

PSV record of the Bermuda Rise, western North Atlantic Ocean,

was systematically subdued with respect to the PSV recorded in

Lake St. Croix stemming from the observed difference in sed-

iment accumulation rate, the Lake St. Croix record having been

deposited at a rate several times that of the Bermuda Rise

record. They suggested that smoothing the Lake St. Croix data

with a 10 or 20 cm moving average window reproduced the

Bermuda Rise data with high-frequency features smoothed out

and the amplitude of variation significantly reduced. However,

they ignored the age constraints available in the original

St. Croix record. Tauxe et al. (2006) showed that a substantially

better fit of the Bermuda data could be achieved when the

available age constraints are used and no smoothing was

required by the data.

p0525The study of Kent and Schneider (1995) showed three

records of relative paleointensity across the MBB and inter-

preted these in terms of sedimentary smoothing. These records

came from low and moderate sediment accumulation rates.

Hartl and Tauxe (1996) augmented the database of relative

paleointensity records spanning the MBB with additional ten

records obtained from a wide range of sediment accumulation

rates and showed that the single low sedimentation rate core of
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Figure 15f0080 Numerical simulation of how paleomagnetic intensity and inclination in sediments are affected by floc size. Lower: the solid blue and red
dashed lines represent floc distributions in simulated M and H groups, respectively, where M represents flocs that respond to magnetic torques and
H represents flocs that are dominated by hydrodynamic torques. A northward-directed applied field with 45� inclination and 45 mT intensity was
used for the simulations. In equal area projections of floc moments for the M (upper) and H (lower) groups, no distinction is made between hemispheres;
the lower plots are normalized by the maximum concentration of flocs. High and low concentrations are indicated by darker and lighter shading,
respectively, and homogeneity (or lack of alignment) of moment direction is indicated by midtone shading over the entire stereographic projection (as in
(c)). For the M group, small dark areas indicate that the majority of moments are well aligned with the applied field. Upper insets: schematic
representations of three cases. Left: blue dots and red squares in stereographic projections represent individual floc directions from the M and H groups,
respectively. The orange cross is the applied field direction. Right: blue and red arrows represent the recorded paleomagnetic inclinations for the
M and H groups. The black arrow is the resultant, and DI is the inclination flattening. (a) For small floc sizes, most flocs are in group M; few flocs are in
group H, and DI is small. (b) For larger floc sizes, more flocs are in group H and DI increases. (c) For the largest floc sizes, most flocs are in group H
and are so large that they are oriented randomly with respect to the field. The small number of group M flocs is sufficient for DI to become small.
The net magnetic moment decreases from (a) to (c) because of the less efficient alignment of increasingly larger flocs. Adapted from Roberts AP, Chang L,
Heslop D, Florindo F, and Larrasoaña J (2012) Searching for single domain magnetite in the “pseudo-single-domain” sedimentary haystack:
Implications of biogenic magnetite preservation for sediment magnetism and relative paleointensity determinations. Journal of Geophysical Research
117: B08104; Mitra R and Tauxe L (2009) Full vector model for magnetization in sediments. Earth and Planetary Science Letters 286: 535–545.
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Kent and Schneider (V16-58) most probably had a poorly

constrained timescale. Once again, little, if any, smoothing of

sedimentary paleointensity records is required.

p0530 As sediments lose water and consolidate, compaction can

have a strong effect on DRM intensity (e.g., Anson and

Kodama, 1987). Consolidation is a continuous process starting

from the sediment/water interface when sedimentary particles

first gel (see, e.g., Figure 12(b)) and continuing until the

sediment is completely compacted, perhaps as deep as hun-

dreds of meters. The effect on magnetic remanence depends on

volume loss during compaction, which depends largely on clay

content, so clay-rich sediments will have the largest effect.

p0535 Recently, Suganuma et al. (2010, 2011) revived again the

issue of lock-in depth and smoothing of remanence in post-

depositional processes. They found a lock-in depth of �15 cm

from within-core offsets of paleointensity minima at the

Matuyama–Brunhes polarity transition between normalized

remanence intensity and paleointensity estimated from cosmo-

genic nuclide 10Be in three sediment cores from the Pacific

Ocean with relatively low sedimentation rates, �20 m My�1

or less. Furthermore, they suggested that a Gaussian lock-in

function, in which the rate of remanence lock-in increases in

the middle of the lock-in zone, can explain the observation

that indicates relatively little smoothing of the geomagnetic

signals. When using an exponential lock-in function, which

was often used for simulating remanence acquisition with

sediment compaction and dewatering, the geomagnetic signals

are overly smoothed.

p0540 The inevitable conclusion from this section is that, despite

the long history of research in the matter, much remains

to be learned for remanent magnetization acquisition pro-

cesses of sediments. Nonetheless, sedimentary paleointensity

remains a useful tool in high-resolution Quaternary geochro-

nology, as summarized in a recent review by Roberts et al.

(2013).

s0110 107.4.3 Note on Aeolian Deposits

p0545 The theoretical and experimental foundations of relative

paleointensity studies have all been done on waterborne

sedimentary deposits. Nonetheless, it is clear that aeolian

sediments, in particular, loess, can retain an NRM that

appears to record the direction of the geomagnetic field

(e.g., Heller and Liu, 1982). Details of how the geomagnetic

field is impressed on loess deposits are not well known, but

mechanisms must include viscous remanence, pedogenic

modification (chemical remanence), and perhaps also a

remanence acquired at dry deposition and postdepositional

wetting (Spassov et al., 2003; Wang and Lovlie, 2010; Zhao

and Roberts, 2010). What controls the intensity of rema-

nence acquired during deposition of windblown dust is

unknown, yet there have been several attempts to use the

normalized remanence in loess as a proxy for geomagnetic

intensity variations (e.g., Liu et al., 2005; Pan et al., 2001;

Zhu et al., 1994). These studies rely heavily on the theoret-

ical and experimental work developed for water-lain sedi-

ments (see also Spassov et al., 2003); theoretical and

experimental efforts must be carried out for the mechanism

involved in remanence acquisition in loess.

s0115107.4.4 Normalization

p0550Until now, we have considered only how magnetic moments

behave when placed in a magnetic field and are allowed to

rotate freely. Paleointensity studies in sediments make the a

priori assumption that DRM is quasilinear with the applied

field (although as we have seen in the section on DRM theory,

that is only true under certain circumstances). However, we

have not yet considered the effect of changing the magnetic

content of the sediment, which of course will have a profound

effect on the intensity of the remanence. Such changes must

be compensated for through some sort of normalization pro-

cess (see, e.g., Kent, 1982). Methods of normalization were

reviewed thoroughly by King et al. (1983) and Tauxe (1993),

but there have been a few contributions to the subject pub-

lished since. Here, we briefly summarize the most commonly

used methods of normalization.

p0555Most studies use some easily measured bulk magnetic

parameters such as saturation remanence ( Johnson et al.,

1948), magnetic susceptibility (w, Harrison, 1966), and ARM

( Johnson et al., 1975), which will compensate for changes in

concentration of the magnetic minerals in a relatively crude

way. Levi and Banerjee (1976) proposed a more sophisticated

approach in which the natural remanence was partially demag-

netized as was the anhysteretic remanent normalizer to ensure

that the same coercivity fraction was used to normalize the

remanence as was carrying the NRM. Following up on this

line of reasoning, Tauxe et al. (1995) suggested that the NRM

be normalized by ARM in a manner similar to the KTT exper-

iments for thermal remanences using a technique known as

‘pseudo-Thellier’ normalization. King et al. (1983) reminded

us that ARM itself is a strong function of concentration with

higher magnetite concentrations being less efficient at ARM

acquisition than lower concentrations. As a result Au27, zones with

varying concentrations will be normalized differently (in effect,

different a’s in eqn [1]) and violate the fundamental assump-

tions of the method. More recently, Brachfeld and Banerjee

(2000) proposed a secondary correction for normalized inten-

sity that attempted to remove some of the nonlinear effects of

the normalization process. Tauxe andWu (1990) argued that if

the power spectrum of the normalizer was coherent with the

normalized remanence, the normalization process was insuffi-

cient. Constable et al. (1998) expanded on this idea, suggesting

that the normalizer most coherent with the remanence should

be used.

p0560One of the important implications of the composite

floc model of DRM of Tauxe et al. (2006) described in

Section 107.4.1 is that current methods of normalizing sedi-

mentary records for changes in magnetic grain size and concen-

tration do not account for changes in floc size and hence will be

only partially effective in isolating the geomagnetic contribution

to changes in DRM. This has practical implications in the role of

climate in influencing relative paleointensity records. For exam-

ple, changes in the clay content could well lead to differences in

flocculation, which in turn could influence paleointensity with

no observable change in the magnetic mineralogy apart from a

change in concentration. Other ‘stealth’ influences could be

miniscule changes in salinity of lakes, which could result in

profound changes in the paleointensity recorded, with no

means of detecting it. However, in stable Au28environments with
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only small changes in magnetic mineralogy and concentration,

we can only hope that the normalization procedures chosenwill

give records that are reasonably linear with the applied field.

p0565 Recently, it was revealed that magnetic mineral assemblages

of pelagic sediments are often dominated by biogenic magne-

tite (Roberts et al., 2012; Yamazaki and Ikehara, 2012). Varia-

tions in the relative proportion of biogenic and terrigenous

magnetic mineral components emerge as variations of ARM/

SIRM ratio (Au29 Yamazaki, 2012; Yamazaki and Ikehara, 2012),

reflecting differences in grain-size distribution. Normalized

intensities (with either ARM or IRM) sometimes correlate

with ARM/SIRM ratios (Hoffmann and Fabian, 2009; Xuan

and Channell, 2008a; Yamazaki et al., 2013), which suggests

that neither ARM nor IRM can compensate well for variations

in relative proportion of biogenic and terrigenous components

and that such sediments are not suitable for relative paleoin-

tensity estimation. Using a regional group of sediment cores,

Hoffmann and Fabian (2009) tried to correct for the influence

of lithologic variations including those appearing as ARM/

SIRM ratio variations.

s0120 107.5 Remagnetization

p0570 Theoretical treatment of how rocks get magnetized and how

that magnetization might be used for paleointensity studies

assume that the remanence was blocked either thermally

(Section 107.3) or depositionally (Section 107.4). Yet almost

no NRM remains completely unchanged for long. Thermody-

namics teaches us that all substances out of equilibrium with

their environments will approach equilibrium as the energy

available permits. Magnetic particles out of equilibrium with

the magnetic field in which they sit are subject to magnetic

viscosity. If they are out of chemical equilibrium, they will alter

chemically. The former results in the acquisition of a viscous

remanence and the latter a chemical one. These are discussed

in more detail in Chapter 102. We will briefly describe their

importance to paleointensity in the following.

s0125 107.5.1 Magnetic Viscosity

p0575 Returning to Figure 2, we see that magnetic moments can

respond to external fields even if the magnetic crystal itself is

fixed on timescales determined by themagnetic relaxation time

t. When the relaxation time is short relative to the time span of

observation, the magnetization is in equilibrium with the

external field and the particles are called ‘superparamagnetic.’

