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EPIGRAPH

Dogmatism and scepticism are both, in a sense, absolute philosophies; one is

certain of knowing, the other of not knowing. What philosophy should dissipate is

certainty, whether of knowledge or ignorance.

—Bertrand Russell, “Philosophy for Laymen” in Unpopular Essays (1950)
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ABSTRACT OF THE DISSERTATION

New Theory and Methods for High-Order Accurate Inference on
Quantile Treatment Effects and Conditional Quantiles

by

David M. Kaplan

Doctor of Philosophy in Economics

University of California, San Diego, 2013

Professor Yixiao Sun, Chair

This dissertation concerns methods for inference on quantiles in various

models. Methods that are asymptotically justified may still be quite inaccurate

in finite samples. To improve the state of the art, I explore different theoretical

approaches for achieving higher-order accuracy: fractional order statistic theory

based on exact finite-sample distributions in Chapters 1 and 2, and Edgeworth

expansions and fixed-smoothing asymptotics in Chapter 3. For each of the different

practical methods proposed, I examine accuracy via precise theoretical results as

well as simulations. The family of methods using interpolated duals of exact-

analytic L-statistics (IDEAL) covers unconditional (one-sample and two-sample

treatment/control, Ch. 1) and nonparametric conditional (Ch. 2) models, and it

xi



offers improvements over the existing literature in terms of accuracy, robustness,

and/or computation time. The Edgeworth-based method improves upon related

prior methods and is a good alternative for quantiles too far into the tails for

IDEAL to handle.
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Chapter 1

IDEAL quantile inference via

interpolated duals of exact

analytic L-statistics

Abstract

The literature has two types of fractional order statistics: an ‘ideal’ (unob-

served) type based on a beta distribution, and an observable type linearly inter-

polated between consecutive order statistics. We show convergence in distribution

of the two types at an O(n−1) rate, which we also show holds for joint vectors

and linear combinations of fractional order statistics. This connection justifies

use of the linearly interpolated type in practice when sampling theory is based on

the ‘ideal’ type. For example, the coverage probability error (CPE) has the same

O(n−1) magnitude for one-sample nonparametric joint confidence intervals over

multiple quantiles. For a single quantile, our new analytic calibration reduces the

CPE to nearly O(n−3/2), and our new inference method on linear combinations of

quantiles has O(n−2/3) CPE. With additional theoretical work, we propose a new

method for two-sample quantile treatment effect inference, which has two-sided

CPE of order O(n−2/3), or O(n−1) under exchangeability, and one-sided CPE of

order O(n−1/2). In an application of our method to data from a recent paper on

1
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“gift exchange,” we reveal interesting heterogeneity in the treatment effect of “gift

wages.” In simulations, our two-sample hypothesis test compares favorably with

existing methods in both size and power properties.

1.1 Introduction

Quantiles contain information about a distribution’s shape. Complementing

the mean, they capture heterogeneity, inequality, and other measures of economic

interest. These could be population quantiles, conditional quantiles, or quantile

treatment effects. For example, when considering educational interventions like

reduced class size, we care about the mean treatment effect (effect on test score

average, for example), as well as the median (effect on the median student’s score)

and other quantiles (are the upper and lower quartiles converging or diverging?).

Here, we propose a novel method for inference on the quantile treatment

effect (QTE) in a two-sample setup frequently encountered in experimental and

quasi-experimental contexts. In this setup, an outcome variable (like test score)

is measured for individuals in a control group and a treatment group. The goal

is to determine if the treatment group’s outcome distribution is different from

the control distribution at a certain quantile; e.g., does the treatment increase

the median outcome? For recent experimental economics setups amenable to our

method, see for example Björkman and Svensson (2009), Charness and Gneezy

(2009), and Gneezy and List (2006), whose data we examine for our empirical

application.

In simulations, our QTE hypothesis test compares favorably with existing

methods. Its size control is robust, and it consistently has better power than other

methods applicable to general quantiles. Compared to popular median-specific

permutation-type QTE tests (including Mann–Whitney–Wilcoxon), our method is

robust to violations of the exchangeability assumption that can cause severe size

distortion in permutation-type tests, and our method has better power against

certain types of alternatives.

Theoretically, our O(n−2/3) order of two-sided QTE coverage probability
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error (CPE) is not an improvement over Chapter 3, but there is a reason for

the consistent finite-sample improvements in simulations. Nuisance parameter

estimation error comprises the dominant CPE term in both methods, but its effect

is bounded in our method. To illustrate this, consider coverage of 95% CIs if

we had an atrocious nuisance parameter “estimator” that simply gave the same

worst-case value each time. For Chapter 3, this would give CIs of length zero and

coverage probability zero for the undercoverage worst-case value, and CIs of infinite

length and 100% coverage probability for the overcoverage worst-case value, even

as n → ∞. In contrast, even with worst-case values, our method would have

asymptotic coverage probability in [0.83, 0.99] rather than [0, 1]. This mechanism

likely underlies the better finite-sample accuracy of our method.

Computationally, we require estimation of the ratio of probability density

functions evaluated only at the quantile of interest. For both the control and treat-

ment distributions, this can be done with any standard kernel density estimator

and bandwidth, which in practice performs just as well as our theoretically optimal

plug-in bandwidth.

While the new two-sample method is a significant contribution, the under-

lying theory we develop applies more generally. For example, we use it to derive

the order of size distortion for a popular inference method for population quantiles

(Hutson, 1999) and provide an order-reducing analytic calibration. This result can

be extended to a conditional nonparametric context; see Chapter 2, which also dis-

cusses conditional QTE inference. With some additional work, our new theory also

unlocks a new method for joint inference on multiple quantiles, and another new

method for inference on linear combinations of quantiles, such as the interquartile

range. Previous order statistic methods provided conservative (by construction)

inference on linear combinations, but we provide asymptotically exact inference,

with rate-limiting error only from estimation of nuisance parameters (again the

ratios of density functions at quantiles of interest). Our contributions are also of

interest in fields beyond economics, such as biostatistics and ecology.

With sample size n, the exact finite-sample distribution is known for order

statistics from a uniform distribution. These can also be thought of as sample
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u-quantiles with index u ∈ (0, 1) such that (n + 1)u is an integer. However, for

a given n, (n + 1)u is not an integer for almost all u ∈ (0, 1), which makes this

result not directly applicable to the exact inference approach followed here. For

fractional (n+1)u, the exact distribution is known for the corresponding fractional

order statistic, a theoretical (unobserved) object that we approximate with linear

interpolation between observed order statistics.

Though unobserved for non-integer indices, fractional order statistics from

a uniform distribution jointly follow a known Dirichlet process (Stigler, 1977). We

show that linearly interpolating consecutive observed order statistics approximates

the unobserved fractional order statistics with only O(n−1) error in cumulative dis-

tribution function (CDF). For example, the sampling distribution of the average

of the 4th and 5th order statistics is a good approximation of the sampling dis-

tribution of the 4.5th fractional order statistic. With this bound on interpolation

error, we theoretically justify the aforementioned inference methods that belong to

a larger family of IDEAL methods. Ideally, we could directly use linear combina-

tions of order statistics (known as L-statistics) from the unobserved world, whose

joint distributions are known exactly and analytically. Thankfully, the error from

instead using the observed counterparts is small, so a high degree of accuracy

is common to methods using the interpolated duals of exact analytic L-statistics

(IDEAL).

In the one-sample case (as proposed but not rigorously justified in Hut-

son (1999)), the upper and lower endpoints of an IDEAL equal-tail 100(1 − α)%

confidence interval for the median are chosen as specific fractional order statistics

from the sample. The true median is just a number, like 10, while the endpoints

are random (depend on the sample). If we imagine applying the true CDF to

everything, then the true median becomes 0.5 and the fractional order statistics

come from a uniform distribution. The distribution of any such uniform fractional

order statistic is exactly known, so it is easy to pick the one having exactly α/2

probability of being less than 0.5 (for the upper endpoint) and the one having ex-

actly α/2 probability of being greater than 0.5 (for the lower endpoint). Applying

the inverse CDF to everything, we can see that we just computed the indices of
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fractional order statistics from the original sample that provide exact endpoints.

The only barrier to an exact one-sample confidence interval is the need to

estimate the unobserved fractional order statistics by linearly interpolating ob-

served order statistics, and this error induces only O(n−1) CPE. Although rates

like O(n−1) are only asymptotic claims and do not guarantee finite-sample perfor-

mance, it is clear that the interpolated fractional order statistic cannot lie far from

its unobserved dual even in small samples, which is an advantage over methods

more reliant on asymptotic justification.1

The two-sample and linear combination methods build on this idea. In the

two-sample case, one-sample IDEAL confidence intervals are built in the control

and treatment samples. For a confidence interval for the treatment median minus

the control median, a value is included in the interval if the one-sample intervals

intersect after shifting the treatment interval down by that value. For example,

the value zero (i.e., difference of medians is zero) is excluded if the one-sample

intervals do not overlap, and included if they do overlap; the value 10 is excluded

if the one-sample intervals do not overlap after shifting the treatment interval down

by 10, and included if they do overlap after that shift. Instead of using the nominal

α for the one-sample intervals, which would lead to overcoverage, we calculate an

adjusted α̃ depending on the ratio of probability density functions at the quantile

of interest.

These methods can all also be used for quantile inference conditional on

discrete-valued covariates, with no adjustment. Conditioning on continuous as

well as discrete variables is covered in Chapter 2.

The remainder of this section reviews the literature for one-sample and two-

sample quantile inference, which contains many alternative approaches. We first

review the one-sample case. Methods of inference based on asymptotic normality

require the selection of a smoothing parameter to estimate the probability density

function at the quantile of interest, but they may use Edgeworth expansions to

1This is somewhat similar to the argument that a bootstrap can perform better than a normal
approximation method with the same CPE, since the bootstrap distribution’s deviation from a
normal distribution may capture some of the true finite-sample distribution’s deviation from
normality.
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reduce theoretical CPE.2 Hall and Sheather (1988) achieve a one-sided O(n−1/2)

and two-sided O(n−2/3) CPE, while Chapter 3 uses bandwidth-dependent critical

values that lead to two-sided confidence intervals undercovering by O(n−1) but

(weakly) overcovering by O(n−2/3).

One-sample quantile inference has been a popular topic in the bootstrap

literature dating back to Efron (1979). Smoothing has been the most popular ap-

proach, as in Brown et al. (2001); Hall et al. (1989); Ho and Lee (2005b); Horowitz

(1998); Janas (1993), although practical performance doesn’t always reflect the

nice theoretical properties. For example, the best theoretical one-sided rate is

O(n−58/57) in Ho and Lee (2005b), but it requires additional iteration plus “proper

choices of bandwidths at the bootstrapping and Studentization steps” (p. 444)

while only deriving “optimal orders of bandwidths” (p. 443). Polansky and Schu-

cany (1997) achieve the best two-sided CPE of O(n−3/2), though criticized by

fellow smoothers Ho and Lee (2005b) as “requir[ing] sophisticated tuning of the

smoothing bandwidths” and themselves admitting, “If this method is to be of any

practical value, a better bandwidth estimation technique will certainly be required”

(p. 833). For a more comprehensive review of bootstrap methods for one-sample

quantile inference, see Ho and Lee (2005b, §1).

The smoothed empirical likelihood method of Chen and Hall (1993) achieves

one-sided O(n−1/2) CPE, while two-sided O(n−1) CPE is Bartlett-correctable the-

oretically to O(n−2) or analytically to O(n−1h), where h is the smoothing band-

width. They suggest that the bandwidth range [n−1/2, n−3/4] is often good but

that “less smoothing than this is desirable” for skewed distributions like χ2
1.

For methods derived from the exact binomial distribution, randomization

is one way to preserve exact size, as in Zieliński and Zieliński (2005). Beran and

Hall (1993) suggest an interpolation that gets one-sided and two-sided O(n−1)

CPE, which Ho and Lee (2005a) improve to O(n−3/2) via analytic calibration

or O(n−25/14) via smoothed bootstrap calibration (requiring bandwidth choice).

The fractional order statistic method of quantile inference originally proposed by

Hutson (1999) is similar to Beran and Hall (1993); it performs well in simulations

2Since confidence intervals correspond directly to hypothesis tests in our context, CPE is
equivalent to the difference between actual and nominal type I error.
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and requires no nuisance parameter estimation or bandwidth choice. As we show

in two new results here, its CPE is O(n−1), and it is analytically correctable to

almost O(n−3/2).

Existing two-sample methods cover the same types of strategies. Horowitz

(1998) bootstraps a smoothed regression quantile; CPE approaches o(n−1) as as-

sumed smoothness increases. Whang (2006) extends the smoothed empirical likeli-

hood of Chen and Hall (1993) to regression, with the same CPEs. However, it will

be conservative for two-sample inference since parameters must be tested jointly, so

projection is required to isolate the quantile treatment effect. For the same reason,

two-sample inference using the exact method in Chernozhukov et al. (2009) will

also be conservative. With higher-order approximation of the asymptotic normal

distribution, Chapter 3 again gets a confidence interval weakly overcovering by

O(n−2/3) and undercovering by O(n−1), though these rates do not include error

from nuisance parameter estimation (or, alternatively, an assumption somewhat

weaker than exchangeability).

Specific to the median in the two-sample case, Hutson (2007) proposes an

“exact bootstrap” method. With the strong exchangeability assumption, permuta-

tion-type tests can be applied. This includes the commonly used Mann–Whitney–

Wilcoxon test (Mann and Whitney, 1947; Wilcoxon, 1945), though this is only

valid as a median difference test against pure location-shift alternatives.

Section 1.2 presents the key theoretical results. Section 1.3 translates the

theory into practical methods. For our new two-sample QTE inference method, we

give an empirical application in Section 1.4 and simulation results in Section 1.5.

Notationally,
.
= should be read as “is equal to, up to smaller-order terms”; � as

“has exact (asymptotic) rate/order of” (same as “big theta” Bachmann–Landau

notation, Θ(·)); and An = O(Bn) as usual, ∃k <∞ s.t. |An| ≤ Bnk for sufficiently

large n. Acronyms used are those for cumulative distribution function (CDF), con-

fidence interval (CI), coverage probability (CP), coverage probability error (CPE),

interpolated duals of exact analytic L-statistics (IDEAL), and probability density

function (PDF). Proofs absent from the text are collected in the appendix.
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1.2 Fractional order statistic approximation er-

ror

In this section we introduce our basic notation and demonstrate our core

theoretical result on the accuracy of the approximation of ‘ideal’ fractional order

statistics by linear interpolation of observed order statistics.

Given an iid sample {Xi}ni=1 of draws of an absolutely continuous random

variable with unknown cumulative distribution function (CDF) denoted3 F (·), in-

terest is in estimation of Q(u) ≡ F−1(u) for some u ∈ (0, 1), where Q(·) = F−1(·)
is also known as the quantile function. The conventional, linearly (L) interpolated

fractional order statistic estimator of Q(u) is defined as

Q̂L
X(u) ≡ (1− ε)Xn:b(n+1)uc + εXn:b(n+1)uc+1, (1.1)

where Xn:k denotes the kth order statistic, which is the kth smallest value out of

the n observations {Xi}ni=1, and ε ≡ (n + 1)u − b(n + 1)uc is the interpolation

weight, with b·c the floor function. While Q(u) is a fixed (true) value, Q̂L
X(u) is a

random variable, and Q̂L
X(·) is a stochastic process with its argument varying over

(0, 1).

If u ∈ Ξn ≡ { k
n+1
}nk=1, then no interpolation is necessary and Q̂L

X(u) corre-

sponds exactly to some Xn:k. However, frequently we are interested in the distri-

butions of sample quantiles outside Ξn, as is true for our applications to quantile

inference in §1.3. Absent an exact distributional theory for Q̂L
X(u) when u /∈ Ξn,

we demonstrate a tight link between the marginal distributions of the stochastic

process Q̂L
X(·) and of the analogous ‘ideal’ process Q̂I

X(·). This allows us to trans-

late distributional results from the ‘ideal’ process into practical methods based on

interpolated order statistics, with very little coverage error. We demonstrate the

power of this result in the important special cases of one-sample and two-sample

quantile inference, as well as inference on general linear combinations of quantiles

like the interquartile range.

3F will often be used with a random variable in a subscript to denote the CDF of that
particular random variable. If no subscript is present, then F refers to the CDF of X.
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For uniformly distributed Ui ≡ F (Xi), the process of unobserved ‘ideal’ (I)

fractional order statistics, denoted Q̂I
U(·), is a Dirichlet process over the Lebesgue

measure on the unit interval with concentration parameter n + 1 (Stigler, 1977).

While there are many ways to interpret this Dirichlet process (e.g., as a Chi-

nese restaurant process, or using Pólya’s urn), understanding it as an infinite-

dimensional generalization of the Dirichlet distribution may be most helpful for

our purposes. For example, with n = 5, the first observed order statistic, U5:1 =

Q̂I
U(1/6), has distribution β(1, 5). The value of the second order statistic, U5:2 =

Q̂I
U(2/6), adds to the first: U5:2 = U5:1 + (1− U5:1)∆2 with ∆2 ∼ β(1, 4). In terms

of the common illustration of cutting a string of unit length, U5:1 ∼ β(1, 5) is the

length of the first segment, and ∆2 describes the length of the second segment as

a proportion of the remaining string: (U5:2 − U5:1)/(1− U5:1) = ∆2 ∼ β(1, 4). The

∆j are all independent. Similarly, U5:3 = U5:2 + (1 − U5:2)∆3 with ∆3 ∼ β(1, 3),

and similarly for U5:4 and U5:5 as well, with ∆4 ∼ β(1, 2) and ∆5 ∼ β(1, 1). For

fractional order statistics Q̂I
U(u) with u ∈ {1/12, 2/12, . . . , 11/12}, the starting

point becomes Q̂I
U(1/12) ∼ β(0.5, 5.5). The first observed order statistic is now

expressed as Q̂I
U(2/12) = Q̂I

U(1/12) + [1 − Q̂I
U(1/12)]∆2 with ∆2 ∼ β(0.5, 5.0).

Similarly, ∆3 ∼ β(0.5, 4.5), and generally ∆j ∼ β(0.5, 6 − j/2) and Q̂I
U(j/12) =

Q̂I
U((j−1)/12)+[1−Q̂I

U((j−1)/12)]∆j for j = 1, . . . , 11, defining Q̂I
U(0) = 0. Con-

tinuing to pack more and more u closer together, e.g. with ∆j ∼ β(1/k, 6− j/k) as

k → ∞, the finite joint Dirichlet distribution approaches the infinite-dimensional

Dirichlet process.

To help visualize this, Figure 1.1 shows example realizations (sample paths)

of Q̂I
U(·) for different sample sizes.4 As n → ∞, sample quantiles converge to the

true quantiles, and Q̂I
U(u)

p→ QU(u) = u, so sample paths from the process with

larger sample size are clustered closer to the function QU(u) = u. Realizations

of observable order statistics correspond to u ∈ Ξn, as discussed; e.g., for n = 5,

u ∈ {1/6, 2/6, . . . , 5/6}.
4Although it is technically impossible to sample the infinite number of points that fully de-

scribes a realization of the process, sampling over 50,000 points is visually indistinguishable.
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For the non-uniform Xi, we define

Q̂I
X(·) ≡ F−1

(
Q̂I
U(·)

)
. (1.2)

Note that Q̂I
X(u) is an alternative “estimator” of Q(u) that exactly coincides with

Q̂L
X(u) for all u ∈ Ξn and differs only in its random (and unobserved) interpolation

between these points. Thus, in probability, these processes are closely linked.

Theorem 1.1. For any fixed δ > 0, define U δ ≡ {u ∈ (0, 1) | f(F−1(u)) ≥ δ} and

U δn ≡ U δ ∩ [ 1
n
, n−1

n
]; then, sup

u∈Uδn
|Q̂I

X(u)− Q̂L
X(u)| = Op(n

−1[log n]).

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample Realizations from
`Ideal' Uniform Fractional Order Statistic Process

u

Q̂
IU
(u
)

n=5
n=100

Figure 1.1: Sample realizations of the ‘ideal’ uniform fractional order statistic

process.

For any vector u in the power set of Ξn, i.e. u ∈ P(Ξn) = Ξn × · · · × Ξn,

(1.2) provides an exact joint sampling distribution for the observed order statistics.

As an important special case, the marginal distribution of any individual uniform
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order statistic is a beta distribution,5

Q̂I
U(u) ∼ β

(
(n+ 1)u, (n+ 1)(1− u)

)
. (1.3)

We consider the multivariate distribution of some vector of quantiles with

dimension J < ∞, where uj denotes an element in column vector u ∈ (0, 1)J .

The joint PDF of {Q̂I
U(uj)}Jj=1 evaluated at {xj}Jj=1 comes from the Dirichlet

distribution and is

Γ(n+ 1)∏J+1
j=1 Γ((n+ 1)(uj − uj−1))

(
J+1∏
j=1

(xj − xj−1)(n+1)(uj−uj−1)−1

)
,

where u0 ≡ 0, x0 ≡ 0, uJ+1 ≡ 1, and xJ+1 ≡ 1. The Dirichlet distribution

concentration parameters, conventionally written as αj, here are uj − uj−1. The

Dirichlet distribution describes a distribution over segment lengths, in this case

the fractional order statistic spacings xj − xj−1.

We also consider a common alternative approximation to the sample distri-

bution of order statistics. It is well known that the centered and scaled empirical

process for standard uniform random variables converges to a Brownian bridge.

So, for a Brownian bridge process B(·), we define on u ∈ (0, 1) the additional

stochastic processes

Q̂B
U (u) ≡ u+ n−1/2B(u) and Q̂B

X(u) ≡ F−1
(
Q̂B
U (u)

)
.

The realizations of these processes do not correspond to observed data, but the

distribution of Q̂B
X(u) provides a convenient approximation to the distributions

from the other processes. To see this note that the marginal distribution of Q̂I
U(u)

is distributed as the cumulative sum of a Dirichlet distribution, while the marginal

of Q̂B
U (u) is a multivariate Gaussian. Lemma 1.2 proves the close relationship

between these densities and density derivatives for all values outside the tails (part

a), which are shown to have rapidly diminishing probability mass (parts b and c).

5β(a, b) will denote a beta distribution with parameters a and b unless otherwise
noted. The probability density function (PDF) evaluated at any x ∈ (0, 1) is given by
[Γ(a+ b)/(Γ(a)Γ(b))]xa−1(1− x)b−1.
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Lemma 1.2. Let ∆k be a positive (J + 1)-vector of natural numbers such that∑J+1
j=1 ∆kj = n′ ≡ n + 1 and minj{∆kj} → ∞ and define kj ≡

∑j
i=1 ∆ki. Let

X ≡ (X1, . . . , XJ)′ be the random J-vector such that

∆X ≡ (X1, X2 −X1, . . . , 1−XJ)′ ∼ Dirichlet(∆k).

Take any sequence an s.t.

(i) an →∞

(ii) ann
−1[max{∆kj}]1/2 → 0

(iii) an[min{∆kj}]−1/2 → 0.

Define Condition ?(an) as satisfied by X iff

sup
j

{
n∆k

−1/2
j

∣∣∣∣∆Xj −∆kj/n
′
∣∣∣∣} ≤ an.

a) ∀x ∈ RJ satisfying Condition ?(an),

log[fX(x)] = K +
1

2
(x− k/n′)′H(x− k/n) +O(an||∆k−1/2||∞)

= log[φk/n,V/n(x)] +O(an||∆k−1/2||∞).

d log[fX(x)]

dx
= H(x− k/n′) +O

(
a2
nn||∆k−1||∞

)
.

Writing Xk with the subscript to emphasize the dependence of the density on

the underlying vector of parameters, we also have

d log[fXk
(x)]

dk/n′
= −H(x− k/n′) +O(ann||∆k−1||∞),

where the constant K = J
2

log(n/2π)+ 1
2

∑J+1
j=1 log

(
n

∆kj−1

)
and the J×J matrix

H has non-zero elements only on the diagonal Hj,j = −n2
(
∆k−1

j + ∆k−1
j+1

)
and

one off the diagonal Hj,j+1 = n2∆k−1
j+1.

b) 1− P [?(an)] = o(exp{−a2
n/2}).

c) If instead there are fixed components of the parameter vector, the largest of which

is ∆kj = M < ∞, then we state the slightly weaker result on tail probabilities

that

1− P [?(an)] = O(exp{−anM−1/2}).
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It can be checked that V ≡ H−1 is such that

Vi,j = min(ki, kj)(n
′ −max(ki, kj)), (1.4)

thus illuminating the relation between the above result and conventional asymp-

totic normality results for quantiles. If we had instead want an expansion for ∆X

it is a simple manner of linear algebra to derive results of the form

log[f∆X(z)] = K +
1

2
(z−∆k/n′)′H∆(z−∆k/n) +O(an||∆k−1/2||∞), (1.5)

where H∆i,j
=
∑J

k=i

∑J
l=j Hk,l and inverse matrix V∆ ≡ H∆

−1 is such that

V∆i,j =

∆ki(n
′ −∆ki), if i = j ,

−∆ki∆kj, if i 6= j .
(1.6)

Note that the limiting density (and derivatives) above and in (a) are those of

unscaled multivariate Gaussians. Lemma 1.2 is a powerful tool for approximating

the distribution of order statistics and we use it to demonstrate the close distri-

butional link between linear combinations of ‘ideal’, interpolated, and Gaussian-

approximated fractional order statistics in Theorem 1.3. Specifically, for an arbi-

trary ψ ∈ RJ with non-zero elements ψj, we seek to (distributionally) approximate

linear combinations of ‘ideal’ fractional order statistics (i.e., ‘ideal’ L-statistics) by

linear combinations of their interpolated duals; i.e., to approximate

LI ≡
J∑
j=1

ψjQ̂
I
X(uj) by LL ≡

J∑
j=1

ψjQ̂
L
X(uj), (1.7)

or alternatively, by LB ≡
J∑
j=1

ψjQ̂
B
X(uj).

For convenience and without loss of generality, we normalize ψ1 = 1. As in (1.1),

the εj ≡ (n+ 1)uj − b(n+ 1)ujc are interpolation weights.

Our lone assumption for this section is now presented, followed by the main

theoretical result that underpins all IDEAL methods. A technical lemma useful

for proving the theorem may be found in the appendix, along with its proof and

a short discussion. We use bold for vectors, underline for matrices, and φΣ(·) for

the multivariate normal PDF with mean 0 and covariance matrix Σ.
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Assumption A1.1. For each quantile uj, the PDF f(·) satisfies (i) f(F−1(uj)) >

0; (ii) f ′′(·) is continuous in some neighborhood of F−1(uj).

Theorem 1.3. Define V as the J × J matrix such that V i,j = min{ui, uj}(1 −
max{ui, uj}), and let

A ≡ diag{f(F−1(u))}, Vψ ≡ ψ′
(
A−1V A−1

)
ψ, X0 ≡

J∑
j=1

ψjF
−1(uj).

Given the definitions in (1.1), (1.2), and (1.7) and under Assumption A1.1, the

following results bound the error from approximating ‘ideal’ L-statistics LI by their

interpolated duals LL.

(i) For samples {Xi}ni=1 with Xi
iid∼ F , and for a given constant K,

P

(
LL < X0 + n−1/2K

)
− P

(
LI < X0 + n−1/2K

)
=
K exp{−K2/(2Vψ)}√

2πV3
ψ

[
J∑
j=1

(
ψ2
j εj(1− εj)
f [F−1(uj)]

2

)]
n−1 +O(n−3/2 log(n)).

(ii) For samples {Xi}ni=1 with Xi
iid∼ F ,

sup
K∈R

[
P

(
LL < X0 + n−1/2K

)
− P

(
LI < X0 + n−1/2K

)]
=

e−1/2√
2πV2

ψ

[
J∑
j=1

(
ψ2
j εj(1− εj)
f [F−1(uj)]

2

)]
n−1 +O(n−3/2 log(n))

and

sup
K∈R

∣∣∣∣P(LB < X0 + n−1/2K

)
− P

(
LI < X0 + n−1/2K

)∣∣∣∣ = O(n−1/2 log(n)).

(iii) Given independent (of each other) samples {Xi}nxi=1 and {Yi}nyi=1 with Xi
iid∼ FX

and Yi
iid∼ FY , where Assumption A1.1 holds for each, and with nx ∝ n and

ny ∝ n,

sup
K∈R

[
P
(
LLX + LLY < K

)
− P

(
LIX + LIY < K

)]
= O(n−1),
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and

sup
K∈R

[
P
(
LBX + LBY < K

)
− P

(
LIX + LIY < K

)]
= O(n−1/2 log(n)).

The following is brief intuition behind the proof of part (i). We start by

restricting attention to cases where the largest spacing between relevant uniform

order statistics, Un:b(n+1)ujc+1 −Un:b(n+1)ujc, and the largest difference between the

Un:b(n+1)ujc and uj satisfy Condition ?(2 log(n)) as in Lemma 1.2. (In appendix no-

tation: ‖Λ‖∞ < 2 log(n)n−1 and ‖Y−u‖∞ < 2 log(n)n−1/2.) By Lemma 1.2(b–c),

this does not induce a polynomial order error in our calculations. We then use the

representation of ‘ideal’ fractional order statistics from Jones (2002), which is equal

in distribution to the linearly interpolated form but with a random interpolation

weight following a β(εj, 1 − εj) distribution. The leading term in the error is due

to the random interpolation weight’s variance, and by plugging in other calcula-

tions from Lemma A.1, we see that it is uniformly O(n−1) and can be calculated

analytically. Part (iii) extends this result to two samples, which is necessary for

inference on quantile treatment effects. The additional results for LB in parts (ii)

and (iii) follow directly from the density approximation in Lemma A.1(ii). These

CDF error calculations are key to calculating the CPE of related quantile inference

methods, as we do in §1.3.

Remark. It is clear by the Cramér-Wold device that the vector Q̂L
X(u) converges in

distribution to Q̂I
X(u) up to an O(n−1) term and to Q̂B

X(u) up to an O(n−1/2 log(n))

term. This could allow reliable inference on more general finite-dimensional func-

tionals of the quantile process. In the remainder of this paper, attention is re-

stricted to the class of linear combinations.

Remark. Through Vψ, the CDF error in Theorem 1.3(ii) is proportional to the

greater of 1/(minj{uj}) and 1/(minj{1− uj}). This is consistent with the well-

known additional difficulties of estimating “extreme quantiles” instead of “central

quantiles.” We may remove this specific term via analytic calibration, though a

similar term is likely in the remainder.
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1.3 Application to quantile inference

Theorem 1.3 can be used to select linear combinations of fractional order

statistics that serve as endpoints of confidence intervals (CIs) for functions of the

quantile process. The only remaining obstacle is that the CDF operator, F (·), is

unknown. For inference on a single quantile or jointly on multiple quantiles, infer-

ence turns out to be entirely distribution free. For inference on quantile treatment

effects or linear combinations of quantiles, we will need to take Taylor expansions

and estimate PDF ratios at the J quantiles of interest.

For any quantile uj and any nominal confidence level (1 − α), we define

uhj (α) and ulj(α) as solutions to the equations

α = P
(
Q̂I
U

(
uhj (α)

)
< uj

)
, α = P

(
Q̂I
U

(
ulj(α)

)
> uj

)
, (1.8)

where Q̂I
U(u) ∼ β

(
(n + 1)u, (n + 1)(1 − u)

)
from (1.3). These are analogous to

(7) and (8) in Hutson (1999). CI endpoints will then be Q̂L
X(uhj ) or Q̂L

X(ulj), i.e.

linearly interpolated fractional order statistics with index (n+ 1)uhj or (n+ 1)ulj.

Figure 1.2 visualizes an example. The uh (or ul) parameter determines

the mean of the beta distribution. Decreasing uh increases the probability mass

in the shaded region below u, while increasing uh decreases the shaded region.

Consequently, solving (1.8) is a simple numerical search problem.

For J = 1, (1.8) defines the one-sample CI endpoint(s). For J > 1 (or two

samples), individual CIs are constructed for each uj-quantile and then combined

into the appropriate overall CI. However, using α for the individual CIs leads

to overcoverage or undercoverage, so a calibrated α̃ is used instead, as discussed

below.

The following lemma shows that the CI endpoints converge to uj at a root-n

rate and may be approximated by quantiles of a normal distribution.

Lemma 1.4. Let z1−α denote the (1 − α)-quantile of a standard normal distri-

bution, z1−α ≡ Φ−1(1 − α). With no assumptions other than their definitions in
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Figure 1.2: Example of one-sample, one-sided confidence interval endpoint de-

termination. In the left graph, the lower one-sided endpoint ul is the param-

eter value such that the shaded region P
(
Q̂I
U(ul) > u

)
has size α, where

Q̂I
U(ul) ∼ β

(
(n+ 1)ul, (n+ 1)(1− ul)

)
from (1.3). In the right graph, similarly, uh

solves P
(
Q̂I
U(uh) < u

)
= α.

(1.8), the values ulj(α) and uhj (α) can be approximated as

ulj(α)− uj = −z1−α

√
uj(1− uj)n−1/2 +O(n−1),

uhj (α)− uj = z1−α

√
uj(1− uj)n−1/2 +O(n−1).

If J = 1, we omit the j subscript. With two-sample problems, there may

be an additional subscript denoting the sample (x or y). If J > 1, we define

uHj (α) ≡ 1{ψj > 0}uhj (α) + 1{ψj < 0}ulj(α), (1.9)

uLj (α) ≡ 1{ψj > 0}ulj(α) + 1{ψj < 0}uhj (α).

1.3.1 One-sample inference on a single quantile

With an iid sample {Xi}ni=1, we consider testing the null hypotheses H0 :

Q(u) = D against the lower one-sided alternative H1 : Q(u) < D, or (equivalently)

constructing a lower one-sided CI for D. Hutson (1999, eqn. 8) constructs a CI
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with nominal coverage probability (1− α) for D as(
−∞, Q̂L

X

(
uh(α)

))
but provides neither a bound for coverage probability error (CPE) nor a theoretical

characterization of power against local alternatives. To apply Theorem 1.3(i), we

note that

J = 1, ε = (n+ 1)uh(α)− b(n+ 1)uh(α)c,

Vψ =
uh(α)(1− uh(α))

f(F−1(u))2
, X0 = F−1(uh(α)), and

K = n1/2
[
F−1(u)− F−1

(
uh(α)

)]
=
n1/2

(
u− uh(α)

)
f(F−1(uh(α)))

+O
(
n1/2(uh(α)− u)2

)
= −

z1−α
√
uh(α)(1− uh(α))

f(F−1(uh(α)))
+O(n−1/2)

= −
z1−α

√
u(1− u)

f(F−1(u))
+O(n−1/2),

where the last three lines use Assumption A1.1 and Lemma 1.4. The coverage

probability under the null is

P
(
D ∈ (−∞, Q̂L

X(uh(α)))
)

= P
(
Q̂L
X(uh(α)) > D)

)
Thm 1.3

= P
(
Q̂I
X(uh(α)) > D

)
+
ε(1− ε)z1−α exp{−z2

1−α/2}√
2πuh(α)(1− uh(α))

n−1 +O(n−3/2 log(n))

= 1− α +
ε(1− ε)z1−α exp{−z2

1−α/2}√
2πu(1− u)

n−1 +O(n−3/2 log(n)).

Thus, Hutson’s (1999) lower one-sided CIs have O(n−1) overcoverage and the

same leading term found in the alternative interpolation scheme of Beran and

Hall (1993). However, this term is analytic and can be removed by appropriate

calibration.6 We recommend the calibrated CI(
−∞, Q̂L

X

[
uh
(
α +

ε(1− ε)z1−α exp{−z2
1−α/2}√

2πu(1− u)
n−1

)])
,

which has CPE of O(n−3/2 log(n)). By parallel argument, Hutson’s (1999) upper

one-sided and two-sided CIs also have O(n−1) CPE, which can be improved to

6Ho and Lee (2005a) provide a similar calibration to Beran and Hall’s (1993) interpolation
scheme.
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O(n−3/2 log(n)) via calibration. For the upper one-sided case, the (1− α) Hutson

CI and our calibrated CI are respectively given by(
Q̂L
X [ul(α)],∞

)
and

(
Q̂L
X

[
ul
(
α +

ε(1− ε)z1−α exp{−z2
1−α/2}√

2πu(1− u)
n−1

)]
,∞
)
,

and for equal-tail two-sided CIs,(
Q̂L
X

[
ul(α/2)

]
, Q̂L

X

[
uh(α/2)

])
and(

Q̂L
X

[
ul

(
α

2
+
ε(1− ε)z1−α/2 exp{−z2

1−α/2/2}√
2πu(1− u)

n−1

)]
,

Q̂L
X

[
uh

(
α

2
+
ε(1− ε)z1−α/2 exp{−z2

1−α/2/2}√
2πu(1− u)

n−1

)] )
.

In the Hutson (1999) two-sided CI, the O(n−1) terms do not cancel out, but

rather build on top of each other, leading to symmetric overcoverage. In all cases

the O(n−1) term leads to overcoverage of the Hutson CI. Intuitively, this is due

to interpolation variance found in the ‘ideal’ process from which the CI endpoints

are chosen but not found in the ‘linearly interpolated’ process from which they are

realized.

Finally, we demonstrate that the hypothesis tests corresponding to all the

CIs of this section achieve optimal asymptotic power against local alternatives.

The sample quantile is the semiparametric efficient estimator, so it suffices to show

that IDEAL power is asymptotically (first-order) equivalent to that of the method

based on asymptotic normality. Consider the coverage of the local alternative

Dn ≡ Q(u) + Kn−1/2 by Hutson’s (1999) lower one-sided CI. Including such a

value is type II error, so power is

P ln(Dn) = P
(
Dn 6∈ (−∞, Q̂L

X(uh(α)))
)

= P
(
Q̂L
X(uh(α))−Q(uh(α)) < Kn−1/2 −

[
Q(uh(α))−Q(u)

])
Thm 1.3

= P
(
Q̂B
X(uh(α))−Q(uh(α)) < Kn−1/2 −

[
Q(uh(α))−Q(u)

])
+O(n−1/2 log(n))

Lem 1.4
= P

(
n1/2

[
Q̂B
X(uh(α))−Q(uh(α))

]
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< K +

[
zα
√
u(1− u)

f(F−1(u))

]
+O(n−1/2)

)
+O(n−1/2 log(n))

≡ P

(
n1/2

[
Q̂B
U (uh(α))− uh(α)

f(F−1(u))

]
< K +

[
zα
√
u(1− u)

f(F−1(u))

]
+O(n−1/2)

)
+ Tl(α) +O(n−1/2 log(n))

→ Φ

(
zα +

Kf(F−1(u))√
u(1− u)

)
,

where Tl(α) is defined as the error generated by linearization of a stochastic process

around Q(u) and is a special case of the term which is expanded in the appendix;

this term is shown to be no larger than O(n−1/2). Analogous reasoning gives the

same result for upper (u) and equal-tail two-sided (t) CIs:

Pun(Dn)→ Φ

(
zα −

Kf(F−1(u))√
u(1− u)

)
(for K < 0),

P tn(Dn)→ Φ

(
zα/2 +

Kf(F−1(u))√
u(1− u)

)
+ Φ

(
zα/2 −

Kf(F−1(u))√
u(1− u)

)
.

Remark. For relatively extreme quantiles, both the Hutson method and our cali-

bration become uncomputable.7 Note that u may be required so large (or small)

that it needs the (n + 1)th (or the 0th) order statistic, which is not observed. If

useful and reasonable lower and/or upper bounds are known on these distribu-

tions, they may be used in place of these missing order statistics. More generally,

approaching this boundary of computability does not deteriorate the performance

of Hutson’s method in simulations. Note that as the sample size increases, the

range of computable quantiles approaches (0, 1). When not computable, methods

like that in Chapter 3 may be used. See Chapter 3 for graphs of combinations of

n and u for which the Hutson CI is computable.

To construct these one-sample 100(1 − α)% CIs, as described in Hutson

(1999):

7Regarding this problem, Ho and Lee (2005a, p. 235) give a seemingly arbitrary formula for
extrapolation, discussed further in their simulation study, and note that a priori bounds on the
support of X can help, for example by conservatively using the upper bound for the (n + 1)th
order statistic and the lower bound for the 0th.
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1. Parameters: determine the sample size n, quantile of interest u ∈ (0, 1), and

desired coverage level 1− α.

2. Endpoint index computation: (i) For a lower one-sided CI, the upper endpoint

index uh solves α = P
(
Q̂I
U(uh) < u

)
as in (1.8), where

Q̂I
U(u) ∼ β((n+ 1)u, (n+ 1)(1− u))

as in (1.3). Most modern statistical software includes built-in functions to

compute the beta distribution CDF and to solve the equation. (ii) Similarly, for

an upper one-sided CI, the lower endpoint index ul solves α = P
(
Q̂I
U(ul) > u

)
.

(iii) For a two-sided CI, construct both upper and lower endpoint the same as

for a one-sided CI but with α/2 instead of α.

3. CI construction: (i) For a lower one-sided CI, compute kh = b(n+ 1)uhc, where

b·c is the floor function, and εh = (n + 1)uh − kh. The upper endpoint is

Q̂L
X(uh) = εhXn:kh+1 + (1 − εh)Xn:kh , as in (1.1). (ii) Similarly, for an upper

one-sided CI, the lower endpoint is Q̂L
X(ul) = εlXn:kl+1 + (1 − εl)Xn:kl , with

kl = b(n + 1)ulc and εl = (n + 1)ul − kl. (iii) For a two-sided CI, given the

uh and ul already computed, the endpoints are constructed the same as for the

one-sided CIs.

Code is available on the latter author’s website in MATLAB and R.

1.3.2 Joint one-sample inference on multiple quantiles

Alternatively, one may be interested in outcomes at some vector of quan-

tiles, u ∈ [0, 1]J . For this purpose, we construct joint CIs for the entire vector

Q(u). Our IDEAL approach is to first use the method of §1.3.1 to calculate a

nominal coverage level (1− α̃) CI for each Q(uj), which we denote by CIα̃j . Then

the IDEAL (1−α) joint CI for Q(u) is the J-dimensional rectangle yielded by the

Cartesian product of each CIα̃j ,

CIαQ(u) ≡
J∏
j=1

CIα̃j . (1.10)
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By precise selection of α̃ ≤ α (described below), our inference has asymptotically

exact coverage.8 It is possible to achieve better power against certain alternatives

by using J separate α̃j instead of one common α̃, but without a compelling reason

to do so, that would only complicate the method and increase the computational

difficulty of solving for α̃, which is currently a simple (one-dimensional) numerical

search. Further, the selection of a single α̃ ensures an even distribution of type I

errors across the J quantiles and thus results in ‘uniformly sensitive’ inference.