This means that magnetic particles have sufficient thermal

energy to overcome intervening energy barriers and flip their

magnetic moments from one easy direction to another. The

energy barrier is in part controlled by the external field, with a

lower threshold into the direction of the applied field than out

of it. Therefore, magnetic moments will tend to ‘pool’ in the

direction of the applied field.

p0580 The magnetization that is acquired in this isochemical,

isothermal fashion is termed viscous remanent magnetization.

With time, more and more grains will have sufficient thermal

energy to overcome anisotropy energy barriers and flip their

magnetizations to an angle more in alignment with the

external field. The lower the value of t, the quicker the

approach to equilibrium.

p0585According to eqn [2], relaxation time varies with external

factors such as temperature (as seen in Figure 2) and applied

field B and with factors specific to the magnetic particle such as

volume and its intrinsic resistance to changing external fields

reflected in its anisotropy constant K. In any natural substance,

there will be a range of values for t that could span from

seconds (or less) to billions of years. It is interesting to note

that a TRM is in effect the equilibrium magnetization (see, e.g.,

Yu and Tauxe, 2006) and TRMs will only be subject to mag-

netic viscosity if the field changes. DRMs, however, are typi-

cally one or two orders of magnitude less than the TRM that

would be acquired in the same field and hence are almost

never in equilibrium and therefore will nearly always be sub-

ject to viscous remagnetization, depending on the spectrum of

t values (see Kok and Tauxe, 1996a, for discussion).

s0130107.5.2 Chemical Alteration

p0590Geologic materials form in one environment (e.g., extruding

red hot from the mouth of a volcano!) and wind up in quite

different environments. Inevitably, they will break down as

part of the rock cycle. Magnetic minerals are no exception

and growth, alteration, and dissolution of magnetic minerals

change the original remanence. The magnetization that is fixed

by growth or alteration of magnetic minerals is termed chem-

ical remanent magnetization, and while this too is controlled

in part by the external magnetic field, the theory of how to

normalize CRM to retrieve the geomagnetic signal has never

been properly developed. In general, paleointensity studies

strive to recognize CRMs and exclude such remanences from

interpretation.

s0135107.6 Evaluating Paleointensity Data

s0140107.6.1 Thermally Blocked Remanences

p0595A well-done paleointensity experiment allows us to test (1)

whether the NRM was a single component magnetization, (2)

whether alteration occurred during laboratory reheating,

(3) whether blocking and unblocking were reciprocal, and

(4) whether the TRM is a linear function of the applied field.

Parameters can be calculated to provide measures of overall

quality (scatter about the best-fit line, distribution of temper-

ature steps, fraction of the NRM, etc.) of a given experiment.

Some useful parameters are listed for convenience in Table 1.

This subject has been debated rather intensely in the recent

literature (e.g., Biggin et al., 2003; Au30Kissel et al., 2004; Paterson

et al., 2010; Shaar and Tauxe, 2013; Tauxe and Staudigel,

2004), and it appears that as yet there is no consensus on

what constitutes a standard method for determining reliability.

This is a rapidly developing field, so stay tuned.

s0145107.6.2 Depositional Remanences

p0600How can sedimentary relative paleointensity data be judged?

Here are some thoughts:
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o0010 1. The NRM must be carried by a detrital phase of high mag-

netic stability. Furthermore, the portion of the natural rem-

anent vector used for paleointensity should be a single,

well-defined component of magnetization. The nature of

the NRM can be checked with progressive demagnetization

using AF and thermal techniques. Supplementary informa-

tion from hysteresis and rock magnetic experiments can

also be useful.

o0015 2. The detrital remanence must be an excellent recorder of the

geomagnetic field and exhibit no inclination error, and if

both polarities are present, the two populations should be

antipodal. The associated directional data should therefore

be plotted on equal area projections (or at least histograms

of inclination) whenever possible.

o0020 3. Large changes in concentration (more than about an order

of magnitude) and changes in magnetic mineralogy or

grain size should be minimized. These changes can be

detected with the use of biplots of, for example, IRM versus

w. Such biplots should be linear, with low scatter.

o0025 4. The relative paleointensity estimates that are coherent with

bulk rock magnetic and lithologic parameters should be

treated with caution. Coherence can be assessed using stan-

dard spectral techniques.

o0030 5. Records from a given region should be coherent within the

limits of a common timescale. Whenever possible, dupli-

cate records should be obtained and compared.

o0035 6. For a relative paleointensity record to have the maximum

utility, it should have an independent timescale. Many

deep-sea sediment records are calibrated using oxygen iso-

topic curves or magnetostratigraphic age constraints (or

both). Lake sediments are more difficult to date and rely

for the most part on radiocarbon ages.

s0150107.7 Current State of the Paleointensity Data

s0155107.7.1 Paleomagnetic Databases

p0635There has been an enormous effort in collecting and preserving

paleomagnetic data since the early 1960s (e.g., Irving, 1964),

but since the 1987 meeting of the IAGA in Vancouver, the

effort has been more concerted with seven IAGA-sponsored

databases. Absolute paleointensities have been assembled in

a series of compilations by Tanaka and Kono (1994), Tanaka

et al. (1995a,b), Perrin and Shcherbakov (1997), Perrin et al.

(1998), Perrin and Schnepp (2004), Tauxe and Yamazaki

(2007), and Biggin (2010) Au31. In their assessment of the most

recent release of the absolute paleointensity database, Perrin

and Schnepp (2004) stated:

dq0010For the future, a harmonization or a combination of all IAGA

databases would be desirable. Furthermore, the input of raw data

at the specimen level would be useful in order to allow reinterpre-

tation of data with more developed and sophisticated methods

based on our increasing understanding of rock magnetism.

p0640In order to address this widely felt sentiment, the MagIC

database was created and is accessible at http://earthref.org/

MAGIC/. This database has merged several of the existing

IAGA databases and allows for data ranging from original

magnetometer output (including magnetometer, hysteresis,
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Table 1t0010 Parameters

Parameter Name Definition/notes References

jbj Best-fit slope Slope of pTRM acquired versus NRM remaining Coe et al. (1978)
Banc Ancient field estimate jbj times the laboratory field Coe et al. (1978)
b Scatter parameter Standard error of the slope over jbj Coe et al. (1978)
Q Quality factor Combines several parameters Coe et al. (1978)
VDS Vector difference sum Sum of vector differences of sequential demagnetization steps Tauxe (1998)
Fvds Fraction of the total NRM Total NRM is VDS Tauxe and Staudigel

(2004)
di pTRM check Difference between pTRM at pTRM check step at TiAu7 Tauxe and Staudigel

(2004)
Tmax Maximum blocking

temperature
Highest step in calculation of jbj Tauxe and Staudigel

(2004)
DRATS Difference ratio sum

P
di normalized by pTRM (Tmax) Tauxe and Staudigel

(2004)
NpTRM Number of pTRM checks Below Tmax Tauxe and Staudigel

(2004)
Di pTRM tail check Difference between NRMs remaining after the first and second zero-field

steps
Tauxe and Staudigel
(2004)

MD% Percent maximum difference 100� maximum value of Di/VDS Tauxe and Staudigel
(2004)

T Orientation matrix Matrix of sums of squares and products of demagnetization data Tauxe (1998)
ti Eigenvalues of T t1>t2>t3 Tauxe (1998)
Vi Eigenvectors of T Best-fit direction is V1 Tauxe (1998)
MAD Maximum angle of deviation tan�1(√ (t22+t32)/t1) Kirschvink (1980)
DANG Deviation angle Angle between origin and V1 Tauxe and Staudigel

(2004)

Source: Tauxe L (2006) Long term trends in paleointensity: The contribution of DSDP/ODP submarine basaltic glass collections. Physics of the Earth and Planetary Interiors

244: 515–529.
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thermomagnetic, susceptibility, and other measurements) and

their interpretations. Detailed descriptions of the data are pos-

sible by using ‘method codes.’ The database is constantly

updated to include data as they are published and existing

entries are inspected for errors and corrected. The absolute

paleointensity database can be accessed through the MagIC

website by searching on the method code ‘LP–PI–TRM’ (lab

protocol–paleointensity–thermal remanence). The search

for data for the period from 50 ka to 200 Ma can be retrieved

at http://earthref.org/MAGIC/search#1382302391017. We

will call this PINT13 in the following.

p0645 The data in the databases include information on geo-

graphic location (see map of data locations in Figure 16(a)),

rock type and age of the sampling sites, type of paleointensity

experiment, the remanence vector (including direction if avail-

able), and summary statistics such as the standard deviation of

replicate specimens from a given cooling unit. In many cases,

the database includes even the measurement data. If no mea-

surement data are available, we may know that, for example,

pTRM checks were performed (e.g., studies with pTRM listed

under alteration check), but we do not know whether they

‘passed’ any particular criterion. The only reliability criterion

included is the standard deviation of the replicate measure-

ments from a given cooling unit. Because there are many

useful reliability criteria for judging paleointensity data (see

Section 107.6), efforts should be made to update the contri-

butions in the MagIC database to include as many of these as

are available.

p0650Perrin and Schnepp (2004) ably summarized the character-

istics of the PINT03 database and we will not repeat their

analysis here. Nonetheless, it is useful to reiterate that most

of the data come from the last million years and are from the

northern hemisphere. The temporal bias is particularly egre-

gious when only the most ‘reliable’ data are used (i.e., that

employed TRM normalization with pTRM checks).

p0655There was no IAGA database for relative paleointensity data

(except those included in the TRANS database) prior to the

compilation of Tauxe and Yamazaki (2007). As a step toward

rectifying this problem, they summarized the published litera-

ture with relative paleointensity data in Table 2. Locations of

records are shown in Figure 16(b). There are data from nearly

100 references and contributed them to the MagIC database

(obtainable individually through the original reference or col-

lectively through this reference). We refer to this compilation
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Table 2t0015 Summary of relative paleointensity records

Record Latitude/
longitude

Age range Dating
methods

Comp. TS References

10-pc03a �47/6 23–115 ka RPI Stoner et al. (2002) Martinson et al. (1987) Channell and Kleiven (2000),
Stoner et al. (2002)

1010a 30/�118 19–2036 ka POL, MS Guyodo and Valet
(2006)

Bassinot et al. (1994),
Cande and Kent
(1995)

Hayashida et al. (1999),
Leonhardt et al. (1999)

1021a,b 39/�128 13–1562 ka POL Guyodo and Valet
(1999)

Cande and Kent
(1995), Bassinot
et al. (1994)

Guyodo et al. (1999),
Leonhardt et al. (1999)

1089a �41/10 20–578 ka d18O Stoner et al. (2002) Martinson et al. (1987) Stoner et al. (2003)
1092 �46/7 5.9–3.5 Ma POL Cande and Kent (1995) Evans and Channell (2003)
1101a,b �64/�70 706–1105 ka POL,