By combining one- and two-sided CIs on each of the J quantiles, there

are 3J different types of joint CI we could construct. We demonstrate only the

common case where each CIα̃j is an equal-tail two-sided CI. In that case, the joint

CI is given by

CIαQ(u) ≡
J∏
j=1

(
Q̂L
X [ulj(α̃)], Q̂L

X [uhj (α̃)]
)
, (1.11)

and α̃ is calibrated such that

1− α = P
([
∩Jj=1

(
Q̂I
U

[
uhj (α̃)

]
> uj

)]
∩
[
∩Jj=1

(
Q̂I
U

[
ulj(α̃)

]
< uj

)])
, (1.12)

where ∩ denotes the intersection of events and can be read as ‘and.’ Actual

coverage is

P
([
∩Jj=1

(
Q̂L
X

[
uhj (α̃)

]
> Q(uj)

)]
∩
[
∩Jj=1

(
Q̂L
X

[
ulj(α̃)

]
< Q(uj)

)])
Thm 1.3

= P
([
∩Jj=1

(
Q̂I
X

[
uhj (α̃)

]
> Q(uj)

)]
∩
[
∩Jj=1

(
Q̂I
X

[
ulj(α̃)

]
< Q(uj)

)])
+O(n−1)

= P
([
∩Jj=1

(
Q̂I
U

[
uhj (α̃)

]
> uj

)]
∩
[
∩Jj=1

(
Q̂I
U

[
ulj(α̃)

]
< uj

)])
+O(n−1)

= (1− α) +O(n−1).

The application of Theorem 1.3 above follows from the Cramér-Wold device. We

suspect the O(n−1) term is analytic, but we leave its calculation for a future re-

finement.

8Coverage of Q(u) by each CIα̃j are not asymptotically independent events, but indeed posi-
tively correlated. Thus choosing (1− α̃)J = 1− α will result in O(1) overcoverage.
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Despite being a joint inference technique, it is always clear which quantile(s)

(which subset of u) caused the rejection of some null hypothesis Q(u). Thus, this

test can also be interpreted as controlling the familywise error rate of J individual

hypothesis tests of each quantile.

To construct this 100(1− α)% joint CI for Q(u):

1. Parameters: determine the sample size n, the J quantiles of interest uj ∈ (0, 1),

and the desired coverage level 1− α.

2. Calibration of α̃: using a numerical solver, plus simulated random variables

from a beta distribution or numeric integration, solve for α̃ in (1.12). Let

Bh
j ≡ Q̂I

U [uhj (α̃)] and Bl
j ≡ Q̂I

U [ulj(α̃)], where uhj (α̃) and ulj(α̃) are as defined in

(1.8). To explain the simulation step, define ũ as a 2J × 1 vector containing

all the elements uhj (α̃), ulj(α̃) for j ∈ {1, . . . , J} sorted in ascending order, and

let B̃ = Q̂I
U [ũ] be the corresponding vector containing elements of type Bl

j and

Bh
j . We simulate draws of B̃ according to

B̃j = B̃j−1 + (1− B̃j−1)∆j, ∆j ∼ β((n+ 1)(ũj − ũj−1), (n+ 1)(1− ũj))

for j = 1, . . . , J , where B̃0 = 0, ũ0 = 0, and the ∆j are all independent.

For any given α̃, many (e.g., 105 or 106) random samples can be drawn, and

the probability on the RHS of (1.12) is the proportion of samples in which(
∩Jj=1

[
Bh
j > uj

])
∩
(
∩Jj=1

[
Bl
j < uj

])
. The calibrated α̃ is the value that solves

(1.12), which can be found by numerical search.

3. CI construction: individual (1− α̃) CIs, denoted CIα̃j , are constructed for each

Q(uj) as in §1.3.1. Their product, as in (1.10), is the overall (1− α) CI for the

vector Q(u).

Code is available on the latter author’s website in R.

1.3.3 One-sample inference on linear combinations of quan-

tiles

For linear combinations of quantiles, inference cannot be entirely distribu-

tion free but will require preliminary estimation of nuisance parameters (γ) in order
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to calibrate coverage. Previous CIs for the interquartile range (or general quan-

tile ranges) have been constructed via ‘outer’ and ‘inner’ CIs for the interquartile

interval. These have only established conservative CIs (e.g., David and Nagaraja,

2003; Krewski, 1976; Sathe and Lingras, 1981).

Formally, for quantiles u ∈ (0, 1)J and weights ψ ∈ RJ , we construct a CI

for some linear combination functional of the quantile process,

D =
J∑
j=1

ψjQ(uj).

This is a special case of the class of continuous functionals on the quantile process,

and it includes the interquartile range when ψ = (1,−1)′ and u = (0.75, 0.25)′.

The IDEAL approach is to first use the method of §1.3.1 to calculate a

nominal coverage level (1 − α̃[γ̂]) CI for each Q(uj), which we denote by CI
α̃[γ̂]
j .9

Then our (1− α) CI for D is defined as the set of all linear combinations possible

using points within the individual CIs:

CIαD ≡ {ψ′v : v1 ∈ CI
α̃[γ̂]
1 , v2 ∈ CI

α̃[γ̂]
2 , . . . , vJ ∈ CI

α̃[γ̂]
J }. (1.13)

By precise selection of α̃[γ̂] ≥ α (described below), our inference is not conserva-

tive. As in §1.3.2, it is possible to select J separate α̃j instead of one common α̃,

but without a compelling reason to do so, this would only complicate the method

and increase the computational difficulty of solving for α̃, which is currently a

simple (one-dimensional) numerical search.10 We maintain that Assumption A1.1

holds at each quantile uj. For calibration, J − 1 PDF ratios must be estimated.

Specifically, for j ∈ {1, . . . , J}, we define

γj ≡
f(F−1(u1))

f(F−1(uj))
(1.14)

and γ̂j as the corresponding estimator from (1.28) in §1.3.5.

9The new notation, α̃[γ̂], reflects that in this section (and in §1.3.4 for two-sample inference),
the selection of α̃ depends on estimated nuisance parameters.

10There is no first-order tradeoff in power in the selection of α̃. As can be inferred from the
proof of Theorem 1.5(iii), any selection of α̃ that controls coverage under the null would not
change asymptotic power against any local alternative. This is partly due to having a scalar
object of interest, D; unlike in §1.3.2, rejections of the null hypothesis are not directly linked to
a particular quantile.
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We demonstrate this approach first for a lower one-sided CI for D. In this

case, each CIα̃j is constructed as lower one-sided if ψj > 0 and upper one-sided

otherwise. In the notation of (1.9),

CI
α̃[γ̂]
D =

(
−∞,

J∑
j=1

ψjQ̂
L
X

(
uHj (α̃[γ̂])

))
, (1.15)

and for any value of the argument γ, α̃[γ] is chosen such that

1− α = P

(
J∑
j=1

ψjγj

(
Q̂I
U

[
uHj (α̃[γ])

]
− uj

)
> 0

)
. (1.16)

We write û for the vector of quantiles selected to form CI endpoints given estimates

γ̂. In contrast, let u0 denote the quantiles that would be selected if the true γ

were known. I.e.,

û ≡ {uHj (α̃[γ̂])}Jj=1 and u0 ≡ {uHj (α̃[γ])}Jj=1.

Using ≈ to denote omission of the O(n−1) term below, actual coverage is then

P
(
ψ′Q̂L

X [û] > ψ′Q(u)
)

Thm 1.3
= P

(
ψ′Q̂I

X [û] > ψ′Q(u)
)

+O(n−1)

≈ P
(√

nψ′
[
F−1

(
Q̂I
U [û]

)
− F−1(û)

]
>
√
nψ′

[
F−1(u)− F−1(û)

])
≡ Eγ̂

{
P
(
Wû >

√
nψ′[F−1(u)− F−1(û)] | γ̂

)}
,

where the W notation alludes to that in (A.10). Continuing to expand the coverage

probability, we get

= P (Wu0 >
√
nψ′[Q(u)−Q(u0)])

+ Eγ̂{P (Wû >
√
nψ′[Q(u)−Q(û)] | γ̂)

− P (Wu0 >
√
nψ′[Q(u)−Q(u0)] | γ̂)}

=

(1−α)︷ ︸︸ ︷
P

(
J∑
j=1

ψjγj

(
Q̂I
U

[
uHj (α̃[γ])

]
− uj

)
> 0

)
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+ P (Wu0 >
√
nψ′[Q(u)−Q(u0)])− P

(
J∑
j=1

ψjγj

(
Q̂I
U

[
uHj (α̃[γ])

]
− uj

)
> 0

)
+ Eγ̂{P (Wû >

√
nψ′[Q(u)−Q(û)] | γ̂)

− P (Wu0 >
√
nψ′[Q(u)−Q(u0)] | γ̂)}

≡ (1− α) + Th + Ch. (1.17)

The term Th comes from the J−1 first-order Taylor approximations of F−1(·), and

Ch comes from estimation error in γ̂. The O(n−1) terms from linear interpolation

(Theorem 1.3) have been dropped since they will be of smaller order.

By parallel logic, an upper one-sided CI is

CIαD =

(
J∑
j=1

ψjQ̂
L
X

(
uLj (α̃[γ̂])

)
,∞

)
, (1.18)

and for any value of γ, α̃[γ] is such that

1− α = P

(
J∑
j=1

ψjγj

(
Q̂I
U

[
uLj (α̃[γ])

]
− uj

)
< 0

)
. (1.19)

By a derivation parallel to that of (1.17), actual coverage probability is

(1− α) + Tl + Cl +O(n−1), (1.20)

with Tl and Cl defined analogously to Th and Ch in (1.17). A two-sided (1−α) CI is

the intersection of upper one-sided and lower one-sided (1−α/2) CIs. The following

theorem collects results for one-sample IDEAL inference on linear combinations of

quantiles.

Theorem 1.5. Given a sample {Xi}ni=1 with Xi
iid∼ F , where F (·) satisfies As-

sumption A1.1 at each of the J quantiles of interest uj, and given a null hypothesis

of the form

H0 :
J∑
j=1

ψjQ(uj) = D,

we have the following. Details on estimation of γ̂j and smoothing parameter choice

may be found in §1.3.5.
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(i) One-sided lower and upper CIs as in (1.15) and (1.18), respectively, have

CPE O(n−1/2) if all γ̂j are estimated via quantile spacings with smoothing

parameters mj having rate larger than n1/2 and smaller than n3/4, or equiv-

alently via kernel estimators with bandwidth rate between n−1/2 and n−1/4.

(ii) Two-sided CIs, given by the intersection of upper one-sided and lower one-

sided (1− α/2) CIs, have CPE O(n−2/3) if all γ̂j are estimated via quantile

spacings with smoothing parameters mj of order n2/3, or equivalently via

kernel estimators with bandwidth rate n−1/3.

(iii) For local alternatives of the form Dn = ψ′
(
Q(u) + κn−1/2

)
, asymptotic

power of lower one-sided (l), upper one-sided (u), and equal-tail two-sided

(t) CIs are given by

P ln(Dn)→ Φ

(
zα +

∑J
j=1 ψjκj√
Vψ

)
, Pun(Dn)→ Φ

(
zα −

∑J
j=1 ψjκj√
Vψ

)
,

P tn(Dn)→ Φ

(
zα/2 +

∑J
j=1 ψjκj√
Vψ

)
+ Φ

(
zα/2 −

∑J
j=1 ψjκj√
Vψ

)
,

where Vψ is the variance of ψ′Q̂B
X(u) as in Theorem 1.3.

Proof. The proof of parts (i) and (ii) is completed by appropriate expansion of the

CPE terms in (1.17) and (1.20). In Appendix A.1 it is demonstrated that Th, Tl =

O(n−1/2) and that Th+Tl = O(n−1). In §1.3.5 estimation of γ̂ is considered, and it

shown that Ch, Cl = O
(
m−1 + (m/n)2). Part (iii) is reserved for the appendix.

Remark. The differences between the one-sided and two-sided results are similar

to those in Hall and Sheather (1988, p. 384), who consider population quantile

inference via Edgeworth expansion. In their one-sided expansion in (2.6), the n−1/2

term dominates, so the smoothing parameter m can be anywhere in the range n1/2

to n3/4 and still cause the next two high-order terms, O(m−1) and O((m/n)2) just

as in our case, to be o(n−1/2). In their two-sided (2.7), the n−1/2 terms cancel, so

the CPE-minimizing rate of m is exactly determined as n2/3, which balances the

errors from the next two high-order terms at O(n−2/3). Though our context is more

complex, the same ideas and even rates apply. This inference-optimal m ∝ n2/3
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(or kernel estimator with bandwidth rate n−1/3) is different from the MSE-optimal

n4/5 (bandwidth rate n−1/5).

To construct these one-sample 100(1− α)% CIs for linear combinations of

quantiles:

1. Parameters: determine the sample size n, the J quantiles of interest uj ∈ (0, 1),

and the desired coverage level 1− α.

2. Density ratio estimation: using the method in §1.3.5, estimate f(Q(uj)) for

all j = 1, . . . , J and plug into (1.14) to get the γ̂j. In simulations, using a

standard kernel density estimator (evaluated at estimated quantiles Q̂L
X(uj))

with MSE-optimal bandwidth works similarly well.

3. Calibration of α̃: using a numerical solver, plus simulated random variables from

a beta distribution or numeric integration, solve for α̃ in (1.16) for a lower one-

sided CI or (1.19) for an upper one-sided CI. A two-sided CI is the intersection

of upper and lower one-sided (1 − α/2) CIs. To simulate (1.16), for example,

ψj, γ̂j, and uj are all known values, and let Bj ≡ Q̂I
U [uHj (α̃)], where the uHj (α̃)

are in ascending order (by j) and defined as in (1.9) (adjusting for negative ψj),

which by reference to (1.8) gives uHj as an implicit function of α̃. As in §1.3.2,

for j = 1, . . . , J , draws of Bj may be simulated by

Bj = Bj−1 + (1−Bj−1)∆j,

∆j ∼ β
(
(n+ 1)(uHj (α̃)− uHj−1(α̃)), (n+ 1)(1− uHj (α̃))

)
,

where again B0 = 0, u0 = 0, and the ∆j are all independent. For any given

some α̃, many (e.g., 105 or 106) random samples can be drawn. The probabil-

ity on the RHS of (1.16) is estimated by the proportion of samples in which∑J
j=1 ψj γ̂j(Bj − uj) > 0, and then α̃ may be found by numerical search.

4. CI construction: individual (1− α̃) CIs, denoted CIα̃j , are constructed for each

Q(uj), and the overall (1− α) CI for the linear combination is given by (1.13).

For a lower one-sided CI, CIα̃j is lower one-sided if ψj > 0 and upper one-sided

otherwise; for an upper one-sided CI, the opposite is true. Again, the overall

two-sided CI is the intersection of the overall lower and upper one-sided CIs.
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Code is available on the latter author’s website in R.

1.3.4 Two-sample quantile treatment effect inference

The methods and results of §1.3.3 extend readily to two-sample inference.

We assume independent samples are drawn from CDFs FX and FY (quantile func-

tions QX and QY ) with nx and ny observations, respectively.11 For example, with

individuals randomized into treatment and control groups, IDEAL can produce a

CI for the median treatment effect, or for general u-quantile treatment effect. Ap-

plying the results for linear combinations, we can also build a CI for the treatment

effect on the interquartile range (a robust measure of spread). Generally, CIs are

constructed for

D =
J∑
j=1

ψj[QY (uj)−QX(uj)].

Throughout, we assume that Assumption A1.1 holds at each uj-quantile of each

distribution, as well as the following assumptions.

Assumption A1.2. Independent samples {Xi}nxi=1 and {Yi}nyi=1 are drawn iid from

respective CDFs FX and FY . Respective quantile functions are denoted QX(·) ≡
F−1
X (·) and QY (·) ≡ F−1

Y (·).

Assumption A1.3. Sample sizes grow as limnx→∞
√
ny/nx ≡ µ.

Remark. The independence in Assumption A1.2 is satisfied if, for example, control

and treatment group members do not interact with one another, which is usually

true. Other than that, no assumptions are made on the relationship between FX

and FY . This contrasts with the exchangeability assumption of permutation-type

tests that maintain FX = FY under the null hypothesis, which rules out (e.g.) a

treatment that affects the variance of the outcome distribution but not the quantile

of interest. Assumption A1.3 is for convenience, letting us write n as the common

rate at which nx →∞ and ny →∞.

The IDEAL two-sample method extends naturally from our one-sample

results. First, 2J one-sample (1 − α̃) CIs are constructed: one for each QX(uj),

11For more general conditions like censored data, see for example Kosorok (1999).
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denoted CIα̃x,j, and one for each QY (uj), denoted CIα̃y,j. The two-sample CI for

D is defined as all linear combinations possible using points within the individual

one-sample CIs:

CIαD ≡
{
ψ′(vy − vx) : ∀j, vx,j ∈ CIα̃x,j and vy,j ∈ CIα̃y,j

}
. (1.21)

For a lower one-sided CI for D, the individual one-sample CIs for the quan-

tiles of FY will be lower one-sided if ψj > 0 and upper one-sided otherwise. The

one-sample CIs on the quantiles of FX will be upper one-sided if ψj > 0 and lower

one-sided otherwise. This results in the lower one-sided CI for D being

CIαD =

(
−∞,

J∑
j=1

ψj

[
Q̂L
Y

(
uHy,j(α̃[γ̂x, γ̂y])

)
− Q̂L

X

(
uLx,j(α̃[γ̂x, γ̂y])

)])
, (1.22)

with the calibration function α̃[γx,γy] implicitly defined by

1− α = P

(
J∑
j=1

ψj

[
γy,j

(
Q̂I
Uy

[
uHy,j(α̃)

]
− uj

)
− γx,j

(
Q̂I
Ux

[
uLx,j(α̃)

]
− uj

)]
> 0

)
.

(1.23)

The density ratios are both defined relative to fX(QX(u1)), as

γx,j ≡
fX(QX(u1))

fX(QX(uj))
, γy,j ≡

fX(QX(u1))

fY (QY (uj))
, (1.24)

with estimators (denoted by hats) given in (1.29) in §1.3.5.

Upper one-sided CIs are similarly given by

CIαD =

(
J∑
j=1

ψj

[
Q̂L
Y (uLy,j(α̃))− Q̂L

X(uHx,j(α̃))
]
,∞

)
, (1.25)

with calibration function α̃[γx,γy] implicitly defined by

1− α = P

(
J∑
j=1

ψj

[
γy,j

(
Q̂I
Uy

[
uLy,j(α̃)

]
− uj

)
− γx,j

(
Q̂I
Ux

[
uHx,j(α̃)

]
− uj

)]
< 0

)
.

(1.26)

Two-sided CIs are again given by the intersection of upper one-sided and lower

one-sided (1− α/2) CIs.
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We now calculate the actual coverage probability for the lower one-sided

CI, up to the expansion of familiar terms. Let

ûy = {uHy,j(α̃[γ̂x, γ̂y])}Jj=1, u0,y = {uHy,j(α̃[γx,γy])}Jj=1,

ûx = {uLx,j(α̃[γ̂x, γ̂y])}Jj=1, u0,x = {uLx,j(α̃[γx,γy])}Jj=1.

Referring back to (1.22), and with steps similar to the derivation of (1.17), true

coverage is

P

(
ψ′
[
Q̂L
Y (ûy)− Q̂L

X(ûx)
]
> ψ′[QY (u)−QX(u)]

)
Thm 1.3

= P

(
ψ′
[
Q̂I
Y (ûy)− Q̂I

X(ûx)
]
> ψ′[QY (u)−QX(u)]

)
+O(n−1)

≈ P

(
ψ′
[
F−1
Y (Q̂I

UY
(ûy))− F−1

X (Q̂I
UX

(ûx))
]
> ψ′

[
F−1
Y (u)− F−1

X (u)
])

= Eγ̂x,γ̂y

{
P

(
Wûy −Wûx

>
√
nψ′

[
(F−1

Y [u]− F−1
Y [ûy])− (F−1

X [u]− F−1
X [ûx])

]
| γ̂x, γ̂y

)}
= (1− α) + Th,2 + Ch,2, (1.27)

where ≈ merely denotes dropping the O(n−1) term. Similar to before, the term

Th,2 is the CPE induced by the required 2J − 1 linearizations of our unknown

inverse CDFs at our quantiles of interest, and Ch,2 is CPE induced by preliminary

estimation of the density ratios. The CPE results are identical to the general

one-sample results in Theorem 1.5, as summarized in the following corollary.

Corollary 1.6. Under Assumption A1.1 for both FX and FY , as well as Assump-

tions A1.2 and A1.3:

(i) One-sided lower and upper CIs as in (1.22) and (1.25), respectively, have

CPE of O(n−1/2) if all γ̂x,j and γ̂y,j are estimated via quantile spacings with

smoothing parameters mx,j and my,j having rate larger than n1/2 and smaller

than n3/4, or equivalently via kernel estimators with bandwidth rate between

n−1/2 and n−1/4.

(ii) Two-sided CIs, given by the intersection of upper one-sided and lower one-

sided (1− α/2) CIs, have CPE of O(n−2/3) if all γ̂x,j and γ̂y,j are estimated
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via quantile spacings with smoothing parameters mx,j and my,j of order n2/3,

or equivalently via kernel estimators with bandwidth rate n−1/3.

(iii) For local alternatives of the form Dn = ψ′
(
[QY (u)−QX(u)] + κn−1/2

)
,

asymptotic power of lower one-sided (l), upper one-sided (u), and equal-tail

two-sided (t) CIs are given by

P ln(Dn)→ Φ

(
zα +

∑J
j=1 ψjκj√
Vψ,x + Vψ,y

)
, Pun(Dn)→ Φ

(
zα −

∑J
j=1 ψjκj√
Vψ,x + Vψ,y

)
,

P tn(Dn)→ Φ

(
zα/2 +

∑J
j=1 ψjκj√
Vψ,x + Vψ,y

)
+ Φ

(
zα/2 −

∑J
j=1 ψjκj√
Vψ,x + Vψ,y

)
,

where for z ∈ {x, y}, Vψ,z is the variance of ψ′Q̂B
z (u) as in Theorem 1.3.

Proof. The proof parallels the one-sample case of Theorem 1.5. The two stochastic

processes are independent and thus pose no additional difficulty in calibrating

coverage.

To construct these two-sample 100(1− α)% CIs for linear combinations of

quantiles:

1. Parameters: determine the sample sizes nx and ny, the J quantiles of interest

u ∈ (0, 1)J , and the desired coverage level 1− α.

2. Density ratio estimation: using the method12 in (1.29) in §1.3.5, estimate

fX(QX(uj)) and fY (QY (uj)) for all j = 1, . . . , J and plug into (1.24) to get

the γ̂x,j and γ̂y,j.

3. Calibration of α̃: using a numerical solver, plus simulated random variables

from a beta distribution or numeric integration, solve for α̃ in (1.23) for a lower

one-sided CI or (1.26) for an upper one-sided CI. (See the construction in §1.3.3

for details.) Simulation can proceed as in §1.3.3, with the independence of

the two samples allowing us to separately draw realizations of both quantile

12In simulations, using a standard kernel density estimator (evaluated at estimated quantiles
Q̂LX(uj) and Q̂LY (uj)) with MSE-optimal bandwidth worked similarly well.
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processes. In the case of lower one-sided CI we draw

Bx,j = Bx,j−1 + (1−Bx,j−1)∆x,j,

∆x,j ∼ β
(
(nx + 1)(uHx,j(α̃)− uHx,j−1(α̃)), (nx + 1)(1− uHx,j(α̃))

)
,

By,j = By,j−1 + (1−By,j−1)∆y,j,

∆y,j ∼ β
(
(ny + 1)(uLy,j(α̃)− uLy,j−1(α̃)), (ny + 1)(1− uLy,j(α̃))

)
where Bx,0 = By,0 = 0, uHx,0 = uLy,0 = 0, and the ∆ are all independent. Drawing

many samples allows us to calculate the RHS of (1.23) as the proportion of

samples in which

J∑
j=1

ψj

[
γ̂y,j(By,j − uj)− γ̂x,j(Bx,j − uj)

]
> 0,

which is implicitly a function of α̃. Then, the calibrated value of α̃ that solves

(1.23) may be found by numerical search. For J = 1, the normal approximation

discussed in §1.3.6 also yields an approximate solution to α̃. Setting θ̂ ≡ (1 +

γ̂/µ)/
√

1 + (γ̂/µ)2, α̃ = Φ(zα/θ̂) for one-sided CIs or α̃/2 = Φ(zα/2/θ̂) for two-

sided; µ ≡
√
ny/nx, and γ̂ is the estimator of fX(QX(u))/fY (QY (u)).

4. CI construction: individual (1−α̃) CIs, denoted CIα̃x,j and CIα̃y,j, are constructed

for eachQX(uj) andQY (uj), and the overall (1−α) CI for the linear combination

is given by (1.21). For a lower one-sided CI, CIα̃y,j is lower one-sided if ψj > 0

and upper one-sided otherwise, while CIα̃x,j is upper one-sided if ψj > 0 and

lower one-sided otherwise; for an upper one-sided CI, the opposite is true. The

overall two-sided CI is the intersection of the overall lower and upper one-sided

(1− α/2) CIs.

MATLAB code for J = 1 and R code for J ≥ 1 are available on the latter author’s

website.

1.3.5 Estimation of γ

Selection of α̃ in §1.3.3 and §1.3.4 requires preliminary estimation of various

density ratios at the quantiles of interest. In both cases we recommend estimation
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by an inverse ratio of sparsities (denoted g, or ĝ for estimators) of the same form.

In (1.14) we specify the one-sample definition of γj, presented again here alongside

its estimator,

γj ≡
f(Q(u1))

f(Q(uj))
, γ̂j ≡

ĝj
ĝ1

≡
(
Xn:(n+1)uj+mj −Xn:(n+1)uj−mj

Xn:(n+1)u1+m1 −Xn:(n+1)u1−m1

)(
m1

mj

)
. (1.28)

Referring back to (1.24), the two-sample equivalent is, for z ∈ {x, y},

γz,j ≡
fX(QX(u1))

fZ(QZ(uj))
, (1.29)

γ̂z,j ≡
ĝz,j
ĝx,1
≡
(
Znz :(nz+1)uj+mz,j − Znz :(nz+1)uj−mz,j

Xnx:(nx+1)u1+mx,1 −Xnx:(nx+1)u1−mx,1

)(
mx,1/nx
mz,j/nz

)
. (1.30)

While traditionally m is a natural number and the order statistic indices are also

natural numbers such as b(n + 1)uc + 1 + m and b(n + 1)uc + 1 − m (Hall and

Sheather, 1988, eqn. 1.1), we can also interpret (e.g.) Xn:r above as the corre-

sponding linearly interpolated fractional order statistic. This does not affect the

theoretical properties, but may be useful in particularly small samples.

We consider the two above cases together. The sparsity estimation will

happen in a small (and shrinking) neighborhood of each quantile, so the asymp-

totic properties of γ̂ are not affected by multiple quantiles. These properties will,

however, depend on the selection of the spacing parameter, indicated by m, with

subscript for quantile and sample (the sample subscript is omitted in the one-

sample case, as in (1.28)).

For clarity, we consider a general γ = fX(QX(p))/fY (QY (p)) = gy/gx and

its estimator in log form,

log γ̂ = log ĝy − log ĝx.

Using (2.5) of Bloch and Gastwirth (1968) for Var(ĝ) = g2/(2m), plus the expan-

sion

log ĝy = log gy +
ĝy − gy
gy

− (ĝy − gy)2

2g2
y

+Op

(
(ĝy − gy)3),
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it is immediate that up to smaller-order terms

Var(log ĝy) = (2my)
−1,

E[log ĝy] = log gy +
E(ĝy)− gy

gy
− Var(ĝy)

2g2
y

= log gy +By

(
my

ny

)2

− 1

4my

,

where using (2.6) of Bloch and Gastwirth (1968) gives

By ≡ (1/6)Q′′′Y (p) =
3f ′Y
(
F−1
Y (p)

)2 − f ′′Y
(
F−1
Y (p)

)
fY
(
F−1
Y (p)

)
6fY
(
F−1
Y (p)

)4 .

For a normal distribution,13

By =
2[Φ−1(p)]

2
+ 1

6[φ(Φ−1(p))]2
. (1.31)

Combined with symmetric expressions for gx,

Var(log γ̂) =
(
m−1
y +m−1

x

)
/2, (1.32)

Bias(log γ̂) =

[
By

(
my

ny

)2

−
m−1
y

4

]
−

[
Bx

(
mx

nx

)2

− m−1
x

4

]
. (1.33)

The usual MSE-optimal rate for the smoothing parameters is n4/5, which equates

the orders of the variance and squared bias of γ̂. However, the CPE-optimal rate

in our problem equates the orders of the variance and bias of γ̂ (see appendix for

details). As seen from (1.32) and (1.33), this CPE-optimal rate is mx,my � n2/3.

Similar results are derived in Hall and Sheather (1988) and Chapter 3.

We recommend zeroing out the log bias of each individual sparsity under

the assumption that each underlying density is normal. This maintains the optimal

CPE rate while erring slightly on the conservative side (under normality, and in

many other cases). We refer back to (1.31) and choose

mz,j = n2/3
z

(
3[φ(Φ−1(p))]

2

2 + 4[Φ−1(p)]2

)1/3

. (1.34)

13Note that the expression for the bias of the logged estimator is invariant to the scale of the
distribution. This is an advantage over the non-logged bias that requires preliminary estimation
of σ̂2

y for implementation of a bandwidth rule.
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In simulations, our method was not sensitive to either the choice of band-

width or the choice of estimation method. The results were quite good with our

quantile spacing estimators using zero-bias smoothing parameters, and they were

extremely similar with kernel density estimators using Silverman’s (1986) rule of

thumb bandwidth, which minimizes MSE under normality.

1.3.6 Further approximation and intuition (two-sample)

In the two-sample case with J = 1, we explore further approximations that

have computational benefits and theoretical insights. The upper one-sided example

is used for clarity. Instead of calibrating α̃ via numerical integration or simulation

of the beta distribution, we could approximate the two independent beta random

variables with normals. This is justified by the almost O(n−1/2) CDF link between

the marginals of our ‘ideal’ and Brownian bridge processes, established in Theorem

1.3.

Let

Bx ∼ β[uhx(nx + 1), (1− uhx)(nx + 1)], By ∼ β
[
uly(ny + 1), (1− uly)(ny + 1)

]
.

With the normal approximation, X ⊥⊥ Y , and denoting the standard normal CDF

by Φ(·), we have the following uniform bounds:

sup
K

∣∣∣∣∣P(Bx − uhx < K
)
− Φ

(
K√

uhx(1− uhx)/nx

)∣∣∣∣∣ = O(n−1/2 log(n)),

sup
K

∣∣∣∣∣∣P(By − uly < K
)
− Φ

 K√
uly(1− uly)/ny

∣∣∣∣∣∣ = O(n−1/2 log(n)).

By convolution, we calculate the coverage probability in (1.26) as14

P (Bx − u < γ[By − u]) = P

(
[Bx − uhx]− γ[By − uly] < [u− uhx] + γ[uly − u]

)

= Φ

 [u− uhx] + γ[uly − u]√
γ2uly(1− uly)/ny + uhx(1− uhx)/nx


+O(n−1/2 log(n)). (1.35)

14Smaller-order remainder terms from interpolation, estimation of γ̂, and local linearization of
the distribution are omitted.
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To approximate uhx and uly, we recall Lemma 1.4 and note the following

corollary.

Corollary 1.7. Using Lemma 1.4,

uhx(1− uhx)
u(1− u)

= 1 + n−1/2
x z1−α̃(1− 2u)/

√
u(1− u) +O(n−1

x ) = 1 +O(n−1/2
x ),

uly(1− uly)
u(1− u)

= 1− µ−1n−1/2
x z1−α̃(1− 2u)/

√
u(1− u) +O(n−1

x ) = 1 +O(n−1/2
x ).

If u = 0.5, then 1− 2u = 0 and both expressions become 1 +O(n−1
x ).

Proof of corollary.

uhx(1− uhx)
u(1− u)

=
(u+ (uhx − u))(1− u− (uhx − u))

u(1− u)
= 1 +

1− 2u

u(1− u)
(uhx − u) +O(n−1

x )

= 1 + z1−α̃(1− 2u)/
√
nxu(1− u) +O(n−1

x ),

and similarly for uly.

We first apply Lemma 1.4 to (1.35), yielding

P (Bx − u < γ[By − u]) = Φ

z1−α̃

√
u(1− u)

[
n
−1/2
x + γn

−1/2
y +O(n−1)

]
√
uhx(1− uhx)/nx + γ2uly(1− uly)/ny


+O(n−1/2 log(n)).

Then we multiply numerator and denominator by n
1/2
x , strengthen Assumption

A1.3 slightly to
√
ny/nx = µ+O(n−1/2), and rearrange to get

= Φ

z1−α̃
1 + (γ/µ)√

uhx(1−uhx)
u(1−u)

+ (γ/µ)2 uly(1−uly)

u(1−u)

+O(n−1/2 log(n))

Cor 1.7
= Φ

(
z1−α̃

1 + (γ/µ)√
1 + (γ/µ)2

)
+O(n−1/2 log(n)).

Under exchangeability and equal sample sizes, γ = 1 and µ = 1, so we can solve for

α̃ = Φ(zα/
√

2). However, exchangeability is a strong assumption. Alternatively,

we can estimate γ by γ̂, plug in µ =
√
ny/nx, and solve for α̃. This is what we

suggest for practice and what we do in our simulations.
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While the foregoing has been for the upper one-sided case, the calibration

equation turns out to be identical for the lower one-sided case. Consequently, using

α/2 for the two one-sided cases yields the two-sided

α̃/2 = Φ(zα/2/θ
∗), θ∗ ≡ 1 + γ/µ√

1 + (γ/µ)2
. (1.36)

This means that the two-sample, two-sided CI is an equal-tail CI, up to smaller-

order terms. We collect all these results in a corollary.

Corollary 1.8. Under Assumptions A1.1 and A1.2, and strengthening Assump-

tion A1.3 to
√
ny/nx = µ+O(n−1/2):

(i) For two-sample, one-sided CIs using the normal-approximated calibration

α̃ = Φ(zα/θ
∗), with θ∗ in (1.36), CPE is O(n−1/2 log(n)).

(ii) For two-sample, two-sided CIs using the normal-approximated calibration

α̃/2 = Φ(zα/2/θ
∗), the CPE in Corollary 1.6(ii) increases to O(n−1/2). The

rate requirements on smoothing parameters mx and my relax to the require-

ments of Corollary 1.6(i). To the first-order, these are equal-tail CIs.

Consider the two extreme special cases. Since γ ∈ (0,∞), then θ∗ ∈ (1,
√

2].

For instance, if nx = ny and fX(QX(p)) = fY (QY (p)), then γ = 1 and θ∗ =
√

2.

As fY →∞, meaning that the distribution of Y is collapsing to a constant, γ → 0,

θ∗ → 1, and α = α̃. One-sample inference is when Y is actually a constant,

in which case α̃ = α is correct; this is indeed what we get using θ∗ = 1. This

continuity between the one- and two-sample settings is reassuring.

For additional intuition, consider the classical Behrens-Fisher problem of

testing equality of the means E(X) and E(Y ) under uncertainty about the ratio

of their variances. A standard test rejects if |X̄ − Ȳ | > z1−α/2σX̄−Ȳ . Note that

since X ⊥⊥ Y , Var(X̄ − Ȳ ) = σ2
X̄

+ σ2
Ȳ

. The analogous hypothesis test is based

on one-sample CIs X̄ ± z1−α̃/2σX̄ and Ȳ ± z1−α̃/2σȲ . It rejects if X̄ − z1−α̃/2σX̄ >

Ȳ + z1−α̃/2σȲ or Ȳ − z1−α̃/2σȲ > X̄ + z1−α̃/2σX̄ , i.e. if |X̄ − Ȳ | > z1−α̃/2(σX̄ + σȲ ).
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Setting the critical values equal and solving for α̃ gives

z1−α/2σX̄−Ȳ = z1−α̃/2(σX̄ + σȲ ),

α̃/2 = Φ
(
zα/2σX̄−Ȳ /(σX̄ + σȲ )

)
= Φ

zα/2
√

σ2
x

nx
+

σ2
y

ny√
σ2
x

nx
+
√

σ2
y

ny

.
If σx = σy and nx = ny, then α̃/2 = Φ

(
zα/2/

√
2
)
, the same result as for θ∗ =

√
2. More generally calibration of α̃ requires crucially on the ratio of population

variances. The two-sample IDEAL procedure solves our quantile inference problem

by estimating a density ratio in much the same way that estimating a ratio of

sample variances might solve the Behrens-Fisher problem.

1.4 Empirical application

The following results can be obtained using either the MATLAB function

quantile inf or the R function quantile.inf that are both publicly available

through either MATLAB File Exchange (Kaplan, 2011) or that author’s website.

The functions require only the data, quantile of interest, and α. To demonstrate

our new two-sample IDEAL quantile inference, we use the experimental data from

Gneezy and List (2006, Tables I and V). In short, individuals in the control group

work for a certain hourly wage (as advertised), while individuals in the treatment

group are surprised with a larger hourly wage upon arrival. The goal is to inves-

tigate “gift exchange,” specifically whether the higher wages induce higher effort

(as measured by productivity). The experiment is run separately for two different

tasks: data entry for a library (typing in a book’s author, title, etc.), and door-

to-door fundraising for a non-profit. Productivity (number of books entered, or

dollars raised) is measured for each participant for different periods of time: in

four 90-minute segments for the library task, and before/after lunch for fundrais-

ing. The sample sizes are small: 10 and 9 for control and treatment, respectively,

for the library task, and 10 and 13 for control and treatment for fundraising.

The main result of Gneezy and List (2006) is that the “gift” treatment

raises productivity significantly in the first period, but not significantly thereafter.
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We do not simply re-test this main result (though we indeed support it) but rather

offer complementary analysis on quantile treatment effects.

For the library task, Gneezy and List (2006) performed two types of one-

sided 5% tests: a Wilcoxon rank-sum (a.k.a. Mann–Whitney–Wilcoxon or Mann–

Whitney U) test, and an unequal variances t-test. For the first 90-minute period,

the null was (barely) rejected by each test in favor of the treatment productivity

being higher. For the remaining 90-minute periods, the null was not rejected by

either test. The goal of the rank-sum test is to reject if P (T > C) > 0.5, where T

is a random variable corresponding to treatment group productivity and similarly

for C and the control group. The t-test instead tests for equality of means, though

the assumption of normality of the sample average productivities is questionable

with such a small sample size (too small to rely on the CLT).

Complementing these original tests for the library task, our IDEAL method

tests for equality at a chosen quantile of the distribution. Also using a one-sided

5% test, we do not reject the null of equality at the lower quartile (25th percentile)

or the median, but we do reject at the upper quartile. The IDEAL two-sided CIs

with nominal 90% coverage (which give the 95% one-sided CIs by simply taking the

lower endpoint, since they are equal-tailed) are given in Table 1.1. The results are

consistent with the rank-sum result that the first period treatment productivity is

higher overall in some sense, and consistent with the t-test result that the mean

is higher. Our test further suggests that the shift comes primarily (though not

exclusively) from the upper part of the distribution: for the library task in the

first period, the gift wage seems to induce the most productive workers to become

extremely productive, while the effect is much less (if any) on less productive

workers. For periods 2–4 (the second period is also shown in the table), our test

fails to reject the null at any of these quartiles, consistent with the original results.

For the fundraising task, Gneezy and List (2006) report one-sided 1% signif-

icance for the rank-sum test in the first three-hour “pre-lunch” period of fundrais-

ing.15 We again use a 5% one-sided test (10% two-sided), this time finding sig-

15They do not report the rank-sum result on the post-lunch three-hour period, but given the
data and the sample size, it seems clear that the test would not reject for any conventional
significance level. They also do not report a t-test this time.
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Table 1.1: IDEAL two-sided 90% confidence intervals for quartile treatment ef-

fects in Gneezy and List (2006).

Period (methoda) Lower quartile Median Upper quartile
Library task b

1 (kern/MSE) (-10.22,21.39) (-2.39,26.18) (2.35,29.95)
1 (spac/bias) (-10.30,21.49) (-2.38,26.17) (2.48,29.73)
2 (kern/MSE) (-15.65,8.63) (-7.61,27.93) (-16.93,28.78)
2 (spac/bias) (-16.35,8.89) (-7.63,28.06) (-15.98,28.21)

Fundraising task c

1 (kern/MSE) (7.49,26.41) (-0.00,26.78) (-14.84,26.21)
1 (spac/bias) (7.56,26.29) (-0.76,26.96) (-14.08,22.85)
2 (kern/MSE) (-4.03,13.72) (-5.62,11.49) (-15.44,11.06)
2 (spac/bias) (-3.89,13.68) (-5.67,11.53) (-19.64,11.94)

aMethods for γ̂ estimation are abbreviated “kern/MSE” for a kernel density
estimator with Silverman’s (1986) rule of thumb bandwidth (MSE-optimal
under normality), and “spac/bias” for a quantile spacing estimator with our
zero-bias smoothing parameter.

bUnits: books logged per period (90 minutes).
cUnits: dollars raised per period (three hours).

nificance at the lower quartile and almost at the median, but not at the upper

quartile. The IDEAL two-sided CIs are again in Table 1.1. These results are also

consistent with the original results, as is our failure to reject the null at any quar-

tile in the post-lunch period (period 2). Additionally, our test tells us that it is

the less-productive workers who are relatively more induced by the gift wage for

this task, in contrast to the library task results.