MS,
d18O

Guyodo and Valet
(2006)

Cande and Kent
(1995), Shackleton
et al. (1990)

Guyodo et al. (2001)

21-pc02a �41/8 0–81 ka d18O Stoner et al. (2002) Martinson et al. (1987) Channell and Kleiven (2000),
Stoner et al. (2002, 2003)

305-a5a 53/106 0–11 ka Martinson et al. (1987) Peck et al. (1996)
337-t2a 53/106 13–84 ka RPI Martinson et al. (1987) Peck et al. (1996)
4-pc03a �41/10 9–44 ka RPI Stoner et al. (2002) Martinson et al. (1987) Channell and Kleiven (2000),

Stoner et al. (2002)
5-pc01a �41/10 8–64 ka RPI Stoner et al. (2002) Martinson et al. (1987) Channell and Kleiven (2000),

Stoner et al. (2002)
522a �26/�5 22.8–34.7 Ma POL Cande and Kent (1995) Tauxe and Hartl (1997)
606aa 37/323 773–792 ka POL Hartl and Tauxe

(1996)
Cande and Kent (1995) Clement and Kent (1986)

609ba 50/336 777–825 ka POL Hartl and Tauxe
(1996)

Cande and Kent (1995) Hartl and Tauxe (1996)

664da 0/336 670–807 ka POL Hartl and Tauxe
(1996)

Cande and Kent (1995) Valet et al. (1989

665aa 3/340 770–817 ka POL Hartl and Tauxe
(1996)

Cande and Kent (1995) Valet et al. (1989

767a,b 5/124 601–1518 ka POL Guyodo and Valet
(2006)

Cande and Kent (1995) Guyodo and Valet (2006),
Schneider et al. (1992)

767ba 5/124 759–829 ka POL Guyodo and Valet
(2006)

Cande and Kent (1995) Guyodo and Valet (2006),
Schneider et al. (1992)

768aa 8/121 5–94 ka d18O, 14C Guyodo and Valet
(1999)

Linsley and Thunnell
(1990), Tiedemann
et al. (1994)

Schneider and Mello (1996)

768ba 8/121 9–130 ka d18O, 14C Guyodo and Valet
(1999)

Linsley and Thunnell
(1990), Tiedemann
et al. (1994)

Schneider and Mello (1996)

769a 9/121 5–831 ka d18O, 14C Guyodo and Valet
(1999)

Linsley and Thunnell
(1990), Shackleton
et al. (1990),
Tiedemann et al.
(1994)

Schneider (1993), Schneider
and Mello (1996)

803aa,b 2/161 783–2178 ka POL Guyodo and Valet
(2006)

Cande and Kent (1995) Kok and Tauxe (1999)

803ba,b 2/161 1487–2786 ka POL Guyodo and Valet
(2006)

Cande and Kent (1995) Kok and Tauxe (1999)

804ca 1/161 1448–1470 ka POL Hartl and Tauxe
(1996)

Cande and Kent (1995) Hartl and Tauxe (1996)

805ba 1/160 770–821 ka POL Hartl and Tauxe
(1996)

Cande and Kent (1995) Hartl and Tauxe (1996)

848–851a 2/�110 34–4035 ka POL Guyodo and Valet
(1999)

Cande and Kent (1995) Valet and Meynadier (1993)

877a 54/�148 9.4–11.3 Ma POL Cande and Kent (1995) Bowles et al. (2003)
882b 50/168 0–200 ka � Shackleton et al.

(1990)
Okada (1995)

(Continued)

TGP2: 00107
24 Paleointensities

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier and
typesetter SPi. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.



Comp. by: PPonraj Stage: Proof Chapter No.: 107 Title Name: TGP2RegularTrue
Date:23/7/14 Time:21:46:35 Page Number: 25

Table 2 (Continued)

Record Latitude/
longitude

Age range Dating
methods

Comp. TS References

883 51/168 15–200 ka d18O Shackleton et al.
(1990)

Roberts et al. (1997)

884 51/168 15–200 ka MS Shackleton et al.
(1990)

Roberts et al. (1997)

884a,b 51/168 9.9–10.3 Ma POL Cande and Kent (1995) Roberts and Lewin-Harris
(2000)

983a,b 60/�24.1 0–1889 ka POL,
d18O

Guyodo and Valet
(2006), Laj et al.
(2000)

Cande and Kent
(1995), Shackleton
et al. (1990)

Channell (1999), Channell et al.
(1997, 1998, 2000, 2002,
2004)

984a,b 60.4/�23.6 0–2151 ka POL,
d18O

Cande and Kent
(1995), Shackleton
et al. (1990)

Channell et al. (1998, 2002,
2004)

Chewaucan 43/�121 65–102 ka 14C, ThL Roberts et al. (1994)
Sed-17aKa 25/�17 9–224 ka d18O 1984 Haag (2000)
ch88-10pa 30/�73 10–70 ka Martinson et al. (1987) Schwartz et al. (1996)
ch88-11p 31/�74 10–70 ka � Martinson et al. (1987) Schwartz et al. (1996)
ch89-1p 31/�75 12–71 ka � Martinson et al. (1987) Schwartz et al. (1998)
con-01-603-2 54/109 10–200 ka POL,

14C, �
Demory et al. (2005)

con-01-604-2 52/106 0–60 ka ARM Demory et al. (2005)
con-01-605-3 52/105 0–40 ka ARM Demory et al. (2005)
ded8707a 40/14 10–60 ka ash Guyodo and Valet

(1999)
1984 Tric et al. (1992)

ded8708 40/14 40–80 ka ash 1984 Tric et al. (1992)
e113pa,b �2/159 4–380 ka d18O Guyodo and Valet

(2006)
Bassinot et al. (1994) Tauxe and Wu (1990)

hu90-013-012 59/�47 10–110 ka RPI,
d18O,
14C

Stoner et al. (1995)

hu90-013-013 58/�48 10–110 ka RPI, 14C Stoner et al. (1995)
hu91-045-094 50/�45 10–110 ka RPI,

d18O,
14C

Stoner et al. (1995)

ket8251a 40/14 8–95 ka ash Guyodo and Valet
(1999)

1984 Tric et al. (1992)

kh73-4-7 3/165 0–2000 ka POL Sato and Kobayashi (1989)
kh73-4-8 2/168 0–2000 ka POL Sato and Kobayashi (1989)
kh90-3-5 4/160 32–1159 ka POL Cande and Kent (1995) Sato et al. (1998)
kk78-030a 19/�161 601–1785 ka POL Guyodo and Valet

(2006)
Cande and Kent (1995) Laj et al. (1996a,b)

kr9912-pc2a �11/�163 1003–3000 ka POL,
ARM

Cande and Kent
(1995), Lisiecki and
Raymo (2005)

Yamazaki and Oda (2005)

kr9912-pc4a �13/�162 2002–2845 ka POL Cande and Kent
(1995), Lisiecki and
Raymo (2005)

Yamazaki and Oda (2005)

kr9912-pc5a �9/�163 1295–2118 ka POL Cande and Kent
(1995), Lisiecki and
Raymo (2005)

Yamazaki and Oda (2005)

ks87-752a,b �38/�38 311–1023 ka POL, MS Guyodo and Valet
(1999)

Cande and Kent (1995) Valet et al. (1994)

lc07a 38/10 754–1033 ka POL, � Guyodo and Valet
(2006)

Shackleton et al.
(1990)

Dinares-Turell et al. (2002)

ldba 45/4 20–308 ka MS, 14C Dansgaard et al.
(1993)

Thouveny et al. (1994),
Williams et al. (1998)

Massicore 44/14 32–35 Ma POL Cande and Kent (1995) Lanci and Lowrie (1997)
md01-2440 38/�11 2–400 ka RPI, MS Martinson et al. (1987) Thouveny et al. (2004)
md01-2441 38/�11 30–54 ka RPI, MS Martinson et al. (1987) Thouveny et al. (2004)

(Continued)
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Table 2 (Continued)

Record Latitude/
longitude

Age range Dating
methods

Comp. TS References

md84-528 �42/53 15–80 ka d18O 1984 Tric et al. (1992)
md84-629 36/33 15–62 ka d18O 1984 Tric et al. (1992)
md85-668a 0/46 21–187 ka d18O Guyodo and Valet

(1999)
Martinson et al. (1987) Meynadier et al. (1992)

md85-669a 2/47 20–138 ka RPI Guyodo and Valet
(1999)

Martinson et al. (1987) Meynadier et al. (1992)

md85-674a 3/50 18–138 ka RPI Guyodo and Valet
(1999)

Martinson et al. (1987) Meynadier et al. (1992)

md90-0940a 6/62 108–1954 ka POL,
MS,
fossils

Guyodo and Valet
(1999)

Cande and Kent (1995) Meynadier et al. (1994)

md95-2009a 63/�4 10–76 ka ARM Laj et al. (2000) Grootes and Stuiver
(1997)

Kissel et al. (1999), Laj et al.
(2000)

md95-2024a 50/�46 1–117 ka MS,
d18O

Stoner et al. (2000) Bender et al. (1994) Stoner et al. (2000)

md95-2034a 34/�58 12–76 ka ARM Laj et al. (2000) Grootes and Stuiver
(1997)

Kissel et al. (1999), Laj et al.
(2000)

md95-2039 40/�10 0–320 ka d18O, 14C Martinson et al. (1987) Thouveny et al. (2004)
md95-2042 40/�10 32–160 ka d18O, 14C Martinson et al. (1987) Thouveny et al. (2004)
md97-2140a,b 2/142 568–1465 ka POL Cande and Kent (1995) Carcaillet et al. (2003)
md97-2143a,b 16/125 601–2226 ka POL,

d18O
Guyodo and Valet
(2006)

Cande and Kent
(1995), Laskar et al.
(1993)

Horng et al. (2003)

md98-2181a 6/126 12–660 ka d18O, 14C Sowers et al. (1993) Stott et al. (2002)
md98-2183a,b 2/135 20–1193 ka POL,

MS,
ARM

Yamazaki and Oda
(2005)

Cande and Kent
(1995), Lisiecki and
Raymo (2005)

Yamazaki and Oda (2005)

md98-2185a,b 3/134 9–2256 ka POL,
MS,
ARM

Guyodo and Valet
(2006)

Cande and Kent
(1995), Lisiecki and
Raymo (2005)

Yamazaki and Oda (2005)

md98-2187a,b 4/135 51–3053 ka POL,
MS,
ARM

Cande and Kent
(1995), Lisiecki and
Raymo (2005)

Yamazaki and Oda (2005)

md99-2334 38/�11 0–38 ka RPI Martinson et al. (1987) Thouveny et al. (2004)
ngc16a 2/135 2–191 ka MS Guyodo and Valet

(1999)
Martinson et al. (1987) Yamazaki and Ioka (1994)

ngc26a 3/135 1–120 ka MS Guyodo and Valet
(1999)

Martinson et al. (1987) Yamazaki and Ioka (1994)

ngc29a 4/136 2–192 ka MS Guyodo and Valet
(1999)