1.5 Simulation study

Code for all methods described in §1.3 is available in R from the latter

author’s website, and code for the methods in §1.3.1 and §1.3.4 is available in

MATLAB from either the latter author’s website or MATLAB File Exchange (Ka-

plan, 2011). MATLAB code for simulations is available from the authors upon

request.

We consider IDEAL, a symmetric percentile-t (Studentized) bootstrap using
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bootstrapped variance,16 the method in Horowitz (1998),17 and the high-order

analytic method of Chapter 3 for general quantile tests.

We also include some tests that only work for the median: the exact-

bootstrap test of Hutson (2007), two permutation tests, and the built-in MAT-

LAB implementation ranksum of the Mann–Whitney–Wilcoxon test (hereafter

“MWW”; a.k.a. Wilcoxon rank sum, a.k.a. Mann–Whitney U ; Mann and Whit-

ney, 1947; Wilcoxon, 1945). For the first permutation test, labeled “Perm (sum)”

in tables, we take
∑nx

i=1Xi as our test statistic, and compare it to the distribution

of the same test statistic among “permutations” of the observation labels. For the

second, labeled “Perm (median)” in tables, our test statistic is the difference in

sample medians. When nx = ny = 5, we calculate all
(

10
5

)
= 252 possibilities.

When
(
nx+ny
nx

)
> 999, e.g. when nx = ny = 25, we sample 999 (unique) combina-

tions from the possible X samples of size nx (with corresponding Y samples having

the remaining ny observations). The sum permutation test, median-difference per-

mutation test, and MWW all control size well under exchangeability and have good

power against location shift alternatives, but at the expense of severe size distortion

under certain violations of exchangeability and lower power against other types of

alternatives.

For IDEAL, the two feasible varieties are labeled as “β” for the test de-

rived from (1.23) and (1.26) and using numeric integration (tolerance 10−5 for

subintegrals, for MATLAB’s dblquad), and “θ∗” for the test derived from (1.36).

Both estimate γ̂ with quantile spacings and our zero-bias bandwidth unless oth-

erwise noted; results with a kernel estimator and MSE-optimal (Silverman, 1986)

bandwidth are extremely similar, as in the empirical example. For the β version,

the search for α̃ is terminated when the calculated resultant type I error is within

16Many other bootstrap methods are considered in Chapter 3, and this one performed consis-
tently the best. In the simulations therein, using 99 outer (and 100 inner) bootstrap replications
was found to be very similar to 999, with size control marginally better with 99 and power
marginally better with 999; see Chapter 3 for details. We present whichever gives better results
for a given table/graph, and both in some cases like Table 1.6, where the power difference is
negligible (0.01, within simulation error) but in favor of 999.

17As written, the paper discuss only the median, but it is readily extended to other quantiles.
Following Horowitz (1998), we use 100 bootstrap replications and bandwidth h = cn−3/10. Since
no suggestion for c is given, we use whichever value gives the best performance, searching over
c ∈ (0, 500).
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0.001 of the desired α, and the PDF ratio is estimated with MATLAB’s ksdensity

(Epanechnikov kernel) seperately for each sample. Additionaly, “βinf” is an infea-

sible version of “β” using the true γ (dblquad tolerance 10−6), which helps isolate

the effect of estimating γ.

Figure 1.3: Power curves for inference on the lower quartile (left) and median

(right) using data simulated to mimic the period one library task data from Gneezy

and List (2006); two-sided, α = 0.1. The legend entries refer to methods de-

scribed in the text: “GK” is our new θ∗ IDEAL; “K11” is Chapter 3; “BSt” is the

bootstrap-t (999); “MWW” is MWW; and “Perm (sum)” and “Perm (med)” are

the permutation tests.

Building on §1.4, we show simulations where the samples are drawn from

distributions estimated from the empirical data (first period of both library and

fundraising tasks), with the same sample sizes, same quantiles of interest, and

same two-sided α = 0.1 tests. Specifically, we estimate the distributions using the

publicly available kde.m MATLAB code based on Botev et al. (2010) and then use

rejection sampling to simulate data. This can be done in practice to roughly gauge

which method is appropriate for a given dataset (e.g., whether the permutation

test is likely size distorted or not), though of course the distribution estimation

can miss important local variation with finite samples. We ran the θ∗ version of

IDEAL against the three best competitors from our later simulations, which are

the bootstrap-t, permutation test (for median), and Chapter 3.
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Table 1.2: Type I error by quartile, two-sided α = 0.10, using data simulated

to mimic the period one library and fundraising task data from Gneezy and List

(2006). Values above 0.105 in bold.

Library task Fundraising task
Lower Median Upper Lower Median Upper

New method (θ∗) 0.083 0.090 0.071 0.072 0.080 0.076
Chapter 3 0.091 0.092 0.081 0.054 0.071 0.051
Bootstrap-t (99) 0.102 0.106 0.093 0.092 0.104 0.085
Bootstrap-t (999) 0.100 0.103 0.096 0.089 0.103 0.084
Perm (sum) n/a 0.116 n/a n/a 0.095 n/a
Perm (median) n/a 0.176 n/a n/a 0.155 n/a
MWW n/a 0.115 n/a n/a 0.091 n/a

For the lower and upper quartiles, for both the library and fundraising task

setups, all three methods controlled size (see Table 1.2), and IDEAL had the best

power; see for example Figure 1.3 (left panel). For the median in the library setup,

there was some size distortion in the sum permutation test, and MWW, while the

median-difference permutation test was significantly size distorted in both setups

(Table 1.2). This size distortion is not surprising since exchangeability is violated.

On the flip side, the permutation-type tests (including MWW) are significantly

more powerful for both library and fundraising setups; see for example Figure 1.3

(right panel).

We also ran simulations using the settings from Tables 1–4 of Hutson (2007).

The same set of uniform random numbers is used for each setting, so the difference

between results for the N(0, 1) and Unif(0, 1) columns in the top half of Table

1.3, for example, is due only to the shapes of the distributions, not additional

simulation error. Results from Hutson (2007) are reproduced for his method as

noted. The permutation test results are from our new simulations; Hutson (2007)

seems to have implemented the median-difference permutation test.18

18Some permutation test results in Hutson (2007) also seem quite improbable—not impossible,
given the leeway in implementation of a “permutation test” and simulation error, but less helpful
for comparing performance. For instance, the type I error of 0.000 for all five distributions in the
top of his Table 1 seems improbable in light of our results of 0.002, 0.000, 0.001, 0.002, 0.001.
The 0.99 power in his Table 4 in the case where one distribution is Unif(0, 1) and the other
Unif(1, 2) implies there are instances where the test doesn’t reject even when every observation
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With the settings of Tables 1 and 2 from Hutson (2007), most methods

control size even with small samples of nx = ny = 5. Table 1.3 corresponds to

Hutson’s (2007) Table 2; the analog of Table 1 looks qualitatively similar. The

only significant exception is Hutson (2007), which for α = 0.01 had up to 0.046

type I error, and for α = 0.05 up to 0.085. We do not include Horowitz (1998) here

since the bandwidth could always be (arbitrarily) chosen to control size. Note that

the MWW type I error is invariant to (monotonic) transformations of the data

since it is based on ranks.

Table 1.3: Type I error comparison, α = 0.05, p = 0.5, FX = FY . Values 0.06

and higher in bold.

N(0,1) Logistic(0,1) Unif(0,1) Exp(1) LogN(0,1)
nx = ny = 5

New method (θ∗) 0.021 0.021 0.022 0.017 0.016
New method (β) 0.019 0.013 0.021 0.013 0.011
New method (βinf) 0.038 0.026 0.042 0.017 0.011
Hutson (2007)a 0.051 0.046 0.085 0.046 0.034
Chapter 3 0.013 0.010 0.021 0.010 0.006
Bootstrap-t (99) 0.025 0.021 0.037 0.016 0.012
Perm (sum) 0.048 0.049 0.049 0.049 0.049
Perm (median) 0.049 0.049 0.049 0.049 0.049
MWW 0.034 0.034 0.034 0.034 0.034

nx = ny = 25
New method (θ∗) 0.042 0.042 0.042 0.038 0.037
New method (β) 0.047 0.041 0.040 0.031 0.029
New method (βinf) 0.050 0.046 0.047 0.042 0.037
Hutson (2007)a 0.051 0.048 0.055 0.047 0.035
Chapter 3 0.035 0.033 0.044 0.030 0.024
Bootstrap-t (99) 0.049 0.053 0.052 0.047 0.039
Perm (sum) 0.050 0.049 0.051 0.049 0.049
Perm (median) 0.048 0.049 0.048 0.049 0.048
MWW 0.048 0.048 0.048 0.048 0.048

aAs reported in Hutson (2007).

Size control for lower and upper quartiles is similarly good. For nx =

in one sample is larger than every observation in the other sample; we get 1.00 in this situation
(Table 1.6).
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Table 1.4: Type I error comparison when FX(·) 6= FY (·) (exchangeability is

violated), α = 0.05, nx = ny = 25, FX = N(0, 1), FY = N(0, σ2
y), p = 0.5. The

standard deviation σy is varied per the column headers, where exchangeability is

satisfied only with σy = 1. Values 0.06 and higher in bold.

σy
1 2 4 8 16

New method (θ∗) 0.044 0.051 0.056 0.053 0.051
New method (β) 0.047 0.052 0.055 0.048 0.046
New method (βinf) 0.050 0.051 0.050 0.044 0.047
Hutson (2007)a 0.051 0.051 0.056 0.067 0.104
Chapter 3 0.035 0.033 0.031 0.030 0.029
Bootstrap-t (99) 0.051 0.056 0.058 0.058 0.061
Bootstrap-t (999) 0.052 0.057 0.060 0.061 0.060
Horowitz (1998)b 0.049 0.065 0.067 0.053 0.040
Perm (sum) 0.050 0.054 0.060 0.061 0.062
Perm (median) 0.048 0.104 0.295 0.560 0.756
MWW 0.048 0.059 0.077 0.089 0.099

aAs reported in Hutson (2007).
bBandwidth h = 15n−3/10, optimal for σy = 1, used for all cases.

ny = 25, Table 1.3 was run for the new θ∗ method, Chapter 3 method, and the

bootstrap-t. All had type I error below α = 0.05 each time.

Table 1.4 shows the sensitivity of the permutation tests, MWW, and Hutson

(2007) to the exchangeability assumption. With nx = ny = 25, the size distortion

is relatively mild for the sum permutation test; with nx = ny = 5, its size distortion

can be larger: with σx = 1, σy = 2 yields 0.058 type I error, and σy = 4 yields 0.078,

increasing to around 0.12 as σy grows. The median-difference permutation test is

extremely sensitive to the type of exchangeability violation in Table 1.4; MWW

and Hutson (2007) are in between. Horowitz (1998) does not appear sensitive

to exchangeability per se, but the variability of type I error with σy reflects the

difficulty of picking a bandwidth in practice (an open question). The bandwidth

h = 15n−3/10 that was optimal for σy = 1 is clearly not optimal for other values of

σy. None of the IDEAL varieties is sensitive to violations of exchangeability.
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Table 1.5: Type I error comparison when FX(·) 6= FY (·) (exchangeability is

violated), α = 0.05, nx = ny = n ∈ {5, 25, 55}, p = 0.5. The differently-shaped

distributions FX and FY are given in the column headers; they are shifted to have

identical medians. Values 0.060 and higher in bold.

Exp(1), Unif(0.193, 1.193) β(4, 1), β(1, 4) + 0.682
n = 5 n = 25 n = 55 n = 5 n = 25 n = 55

New method (θ∗) 0.031 0.046 0.049 0.032 0.043 0.049
Chapter 3 0.021 0.035 0.042 0.019 0.037 0.040
Bootstrap-t (99) 0.031 0.053 0.057 0.028 0.050 0.049
Perm (sum) 0.068 0.271 0.609 0.064 0.385 0.757
Perm (median) 0.061 0.121 0.110 0.072 0.062 0.056
MWW 0.045 0.069 0.077 0.044 0.164 0.319

Exchangeability is also violated if the two distributions are different shapes.

This type of violation can also cause significant size distortion in the permutation

tests and MWW, as Table 1.5 shows. This is not just an issue of getting a large

enough sample: the size distortion gets worse with larger sample sizes in both cases

for sum permutation and MWW. The magnitudes are serious, too. Only out of

the two distributional setups and three sample sizes in Table 1.5, the type I error

is up to 0.757 for the sum permutation test and 0.319 for MWW; the 0.121 of the

median-difference permutation test is outdone by the 0.756 already seen in Table

1.4. IDEAL is robust to any of these types of exchangeability violation.

Table 1.6 shows results from the simulation setup of Table 4 in Hutson

(2007). For each of these five different distributions, the permutation tests and

MWW have the best power, followed by IDEAL, followed by the rest. Of the tests

applicable at any quantile, IDEAL has the best power. For the special case of

the median, the permutation tests and MWW have better power against location

shifts for these distributions, but they are all subject to extreme size distortion

when exchangeability is violated, and they have lower power against other types of

alternatives. With the fatter-tailed Cauchy distribution, IDEAL has better power

than MWW and the sum permutation test, and a slight edge over the median-
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Table 1.6: Power comparison, α = 0.05, p = 0.5, location difference of one unit

between medians of X and Y , nx = ny = 25, FX = FY .

N(0,1) Logistic(0,1) Unif(0,1) Exp(1) LogN(0,1)
New method (θ∗) 0.79 0.39 1.00 0.91 0.75
New method (β) 0.80 0.40 1.00 0.90 0.71
New method (βinf) 0.81 0.41 1.00 0.91 0.73
Hutson (2007)a 0.75 0.38 0.99 0.87 0.57
Chapter 3 0.70 0.31 1.00 0.86 0.64
Bootstrap-t (99) 0.70 0.35 1.00 0.84 0.68
Bootstrap-t (999) 0.71 0.36 1.00 0.86 0.68
Horowitz (1998)b 0.62 0.27 1.00 0.87 0.66
Perm (sum) 0.93 0.48 1.00 0.92 0.53
Perm (median) 0.85 0.45 1.00 0.97 0.86
MWW 0.92 0.50 1.00 0.99 0.91

aAs reported in Hutson (2007).
bOptimal bandwidths (maximum power subject to size control, which was only a bind-

ing constraint in the N(0, 1) case) were found to be c = n−3/10 with c = 15, 20, 20, 10, 20
for the five distributions, respectively.

difference permutation test; see Figure 1.4 (left). The location shift setup from

Hutson (2007) is advantageous to the permutation tests and MWW, which should

have relatively lower power when FY deviates more locally (not globally) from FX

or when the treatment affects the shape and/or variance of the distribution in

certain ways; more on this below.

Table 1.6 shows that IDEAL has better power than Hutson (2007), in ad-

dition to the greater robustness already shown. Our method also consistently

has better power than the other methods considered, even with hand-picking the

optimal bandwidth for Horowitz (1998) in each case.

For lower and upper quartiles, IDEAL consistently has the best power. In

simulations not shown, compared to the bootstrap-t and Chapter 3, our θ∗ method

was the most powerful (or tied, for LogN(0, 1) upper quartile) over a range of

alternatives for all five distributions.

For other types of alternatives, IDEAL is more powerful than even the per-

mutation tests and MWW. The pure location-shift alternatives considered in Table
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1.6 are precisely what the other tests are designed to detect. They use information

from all parts of the distribution, which is good for detecting pure location shifts,

but bad for size control when exchangeability is violated, and also bad for power

against different types of alternatives. For example, using the distributions β(1, 4)

and β(4, 1) from Table 1.5, the same mechanism that causes size distortion (when

the distributions are shifted to have the same median) also causes low power (when

they are shifted to differ by 0.1); see Table 1.7.

Figure 1.4: Left: power curves for two-sided median inference, α = 0.05. Both

distributions are Cauchy, with magnitude of location shift (of treatment distribu-

tion) shown on x-axis. Samples follow Xi
iid∼ Cauchy, Yi

iid∼ δ + Cauchy, where the

magnitude of the location shift |δ| is shown on the x-axis. Right: control distribu-

tion is Cauchy, and for parameter q shown on x-axis, treatment adds Unif(0, 2q)

to individuals initially between quantiles 0.5− q and 0.5 + q. Both: legend entries

refer to methods described in the text: “GK” is our new θ∗ IDEAL; “K11” is

Chapter 3; “BSt” is the bootstrap-t; “MWW” is MWW; and “Perm (sum)” and

“Perm (med)” are the permutation tests.

The permutation tests and MWW also have lower power against treatment

effects that only shift the middle of the distribution without affecting the tails.

For example, consider a population that initially has a β(2, 3) distribution, and a

treatment that affects (with some probability) individuals initially located between

the 30th and 60th percentiles, adding a random value between zero and 0.3. Or,
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Table 1.7: Power comparison when treatment affects distribution shape or is

(relatively) local to median, α = 0.05, nx = ny = 25, p = 0.5. Two highest values

per column are in bold.

Skewa Uniform/localb Beta/localc Cauchy/locald

New method (θ∗) 0.30 0.21 0.21 0.16
Chapter 3 0.30 0.17 0.19 0.09
Bootstrap, perc-t 0.31 0.20 0.22 0.17
Perm (sum) 0.08 0.11 0.13 0.05
Perm (median) 0.31 0.17 0.18 0.15
MWW 0.17 0.11 0.14 0.10

aβ(1, 4) control and β(4, 1)− 0.582 treatment distributions (medians differ by 0.1).
bUnif(0, 1) control, and treatment adds 0.2 to individuals initially between 0.3 and 0.6.
cβ(2, 3) control, and treatment adds random amount 0.3β(4, 1) to individuals initially

at quantile q if 0.3 ≤ q ≤ 0.6 with probability
(
1− e−(q−0.3)20

)(
1− e(q−0.6)20

)
.

dCauchy control, and treatment adds random amount Unif(0, 1) to individuals initially
at quantile q if 0.25 ≤ q ≤ 0.75 with probability

(
1− e−(q−0.25)50

)(
1− e(q−0.75)50

)
.

consider a standard uniform population, where the treatment simply adds 0.2 to

individuals between the 30th and 60th percentiles. In both cases, IDEAL has better

power than the permutation tests and MWW; see Table 1.7. Interestingly, in these

situations, the bootstrap-t and IDEAL have roughly the same power. We can also

see how the power advantage depends on how “local” the treatment effect is (to

the median of the distribution). If the control group follows a Cauchy distribution,

one hypothetical treatment parameterized by q affects only individuals initially in

quantile between 0.5−q and 0.5+q, adding random increment Unif(0, 2q). Plotting

power against q, as in Figure 1.4 (right), IDEAL has better power for lower q, but

this advantage disappears when q gets closer to 0.50 (whole distribution affected).

The two permutation tests and MWW are commonly used in practice; we

now discuss their use specifically for median treatment effect inference.19 In their

favor, they control size under exchangeability, and they usually have better power

than IDEAL against pure location-shift alternatives (Tables 1.3 and 1.6). How-

19A new test for first order stochastic dominance based on the fractional order statistic theory
will be discussed in a separate paper.
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ever, they are subject to size distortion when exchangeability is violated. Both

differing variances (Table 1.4) and differently shaped distributions (Table 1.5) can

cause grave size distortion, even in large samples. The permutation tests and

MWW are also less powerful against some types of alternatives that are not pure

location shifts of the entire distribution. Consequently, we recommend IDEAL for

inference on quantile treatment effects, including the median effects. However, it

would be quite valuable to explore the method of (pre-)estimating distributions

and simulating type I error. If such an approach is shown to be reliable, we might

suggest a permutation test or MWW for median inference whenever valid. Even

then, IDEAL can be applied to any quantile, so it provides additional information

about treatment effects at different parts of the distribution, which a permutation

test does not.

1.6 Conclusion

We derive an O(n−1) rate of uniform convergence of the distributions of the

linearly interpolated and ‘ideal’ types of fractional order statistics. This tightly

links theoretical results based on the latter with feasible procedures based on the

former. As one example, we provide the first direct theoretical justification for

one-sample quantile confidence intervals based on fractional order statistics, where

the coverage probability error is O(n−1), and provide analytic calibration to further

reduce this to almost O(n−3/2).

We also present a new method for two-sample quantile treatment effect in-

ference, which has O(n−2/3) two-sided size distortion and O(n−1/2) one-sided. In

simulations, IDEAL has better size control and power than existing bootstrap and

analytic methods in most situations. Median-specific permutation tests and the

Mann–Whitney–Wilcoxon test can have better power in some cases when exchange-

ability holds, but they are subject to severe size distortion when the exchangeability

assumption is violated, and they can have worse power against alternatives that

are not pure location shifts. Our method is robust to a variety of situations: dif-

ferent sample sizes, different distributions for the two samples (shape as well as
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scale), small samples, and a range of quantiles. Unless exchangeability is certain

and only the median is of interest, the IDEAL two-sample quantile treatment ef-

fect inference appears to have the strongest combination of size control, power,

and robustness.

Our new theory also applies to inference on general linear combinations

of quantiles, such as the interquartile range. An extension to test for first-order

stochastic dominance is being developed. Extension to inference on the entire

quantile process would also be of interest. Chapter 2 extends our unconditional

IDEAL results to a nonparametric conditional quantile model.

The preceding chapter was coauthored with Matt Goldman.



Chapter 2

IDEAL inference on conditional

quantiles

Abstract

We examine inference on conditional quantiles from the nonparametric per-

spective of local smoothing. This paper develops a framework for translating the

powerful, high-order accurate IDEAL results (Chapter 1) from their original un-

conditional context into a conditional context, via a uniform kernel. Under mild

smoothness assumptions, our new conditional IDEAL method’s two-sided point-

wise coverage probability error is O(n−2/(2+d)), where d is the dimension of the

conditioning vector and n is the total sample size. For d ≤ 2, this is better than

the conventional inference based on asymptotic normality or a standard bootstrap.

It is also better for other d depending on smoothness assumptions. For example,

conditional IDEAL is more accurate for d = 3 unless 11 or more derivatives of the

unknown function exist and a corresponding local polynomial of degree 11 is used

(which has 364 terms since interactions are required). Even as d→∞, conditional

IDEAL is more accurate unless the number of derivatives is at least four, and the

number of terms in the corresponding local polynomial goes to infinity as d→∞.

The tradeoff between the effective (local) sample size and bias determines the op-

timal bandwidth rate, and we propose a feasible plug-in bandwidth. Simulations

53
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show that IDEAL is more accurate than popular current methods, significantly

reducing size distortion in some cases while substantially increasing power (while

still controlling size) in others. Computationally, our new method runs much more

quickly than existing methods for medium and large datasets (roughly n ≥ 1000).

We also examine health outcomes in Indonesia for an empirical example.

2.1 Introduction

Ideally, we would like to know the full joint distribution of every variable

we care about. Practically, with a finite amount of data, we can learn a lot from

estimating quantiles of conditional distributions. To gain knowledge from the

data, rather than simply compute numbers, we need statistical inference on these

conditional quantiles, which is this paper’s concern.

In economics, conditional quantiles have appeared across diverse topics be-

cause they are such fundamental statistical objects. Conditional quantile studies of

wages have looked at experience (Hogg, 1975), union membership (Chamberlain,

1994), and inequality in the U.S. wage structure (Angrist et al., 2006; Buchinsky,

1994), while Kordas (2006) examines married women’s propensity to work. Exam-

ples from health economics include models of infant birthweight (Abrevaya, 2001)

and demand for alcohol (Manning et al., 1995). Among others, Chesher (2003)

employs conditional quantiles for identification in nonseparable models. Guerre

and Sabbah (2012) give an example of estimating conditional quantiles of private

values from bid data in a first-price sealed bids auction. Other empirical examples

involving conditional quantiles include school quality and student outcomes (Eide

and Showalter, 1998), spatial land valuations (Koenker and Mizera, 2004), welfare

analysis (Belluzzo, 2004), and Engel curves (Nayyar, 2009). For similar reasons as

in economics, conditional quantiles enrich empirical work in other areas, such as

modeling temperature (Hyndman et al., 1996), limiting factors in ecology (Cade

et al., 1999), and terrestrial mammal running speeds (Koenker, 2005), among other

examples. Additionally, almost any study of conditional means could be extended

to conditional quantiles to expose additional heterogeneity.
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If our continuous dependent variable of interest is Y (e.g., high school GPA),

and we want to know quantiles of its distribution conditional on vector X having

value x0 (e.g., a particular value of family income and other socioeconomic and

demographic characteristics), we would like an infinite number of observations with

X = x0. With our finite sample, if X contains even one continuous component,

we have zero probability of even one observation with X = x0. One approach

is to parameterize the conditional p-quantile function as QY |X(p) = X ′β, linear

in X. This strong linearity assumption leads to an estimator where observations

with very different X can influence the conditional quantile at X = x0. If the

true function is not linear in X, this misspecification can lead to a poor estimator

for any given x0. A second approach is to use a more flexible parameterization,

which could be set in a sieve-type nonparametric framework. A third approach

is nonparametric local kernel smoothing, using only observations with X close in

value to the target x0. Here, we develop inference via kernel smoothing.

Our strategy is to apply an accurate method for unconditional quantile

inference to the observations with X close to the target x0. Instead of relying on

an asymptotic normal approximation, this method directly approximates the exact

finite sample distribution using fractional order statistic theory. As usual for kernel

smoothing, taking X not quite equal to x0 causes some bias, which increases as

we include X values farther from x0 to include more observations in our effective

sample. Counter to this, the method’s accuracy (for the biased value) improves as

the effective sample size grows. This tradeoff determines the optimal bandwidth

that minimizes overall coverage probability error. After more precisely deriving the

objects involved, and estimating the unknown ones, we propose a bandwidth for use

in practice. Specifically, we apply some of the IDEAL (interpolated dual of exact

analytic L-statistic; see §2.2) results summarizing Chapter 1 on the Hutson (1999)

method based on fractional order statistics. Joint confidence sets are constructed

as Cartesian products of (Bonferroni-adjusted) confidence intervals over many x0.

This strategy has advantages in theory and in practice. Theoretically, the

coverage probability error is of a smaller order of magnitude than that for infer-

ence based on asymptotic normality or bootstrap in the most common cases. This
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reflects the same advantage of the fractional order statistic method for uncondi-

tional quantile inference. The only theoretical limitation is our implicit use of a

uniform kernel, which is only a second-order kernel. This prevents reducing the

coverage probability error by assuming higher degrees of smoothness than we do

here, though to maintain robustness we would not want to assume more smooth-

ness of unknown functions anyway. As it is, our method has a better rate than

asymptotic normality even with infinite smoothness assumed if the conditioning

vector X contains one or two continuous components, and similarly for any number

of continuous conditioning variables in X if no more than four derivatives of the

unknown function are (correctly) assumed to exist. It is also an advantage that our

coverage error either leads to over-coverage or can be set to zero (at the dominant

order of magnitude) by our choice of bandwidth since we derive the value (not just

rate) of the optimal bandwidth when X contains only one continuous conditioning

variable.

Practically, direct estimation of a plug-in version of the optimal bandwidth

is straightforward, with details in §2.4.2 and §2.5.1 and code available in R for

X with a single continuous component. An extension to additional continuous

conditioning variables will require additional calculations and estimation, but the

approach will be identical. In either case, there is no asymptotic variance or

other nuisance parameters to estimate. Also, coverage probability is monotonically

decreasing in the size of the bandwidth, which is nice for transparency and may be

helpful for future refinements. Another practical advantage is computation times

orders of magnitude smaller than those for existing methods on medium and large

datasets (roughly n ≥ 1000); see §2.5 for details.

Past research has focused instead on inference through asymptotic normal

approximation or bootstrap. First-order accuracy has been shown for the asymp-

totic normality approaches in Bhattacharya and Gangopadhyay (1990, Thm. N2)

and Hall et al. (1999, Thm. 1, eqns. 7 and 8) and for the bootstrap in Gangopad-

hyay and Sen (1990). Higher-order accuracy can be shown for inference using the

asymptotic normality in Chaudhuri (1991); improved recently by Portnoy (2012),

this result is compared to ours in detail following Theorem 2.3.
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The remainder of this paper is organized as follows. Prior unconditional

IDEAL work and intuition is given in Section 2.2. Section 2.3 details our setup

and gives results for the bias. Section 2.4 describes the optimal bandwidth and its

feasible plug-in counterpart. Section 2.5 contains a simulation study, while Section

2.6 contains empirical applications. Notationally,
.
= should be read as “is equal to,

up to smaller-order terms”; � as “has exact (asymptotic) rate/order of” (same as

“big theta” Bachmann–Landau notation, Θ(·)); and An = O(Bn) as usual, ∃k <
∞ s.t. |An| ≤ Bnk for sufficiently large n. Acronyms used are those for cumulative

distribution function (CDF), confidence interval (CI), coverage probability (CP),

coverage probability error (CPE), interpolated duals of exact analytic L-statistics

(IDEAL), and probability density function (PDF). Proofs are reserved for the

appendix.

2.2 Fractional order statistic theory

Fractional order statistic theory is key to the method developed in this

paper. This section contains an overview of the relevant theory. For a more

comprehensive and general development of this theory, see Chapter 1, which also

contains details of additional IDEAL (Interpolated Duals of Exact Analytic L-

statistics) methods of quantile inference built upon the theory.

The approach is to construct confidence intervals (CIs) from order statistics

observed in the sample. Consider constructing a two-sided CI for the p-quantile.

By definition, the p-quantile is between the u`-quantile and the uh-quantile when

u` < p < uh. One way to construct a CI is to use the empirical u`- and uh-quantiles

as endpoints. If (n + 1)u` and (n + 1)uh are integers, then both endpoints are

order statistics, and we can calculate the exact, finite-sample coverage probability

because the joint distribution of order statistics is known. The only obstacle is

that there almost surely (i.e., with probability one) does not exist a pair of order

statistics that yields the exact coverage we desire. Thus, either randomization or

interpolation between order statistics is needed; we pursue the latter approach.

In the unconditional case, there is an iid sample {Yi}ni=1 of draws of an abso-



58

lutely continuous, scalar random variable Y with unknown cumulative distribution

function (CDF) denoted FY (·). By definition, the quantile function is the inverse

CDF, so we also write QY (·) ≡ F−1
Y (·). The kth order statistic Yn:k denotes the kth

smallest value out of the n observations {Yi}ni=1. Since Y < QY (p) is equivalent

to FY (Y ) < p, we can work with the uniformly distributed Ui ≡ FY (Yi) and the

corresponding order statistics. For any u ∈ (0, 1) such that (n+ 1)u is an integer,

it is well known (and derived via combinatorics) that the uniform order statistics

follow a beta distribution,

Un:(n+1)u ∼ β
(
(n+ 1)u, (n+ 1)(1− u)

)
.

These Un:(n+1)u are estimators on [0, 1] of true quantiles QU(u) = u, where

QU(·) is the quantile function of the uniformly distributed Ui. As such, they

may also be written as Q̂I
U(u), where the ‘I’ superscript is for ‘ideal’ since the

distribution is known exactly. This can be generalized beyond integer (n+ 1)u to

any u ∈ (0, 1), and the order statistics generalize to corresponding ‘ideal’ fractional

order ‘statistics’1

Q̂I
U(u) = Un:(n+1)u ∼ β

(
(n+ 1)u, (n+ 1)(1− u)

)
, (2.1)

the same distribution as before.

For a two-sided equal-tailed CI for the median, we can solve for u = uh for

the upper (high) endpoint with P
(
Q̂I
U(u) < 1/2

)
= α/2 since we know the exact

distribution of Q̂I
U(u) for all u. We may solve for u = u` for the lower endpoint

similarly. Since P
(
Q̂I
U(u) < 1/2

)
= P

(
QY

(
Q̂I
U(u)

)
< QY (1/2)

)
, an exact (1−α)

CI for the median QY (1/2) is defined by the unobserved, fractional order statistic

endpoints Q̂I
Y (uh) and Q̂I

Y (u`), where

Q̂I
Y (u) ≡ QY

(
Q̂I
U(u)

)
.

For quantiles besides the median, the endpoint indices u` and uh are implicit

1Technically, when (n + 1)u is not an integer, Un:(n+1)u is not a statistic since it is not a
function of the observed sample. Instead, Un:(n+1)u is a theoretical construct when it is not
equal to an observed order statistic. Nonetheless, we follow the convention in the literature and
call Un:(n+1)u a fractional order statistic for all u.
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functions of p and α, strictly monotonic in both p and α, determined by

α/2 = P
(
Q̂I
U(uh) < p

)
, α/2 = P

(
Q̂I
U(u`) > p

)
, (2.2)

with Q̂I
U(u) ∼ β

(
(n+ 1)u, (n+ 1)(1− u)

)
as in (2.1). For one-sided CIs, only one

of the two equalities in (2.2) is used, and with α instead of α/2. Figure 2.1 is an

example.
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Figure 2.1: Example of selection of u` and uh using (2.2), for one-sided CI

endpoints. For two-sided, α/2 would be in place of α. Note that for p = 0.5,

uh = 1− u`.

The unobserved, ‘ideal’ fractional order statistic endpoints of the exact CI

can be approximated by linear (superscript ‘L’) interpolation between consecutive

observed order statistics. For example, if n = 8 and u = 1/2, to approximate the

4.5th order statistic, we average the 4th and 5th: Q̂L
Y (1/2) = (1/2)Y8:5 + (1/2)Y8:4.

For any u ∈ (0, 1),

Q̂L
Y (u) ≡ (1− ε)Yn:b(n+1)uc + εYn:b(n+1)uc+1, (2.3)

where ε ≡ (n+ 1)u− b(n+ 1)uc is the interpolation weight, with b·c denoting the

floor function. The construction of a CI with endpoints Q̂L
Y (uh) and Q̂L

Y (u`) is first
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given in Hutson (1999). Theoretical justification in terms of coverage probability

is first given in Chapter 1, where the linear interpolation is shown to induce only

O(n−1) coverage probability error (CPE), as reproduced in the following lemma.

Lemma 2.1. For quantile of interest p ∈ (0, 1) and iid sample {Yi}ni=1, consider

the two-sided CI constructed as
(
Q̂L
Y (u`), Q̂

L
Y (uh)

)
with Q̂L

Y (u) as defined in (2.3),

where u` and uh are defined by (2.2). Alternatively, consider a lower or upper

one-sided CI, with uh or u` determined by the relevant equality in (2.2) but with α

in place of α/2.

Assume that F ′Y (QY (p)) > 0 and that the probability density function F ′Y (·)
is twice continuously differentiable in a neighborhood of QY (p). Then the coverage

probability of the lower one-sided CI is

P
(
Q̂L
Y (uh) > QY (p)

)
= 1− α +

εh(1− εh)z1−α exp{−z2
1−α/2}

p(1− p)
√

2π
n−1 +O

(
nδ−3/2

)
for arbitrarily small δ > 0, εh ≡ (n+1)uh−b(n+1)uhc similar to before, and z1−α

the (1−α)-quantile of a standard normal distribution. The coverage probability of

the upper one-sided CI is the same but with ε` instead of εh. Similarly, the coverage

probability of the two-sided CI is

P
(
Q̂L
Y (u`) < QY (p) < Q̂L

Y (uh)
)

= 1− α +
z1−α exp{−z2

1−α/2}
p(1− p)

√
2π

[εh(1− εh) + ε`(1− ε`)]n−1 +O
(
nδ−3/2

)
.

Beyond the asymptotic rate of CPE, this method also has the advantage of

approximating the exact finite-sample distribution directly rather than relying on

asymptotic normality. To determine the optimal bandwidth in §2.4, Lemma 2.1

will be used along with results for CPE from the bias in §2.3.

The asymptotic (first-order) power of the IDEAL hypothesis test is equal

to that of a test based on the asymptotic normality of the p-quantile estimator,

against alternatives of order n−1/2. The upper endpoint of a one-sided (1−α) CI is

Q̂L
Y (uh) for IDEAL and can be written as Q̂L

Y (p)+n−1/2z1−α
√
p(1− p)/f̂Y

(
Q̂L
Y (p)

)
for normality. The quantile spacing estimator

1

h

(
Q̂L
Y (p+ h)− Q̂L

Y (p)
)
,
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similar to Siddiqui (1960) and Bloch and Gastwirth (1968), consistently estimates

the 1/fY object as long as h → 0 and nh → ∞. Lemma 1.4 in Chapter 1 gives

uh− p = n−1/2z1−α
√
p(1− p) +O(n−1), so bandwidth h = uh− p satisfies the rate

conditions for consistency. Then, to show the equivalence of the IDEAL endpoint

with the normality endpoint,

Q̂L
Y (uh) = Q̂L

Y (p) +
[
Q̂L
Y (p+ uh − p)− Q̂L

Y (p)
]

= Q̂L
Y (p) +

uh − p
uh − p

[
Q̂L
Y (p+ uh − p)− Q̂L

Y (p)
]

= Q̂L
Y (p) + n−1/2z1−α

√
p(1− p) 1

uh − p

[
Q̂L
Y (p+ uh − p)− Q̂L

Y (p)
]

+O
(
n−1
)

= Q̂L
Y (p) + n−1/2z1−α

√
p(1− p)/f̂Y

(
Q̂L
Y (p)

)
+O(n−1).

Asymptotically, against alternatives of order n−1/2, the O(n−1) difference in the

final line above is negligible, so the endpoints and thus power are the same. This

shows that IDEAL attains better coverage probability without sacrificing optimal

asymptotic power. It is reasonable to expect that this is also true of IDEAL

methods in other settings.

Additional unconditional IDEAL methods are developed in Chapter 1. Be-

yond inference on a single quantile, joint inference on multiple quantiles is also

possible, with O(n−1) CPE. IDEAL inference on linear combinations of quantiles,

such as the interquartile range, has O(n−2/3) CPE. In a two-sample setup (e.g.,

treatment and control groups), IDEAL inference on quantile treatment effects has

O(n−2/3) CPE. For the IDEAL quantile treatment effect inference, in addition to

an empirical application revealing interesting heterogeneity in the “gift exchange”

examined in Gneezy and List (2006), many simulation results are given in Chapter

1. Specific to the median, and switching to the language of hypothesis testing,

permutation-type tests (including the Mann–Whitney–Wilcoxon test) are often

used because of their good power against pure location shifts, but they can be

severely size distorted when exchangeability is violated. In contrast, IDEAL con-

trols size in these cases, and it also has better power against certain alternatives

that are not pure location shifts. IDEAL’s robust size control extends to all quan-
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tiles, and power is consistently better than that of other methods for quantile

treatment effects, including various bootstrap methods and the approach in Chap-

ter 3. This strong performance of IDEAL in unconditional settings motivates this

paper’s development of a framework to extend these methods to a nonparametric

conditional setting, where even fewer alternative methods exist.

2.3 Setup

Let QY |X(u;x) be the conditional quantile function of some scalar outcome

Y given conditioning vector X ∈ X ⊂ Rd, evaluated at X = x and quantile

u ∈ (0, 1). A sample of iid data {Yi, Xi}ni=1 is drawn. If the conditional cumulative

distribution function (CDF) FY |X(·) is strictly increasing and continuous at u, then

FY |X(QY |X(u;x);x) = u. For some value X = x0 and some quantile p ∈ (0, 1),

interest is in inference on QY |X(p;x0). Without loss of generality, let x0 = 0, which

can always be achieved in practice by translation of the Xi.

If X is discrete, we can take all the observations with Xi = 0 and then

compute a confidence interval (CI) for the p-quantile of the corresponding Yi val-

ues. The one-sample quantile inference method of Hutson (1999) gives CIs with

coverage probability error (CPE) of order O(n−1), as proved in Chapter 1. The

term of order n−1 is explicitly derived in Chapter 1, too, which makes possible

analytic calibration to reduce CPE to O(n−3/2+δ) for arbitrarily small δ > 0. In

the conditional setting, however, it is more practical not to calibrate, since the

n−1 term always leads to over-coverage (as previously shown) and will be used to

calculate an optimal bandwidth in §2.4. If there are Nn observations with Xi = 0,

then the CPE is O(N−1
n ) (uncalibrated), where Nn is the effective sample size.

For joint CIs, since the pointwise CIs are all independent (using different X), we

can generate (1 − α) joint coverage by pointwise (1 − α)1/m CIs, where m is the

number of values in the support of X. Since X is discrete, these are also uniform

confidence “bands.” The key to the one-sample results going through (with Nn)

is that we have Nn iid draws of Yi from the same QY |X(·; 0) conditional quantile

function, which is the one of interest.
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As always, if X is continuous (or Nn too small), we need to add observations

with Xi near zero. Specifically, we include any observations with Xi ∈ Ch, where

Ch is the interval [−h, h] for some bandwidth h when d = 1. For d > 1, Ch is

a hypersphere or hypercube with radius (or half side length) h, centered at the

origin. Important objects are defined here for reference, as well as our concept of

smoothness that, like our use of Ch, follows that of Chaudhuri (1991, pp. 762–3).

Recall that x0 = 0 is assumed without loss of generality.

Definition 2.1 (effective sample). Let h denote the bandwidth and p ∈ (0, 1) the

quantile of interest. The effective sample consists of Yi values from observations

with Xi inside some window Ch ⊂ Rd centered at the origin, and the effective

sample size is Nn:

Ch ≡ {x : x ∈ Rd, ‖x‖ ≤ h}, (2.4)

Nn ≡ #
(
{Yi : Xi ∈ Ch, 1 ≤ i ≤ n}

)
, (2.5)

where ‖ · ‖ denotes any norm on Rd. With X =
(
X(1), . . . , X(d)

)
∈ Rd, Ch becomes

a d-dimensional hypersphere if ‖X‖ = ‖X‖2 ≡
√
X2

(1) + · · ·+X2
(d), the Euclidean

norm (L2 norm), and Ch becomes a d-dimensional hypercube if ‖X‖ = ‖X‖∞ ≡
max{|X(1)|, . . . , |X(d)|}, the max-norm (L∞ norm). Additionally, the p-quantile of

Y when X is restricted to Ch is denoted QY |Ch(p), which satisfies

p = P
(
Y < QY |Ch(p) | X ∈ Ch

)
.