Martinson et al. (1987) Yamazaki and Ioka (1994)

ngc36a �1/161 1–546 ka d18O Guyodo and Valet
(1999)

1984,Bassinot et al.
(1994)

Yamazaki et al. (1995)

ngc38a �15/175 9–406 ka d18O Guyodo and Valet
(1999)

1984, Bassinot et al.
(1994)

Yamazaki et al. (1995)

ngc65a 35/175 6–635 ka S Bassinot et al. (1994) Yamazaki (1999)
ngc69a,b 40/175 7–881 ka S Bassinot et al. (1994) Yamazaki (1999)
np35a 4/141 127–798 ka d18O Guyodo and Valet

(1999)
1984, Bassinot et al.
(1994)

Yamazaki et al. (1995)

np5a 1/137 8–196 ka d18O Guyodo and Valet
(1999)

Martinson et al. (1987) Yamazaki and Ioka (1994)

np7a 2/138 6–199 ka MS Guyodo and Valet
(1999)

Martinson et al. (1987) Yamazaki and Ioka (1994)

p012a 59/�47 14–177 ka RPI Guyodo and Valet
(1999)

Guyodo and Valet
(1999)

Stoner et al. (1998)

p013a 58/�48 14–277 ka RPI Guyodo and Valet
(1999)

Guyodo and Valet
(1999)

Stoner et al. (1998)

p094a 50/�46 2–111 ka RPI Guyodo and Valet
(1999)

Guyodo and Valet
(1999)

Stoner et al. (1998)

(Continued)
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Table 2 (Continued)

Record Latitude/
longitude

Age range Dating
methods

Comp. TS References

p226a 3/�170 41–780 ka POL Guyodo and Valet
(1999)

Cande and Kent (1995) Yamazaki et al. (1995)

ps1535-10 79/2 0–100 ka 14C Nowaczyk et al. (2003)
ps1535-6 79/2 0–100 ka 14C Nowaczyk et al. (2003)
ps1535-8 79/2 0–100 ka 14C Nowaczyk et al. (2003)
ps1707-2 73/�14 0–80 ka MS Martinson et al. (1987) Nowaczyk and Antonow (1997)
ps1852-2a 70/�16 4–283 ka MS 1984,Martinson et al.

(1987)
Nowaczyk and Frederichs
(1999)

ps1878-3 73/�9 0–100 ka 14C Nowaczyk et al. (2003)
ps1878-3 73/�10 0–45 ka d18O, 14C Martinson et al. (1987) Nowaczyk and Antonow (1997)
ps2138-1 82/31 10–75 ka d18O, 14C Nowaczyk and Knies (2000)
ps2644-5a 68/�22 12–76 ka ARM Laj et al. (2000) Grootes and Stuiver

(1997)
Kissel et al. (1999), Laj et al.
(2000)

rc10-167a 33/150 11–781 ka POL Guyodo and Valet
(1999), Hartl and
Tauxe (1996)

Cande and Kent (1995) Kent and Opdyke (1977)

rndb75pa 2/160 124–668 ka d18O Guyodo and Valet
(1999)

1984,Shackleton et al.
(1990)

Tauxe and Shackleton (1994)

su90-24a 63/�37 11–76 ka ARM Laj et al. (2000) Grootes and Stuiver
(1997)

Kissel et al. (1999), Laj et al.
(2000)

su90-33a 60/�22 12–76 ka ARM Laj et al. (2000) Grootes and Stuiver
(1997)

Kissel et al. (1999), Laj et al.
(2000)

su9003 41/�32 10–240 ka Color Pisias et al. (1984) Weeks et al. (1995)
su9004 41/�32 0–240 ka Color Pisias et al. (1984) Weeks et al. (1995)
su9008 44/�30 10–180 ka d18O Pisias et al. (1984) Weeks et al. (1995)
su9039 52/�22 0–240 ka d18O Pisias et al. (1984) Weeks et al. (1995)
su92-17a 39/�27 4–280 ka Color Martinson et al. (1987) Lehman et al. (1996)
su92-18a 38/�27 4–280 ka d18O Guyodo and Valet

(1999)
Martinson et al. (1987) Lehman et al. (1996)

su92-19a 38/�27 4–279 ka Color Guyodo and Valet
(1999)

Martinson et al. (1987) Lehman et al. (1996)

v16-58a �46/30 767–770 ka POL Hartl and Tauxe
(1996)

Cande and Kent (1995) Kent and Schneider (1995)

ver98-1-1 53/108 20–60 ka ARM Demory et al. (2005)
ver98-1-14 54/108 0–350 ka ARM Demory et al. (2005)
ver98-1-3 54/108 50–250 ka ARM Demory et al. (2005)
ver98-1-6a 54/108 65–235 ka Silica Martinson et al. (1987) Oda et al. (2002)
Kotsiana 36/24 – Laj et al. (1996b)
Lingtaia 35/107 10–73 ka MS, 14C,

ThL
Pan et al. (2001)

Potamida 36/24 – Laj et al. (1996b)
lra,b 43/13 90–94.9 Ma POL,

fossils
Stratigraphy (2004) Cronin et al. (2001)

WEGAstack �65/144 0–800 ka RPI, 14C,
fossils

Macri et al. (2005)

MBstacka 3/162 32–1159 ka POL Guyodo and Valet
(2006)

Cande and Kent (1995) Sato et al. (1998)

PMstacka 39/10 0–402 ka RPI,
d18O,
14C

Martinson et al. (1987) Thouveny et al. (2004)

NAstacka 45/�25 10–250 ka d18O Pisias et al. (1984) Weeks et al. (1995)

aSubmitted to the MagIC database.
bAges recalculated.

Dating methods: RPI: relative paleointensity; POL: polarity stratigraphy; MS: correlation of magnetic susceptibility; ARM: correlation of ARM; carb.: correlation of calcium

carbonate; ash: tephrostratigraphy; color: correlation of color; d18O: oxygen isotopes; 14C: radiocarbon; �: correlation of some unspecified wiggle; ThL: thermoluminescence; S:

correlation of high to low coercivity IRM; silica: correlation of silica variations; fossil: correlation based on fossils.
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of relative paleointensity data as SEDPI06 in the following.

Authors are encouraged to contribute or augment their own

data in the database. In Section 107.8, we will discuss the

highlights of the available paleointensity data from both the

PINT13 (absolute) and SEDPI06 (relative) compilations.

Before we discuss the global data set, we will first describe

methods of converting to virtual dipole moment (VDM).

s0160 107.7.2 Conversion to VDM

s0165 107.7.2.1 Absolute paleointensity data
p0660 The intensity of the magnetic field varies by a factor of two

from equator to pole simply as a result of a dipole source, so

data from different latitudes must be normalized to take this

inherent dipole variation into account. In the following, we

discuss methods for converting intensities to ‘virtual dipole

moments’ in both absolute and relative paleointensity

data sets.

p0665 There are several ways to calculate equivalent dipole

moments for paleointensity data. Early studies tended to pre-

sent a given intensity result as a ratio with some expected field.

For example, Thellier and Thellier (1959) normalized intensity

data to a reference inclination of 65�, using the paleomagnet-

ically determined inclination and the relationship between

inclination and field strength expected from amagnetic dipole.

Most studies published over the last few decades, however,

express paleointensity in terms of the equivalent geocentric

dipole moment, which would have produced the observed

intensity at that (paleo)latitude. There are two ways in which

this is done, the VDM (Figure 17(a)) and the virtual axial

dipole moment (VADM; Figure 17(b)). The VDM (Smith,

1967) is the moment of a geocentric dipole that would give

rise to the observed magnetic field vector at location P. (The

piercing point on the surface of the globe of this moment is the

virtual geomagnetic pole or VGP.) To get the VDM, we first

calculate the magnetic (paleo)colatitude ym from the observed

inclination I and the so-called dipole formula (tan I¼2cot ym).
Then, assuming a centered (but not axial) magnetic dipole

with moment VDM, we have

VDM¼ 4pr3

mo
Banc 1 + 3cos2ym

� ��1=2
[11]

p0670The VDM calculation requires a good estimate for the incli-

nation, which is not always available, especially when unor-

iented specimens are used. In such cases, it may be possible to

use either the site (co)latitude or a paleo(co)latitude estimated

by a plate reconstruction in the place of magnetic colatitude in

eqn [11]. This moment is known as the virtual axial dipole

moment (Barbetti, 1977 Au32).

p0675In order to compare the two forms of normalization, we

selected data from the PINT13 database for the last 200 My

that (1) were obtained with thermal normalization and used

pTRM checks and (2) had multiple specimens that had stan-

dard deviations <15% of the mean or were less than 5 mT. We

estimated paleolatitudes for the sampling sites using the global

apparent polar wander paths of Besse and Courtillot (2002)

and used these to calculate VADMs for many sites. We show the

two estimates of dipole moment in Figure 17(c); the two are

essentially equivalent representations.

p0680It is important to note here that neither VDMs nor VADMs

actually represent the true dipole moment (see Korte and

Constable, 2005). They do not take into account the rather

substantial effect of the nondipole field contributions and in

fact overestimate the true dipole moment based on an evalua-

tion of data for the last 7000 years.

s0170107.7.2.2 Relative paleointensity data
p0685Sedimentary paleointensity data are at best ‘relative’ paleoin-

tensity. Nonetheless, several studies have attempted to cali-

brate relative paleointensity data into a quasiabsolute form

and cast them as ‘VADMs’ in order to compare them with the

igneous data sets. There are different strategies for accomplish-

ing this conversion (see Figure 18): setting the ‘floor’ to some

minimum value expected for the field (Constable and Tauxe,

1996), setting parts of the sedimentary record to be equal to

coeval igneous records (e.g., Guyodo and Valet, 1999; Valet

et al., 2005), and setting the mean value to be some assumed

value.
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p0690 In the Constable and Tauxe (1996) method, the nonaxial

dipole field is assumed to be on average 7.5 mT as it is for the

present field. Reasoning that because the axial dipole must go

through zero in a polarity transition, the average transitional

field should be about 7.5 mT. Figure 18(a) illustrates an appli-

cation of this method to calibrate the Oligocene relative

paleointensity data from DSDP Site 522 of Tauxe and Hartl

(1997; see Table 2) into VADM values. Setting the average

value of the intensity in transitional records (red square in

Figure 18(a)) to a value of 7.5 mT calibrates the entire record

to B* in mT. Assuming a paleolatitude of 32� S allows these B*
values to be converted to VADM values using eqn [11]. The

problem with this method is that it is extremely sensitive to the

choice of the nonaxial dipole field ‘floor’ value, which is not

known for ancient times. Small changes in the choice of floor

result in large changes for the calibrated record. Channell et al.

(2009) followed Constable and Tauxe (1996) for calibrating

their PISO-1500 stack, which covers for the last 1.5 My with

sediment cores of relatively high sedimentation rates mainly

from the North Atlantic Ocean.

p0695 A different approach was taken by Guyodo and Valet (1999)

who collected together many relative paleointensity records

spanning the last 800 ky (Guyodo and Valet, 1999). The ‘SINT-

800’ stack (see Figure 18(b)) overlapped a sequence of absolute

paleointensity data whose ages were well known (red dots).

These absolute data were used to calibrate the SINT-800 stack

into VADM. Valet et al. (2005) extended the relative paleointen-

sity stack to span the last 2 My (see Figure 18(c)). In this latest

version, known as the SINT-2000 stack (a subset of the records

compiled in Guyodo and Valet (2006)), they took the global

paleointensity data in the PINT03 database (with no selection

criteria) and averaged them in 100000-year bins (red dots).

These were used to convert the SINT-2000 stack to VADMvalues.

The two calibrations are somewhat different, with the latter

version being higher on average. Ziegler et al. (2011) also com-

bined relative and absolute paleointensity data but in a different

way; they constructed the PADM2M time-varying axial dipole

intensity model over the last 2 My based on a penalized maxi-

mum likelihood inversion procedure using a joint set of absolute

paleointensity data and relative paleointensity time series.

p0700Because amplitudes of relative paleointensity records must

be related to latitude, it is preferable to convert individual

records to VADM prior to stacking, instead of stacking first

and then converting to VADM. However, the ‘floor setting’

method of Constable and Tauxe (1996) required transitional

data, which are not always available, and has severe drawbacks

of its own as mentioned before.

s0175107.8 Discussion

p0705In the following, we will discuss some of the ‘hot topics’ in

paleointensity. The issues for many of these are still under

debate and conclusions are still tentative. Nonetheless, the

spirit of this volume is to present the ‘state of the field’ and

we will endeavor to do so.

s0180107.8.1 Selection Criteria from the PINT13 Database

p0710For the purpose of this discussion, we plot all the available data

from the PINT13 database as white triangles and those that had

standard deviations either �5 mT or 15% of the mean as green
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triangles in Figure 19. Data that came from submarine basaltic

glass are marked as red circles, while those from single crystals

are blue squares. Following the treatment of Tauxe et al.

(2013), we calculate median values for 5 My bins for bins

with at least ten reliable data points (green triangles); these

are shown as stars. The median value of all the median values is

42 ZAm2 (shown as the solid cyan line) and the present field

value is shown as the dashed magenta line.

p0715 There are a total of 4475 cooling unit averages with an

estimate for either VADM or VDM, of which 2887 meet the

cooling unit consistency test applied here. The median value of

all results from the last 140 Ma is 42 ZAm2 (‘Z’ stands for Zetta

(1021)). We have deliberately chosen a very loose standard for

acceptance as there is no agreement in the community as to

what constitutes a ‘reliable’ result and it is not clear that,

without the original measurement data, an intelligent selection

can be made.

p0720 As an example of the problem of data selection, there are a

total of 3328 cooling unit averages with checks of alteration

during the experiment (method code of ‘LP–PI–ALT’) and the

rest have no such test. The two data sets are plotted as cumu-

lative distributions in Figure 20. One might expect a significant

difference between the two distributions, but, in fact, there is

no statistical difference between the two. This does not mean

that experimental design makes no difference; the discussion

of theory makes it quite clear that many things can give an

erroneous result and these things should be tested for. The

problem is that there is insufficient information in the data-

base to make a meaningful selection.

p0725 The difficulty with the published data as a whole becomes

apparent when we plot the intensity data from the last 5 My

against latitude (Figure 21). Stars are median values in 10�

latitudinal bins, and the intensity at each latitude expected

from the median dipole moment of 61 ZAm2 for the same

interval is shown as the cyan line. The overall fit of the paleoin-

tensity data shown in Figure 21 to a dipole field is poor as

pointed out by Lawrence et al. (2009). Reasons for the failure

of the dipole hypothesis in the PINT13 data compilation

include the following: (1) the data may be ‘no good,’ (2)
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there may be long-term nonaxial dipole field contributions to

the geomagnetic field, (3) the average may be nonstationary

and the data in different bins in Figure 21 are from different

ages and average fields, and (4) there may be long-term hemi-

spheric asymmetry (Cromwell et al., 2013).

p0730 Although the PINT13 data set is by now quite large, the

age distribution of paleointensity data for the last 200 Ma is

still patchy with 24% of the data being younger than 1 Ma.

By far, most data come from the northern hemisphere (see

Figure 16(a)). So one point of agreement among all papers

on the subject is that more and better data would be helpful

for defining the average paleofield intensity and its variation.

s0185 107.8.2 What Is Long-Term Strength of the Geomagnetic
Field?

p0735 The present Earth’s magnetic field is well approximated by a

geocentric magnetic dipole with a moment of about 80 ZAm2.

But what is the average value of the dipole moment? A great

deal of effort has been put into assembling paleointensity

databases over more than three decades, yet there remains little

consensus on the answer to this most basic question.

p0740 Early studies suggested that the average field strength has

been either quite a bit lower than the present (e.g., Coe, 1967;

Smith, 1967) or approximately equivalent to today’s field

(Bol’shakov and Solodonikov, 1980; Kono, 1971; McFadden

and McElhinny, 1982). Some studies found no trend with age

in VDMs (e.g., Bol’shakov and Solodonikov, 1980) over the

last few hundredmillion years, while others found a significant

increase in dipole moment from the Mesozoic to the present

(e.g., Smith, 1967). Tanaka et al. (1995a,b) estimated the

average dipole moment for the last 20 My to be approximately

84 ZAm2 with significantly lower values in the Mesozoic (the

so-called Mesozoic dipole low of Prévot et al., 1990), a view

also held by Perrin and Shcherbakov (1997) and reiterated by

Biggin et al. (2003). But a series of more recent papers have

argued for a lower average (Au33 Juarez and Tauxe, 2000; Juarez

et al., 1998; Selkin and Tauxe, 2000; Tauxe, 2006; Tauxe

et al., 2013; Yamamoto and Tsunakawa, 2005).

p0745The lack of consensus on the ‘stable’ value of the field stems

in part from differing views on which data to include as well as

the explosive growth of paleointensity data available

(compare, e.g., Biggin et al., 2003; Goguitchaichvili et al.,

2004; Heller et al., 2002; Selkin and Tauxe, 2000; Au17Tauxe

et al., 2013). While Biggin et al. (2003) argued that because

such procedures as the so-called pTRM check designed to iden-

tify alteration during the paleointensity experiment cannot

guarantee the quality of a particular result, there is no need to

reject data that do not have pTRM checks; others (e.g., Riisager

and Riisager, 2001; Tauxe and Staudigel, 2004) have tried to

develop more rigorous experimental protocols to detect and

reject ‘bad’ data. Here, we take the broad view advocated by

Biggin et al. (2003), relying strongly on strict consistency tests

at the cooling unit level.

p0750Tauxe et al. (2013) considered the subject anew and calcu-

lated the median value of the field, as opposed to the

arithmetic average. The arithmetic average is heavily influenced

by outliers, of which there are many in the database.

In their treatment, the median value of the field (shown as

the cyan line in Figure 19) is 42 ZAm2 and is quite stable

through time, with the only long-term departure from this

value occurring in the Jurassic and early Cretaceous (the Meso-

zoic dipole low).

p0755One clear result from the data in Figure 19 is that the

geomagnetic field is highly variable on both short and long

timescales. Therefore, it is likely that unless the same time

period is considered in all latitudinal bins in figures like

Figure 21, there will be scatter introduced from comparing

times with different average field strength. Some effort should

be put in obtaining data for certain time slices as a function of

paleolatitude.

s0190107.8.3 Are There Any Trends?

s0195107.8.3.1 Intensity versus polarity interval length
p0760Although there are no clear long-term trends in the paleoin-

tensity data shown in Figure 19, there are times when the field

is stronger than others as noted previously. Cox (1968) sug-

gested that strong geomagnetic fields could inhibit reversals of

the geomagnetic field and this makes sense with the observa-

tion that geomagnetic fields are low when the field is reversing.

p0765Tauxe and Hartl (1997) and Constable et al. (1998) dem-

onstrated a weak correlation between the length of a given

polarity interval and the average paleointensity in the relative

paleointensity data from DSDP Site 522 (but Yamazaki et al.

(2013) suggested that this data set may be influenced by sed-

iment property changes). So one of the primary motivations

for initiating the study of the DSDP/ODP submarine basaltic

glasses for paleointensity was to test the hypothesis that long

intervals of stable polarity (like the Cretaceous Normal Super-

chron or CNS in Figure 19) were associated with unusually

strong fields (see, e.g., Pick and Tauxe, 1993). It was therefore

puzzling and a bit disappointing when Selkin and Tauxe

(2000) compared paleofield strength with reversal rate and

found no clear relationship. There were just too few data

from the CNS to make a definitive statement.

p0770Now, there are many more data from the last 175 Ma with

several data sets available from intervals whose polarity chrons

are known and the data can be associated with known polarity
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interval length. In Figure 22, we also show the data from

Figure 19 associated with known polarity intervals. These

data are from SBG obtained from holes drilled on clearly

identifiable magnetic anomalies compiled by Tauxe (2006)

and data from lava flows in magnetostratigraphic sections

correlated to the timescale (Herrero-Bervera and Valet, 2005;

Riisager et al., 2003). It appears that the correlation suggested

by Tauxe and Hartl (1997) and Constable et al. (1998) based

on relative paleointensity in sediments is supported by the

absolute paleointensity data set, although not strongly.

s0200107.8.3.2 Source of scatter in the CNS
p0775Another prediction made from the relative paleointensity data

from Site 522 was that the scatter in the data is proportional to

the average value and strongly linked to polarity interval length

(Constable et al., 1998). This observation also appears to be

weakly supported by the absolute paleointensity data set. One

question that springs to mind, however, is whether the scatter

is geomagnetic in origin. To address this issue, Granot et al.

(2007) assembled a data set from the Troodos Ophiolite,

which formed during the CNS. Their data set includes new

data from gabbros as well as the submarine basaltic glass data

of Tauxe and Staudigel (2004). Many of the gabbro data came

from a sequence of small plutons with a clear relationship to

the ancient spreading axis and their relative age relationships

were therefore known. Tauxe and Staudigel (2004) had sam-

pled two transects through the entire oceanic extrusive layer,

separated by some 10 km. Data from these two transects are in

stratigraphic order, so their age relationships are also known.

In Figure 23, we show their plot of the three time sequences.