Definition 2.2 (local smoothness, differentiation). For d-dimensional vector v =

(v(1), . . . , v(d)) of nonnegative integers, let Dv denote the differential operator

∂‖v‖1/[∂x
v(1)
(1) · · · ∂x

v(d)
(d) ],

where ‖v‖1 = v(1) + · · ·+ v(d) is the L1 norm. A function h(x) is said to have local

smoothness of degree s = k+ γ, where k is a nonnegative integer and γ ∈ (0, 1], if

h(x) is continuously differentiable through order k in a neighborhood of the origin

and has uniformly Hölder continuous kth derivatives at the origin, with exponent

γ. More precisely, this means that there exists a positive, real constant c such that

in some neighborhood of the origin
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(i) Dvh(x) exists and is continuous in x for all ‖v‖1 ≤ k, and

(ii) |Dvh(x) −Dvh(0)| ≤ c‖x‖γ for all ‖v‖1 = k, with ‖ · ‖ the norm on x ∈ Rd

in (2.4).

At one extreme, if the conditional quantile function QY |X(·;x) is the same

for all x ∈ Ch, we will have the same results as for the discrete case taking Xi = 0

above. At the opposite extreme, if the conditional quantile function varies com-

pletely arbitrarily over x ∈ Ch, nothing can be learned from the data. If we make

local smoothness assumptions on the conditional quantile function in between these

two extremes, the method will be informative but subject to additional CPE due

to bias.

Assuming a positive, continuous marginal density for X at the origin, Nn

will asymptotically be proportional to the volume of Ch, which is proportional to

hd. There is a tradeoff: larger h lowers CPE via Nn but raises CPE via bias. This

determines the optimal rate at which h → 0 as n → ∞. Using the precise rate

results from §1.3.1 and new results established here, we determine the optimal

value of h.

A Bonferroni approach gives joint CIs over m < ∞ different values of

x0. If the various x0 yield non-intersecting Ch, then the m pointwise CIs will be

independent since data are iid. In that case, pointwise (1−α)1/m CIs can be used

instead of (1− α/m), which is no longer conservative. Asymptotically, for a fixed

number of x0, this is always the case, and it may be a good approximation even

if not exactly true in finite samples. However, the difference is small—for two-

sided CIs with α = 0.05, 0.975 vs. 0.9747 for m = 2, 0.999 vs. 0.99897 for m = 50,

etc.—so the Bonferroni approach is always used here for convenience. As discussed

in §2.5, an alternative Hotelling (1939) tube-based calibration of α yields similar

results.

The unconditional IDEAL method is key to constructing our pointwise CI

for QY |X(p; 0) in the conditional case, where we maintain x0 = 0 as the point of

interest.

Definition 2.3 (conditional IDEAL method). Given iid data {Xi, Yi}ni=1, band-

width h > 0, quantile p ∈ (0, 1), and desired coverage probability (1− α), first Ch



65

and Nn are calculated as in Definition 2.1. Using the values of Yi from the effective

sample of Nn observations with Xi ∈ Ch, the CI is then constructed as in Lemma

2.1. If additional discrete conditioning variables exist, this method may be run

separately for each combination of discrete conditioning values, e.g. once for males

and once for females. This procedure may be repeated for any number of x0, too.

Remark. Code for the unconditional IDEAL method is publicly available in both

MATLAB and R on the author’s website. The only additional difficulty in the

conditional setting is determining the optimal bandwidth (see §2.4.2 and §2.5.1).

For d = 1, fully automated code for conditional IDEAL is available in R, also at

the author’s website.

Remark. Censoring and missing data can be accounted for in many cases. For

instance, if Yi is missing for some observations, there are two extreme cases to

consider: replacing all the missing values with Ymin (the lower bound of the support

of Y , or −∞ if unbounded), or replacing all the missing values with Ymax (the upper

bound of the support of Y , or ∞ if unbounded). A conservative CI is then the

convex hull of the IDEAL CIs in the two extreme cases. If there are not too many

missing values, this will still produce an informative CI. Extensions of the IDEAL

method to missing data (with or without assumptions like missing at random) and

different types of censoring should be relatively straightforward and valuable.

In addition to the foregoing definitions, the following assumptions are main-

tained throughout. We continue using x0 = 0 as the point of interest. Assumptions

A2.1–A2.4(i) are needed for the bias calculation, while A2.4(ii)–A2.6 are needed

to apply the unconditional IDEAL quantile inference method (Chapter 1).

Assumption A2.1. (Xi, Yi) is iid across i = 1, 2, . . . , n, where Yi is a continuous

scalar and Xi a continuous vector with support X ⊂ Rd.

Assumption A2.2. The marginal density of X, denoted fX(·), satisfies fX(0) > 0

and has local smoothness sX = kX + γX > 0 with constant cX .

Assumption A2.3. For all u in a neighborhood of p, QY |X(u; ·) (as a function of

the second argument) has local smoothness sQ = kQ + γQ > 0 with constant cQ.
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Assumption A2.4. As n→∞, (i) h→ 0, (ii) nhd/[log(n)]2 →∞.

Assumption A2.5. The conditional density of Y is positive at the quantile and

X values of interest: fY |X
(
QY |X(p; 0); 0

)
> 0.

Assumption A2.6. For all y in a neighborhood of QY |X(p; 0) and x in a neigh-

borhood of the origin, fY |X(y;x) is twice continuously differentiable (fY |X ∈ C2)

in its first (Y ) argument, i.e. has local smoothness sY = kY +γY > 2 with constant

cY .

Remark (smoothness). There is no minimum requirement of sQ and sX , though

as sQ → 0 the inference becomes meaningless, as shown explicitly in §2.4. Since

we are implicitly using a uniform kernel, which is a second-order kernel, there is

no benefit to having smoothness greater than (sQ, sX , sY ) = (2, 1, 1) + ε for some

arbitrarily small ε > 0, as stated in Lemma 2.2. Our sQ corresponds to variable p

in Chaudhuri (1991), who also notes that Bhattacharya and Gangopadhyay (1990)

use sQ = 2 and d = 1.

Remark (bandwidth). From A2.4(i), asymptotically Ch will be totally contained

within the neighborhoods mentioned in A2.2, A2.3, and Definition 2.2. In order

to get Nn
a.s.→ ∞, A2.4(ii) is a primitive condition. This in turn allows us to

examine only a local neighborhood around quantile of interest p (e.g., as in A2.3),

since asymptotically the CI endpoints will converge to the true value at a
√
Nn

rate. Reassuringly, the optimal bandwidth rate turns out to be inside the assumed

bounds.

The bias may now be determined. Since our conditional quantile CI uses

the subsample of Yi with Xi ∈ Ch, rather than a subsample of Yi with Xi = 0, our

CI is constructed for the biased conditional quantile QY |Ch(p) (from Definition 2.1)

rather than for QY |X(p; 0). The bias is the difference between these two population

conditional quantiles (proof in Appendix B.1).

Lemma 2.2. Define b ≡ min{sQ, sX + 1, 2} and Bh ≡ QY |Ch(p) − QY |X(p; 0). If

Assumptions A2.2, A2.3, A2.4(i), and A2.6 hold, then the bias is of order

|Bh| = O(hb). (2.6)
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With A2.2 and A2.3 strengthened to kX ≥ 1 and kQ ≥ 2, the bias is O(h2) with

remainder o(h2). With further strengthening to kX ≥ 2 and kQ ≥ 3, the bias

remains O(h2), but the remainder sharpens to o(h3). With d = 1, and defining

Q
(0,1)
Y |X (p; 0) ≡ ∂

∂x
QY |X(p;x)

∣∣∣∣
x=0

, Q
(0,2)
Y |X (p; 0) ≡ ∂2

∂x2
QY |X(p;x)

∣∣∣∣
x=0

,

ξp ≡ QY |X(p; 0),

f
(0,1)
Y |X (y; 0) ≡ ∂

∂x
fY |X(y;x)

∣∣∣∣
x=0

, f
(1,0)
Y |X (ξp; 0) ≡ ∂

∂y
fY |X(y; 0)

∣∣∣∣
y=ξp

,

and similarly for F
(0,1)
Y |X (ξp; 0) and F

(0,2)
Y |X (ξp; 0), the bias is

Bh =
h2

6

{
2Q

(0,1)
Y |X (p; 0)f ′X(0)/fX(0) +Q

(0,2)
Y |X (p; 0)

+ 2f
(0,1)
Y |X (ξp; 0)Q

(0,1)
Y |X (p; 0)/fY |X(ξp; 0)

+ f
(1,0)
Y |X (ξp; 0)

[
Q

(0,1)
Y |X (p; 0)

]2

/fY |X(ξp; 0)

}
+R

= −h2
fX(0)F

(0,2)
Y |X (ξp; 0) + 2f ′X(0)F

(0,1)
Y |X (ξp; 0)

6fX(0)fY |X(ξp; 0)
+R,

where R = o(h2) or R = o(h3) as discussed.

Remark. The dominant term in the bias when kX ≥ 1, kQ ≥ 2, and d = 1 is the

same as the bias in Bhattacharya and Gangopadhyay (1990), who derive it using

different arguments.

We discuss some intuition of the proof here. We start with an identity

for QY |Ch(p) and subtract off the corresponding identity for QY |X(p; 0). Using

the smoothness assumptions, a Taylor expansion (of some order) of the remainder

may be taken. The bias appears in the lowest-order term; some cancellation and

rearrangement leads to the final expression. Further manipulations to replace QY |X

with FY |X lead to the exact same expression as in Bhattacharya and Gangopadhyay

(1990).

Remark. Even when kX ≥ 1 and kQ ≥ 2, the bias will never shrink smaller than

O(h2) since we are effectively using a second-order (uniform) kernel. It is unclear

if the IDEAL fractional order statistic results can be used with a higher-order
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kernel. Alternatively, higher-order kernels could likely be used with a method as

in Chernozhukov et al. (2009), who in the parametric quantile regression model

use Bernoulli random variables and MCMC simulation.

2.4 Optimal bandwidth and CPE

2.4.1 Optimal rate of bandwidth and CPE

The optimal bandwidth minimizes the effect of the two dominant high-order

terms on coverage probability error (CPE). In terms of coverage probability (CP)

and nominal coverage 1−α, we follow convention and define CPE ≡ CP− (1−α),

so that CPE is positive when there is over-coverage and negative when there is

under-coverage. This means the equivalent hypothesis test is size distorted when

CPE is negative.

From §1.3.1, we know the IDEAL CPE in the unconditional one-sample case

for Hutson’s (1999) confidence interval (CI). In that case, we are interested in the

p-quantile F−1(p) of scalar random variable Y . The Hutson (1999) method’s CPE

with respect to sample size n is of order n−1. To apply this result, we need a more

precise handle on the effective sample size Nn, which is random. From Chaudhuri

(1991, proof of Thm. 3.1, p. 769), and under A2.1, we can choose c1, c2, c3, c4 > 0

such that

P (An) ≥ 1− c3 exp(−c4nh
d)

for all n, where An ≡
{
c1nh

d ≤ Nn ≤ c2nh
d
}

and Ch is the hypercube from Def-

inition 2.1. (Adjusting the ci appropriately, Chaudhuri’s (1991) argument goes

through for a hypersphere Ch also.) If the rate of h leads to
∑

n[1− P (An)] <∞,

then the Borel–Cantelli Lemma gives P (lim inf An) = 1. This holds for the optimal

bandwidth rates derived here, which all satisfy A2.4.

One-sided inference

In the lower one-sided case, we write Q̂L
Y |Ch(uh) as the Hutson (1999) upper

endpoint, with notation similar to §2.2. This is a linearly interpolated fractional
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order statistic approximation calculated from the Nn values of Yi with Xi ∈ Ch.
The random variable FY |Ch

(
Q̂I
Y |Ch(uh)

)
follows a (collapsing) beta distribution,

which has a continuously differentiable PDF in (0, 1) that converges to a (col-

lapsing) normal PDF at a
√
Nn rate (Chapter 1). Other than O(N−1

n ) CPE from

interpolating between order statistics, the CI using Q̂L
Y |Ch(uh) is exact for QY |Ch(p).

The fact that instead QY |X(p; 0) is of interest introduces additional CPE from the

bias. The CP of the lower one-sided CI is

P
(
QY |X(p; 0) < Q̂L

Y |Ch(uh)
)

= P
(
QY |Ch(p) < Q̂L

Y |Ch(uh)
)

+
[
P
(
QY |X(p; 0) < Q̂L

Y |Ch(uh)
)
− P

(
QY |Ch(p) < Q̂L

Y |Ch(uh)
)]

= 1− α + CPEGK + CPEBias, (2.7)

where CPEGK is due to the Chapter 1 CPE from Lemma 2.1 and CPEBias comes

from the bias discussed in §2.3.

As before, define Bh ≡ QY |Ch(p) − QY |X(p; 0). From Lemma 2.2, we have

Bh = O(hb) with b ≡ min{sQ, sX + 1, 2}. Let F
Q̂
I,uh
Y |Ch

(·) and f
Q̂
I,uh
Y |Ch

(·) be the

CDF and PDF, respectively, of Q̂I
Y |Ch(uh). If Bh is sufficiently small—i.e. if hb =

o(N
−1/2
n ), which is true below since hb = N

−3/2
n —then we can approximate

CPEBias = P
(
QY |X(p; 0) < Q̂L

Y |Ch(uh)
)
− P

(
QY |Ch(p) < Q̂L

Y |Ch(uh)
)

= P
(
Q̂L
Y |Ch(uh) < QY |Ch(p)

)
− P

(
Q̂L
Y |Ch(uh) < QY |X(p; 0)

)
= P

(
Q̂I
Y |Ch(uh) < QY |Ch(p)

)
− P

(
Q̂I
Y |Ch(uh) < QY |X(p; 0)

)
+O(BhN

−1/2
n )

= F
Q̂
I,uh
Y |Ch

(
QY |Ch(p)

)
− F

Q̂
I,uh
Y |Ch

(
QY |X(p; 0)

)
+O(BhN

−1/2
n )

= BhfQ̂I,uh
Y |Ch

(
QY |Ch(p)

)
+O(BhN

−1/2
n +B2

hNn), (2.8)

where the order of the approximation error from switching to Q̂I
Y |Ch(uh) from

Q̂L
Y |Ch(uh) comes from Theorem 1.1 in Chapter 1, and the other remainder is

the subsequent B2
h term in the Taylor expansion that would be multiplied by an

O(Nn) PDF derivative as in (2.10). From the aforementioned PDF convergence
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of FY |Ch(Q̂I
Y |Ch(uh)) to a normal, it can be shown that f

Q̂
I,uh
Y |Ch

(
QY |X(p; 0)

)
� N

1/2
n .

Since Bh = O(hb) from Lemma 2.2, the dominant term of CPEBias is O(N
1/2
n hb).

The expression in (2.8) holds for Bh > 0 (leading to over-coverage) or Bh < 0

(under-coverage).

The two dominant terms of CPEGK and CPEBias are thus respectively

O(N−1
n ) and O(N

1/2
n hb). These are both sharp except in the special case of

uh(Nn + 1) being an integer or of fX(0)F
(0,2)
Y |X (ξp; 0) + 2f ′X(0)F

(0,1)
Y |X (ξp; 0) = 0 when

kQ ≥ 2 and kX ≥ 1 (or similar conditions otherwise); the following assumes we are

not in a special case. The term CPEGK is always positive. If CPEBias is negative,

the optimal h will make them cancel, and it will set the orders equal:

N−1
n � N1/2

n hb =⇒ (nhd)3/2 � h−b =⇒ h � n−3/(2b+3d).

Overall CPE will then be o(n−2b/(2b+3d)). Even if h does not make the dominant

CPE terms cancel, as long as it is the above asymptotic rate, the overall CPE will

be O(n−2b/(2b+3d)).

If instead the two terms are both positive, minimizing the sum will lead to

a first-order condition like

0 =
∂

∂h

[
N−1
n +N1/2

n hb
]

= (−d)n−1h−d−1 + (b+ (d/2))n1/2hb+(d/2)−1,

giving the same rate h � n−3/(2b+3d). In that case, overall CPE will be positive

(over-coverage) and of order

N−1
n � (nhd)−1 � n−1+3d/(2b+3d) = n−2b/(2b+3d).

If the calibrated unconditional method from Chapter 1 is used, CPEGK =

O
(
N
−3/2+ρ
n

)
for arbitrarily small ρ > 0. Ignoring the ρ for simplicity, the optimal

bandwidth rate is then h � n−2/(b+2d), leading to overall CPE of O
(
n−3b/(2b+4d)

)
.

In the upper one-sided case, with Q̂L
Y |Ch(u`) the lower endpoint, CPEGK is

of the same order and sign, while

CPEBias = P
(
QY |X(p; 0) > Q̂L

Y |Ch(u`)
)
− P

(
QY |Ch(p) > Q̂L

Y |Ch(u`)
)

= F
Q̂
I,u`
Y |Ch

(
QY |X(p; 0)

)
− F

Q̂
I,u`
Y |Ch

(
QY |Ch(p)

)
+O(BhN

−1/2
n )

= −BhfQ̂I,u`
Y |Ch

(
QY |Ch(p)

)
+O(BhN

−1/2
n +B2

hNn). (2.9)
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Opposite before, Bh > 0 now contributes under-coverage andBh < 0 over-coverage,

but for now it suffices to note that the order of CPEBias is the same as before.

Two-sided inference

With two-sided inference, the lower and upper endpoints have opposite

bias effects. For the median, the dominant terms of these effects cancel com-

pletely. For other quantiles, there is a partial, order-reducing cancellation. Below,

since by construction Q̂L
Y |Ch(u`) < Q̂L

Y |Ch(uh), it is certain that Q̂L
Y |Ch(u`) < c if

Q̂L
Y |Ch(uh) < c and that Q̂L

Y |Ch(uh) > c if Q̂L
Y |Ch(u`) > c, for any c. With two-sided

CI (Q̂L
Y |Ch(u`), Q̂

L
Y |Ch(uh)), CP is

P
(
Q̂L
Y |Ch(u`) < QY |X(p; 0) < Q̂L

Y |Ch(uh)
)

= 1− P
(
Q̂L
Y |Ch(u`) > QY |X(p; 0)

)
− P

(
Q̂L
Y |Ch(uh) < QY |X(p; 0)

)
= 1− P

(
Q̂L
Y |Ch(u`) > QY |Ch(p)

)
+
[
P
(
Q̂L
Y |Ch(u`) > QY |Ch(p)

)
− P

(
Q̂L
Y |Ch(u`) > QY |X(p; 0)

)]
− P

(
Q̂L
Y |Ch(uh) < QY |Ch(p)

)
+
[
P
(
Q̂L
Y |Ch(uh) < QY |Ch(p)

)
− P

(
Q̂L
Y |Ch(uh) < QY |X(p; 0)

)]
= 1− α + CPEGK +

[
1− F

Q̂
I,u`
Y |Ch

(
QY |Ch(p)

)]
−
[
1− F

Q̂
I,u`
Y |Ch

(
QY |X(p; 0)

)]
+ F

Q̂
I,uh
Y |Ch

(
QY |Ch(p)

)
− F

Q̂
I,uh
Y |Ch

(
QY |X(p; 0)

)
+O(BhN

−1/2
n )

= 1− α + CPEGK +Bh

[
f
Q̂
I,uh
Y |Ch

(
QY |Ch(p)

)
− f

Q̂
I,u`
Y |Ch

(
QY |Ch(p)

)]
+ (1/2)B2

h

[
f ′
Q̂
I,u`
Y |Ch

(
QY |Ch(p)

)
− f ′

Q̂
I,uh
Y |Ch

(
QY |Ch(p)

)]
+O

{
B3
hf
′′
Q̂

(
QY |Ch(p)

)
+BhN

−1/2
n

}
. (2.10)

For the special case of the median, the Bh term zeroes out. This happens

because the beta distribution PDFs of FY |Ch

(
Q̂I
Y |Ch(u)

)
and FY |Ch

(
Q̂I
Y |Ch(1− u)

)
are reflections of each other around p = 1/2—i.e., fβ(x;u) = fβ(1−x; 1−u),∀x ∈
(0, 1)—so the upper and lower u are symmetric around p = 1/2. See Figure 2.1 for

a visual example and (B.3) for the endpoint PDF expression. Consequently, the
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dominant bias effect on CPE is the B2
h term instead. This makes the overall CPE

smaller. The optimal rate of h will equate (nhd)−1 � h2b(nhd), so h∗ � n−1/(b+d)

and CPE is O(n−b/(b+d)). With the calibrated method (again suppressing the

ρ > 0), the rates would instead be h∗ � n−5/(4b+3d) and CPE = O
(
n−6b/(4b+5d)

)
.

Even with p 6= 1/2, the same rates hold. As seen in (2.12), the PDF differ-

ence multiplying Bh is only O(1), smaller than the O(N
1/2
n ) PDF value multiplying

Bh in the one-sided expression (2.8). This makes the Bh and B2
h terms the same

order, as discussed further in §2.4.2.

Theorem 2.3. Let Assumptions A2.1–A2.6 hold, and define b ≡ min{sQ, sX +

1, 2}.
For a one-sided CI, the bandwidth h∗ minimizing CPE for the Hutson (1999)

method applied to observations falling inside Ch has rate h∗ � n−3/(2b+3d). This

corresponds to overall CPE of O(n−2b/(2b+3d)).

For two-sided inference, the optimal bandwidth rate is h∗ � n−1/(b+d), and

the optimal CPE is O(n−b/(b+d)).

For the median, with the precise bandwidth value provided in §2.4.2, the

two-sided CPE reduces to o(n−b/(b+d)). With kQ ≥ 2 and kX ≥ 1, the CPE is

o
(
n−2/(2+d)

)
.

Using the calibrated method proposed in Chapter 1, the two-sided CPE-

optimal bandwidth rate is h∗ � n−(5−2ρ)/(4b+5d−2dρ) for arbitrarily small ρ > 0,

yielding CPE of O
(
n−(6b−4bρ)/(4b+5d−2dρ)

)
. The optimal one-sided calibrated band-

width rate is h∗ � n−(2−ρ)/(b+2d−dρ), yielding CPE of O
(
n−(3b−2bρ)/(2b+4d−2dρ)

)
.

Remark. With kX ≥ 2 and kQ ≥ 3, if it could be guaranteed that Nn = nP (Xi ∈
Ch)[1 +O(N

−1/2
n log(Nn))], then CPE would be O(n−3/(2+d) log(n)).

Discussion: smoothness and bandwidth

The following discussion is for the more common two-sided inference, with

one-sided equivalents noted in parentheses. Let κ ≡ 1/(b + d) (one-sided: κ ≡
3/(2b + 3d)), so that h = n−κ above, with CPE of order ndκ−1. Since 0 < b ≤ 2,

the optimal κ will depend on A2.2 and A2.3 but fall within the range 1/(2 + d) ≤
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κ < 1/d (one-sided: 3/(4 + 3d) ≤ κ < 1/d). This corresponds to CPE order in

the range [n−2/(2+d), n0) (one-sided: [n−4/(4+3d), n0)). The high end of this range

matches intuition: as the smoothness diminishes to zero (sQ → 0), we are unable to

say anything informative. However, the smoothness levels (sQ, sX , sY ) = (2, 1, 2)+ε

for any small ε > 0 are quite mild, so it is most helpful in practice to look at the

other end of the range.

As d increases, h→ 0 more slowly (smaller κ). More smoothness also makes

h → 0 more slowly: we can afford a relatively larger window Ch if there is less

variability near our point of interest.

With d = 1 and b = 2, we get h∗ � n−1/3 and a CPE of order n−2/3 (one-

sided: h∗ � n−3/7, CPE n−4/7). With d = 2, the CPE order increases to n−1/2

(one-sided: n−2/5). We expect the method to work (relatively) well with even

higher-dimensional X, though CPE continues to increase as d increases.

Regarding robustness to bandwidth, our CI will be asymptotically (first-

order) correct as long as N−1
n → 0 (so CPEGK → 0) and Nnh

2b → 0 (so CPEBias →
0). These are equivalent to 1/(2b+d) < κ < 1/d. With the common example d = 1

and b = 2, this says that any h � n−κ with 1/5 < κ < 1 will give CPE = o(1). The

range for κ is the same as when using the local polynomial asymptotic normality

approach.

Discussion: comparison with asymptotic normality or bootstrap

Theorem 2.3 suggests that for most common combinations of smoothness

sQ and dimensionality d, our method is preferred to inference based on asymptotic

normality or bootstrap with a local polynomial estimator. Only the uncalibrated

IDEAL method is compared here; the IDEAL advantage is even greater for the

calibrated version. As shown in Chaudhuri (1991), the local polynomial quantile

regression estimator achieves the optimal rate of convergence for nonparametric

mean regression given by Stone (1980, 1982); other nonparametric estimators may

be used instead, but the theoretical CPE should not be able to improve for asymp-

totic normality or percentile bootstrap. Consequently, the following comparative

discussion is detailed.



74

The main limitation of our method is the uniform kernel required to leverage

the fractional order statistic theory. Even though asymptotic normality has a

larger error in terms of Nn, it could be smaller in terms of n if Nn is allowed to be

much bigger. This could potentially happen if a high enough degree of smoothness

sQ is assumed and there are enough observations that it is appropriate to fit a

correspondingly high-degree local polynomial. As we will see, though, our method

has smaller CPE in the most important cases even with sQ =∞.

Results from Chaudhuri (1991) can be reworked to obtain the optimal

CPE for inference based on asymptotic normality of the local polynomial esti-

mator. Note that Q̂Y |X(p; 0) = β̂(0), the intercept term estimator from the local

polynomial quantile regression, so inference on β(0) is equivalent to inference on

QY |X(p; 0). The goal of Chaudhuri (1991) is to show that the local polynomial

estimator therein achieves the optimal rate of convergence given by Stone (1980,

1982) for nonparametric mean regression. A decomposition of the estimator is

given as

β̂ − β0 = Vn +Bn +Rn,

where Rn is a Bahadur-type remainder from Theorem 3.3, Bn is the bias from

equation (4.1), and Vn is the term from Proposition 4.2 that when scaled by
√
Nn

converges to a Gaussian limit. To get the best rate, it is necessary to balance

the squared bias with the variance. The given MSE-optimal bandwidth is h ∝
n−1/(2sQ+d) (p. 763, in our notation), balancing the square of the Bn = O(hsQ) =

O(n−sQ/(2sQ+d)) bias (Prop. 4.1; rn(x) on p. 765) with the N−1
n variance (Prop.

4.2), where Nn
a.s.� n2sQ/(2sQ+d) (Prop. 4.2 proof). However, with the bias the same

order of magnitude as the standard deviation, CPE is O(1). If CPE is the target

instead of MSE, a smaller bandwidth is necessary.

To find the CPE-optimal bandwidth for Chaudhuri (1991), we balance the

CPE from the bias with additional CPE from the Bahadur remainder from The-

orem 3.3(ii), ignoring asymptotic variance estimation error. The CPE due to the

bias is of order N
1/2
n hsQ . Chaudhuri (1991, Thm. 3.3) gives a Bahadur-type ex-

pansion of the local polynomial quantile regression estimator that has remainder

Rn

√
Nn = O(N

−1/4
n ) (up to log terms) as in Bahadur (1966), but recently Port-
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noy (2012) has shown that the CPE is nearly O(N
−1/2
n ) in such cases. Solving

N
1/2
n hsQ = N

−1/2
n = (nhd)−1/2, this yields h∗ � n−1/(sQ+d). The optimal CPE is

then (nearly) O(
√
NnBn) = O(N

−1/2
n ) = O(n−sQ/(2sQ+2d)).

Specifically, and very much theoretically, in Chaudhuri (1991), if sQ →
∞, then Nn → n and (nearly) CPE → O(n−1/2). In other words, with infinite

smoothness, almost the entire sample n is used because the fitted infinite-degree

polynomial can perfectly approximate the true function. Practically, when we have

a finite sample, we can’t even fit an nth-degree polynomial, let alone infinite-degree.

Additionally, the argument in Chaudhuri (1991) is that even if the smoothness

only holds in some tiny neighborhood V , asymptotically there will be an infinite

number of observations within V (and Ch will be contained in V ). But when the

sample is finite, smoothness must hold over Ch, which may not be so small (and is

always of larger-order volume than our Ch). Barring relevant a priori information,

speculating more smoothness over a larger region may be prohibitively unpalatable

in light of the more robust method we provide.

If sQ = 2 (one Lipschitz-continuous derivative), then optimal CPE from

asymptotic normality is nearly O(n−2/(4+2d)). This goes to n0 as d → ∞ (same

as above). With d = 1, this is n−1/3, significantly larger than our n−2/3 (one-

sided: n−4/7); with d = 2, n−1/4 is larger than our n−1/2 (one-sided: n−2/5); and it

remains larger for all d (even for one-sided inference). With sQ = 1 (no derivatives,

but Lipschitz continuity), then optimal CPE from asymptotic normality is nearly

O(n−1/(2+2d)), compared to our CPE of O(n−1/(1+d)) (one-sided: O(n−1/(2+2d))).

With d = 1, this is n−1/4, again much larger than our n−1/2 (one-sided: n−2/5);

and again it remains larger for all d (including one-sided).

From another perspective: what amount of smoothness (and degree of lo-

cal polynomial fit) is needed for asymptotic normality to match the CPE of our

method? For any d, the bound on CPE for asymptotic normality is nearly n−1/2

(with sQ → ∞). For the most common cases of d ∈ {1, 2} (one-sided: d = 1),

asymptotic normality will be worse even with infinite smoothness. With d = 3

(one-sided: d = 2), asymptotic normality needs sQ ≥ 12 (one-sided: sQ ≥ 12)

to have as good CPE. If n is quite large, maybe that high of a local polynomial
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degree (kQ ≥ 11) will be appropriate, but often it is not. Note that interaction

terms are required, so an 11th-degree polynomial has 364 terms. As d → ∞,

the required smoothness approaches sQ = 4 (one-sided: 8/3) from above, though

again the number of terms in the local polynomial grows with d as well as kQ and

may be prohibitive in finite samples. Even with very high-dimensional X, asymp-

totic normality will only be better under a stronger smoothness assumption and

fourth-degree (i.e., includes x4 term) local polynomial fit.

In finite samples, the asymptotic normality approach may have additional

error from estimation of the asymptotic variance, which includes the “dispersion

matrix” as well as the probability density of the error term at zero as discussed in

Chaudhuri (1991, pp. 764–766). There is no direct error from nuisance parameter

estimation in our method, only through the plug-in bandwidth.

For the bootstrap, the basic percentile method offers no higher-order re-

finement over first-order asymptotic normality. Consequently, our method has

better CPE than the bootstrap in all the cases discussed above. Gangopadhyay

and Sen (1990) examine the bootstrap percentile method for a uniform kernel (or

nearest-neighbor) estimator with d = 1 (and sQ = 2), but they only show first-

order consistency. Based on their (2.14), the optimal error seems to be O(n−1/3)

when h � n−1/3 to balance the bias and remainder terms, improved by Portnoy

(2012) from O(n−2/11) CPE when h � n−3/11. Although we are unaware of any

improvements on Gangopadhyay and Sen (1990) to date, it is still valuable to pur-

sue different inference strategies, and developing strong resampling or subsampling

competitors here is no exception.

2.4.2 Plug-in bandwidth

The terms CPEGK and CPEBias can be calculated more precisely than sim-

ply the rates. Chapter 1 contains an exact expression for the O(N−1
n ) CPEGK

term. This can be used to reduce the CPE to almost O(N
−3/2
n ) via analytic cal-

ibration, but we use it to determine the precise value of the optimal bandwidth.

In theory, it is better to use the analytic calibration and an ad hoc bandwidth of

the proper rate. In practice, it is helpful (as in §2.4.3) to know that the O(N−1
n )
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CPE term only leads to over-coverage, which implies that smaller h is always more

conservative, and the detrimental effect of an ad hoc bandwidth can be significant

in smaller samples.

As before, p ∈ (0, 1) is the quantile of interest. Let φ(·) be the standard

normal PDF, z1−α be the (1−α)-quantile of the standard normal distribution, uh >

p (or u` < p) be the quantile determining the high (low) endpoint of a lower (upper)

one-sided CI, εh ≡ (Nn + 1)uh−b(Nn + 1)uhc, and ε` ≡ (Nn + 1)u`−b(Nn + 1)u`c.
Let IH denote a 100(1 − α)% CI constructed using Hutson’s (1999) method on a

univariate data sample of size Nn. The coverage probability of a lower one-sided

IH (with the upper one-sided result substituting ε` for εh) is

P{F−1(p) ∈ IH} = 1− α +N−1
n z1−α

εh(1− εh)
p(1− p)

φ(z1−α) + o(N−1
n ),

or for a two-sided CI,

P{F−1(p) ∈ IH} = 1− α +N−1
n z1−α/2

εh(1− εh) + ε`(1− ε`)
p(1− p)

φ(z1−α/2) + o(N−1
n ).

In either case there is O(N−1
n ) over-coverage.

While we know the sign of CPEGK, we don’t always know the sign of the

bias. Specifically, when the rate-limiting term of Bh is determined by Hölder

continuity (of QY |X(·; ·) or fX(·)), we lose the sign at that step. However, when

kQ ≥ 2 and kX ≥ 1, the Hölder continuity terms all end up in the remainder while

the rate-limiting terms are signed derivatives.

Since (kQ, kX , kY ) = (2, 1, 2) is only a mild smoothness assumption, which

also gives the smallest attainable order of bias, we maintain it for our plug-in

bandwidth. We also take d = 1 for simplicity.

From Lemma 2.2, we have two explicit expressions for Bh,

Bh =
h2

6

{[
2Q

(0,1)
Y |X (p; 0)f ′X(0)/fX(0) +Q

(0,2)
Y |X (p; 0)

]
+ 2f

(0,1)
Y |X (ξp; 0)Q

(0,1)
Y |X (p; 0)/fY |X(ξp; 0)

+ f
(1,0)
Y |X (ξp; 0)

[
Q

(0,1)
Y |X (p; 0)

]2

/fY |X(ξp; 0)

}
+ o(h2)

= −h2
fX(0)F

(0,2)
Y |X (ξp; 0) + 2f ′X(0)F

(0,1)
Y |X (ξp; 0)

6fX(0)fY |X(ξp; 0)
+ o(h2).
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For fX(0), f ′X(0), and fY |X(ξp; 0), we could either estimate them or use a paramet-

ric plug-in assumption (e.g., assume the distribution is Gaussian and estimate its

parameters). For the first formulation above, Q
(0,1)
Y |X (p; 0), Q

(0,2)
Y |X (p; 0), f

(1,0)
Y |X (ξp; 0),

and f
(0,1)
Y |X (ξp; 0) also must be estimated. Alternatively, for the second formulation,

F
(0,1)
Y |X (ξp; 0) and F

(0,2)
Y |X (ξp; 0) must be estimated. Recall that X = 0 really means

X = x0, our target point of interest.

Additionally, CPEBias depends on fQ̂u
(
QY |Ch(p)

)
. From earlier,

FY |Ch(Q̂u) ∼ β[(Nn + 1)u, (Nn + 1)(1− u)].

Let fβ(·;u) denote the corresponding beta distribution’s PDF and Fβ(·;u) its CDF.

As shown in the appendix, some identities and calculus lead to

fQ̂u
(
QY |Ch(p)

)
= fβ(p;u)fY |Ch

(
F−1
Y |Ch(p)

)
.

The term fY |Ch

(
F−1
Y |Ch(p)

)
is equal to fY |X(ξp; 0) up to smaller-order terms. The

term fβ(p;u) is well approximated by a normal PDF. As detailed in the appendix,

for either one-sided (1 − α) CI endpoint quantile u = uh or u = u` chosen by the

Hutson (1999) method,

fβ(p;u) = N1/2
n [u(1− u)]−1/2φ(z1−α)

[
1 +O(N−1/2

n )
]
. (2.11)

For convenient reference, the plug-in bandwidth expressions are collected

here. Some intuition follows; details of calculation may be found in Appendix B.2.

We continue to assume d = 1, kQ ≥ 2, and kX ≥ 1, with quantile of interest

p ∈ (0, 1) and point of interest X = x0. Standard normal quantiles are denoted,

for example, z1−α for the (1 − α)-quantile such that Φ(z1−α) = 1 − α. We let

B̂h denote the estimator of bias term Bh; f̂X the estimator of fX(x0); f̂ ′X the

estimator of f ′X(x0); F̂
(0,1)
Y |X the estimator of F

(0,1)
Y |X (ξp;x0); and F̂

(0,2)
Y |X the estimator

of F
(0,2)
Y |X (ξp;x0), where ξp ≡ QY |X(p;x0). To avoid a recursive definition of the plug-

in bandwidth, we use εh = ε` = 0.2 as a rule of thumb (which cancels nicely with

other constants). The largest possible bandwidth would use 0.5 instead, which

would give extremely similar bandwidths since, for example, [(0.2)(0.8)]1/6 = 0.74

while [(0.5)(0.5)]1/6 = 0.79 in the two-sided median case.

We recommend the following when d = 1.
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• For one-sided inference, let

ĥ+− = n−3/7

 z1−α

3
[
p(1− p)f̂X

]1/2{
f̂XF̂

(0,2)
Y |X + 2f̂ ′XF̂

(0,1)
Y |X

}


2/7

,

ĥ++ = n−3/7

 z1−α

3
[
p(1− p)f̂X

]1/2{
f̂XF̂

(0,2)
Y |X + 2f̂ ′XF̂

(0,1)
Y |X

}
(−5/2)


2/7

.

• For lower one-sided inference, ĥ+− should be used if B̂h < 0, and ĥ++ other-

wise.

• For upper one-sided inference, ĥ++ should be used if B̂h < 0, and ĥ+−

otherwise.

• For two-sided inference on the median,

ĥ = n−1/3

 3f̂Y |X{
f̂XF̂

(0,2)
Y |X + 2f̂ ′XF̂

(0,1)
Y |X

}2


1/6

.

• For two-sided inference with p 6= 1/2 (and equivalent to above with p = 1/2),

ĥ = n−1/3

(2p− 1)(B̂h/|B̂h|) +
√

(2p− 1)2 + (4/3)/f̂Y |X

(2/3)
∣∣∣f̂XF̂ (0,2)

Y |X + 2f̂ ′XF̂
(0,1)
Y |X

∣∣∣/f̂Y |X
1/3

.

Alternatively, the median-specific bandwidth may be used if uh and u` are

chosen such that fβ(p;uh) = fβ(p;u`), which requires relaxing the equal-

tailed restriction of (2.2). The benefit is a simpler expression for the band-

width; the costs are an additional (though fast) numerical search and loss of

the equal-tailed property.

Regarding the signs of the two CPE terms in (2.7), we know that CPEGK >

0 (over-coverage). We can estimate the sign of CPEBias as the sign of Bh for lower

one-sided inference and the opposite of the sign of Bh for upper one-sided inference.

For two-sided inference, the sign of CPEBias depends on the bandwidth, and there

always exists a bandwidth such that CPEBias < 0 and cancels CPEGK. In the one-

sided case, if CPEBias < 0, then the optimal bandwidth causes the two CPE terms
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to cancel out; if CPEBias > 0, the optimal bandwidth minimizes their sum. The

only difference is an extra coefficient of [2d/(2b+ d)]1/(b+3d/2) = [2d/(d+ 4)]2/(4+3d)

from the first-order condition in the latter case, where the initial exponents of h

come down when taking a derivative. If CPEBias < 0, then overall CPE is o(n−4/7);

if CPEBias > 0, then overall CPE is O(n−4/7) and positive (over-coverage).

In the rest of this subsection, we provide some additional details on the

two-sided case. For two-sided inference with p = 1/2, the Bh term becomes zero,

as is clear in (2.13) below. Then CPEBias < 0 since B2
h > 0, f ′

Q̂
I,u`
Y |Ch

(p) < 0,

and f ′
Q̂
I,uh
Y |Ch

(p) > 0. The optimal h causes this to cancel with CPEGK > 0. At a

minimum, this reduces overall CPE to o(n−2/(2+d)). From Lemma 2.2, if kX ≥ 2

and kQ ≥ 3, then Bh consists of the leading h2 term plus o(h3) remainder. Since

CPEGK consists of the leading N−1
n term plus O(N

−3/2
n log(Nn)) remainder, the

overall CPE (after cancellation, with h∗ � n−1/(2+d)) reduces to

CPE = O(N−3/2
n log(Nn)) + o(Nnh

6) = O(N−3/2
n log(Nn))

= O
(
(n(h∗)d)−3/2[log(n) + d log(h∗)]

)
= O

(
(n2/(2+d))−3/2 log(n)

)
= O

(
n−3/(2+d) log(n)

)
,

which is nearly O(n−1) for d = 1.

By the convergence of our beta to a normal distribution, the product rule

for derivatives, and the invariance of fY |Ch

(
F−1
Y |Ch(p)

)
to u,

f ′
Q̂
I,u`
Y |Ch

(
QY |Ch(p)

)
− f ′

Q̂
I,uh
Y |Ch

(
QY |Ch(p)

)
.
= −z1−α/2Nnφ(z1−α/2)2[p(1− p)]−1fY |Ch

(
F−1
Y |Ch(p)

)
,

and

N−1
n z1−α/2

εh(1− εh) + ε`(1− ε`)
p(1− p)

φ(z1−α/2)

= −(1/2)h4

(
fX(0)F

(0,2)
Y |X (ξp; 0) + 2f ′X(0)F

(0,1)
Y |X (ξp; 0)

6fX(0)fY |X(ξp; 0)

)2

×
{
−z1−α/2Nnφ(z1−α/2)2[p(1− p)]−1fY |X(ξp; 0)

}
leads to the plug-in bandwidth.
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For two-sided inference with p 6= 1/2, the following does not cancel but

is of smaller order than the O(N
1/2
n ) in the one-sided case. Using the result

from Chapter 1 that uh − p = z1−α/2
√
p(1− p)/Nn + O(N−1

n ) and u` − p =

−z1−α/2
√
p(1− p)/Nn+O(N−1

n ), along with the normal approximation of the beta

PDF in (2.11),

fβ(p;uh)− fβ(p;u`)

= N1/2
n φ(z1−α/2)

(
[uh(1− uh)]−1/2 − [u`(1− u`)]−1/2

)[
1 +O(N−1/2

n )
]

= N1/2
n φ(z1−α/2)

(
2p− 1

2[p(1− p)]3/2
[(uh − p)− (u` − p)] +O(N−1

n )

)
+O(1)

= z1−α/2φ(z1−α/2)
2p− 1

p(1− p)
+O(N−1/2

n ) +O(1) = O(1). (2.12)

Thus our two CPE terms are of orders N−1
n � n−1h−1 and h2. This implies

h∗ � n−1/3 and that CPE is O(n−2/3). But then the B2
h term is of order h4Nn =

h5n = n−2/3, so it must also be included. (The B3
h term is of order h6N

3/2
n , which

is smaller.) Though the second term from the product rule derivative in the B2
h

term is not zero this time, it is smaller-order and thus omitted. As discussed in the

appendix, in this case iteration would be required to compute the precise CPE-

reducing bandwidth. Instead, we continue with the normal approximation, which

still gives the optimal bandwidth and CPE rates in Theorem 2.3.