The data exhibit remarkable serial correlation, which Granot

et al. (2007) used to argue that the scatter in the CNS data is

largely geomagnetic in origin. Magnetic anomaly data of

Granot et al. (2012) seem to support the geomagnetic origin

of the scatter; the amplitude envelope of magnetic contrasts

from inversion of a deep-tow magnetic anomaly profile from

the Central Atlantic Ocean spanning the entire CNS shows

some similarity with time variations of the paleointensity

data scatter.

s0205107.8.3.3 The oldest paleointensity records
p0780Under the topic of ‘trends in paleointensity,’ one of the most

interesting questions concerns the earliest records of paleoin-

tensity. In Figure 24, we show published results satisfying

minimum consistency constraints obtained from Archean-

aged rocks. Until the 1990s, there were very few studies that
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were based on experiments that used pTRM checks (triangles

and diamonds in Figure 24). Recent data meet the highest

experimental standards and show that the field had a large

range in intensity, similar to more recent times, although the

highest values come from experiments not done with pTRM

checks (squares in Figure 24). The inescapable conclusion

from these data is that the geomagnetic field was ‘alive and

well’ by �3 Ga.

s0210 107.8.3.4 The paleointensity ‘sawtooth’
p0785 Valet and Meynadier (1993) (detailed data set inAu34 Meynadier

et al., 1995) presented a relative paleointensity record for the

last 4 My using sediment cores of ODP Leg 138 taken from the

eastern equatorial Pacific (see Figure 25). They postulated an

‘asymmetrical sawtooth pattern’ of paleointensity variations,

that is, a rapid intensity growth just after a polarity transition

and a gradual decrease since then toward the next reversal (see

Figure 25). They also suggested that the length of a polarity

zone is proportional to the magnitude of the intensity jump.

The latter observation is consistent with the data shown in

Figure 22 whereby long polarity intervals appear to have

higher average fields. Nonetheless, the ‘sawtooth’ idea became

the subject of heated arguments.

p0790 The sawtooth was originally epitomized by the long-term

decreasing trends observed in the Matuyama, one toward the

Brunhes and one toward the Olduvai, and in the Gauss, one

toward the Kaena and one toward the Matuyama boundaries.

The sawtooth envisioned by Valet et al. (2005) (see SINT-2000

in Figure 25), however, is a shorter trend immediately preced-

ing the reversal boundary. We will refer to this more restricted

view as the ‘short sawtooth’ hypothesis in the following. First,

we review the debate about the sawtooth in the literature.

p0795While all transitional records with paleointensity data have

low field intensities associated with transitional directions, not

all records display a long-term decreasing trend toward a rever-

sal. Arguments supporting the existence of the sawtooth pat-

tern were presented in rapid succession. Valet et al. (1994)

examined paleointensity records near the Matuyama–Brunhes

transition from the Atlantic, Indian, and Pacific Oceans and

found the rapid intensity growth after the transition.

Meynadier et al. (1994) recognized the ‘sawtooth pattern’ in a

relative paleointensity record spanning the last 4 My obtained

from a core in the Indian Ocean. Verosub et al. (1996) pre-

sented a record focused near the MBB and the Jaramillo sub-

chron of a sediment core from the central north Pacific, which

supported the ‘sawtooth pattern.’

p0800Counterarguments to the sawtooth also began to appear.

For example, Laj et al. (1996a, 1997 (for correction)) failed to

see the ‘sawtooth pattern’ utilizing the same core as that of

Verosub et al. (1996) when examining a longer period of time

up to the Olduvai subchron. Laj et al. (1996b) reported that no

rapid intensity increase after polarity transitions was observed

in relative paleointensity records from two Late Miocene sec-

tions in Crete (Kotsiana and Potamida in Table 2).

p0805Arguments against the ‘sawtooth pattern’ were presented

also from paleointensity estimations based on recording mech-

anisms different from sediments. Records of 10Be/9Be reflect

geomagnetic paleointensity through a control on the produc-

tion rate of the cosmogenic nuclide (10Be). Raisbeck et al.

(1994) argued that a 10Be/9Be record at Site 851 of ODP Leg

138, which is the same site as of Valet andMeynadier (1993), is

inconsistent with the ‘sawtooth pattern.’ Westphal and

Munschy (1994) Au35showed that the ‘sawtooth pattern’ cannot

explain the shape of stacked magnetic anomaly profiles over

the Southeast Indian Ridge Au36, Juan de Fuca Ridge, and East
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Pacific Rise. McFadden and Merrill (1997) presented an anal-

ysis of the Cenozoic polarity reversal chronology that effective

inhibition of a future reversal can only last for about 50 ky at

most, which contradicts the ‘sawtooth pattern’ requiring much

longer inhibition.

p0810 The ‘sawtooth pattern’ was also questioned from remanent

magnetization acquisition processes. Kok and Tauxe (1996a)

proposed a cumulative viscous remanencemodel for remanence

acquisition of sediments that can yield intensity variations like

the ‘sawtooth’ pattern. Then, Kok andTauxe (1996b) reproduced

the ‘sawtooth pattern’ of the ODP Leg 138 sediments by the

cumulative viscous remanence model using the values of the

equilibrium magnetization constrained by results of a Thellier-

type paleointensity experiments applied to the ODP Leg 138

sediments. Furthermore, they resampled the Site 851 sediments

near theGauss–Gilbert boundary and showed that the ‘sawtooth

pattern’ disappeared by thermal demagnetization to 400 �C.
p0815 Meynadier et al. (1998) made a counterargument to the

cumulative viscous remanence model of Kok and Tauxe

(1996a,b). They suggested that to produce the sawtooth pat-

tern and to preserve the magnetostratigraphy with the

cumulative viscous remanence model, a very narrow distribu-

tion of the relaxation times is required. They also showed that

the sawtooth pattern of the Site 851 sediments did not change

by thermal demagnetization and AF demagnetization of stron-

ger fields, which is inconsistent with the result of Kok and

Tauxe (1996b) despite using the sediments from the same

site. Kok and Tauxe (2000) on the comments to Meynadier

et al. (1998) stressed the nonuniqueness of relaxation time

distribution explaining the ‘sawtooth pattern’ and pointed

out that the t distribution of Kok and Tauxe (1996b) is not

all relaxation times present in the sediments, but merely a part

of them that behave viscously. In the reply, Au37Meynadier and

Valet (2000) mentioned that the remanent magnetization with

blocking temperatures between 150 and 300 �C, which may

carry cumulative viscous remanence, is only a minor part of

NRM of the sediments. The two groups also argued about the

validity of thermal demagnetization on relative paleointensity

estimation from sediments (Kok and Tauxe, 1999; Kok and

Ynsen, 2002; Valet and Meynadier, 2001).

p0820Mazaud (1996) proposed another model of magnetization

acquisition, which produces the ‘sawtooth pattern’: a large

Comp. by: PPonraj Stage: Proof Chapter No.: 107 Title Name: TGP2RegularTrue
Date:23/7/14 Time:21:46:39 Page Number: 34

M
at

uy
am

a–
G

au
ss

O
ld

uv
ai

K
ae

na

B
ru

nh
es

–M
at

uy
am

a

Ja
ra

m
ill

o

R
el

at
iv

e 
p

al
eo

in
te

ns
ity

R
el

at
iv

e 
p

al
eo

in
te

ns
ity

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 43.5
Age (Ma)

0

0.5

1

1.5

2 0

0.5

1

1.5

2

2.5

3

0

0.5

1

1.5

2

OJP-stack
Kok and Tauxe (1999)

EPAPIS-3Ma
Yamazaki and Oda (2005)

Sint-2000
Valet et al. (2005)

ODP Leg 138
Valet and Meynadier (1993)

Figure 25f0130 The paleointensity record from ODP Leg 138 cores (Valet and Meynadier, 1993) showed the ‘asymmetrical sawtooth pattern,’ whereas
other records, which reached the Gauss–Matuyama boundary, do not show such pattern: Ontong Java Plateau stack of Kok and Tauxe (1999)
and equatorial Pacific paleointensity stack of Yamazaki and Oda (2005).

TGP2: 00107
34 Paleointensities

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier and
typesetter SPi. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.



fraction (say, two-thirds) of magnetic grains acquire NRM at

deposition time, while the remaining grains reorientate or

acquire magnetization after deposition. Although Meynadier

and Valet (1996) considered this model unlikely from the

knowledge of pDRM acquisition processes that prevailed at

that time, recent studies suggest that this model may have

difficulties. As discussed in Section 107.4, pDRM acquisition

with compaction that can be expressed by an exponential

function is unlikely to occur, although there are still different

opinions for the amount of depth-lag. An experiment of Katari

et al. (2000) using natural undisturbed sediments suggests that

pDRM (reorientation of magnetic particles) is a rare phenom-

enon, probably because of the effects of flocculation: magnetic

minerals would be aggregated with clay.

p0825 In the 851 record of Valet and Meynadier (1993), the

‘sawtooth pattern’ is most apparent in the early Matuyama

chron after the Gauss–Matuyama transition and during the

Gauss chron. The number of paleointensity records reported

so far that reached the Gauss–Matuyama transition is still

small. However, available records from different groups do

not support the ‘sawtooth pattern’: neither a stacked record

since 2.8 Ma from the Ontong Java Plateau (Kok and Tauxe,

1999; OJP-stack in Figure 25) nor a stacked record since

3.0 Ma from the equatorial Pacific (Yamazaki and Oda, 2005;

EPAPIS stack in Figure 25) shows variations like the ‘sawtooth

pattern’ after the Gauss–Matuyama transition. More recently, a

record from between 2.1 and 2.75 Ma at IODP Site U1314 in

the North Atlantic (Ohno et al., 2012) also fails to reproduce

the sawtooth.

p0830 We do not yet understand well the rock magnetic processes,

which produce the ‘sawtooth pattern’ only for some sediments.

If the DRM acquisition model of Mazaud (1996) works in

general, all sedimentary paleointensity records should display

‘sawtooth’-like changes. From the cumulative viscous rema-

nence model of Kok and Tauxe (1996a), the sediments pro-

ducing the ‘sawtooth pattern’ are expected to have a particular

magnetic grain-size distribution favorable for the long-term

viscous remanence acquisition, but this has not yet been fully

tested.

p0835 Valet et al. (2005) used 10 of the 15 records of relative

paleointensity data compiled by Guyodo and Valet (2006)

to create the so-called SINT-2000 stack (see Table 2 and

Figure 25). Based on this subset of the data,Au38 Valet et al.

(2000) argued for the ‘short sawtooth’ pattern in the 80 ky

interval immediately prior to the four reversals included in

the stack. Of the four reversals in the SINT-2000 stack (Figure 4

of Valet et al., 2000), only the upper Jaramillo and the lower

Olduvai show convincing short sawtooth patterns.

p0840 Relative paleointensity records spanning the last 2 My have

steadily been produced (see, e.g., Table 2). Because the SINT-

2000 is a stack that did not include many of the records in

Table 2, we have plotted those records that span at least the

period from 800 to 900 ky in Figure 26 for the interval includ-

ing the Brunhes and Jaramillo. Considering all the records, it

appears that even the short sawtooth is only observed in a

small subset of the records, although an intensity peak just

after the B/M boundaryAu39 (Guyodo and Valet, 1999; Valet et al.,

2005) does appear in all records. In general, the long-term

sawtooth pattern originally observed by Valet and Meynadier

(1993) has not been universally observed, as would be

expected from the behavior of a dipole source. Recently, how-

ever, Au40Ziegler and Constable (2011) showed asymmetry in

growth and decay of the geomagnetic dipole that is not

restricted near polarity boundaries. They found that on the

25–150 ky timescale, growth rates are larger than decay rates

in their PADM2M model of paleointensity variations (Ziegler

et al., 2011), in which the data sets of relative paleointensity

mentioned earlier are incorporated.

s0215107.8.4 High-Resolution Temporal Correlation

s0220107.8.4.1 Sediments
p0845Oxygen isotope stratigraphy revolutionized paleoceanography

by providing a global signal with a resolution on the order of

10 s of thousands of years (e.g., Hays et al., 1976). Yet oxygen

isotope stratigraphy has its drawbacks. It cannot be applied in

sediments deeper than the carbonate compensation depth or

lakes. Oxygen isotopic data are often difficult to interpret in

marginal seas, where records may not reflect global ice-volume

changes. Finally, temporal resolution better than 104 years is

critical for assessing the global nature of climatic events and

their durations. The prospect of using relative paleointensity

from sediments as a high-resolution correlation and dating

tool has therefore been met with great enthusiasm (e.g., Stott

et al., 2002) and was reviewed recently by Roberts et al. (2013).

Here, we examine the prospects and problems with the so-

called paleointensity-assisted chronology or PAC.

p0850The importance of PAC is not simply as a substitution for

d18O. It can also be used to examine consistency of other

chronologies such as d18O and 14C, because it is quasi-

independent of them. Regional and global intercore correla-

tions tied by paleointensity variations revealed discrepancies of

up to several thousand years between those based on 14C and

d18O (Stoner et al., 1995) and between GISP2 and the d18O
chronologies (Stoner et al., 1995, 2000) during the last

c.100 ky.Moreover, paleointensity stratigraphy can have higher

resolution than d18O stratigraphy because the variations con-

tain shorter wavelength components than those of d18O. Truly

dipolar features of geomagnetic field variations have a potential

for providing a time reference for an interhemispheric paleocli-

matic relationship with unprecedented resolution.

p0855On a more limited scale, there is a possibility that intercore

correlation and age estimation can be performed using

paleointensity by correlating patterns among cores with a stan-

dard curve such as SINT-800 (Guyodo et al., 2001) and NAPIS-

75 (Laj et al., 2000), which is exemplified by Stoner et al.

(1995) in the Labrador Sea, Demory et al. (2005) in Lake

Baikal, and Macri (2005).

p0860We feel that while regional correlations can be achieved,

much is lost by using PAC as a primary dating tool. These

records can no longer be used to constrain paleointensity

models or global stacks, because the age information is not

independent and features correlate by assumption. Such

records have been clearly labeled in Table 2 (RPI) and in the

MagIC database.

p0865If we desire a global correlation tool, we require a dipolar

signal. However, it is as yet unclear at which wavelength the

dipole terms give way to nondipole terms. Korte and Constable

(2005) cautioned us that variations in VADMsmay not be global

and their variations need not be synchronous because they can
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be strongly influenced by nondipole field effects. Moreover, the

duration of a polarity reversal is known to be dependent on

latitudes, ranging from about 2 ky near the equator to 10 ky at

	60� (Clement, 2004). Furthermore, the contribution of non-

dipole effects may be higher when paleointensity is low, and

both the duration and shape of a particular paleointensity low

will be site-dependent. Nonetheless, there is an astonishing cor-

relation between the ‘paleointensity dipole stack’ of Ziegler et al.

(2011) and themagnetic anomaly inversion of Gee et al. (2000)

as illustrated in FigureAu41 fig:padmVanom.

p0870 Doubts about the global nature of paleointensity features

notwithstanding, global intercore correlations on a millen-

nial scale have been attempted. A series of papers by Channell

et al. (2000), Stoner et al. (2000), and Mazaud et al. (2002)

correlated records between the high latitudes of the North

Atlantic and the South Atlantic and Indian Ocean sectors. As

an example of the method, we show the records of Stott et al.

(2002), who tied cores together between the North Atlantic

and the western equatorial Pacific (see Figure 27). The large-

scale features (labeled H1–H10 and L1–L8) correlate reason-

ably well and are consistent with the oxygen isotopic records

from the two cores. These allow correlation with a resolution

of 2–3 ky. The difficulty of identifying global features on a

submillennial scale is made apparent by the rather uncon-

vincing correlation of features marked by the stars. Although

these features may well be synchronous, they do not resemble

each other very much in the two hemispheres, and without

the excellent and very detailed chronological control of the

independent oxygen isotopic records, their identification

would not have been possible. How much should these

‘millennial’ features look like each other and how synchro-

nous they are expected to be require much more detailed

knowledge of the process of secular variation, a topic of active

research (see Chapter 103).
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s0225 107.8.4.2 Ridge crest processes
p0875 The potential of paleointensity for high-resolution dating is

not restricted to sediments. Thellier-type paleointensity data

can be used to estimate ages of basalts near mid-ocean ridges,

and it is expected that paleointensity will be useful for studying

crustal accretion processes at ridges (Bowles et al., 2006; Gee

et al., 2000; Ravilly et al., 2001). This work is discussed in more

detail in Chapter 106 (Figure 28).

s0230 107.8.4.3 Archaeomagnetic dating
p0880 A thorough review of the possibilities of using paleointensity

estimates to provide age constraints for archaeological mate-

rials is beyond the scope of this chapter (but see Chapter 5.9Au42 of

this volume). Nonetheless, it is worth mentioning that the so-

called archaeointensity results are increasingly used for this

purpose (e.g., Ben-Yosef et al., 2008a,b; Pavón-Carrasco et al.,

2011).

s0235 107.8.5 Atmospheric Interaction

p0885 Radioactive forms of carbon, beryllium, and chlorine are pro-

duced in the atmosphere by cosmic ray bombardment. The
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decay of these isotopes is used for dating purposes in a wide

variety of disciplines. There are large variations in ages pre-

dicted from tree ring, varve, ice layer counting, or U/Th dating

and those estimated by radiocarbon dating. An example of

such a comparison is shown in Figure 29(a), which shows

the age based on 14C dating from a core in the Cariaco Basin

versus layer counting in the Greenland Ice Sheet Project 2 ice

core from a core in the Cariaco Basin (Hughen et al., 2004).

The correlation of the marine sediment core to the ice core was

based on tying dark sedimentary layers to interstadials in the

GISP2 core.

p0890 The difference between radiocarbon and other age esti-

mates in Figure 29(a) is used to calculate variations in initial

radiocarbon in the atmosphere relative to the concentration in

the modern atmosphere (see atmospheric D14C plotted as dots

in Figure 29(b)). An excess of radiocarbon (positive D14C)

results in an underestimate of the age because there is ‘too

much’ radiocarbon in the sample for its age. Changes in D14C

have been attributed to differences in the production of radio-

carbon in the atmosphere by cosmic ray bombardment and

changes in the carbon balance between the atmosphere and

the deep ocean, which is a reservoir of old carbon (see, e.g.,

Bard et al., 1990). If, for example, the transfer of atmospheric

carbon into the ocean was less efficient in the past or the

release of old carbon from the deep ocean was less efficient

(‘ventilation’ was slower), then there would be an excess of

radiocarbon in the atmosphere relative to the modern atmo-

sphere, resulting in ‘too young’ 14C ages.

p0895 Radiocarbon production is thought to be strongly con-

trolled by changes in magnetic field strength because the mag-

netic field shields the atmosphere from cosmic rays (see

Chapter 103). Changes in the intensity of the magnetic field

should therefore result in changes in radiocarbon production

(among other things); hence, the variation in intensity is a key

parameter in deriving accurate age information. Hughen et al.

(2004) used a paleointensity stack from the North Atlantic (the

NAPIS stack of Laj et al., 2000) as a proxy for changes in the

dipole moment of the Earth’s magnetic field over the last 70 ky.

By using the Monte CarloAu43 simulations of the relationship

between geomagnetic field strength and radiocarbon produc-

tion of Masarik and Beer (1999), Hughen et al. (2004) pre-

dicted radiocarbon production for the past 50 ky (Figure 29

(c)). The different curves in Figure 29(a)–29(d) use the pre-

dicted radiocarbon production values as input into boxmodels

using different ocean/atmosphere boundary conditions relat-

ing to different models of deep-sea ventilation, resulting in

different estimates for atmospheric D14C.

p0900 None of the curves in Figure 29(b) based on the model

predictions using the NAPIS stack provide a satisfactory fit to

the observed variations.Au44 Hughen et al. (2002) suggested that

either the model of Masarik and Beer (1999) for translating

geomagnetic field intensity to radiocarbon production is incor-

rect at low field strengths or our understanding of the global

carbon cycle is insufficient. It is of course also possible that the

NAPIS model of North Atlantic relative paleointensity is a poor

proxy for the global paleomagnetic field intensity variations.

p0905 Roberts et al. (2013) considered the problem but used the

PADM2M model of Ziegler et al. (2011) with the variations

predicted from the 10Be stack of Frank et al. (1997)

(Figure 30). The agreement is remarkably good. Overall,
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variations in dipole intensity are not as well constrained as we

would like. As these variations are key to refining the radiocar-

bon calibration, more records with independent and accurate

age constraints are needed.

s0240 107.8.6 Frequency of Intensity Fluctuations and the
Climatic Connection

p0910 Arguments regarding the possible relationship between the

intensity of the geomagnetic field and climate have a long

history of more than 30 years (e.g., Wollin et al., 1971). Dis-

cussions in the 1970s were based on the remanent intensity

variations, which were not corrected for differences in magne-

tizability of sediments. The relationship was convincingly

rejected by Kent (1982), who showed that the remanent inten-

sity variations of the relevant sediment cores were controlled

by climatically induced variations in carbonate contents. Kent

and Opdyke (1977) were the first to suggest the presence of the

obliquity frequency, �43 ky in a normalized intensity record,

but this idea was not seriously discussed at that time.

p0915 Rapid progress in relative paleointensity studies revived the

orbital modulation issue in the late 1990s, and it has been

heatedly argued since then. Tauxe and Shackleton (1994)Au45

found significant power in the power spectrum of a record

from the Ontong Java Plateau in the 30–50 ky band but

showed that the intensity fluctuations came in and out of

phase of the associated oxygen isotopic record, arguing against

a strong relationship between climate and paleointensity. In

contrast, Channell et al. (1998) and Channell (1999) pro-

posed a �40 ky obliquity frequency from a power spectrum

analysis of their relative paleointensity records during the

Brunhes chron obtained from ODP Sites 983 and 984 in the

North Atlantic. They interpreted it as geomagnetic field behav-

ior from the observations that no power exists at �40 ky in

bulk magnetic properties and there is no coherence between

the relative intensity and the normalizer (IRM), percent car-

bonate, and a magnetic grain-size proxy at �40 ky. Their

paleointensity records showed significant power also at the

�100 ky eccentricity frequency, but they rejected this because

this frequency was observed also in bulk magnetic proper-

ties. Yamazaki (1999) instead proposed the possible presence

of the �100 ky frequency in his relative paleointensity records

from the North Pacific based on the same logic as that of

Channell et al. (1998): occurrence of�100 ky power in relative

paleointensity but not in the normalizer on the power spectra.