Due to the unknown O(1) term in (2.12) from the normal approximation

error, we cannot pick h to precisely zero the dominant term of the overall CPE as

before. Instead, we set the known portion of the overall CPE dominant term to

zero. The sign of the known dominant term of CPEBias is determined by the sign of

[Bh(2p− 1)−B2
hNn], as seen in (2.13). Since B2

hNn > 0 always, if Bh(2p− 1) < 0,

then the known dominant term in CPEBias is negative irrespective of h (only the

magnitude of Bh depends on h, not the sign). If Bh(2p− 1) > 0, as shown in the

appendix, it is still always possible to choose h such that the known dominant term

in CPEBias is negative and cancels with CPEGK. Since such a solution is always

possible, we pick h to equate

−N−1
n z1−α/2

εh(1− εh) + ε`(1− ε`)
p(1− p)

φ(z1−α/2)
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.
= Bh

[
f
Q̂
I,uh
Y |Ch

(
QY |Ch(p)

)
− f

Q̂
I,u`
Y |Ch

(
QY |Ch(p)

)]
+ (1/2)B2

h

[
f ′
Q̂
I,u`
Y |Ch

(
QY |Ch(p)

)
− f ′

Q̂
I,uh
Y |Ch

(
QY |Ch(p)

)]
.
= fY |X(ξp; 0)z1−α/2φ(z1−α/2)[p(1− p)]−1

[
Bh(2p− 1)−B2

hNn

]
. (2.13)

Note that 2p − 1 > 0 is equivalent to p > 1/2, and that p = 1/2 zeroes the Bh

term. Continuing to solve for h leads to the plug-in bandwidth given.

Once ĥ is determined, for any of these cases, Ch can be constructed, and

then the one-sample unconditional quantile inference method can be applied to

{Yi : Xi ∈ Ch}.

2.4.3 Conditional quantile treatment effects and other ob-

jects of interest

Unconditional IDEAL inference methods for multiple quantiles (joint infer-

ence), linear combinations of quantiles, and quantile treatment effects (on single

quantiles or on linear combinations of quantiles) are detailed in Chapter 1. To

be clear, for some chosen vector of quantiles (p1, . . . , pJ), chosen vector of weights

(ψ1, . . . , ψJ) with non-zero elements, and observed binary treatment variable Ti,

the objects of interest for these three methods are

Joint:
(
QY |X(p1;x0), . . . , QY |X(pJ ;x0)

)
,

Linear combination:
J∑
j=1

ψjQY |X(pj;x0),

Treatment effect:
J∑
j=1

ψj
[
QY |X,T (pj;x0, T = 1)−QY |X,T (pj;x0, T = 0)

]
.

The CPEs are, respectively, O(N−1
n ), O(N

−2/3
n ), and O(N

−2/3
n ). Note that the

treatment effect CPE is the same whether J = 1 or J > 1. The tradeoff between

these CPEs and the CPE from the bias will again determine the optimal bandwidth

rate and overall CPE. For plug-in bandwidths, we suggest simply adjusting the

plug-in bandwidths in §2.4.2, multiplying by the power of n necessary to achieve

the proper rate.



83

For the conditional quantile treatment effect (CQTE), when J = 1 the

expression above is equivalent to that in MaCurdy et al. (2011, p. 547). The

case of J > 1 includes, for example, treatment effects on the interquartile range

when (p1, p2) = (0.75, 0.25) and (ψ1, ψ2) = (1,−1). Identification of a causal

effect is obtained from the common assumption of conditional independence (a.k.a.

unconfoundedness, a.k.a. strong ignorability), as in Assumption 1 of MaCurdy

et al. (2011): Y0, Y1 ⊥⊥ T | X, where potential outcome Y0 is the outcome Y if an

individual were not treated (regardless of treatment status in reality), and potential

outcome Y1 is the outcome Y if an individual were treated (regardless of treatment

status in reality). This assumption is only necessary if a causal interpretation of

the CQTE is desired. For example, if Ti = 1 if individual i is male and Ti = 0

otherwise, and we observe wages Y and various covariates X, it is not valid to

interpret the difference between the conditional median wage when Ti = 1 and

Ti = 0 as a causal effect of being male. However, this difference may still be of

interest, and an accurate inference method showing that the difference is large may

motivate further empirical study.

For simplicity, we assume a common bandwidth for all quantiles pj, though

allowing for different control group (T = 0) and treatment group (T = 1) band-

widths for treatment effect inference. The procedure is the same as before: after h

is determined, construct Ch and the effective sample {Yi : Xi ∈ Ch}, and then run

the unconditional IDEAL method on the effective sample. For treatment effect

inference, there will be separate treatment and control hT and hC corresponding

to ChT and ChC , leading to separate treatment and control effective samples. As

stated in Corollary 2.4, the ratio of effective sample sizes is assumed to satisfy

Assumption A1.3 of Chapter 1.

Since these methods involve a finite number of quantiles, the order of the

CPE due to bias remains the same as before for one-sided inference. For two-

sided inference, there is the same cancellation for the joint method as before,

but not so with linear combinations or treatment effects. In the single quantile

case, when examining the CPE from bias, the distribution of Y factored out,

so the asymptotic symmetry (around p, up to smaller-order terms) of the beta
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distributions corresponding to the upper and lower endpoints sufficed. Even in the

case of the treatment effect at a single quantile, the PDF of the treatment effect CI

endpoint evaluated at a single point depends on (via convolution) the distributions

of the constituent treatment group and control group endpoints across their entire

supports. Consequently, there may be cancellation under certain special types of

symmetric distributions, but not in general.

Results on optimal bandwidth rates and overall CPE for various IDEAL

conditional quantile inference methods are collected in the following corollary

(proof in Appendix B.3).

Corollary 2.4. Let Assumptions A2.1–A2.6 hold, and assume a common band-

width is used at all quantiles pj. For treatment effect inference, there may be a dif-

ferent bandwidth for T = 0 than for T = 1, as long as ∃c s.t.
√
Nn,T=1/Nn,T=0 =

c+O(N
−1/2
n ), where we define effective treatment sample size

Nn,T=1 ≡
n∑
i=1

(1{Ti = 1} × 1{Xi ∈ ChT })

and similarly for T = 0. Then, optimal bandwidth and CPE rates are as follows.

• Multiple quantiles (joint inference): for one-sided inference, h∗ � n−3/(2b+3d)

and CPE = O(n−2b/(2b+3d)); for two-sided inference, h∗ � n−1/(b+d) and

CPE = O(n−b/(b+d)).

• Linear combinations of quantiles, or treatment effects thereon, for both one-

and two-sided inference: h∗ � n−7/(6b+7d), CPE = O(n−4b/(6b+7d)).

Remark. The rates for joint inference over multiple quantiles are the same as

for a single quantile. With a common bandwidth at all quantiles, using p̂ =

arg minpj pj(1 − pj) in the single quantile plug-in bandwidth will be slightly con-

servative in finite samples but retain asymptotically exact coverage. Since the

joint method uses α̃ ≤ α for the individual CIs at each pj, using α instead of

α̃ for the one-sided plug-in bandwidth will also be slightly conservative in finite

samples: note that the one-sided single quantile ĥ is decreasing in α due to the

z1−α, so picking larger α will be conservative. For one-sided inference on linear
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combinations of quantiles, we recommend multiplying the single quantile plug-in

bandwidth by n to the power of 4b/[(6b + 7d)(2b + 3d)] to get a bandwidth with

the optimal rate:

n−3/(2b+3d)n4b/[(6b+7d)(2b+3d)] = n[−3(6b+7d)]/[(2b+3d)(6b+7d)]+4b/[(6b+7d)(2b+3d)]

= n−7/(6b+7d).

This time α̃ ≥ α, so we suggest plugging in the calibrated α̃ that would be used if

the sample size were n rather than Nn, and again whichever pj minimizes pj(1−pj).
For two-sided inference on linear combinations, similarly, we recommend multiply-

ing the single quantile plug-in bandwidth by n−b/[(6b+7d)(b+d)] to get a bandwidth

with the optimal rate:

n−1/(b+d)n−b/[(6b+7d)(b+d)] = n(−6b−7d)/[(b+d)(6b+7d)]−b/[(6b+7d)(b+d)] = n−7/(6b+7d).

For treatment effects, the adjustment is the same, but with separate bandwidths

for the control (T = 0) and treatment (T = 1) samples. We again recommend

choosing the pj that minimizes pj(1 − pj), and for the one-sided case, the α̃ that

would result from sample size n.

2.5 Simulation study

Code for the IDEAL inference functions in R is available on the author’s

website, and simulation code in R is available upon request.

2.5.1 Computation of plug-in bandwidth

For our plug-in bandwidth, we need to estimate five objects. Consistent

estimators exist for all five. For clarity, we now explicitly write x0 as the point of

interest, instead of taking x0 = 0; we also take d = 1, b = 2, and focus on two-sided

inference, both pointwise and joint.

For fY |X(ξp;x0), a kernel estimator such as npcdens from package np (Hay-

field and Racine, 2008) can be used given an estimate ξ̂p, which can be computed

using any nonparametric conditional quantile estimator. To estimate ξ̂p, we use
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rq from package quantreg (Koenker, 2012) with a cubic B-spline basis generated

by bs from package splines (R Core Team, 2012).

For fX(x0), any kernel density estimator will suffice, such as kde from pack-

age ks (Duong, 2012). From the same package, kdde can be used to estimate the

density derivative f ′X(x0). Both functions work for up to six-dimensional X data.

Alternatively, we could use the Gaussian plug-in assumption for fX(x0)

and f ′X(x0) directly in ĥ, instead of estimating them. For the density derivative,

another popular option is the local polynomial approach as in Fan and Gijbels

(1996, pp. 50–52).

For F
(0,1)
Y |X (ξp;x0) and F

(0,2)
Y |X (ξp;x0), they enter a Taylor expansion of G(·) ≡

FY |X(ξp; ·)

G(x) = G(x0) +G′(x0)(x− x0) + (1/2)G′′(x0)(x− x0)2 + (1/6)G′′′(x̃)(x− x0)3,

where x̃ is between x and x0.2 Also, FY |X(ξp;X = x) = E(1{Yi ≤ ξp} | X = x),

a mean regression of 1{Yi ≤ ξp} on X. Correspondingly, we use lm from package

stats (R Core Team, 2012) to fit a cubic B-spline generated by bs from package

splines (R Core Team, 2012) and compute the first two derivatives at a grid of

points using mybs (Weisberg, 2012). The degrees of freedom are chosen to match

the effective degrees of freedom automatically selected by penalized spline function

qsreg from package fields (Furrer et al., 2012).

In finite samples, sampling error can make the plug-in bandwidth differ

from the infeasible version, and in turn the approximation error from the Taylor

expansion (around x0) used to calculate the bias can make even the infeasible

bandwidth bigger or smaller than optimal. Since an excessively large bandwidth

leads to under-coverage, we implement a “reality check” adjustment to our plug-

in bandwidths. For points x1 < x2, the Ch window for x2 cannot extend to the

left of the window for x1, and likewise the x1 window cannot extend to the right

of the x2 window. This essentially lets information about local quantile function

derivatives be shared among the points of interest. For example, imagine that

the quantile function is estimated to be very smooth (small derivatives) at x2,

2A quadratic would also give a consistent estimator since x̃ → x0 as n → ∞, but may be
worse in finite samples, depending also on local smoothness.
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leading to a large bandwidth, but estimated to be highly variable (big derivatives)

at x1, leading to a small bandwidth. That additional information from x1 should

cause the x2 window to shrink until its left edge matches that of the x1 window

(and arguably farther), rather than letting x2 continue to blithely imagine that

the function extends smoothly as far as the eye can see. We did not experiment

with different (possibly data dependent) magnitudes or types of adjustment, opting

simply for the intuitive version above, but more sophisticated ones may exist.

2.5.2 Results

For comparison, we show two approaches available in the popular quantreg

package in R (Koenker, 2012). First, the function rqss (“regression quantile

smoothing spline”) is used as on page 10 of its vignette, with the Schwarz (1978)

information criterion (SIC) for model selection. Both pointwise and uniform con-

fidence bands are generated with plot.rqss. Second, the function rq is used with

a cubic B-spline generated by bs, again with SIC model selection. The function

predict.rq with type="percentile" then generates pointwise confidence inter-

vals using a bootstrap. Similar but consistently worse results were obtained from

using the same approach but with type="direct" to use the analytic method,

so only the bootstrap version is presented. Joint CIs may be generated using a

Bonferroni approach.

A third approach was tried, using npqreg from package np (Hayfield and

Racine, 2008) and boot and boot.ci from package boot (R Core Team, 2012),

with both percentile and adjusted percentile bootstraps ("perc" and "bca" types).

In preliminary simulations, with bwmethod="normal-reference" (rule of thumb),

the computation time was still a factor of ten larger (with 999 bootstrap replica-

tions), and over-smoothing caused severe under-coverage. With likelihood-based

cross-validation option bwmethod="cv.ml", the computation time was prohibitive,

running for over three hours on the first simulation replication alone (which was

stopped before completion). Consequently, this approach is omitted from the re-

sults.

A bias-corrected version of our IDEAL method is also omitted. Compared
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to the uncorrected IDEAL, it performed extremely similarly, usually the same or

slightly worse. Median (over all simulation replications) confidence bands appeared

marginally more centered around the true conditional quantile function, but the

additional variance incurred from bias estimation likely caused the observed (slight)

under-coverage.
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Figure 2.2: True conditional median function for simulations, taken from Koenker

(2012): QY |X(0.5;x) =
√
x(1− x) sin

(
2π(1 + 2−7/5)/[x+ 2−7/5]

)
.

Our simulations repeat the simulation setup of the rqss vignette in Koenker

(2012), which in turn was taken in part from Ruppert et al. (2003, §17.5.1). Param-

eters were set to n = 400, p = 1/2, d = 1, and α = 0.05. Scalar Xi
iid∼ Unif(0, 1),

Yi =
√
Xi(1−Xi) sin

(
2π(1 + 2−7/5)

Xi + 2−7/5

)
+ σ(Xi)Ui,

where the Ui are iid Gaussian, t3, Cauchy, or centered χ2
3, and σ(X) = 0.2 or

σ(X) = 0.2(1 +X). The conditional median function is shown in Figure 2.2.

With all eight DGPs (four error distributions, homoskedastic or hetero-

skedastic), our IDEAL method had the most consistent accuracy over all points

on the conditional median function, as shown in the first two columns of Figure
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Figure 2.3: Pointwise coverage probabilities by X (first two columns) and joint

power curves (third column), for conditional median 95% confidence intervals,

n = 400, Xi
iid∼ Unif(0, 1), Yi =

√
Xi(1−Xi) sin

[
2π(1 + 2−7/5)/(Xi + 2−7/5)

]
+

σ(Xi)Ui. Distributions of Ui are, top row to bottom row: standard normal, t3,

Cauchy, and centered χ2
3. Columns 1 & 3: homoskedastic, σ(x) = 0.2. Column 2:

heteroskedastic, σ(x) = (0.2)(1 + x).
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2.3. Coverage probability is near nominal for all x0, all distributions, and in the

presence or absence of heteroskedasticity.

In contrast, the other two methods are subject to under-coverage for a

variety of reasons, as well as some over-coverage. Near X = 0, the true conditional

median function varies rapidly, and then it smooths out as X increases toward

one. As seen in the first two columns of Figure 2.3, the rqss confidence intervals

are too narrow when the function varies more, and too wide when the function

varies less. This pattern holds for all eight DGPs. The under-coverage (as low as

40–60% CP depending on the error distribution) is quite significant for x0 closer

to zero, and over-coverage (as high as 100% CP for all distributions) occurs for

most x0 ≥ 0.5. The rq approach avoids the over-coverage, but it can suffer even

more severe under-coverage, as shown. This is particularly true with Cauchy errors

(third row in figure), where there is under-coverage for all x0 and CP dips below

30% with homoskedasticity and even below 10% with heteroskedasticity.

The easiest way to construct IDEAL joint CIs is by the Bonferroni approach.

For example, when α = 0.05 to give a 95% confidence level, if there are 47 points

of interest x0, pointwise CIs are constructed with α/47 instead of α. Alternatively,

instead of the Bonferroni α/47, an adjusted value for α can be backed out from the

uniform confidence bands provided by rqss, which uses a Hotelling tube approach.

This gives extremely similar results in our simulations, so it has been omitted for

simplicity.

Joint power curves are given in the third column of Figure 2.3. The x-axis

of the graphs indicates the deviation of the null hypothesis from the true curve;

for example, −0.1 refers to a test against a curve lying 0.1 below the true curve

(at all X), and zero means the null hypothesis is true. The IDEAL joint CP is

again very close to nominal (since the test’s size is close to α) under all four error

distributions. Heteroskedastic versions were similar and thus omitted. The rqss

method has CP relatively close to nominal (within 10%); it appears that the too-

wide part nearly balances the too-narrow part in these examples. However, IDEAL

has significantly better power. (Note that this is true without size-adjusting power,

even though rqss is size-distorted and IDEAL is not.) The power advantage for
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the asymmetric χ2
3 distribution is much stronger for negative deviations, seemingly

due to IDEAL’s superior ability to adapt to skewed distributions. The rq method

has significant under-coverage in all cases.
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Figure 2.4: Pointwise power by X, against deviations of magnitude 0.1 (half

negative, half positive), for conditional median 95% confidence intervals, n = 400,

Xi
iid∼ Unif(0, 1), Yi =

√
Xi(1−Xi) sin

[
2π(1 + 2−7/5)/(Xi + 2−7/5)

]
+ σ(Xi)Ui.

Points with CP below 90% not plotted. Top row: Ui
iid∼ N(0, 1). Bottom row:

Ui
iid∼ t3. Left column: homoskedastic, σ(x) = 0.2. Right column: heteroskedastic,

σ(x) = (0.2)(1 + x).

Figures 2.4 and 2.5 show pointwise power, by X, against points differing

from the true conditional median by ±0.1. This is calculated as the percentage of

simulation replications where a method’s CI excluded the point 0.1 below the true

conditional median, averaged with the value for the point 0.1 above. To make the
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Figure 2.5: Pointwise power by X; same as Figure 2.4 but with Cauchy errors

for top row and centered χ2
3 for bottom row.
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comparison fair, points with CP below 90% are omitted.

The rq method seems to have the best power (narrowest CIs) when it does

succeed in controlling CP, though the difference with IDEAL is small for x0 in

the upper quartile of X. With very smooth quantile functions, like a constant

function (in the extreme), and with error distributions close to normal, the rq

method would be preferred since it controls CP and has better power. Recall

that rq is a parametric method, so this is essentially just saying that when the

parametric model is (nearly) properly specified, inference will generally be more

precise. However, barring a model selection method capable of reliably identifying

situations where rq would be better (given that the quantile function and error

distribution are both unknown), IDEAL provides a robust inference option with

good power.

The IDEAL method is generally more powerful than rqss, as already hinted

at in the pointwise CP graphs. Among the eight DGPs shown in Figures 2.4 and

2.5, IDEAL is more powerful by at least 10–20 percentage points for most x0 and

most DGPs, and by over 40 percentage points in some cases.

Using the same setup but with errors following an exponential distribu-

tion (with or without heteroskedasticity), the results look similar to a mix of the

standard normal and χ2
3 results. One difference is that the joint CP for rqss is

almost down to 80%, while the IDEAL joint CP is near 90%. Using the standard

normal errors but instead looking at the conditional upper quartile, results were

again similar other than worse CP for the joint intervals: rqss was again around

80%, as was the Bonferroni IDEAL, while the rqss/Hotelling-tube-aided IDEAL

was near 90%. In this case, bias correction actually improved joint coverage by a

few percentage points. Moving up to the even more difficult Φ(1) ≈ 0.84-quantile

of a standard normal, the joint IDEAL coverage is the same, but rqss worsens

to below 70% and suffers power loss against the −0.1 and −0.2 alternatives. The

pointwise CP is actually best for rq in this case, though the joint CP for rq is

below 60%.

Overall, the simulation results show IDEAL to be significantly more accu-

rate than rq and rqss. IDEAL always has CP near the nominal level, for both
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pointwise and joint CIs, even when both rq and rqss show severe under-coverage.

IDEAL hypothesis tests also have better power than rqss in most cases, against

both pointwise and joint alternatives.

2.5.3 Computation time
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Figure 2.6: Computation time for different methods, as a function of sample size.

DGP is the same as previous simulations, with homoskedastic Gaussian errors.

Bootstrap times are for 99 bootstrap replications, estimated by multiplying the

estimation time for rqss by 99; this gives a lower bound on the total bootstrap

time.

The simplicity of the IDEAL method leads to significant computational ad-

vantages over existing methods. To demonstrate this, we ran simulations with the

same DGP as before, with homoskedastic Gaussian errors, varying the sample size

over a wide range. In addition to the IDEAL method, rqss (and rqss.predict)

is used to generate pointwise CIs. We also calculate a lower bound time for a boot-

strap method with 99 bootstrap replications by multiplying the rqss estimation

time by 99. (Calculating the optimal smoothing parameter takes most of the time,

rather than the spline fit itself.) This provides a strict lower bound because more

replications (possibly 10 or 100 times more) may be needed to ensure bootstrap
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accuracy, and additional computation is required beyond just the estimator.

Figure 2.6 shows computation times for these three methods as functions

of sample size. For n = 200, 99 bootstrap replications take more than a minute

to run, while IDEAL runs in less than a second. For n = 3200, both bootstrap

and rqss take a few minutes to run, while IDEAL takes only a few seconds. For

n = 6400, the rqss computation was stopped after two hours without having fin-

ished; 99 bootstrap replications would take at least 20 minutes, and 999 replications

would take over three hours. Even with only 99 bootstrap replications, n = 25,600

still takes over five hours. In contrast, with the much larger n = 204,800 sam-

ple, IDEAL runs in under ten minutes. In addition to being orders of magnitude

smaller at these sample sizes, the IDEAL runtime appears to scale roughly propor-

tional to the sample size, whereas the other methods’ runtimes appear to increase

more rapidly. If these relationships continue to hold at larger sample sizes, the

IDEAL computational advantage will grow proportionally bigger as the sample

size increases.

2.5.4 Conditional quantile treatment effect inference

The new IDEAL method for conditional quantile treatment effect (QTE)

inference also performs quite well in simulations. The same conditional quantile

function is considered here as in the single quantile case. Table 2.1 shows coverage

probability and median interval length for the homoskedastic Gaussian scenario in

§2.5.2, where instead of drawing one sample of n = 400, independent control and

treatment samples of n = 400 are drawn each replication. The data were generated

with zero treatment effect; the results would be identical under pure location-shift

treatment effects. Results for the upper quartile, median, and lower quartile are

shown. The values of x0 can be compared to the conditional quantile function

shown in Figure 2.2. The first two x0 are near the first two maxima, while the

third is near the third minimum.

The pointwise coverage is close to the nominal 95% at all x0. The lowest

is 92.2%, and the highest is 96.4%. The joint coverage is also very good, between

93.2% and 95.2%. The shortest median interval lengths are for x0 = 0.592 and
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Table 2.1: Coverage probability and median interval length for IDEAL confidence

intervals for conditional quantile treatment effects; 1−α = 0.95, n = 400 for both

treatment and control samples, 500 replications.

x0 value
p 0.04 0.224 0.408 0.592 0.776 0.96 Joint

Coverage Probability
0.75 0.938 0.924 0.938 0.940 0.948 0.960 0.952
0.50 0.926 0.962 0.964 0.952 0.944 0.952 0.946
0.25 0.948 0.960 0.948 0.930 0.922 0.924 0.932

Median Interval Length
0.75 0.366 0.364 0.325 0.281 0.268 0.322
0.50 0.348 0.340 0.323 0.282 0.250 0.297
0.25 0.373 0.373 0.337 0.316 0.258 0.341

x0 = 0.776. These are the points where the function is smoothest, without running

against the boundary like at x0 = 0.96. This demonstrates that the method is

adapting as desired: at the most difficult x0 values—the first two, at local maxima

where the function is most variable—coverage probability is still close to nominal,

and at “easier” x0 values, the intervals are more precise without sacrificing coverage

accuracy.

2.6 Empirical application

This section contains an empirical application of the IDEAL confidence

intervals for conditional quantiles. It may be replicated using the two R files and

data files available at the author’s website.

Measurements of hemoglobin concentration in the bloodstream are com-

monly used to screen for anemia, which in turn may indicate iron deficiency, a

nutritional deficiency affecting well over 1 in 4 people worldwide (Khusun et al.,

1999). Examining how quantiles of the hemoglobin distribution vary with different

conditioning variables is of more interest than how the mean varies because it is

the lower quantiles that indicate different degrees of anemia. Wave 4 (2007) of

the Indonesian Family Life Survey (IFLS) contains measurements of hemoglobin
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concentration, among numerous other variables. The World Health Organization

(WHO) has suggested threshold values3 for “mild” anemia (acknowledging that

even this level is a serious health concern), “moderate” anemia, and “severe” ane-

mia, which seem valid at least for the (nonrandom) subsample of Indonesians ex-

amined in Khusun et al. (1999). These thresholds vary by age, sex, and pregnancy,

so the raw IFLS values were scaled such that the threshold between non-anemia

and mild anemia is 13 grams per deciliter (g/dl) for all individuals. Additionally,

household per capita annual expenditure was computed from the raw IFLS data

by summing the values in various categories of expenditure (scaled to annual for

each) and dividing by household size; the natural log was then taken for more

appropriate scaling in the graph. The highest level of education taken by the head

of household was linked to the hemoglobin and expenditure data when available.

The full Stata code for constructing the dataset starting from the raw IFLS data

is available on the author’s website.4 The sample analyzed is restricted to house-

holds’ oldest child (two to 15 years old). “High” education will refer to having

attended at least some “senior high,” while “low” is no more than junior high.

Looking at hemoglobin in the high-education and low-education groups, the

0.1-quantile is higher in the high-education group. The respective point estimates

are 12.66g/dl and 12.41g/dl. Using the method in Chapter 1, a 90% IDEAL CI

for the difference is (0.087, 0.424). However, this could be due to the head of

household’s education itself, or correlation between education and income (and

expenditure).

Figure 2.7 shows IDEAL CIs for the 0.1-quantile of hemoglobin conditional

on both education and expenditure. There is some suggestion of a difference be-

tween the high- and low-education groups at some expenditure levels, but most of

the CIs overlap. However, this is a conservative comparison. To be more accurate,

the CIs should be narrower when examining the conditional QTE, for the same

reason discussed in Chapter 1. The statistical significance of education remains a

3http://www.who.int/vmnis/indicators/haemoglobin.pdf
4The relationship between hemoglobin and expenditure (and education) is also examined in Li

et al. (2013), which inspired this example. Using their data, the subsequent analysis is similar but
with somewhat larger differences when conditioning only on education. The version presented
here is preferred since it may be replicated entirely with publicly available data and code.

http://www.who.int/vmnis/indicators/haemoglobin.pdf


98

12 14 16 18 20 22

0
5

10
15

20
IDEAL 90% CI for 0.1-quantile of children

Ln per capita expenditure (Rp/yr)

A
dj

us
te

d 
he

m
og

lo
bi

n 
(g

/d
l)

pointwise (low edu)
pointwise (high edu)

Non-anemia

Mild

Moderate

Severe

Figure 2.7: IDEAL 90% confidence intervals for 0.1-quantile of adjusted

hemoglobin concentration conditional on log per capita household expenditure,

by education level of head of household, for children (ages 2–15). “High” educa-

tion is defined as having attended at least some “senior high” education; “low” is

no more than junior high.
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cliffhanger until the proper conditional extension of the IDEAL QTE inference is

developed.

2.7 Conclusion

We have provided a new method for inference on conditional quantiles, em-

bedding the IDEAL theory of Chapter 1 into a local smoothing context. Under

mild smoothness assumptions, with d continuous elements in the conditioning vec-

tor, the two-sided coverage probability error is O(n−2/(2+d)). This is always better

than conventional inference from asymptotic normality or bootstrap for d ≤ 2, as

well as for all d ≥ 3 unless at least four (or more, depending on d) derivatives of the

unknown function are correctly assumed and the corresponding local polynomial

with hundreds or thousands of terms is fit. We also provide joint (over many values

of X) confidence intervals. Our feasible plug-in bandwidth translates the superior

theoretical properties into practice; simulations show improvements in size control

and power over popular existing techniques, and R code for our new method (with

one continuous covariate and any number of discrete) is publicly available. The

other methods in Chapter 1 are also translated to this conditional nonparametric

model and provided in the R code, specifically joint inference across multiple con-

ditional quantiles, inference on linear combinations of conditional quantiles, and

inference on conditional quantile treatment effects (and effects on linear combina-

tions).

This paper develops a framework for successfully pushing unconditional

IDEAL results through to a conditional context. This framework should also

readily accommodate a conditional version of Chapter 3 for cases where Hutson

(1999) cannot be applied (smaller samples and/or quantiles closer to zero or one).

Additional unconditional methods, such as for first-order stochastic dominance

testing, can similarly be translated to conditional methods. By examining windows

just above and below an X value of interest, in the spirit of numerical derivatives,

it may be possible to obtain higher-order inference on marginal effects in this

nonparametric conditional quantile model, too.



Chapter 3

One- and two-sample population

quantile inference via

fixed-smoothing asymptotics and

Edgeworth expansion

Abstract

Estimation of a sample quantile’s variance requires estimation of the prob-

ability density at the quantile. The common quantile spacing method involves

smoothing parameter m. When m,n → ∞, the corresponding Studentized test

statistic is asymptotically N(0, 1). Holding m fixed asymptotically yields a non-

standard distribution dependent on m. Closer examination reveals that this fixed-

m distribution contains the Edgeworth expansion term capturing the variance of

the quantile spacing. Consequently, the fixed-m distribution is more accurate than

the standard normal under both asymptotic frameworks. With the Edgeworth ex-

pansion, I approximate the type I and II errors of the test with fixed-m critical

values. I present a plug-in expression for the m that minimizes type II error subject

to controlling type I error.

Compared with similar methods, the new method controls size better and

100
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maintains good or better power in simulations, and there are cases where it out-

performs all existing methods. In parallel throughout are results for two-sample

inference, such as testing for median equality of treatment and control groups.

3.1 Introduction

This paper considers inference on population quantiles, specifically via the

Studentized test statistic from Siddiqui (1960) and Bloch and Gastwirth (1968)

(jointly SBG hereafter), for one- and two-sample setups. Median inference is a

special case. Like a t-statistic for the mean, the SBG statistic is normalized using

a consistent estimate of the variance of the quantile estimator, and it is asymptot-

ically standard normal.

I develop a new asymptotic theory that is more accurate than the standard

normal reference distribution traditionally used with the SBG statistic. With more

accuracy comes improved inference properties,1 i.e. controlling size where previous

methods were size-distorted without sacrificing much power. A plug-in procedure

to choose the testing-optimal smoothing parameter m translates the theory into

practice.

This work builds partly on Goh (2004), who suggests using fixed-m asymp-

totics to improve inference on the Studentized quantile. Goh (2004) uses simulated

critical values to examine the performance of existing m suggestions, which are

tailored to standard normal critical values. Here, a simple and accurate analytic

approximation is given for the critical values. Using this approximation, the new

procedure for selecting m is tailored to the fixed-m distribution. I also provide

the theoretical justification for the accuracy of the fixed-m distribution, which

complements the simulations in Goh (2004).

The two key results here are a nonstandard fixed-m asymptotic distribu-

tion and a higher-order Edgeworth expansion. For a scalar location model, Siddiqui

(1960) gives the fixed-m result, and Hall and Sheather (1988, hereafter cited as

1Inverting the level-α tests proposed here yields level-α confidence intervals. I use hypothesis
testing language throughout, but size distortion is analogous to coverage probability error, and
higher power corresponds to shorter interval lengths.
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“HS88”) give a special case of the Edgeworth expansion in Theorem 3.1 below.

The Edgeworth expansion is more accurate than a standard normal since it con-

tains higher-order terms that otherwise end up in the remainder, so its remainder

becomes of smaller order. There are intuitive reasons why the fixed-m approxima-

tion is also more accurate than the standard normal, but we show this by rigorous

theoretical arguments.

In the standard first-order asymptotics, both m → ∞ and n → ∞ (and

m/n→ 0); since m→∞, this may be called “large-m” asymptotics. In contrast,

fixed-m asymptotics only approximates n →∞ while fixing m at its actual finite

sample value. Fixed-m is an instance of “fixed-smoothing” asymptotics in the

sense that this variance does not go to zero in the limit as it does in “increasing-

smoothing.” It turns out that the fixed-m asymptotics includes the high-order

Edgeworth term capturing the variance of the quantile spacing. Consequently,

the fixed-m distribution is higher-order accurate under the conventional large-m

asymptotics, while the standard normal distribution is only first-order accurate.

Under the fixed-m asymptotics, the standard normal is not even first-order accu-

rate. From the theoretical view, the fixed-m distribution is clearly more accurate

than the standard normal, irrespective of the asymptotic framework.

Not only is accuracy gained with the Edgeworth and fixed-m distributions,

but they are sensitive to m. By reflecting the effect of m, they allow us to determine

the best choice of m. With the fixed-m and Edgeworth results, I construct a test

dependent on m using the fixed-m critical values, and then evaluate the type I

and type II error of the test using the more accurate Edgeworth expansion. Then

I can optimally select m to minimize type II error subject to control of type I

error. Approximating (instead of simulating) the fixed-m critical values reveals

the Edgeworth/fixed-m connection above, and it also makes the test easier to

implement in practice.

In the time series context of heteroskedasticity-autocorrelation robust in-

ference, the key ideas of “testing-optimal” smoothing parameter choice, fixed-

smoothing (or “fixed-b”) asymptotics, higher-order asymptotics, and corrected

critical values based on a common distribution appear in a sequence of papers by
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Sun et al. (2008), Sun (2010a,b, 2011), and Sun and Kaplan (2011). In particular,

Sun et al. (2008) show that their testing-optimal bandwidth is of a different order

than the MSE-optimal bandwidth, similar to the result in HS88 developed further

here; that idea runs throughout the sequence. Sun (2011) generalizes the result

from Sun et al. (2008) that shows fixed-smoothing (fixed-b) asymptotics to be a

higher-order refinement of first-order increasing-smoothing (small-b) asymptotics,

analogous to the results for fixed-m asymptotics below.

The critical value correction here provides size control robust to incorrectly

chosen m, whereas in HS88 the choice of m is critical to controlling size (or not).

In simulations, the new method has correct size even where the HS88 method

is size-distorted. Power is still good because m is explicitly chosen to maximize

it, using the Edgeworth expansion; in simulations, it can be significantly better

than HS88. HS88 do not provide a separate result for the two-sample case. Monte

Carlo simulations show that the new method controls size better than the common

Gaussian plug-in version of HS88 and various bootstrap methods, while maintain-

ing competitive power. The method of Hutson (1999), following a fractional order

statistic approach, usually has better properties but is not always computable;

a two-sample analog with similarly good performance is presented in Chapter 1.

For two-sample inference, percentile-t bootstrap can perform well, though the new

method is good and open to a particular refinement that would increase power;

more research in both approaches is needed.

Section 3.2 presents the model and hypothesis testing problem. Section 3.3

gives a nonstandard asymptotic result and corresponding corrected critical value,

while Section 3.4 gives Edgeworth expansions of the standard asymptotic limiting

distribution. Using these, a method for selecting smoothing parameter m is given

in Section 3.5, which is followed by a simulation study and conclusion. Results for

the two-sample extension are provided in parallel. More details and discussion are

available in the working paper version; full technical proofs and calculations are in

the supplemental appendices; all are available on the author’s website.
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3.2 Quantile estimation and hypothesis testing

For simplicity and intuition, consider an iid sample of continuous random

variable X, whose p-quantile is ξp. The estimator ξ̂p used in SBG is an order

statistic. The rth order statistic for a sample of n values is defined as the rth

smallest value in the sample and written as Xn,r, such that Xn,1 < Xn,2 < · · · <
Xn,n. The SBG estimator is

ξ̂p = Xn,r, r = bnpc+ 1,

where bnpc is the floor function (greatest integer not exceeding np). Writing the

cumulative distribution function (cdf) of X as F (x) and the probability density

function (pdf) as f(x) ≡ F ′(x), I make the usual assumption that f(x) is positive

and continuous in a neighborhood of the point ξp. Consequently, ξp is the unique

p-quantile such that F (ξp) = p.

The standard asymptotic result (for the vector form, see Mosteller, 1946;

Siddiqui, 1960, also gives the following scalar result) for a central2 quantile esti-

mator is
√
n(Xn,r − ξp)

d→ N
(
0, p(1− p)[f(ξp)]

−2).
A consistent estimator of 1/f(ξp) that is asymptotically independent of Xn,r leads

to the Studentized sample quantile, which has the pivotal asymptotic distribution

√
n(Xn,r − ξp)√

p(1− p)
[
1̂/f(ξp)

] d→ N(0, 1). (3.1)

Siddiqui (1960) and Bloch and Gastwirth (1968) propose and show consistency of

1̂/f(ξp) = Sm,n ≡
n

2m
(Xn,r+m −Xn,r−m) (3.2)

when m→∞ and m/n→ 0 as n→∞.

For two-sided inference on ξp, I consider the parameterization ξp = β −
γ/
√
n. The null and alternative hypotheses are H0 : ξp = β and H1 : ξp 6= β,

2“Central” means that in the limit, r/n → p ∈ (0, 1) as n → ∞; i.e., r → ∞ and is some
fraction of the sample size n. In contrast, “intermediate” would take r → ∞ but r/n → 0 (or
r/n→ 1, n− r →∞); “extreme” would fix r <∞ or n− r <∞.
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respectively. When γ = 0 the null is true. The test statistic examined in this

paper is

Tm,n ≡
√
n(Xn,r − β)

Sm,n
√
p(1− p)

(3.3)

and will be called the SBG test statistic due to its use of (3.2). From (3.1), Tm,n

is asymptotically standard normal when γ = 0. A corresponding hypothesis test

would then compare Tm,n to critical values from a standard normal distribution.

For the two-sample case, assume that there are independent samples of X

and Y , with nx and ny observations, respectively. For simplicity, let n = nx = ny.

For instance, if 2n individuals are separated into balanced treatment and control

groups, one might want to test if the treatment effect at quantile p has significance

level α. The marginal pdfs are fX(·) and fY (·). Interest is in testing if ξp,x = ξp,y.

Under the null hypothesis H0 : ξpx = ξpy = ξp, the first-order asymptotic result is

√
n(Xn,r − ξp)−

√
n(Yn,r − ξp)

d→ N
(
0, p(1− p)([fX(ξp)]

−2 + [fY (ξp)]
−2)
)
,

using the fact that the variance of the sum (or difference) of two independent

normals is the sum of the variances. The pivot for the two-sample case is then

√
n(Xn,r − Yn,r)√

[fX(ξp)]−2 + [fY (ξp)]−2
√
p(1− p)

d→ N(0, 1).

The Studentized version uses the same quantile spacing estimators as above:

T̃m,n ≡
√
n(Xn,r − Yn,r)√

[n/(2m)]2(Xn,r+m −Xn,r−m)2 + [n/(2m)]2(Yn,r+m − Yn,r−m)2
√
p(1− p)

.

The samem is used forX and Y in anticipation of a Gaussian plug-in approach that

would yield the same m for X and Y regardless. This two-sample setup is easily

extended to the case of unequal sample sizes nx 6= ny, starting with
√
nx(Xn,r −

ξp) −
√
nx/ny

√
ny(Yn,r − ξp) and assuming nx/ny is constant asymptotically, but

this is omitted for clarity.
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3.3 Fixed-m asymptotics and corrected critical

value

The standard asymptotic result with m → ∞ as n → ∞ is a standard

normal distribution for the SBG test statistic Tm,n under the null hypothesis when

γ = 0. Since in reality m < ∞ for any given finite sample test, holding m fixed

as n → ∞ may give a more accurate asymptotic approximation of the true finite

sample test statistic distribution. With m → ∞, there is increasing smoothing

and Var(Sm,n) = O(1/m)→ 0; with m fixed, we have fixed-smoothing asymptotics

since that variance does not disappear. The fixed-m distribution is given below,

along with a simple formula for critical values that doesn’t require simulation.

3.3.1 Fixed-m asymptotics

Siddiqui (1960, eqn. 5.4) provides the fixed-m asymptotic distribution; Goh

(2004, Appendix D.1) provides a nice alternative proof for the median, which

readily extends to any quantile.3 If γ = 0,

Tm,n
d→ Z/V4m ≡ Tm,∞ as n→∞, m fixed, (3.4)

with Z ∼ N(0, 1), V4m ∼ χ2
4m/(4m), Z ⊥⊥ V4m, and Sm,n and Tm,n as in (3.2) and

(3.3).

The above distribution is conceptually similar to the Student’s t-distri-

bution. A t-statistic from normally distributed iid data has a standard normal

distribution if either the variance is known (so denominator is constant) or the

sample size approaches infinity. The distribution Tm,∞ is also standard normal if

either the variance is known (denominator in Tm,n is constant) or m→∞. When

using an estimated variance in a finite sample t-statistic, the more accurate t-

approximation has fatter tails than a standard normal, and it is given by Z/
√
Vv,

where Z ∼ N(0, 1), Vv ∼ χ2
v/v with v the degrees of freedom, and Z ⊥⊥ Vv.

Similarly, when an estimated variance is used in the SBG test statistic (the random

3The result stated for a general quantile in Theorem 2 in Section 3.5 appears to have a typo
and not follow from a generalization of the proof given, nor does it agree with Siddiqui (1960).
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Sm,n instead of constant 1/f(ξp) in the denominator), the result is the distribution

in (3.4) above with asymptotically independent numerator and denominator. The

fixed-m distribution reflects this uncertainty in the variance estimator that is lost

under the standard asymptotics.

For the two-sample test statistic under the null, as n→∞ with m fixed,

T̃m,n
d→ Z
U
≡ T̃m,∞, where

U ∼ (1 + ε)1/2, ε ≡
(V2

4m,1 − 1) + (V2
4m,2 − 1)[fX(ξp)/fY (ξp)]

2

1 + [fX(ξp)/fY (ξp)]2
,

and Z, V4m,1, and V4m,2 are mutually independent. The derivation is in the full

appendix online. The strategy is the same, using results from Siddiqui (1960) for

asymptotic independence and distributions for each component.

Unlike the one-sample case, T̃m,∞ is not pivotal. We can either estimate the

density derivative fX(ξp)/fY (ξp) or consider the upper bound for critical values.

This is the same nuisance parameter faced by the two-sample order statistic method

in Chapter 1. Note that ε is a weighted average of V2
4m,1−1 and V2

4m,2−1, where the

weights sum to one and V4m,1 ⊥⊥ V4m,2. To see the effect of the weights, consider

any W1 and W2 with Cov(W1,W2) = 0, Var(W1) = Var(W2) = σ2
W , and λ ∈ [0, 1].

Then

Var(λW1 + (1− λ)W2) = λ2Var(W1) + (1− λ)2Var(W2) + 2λ(1− λ)Cov(W1,W2)

= σ2
W [λ2 + (1− λ)2].

This is maximized by λ = 1 or 1−λ = 1, giving σ2
W . The minimum has first order

condition 0 = 2λ + 2(1 − λ)(−1), yielding λ = 1/2 = 1 − λ and Var(λW1 + (1 −
λ)W2) = σ2

W/2. This means the variance of ε (and U and T̃m,∞) is smallest when

the weights are each 1/2, which is when fX(ξp) = fY (ξp). When the weights are

zero and one, which is when the variance of ε is largest, we get the special case

of testing against a constant and T̃m,∞ = Tm,∞. Thus, critical values from the

one-sample case provide conservative inference in the two-sample case.
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3.3.2 Corrected critical value

An approximation of the fixed-m cdf around the standard normal cdf will

lead to critical values based on the standard normal distribution. The standard

normal cdf is Φ(·), the standard normal pdf is φ(·) = Φ′(·), and the first derivative

φ′(z) = −zφ(z). The first three central moments of the χ2
4m distribution are 4m,

8m, and 32m, respectively. The general approach here is to use the independence of

Z and V4m to rewrite the cdf in terms of Φ, and then to expand around E(V4m) = 1.

Using (3.4), for a critical value z,

P (Tm,∞ < z) = P (Z/V4m < z) = E[Φ(zV4m)] = E[Φ(z + z(V4m − 1))]

= E
[
Φ(z) + Φ′(z)z(V4m − 1) + (1/2)Φ′′(z)[z(V4m − 1)]2 +O(m−2)

]
= Φ(z)− z3φ(z)

2
E

[(
χ2

4m − 4m

4m

)2
]

+O(m−2)

= Φ(z)− z3φ(z)

4m
+O(m−2). (3.5)

Note that (3.5) is a distribution function itself: its derivative in z is [φ(z)/(4m)][z4−
3z2 + 4m], which is positive for all z when m > 9/16 (as it always is); the limits at

−∞ and ∞ are zero and one; and it is càdlàg since it is differentiable everywhere.

The approximation error O(m−2) does not change if m is fixed, but it goes to zero

as m → ∞, which the selected m does as n → ∞ (see Section 3.5.3). So it is

reasonable to claim uniform convergence of Φ(z) − z3φ(z)/(4m) to P (Tm,∞ < z)

over z ∈ R as m→∞ via Pólya’s Theorem (e.g., DasGupta, 2008, Thm. 1.3(b)).

Appendix C.1 shows the accuracy of (3.5) for m > 2; for m ≤ 2, simulated critical

values can be used, as in the provided code.

To find the value z that makes the nonstandard cdf above take probability

1−α (for rejection probability α under the null for an upper one-sided test), I set

Φ(z) − z3φ(z)/(4m) = 1 − α and solve for z. If z is some deviation of order m−1

around the value z1−α such that Φ(z1−α) = 1−α for the standard normal cdf, then

solving for c in z = z1−α + c/m gives

c = z3
1−α/4 +O(m−1), (3.6)
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and thus the upper one-sided test’s corrected critical value is

z = z1−α + c/m = z1−α +
z3

1−α

4m
+O(m−2).

For a symmetric two-sided test, since the additional term in (3.5) is an odd

function of z, the critical value is the same but with z1−α/2, yielding

z = zα,m +O(m−2), zα,m ≡ z1−α/2 +
z3

1−α/2

4m
. (3.7)

Note zα,m > z1−α/2 and depends on m; e.g., z.05,m = 1.96 + 1.88/m. Using the

same method with an additional term in the expansion, as compared in Appendix

C.1,

z = z1−α/2 +
z3

1−α/2

4m
+
z5

1−α/2 + 8z3
1−α/2

96m2
+O(m−3).

The rest of this paper uses (3.7); the results in Section 3.5 also go through with

the above third-order corrected critical value or with a simulated critical value.

In the two-sample case under H0 : F−1
X (p) = F−1

Y (p) = ξp, after calculating

some moments (see supplemental Two-sample Appendix C), the fixed-m distribu-

tion can be approximated by

P (T̃m,∞ < z) = Φ(z) + φ(z)zE[U − 1] + (1/2)(−zφ(z))z2E[(U − 1)2]

+O(E[(U − 1)3])

= Φ(z)− φ(z)

4m

[
z3 [fX(ξp)]

−4 + [fY (ξp)]
−4

S̃4
0

− 2z
[fX(ξp)]

−2[fY (ξp)]
−2

S̃4
0

]
+O(m−2)

= Φ(z)− φ(z)

4m

[
z3 1 + δ4

(1 + δ2)2 − 2z
δ2

(1 + δ2)2

]
+O(m−2),

S̃0 ≡ ([fX(F−1
X (p))]−2 + [fY (F−1

Y (p))]−2)1/2, δ ≡ fX(ξp)/fY (ξp).

(3.8)

The corresponding critical value is

z = z̃α,m +O(m−2) ≤ zα,m +O(m−2),

z̃α,m = z1−α/2 +
z3

1−α/2([fX(ξp)]
−4 + [fY (ξp)]

−4)− 2z1−α/2[fX(ξp)]
−2[fY (ξp)]

−2

4mS̃4
0

= z1−α/2 +
z3

1−α/2(1 + δ4)− 2z1−α/2δ
2

4m(1 + δ2)2 . (3.9)
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When the pdf of Y collapses toward a constant, [fY (ξp)]
−1 → 0 and so δ →

0. Consequently, P (T̃m,∞ < z) reduces to (3.5), and z̃α,m to zα,m. Thus, as an

alternative to estimating δ = fX(ξp)/fY (ξp), the one-sample critical value zα,m

provides conservative two-sample inference, as discussed in Section 3.3.1.

3.4 Edgeworth expansion

HS88 give the Edgeworth expansion for the asymptotic distribution of Tm,n

when γ = 0. To calculate the type II error of a test using the fixed-m critical

values (Section 3.5.2), the case γ 6= 0 is needed. Section 3.5.2 shows how to apply

this result.

3.4.1 One-sample case

The result here includes the result of HS88 as a special case, and indeed

the results match4 when γ = 0. The ui functions are indexed by γ, so u1,0 is the

same as u1 from HS88 (page 385), and similarly for u2,0 and u3,0.

Theorem 3.1. Assume f(ξp) > 0 and that, in a neighborhood of ξp, f
′′ exists and

satisfies a Lipschitz condition, i.e. for some ε > 0 and all x, y sufficiently close to

ξp, |f ′′(x)−f ′′(y)| ≤ constant|x−y|ε. Suppose m = m(n)→∞ as n→∞, in such

a manner that for some fixed δ > 0 and all sufficiently large n, nδ ≤ m(n) ≤ n1−δ.

Define C ≡ γf(ξp)/
√
p(1− p), and defining functions

u1,γ(z) ≡ 1

6

(
p

1− p

)1/2
1 + p

p
(z2 − 1)− C

√
1− p
p

(
1− pf ′(ξp)

[f(ξp)]2
− 1

2(1− p)

)
z

− 1

2

(
p

1− p

)1/2(
1 +

f ′(ξp)

[f(ξp)]2
(1− p)

)
z2

− [(bnpc+ 1− np)− 1 + (1/2)(1− p)][p(1− p)]−1/2,

u2,γ(z) ≡ 1

4

[
2Cz2 − C2z − z3

]
, and

u3,γ(z) ≡ 3[f ′(ξp)]
2 − f(ξp)f

′′(ξp)

6[f(ξp)]4
(z − C),

4There appears to be a typo in the originally published result; the first part of the first term
of u1 in HS88 was (1/6)[p(1− p)]1/2, but it appears to be (1/6)[p/(1− p)]1/2 as given above.
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it follows that

sup
−∞<z<∞

∣∣∣P (Tm,n < z)− [Φ(z + C) + n−1/2u1,γ(z + C)φ(z + C)

+m−1u2,γ(z + C)φ(z + C) + (m/n)2u3,γ(z + C)φ(z + C)]
∣∣∣

= op[m
−1 + (m/n)2]. (3.10)

A sketch of the proof is given in Appendix C.2. The assumptions are the

same as in HS88.

For γ = 0, the term m−1u2,0(z)φ(z) = −z3φ(z)/(4m) is identical to the

term in the fixed-m distribution in (3.5). Thus under the null, the fixed-m dis-

tribution captures the high-order Edgeworth term associated with the variance of

Sm,n. In other words, the fixed-m distribution is high-order accurate under the

conventional large-m asymptotics, while the standard normal distribution is only

first-order accurate. Since the fixed-m distribution is also more accurate under

fixed-m asymptotics, where the standard normal is not even first-order accurate,

theory strongly indicates that fixed-m critical values are more accurate, which is

born out in simulations here and in Goh (2004).

Let γ 6= 0 so that the null hypothesis is false, where as before H0 : ξp = β

with ξp = β − γ/
√
n. Letting S0 ≡ 1/f(ξp),

Tm,n =

√
n(Xn,r − ξp)− γ
Sm,n

√
p(1− p)

=

√
n(Xn,r − ξp)

Sm,n
√
p(1− p)

− γ√
p(1− p)S0

(
S0

Sm,n
+ 1− 1

)
,

P (Tm,n < z) = P

( √
n(Xn,r − ξp)

Sm,n
√
p(1− p)

− γ√
p(1− p)S0

(
S0

Sm,n
+ 1− 1

)
< z

)

= P

( √
n(Xn,r − ξp)

Sm,n
√
p(1− p)

− γ√
p(1− p)S0

(
S0

Sm,n
− 1

)
< z + C

)

= P

(√
n(Xn,r − ξp) + γ(Sm,n/S0 − 1)

Sm,n
√
p(1− p)

< z + C

)
. (3.11)

If the true S0 were known and used in Tm,n instead of its estimator Sm,n,

this would be simply the distribution from HS88 with a shift of the critical value by

C ≡ γ/[S0

√
p(1− p)], which is γ normalized by the true (hypothetically known)
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variance. But Sm,n is random, so the HS88 expansion is insufficient and Theorem

3.1 is needed.

3.4.2 Two-sample case

The strategy and results are similar; the full proof may be found in the

supplemental Two-sample Appendix.

Theorem 3.2. Let Xi
iid∼ FX and Yi

iid∼ FY , and Xi ⊥⊥ Yj ∀i, j. With assumptions

in Theorem 3.1 applied to both FX and FY , and letting C̃ ≡ γS̃−1
0 /
√
p(1− p),

define functions

ũ1,γ(z) ≡ 1

6

1 + p√
p(1− p)

(
g3
x − g3

y

S̃3
0

)
(z2 − 1)

+
[
(a2g

2
x − a′2g2

y)(1− p) + (a1g
2
x − a′1g2

y)
]
[p/(1− p)]1/2(2p2S̃3

0)−1(z2)

−
[
2(a2g

2
x − a′2g2

y) + (a1g
2
x − a′1g2

y)/(1− p)
]
(2pS̃3

0)−1C[(1− p)/p]1/2(z)

+
[
(a2g

2
x − a′2g2

y)− S̃2
0(a2 − a′2)

]
[p(1− p)]1/2(2p2S̃3

0)−1

−
(
(bnpc+ 1− np)− 1 + 1

2
(1− p)

)
(gx − gy)

[
S̃0

√
p(1− p)

]−1

,

ũ2,γ(z) ≡ −1

4

(
g4
x + g4

y

S̃4
0

)
z3 +

1

2

g2
xg

2
y

S̃4
0

z − 1

2

g2
xg

2
y

S̃4
0

C̃ +
1

4

(
g4
x + g4

y

S̃4
0

)
(2C̃z2 − C̃2z),

ũ3,γ(z) ≡
gxg
′′
x + gyg

′′
y

6S̃2
0

(z − C̃),

gX(·) ≡ 1/fX(F−1
X (·)), gx ≡ gX(p), g′′x ≡ g′′X(p),

HX(x) ≡ F−1
X (e−x), ai ≡ H

(i)
X

(
n∑
j=r

j−1

)
,

gY (·) ≡ 1/fY (F−1
Y (·)), gy ≡ gY (p), g′′y ≡ g′′Y (p),

HY (y) ≡ F−1
Y (e−y), a′i ≡ H

(i)
Y

(
n∑
j=r

j−1

)
,

where H(i)(·) is the ith derivative of function H(·).

It follows that

sup
−∞<z<∞

∣∣∣P(T̃m,n < z
)
− [Φ(z + C) + n−1/2ũ1,γ(z + C)φ(z + C)
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+m−1ũ2,γ(z + C)φ(z + C) + (m/n)2ũ3,γ(z + C)φ(z + C)]
∣∣∣

= op[m
−1 + (m/n)2].

For a two-sided test, ũ1,γ will cancel out, so the unknown terms therein may

be ignored. Under the null, when C̃ = 0, the ũ2,γ term again exactly matches the

fixed-m distribution, demonstrating that the fixed-m distribution is more accurate

than the standard normal under large-m (as well as fixed-m) asymptotics. A

similar comment applies here, too, about the effect of S̃m,n being random.

3.5 Optimal smoothing parameter selection

3.5.1 Type I error

In order to select m to minimize type II error subject to control of type I

error, expressions for type I and type II error dependent on m are needed. Com-

paring with the Edgeworth expansion in (3.10) when γ = 0, the approximate type

I error of the two-sided symmetric test can be calculated using the corrected crit-

ical values from (3.7). Note that u1,0(z)φ(z) in (3.10) is an even function since

φ(z) = φ(−z) and z only appears as z2 in u1,0(z), so u1,0(z) = u1,0(−z); thus it

will cancel out for a two-sided test. Also note that the functions u2,0(z) and u3,0(z)

are odd, so u2,0(−z) = −u2,0(z) and u3,0(−z) = −u3,0(z). Below, the second high-

order term will disappear due to the use of the fixed-m critical value, leaving only

the third high-order term.

Proposition 3.3. If γ = 0, then P (|Tm,n| > zα,m) = eI + op(m
−1 + (m/n)2),

eI = α− 2(m/n)2u3,0(z1−α/2)φ(z1−α/2). (3.12)

Proof. Starting with (3.10) with γ = 0, the two-sided symmetric test rejection

probability under the null hypothesis for critical value z is

P (|Tm,n| > z | H0) = P (Tm,n > z | H0) + P (Tm,n < −z | H0)

= 2− 2Φ(z)− 2m−1u2,0(z)φ(z)

− 2(m/n)2u3,0(z)φ(z) + op[m
−1 + (m/n)2].
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With the corrected critical value zα,m = z1−α/2 + z3
1−α/2/(4m),

P (|Tm,n| > zα,m | H0) = 2− 2Φ(zα,m) + 2z3
α,mφ(zα,m)/(4m)

− 2(m/n)2u3,0(zα,m)φ(zα,m) + op[m
−1 + (m/n)2]

= α− 2(m/n)2u3,0(z1−α/2)φ(z1−α/2) + op[m
−1 + (m/n)2].

The dominant part of the type I error, eI , depends on m, n, and z1−α/2,

as well as f(ξp), f
′(ξp), and f ′′(ξp) through u3,0(z1−α/2). Up to higher-order re-

mainder terms, the type I error does not exceed nominal size α if u3,0(z1−α/2) ≥ 0.

Since z1−α/2 > 0, the sign of u3,0(z1−α/2) is the sign of 3f ′(ξp)
2 − f(ξp)f

′′(ξp), or

equivalently the sign of the third derivative of the inverse cdf, ∂3

∂p3
F−1(p). Accord-

ing to HS88, for p = 0.5, this is positive for all symmetric unimodal densities and

most skew unimodal densities. Additionally, for any quantile p, the sign is pos-

itive for t-, normal, exponential, χ2, and Fréchet distributions (see supplemental

appendix). This suggests that simply using the fixed-m corrected critical values

alone is enough to reduce eI to α or below.

For the two-sample case, as shown in the full appendix, the result is similar.

Proposition 3.4. If γ = 0, then

P
(
|T̃m,n| > zα,m

)
≤ P

(
|T̃m,n| > z̃α,m

)
= ẽI + op(m

−1 + (m/n)2),

ẽI = α− 2(m/n)2ũ3,0(z1−α/2)φ(z1−α/2).

Here also, the corrected critical value approximated from the fixed-m dis-

tribution leads to the dominant part of type I error being bounded by α for all

common distributions, since the sign of ũ3 is positive for the same reasons as in the

one-sample case. The one-sample critical value zα,m gives conservative inference;

the infeasible z̃α,m has better power but requires estimating δ ≡ fX(ξp)/fY (ξp).

3.5.2 Type II error

As above, I use the Edgeworth expansion in (3.10) to approximate the type

II error of the two-sided symmetric test using critical values from (3.7). Since a

uniformly most powerful test does not exist for general alternative hypotheses, I
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will follow a common strategy in the optimal testing literature and pick a reason-

able alternative hypothesis against which to maximize power. The hope is that

this will produce a test near the power envelope at all alternatives, even if it is not

strictly the uniformly most powerful.

I choose to maximize power against the alternative where first-order power

is 50% for a two-sided test. From above, the type II error is thus

0.5 = P (|Tm,n| < z1−α/2)
.
= GC2(z2

1−α/2),

where GC2 is the cdf of a noncentral χ2 distribution with one degree of freedom

and noncentrality parameter C2, and C was defined in Theorem 3.1. For α = 0.05,

this gives γf(ξp)/
√
p(1− p) ≡ C = ±1.96, or γ = ±1.96

√
p(1− p)/f(ξp).

Calculation of the following type II error may be found in the working

paper.

Proposition 3.5. If C2 solves 0.5 = GC2(z1−α/2), and writing f for f(ξp) and

similarly f ′ and f ′′, then

P (|Tm,n| < zα,m) = eII + op(m
−1 + (m/n)2),

eII = 0.5 + (1/4)m−1[φ(z1−α/2 − C)− φ(z1−α/2 + C)]Cz2
1−α/2

+ (m/n)2 3(f ′)2 − ff ′′

6f 4
z1−α/2

[
φ(z1−α/2 + C) + φ(z1−α/2 − C)

]
+O(n−1/2). (3.13)

There is a bias term and a variance term in eII above. Per Bloch and

Gastwirth (1968), the variance and bias of Sm,n as m → ∞ and m/n → 0 are

indeed of orders m−1 and (m/n)2 respectively, as given in their (2.5) and (2.6):

AsyVar(Sm,n) = (2mf 2)−1 and AsyBias(Sm,n) = (m/n)2 3(f ′)2 − ff ′′

6f 5
.

These are similar to above aside from the additional 1/f 2 and 1/f factors. As

m → ∞, Var(Sm,n) → 0 (increasing smoothing); with m fixed, this variance is

also fixed (fixed smoothing). As n grows but Sm,n only uses a proportion of the

n observations approaching zero, the bias will also decrease. The bias decreases
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to zero in the fixed-m thought experiment, too, and thus is not captured by the

fixed-m asymptotic distribution.

As discussed, for common distributions [3(f ′)2 − ff ′′]/(6f 4) ≥ 0, so the

entire (m/n)2 expression in (3.13) is positive; type II error from this term is in-

creasing in m, so a smaller value of m would minimize it. The m−1 term in (3.13)

is also positive since φ(z1−α/2 −C) > φ(z1−α/2 +C), so it is minimized by a larger

m. It is then possible that minimizing eII gives an “interior” solution m, i.e.

m ∈ [1,min(r − 1, n− r)].
The two-sample case is similar. Calculations are in the supplemental ap-

pendix.

Proposition 3.6. If C2 solves 0.5 = GC2(z1−α/2),

θ ≡ S̃−4
0 (g4

x + g4
y) = (1 + δ4

a)/
(
1 + δ2

a

)2
,

gx ≡ 1/fX
(
F−1
X (p)

)
and gy ≡ 1/fY

(
F−1
Y (p)

)
are as defined in Theorem 3.2, as are

g′′x and g′′y , δa ≡ fX
(
F−1
X (p)

)
/fY
(
F−1
Y (p)

)
similar to (3.8), and

S̃0 ≡ ([fX(F−1
X (p))]−2 + [fY (F−1

Y (p))]−2)1/2

as in (3.8), then

P (|T̃m,n| < z̃α,m) = ẽII + op(m
−1 + (m/n)2),

ẽII = 0.5 + 1
4
m−1

{
φ(z1−α/2 + C)[−θCz2

1−α/2 + (1− θ)z1−α/2]

+ φ(z1−α/2 − C)[θCz2
1−α/2 + (1− θ)z1−α/2]

}
+ (m/n)2

gxg
′′
x + gyg

′′
y

6S̃2
0

z1−α/2
{
φ(z1−α/2 + C) + φ(z1−α/2 − C)

}
+O(n−1/2).

3.5.3 Choice of m

With the fixed-m corrected critical values, eI ≤ α for all quantiles of com-

mon distributions, as discussed. Since size control is robust to smoothing param-

eter choice, m is chosen to minimize eII . Since eII has a positive m−1 component

and a positive m2 component, it will be a U-shaped function of m (for m > 0).
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Consequently, if the first-order condition yields an infeasibly big m, the biggest

feasible m is the minimizer over the feasible range.

For a randomized alternative (as in Sun, 2010b) for a symmetric two-sided

test, the first-order condition of (3.13) leads to

m =
{

(1/4){φ(z1−α/2 − C)− φ(z1−α/2 + C)}Cz2
1−α/2

/{(2/n2)
3(f ′)2 − ff ′′

6f 4
z1−α/2

[
φ(z1−α/2 + C) + φ(z1−α/2 − C)

]
}
}1/3

.

Remember that C is chosen ahead (such as C = 1.96), φ is the standard normal

pdf, z1−α/2 is determined by α, and n is known for any given sample; but the object

[3(f ′)2 − ff ′′]/(6f 4) is unknown.

As is common in the kernel bandwidth selection literature and in imple-

mentation of HS88, I plug in the standard normal5 pdf φ for f ; more precisely,

φ(Φ−1(p)) for f(ξp). In some cases, the plug-in m is close to optimal. In others it

is different, but the effect on power is small; e.g., with Unif(0, 1), n = 45, p = 0.5,

α = 0.05, the Gaussian plug-in yields m = 9 instead of m = 22, but the power loss

is only 4% at the alternative considered in Proposition 3.5. For large n, though,

estimation of f , f ′, and f ′′ may be best.

The Gaussian plug-in yields

mK(n, p, α, C) = n2/3(Cz1−α/2)1/3(3/4)1/3

(
(φ(Φ−1(p)))2

2(Φ−1(p))2 + 1

)1/3

×
(
φ(z1−α/2 − C)− φ(z1−α/2 + C)

φ(z1−α/2 − C) + φ(z1−α/2 + C)

)1/3

,

and for the 50% first-order power C and α = 0.05, as calculated below,

mK(n, p, α = 0.05, C = 1.96) = n2/3(1.42)

(
(φ(Φ−1(p)))2

2(Φ−1(p))2 + 1

)1/3

. (3.14)

Compare (3.14) with the suggested m from HS88. Rewriting their (3.1) to

match my notation above,

mHS =
⌊
n2/3z

2/3
1−α/2

[
1.5f 4/(3(f ′)2 − ff ′′)

]1/3⌋
.

5Here, using N(0, 1) is mathematically equivalent to N(µ, σ2) since µ and σ cancel out.
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HS88 proceed with a median-specific, data-dependent method. More commonly,

papers like Koenker and Xiao (2002) plug in φ for f when computing hHS (HS=Hall

and Sheather) in their simulations, as shown explicitly on page 3 of their electronic

appendix; Goh and Knight (2009) use the same Gaussian plug-in version. Koenker

and Xiao (2002) also use a Gaussian plug-in procedure based on Bofinger (1975).

Their “bandwidth” h is just m/n, so they use the equivalent of

mHS = n2/3z
2/3
1−α/2

(
1.5

[φ(Φ−1(p))]2

2(Φ−1(p))2 + 1

)1/3

, (3.15)

mB = n4/5

(
4.5

[φ(Φ−1(p))]4

[2(Φ−1(p))2 + 1]2

)1/5

. (3.16)

For p = 0.5, α = 0.05, these two will be equal if n = 20.93, so mB < mHS if n < 21

and mB > mHS if n ≥ 21. With standard normal critical values, size and power

are smaller whenever m is bigger.

Figure 3.1: Plot of the ratio mK/mHS against the first-order power used to

calculate C; 0.5 is used throughout this paper.
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Since z
2/3
1−α/2(1.5)1/3 = 1.79 for α = 0.05,

mK(n, p, α = 0.05, C = 1.96) = 0.79mHS.

This ratio is calculated for other values of C and plotted in Figure 3.1. The

dependence is mild until values closer to 0% or 100% power. Since mK and mHS

optimize for critical values from different distributions, it makes sense that mK <

mHS; the fixed-m critical values control size, allowing for smaller m when for HS88

eI might be a binding constraint.

For the two-sample case, the strategy is the same. The testing-optimal m̃K

is found by taking the first-order condition of (3.6) with respect to m, and then

solving for m. Since the two-sample ẽII has positive m−1 and m2 terms, it is also

U-shaped. With z̃α,m from (3.9) and θ from (3.6), solving for m in the FOC yields

z̃α,m : m̃K = n2/3(3/4)1/3

(
S̃2

0

gxg′′x + gyg′′y

)1/3

×

{
(1− θ) + θCz1−α/2

φ(z1−α/2 − C)− φ(z1−α/2 + C)

φ(z1−α/2 − C) + φ(z1−α/2 + C)

}1/3

.

I again use a Gaussian plug-in (using sample variances) for the g and S̃0 terms due

to the difficulty of estimating g′′.

Figure 3.2 compares the Edgeworth approximations to the true (simulated)

type I and type II error for scalar data drawn from a log-normal distribution. For

distributions like this that are extremely different from the normal distribution,

even the Edgeworth approximation can be significantly different in small samples.

With standard normal critical values, type I error is monotonically decreasing with

m while type II error is monotonically increasing, so setting eI = α exactly should

minimize eII subject to eI ≤ α. With fixed-m critical values, this is not true, so

the Edgeworth expansion for general γ in Theorem 3.1 is necessary. With fixed-m

critical values, type I error is always below α (approximately, and usually truly),

and the type II error curve near the selected m is very flat since it is near the

minimum where the slope is zero. Consequently, a larger-than-optimal m can

result in larger power loss for HS88 than the new method, and a smaller-than-

optimal m incurs size distortion for HS88 but not for the new method.
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Figure 3.2: Analytic and empirical eI (top) and eII (bottom) by m.

Both: n = 21, p = 0.5, α = 0.05, F is log-normal with µ = 0, σ = 3/2, 5000

replications (for empirical values). Lines are analytic; markers without lines are

empirical.
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3.6 Simulation study6

Regarding m, Siddiqui (1960) originally suggested a value of m on the order

of n1/2. Bloch and Gastwirth (1968) then suggested a rate of n4/5, to minimize the

asymptotic mean square error of Sm,n. With this n4/5 rate, Bofinger (1975) then

suggested the mB above in (3.16). HS88, using an Edgeworth expansion under the

null hypothesis, find that an m of order n2/3 minimizes the level error of two-sided

tests, and they provide an infeasible expression for m. For the median, they also

give a data-dependent method for selecting m; for a general quantile, the Gaussian

plug-in version of mHS in (3.15) is more commonly used, as in Koenker and Xiao

(2002) and Goh and Knight (2009).

The following simulations compare five methods. The first method is pre-

sented in this paper, with fixed-m corrected critical values and mK chosen to

minimize type II error subject to control of type I error; the code is publicly avail-

able as Kaplan (2011). For the two-sample z̃α,m, I implemented an estimator of

θ ≡ S̃−4
0 (g4

x + g4
y) using quantile spacings; a better estimator would improve per-

formance. The second method uses standard normal critical values and mHS as

in (3.15). The third method uses standard normal critical values and mB as in

(3.16). These three methods are referred to as “New method,” “HS,” and “B,”

respectively, in the text as well as figures in this section. For the new method, I

used the floor function to get an integer value for mK ; for HS and B, I instead

rounded to the nearest integer, to not amplify their size distortion.

The fourth method “BS” is a bootstrap method. The conclusion of much

experimentation was that a symmetric percentile-t using bootstrapped variance

had the best size control in the simulations presented below. For the number

of outer (B1) and inner (B2, for the variance estimator) bootstrap replications,

B1 = 99 (surprisingly) and B2 = 100 performed best and thus were used; any

exceptions are noted below. Discussion of other bootstraps is in the working paper

version.

6MATLAB code implementing a hybrid of Hutson’s method and the new method,
quantile inf.m, is publicly available through the author’s website or MATLAB File Exchange.
MATLAB code for simulations is available from the author upon request.
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Figure 3.3: Graph showing for which combinations of quantile p ∈ (0, 1) (y-axis)

and sample size n (x-axis) the Hutson (1999) method is computable, in the middle

region. “Original” (dotted lines) refers to the equal-tail version; “Extension” (solid

lines) marginally increases the region by not requiring the equal-tail property. Top:

α = 5%. Bottom: α = 1%.
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The fifth method is a near-exact method from Hutson (1999), based on

fractional order statistics.7 For one-sample inference, it performed best in every

simulation where it could be used, so the results here focus on cases when it cannot

be computed. Figure 3.3 shows when it can and can’t be computed, in terms of

n and p. For two-sample inference, the related method in Chapter 1 has similarly

superlative performance in practice.

The hope of this paper was to produce a method that controls size better

than HS and B (and others) while keeping power competitive. For one-sample

inference in cases when Hutson (1999) is not computable, the following simulations

show that the new method eliminates or reduces the size distortion of HS, B, and

BS. The new method also has good power, sometimes even better than BS. When

Hutson (1999) is computable, the new method can have better power than HS and

B, too.

The two-sample results are more complicated since performance depends

on how similar the two distributions are. The one-sample results represent one

extreme of the two-sample case as the ratio fX(ξp)/fY (ξp) goes to infinity (or

zero), when size is hardest to control. The other extreme is when fX(ξp) = fY (ξp).

In that case, HS and B8 have less size distortion, but still some. BS, though, seems

to control size and have better power than the new method with estimated θ. With

the true θ, BS and the new method perform quite similarly. General two-sample

setups would have results in between these extremes of fX/fY →∞ (or zero) and

fX/fY = 1.

Unless otherwise noted, 10,000 simulation replications were used, and α =

5%.

Table 3.1 and Figure 3.4 show one- and two-sample size and power in the

case of n = 3 or n = 4. For one-sample, HS and B are severely size-distorted

while the new method and BS control size (except BS for n = 4 and uniform

distribution). In the two-sample special case where the distributions are identical,

all rejection probabilities are much smaller, though some size distortion remains

7For a rigorous theoretical justification, see Chapter 1.
8Since HS88 and Bofinger (1975) do not provide values of m for the two-sample case, I used

their one-sample m values.



124

Table 3.1: Empirical size as percentage (nominal: 5.0), n = 3, 4, p = 0.5, one-

and two-sample.

one-sample two-sample
n = 3 n = 4 n = 3

Distribution New BS HSa New BS HS Newb BS HS
N(0, 1) 1.6 1.2 11.9 2.4 4.1 15.4 0.8 1.3 6.3
LogN(0, 3/2) 3.3 1.3 12.8 1.8 3.6 10.0 0.4 0.8 4.5
Exp(1) 3.0 1.2 13.5 2.3 4.6 12.9 1.1 1.4 6.4
Unif(0, 1) 3.2 1.5 16.0 5.0 6.8c 21.3 1.4 1.9 8.6

aB is the same as HS in this table.
bIf true θ used instead: 1.6, 1.1, 1.6, 2.8.
c6.7% with 999 outer replications

Figure 3.4: Empirical power properties; p = 0.5. Top row: F = Exp(1), one-

sample. Bottom: N(0, 1), two-sample. Left column: n = 3. Right: n = 4.
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Table 3.2: Empirical size as percentage (nominal: 5.0), n = 45, 21, p = 0.95,

one-sample.

n = 45 n = 21
BS; B1 = BS; B1 =

Distribution New 99 999 HS/B New 99 999 HS/B
N(0, 1) 3.2 6.4 6.5 10.4 6.7 11.3 11.5 25.3
Slash 5.3 7.8 8.1 10.7 12.9 17.8 18.6 30.3
Logn(0, σ = 3/2) 5.0 7.3 7.5 10.7 11.3 14.6 15.2 28.7
Exp(1) 4.0 6.9 7.0 10.7 8.0 12.6 13.1 26.9
Uniform(0, 1) 3.3 5.4 5.3 11.2 4.7 6.8 6.7 22.3
GEV(0, 1, 0) 4.1 7.2 7.3 11.0 7.3 12.2 12.6 25.9
χ2

1 3.6 6.5 6.4 10.2 8.7 13.5 13.9 27.5

for HS and B. For one-sample power, BS is very poor for n = 3, but better than

the new method at some alternatives for n = 4. For two-sample power, BS is equal

to the new method for a range of alternatives with n = 3, and better for n = 4.

For n = 45 and p = 0.05 or p = 0.95, the new method controls size except

for empirical size around 5.5% for the slash distribution. In contrast, BS, HS, and

B are all size-distorted, sometimes significantly; see Table 3.2. With n = 21, even

the new method is size-distorted, but significantly less so. Even with better size,

the new method’s power is competitive with BS, as in Figure 3.5.

For the two-sample case with identical distributions, BS always controls size

along with the new method. However, moving toward the limiting case where one

distribution is a constant, when there is a significant different in variance between

the two samples’ distributions (e.g., factor of 25), BS has significantly worse size

distortion than the new method for n = 21, and has size distortion while the new

method has none for n = 29 and n = 45. In the case of identical distributions, the

new method has power competitive with BS for n = 21, but by n = 45 BS has

significantly better power. (These and additional simulations are in the working

paper.)

For any sample size, it appears that quantiles close enough to zero or one

will cause size distortion in HS, B, and BS. For example, even with n = 250 and a

normal distribution, tests of the p = 0.005 quantile for α = 0.05 have empirical size
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Figure 3.5: Empirical power properties, one-sample, n = 45, p = 0.95. Only the

new method controls size, and power is not size-adjusted. Top: slash. Bottom:

GEV(0,1,0).
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9.6% for BS and 20.7% for HS and B, compared with 5.3% for the new method.

There are two different proximate “causes” of size distortion for HS and B in

general, illustrated in Figure 3.6. When n = 21 and p = 0.2, r = b(21)(0.2)c+ 1 =

5, which means that m can be at most 4 such that r−m ≥ 1; and mHS = mB = 4,

the biggest m possible. This is the best choice, but still size-distorted. For n = 21

and any p < 0.35, mHS = mB = r − 1, the maximum possible m. However, when

n = 21 and p ≥ 0.35, mHS and mB are strictly less than the maximum possible m.

In those cases, HS and B could have chosen a larger m to lessen the size distortion,

but didn’t. In some cases, both “causes” apply, such as with F = Exp(1), n = 71,

p = 0.2, and α = 0.05, where bigger mHS would have reduced size distortion, but

not eliminated it.

Of theoretical (if not directly practical) interest is Figure 3.7. The new

method chooses m to maximize power, and in some cases this produces significantly

better power than HS or B. This is true in both the one-sample case (top row) and

the two-sample case (bottom row).

In the two-sample case, the results shown and discussed were for inde-

pendent samples, as the theoretical results assumed. If there is enough negative

correlation, size distortion occurs for all methods; if there is positive correlation,

power will decrease for all methods. The effect of uncorrelated, dependent samples

could go either way. In practice, examining the sample correlation as well as one

of the many tests for statistical independence is recommended, if independence is

not known a priori.

3.7 Conclusion

This paper proposes new one- and two-sample quantile testing procedures

based on the SBG test statistic in (3.3). Critical values dependent on smooth-

ing parameter m are derived from fixed-smoothing asymptotics. These are more

accurate than the conventional standard normal critical values since the fixed-m

distribution is shown to be more accurate under both fixed-m and large-m asymp-

totics. Type I and II errors are approximated using an Edgeworth expansion, and
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Figure 3.6: Causes of size distortion for HS and B. Empirical type I error (x

markers) is plotted against m, for a test with standard normal critical values;

missing marker on the left for m = 1 is above 0.15. The dashed line in the right

plot is the plug-in eI used to select mHS. Top: no m can control size. Bottom:

approximation error leads tomHS = 7 < 10 and size distortion. F = Uniform(0, 1),

n = 21, α = 0.05, and p = 0.2 on the left, p = 0.5 on the right; 5000 replications.
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Figure 3.7: Empirical power curves, comparing n = 11 (left column) and n = 41

(right column). 50,000 replications each, p = 0.5, and distribution is Cauchy. Top

row: one-sample. Bottom row: two-sample.
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the testing-optimal mK minimizes type II error subject to control of type I er-

ror, up to higher-order terms. Simulations show that, compared with the previous

SBG methods from HS88 and Bofinger (1975), the new method greatly reduces size

distortion while maintaining good power. The new method also outperforms boot-

strap methods for one-sample tests and certain two-sample cases. Consequently,

this new method is recommended in one-sample cases when Hutson (1999) is not

computable, while two-sample performance depends on the unknown distributions

and warrants further research into both bootstrap methods and the two-sample

plug-in method (particularly estimating θ) proposed here. Finally, theoretical jus-

tification for fixed-smoothing asymptotics is provided outside of the time series

context; there are likely additional models that may benefit from this perspective.



Appendix A

Technical appendix to Chapter 1

A.1 Mathematical proofs

Proof of Theorem 1.1

Proof.

sup
u∈Uδn

∣∣∣Q̂I
X(u)− Q̂L

X(u)
∣∣∣ = sup

u∈Uδn

∣∣∣F−1(Q̂I
U(u))− F−1(Q̂L

U(u))
∣∣∣

≤ 1

δ
sup
u∈Uδn

∣∣∣Q̂I
U(u)− Q̂L

U(u)
∣∣∣

≤ 1

δ
max

i∈{1,...,n}
sup

u∈[ i
n+1

, i+1
n+1 ]

∣∣∣Q̂I
U(u)− Q̂L

U(u)
∣∣∣

≤ 1

δ
max

i∈{1,...,n}

[
Q̂I
U

(
i+ 1

n+ 1

)
− Q̂I

U

(
i

n+ 1

)]
.

The bracketed quantities are spacings between adjacent uniform order statistics

(referred to as ∆ in the heuristics presented at the beginning of §1.2) and (uncon-

ditionally) have distribution β(1, n) with CDF from Kumaraswamy (1980). With

an arbitrary sequence an such that limn→∞ an/(n
−1[log n]) =∞,

P

(
sup
u∈Uδn

∣∣∣Q̂I
X(u)− Q̂L

X(u)
∣∣∣ > an

)
≤ nP (β(1, n) > δan)

= max{(1− δan)n, 0}

= max{exp{log(n) + n log(1− δan)}, 0}
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≤ exp{log(n)− nδan)} → 0.

Proof of Lemma 1.2

Proof. a) Recall ∆X ∼ Dirichlet(∆k), so

log(fX(x)) = log(Γ(n+ 1)) +
J+1∑
j=1

[
(∆kj − 1) log(∆xj)− log(Γ(∆kj))

]
.

We will use Stirling-type bounds on the gamma functions in the Dirichlet PDF.

Specifically, from Robbins (1955) we have

√
2πnn+1/2e−n+1/(12n+1) < n! <

√
2πnn+1/2e−n+1/(12n), so

log(Γ(n)) =
log(2π)

2
+ [n− 1/2] log(n− 1) + (1− n) +O

(
n−1
)
.

Applying the above to the density of X gives

log(fX(x)) = −J
(

log(2π)

2
+ 1

)
+ [n+ 1/2] log(n)

+
J+1∑
j=1

[
(∆kj − 1) log(∆xj)− (∆kj − 1/2) log(∆kj − 1)

]

=

K︷ ︸︸ ︷
J

2
log(n/2π) +

1

2

J+1∑
j=1

log

(
n

∆kj − 1

)

+

h(x)︷ ︸︸ ︷
J+1∑
j=1

(∆kj − 1) log

(
n∆xj

∆kj − 1

)
− J, (A.1)

where K is the constant given in the statement of the lemma and h(x) is the

remainder. To expand h(·), we calculate derivatives

hj(x) =

(
∆kj − 1

∆xj
− ∆kj+1 − 1

∆xj+1

)
, (A.2)

hj,j(x) = −
(

∆kj − 1

∆x2
j

+
∆kj+1 − 1

∆x2
j+1

)
, hj,j+1(x) =

∆kj+1 − 1

∆x2
j+1

,

hj,j,j(x) =

(
∆kj+1 − 1

2∆x3
j+1

− ∆kj − 1

2∆x3
j

)
,

hj,j,j+1(x) = −hj,j+1,j+1(x) =

(
∆kj+1 − 1

2∆x3
j+1

)
,
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and all other cross-derivatives are zero. Let Hx denote the corresponding Hes-

sian at some realization X = x. In the appendix we show that it is negative

definite for all values of x. At the value x = k/n′ = k/[n+ 1], using (A.2), we

compute

h(k/n′) =
J+1∑
j=1

(∆kj − 1)

[
log(1 + [∆kj − 1]−1) + log(n/n′)

]
− J

= O(∆k−1),

hj(k/n
′) = n(∆k−1

j+1 −∆k−1
j ), (A.3)

hj,j(k/n
′) = −n2

[
∆k−1

j + ∆k−1
j+1 +O(min{∆kj,∆kj+1}−2)

]
,

hj,j+1(k/n′) = n2
(
∆k−1

j+1 +O(∆k−2
j+1)

)
.