Possible occurrence of �100 ky period in paleointensity

records would not be limited to the Brunhes chron: Yamazaki

and Oda (2005) (see Figure 31) found significant power

at �100 ky period in paleointensity records from 0.8 to

3.0 Ma. Kok and Tauxe (1999) found a peak at �150 ky in

paleointensity records during the Matuyama chron from the

Ontong Java Plateau.

p0920Yokoyama and Yamazaki (2000) applied a wavelet analysis

to five paleointensity records from the Pacific Ocean reported

in Yamazaki et al. (1995) and Yamazaki (1999) and found a

quasiperiod of �100 ky. They considered the �100 ky period

inherent to the geomagnetic field, because of the good coinci-

dence of the relative intensity records in this scale despite

significant phase differences in magnetic properties. Thouveny

et al. (2004) reported a �100 ky period in a paleointensity

record during the last 400 ky from Portuguese Margin sedi-

ments, North Atlantic. Yokoyama et al. (2007) reached the

same conclusion using a similar approach with the data set of

Yamazaki and Oda (2002, 2005) and Yamazaki and

Kanamatsu (2007). Yokoyama et al. (2010) showed that vari-

ations in the geomagnetic vertical component were synchro-

nous with the first derivative of the eccentricity and suggested

that changes in the eccentricity may excite the geomagnetic

variations. Saracco et al. (2009), using complex wavelet trans-

form, found orbital frequencies in paleointensity proxy records

based on production of cosmogenic nuclide (10Be/9Be) and

magnetic anomalies of oceanic crust as well as in sedimentary

relative paleointensity records. Heslop (2007) and Xuan and

Channell (2008a), on the other hand, showed in their cross

wavelet analyses that common power exists at orbital periods

in relative paleointensity records and orbital parameters, but

they did not have a constant phase relationship, from which

they concluded that there is no direct causal relationship.

However, this does not exclude a possibility for a nonlinear

interaction or a linear interaction in a different physical dimen-

sion (Yokoyama et al., 2010).

p0925Whether the orbital frequencies found in sedimentary

paleointensity records reflect geomagnetic field behavior or

not has been discussed mainly on the following three points:

significance and stability of the orbital periodicities, error in

age control, and lithologic contamination to paleointensity

records. Guyodo and Valet (1999) argued that there is no

stable periodicity during the Brunhes chron by a spectrum

analysis on the SINT-800 stack using sliding windows. How-

ever, the orbital modulation may be a nonstationary process.

Sato et al. (1998) suggested that there is no constant period but

continuous shifts between 50 and 140 ky based on a stacked

paleointensity record from three cores in the western equato-

rial Pacific during the last 1.1 My. Horng et al. (2003) argued
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that the orbital frequencies in paleointensity variations are not

statistically significant by applying a wavelet analysis on their

relative paleointensity record during the last 2.14 My from the

Western Philippine Sea. On the other hand, Teanby and

Gubbins (2000) proposed that the periodicities of several

tens of thousand years observed from sedimentary paleointen-

sity records could be due to aliasing, an artifact of coarse

sampling, and simulated using archaeointensity data with a

2 ky period how false longer periods appear by aliasing. How-

ever, orbital periodicities have been reported even from
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sediment cores with significant variations in sedimentation

rates, which is difficult to be explained by aliasing. Guyodo

and Channell (2002) performed numerical simulation of

paleointensity records with various sedimentation rates and

variable quality of age control and showed how spectral infor-

mation is lost with decreasing sedimentation rates: the power

spectra are reliable for periods as short as 4 ky in records with a

sedimentation rate of 15 cm ky�1 with good age control,

whereas periods of only c.50 ky or longer are reliable in records

with a sedimentation rate of 1 cm ky�1. McMillan et al. (2002,

2004) evaluated effects of various sources of errors such as

dating errors, misidentified tie points, changes in sedimenta-

tion rate, and the effect of nondipole components. They sim-

ulated coherence of records among various sites and evaluated

the accuracy of a stacked record suggesting that dipole varia-

tions with periods of longer than 20 ky can be recovered (but

shorter ones would be problematic).

p0930 Strong arguments against orbital modulation of the geo-

magnetic field come from possible lithologic contamination to

sedimentary paleointensity records. Because paleointensity

records during the last 200 ky look coherent with the oxygen

isotope curve,Au46 Kok (1999) suspected that sedimentary paleoin-

tensity records including those derived from 10Be are con-

trolled by paleoclimate due to inadequate normalization.

Guyodo et al. (2000) and Xuan and Channell (2008a) found

correlation between paleointensity and magnetic grain-size

proxy (ARM/k or ARM/IRM) in orbital frequencies and con-

cluded that orbital frequencies in relative paleointensity

records are caused by lithologic contamination. As mentioned

before in Chapter 13.4.4, changes in relative abundance of

biogenic and terrigenous magnetic mineral components

appear as variations in ARM/SIRM ratio (Yamazaki and

Ikehara, 2012), and such changes may not be compensated

well by the normalization with either ARM or SIRM, resulting

in contamination to relative paleointensity.

p0935 The possibility of orbital modulation of paleointensity

cannot be excluded only from the existence of correlation

between records of relative paleointensity and magnetic prop-

erties because the two can also have coherency if the orbital

parameters affect both the geomagnetic field and depositional

environment. To solve the problem, it is necessary to under-

stand quantitative relation between the magnitude of mag-

netic property (e.g., magnetic grain-size and mineralogy)

changes and the magnitude of induced changes in normal-

ized intensity. At present, we cannot even predict whether

normalized intensity increases or decreases when magnetic

grain size increases in a certain grain-size range. It is also

important to examine phase relationships in coherency ana-

lyses. Patterns of lithologic and magnetic property variations

induced by paleoclimatic changes may vary place to place; for

example, magnetic grain size would increase in a certain

period of time in some areas, but in other areas, it would

decrease in the same period of time. Paleointensity, on the

other hand, should be globally synchronous. Thus, even

when paleointensity and magnetic property variations have

coherency, lithologic contamination is suggested to be minor

if the phase angles between the two from various places differ

significantly. The conclusion of lithologic contamination by

Guyodo et al. (2000) and Xuan and Channell (2008a) men-

tioned earlier was based on analyses of a record from a single

site or a set of records from nearby sites that belong to a

similar sedimentary environment, and thus, further studies

are still required. For isolating true geomagnetic signals and

climatic contamination components from normalized inten-

sity records, principal component analysis will be useful as

demonstrated by Valet et al. (2011).

p0940On the possibility of orbital modulation of the geomag-

netic field, a relationship of excursions (see Chapter 5.10 in

the volume) and reversals with paleoclimate has also been

discussed since the 1970s. Rampino (1979, 1981) suggested

that excursions may have occurred at about 100 ky intervals

and the ages of the excursions seem to coincide with times of

peak eccentricity of the Earth’s orbit (but see Rampino and

Kent, 1983). Worm (1997) revisited the problem and sug-

gested that excursions and reversals tend to have occurred

during periods of global cooling or during cold stages. On

the contrary, Kent and Carlut (2001) rejected the relation-

ship. They concluded that six excursions in the Brunhes chron

and 21 reversals since 5.3 Ma have no tendency to occur at a

consistent amplitude or phase of obliquity and eccentricity.

The number of possible excursions during the Brunhes chron

has increased significantly (up to ca. 20) (Lund et al., 2001).

Hence, the problem of the possible connection between

excursions and paleoclimate is not independent of the argu-

ments on the orbital frequencies in relative paleointensity.

Fuller (2006) revived the problem by suggesting relationships

between the obliquity signal and intensity, excursions, and

reversals. His arguments include that reversals tend to occur

when average amplitude of the obliquity is low with a partic-

ular phase within the obliquity signal. This was supported by

Thouveny et al. (2008). However, a statistical test by Xuan

and Channell (2008b) with a longer reversal sequence did not

support the conclusion. Besides paleointensity and excur-

sions, a discussion of orbital frequencies in paleomagnetic

directions has been revitalized. Yamazaki and Oda (2002)

reported a �100 ky periodicity in an inclination record dur-

ing the last 2.2 My from the western equatorial Pacific,

whereas Roberts et al. (2003) concluded that it is not statisti-

cally significant.

p0945As a possible mechanism for relation between the geomag-

netic field and climate, orbital forcing on the geodynamo

through changes in the moment of inertia by ice-volume

changes has often been invoked (e.g., Rampino, 1979;

Worm, 1997), but the opposite way of the geomagnetic–

climate connection, that is, possibility of a geomagnetic con-

trol on climate, has become a matter of debate (Courtillot

et al., 2007); changes on galactic cosmic ray flux, which is

controlled by the strength and morphology of the geomag-

netic field, may affect cloud cover and then global tempera-

ture (Svensmark and Friis-Christensen, 1997). Kitaba et al.

(2013) reported climate cooling at paleointensity minima

during the Matuyama–Brunhes and lower Jaramillo polarity

reversals.

p0950As noted in Section 107.4, there can be a ‘stealth’ link

between lithologic factors, like clay content, which are con-

trolled by climate and the relative paleointensity records,

which would be difficult to detect using the standard methods

of normalization. To date, the significance and implications of

possible climatic controls on paleointensity have not yet been

adequately addressed.
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s0245 107.9 Conclusions

p0955 Scientists have dreamed of analyzing the ancient magnetic field

intensity for over four centuries. Since the first serious attempts

to acquire paleointensity data in the 1930s, experimental

design has improved dramatically. The theoretical foundations

for interpreting paleointensity data from both thermal and

depositional remanences are steadily improving, and there

has been explosive growth in publications with paleointensity

data. The data are slowly being contributed to the communal

database whose scope has increased dramatically recently.

p0960 We have highlighted some of the major topics involving

paleointensity data in this treatise. While these topics are still

fresh and arguments abound, we can make the following state-

ments regarding paleointensity:

o0040 1. Everyone agrees that more and better data could resolve

many of the current debates. Experiments with built-in

assessments of the fundamental assumptions of the

method and the ability to estimate reliability indices are

essential. Data sets are being contributed to the MagIC

database, including measurements and full documentation

of methods and data processing. This new generation of a

database has the potential to go a long way toward settling

some of the major issues discussed in this chapter.

o0045 2. In general, the ancient magnetic field has been highly

variable on both short and long timescales. There have

been extended periods of time with intensities lower

than the present field, but there have also been intervals

with field strengths greater than the present field in the

past. These periods of increased field strength may be

related to the length of the polarity interval in which

they are found.

o0050 3. The geomagnetic field in the Archean appears to have been

‘alive and well.’

o0055 4. Arguments against the ‘asymmetrical sawtooth’ in paleoin-

tensity data associated with polarity reversals appear to be

winning, while arguments about the coherence of paleoin-

tensity with orbital frequencies and the ability to correlate

globally paleointensity features on a millennial scale

remain unresolved.
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