Third derivatives at some value k/n′ + zn, where the sequence zn must satisfy

Condition ?(an), are

hj,j,j+1(k/n′ + zn) =
∆kj+1 − 1

2(∆kj+1/n′ + ∆zj+1)3

≤
(

n3

2∆k2
j+1

)(
1 +

n∆zj+1

∆kj+1

)3

= O(n3∆k−2),

where the final rate follows because Condition ?(an) implies

n∆zj+1

∆kj+1

= O(an∆k
−1/2
j+1 )→ 0

by the second and third requirements on an, respectively. Since this form holds

for all third-order derivatives of h(·), we have

sup
X|?(an),

|ρ|=3

|Dρh(x)| = O(n3∆k−2).

Applying results from (A.3), we expand h(x) to get

sup
x|?(an)

∣∣∣∣h(x)− 1

2
(x− k/n′)′Hk/n′(x− k/n′)

∣∣∣∣
= h(k/n′) + h′(k/n′)(x− k/n′) +O

(
[n3∆k−2](x− k/n′)3

)
= O(∆k−1) +O(an∆k−1/2) +O

(
a3
n∆k−1/2

)
= O

(
a3
n∆k−1/2

)
. (A.4)
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This completes our demonstration for the density.

The density derivative is

d log[fX(x)]

dx
= h′(x)

= h′(k/n′) +Hk/n′(x− k/n′) +O

(
[n3∆k−2](x− k/n′)2

)
= O(n∆k−1) +Hk/n′(x− k/n′) +O

(
a2
nn∆k−1

)
. (A.5)

The density derivative in kj/n
′ is given by1

d log[fXk
(x)]

dkj/n′
= n′

dh(x)

dkj
+ n′

dK

dkj

= n

[
log

(
∆kj+1 − 1

n∆xj+1

)
− 1

]
− n

[
log

(
∆kj − 1

n∆xj

)
− 1

]
+O(nmin{∆kj,∆kj+1}−1)

=

[
∆kj+1 − 1

∆xj+1

+O(a2
nn∆k−1

j )

]
−
[

∆kj − 1

∆xj
+O(a2

nn∆k−1
j )

]
+O(nmin{∆kj,∆kj+1}−1)

= −hj(x) +O(a2
nnmin{∆kj,∆kj+1}−1).

b) The marginals of X are such that ∆Xj ∼ Dirichlet(∆kj, n+1−∆kj). Appealing

to the representation in (A.1), we have2

log(f∆Xj(x)) =

K︷ ︸︸ ︷
1

2

[
log(n/2π) + log(n/[∆kj − 1]) + log(n/[n−∆kj])

]
(A.6)

+

h(x)︷ ︸︸ ︷
(∆kj − 1) log(nx/[∆kj − 1]) + (n−∆kj) log

(
n(1− x)

n−∆kj

)
− 1 .

The value and derivatives of h(x) are as in (A.2) and (A.3). Condition ?(an) is

violated if for some j

∆Xj 6∈ (l, u) ≡
(

[∆kj − an∆k
1/2
j ]/n, [∆kj + an∆k

1/2
j ]/n

)
.

1The O(n−1) term from Stirling approximation to the gamma function has a derivative of
sufficiently low order that it is insignificant in calculating derivatives of our log PDF. This can
be seen by examining equations (4)-(8) in Robbins (1955).

2Stirling approximation error in K is of lower order and is omitted.
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At the upper endpoint, we apply (A.4) and (A.5) to get

h(u) = (1/2)h′′(∆kj/n
′)(u−∆kj/n

′)2 +O(a3
n∆k

−1/2
j )

= −(a2
n/2)∆kj

(
∆k−1

j + [n+ 1−∆kj]
−1
)

+O(a3
n∆k−1/2)

≤ −(a2
n/2) +O(a3

n∆k−1/2), (A.7)

h′(u) = −ann∆k
1/2
j

(
∆k−1

j + [n+ 1−∆kj]
−1
)

+O(a2
n∆k−1/2n)

= −an

(
n2

∆k
1/2
j [n−∆kj]

)
+O(a2

nn∆k−1). (A.8)

For convenience we also calculate

K − log(−h′(u)) � (1/2)[3 log(n)− log(∆kj)− log(n−∆kj)− log(2π)]

− [log(an) + 2 log(n)− 1/2 log(∆kj)− log(n−∆kj)]

= (1/2)[log(n−∆kj)− log(n)− log(2π)]− log(an)

≤ −(1/2) log(2π)− log(an). (A.9)

Recall that h′′(·) is everywhere negative, so for all x > u, h(x) < h(u)+h′(u)(x−
u). Thus,

P (∆Xj > u) =

∫ ∞
u

f∆Xj(x)dx = eK
∫ ∞
u

exp{h(x)}dx

≤ eK
∫ ∞
u

exp{h(u) + h′(u)(x− u)}dx.

Recalling that the leading term of h′(u) is negative (see (A.8)), we integrate to

get

= eK
[
eh(u)

−h′(u)

]
= exp [K − log(−h′(u)) + h(u)].

The conclusion now follows by plugging in expressions from (A.7) and (A.9).

Symmetric steps go through to achieve the same rate for the lower tail of ∆Xj.

There exist J + 1 spacings that can generate violations of Condition ?(an);

summing over them does not change the rate since J < ∞ does not increase

with n.
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c) Recall that ∆kj = M < ∞ is a fixed natural number, so we can write ∆Xj =∑M
i=1 δi, where each δi is a spacing between consecutive uniform order statistics.

The marginal distribution of each δi is β(1, n), with closed form CDF from the

Kumaraswamy (1980) family of distributions,

Fδi(d) = 1− (1− d)n for 0 ≤ d ≤ 1.

Using this, we bound

P (∆Xj > ann
−1M1/2) ≤ P

(
∃i : δi >

ann
−1M1/2

M

)
≤MP

(
δi > ann

−1M−1/2
)

= M
(
1− ann−1M−1/2

)n
= M exp

{
n log

(
1− ann−1M−1/2

)}
≤M exp{−anM−1/2},

where the final line follows because ∀x ∈ (0, 1), log(1 − x) < −x. If there are

multiple fixed spacings in the parameter vector, this argument can be repeated

and only the largest (fixed) spacing will enter the asymptotic rate.

Lemma for proving Theorem 1.3, with discussion and proof

Extensive manipulations will be performed on both the raw data, Xi, and

the transformed data, Ui ≡ F (Xi), so we introduce the following notation. From

earlier, u0 ≡ 0 and uJ+1 ≡ 1. For all j ∈ {1, 2, . . . , J},

kj ≡ b(n+ 1)ujc εj ≡ (n+ 1)uj − kj,

where the εj ∈ (0, 1) are interpolation weights as in (1.1). Also let ∆k denote the

(J + 1)-vector such that ∆kj = kj − kj−1, and

Yj ≡ Un:kj ∼ β(kj, n+ 1− kj) (A.10)

∆Y ≡ (Y1, Y2 − Y1, . . . , 1− YJ) ∼ Dirichlet(∆k)

Λj ≡ Un:kj+1 − Un:kj ∼ β(1, n) Ωj ≡ Un:(kj+mj) − Un:(kj−mj) = Ω+
j + Ω−j

Ω−j ≡ Un:kj − Un:(kj−mj) Ω+
j ≡ Un:(kj+mj) − Un:kj
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Zj ≡
√
n(Yj − uj) Vj ≡

√
n
[
F−1(Yj)− F−1(uj)

]
X ≡

J∑
j=1

ψjF
−1(Yj) X0 ≡

J∑
j=1

ψjF
−1(uj)

W ≡
√
n(X− X0) = ψ′V Wu ≡

√
nψ′

[
F−1

(
Q̂I
U(u)

)
− F−1(u)

]
,

Wε,Λ ≡W + n1/2

J∑
j=1

εjψjΛj[Q
′(uj) +Q′′(uj)(Yj − uj)],

û ≡
{
uHj (α̃(γ̂))

}J
j=1
, u0 ≡

{
uHj (α̃(γ0))

}J
j=1
,

with vectors indicated by bold and matrices (later) by underline. The values and

distributions of k, Y, Λ, Ω, V, Z, X, and W are all understood to vary with n, but

the subscript will be omitted. Note that Ω is defined with respect to the vector of

spacing parameters, m, used for nuisance parameter estimation.

Lemma A.1. Suppose that Assumption A1.1 holds and that each element of

Y and Λ satisfies Condition ?(2 log(n)) as defined in Lemma 1.2.

(i) We have the following bounds in certainty:

|LL − (X0 + n−1/2Wε,Λ)| = O(n−2 log(n)3),

|LI − (X0 + n−1/2WC,Λ)| = O(n−2 log(n)3),

where C is a J-vector of random interpolation coefficients as defined in Jones

(2002). Each Cj ∼ β(εj, 1− εj), and they are mutually independent.

(ii) Define V and A as the J × J matrices such that V i,j = min{ui, uj}(1 −
max{ui, uj}) and A = diag{f(F−1(u))}. Also define

Vψ ≡ ψ′
(
A−1V A−1

)
ψ ∈ R.

For any vector λ satisfying Condition ?(2 log(n)),

sup
w

∣∣fWε,λ|Λ(w | λ)− φVψ(w)
∣∣ = O(n−1/2 log(n)),

sup
w∈R

∥∥∥∥∥d
[
fWε,λ|Λ(w | λ)

]
dw

−
d
[
φVψ(w)

]
dw

∥∥∥∥∥
∞

= O(n−1/2 log(n)).
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For any value ε̃ ∈ [0, 1]J ,

d2FWε,Λ|Λ(K|λ)

dε2j

∣∣∣∣
ε=ε̃

= nψ2
jQ
′(uj)

2λ2
j

[
d
[
φVψ(w)

]
dw

]
+O(n−3/2 log(n)3).

(iii) Suppose Ω also satisfies Condition ?(2 log(n)). Then,

E
[
fWû|γ̂(

√
nψ′[Q(u)−Q(u0)] | γ̂)

]
= O(1) (for C1,a

h ),

Var
(
fWû|γ̂(

√
nψ′[Q(u)−Q(u0)] | γ̂)

)
= O(n−2/3) (for C1,a

h ),

sup |f ′Wû|γ̂(w | γ̂)| = O(1) (for C1,b
h ),

E

(
∂FWt|γ̂(

√
nψ′[Q(u)−Q(u0)] | γ̂)

∂t

∣∣∣∣
t=u0

)
= O(n1/2) (for C2,a

h ),

Var

(
∂FWt|γ̂(

√
nψ′[Q(u)−Q(u0)] | γ̂)

∂t

∣∣∣∣
t=u0

)
= O(n1/3) (for C2,a

h ),

∂2FWt|γ̂(
√
nψ′[Q(u)−Q(u0)] | γ̂)

∂t∂t′

∣∣∣∣
t=ũ

= O(n) (for C2,b
h ).

Proof. (i) The object LL may be rewritten as

LL =
J∑
j=1

ψj

(
Q(Yj) + εj[Q(Yj + Λj)−Q(Yj)]

)

= X0 +
J∑
j=1

ψj

(
Q(Yj)−Q(uj) + εj[Q(Yj + Λj)−Q(Yj)]

)

= X0 + n−1/2W +
J∑
j=1

ψjεj

[
Q′(Yj)Λj +

Q′′(ỹj)

2
Λ2
j

]

= X0 + n−1/2W +
J∑
j=1

ψjεj

[
Q′(uj)Λj +Q′′(uj)[Yj − uj]Λj

+
Q(3)(ũj)

2
[Yj − uj]2Λj︸ ︷︷ ︸
νLj,1

+
Q′′(ỹj)

2
Λ2
j︸ ︷︷ ︸

νLj,2

]

= X0 + n−1/2Wε,Λ +
J∑
j=1

ψjεj

[
νLj,1 + νLj,2

]
,

where ∀j, ỹj ∈ (Yj, Yj + Λj) and ũj is between uj and Yj. Applying Assump-

tion A1.1 and the assumed Condition ?(2 log(n)) gives the desired rate on
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the νL terms. The argument is very similar for LI , but must also lean on

the random interpolation representation of the ‘ideal’ uniform order statis-

tics given in Jones (2002). The random interpolation vector of coefficients is

denoted C. In our notation,

Q̂I
U(uj)

L
= CjUn:kj+1 + (1− Cj)Un:kj = Yj + CjΛj,

Cj ∼ β(εj, 1− εj), Cj ⊥⊥ (Y,Λ,C−j).

This allows us to write

LI =
J∑
j=1

ψj

(
Q(Yj) + [Q(Yj + CjΛj)−Q(Yj)]

)

= X0 +
J∑
j=1

ψj

(
Q(Yj)−Q(uj) + [Q(Yj + CjΛj)−Q(Yj)]

)

= X0 + n−1/2W +
J∑
j=1

ψj

[
Q′(Yj)CjΛj +

Q′′(ỹj)

2
(CjΛj)

2

]

= X0 + n−1/2W +
J∑
j=1

ψj

[
Q′(uj)CjΛj +Q′′(uj)[Yj − uj]CjΛj

+
Q(3)(ũj)

2
[Yj − uj]2CjΛj︸ ︷︷ ︸
νIj,1

+
Q′′(ỹj)

2
(CjΛj)

2︸ ︷︷ ︸
νIj,2

]

= X0 + n−1/2WC,Λ +
J∑
j=1

ψj
[
νIj,1 + νIj,2

]
.

(ii) Since Λ contains finite spacings, we cannot apply Lemma 1.2(a) to expand

its density. Instead, we use the convenient representation

Λj ∼ β(1, n),
Λj

1−
∑j−1

k=1 Λk

∣∣∣∣(Λ1, . . . ,Λj−1

)
∼ β(1, n− j + 1).

Log PDFs are given by

log fΛj(λj) = log(Γ(n+ 1))− log(Γ(n)) + (n− 1) log(1− λj)

= log(n)− nλj +O(n−1 log(n)),

log fΛj |(Λ1,...,Λj−1) = log(Γ(n+ 2− j))− log(Γ(n+ 1− j))
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+ n log

(
1− λj

(
1−

j−1∑
k=1

λk

))
= log(n)− nλj +O(n−1 log(n)),

where the above rate follows from imposing Condition ?(2 log(n)) on all val-

ues of Λ. Taking appropriate products of conditional densities leads to the

convenient representation

log fΛ(λ) = J log(n)− n
J∑
j=1

λj +O(n−1 log(n)). (A.11)

The joint density of {Y,Λ} is even more problematic because it is not a

Dirichlet distribution. However, we define the linear transformation τ :

{Y,Λ} → Y Λ ≡ {∆Y1,Λ1,∆Y2−Λ1, . . . ,ΛJ ,∆YJ+1−ΛJ}′. Row operations

show this transformation’s matrix representation to have unit determinant

(|τ ′| = 1). We now have

Y Λ ∼ Dirichlet({∆k1, 1,∆k2 − 1, . . . , 1,∆kJ+1 − 1}′).

Unfortunately, the spacings still do not diverge, so we still may not apply

Lemma 1.2(a). However, we may write the log PDF as

log(f{Y,Ω}(y,λ))

= log(fY Λ(τ(y,λ))) · |τ ′|−1

= log(Γ(n+ 1)) + (∆k1 − 1) log(∆y1)− log(Γ[∆k1]) (A.12)

+
J+1∑
j=2

[
(∆kj − 2) log(∆yj − λj−1)− log(Γ[∆kj − 1])

]
.

Combining (A.11) and (A.12), we have

logfY|Λ

= log(f{Y,Ω}(y,λ))− log fΛ(λ)

= log(Γ(n+ 1)) + (∆k1 − 1) log(∆y1)− log(Γ[∆k1])

+
J+1∑
j=2

[
(∆kj − 2) log(∆yj − λj−1)− log(Γ[∆kj − 1])− log n+ nλj−1

]
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= log fY(y) +
J+1∑
j=2

[
(∆kj − 2) log(∆yj − λj−1)− (∆kj − 1) log(∆yj)

+ [log(Γ[∆kj])− log(Γ[∆kj − 1])]− log n+ nλj−1

]
= log fY(y)

+
J+1∑
j=2

[{
(∆kj − 2)[log(∆yj − λj−1)− log(∆yj)] + nλj−1

}
(A.13)

+

{
[log(Γ[∆kj])− log(Γ[∆kj − 1])]− log n− log ∆yj

}]
= log fY(y)

+
J+1∑
j=2

[{
(∆kj − 2)[−λj−1/∆yj +O(λ2

j−1/∆y
2
j )] + n log λj−1

}
+

{
[log(∆kj) +O(∆k−1

j )]− log n− log ∆yj

}]
= log φV/n(y) +O(n−1/2 log(n)),

where the final result follows by applying ?(2 log(n)) to the analysis of each

braced term and applying Lemma 1.2(a) directly to the density of Y. Dif-

ferentiating (A.13) and applying Lemma 1.2(a) to the density derivative of

Y yields

d log fY|Λ(y;λ)

dy
=
d log fY(y)

dy
+

J+1∑
j=2

[
(∆kj − 2)λj−1

∆yj(∆yj − λj−1)
− 1

∆yj

]

=
d log fY(y)

dy
+

J+1∑
j=2

[
(∆kj − 2)λj−1 − (∆yj − λj−1)

∆yj(∆yj − λj−1)

]
=
d log φV/n(y)

dy
+O(log n).

For convenience, we define and calculate

HYj ≡ K − n1/2

J∑
j=1

εjΛj[Q
′(uj) +Q′′(uj)(Yj − uj)]

= K −O(n−1/2 log(n)),

dHYj

dεj
= −n1/2Λj[Q

′(uj) +Q′′(uj)(Yj − uj)]
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= −n1/2ΛjQ
′(uj) +O(n−1 log(n)),

d2HYj

dεjdεk
= 0.

Since dependence of H on the value of Yj is shown to be of lower-order

importance, we neglect the subscript and write

FWε,Λ|Λ(K|λ) =

∫ H

−∞
fW|Λ(w|λ)dw,

dFWε,Λ|Λ(K|λ)

dεj
= fW|Λ(H|λ)

dH

dεj
,

d2FWε,Λ|Λ(K|λ)

dεjdεk
= fW|Λ(H|λ)

d2H

dεjdεk
+ f ′W|Λ(H|λ)

(
dH

dεj

)(
dH

dεk

)
,

d2FWε,Λ|Λ(K|λ)

dε2j
= f ′W|Λ(H|λ)

(
dH

dεj

)2

=
[
f ′W|Λ(K|λ) +O(n−1/2 log(n))

]
×
[
−n1/2λjQ

′(uj) +O(n−1 log(n))
]2

=
[
f ′W|Λ(K|λ) +O(n−1/2 log(n))

]
×
[
nλ2

jQ
′(uj)

2 +O(n−1/2 log(n))λjQ
′(uj)

+O(n−2 log(n))
]
.

(iii) These are taken without proof for the time being. It seems likely that these

statements will work out since the corresponding CPE of O(n−2/3) is the

same as in Chapter 3, which uses the same quantile spacing estimator and

bandwidth rate for the nuisance parameters.

Theorem 1.3 proof

Proof. We prove all three parts under the assumption that the realized values of

Y, Ω, and λ all adhere to Condition ?(2 log(n)). By application of Lemma 1.2(b-

c), this induces at most O(n−2) error in our calculations. This will prove to be

asymptotically insignificant, so we ignore it going forward.
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(i) Applying Lemma A.1(i) to the CDF of LL,

P (LL < X0 + n−1/2K) = P (Wε,Λ < K +O(n−3/2 log(n)3))

= P (Wε,Λ < K) +O(n−3/2 log(n)3),

where the error can be pulled out of the probability statement because Wε,Λ

has been shown to have a bounded PDF in Lemma A.1(ii). We may then

write the CDF of LL as

=

∫
[0,2n−1 log(n)]J

P (Wε,λ < K | λ)dFΛ(λ) +O(n−3/2 log(n)3).

By a similar series of manipulations,

P (LI < X0 + n−1/2K) = P (WC,Λ < K +O(n−3/2 log(n)3))

= P (WC,Λ < K) +O(n−3/2 log(n)3)

=

∫
[0,2n−1 log(n)]J

∫
[0,1]J

P (Wc,λ < K | λ)dFC(c)dFΛ(λ)

+O(n−3/2 log(n)3).

The CDF difference between the two distributions is given by

P
(
LI < X0 + n−1/2K

)
− P

(
LL < X0 + n−1/2K

)
=

∫
[0,2n−1 log(n)]J

∫
[0,1]J

[
FWc,Λ|Λ(K|λ)− FWε,Λ|Λ(K|λ)

]
dFC(c)dFΛ(λ)

+O(n−3/2 log(n)3)

=

∫
[0,2n−1 log(n)]J

∫
[0,1]J

[
(c− ε)′

dFWc,Λ|Λ(K|λ)

dc

∣∣∣∣
C=ε

+
1

2
(c− ε)′

d2FWc,Λ|Λ(K|λ)

dc · dc′
|C=C̃∈[0,1]J (c− ε)

]
dFC(c)dFΛ(λ)

+O(n−3/2 log(n)3).
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Since E(C) = ε, the first term zeroes out. Since the elements of C are mu-

tually independent, the off-diagonal elements of the Hessian in the quadratic

term also zero out. Then we apply Lemma A.1(ii) to the Hessian, and sim-

plify the remainder terms using E(Λj) = O(n−1) and E(Λ2
j) = O(n−2) (Ku-

maraswamy, 1980). Using Var(Cj) = εj(1− εj)/2 also, this leaves us with

=
n

2

(
d
[
φVψ(w)

]
dw

)
J∑
j=1

[ψjQ
′(uj)]

2 εj(1− εj)
2

∫
[0,2n−1 log(n)]J

λ2
jdFΛ(λ)


+O(n−3/2 log(n)3).

The proof is completed by noting that second raw moments of Λ are such

that ∀j, E(Λ2
j) = 2/[(n+ 1)(n+ 2)] = 2n−2+O(n−3) (Kumaraswamy, 1980).

(ii) The first result of this part is obtained by solving a first order condition and

evaluating the expression obtained in part (i) at the solution K =
√
Vψ. The

second result comes directly from the uniform bound on densities obtained

in Lemma A.1(ii).

(iii) This part follows because the convolution operation (on the L∞ space of

CDFs) has norm bounded above by one. Specifically,

P

(
LLX + LLY < K

)
=

∫
R
P
(
LLY < K − x

)
dFLLX (x)

=

∫
R
P
(
LIY < K − x

)
dFLLX (x)

+

O(n−1) by part (ii)︷ ︸︸ ︷∫
R

[
P
(
LLY < K − x

)
− P

(
LIY < K − x

)]
dFLLX (x)

=

∫
R
P
(
LLX < K − x

)
dFLIY (x) +O(n−1)

=

∫
R
P
(
LIX < K − x

)
dFLIY (x)

+

O(n−1) by part (ii)︷ ︸︸ ︷∫
R

[
P
(
LLX < K − x

)
− P

(
LIX < K − x

)]
dFLIY (x) +O(n−1)
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= P
(
LIX + LIY < K

)
+O(n−1).

Lemma 1.4 proof

Proof. Notation from Hutson (1999) is used in the following proof: u1 is ulj, u2 is

uhj , and p is uj. After approximating the beta distribution with a normal, equation

(7) in Hutson (1999) determines u1 by (slightly abusing notation)

P{N (u1, u1(1− u1)/n) < p}+O(n−1/2) = 1− α/2,

which can be solved explicitly for u1 with error O(n−1) as

1− α/2 = Φ

( √
n(p− u1)√
u1(1− u1)

)
+O(n−1/2),

z1−α/2 ≡ Φ−1(1− α/2) =

√
n(p− u1)√
u1(1− u1)

+O(n−1/2),

u1 = p− z1−α/2
√
u1(1− u1)/n+O(n−1),

(p− u1)2 = z2
1−α/2u1(1− u1)/n+O(n−1),

u2
1 − u1(2p) + p2 = u2

1(−z2
1−α/2/n) + u1(z2

1−α/2/n) +O(n−1),

0 = u2
1(1 + z2

1−α/2/n) + u1(−2p− z2
1−α/2/n) + p2 +O(n−1).

We can use the quadratic formula (choosing the negative root—otherwise we get

u2), and temporarily simplify notation with z ≡ z1−α/2, u ≡ u1. Also recalling

that for a small ε, (X + ε)1/2 = X1/2 +O(ε) and (1 + ε)−1 = 1−1 −O(ε),

u =
(2p+ z2/n)−

√
(2p+ z2/n)2 − 4(1 + z2/n)p2

2(1 + z2/n)
+O(n−1)

=
p

1 + z2/n
+O(n−1)−

√
4p2 + 4pz2/n+ z4/n2 − 4p2 − 4p2z2/n

2(1 + z2/n)
+O(n−1)

= p(1−O(n−1))−
√

4p(1− p)z2/n+ z4/n2

2(1 + z2/n)
+O(n−1)

= p−
2z
√
p(1− p)/n+O(n−2)

2(1 + z2/n)
+O(n−1)

= p− z
√
p(1− p)/n(1−O(n−1)) +O(n−1)

= p− z
√
p(1− p)/n+O(n−1).

This approximation applies similarly to u2.
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Expansions of Th, Tl, Ch, Cl in Theorem 1.5

CPE from Taylor Approximations: Th, Tl

Proof. Up to third order terms, Th(α̃) and Tl(α̃) are given by

Th(α̃) =

TH,1︷ ︸︸ ︷
P

(
J∑
j=1

ψj
Q̂I
U

[
uHj (α̃)

]
− uj

f(F−1(uj))
>

J∑
j=1

ψj
f ′(F−1(uj))

2f(F−1(uj))3

(
Q̂I
U

[
uHj (α̃)

]
− uj

)2
)

−

TH,2︷ ︸︸ ︷
P

(
J∑
j=1

ψj

(
Q̂I
U

[
uHj (α̃)

]
− uj

f(F−1(uj))

)
> 0

)
,

Tl(α̃) =

TL,1︷ ︸︸ ︷
P

(
J∑
j=1

ψj
Q̂I
U

[
uLj (α̃)

]
− uj

f(F−1(uj))
<

J∑
j=1

ψj
f ′(F−1(uj))

2f(F−1(uj))3

(
Q̂I
U

[
uLj (α̃)

]
− uj

)2
)

−

TL,2︷ ︸︸ ︷
P

(
J∑
j=1

ψj

(
Q̂I
U

[
uLj (α̃)

]
− uj

f(F−1(uj))

)
< 0

)
.

For this demonstration, we introduce the scaled and centered

∆H
j ≡

√
n
(
Q̂I
U

[
uHj (α̃)

]
− uHj (α̃)

)
, ∆L

j ≡
√
n
(
Q̂I
U

[
uLj (α̃)

]
− uLj (α̃)

)
.

Since uLj (α̃), uHj (α̃) = uj + O(n−1/2), both ∆H and ∆L have densities converging

to the same multivariate normal PDF (as shown in Lemma A.1(ii)), which we

denote by f∆I (·). We also define

∆H
0 ≡

J∑
j=1

ψjγj
√
n
(
uHj (α̃)− uj

)
,

∆L
0 ≡

J∑
j=1

ψjγj
√
n
(
uLj (α̃)− uj

)
= −∆H

0 +O(n−1/2),

where the last equality follows by repeated application of Lemma 1.4.

There is an important symmetry between Th(α̃) and Tl(α̃). For convenience,
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we demonstrate an expansion for Th(α̃) and then state a parallel result for Tl(α̃):

TH,2 = P

[
Q̂I
U

[
uH1 (α̃)

]
− u1 > −

J∑
j=2

ψjγj

(
Q̂I
U

[
uHj (α̃)

]
− uj

)]

= P

[
Q̂I
U

[
uH1 (α̃)

]
− uH1 + uH1 − u1

> −
J∑
j=2

ψjγj

(
Q̂I
U

[
uHj (α̃)

]
− uHj + uHj − uj

)]

= P

[√
n
(
Q̂I
U

[
uH1 (α̃)

]
− uH1

)
+
√
n
(
uH1 − u1

)
> −

J∑
j=2

ψjγj
√
n
(
Q̂I
U

[
uHj (α̃)

]
− uHj

)
−

J∑
j=2

ψjγj
√
n
(
uHj − uj

)]

= P

[
∆H

1 > −
J∑
j=2

ψjγj∆
H
j −∆H

0

]
≡ P

[
∆H

1 > πH,2(∆H
−1)
]
,

and similarly,

TH,1 ≡ P

(
J∑
j=1

ψj
Q̂I
U

[
uHj (α̃)

]
− uj

f(F−1(uj))
>

J∑
j=1

ψj
f ′(F−1(uj))

2f(F−1(uj))3

(
Q̂I
U

[
uHj (α̃)

]
− uj

)2
)

= P

(
Q̂I
U

[
uH1 (α̃)

]
− uH1 + uH1 − u1 +

J∑
j=2

ψjγj

(
Q̂I
U

[
uHj (α̃)

]
− uHj + uHj − uj

)
>

f ′(F−1(u1))

2f(F−1(u1))2

(
Q̂I
U

[
uH1 (α̃)

]
− uH1 + uH1 − u1

)2

+
J∑
j=2

ψjγj
f ′(F−1(uj))

2f(F−1(uj))2

(
Q̂I
U

[
uHj (α̃)

]
− uHj + uHj − uj

)2
)

= P

(
∆H

1 +
J∑
j=2

ψjγj∆
H
j + ∆H

0

>
f ′(F−1(u1))

2f(F−1(u1))2
n−1/2

[(
∆H

1

)2
+
(
n1/2[uH1 − u1]

)2
+ 2∆H

1

√
n(uH1 − u1)

]
+

J∑
j=2

ψjγj
f ′(F−1(uj))

2f(F−1(uj))2
n−1/2

[
∆H
j +
√
n(uHj − uj)

]2)
.



148

This is conveniently restated as

TH,1 = E∆H
−1

[
P
(
a
(
∆H

1

)2
+ b∆H

1 + c > 0|∆H
−1

)]
,

where a = − f ′(F−1(u1))

2f(F−1(u1))2
n−1/2,

b = 1− f ′(F−1(u1))

f(F−1(u1))2
(uH1 (α̃)− u1)

= 1− f ′(F−1(u1))

f(F−1(u1))2
z1−α̃u1(1− u1)n−1/2 +O(n−1)

≡ b0 +O(n−1),

and c = −πH,2(∆H
−1)− f ′(F−1(u1))

2f(F−1(u1))2
n−1/2

(
n1/2[uH1 − u1]

)2

−
J∑
j=2

ψjγj
f ′(F−1(uj))

2f(F−1(uj))2
n−1/2

(
∆H
j + n1/2[uHj − uj]

)2
,

which is, after approximating the values of uHj (α̃) by Lemma 1.4,

= −πH,2(∆H
−1)− n−1/2

[
f ′(F−1(u1))

2f(F−1(u1))2

(
n1/2[z1−α̃u1(1− u1)]

)2

+
J∑
j=2

ψjγj
f ′(F−1(uj))

2f(F−1(uj))2

(
∆H
j + n1/2[z1−α̃uj(1− uj)]

)2
]

+O(n−1)

≡ −πH,2(∆H
−1) + c∗ +O(n−1).

The roots, denoted r− and r+, are given by the quadratic formula. Let

πH,1(v−1) ≡ r+ =
−b+

√
b2 − 4ac

2a
= −c

b
− ac2

b3
+O(a2c3)

=
πH,2(v−1)

b0

− c∗

b0

− a[πH,2(v−1)]2

b3
0

+O(n−1),

which follows from a Taylor expansion of the quadratic formula around the value

c = 0. Now up to an exponentially decaying error term, we can write3

TH,1(α̃) = E∆H
−1

[
P
(
∆H

1 > r+|∆H
−1

)]
.

3This follows from analysis of two cases. First, if f ′(F−1(u1)) > 0, then a < 0, r+ < r−,
and P

(
a
(
∆H

1

)2 + b∆H
1 + c > 0|∆H

−1

)
= P

(
r+ < ∆H

1 < r−|∆H
−1

)
≈ P

(
r+ < ∆H

1 |∆H
−1

)
, where

the approximation error decays exponentially because r− � n1/2, r− > 0, and ∆ has a multi-
variate normal limiting distribution. In the alternative case, f ′(F−1(u1)) < 0 and a > 0, lead-
ing to r− < r+ and P

(
a
(
∆H

1

)2 + b∆H
1 + c > 0|∆H

−1

)
= P

(
{r+ < ∆H

1 } ∪ {∆H
1 < r−}|∆H

−1

)
≈

P
(
r+ < ∆H

1 |∆H
−1

)
, where the approximation follows because r− < 0 and again r− � n1/2.
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Then the discrepancy between πH,1(v−1) and πH,2(v−1) is the source of the CPE

represented by Th. By our above calculations, we have the following important

result:

πH,1(v−1)− πH,2(v−1) =
πH,2(v−1)(1− b0)

b0

− c∗

b0

− a[πH,2(v−1)]2

b3
0

+O(n−1)

(A.14)

= O(n−1/2).

Returning to our terms of interest,

Th(α̃) =

∫
RJ−1

∫ πH,2(v−1)

πH,1(v−1)

f∆H
1 |∆H

−1
(t|v−1)dt · f∆H

−1
(v−1)dv−1

=

∫
RJ−1

[
πH,2(v−1)− πH,1(v−1)

]
f∆H

1 |∆H
−1

(πH,2(v−1)|v−1) · f∆H
−1

(v−1)dv−1

+O(n−1)

=

∫
RJ−1

[
πH,2(v−1)− πH,1(v−1)

]
f∆I

1|∆I
−1

(πH,2(v−1)|v−1) · f∆I
−1

(v−1)dv−1

+O(n−1)

= O(n−1/2),

where the rate follows by (A.14) in combination with the bounded limiting PDF

of ∆I . From a parallel set of definitions and steps (now the π variables are upper

bounds) for Tl(α̃), it is possible to write

πL,2(v−1) = −
J∑
j=2

ψjγjvj −∆L
0 = πH,2(v−1) +O(n−1/2), (A.15)

πL,1(v−1)− πL,2(v−1) =
πL,2(v−1)(1− b0)

b0

− c∗

b0

− a[πL,1(v−1)]2

b3
0

+O(n−1)

=
[
πH,1(∆H

−1)− πH,2(∆H
−1)
]

+O(n−1), (A.16)

where (A.16) follows by plugging in (A.15). Evaluating Tl,

Tl(α̃) =

∫
RJ−1

∫ πL,1(∆L
−1)

πL,2(∆L
−1)

f∆L
1 |∆L

−1
(t|v)dt · f∆L

−1
(v)dv

=

∫
RJ−1

[
πL,1(v−1)− πL,2(v−1)

]
f∆L

1 |∆L
−1

(πL,2(v−1)|v−1) · f∆L
−1

(v−1)dv−1
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+O(n−1)

=

∫
RJ−1

[
πL,1(v−1)− πL,2(v−1)

]
f∆I

1|∆I
−1

(πH,2(v−1)|v−1) · f∆I
−1

(v−1)dv−1

+O(n−1).

Then by reference to (A.16), we see that

Th(α̃) + Tl(α̃) = O(n−1).

CPE from density estimation error: Ch, Cl

We continue to maintain the assumption that Y and Ω satisfy Condition

?(2 log(n)) as defined in Lemma 1.2. Notationally, for vector x, let O(x) mean

O(max(x)); below, this is only used in cases where each element of the vector has

the same bound anyway. A bound on the estimation error can be computed as

γ̂j = (m1/mj)

[
Q(Yj + Ω+

j )−Q(Yj − Ω−j )

Q(Y1 + Ω+
1 )−Q(Y1 − Ω−1 )

]
(by definition/notation)

= (m1/mj)

[
Q′(Yj)Ωj +O(Ω2

j)

Q′(Y1)Ω1 +O(Ω2
1)

]
(by Taylor expansion)

=
Q′(Yj)

Q′(Y1)
×
[

Ωj/mj

Ω1/m1

]
+O(Ω2) (by algebra)

= [γj +O(Y − u)]×
[

Ωj/mj

Ω1/m1

]
+O(m2/n2) (by Condition ?; see below)

= γj +O(m1/2n−1 log(n)) (by Condition ?; see below).

For the statement Ωj = O(m2
j/n

2), note that the ∆kj (different j) in the definition

of Condition ? is 2mj, so the deviation of Ωj from 2m/(n + 1) is bounded by

n−1m
1/2
j log(n). Consequently,

Ω2
j = [2mj/(n+ 1)]2 +O(n−2m

3/2
j log(n)) = O(m2

j/n
2).

For the final line, first note that Condition ?(2 log(n)) for Y implies Y − u =

O(n−1/2 log(n)) since the ∆kj grow proportionally to n (since the uj are fixed).
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Second, using Condition ?(2 log(n)) for Ω,

Ωj =
2mj

n
+O(n−1m

1/2
j log(n)) (as above),

Ωj/mj = (2/n) +O(n−1m
−1/2
j log(n)) (by algebra)

= 2n−1
[
1 +O(m

−1/2
j log(n))

]
(since, again, ∆kj ∝ n),

Ωj/mj

Ω1/m1

=
2n−1

[
1 +O(m

−1/2
j log(n))

]
2n−1

[
1 +O(m

−1/2
1 log(n))

]
= 1 +O(m−1/2 log(n)) = 1 +O(n−1/3 log(n)),

where we choose all mj � n2/3 as discussed in the main text. Since γj = O(1), the

largest of the remainder terms is this O(n−1/3 log(n)).

By Assumption A1.1, Q(·) is three times continuously differentiable in a

neighborhood of each uj, so the calibration function α̃(·) and the quantile selection

functions uHj (·) and uLj (·) (as described first in equation (1.9) of §1.3) are also three

times continuously differentiable. For the calibration function α̃(γ), a change in γ

will affect α̃ by an O(1) amount; note that γj ∈ (0,∞) and α̃ ∈ [α, 1]. From Lemma

1.4, suppressing subscripts, uh(α̃) = u + n−1/2Φ−1(1− α̃)
√
u(1− u) + O(n−1), so

the derivative with respect to α̃ is −n−1/2
√
u(1− u)/φ(Φ−1(1− α̃)) + O(n−1) =

O(n−1/2), and the order is the same for the derivative of ul(α̃). Consequently, for

all j = 1, . . . , J ,

ûj − uj,0 ≡ uhj (α̃(γ̂))− uhj (α̃(γ)) = (γ̂ − γ)′ × uhj
′
(α̃(γ))× α̃′(γ) (A.17)

= O(m−1/2 log(n))O(n−1/2)O(1) = O(n−5/6 log(n)),

Q(ûj)−Q(uj,0) = Q′(uj,0)(ûj − uj,0) + (1/2)Q′′(ũ)(ûj − uj,0)2 (A.18)

= O(n−1/2m−1/2 log(n)) = O(n−5/6 log(n)).

The term of ultimate interest can be decomposed into

Ch = Eγ̂{P (Wû >
√
nψ′[Q(u)−Q(û)] | γ̂)

− P (Wu0 >
√
nψ′[Q(u)−Q(u0)] | γ̂)}

= Eγ̂{P (Wû >
√
nψ′[Q(u)−Q(û)] | γ̂)

− P (Wû >
√
nψ′[Q(u)−Q(u0)] | γ̂)}
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+ Eγ̂{P (Wû >
√
nψ′[Q(u)−Q(u0)] | γ̂)

− P (Wu0 >
√
nψ′[Q(u)−Q(u0)] | γ̂)}

≡ C1
h + C2

h.

We additionally bound the first term by the expansion

|C1
h| ≤

∣∣∣∣∣∣∣∣
C1,a
h︷ ︸︸ ︷

Eγ̂
{
fWû|γ̂(

√
nψ′[Q(u)−Q(u0)] | γ̂)×

√
nψ′[Q(û)−Q(u0)]

}∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
C1,b
h︷ ︸︸ ︷

Eγ̂
{

(1/2)f ′Wû|γ̂(w̃ | γ̂)(
√
nψ′[Q(û)−Q(u0)])2

}∣∣∣∣∣∣∣∣.
To bound C1,a

h , consider

E(AB) = Cov(A,B) + E(A)E(B),

Cov(A,B) = Corr(A,B)
√

Var(A)Var(B) ≤
√

Var(A)Var(B),

with A = fWû|γ̂(
√
nψ′[Q(u) − Q(u0)] | γ̂) and B =

√
nψ′[Q(û) − Q(u0)]. From

(A.17) and (A.18),

E(B) = Bias(γ̂)O(n−1/2)O(n1/2) = O(m2/n2) = O(n−2/3),

and similarly

Var(B) = nVar(γ̂)O(n−1) = O(m−1) = O(n−2/3),

using (2.5) and (2.6) of Bloch and Gastwirth (1968) for the bias and variance of

γ̂. From Lemma A.1(iii), E(A) = O(1) and Var(A) = O(n−2/3).

For C1,b
h , since B2 > 0 for any B, we can use E(AB2) ≤ E(sup |A|B2) ≤

sup |A|E(B2):

|C1,b
h | ≤ (1/2) sup

?(2 log(n))

∣∣f ′Wû|γ̂(w̃ | γ̂)
∣∣︸ ︷︷ ︸

= O(1) by Lemma A.1(iii)

×E{(
√
nψ′[Q(û)−Q(u0)])2}︸ ︷︷ ︸

= O(Var(γ̂)) = O(m−1)

= O(n−2/3),

where the equivalence of the order of the second term to that of Var(γ̂) comes

again from differentiability arguments and equations (A.17) and (A.18).
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Finally, for C2
h,

|C2
h| =

∣∣∣Eγ̂{P (Wû >
√
nψ′[Q(u)−Q(u0)] | γ̂)

− P (Wu0 >
√
nψ′[Q(u)−Q(u0)] | γ̂)}

∣∣∣
=
∣∣∣Eγ̂{FWu0|γ̂

(
√
nψ′[Q(u)−Q(u0)] | γ̂)− FWû|γ̂ (

√
nψ′[Q(u)−Q(u0)] | γ̂)

}∣∣∣
≤

∣∣∣∣∣Eγ̂
{

(u0 − û)′
∂FWt|γ̂(

√
nψ′[Q(u)−Q(u0)] | γ̂)

∂t

∣∣∣∣
t=u0

}∣∣∣∣∣
+

∣∣∣∣∣Eγ̂
{

(u0 − û)′
∂2FWt|γ̂(

√
nψ′[Q(u)−Q(u0)] | γ̂)

∂t∂t′

∣∣∣∣
t=ũ

(u0 − û)

}∣∣∣∣∣
≡ |C2,a

h |+ |C
2,b
h |.

For C2,a
h , again consider the structure

E(AB) = Cov(A,B) + E(A)E(B),

Cov(A,B) = Corr(A,B)
√

Var(A)Var(B) ≤
√

Var(A)Var(B),

this time with A = u0 − û and B the first derivative of FWt|γ̂ as appears in the

expansion above. From (A.17),

E(A) = Bias(γ̂)O(n−1/2) = O(n−1/2m2/n2) = O(n−7/6),

Var(A) = Var(γ̂)O(n−1) = O(n−1m−1) = O(n−5/3),

where the bias and variance of γ̂ are from (2.5) and (2.6) of Bloch and Gastwirth

(1968). From Lemma A.1(iii), E(B) = O(n1/2) and Var(B) = O(n1/3).

For C2,b
h , as with C1,b

h , we can use E(BA2) ≤ E(sup |B|A2) ≤ sup |B|E(A2),

where still A = u0 − û and now B is the second derivative of FWt|γ̂ . From (A.17),

E(A2) = Var(γ̂)O(n−1) = O(n−1m−1) = O(n−5/3). Lemma A.1(iii) states that

B = O(n).

The foregoing arguments and rates are all the same for Cl.

Negative definiteness of Hx

Proof. As given in (A.2),

hj(x) = −
(
kj − kj−1 − 1

(yj − yj−1)2
+
kj+1 − kj − 1

(xj+1 − xj)2

)
≡ −(aj + aj+1),
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hj,j(x) =
kj+1 − kj − 1

(xj+1 − xj)2
≡ aj+1,

and all other cross-partials are zero. The full Hessian Hx is then

(−a1 − a2) a2 0 0 · · · · · · 0

a2 (−a2 − a3) a3 0 · · · · · · 0

0 a3 (−a3 − a4) a4 0 · · · 0
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . 0

...
. . . . . . . . . an

0 · · · · · · · · · 0 an (−an − an+1)


,

where, regardless of the value of x, all of the aj are positive. By definition, this is

negative definite if and only if all quadratic forms are negative, i.e. if c′Hxc < 0

for any vector c = (c1, . . . , cn) 6= 0. Using the symmetry and values above, this

will be equal to

n∑
i=1

c2
i (−ai − ai+1) + 2

n∑
i=2

cici−1ai

= −a1c
2
1 − an+1c

2
n −

n∑
i=2

aic
2
i −

n∑
i=2

aic
2
i−1 + 2

n∑
i=2

cici−1ai

= −a1c
2
1 − an+1c

2
n −

n∑
i=2

ai(c
2
i + c2

i−1 − 2cici−1)

= −a1c
2
1 − an+1c

2
n −

n∑
i=2

ai(ci − ci−1)2 < 0.

The last expression is strictly negative since all ai > 0 and all the squares are

nonnegative, c2
1 ≥ 0, c2

n ≥ 0, (ci − ci−1)2 ≥ 0, with at least one of them strictly

positive since there is at least one nonzero ci.



Appendix B

Technical appendix to Chapter 2

B.1 Lemma 2.2 proof

The case d = 1 is covered here. Generalizing to d > 1 should yield the

same order and type of terms in the bias, just with vectors for first derivatives and

matrices for second derivatives. The hd (instead of h) from the change of variables

does not determine the bias (see below).

Case b = 2

By definition, QY |Ch(p) satisfies

p =

∫
Ch

{∫ QY |Ch (p)

−∞
fY |X(y;x)dy

}
fX|Ch(x)dx, (B.1)

where fY |X(y;x) ≡ fY,X(y, x)/fX(x) is the conditional PDF of Y given X evaluated

at Y = y and X = x. Similarly, fX|Ch(x) = fX(x)/P (X ∈ Ch) = O(h−1) is the

conditional PDF of X within Ch. Also by definition, QY |X(p;x) satisfies

p =

∫ QY |X(p;x)

−∞
fY |X(y;x)dy

for all x.
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Decomposing the {·} term, (B.1) becomes

p =

∫
Ch

{∫ QY |X(p;x)

−∞
fY |X(y;x)dy +

∫ QY |Ch (p)

QY |X(p;x)

fY |X(y;x)dy

}
fX|Ch(x)dx

= p+

∫
Ch

{∫ QY |Ch (p)

QY |X(p;x)

fY |X(y;x)dy

}
fX|Ch(x)dx,

implying

0 =

∫
Ch

{∫ QY |Ch (p)

QY |X(p;x)

fY |X(y;x)dy

}
fX|Ch(x)dx.

With change of variables x = wh, and converting fX|Ch(·) to fX(·),

0 =
h

P (X ∈ Ch)

∫ 1

−1

{∫ QY |Ch (p)

QY |X(p;wh)

fY |X(y;wh)dy

}
fX(wh)dw.

With enough smoothness, a second-order Taylor expansion around w = 0

can be taken of the integrand. An explicit expression for the bias comes out of

the zeroth-order term. The first-order terms will zero out, leaving the second-order

terms of order h2 to additionally determine the bias. If there is enough smoothness

to have the third-order terms (order h3), they will also zero out, reducing the

remainder to o(h3). In the following calculations, we use the derivative rule

∂

∂x

∫ b

a(x)

f(y, x)dy = −f(a(x), x)a′(x) +

∫ b

a(x)

∂

∂x
f(y, x)dy.

Schematically, we are taking a second-order Taylor expansion of{∫ b

a(x)

f(y;x)dy

}
g(x)

around x = 0, which would be∫ b

a(0)

f(y; 0)dy g(0)

+ x

{∫ b

a(0)

f(y; 0)dy g′(0) +

[∫ b

a(0)

∂

∂x
f(y;x)

∣∣∣∣
x=0

dy − f(a(0); 0)a′(0)

]
g(0)

}
+ (x2/2)

{∫ b

a(0)

f(y; 0)dy g′′(0) +

[∫ b

a(0)

∂

∂x
f(y;x)

∣∣∣∣
x=0

dy − f(a(0); 0)a′(0)

]
g′(0)
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+

[∫ b

a(0)

∂

∂x
f(y;x)

∣∣∣∣
x=0

dy − f(a(0), 0)a′(0)

]
g′(0)

+

[∫ b

a(0)

∂2

∂x2
f(y;x)

∣∣∣∣
x=0

dy − ∂

∂x
f(a(0);x)

∣∣∣∣
x=0

a′(0)

− f(a(0); 0)a′′(0)

−

(
∂

∂y
f(y; 0)

∣∣∣∣
y=a(0)

a′(0) +
∂

∂x
f(a(0);x)

∣∣∣∣
x=0

)
a′(0)

]
g(0)

}
+ o(x2).

For compactness, we define

Q
(0,1)
Y |X (p; 0) ≡ ∂

∂x
QY |X(p;x)

∣∣∣∣
x=0

, Q
(0,2)
Y |X (p; 0) ≡ ∂2

∂x2
QY |X(p;x)

∣∣∣∣
x=0

,

ξp ≡ QY |X(p; 0),

f
(0,1)
Y |X (y; 0) ≡ ∂

∂x
fY |X(y;x)

∣∣∣∣
x=0

, f
(1,0)
Y |X (ξp; 0) ≡ ∂

∂y
fY |X(y; 0)

∣∣∣∣
y=ξp

.

The Taylor expansion of{∫ QY |Ch (p)

QY |X(p;wh)

fY |X(y;wh)dy

}
fX(wh)

around w = 0 yields{∫ QY |Ch (p)

ξp

fY |X(y; 0)dy

}
fX(0)

+ wh

{∫ QY |Ch (p)

ξp

fY |X(y; 0)dy f ′X(0) +

∫ QY |Ch (p)

ξp

f
(0,1)
Y |X (y; 0)dy fX(0)

− fY |X(ξp; 0)Q
(0,1)
Y |X (p; 0)fX(0)

}

+
(wh)2

2

{∫ QY |Ch (p)

ξp

fY |X(y; 0)dy f ′′X(0)

+ 2

[∫ QY |Ch (p)

ξp

f
(0,1)
Y |X (y; 0)dy − fY |X(ξp; 0)Q

(0,1)
Y |X (p; 0)

]
f ′X(0)

+

[∫ QY |Ch (p)

ξp

f
(0,2)
Y |X (y; 0)dy − fY |X(ξp; 0)Q

(0,2)
Y |X (p; 0)

]
fX(0)
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− 2f
(0,1)
Y |X (ξp; 0)Q

(0,1)
Y |X (p; 0)fX(0)− f (1,0)

Y |X (ξp; 0)
[
Q

(0,1)
Y |X (p; 0)

]2

fX(0)

}
+ o(h2)

= A+ hwB − (1/2)h2w2C + o(h2),

with A, B, and C implicitly defined.

To extract the bias from A, we also need to expand∫ QY |Ch (p)

ξp

fY |X(y; 0)dy =

∫ QY |Ch (p)

ξp

[
fY |X(ξp; 0) + f

(1,0)
Y |X (ỹ; 0)(y − ξp)

]
dy

= fY |X(ξp; 0)
[
QY |Ch(p)− ξp

]
+O

([
QY |Ch(p)− ξp

]2)
,

where ỹ is determined by the mean value theorem and so located between the lower

and upper limits of integration. Anticipating that the bias is
[
QY |Ch(p)− ξp

]
=

O(h2), the term A is then

A = fY |X(ξp; 0)
[
QY |Ch(p)− ξp

]
fX(0) +O

(
h4
)
.

Since there is no w in A,
∫ 1

−1
Adw = 2A.

The B term zeroes out since the only w in it is the w in hwB. The integral

over [−1, 1] is thus
∫ 1

−1
(hwB)dw = hB

∫ 1

−1
wdw = (hB)(0) = 0.

For the C term, the only w is the w2 in (1/2)h2w2C, so∫ 1

−1

(1/2)h2w2Cdw = (1/2)h2C

∫ 1

−1

w2dw = (1/2)h2C(2/3) = h2C/3.

Anticipating that the bias is O(h2), and assuming f
(0,2)
Y |X (y; 0) is bounded in a

neighborhood of y = ξp, the three definite integrals in C are O(h2). Thus C

simplifies to

C = 2fY |X(ξp; 0)Q
(0,1)
Y |X (p; 0)f ′X(0) + fY |X(ξp; 0)Q

(0,2)
Y |X (p; 0)fX(0)

+ 2f
(0,1)
Y |X (ξp; 0)Q

(0,1)
Y |X (p; 0)fX(0) + f

(1,0)
Y |X (ξp; 0)

[
Q

(0,1)
Y |X (p; 0)

]2

fX(0)

+O(h2).

Combining the results for A, B, and C,

2fY |X(ξp; 0)
[
QY |Ch(p)− ξp

]
fX(0) +O

(
h4
)

= h2C/3 +O(h4) + o(h2),
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so the bias is

QY |Ch(p)− ξp

= h2 C

6fY |X(ξp; 0)fX(0)
+ o(h2)

=
h2

6

{
2Q

(0,1)
Y |X (p; 0)f ′X(0)/fX(0) +Q

(0,2)
Y |X (p; 0) + 2f

(0,1)
Y |X (ξp; 0)Q

(0,1)
Y |X (p; 0)/fY |X(ξp; 0)

+ f
(1,0)
Y |X (ξp; 0)

[
Q

(0,1)
Y |X (p; 0)

]2

/fY |X(ξp; 0)

}
+ o(h2).

As noted, the o(h2) sharpens to o(h3) if there is enough smoothness to get the h3

term in the expansion. Similar to the B term above, this term will zero out since

w enters only as w3, which integrates to zero over w ∈ [−1, 1].

The smoothness of fY |X(·; ·) does not appear in the main text assumptions

because it is a consequence of sQ. From (B.2), it is clear that the existence of

Q
(0,2)
Y |X (p;x) implies the existence of f

(0,1)
Y |X

(
QY |X(p;x);x

)
.

This bias expression is equivalent to the bias in Bhattacharya and Gan-

gopadhyay (1990, Thm. K1), just in different notation. By definition, for all x,

FY |X
(
QY |X(p;x);x

)
= p.

Differentiating once with respect to x yields

0 = Q
(0,1)
Y |X (p;x)fY |X

(
QY |X(p;x);x

)
+ F

(0,1)
Y |X

(
QY |X(p;x);x

)
,

Q
(0,1)
Y |X (p;x) = −

F
(0,1)
Y |X

(
QY |X(p;x);x

)
fY |X

(
QY |X(p;x);x

) .
Differentiating again with respect to x gives

0 = Q
(0,2)
Y |X (p;x)fY |X

(
QY |X(p;x);x

)
+ F

(0,2)
Y |X

(
QY |X(p;x);x

)
+Q

(0,1)
Y |X (p;x)f

(0,1)
Y |X

(
QY |X(p;x);x

)
+
[
Q

(0,1)
Y |X (p;x)

]2

f
(1,0)
Y |X

(
QY |X(p;x);x

)
+ f

(0,1)
Y |X

(
QY |X(p;x);x

)
Q

(0,1)
Y |X (p;x),

Q
(0,2)
Y |X (p;x) = − 1

fY |X
(
QY |X(p;x);x

)
×
{
F

(0,2)
Y |X

(
QY |X(p;x);x

)
+ 2Q

(0,1)
Y |X (p;x)f

(0,1)
Y |X

(
QY |X(p;x);x

)
(B.2)
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+
[
Q

(0,1)
Y |X (p;x)

]2

f
(1,0)
Y |X

(
QY |X(p;x);x

)}
.

Plugging these substitutions into the original bias expression gives

Bias =
h2

6

{
−

2F
(0,1)
Y |X (ξp; 0)f ′X(0)

fX(0)fY |X(ξp; 0)

− 1

fY |X(ξp; 0)

{
F

(2,0)
Y |X (ξp; 0)− 2F

(0,1)
Y |X (ξp; 0)f

(0,1)
Y |X (ξp; 0)/fY |X(ξp; 0)

+
[
F

(0,1)
Y |X (ξp; 0)

]2

f
(1,0)
Y |X (ξp; 0)/fY |X(ξp; 0)

}

−
2f

(0,1)
Y |X (ξp; 0)F

(0,1)
Y |X (ξp; 0)[

fY |X(ξp; 0)
]2 +

f
(1,0)
Y |X (ξp; 0)

[
F

(0,1)
Y |X (ξp; 0)

]2

[
fY |X(ξp; 0)

]3
}

=
h2

6[fY |X(ξp; 0)]3

×

{
−2F

(0,1)
Y |X (ξp; 0)[fY |X(ξp; 0)]2f ′X(0)/fX(0)− F (0,2)

Y |X (ξp; 0)[fY |X(ξp; 0)]2

+ 2F
(0,1)
Y |X (ξp; 0)f

(0,1)
Y |X (ξp; 0)fY |X(ξp; 0)− [F

(0,1)
Y |X (ξp; 0)]2f

(1,0)
Y |X (ξp; 0)

− 2F
(0,1)
Y |X (ξp; 0)f

(0,1)
Y |X (ξp; 0)fY |X(ξp; 0) + [F

(0,1)
Y |X (ξp; 0)]2f

(1,0)
Y |X (ξp; 0)

}

= −h2
fX(0)F

(0,2)
Y |X (ξp; 0) + 2f ′X(0)F

(0,1)
Y |X (ξp; 0)

6fX(0)fY |X(ξp; 0)
.

This is equivalent to the bias in Bhattacharya and Gangopadhyay (1990, Thm.

K1) since their bandwidth is h/2, so (h/2)2/6 = h2/24, and with x0 = 0 and

g(ξ) ≡ fY |X(ξp; 0), Gx(ξ | x0) ≡ F
(0,1)
Y |X (ξp; 0), Gxx(ξ | x0) ≡ F

(0,2)
Y |X (ξp; 0).

Case b < 2

In the foregoing calculations, we (implicitly) assumed kX ≥ 1, kQ ≥ 2,

sY ≥ 1, and sY X ≥ 2. (While the brief appearance of f ′′X(0) means we technically

assumed kX ≥ 2, this can easily be weakened to kX ≥ 1 since it appears in a

smaller-order term, and similarly for f
(0,2)
Y |X (y; 0).)

By examining the original Taylor expansion, we can see how the order of

the bias will diminish as we relax these smoothness assumptions. We consider the
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above expansion A = h2w2C/2− hwB + o(h2).

The A term is the bias plus a remainder depending on sY . Even if sY ≤ 1,

the remainder is ∫ QY |Ch (p)

ξp

[
fY |X(y; 0)− fY |X(ξp; 0)

]
(y − ξp)dy

= O
(
Bias2+sY

)
,

which is always smaller than O(Bias) if the bias goes to zero asymptotically. Thus,

sY here does not have an effect on the order of the bias, and Ah is the bias times

O(1) terms not dependent on smoothness.

The C term includes many derivatives, but some of the terms are already

smaller-order. Assumption A2.6 already requires f
(0,2)
Y |X

(
QY |X(p; 0)

)
to be contin-

uous in a neighborhood of p, so those terms may be ignored. Specifically, f ′′X(0)

only appears in a term of order (h2Bias), which is always smaller than the bias, so

sX has no binding effect here.

The three key terms in C involve

Q
(0,1)
Y |X (p; 0)f ′X(0), Q

(0,2)
Y |X (p; 0), and f

(1,0)
Y |X (ξp; 0)

[
Q

(0,1)
Y |X (p; 0)

]2

.

If sX < 1, the first term will be replaced by a larger-order term; if sQ < 2, the

same will happen for the second term; and if sY < 1, same for the third term,

but we already need sY > 2 to apply the Chapter 1 results. Essentially, with

less smoothness, we are forced to replace (for example) g(x) = g(0) + g′(0)x +

(1/2)g′′(x̃)x2 with g(x) = g(0) + g′(x̃)x, where x̃ is determined by the mean value

theorem. Before, g′′(x̃) = g′′(0) + [g′′(x̃)− g′′(0)], and the absolute value of the

[·] term is bounded as |x̃|γ by Hölder exponent γ. After relaxing the smoothness

assumptions some, we get a similar expression but with [g′(x̃)− g′(0)]: the number

of derivatives k is smaller by one, and there is some new γ. With less smoothness,

the B terms do not integrate to zero since there are w̃ floating around, instead

of just Const ×
∫ 1

−1
wdw = 0. The result is that the bias is of order hb for b =

min{sQ, 1 + sX , 1 + sY } for sQ ∈ [1, 2) and sX , sY ∈ (0, 1). As we saw originally,

the biggest b can be is two, and relaxing sQ further continues to decrease the order
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in the same pattern; so in all, the bias is

QY |Ch(p)− ξp = O(hb), b = min{2, sQ, 1 + sX , 1 + sY }.

B.2 Plug-in bandwidth calculations

The plug-in bandwidth is for d = 1 and b = 2, in which case the bias is

QY |Ch(p)− ξp =
h2

6

{[
2Q

(0,1)
Y |X (p; 0)f ′X(0)/fX(0) +Q

(0,2)
Y |X (p; 0)

]
+ 2f

(0,1)
Y |X (ξp; 0)Q

(0,1)
Y |X (p; 0)/fY |X(ξp; 0)

+ f
(1,0)
Y |X (ξp; 0)

[
Q

(0,1)
Y |X (p; 0)

]2

/fY |X(ξp; 0)

}
+ o(h2)

= −h2
fX(0)F

(0,2)
Y |X (ξp; 0) + 2f ′X(0)F

(0,1)
Y |X (ξp; 0)

6fX(0)fY |X(ξp; 0)
+ o(h2).

To avoid iteration (and nicely cancel some constants), we plug in εh = ε` =

0.2 as a rule of thumb. The maximum bandwidth would be obtained using ε = 0.5,

which would give extremely similar bandwidths since, for example, [(0.2)(0.8)]1/6 =

0.74 while [(0.5)(0.5)]1/6 = 0.79 in the two-sided median case. The stabilizing effect

and computational gains of using a fixed ε outweigh the small benefit of iteration.

We also consider a Gaussian plug-in assumption for fY |X(ξp; 0) and f
(1,0)
Y |X (ξp; 0),

using an estimated variance of Y .

First, CPEBias depends on fQ̂u
(
QY |Ch(p)

)
. From earlier, FY |Ch(Q̂u) has a

beta distribution. Specifically, for u ∈ (0, 1),

FY |Ch(Q̂u) ∼ β[(Nn + 1)u, (Nn + 1)(1− u)],

writing fβ(·) for the corresponding beta distribution’s PDF and Fβ(·) for the CDF.

For the lower one-sided CI, upper endpoint quantile u = uh is chosen by the Hutson

(1999) method such that Fβ(p) = α. By applying the chain rule and the fact that
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FY |Ch(QY |Ch(p)) = p,

fQ̂u(x) =
∂

∂x
FQ̂u(x) =

∂

∂x
Fβ
(
FY |Ch(x)

)
= fβ

(
FY |Ch(x)

)
fY |Ch(x),

fQ̂u
(
QY |Ch(p)

)
= fβ

(
FY |Ch

(
QY |Ch(p)

))
fY |Ch

(
QY |Ch(p)

)
= fβ(p;u)fY |Ch

(
F−1
Y |Ch(p)

)
, (B.3)

fβ(p;u) ≡ Γ(Nn + 1)

Γ((Nn + 1)u)Γ((Nn + 1)(1− u))
p(Nn+1)u−1(1− p)(Nn+1)(1−u)−1.

To avoid recursive dependence on h, we can approximate fY |Ch
(
QY |Ch(p)

) .
=

fY |X(ξp; 0) up to smaller-order terms.

We can also approximate, if f ′′X(·) is uniformly bounded in a neighborhood

of zero,

PC =

∫
Ch

fX(x) dx =

∫
Ch

[fX(0) + xf ′X(0) + (1/2)x2f ′′X(x̃)] dx = 2hfX(0) +O(h3),

Nn
.
= nPC = 2nhfX(0) +O(h3).

A tighter relationship between Nn and nPC would improve the theoretical accu-

racy in the case of the median, when the bandwidth can be chosen to zero out

the dominant terms of the overall CPE. Using the actual Nn and solving for h

iteratively may achieve the same accuracy increase, though at the expense of com-

putation time, and ideally with careful consideration of the randomness of Nn (and

its dependence on h) that differs from the setup in Chapter 1.

We know that CPEGK > 0 (over-coverage), and we can estimate the sign of

CPEBias. If they are opposite, the optimal bandwidth causes them to cancel out;

if they are the same sign, the optimal bandwidth minimizes their sum. The only

difference is an extra coefficient of [2d/(2b+d)]1/(b+3d/2) = [2d/(d+ 4)]2/(4+3d) from

the first-order condition in the latter case, where the initial exponents of h come

down when taking a derivative.

Plug-in bandwidth: one-sided

For one-sided inference when CPEGK and CPEBias are of opposite sign, with

ε = εh or ε = ε`, the optimal h equates (up to smaller-order terms)

N−1
n z1−α

ε(1− ε)
p(1− p)

φ(z1−α)
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= h2
fX(0)F

(0,2)
Y |X (ξp; 0) + 2f ′X(0)F

(0,1)
Y |X (ξp; 0)

6fX(0)fY |X(ξp; 0)
fβ(p;u)fY |X(ξp; 0).

After plugging in estimates of the unknown objects, Nn
.
= 2nhfX(0), and value for

u (e.g., based on a pilot bandwidth), the above equation could be solved numeri-

cally for h with any standard statistical software.

Alternatively, we could approximate the beta PDF with a normal PDF

(Chapter 1). Writing β for a random variable with the distribution β[(Nn +

1)u, (Nn + 1)(1− u)] from above,√
Nn(β − u)/

√
u(1− u)

d→ N(0, 1), so (informally) β
a∼ N(u, u(1− u)/Nn),

fβ(p;u) =

√
Nn√

u(1− u)

[
φ
(

[p− u]/
√
u(1− u)/Nn

)
+O(N−1/2

n )
]
,

where φ(·) is the standard normal PDF. Using additional results from Chapter 1

that

uh = p+ z1−α
√
uh(1− uh)/Nn +O(N−1

n ) and

u` = p− z1−α
√
u`(1− u`)/Nn +O(N−1

n ), then for u = uh or u = u`,

fβ(p;u) = N1/2
n [u(1− u)]−1/2

[
φ

(
±z1−α

√
u(1− u)/Nn√

u(1− u)/Nn

)
+O(N−1/2

n )

]
.
= N1/2

n [u(1− u)]−1/2φ(z1−α)

since φ(z1−α) = φ(−z1−α).

Plugging in Nn
.
= 2nhfX(0) and u = p + O(N

−1/2
n ), the optimal h is now

an explicit function of known values and objects that can be estimated directly

from the data. Denoting ĥ++ as the plug-in bandwidth when both CPEGK > 0

and CPEBias > 0 (both over-coverage), and ĥ+− when instead CPEBias < 0, we

first solve for ĥ+−. Up to smaller-order terms,

[2nhfX(0)]−1z1−α
ε(1− ε)
p(1− p)

φ(z1−α)

= h2
fX(0)F

(0,2)
Y |X (ξp; 0) + 2f ′X(0)F

(0,1)
Y |X (ξp; 0)

6fX(0)fY |X(ξp; 0)

× [2nhfX(0)]1/2[p(1− p)]−1/2φ(z1−α)fY |X(ξp; 0),
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h7/2 =
n−3/22−3/2z1−αε(1− ε)/

√
p(1− p)√

fX(0)
{
fX(0)F

(0,2)
Y |X (ξp; 0) + 2f ′X(0)F

(0,1)
Y |X (ξp; 0)

}
/6
,

ĥ+− = n−3/7

 z1−α

3
√
p(1− p)fX(0)

{
fX(0)F

(0,2)
Y |X (ξp; 0) + 2f ′X(0)F

(0,1)
Y |X (ξp; 0)

}
2/7

,

ĥ++ = ĥ+−[−2d/(2b+ d)]2/(2b+3d) ≈ −0.770ĥ+−.

We have plugged in the rule-of-thumb ε = 0.2 to avoid iteration (more precisely,

0.5− (1/2)
√

1− 4
√

2/9 ≈ 0.20, to get the constants to cancel). These ĥ hold for

both lower and upper one-sided inference.

With the approximation u = p + O(N
−1/2
n ), the bias CPE for the upper

endpoint is the negative of the bias CPE for the lower endpoint, up to smaller-

order terms. Then, for two-sided inference, the dominant bias terms from the

upper and lower CI endpoints cancel, and the CPE is of a smaller order, as in

Theorem 2.3.

Plug-in bandwidth: two-sided, p = 1/2

For two-sided inference with p = 1/2, the Bh term becomes zero, as is clear

in (2.13). Then CPEBias < 0 since B2
h > 0, f ′

Q̂
I,u`
Y |Ch

(p) < 0, and f ′
Q̂
I,uh
Y |Ch

(p) > 0. The

optimal h causes this to cancel with CPEGK > 0. By the convergence of our beta

to a normal distribution, the product rule for derivatives, and the invariance of

fY |Ch

(
F−1
Y |Ch(p)

)
to u,

∂

∂p
fβ(p;u`)

.
= −z1−α/2Nn[u`(1− u`)]−1φ(z1−α/2),

∂

∂p
fβ(p;uh)

.
= z1−α/2Nn[uh(1− uh)]−1φ(z1−α/2),

f ′
Q̂
I,u`
Y |Ch

(
QY |Ch(p)

)
− f ′

Q̂
I,uh
Y |Ch

(
QY |Ch(p)

)
.
= −z1−α/2Nnφ(z1−α/2)

(
[u`(1− u`)]−1 + [uh(1− uh)]−1

)
fY |Ch

(
F−1
Y |Ch(p)

)
.
= −z1−α/2Nnφ(z1−α/2)2[p(1− p)]−1fY |X(ξp; 0),
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so plugging into (2.10) yields

N−1
n z1−α/2

εh(1− εh) + ε`(1− ε`)
p(1− p)

φ(z1−α/2)

= −(1/2)h4

(
fX(0)F

(0,2)
Y |X (ξp; 0) + 2f ′X(0)F

(0,1)
Y |X (ξp; 0)

6fX(0)fY |X(ξp; 0)

)2

×
{
−z1−α/2Nnφ(z1−α/2)2[p(1− p)]−1fY |X(ξp; 0)

}
,

[2nhfX(0)]−22ε(1− ε)

=
h4

36fX(0)2fY |X(ξp; 0)

(
fX(0)F

(0,2)
Y |X (ξp; 0) + 2f ′X(0)F

(0,1)
Y |X (ξp; 0)

)2

,

ĥ = n−1/3

 3fY |X(ξp; 0){
fX(0)F

(0,2)
Y |X (ξp; 0) + 2f ′X(0)F

(0,1)
Y |X (ξp; 0)

}2


1/6

,

again using ε = 0.2 as the rule of thumb (and rounding 2.88 up to 3).

Plug-in bandwidth: two-sided, p 6= 1/2

For two-sided inference with d = 1 and p 6= 1/2, the dominant bias

terms do not cancel completely, but the difference is of smaller order than the

O(N
1/2
n ) in the one-sided case. Using the result from Chapter 1 that uh − p =

z1−α/2
√
p(1− p)/Nn + O(N−1

n ) and u` − p = −z1−α/2
√
p(1− p)/Nn + O(N−1

n ),

along with the normal approximation of the beta PDF in (2.11),

fβ(p;uh)− fβ(p;u`) = N1/2
n φ(z1−α/2)

(
[uh(1− uh)]−1/2 − [u`(1− u`)]−1/2

)
×
[
1 +O(N−1/2

n )
]

= N1/2
n φ(z1−α/2)

×
(

2p− 1

2[p(1− p)]3/2
[(uh − p)− (u` − p)] +O(N−1

n )

)
+O(1)

= N1/2
n φ(z1−α/2)

2p− 1

2[p(1− p)]3/2
N−1/2
n z1−α/2

×
(√

uh(1− uh) +
√
u`(1− u`)

)
+O(N−1/2

n ) +O(1)

= z1−α/2φ(z1−α/2)
2p− 1

p(1− p)
+O(N−1/2

n ) +O(1) = O(1).
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Thus our two CPE terms are of orders N−1
n � n−1h−1 and h2. This implies

h∗ � n−1/3 and that CPE is O(n−2/3). But then the B2
h term is of order h4Nn =

h5n = n−2/3, so it must also be included. (The B3
h term is of order h6N

3/2
n , which

is smaller.) Though the second term from the product rule derivative in the B2
h

term is not zero this time, it is smaller-order and thus omitted below.

There are two approaches to a plug-in bandwidth in this case. Note that the

error from approximating the beta PDF with a normal PDF was O(1), which in

this case is the dominant order. In the first approach, to determine the bandwidth

that precisely cancels CPEGK and CPEBias, using fβ(p;uh) − fβ(p;u`) without

the normal approximation is required. A closed-form expression with the N
1/2
n

as an explicit coefficient may be found in Appendix A. However, uh and u` are

(implicitly) functions of the bandwidth h, so this is a recursive determination

of h. The optimal value may be found through iteration, where the h resulting

from using the normal approximation may be used as the pilot bandwidth. The

iteration is straightforward since h is scalar and may be stopped once the change

in Nn is small, but it still requires additional consideration and computation time.

In the second approach, followed below, the normal approximation is used. This

means that the plug-in bandwidth is not precise enough to reduce the order of

CPE further, but it is of the proper asymptotic rate and achieves the CPE in

Theorem 2.3. This is more commonly how plug-in bandwidths are; our precise

plug-in bandwidths in the other cases are special luxuries.

The sign of CPEBias is determined by the sign of [Bh(2p−1)−B2
hNn], as seen

in (2.13). Since B2
hNn > 0 always, if Bh(2p−1) < 0, then CPEBias < 0 irrespective

of h (only the magnitude of Bh depends on h, not the sign). If Bh(2p − 1) > 0,

then there may exist some h that yields CPEBias < 0, but maybe not. (There will

always exist some h > 1 that does this, but asymptotically h → 0.) Specifically,

for coefficients a and b, ah2 − bh5 < 0 for h > 3
√
a/b. Here, a = (2p − 1)(Bh/h

2)

and b = 2nfX(0)(Bh/h
2)2, so CPEBias < 0 for

Bh/h
2 = −

fX(0)F
(0,2)
Y |X (ξp; 0) + 2f ′X(0)F

(0,1)
Y |X (ξp; 0)

6fX(0)fY |X(ξp; 0)
,

h >

(
2p− 1

2nfX(0)Bh/h2

)1/3

(B.4)
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= n−1/3

 3(2p− 1)fY |X(ξp; 0)

−
{
fX(0)F

(0,2)
Y |X (ξp; 0) + 2f ′X(0)F

(0,1)
Y |X (ξp; 0)

}
1/3

.

When h equals the RHS, CPEBias = 0, so the optimal h should be somewhat larger.

In practice, using (B.4) as an equality for ĥ probably works well, but we pursue

the more exact solution below.

Since such a solution is always possible, we pick h to equate

−N−1
n z1−α/2

εh(1− εh) + ε`(1− ε`)
p(1− p)

φ(z1−α/2)

.
= Bh

[
f
Q̂
I,uh
Y |Ch

(
QY |Ch(p)

)
− f

Q̂
I,u`
Y |Ch

(
QY |Ch(p)

)]
+ (1/2)B2

h

[
f ′
Q̂
I,u`
Y |Ch

(
QY |Ch(p)

)
− f ′

Q̂
I,u`
Y |Ch

(
QY |Ch(p)

)]
.
= BhfY |Ch

(
F−1
Y |Ch(p)

)
[fβ(p;uh)− fβ(p;u`)]

− (1/2)B2
hz1−α/2Nnφ(z1−α/2)2[p(1− p)]−1fY |Ch

(
F−1
Y |Ch(p)

)
.
= fY |X(ξp; 0)z1−α/2φ(z1−α/2)[p(1− p)]−1

[
Bh(2p− 1)−B2

hNn

]
.

Note that 2p− 1 > 0 is equivalent to p > 1/2, which implies |uh− 0.5| > |u`− 0.5|.
In that case, the Bh term is the same sign as Bh itself. If 2p−1 < 0, or equivalently

p < 1/2 or |uh − 0.5| < |u` − 0.5|, the term is the opposite sign of Bh. If p = 1/2,

the term is zero, as covered in the special case.

Continuing to solve for h,

−[2nhfX(0)]−12ε(1− ε)

= fY |X(ξp; 0)
{
h2(Bh/h

2)(2p− 1)− h4(B2
h/h

4)[2nhfX(0)]
}
,

n−1
{

[fX(0)]−1ε(1− ε)
}

= h6n
{

2fY |X(ξp; 0)fX(0)B2
h/h

4
}
− h3

{
fY |X(ξp; 0)(2p− 1)(Bh/h

2)
}
,

0 = (h3)2n{a} − (h3){b} − {c}/n,

h3 =
b±
√
b2 + 4ac

2an
,

ĥ = n−1/3

(
b+
√
b2 + 4ac

2a

)1/3
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= n−1/3

 (2p− 1)(Bh/|Bh|) +
√

(2p− 1)2 + (4/3)/fY |X(ξp; 0)

(2/3)
∣∣∣fX(0)F

(0,2)
Y |X (ξp; 0) + 2f ′X(0)F

(0,1)
Y |X (ξp; 0)

∣∣∣/fY |X(ξp; 0)

1/3

,

again with rule-of-thumb ε = 0.2 and approximating (0.2)(0.8) ≈ 1/6 to match

the median-specific bandwidth when p = 1/2 is used here. The other root of the

equation yields h < 0 since a > 0 and c > 0, so it is ignored. Even if b < 0, we

will get ĥ > 0, for similar reasons. Notice that when Bh(2p − 1) > 0, if we had

plugged in ε = 0 to get the smallest possible ĥ, the resulting ĥ would be equal to

the lower bound from (B.4).

B.3 Corollary 2.4 proof

For all methods, since the same bandwidth (and thus effective sample) is

used for each quantile, the CPE results from Chapter 1 go through. In the one-

sided case, the order of CPE from bias is the same as before, i.e. O(N
1/2
n hb) =

O(n1/2hb+d/2). For joint inference where CPEGK = O(N−1
n ),

N−1
n � N1/2

n hb =⇒ (nhd)3/2 � h−b =⇒ h∗ � n−3/(2b+3d),

and the overall CPE is [n(h∗)d]−1 = (n1−3d/(2b+3d))−1 = n−2b/(2b+3d), the same as

for a single quantile. Consequently, the one-sided plug-in bandwidths from §2.4.2

already have the desired rate. If we are considering different quantiles pj, picking

p̂ = arg minpj pj(1− pj) to use for p in the plug-in bandwidth expression will give

the smallest and thus most conservative (highest coverage probability) bandwidth.

For one-sided inference on linear combinations of quantiles or treatment

effects thereon, where in both cases CPEGK = O(N
−2/3
n ),

N−2/3
n � N1/2

n hb =⇒ (nhd)7/6 � h−b =⇒ h∗ � n−7/(6b+7d),

and the overall CPE is [n(h∗)d]−2/3 = (n6b/(6b+7d))−2/3 = n−4b/(6b+7d).

For two-sided inference, the critical question is whether these methods share

the CPEBias cancellation of the single quantile method. For joint inference, the

cancellation goes through. Consider two quantiles of interest, p1 and p2, where

the objects of interest are QY |X(p1;x0) and QY |X(p2;x0), and the unconditional
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IDEAL inference is implicitly on QY |Ch(p1) and QY |Ch(p2). Note that there is only

one Ch since we restrict to having only one bandwidth h. For notation, let the

joint CI be the Cartesian product of CI1(α̃) = (L̂1, Û1) and CI2(α̃) = (L̂2, Û2),

where α̃ < α is calibrated as in Chapter 1. From the single quantile results, we

know that the probability of L̂1 being between QY |X(p1;x0) and QY |Ch(p1) is equal

to the probability of Û1 being between those values, up to smaller-order terms,

and similarly for L̂2 and Û2 being between QY |X(p2;x0) and QY |Ch(p2). Since

those probabilities are small already, the probability of such an event occurring

simultaneously at both p1 and p2 is negligible. Thus, since the coverage probability

is (1− α̃) at both p1 and p2, the CPE due to bias is simply (1− α̃) times the single

quantile CPE due to bias, and the order-reducing cancellation from the single

quantile case goes through. The optimal bandwidth is consequently the same as

for single quantile inference.

For two-sided quantile treatment effect inference, the cancellation does not

seem to occur in general. For simplicity, consider the special case of a median

treatment effect whose true value is zero. Following the method in Chapter 1, let

the lower and upper endpoints of the control group (1 − α̃) CI be denoted as L̂C

and ÛC , and similarly L̂T and ÛT for the treatment group, so the median treatment

effect CI endpoints are L̂ = L̂T−ÛC and Û = ÛT−L̂C . Again for simplicity, assume

the bias is positive, so the CPE due to bias is P (0 < Û < Bias)−P (0 < L̂ < Bias):

P (Q̂`
Y,T=1 − Q̂u

Y,T=0 < 0 < Q̂u
Y,T=1 − Q̂`

Y,T=0)

= 1− P (Q̂`
Y,T=1 − Q̂u

Y,T=0 > 0)− P (Q̂u
Y,T=1 − Q̂`

Y,T=0 < 0)

= 1− P (Q̂`
Y,T=1 − Q̂u

Y,T=0 > QY |Ch,T=1(p)−QY |Ch,T=0(p))

+ [P (Q̂`
Y,T=1 − Q̂u

Y,T=0 > QY |Ch,T=1(p)−QY |Ch,T=0(p))

− P (Q̂`
Y,T=1 − Q̂u

Y,T=0 > 0)]

− P (Q̂u
Y,T=1 − Q̂`

Y,T=0 < QY |Ch,T=1(p)−QY |Ch,T=0(p))

+ [P (Q̂u
Y,T=1 − Q̂`

Y,T=0 < QY |Ch,T=1(p)−QY |Ch,T=0(p))

− P (Q̂u
Y,T=1 − Q̂`

Y,T=0 < 0)]

= 1− α + CPEGK +

∫ 0

Bias

fL̂T−ÛC (t)dt+

∫ Bias

0

fÛT−L̂C (t)dt
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= 1− α + CPEGK +

∫ Bias

0

[
fÛT−L̂C (t)− fL̂T−ÛC (t)

]
dt.

Asymptotically, as before, the dominant term depends on the difference

in the PDFs evaluated at zero, fÛ(0) − fL̂(0). Since the control and treatment

groups are independent, these may be calculated by convolution. Letting fβ,u(·)
denote the PDF of the distribution β((Nn + 1)u, (Nn + 1)(1− u)), and assuming

(for simplicity) separate bandwidths hT and hC are chosen such that the effective

control sample and effective treatment sample each have Nn observations,

fÛ(0) = fÛT−L̂C (0) =

∫
R
fÛT (t)fL̂C (t)dt

=

∫
R
fβ,uhT

(
FY |Ch,T=1(t)

)
fY |Ch,T=1(t)fβ,u`C

(
FY |Ch,T=0(t)

)
fY |Ch,T=0(t)dt

=

∫
R
fβ,uhT

(
FY |Ch,T=1(t)

)
fβ,u`C

(
FY |Ch,T=0(t)

)
fY |Ch,T=1(t)fY |Ch,T=0(t)dt,

fL̂(0) = fL̂T−ÛC (0) =

∫
R
fL̂T (t)fÛC (t)dt

=

∫
R
fβ,u`T

(
FY |Ch,T=1(t)

)
fY |Ch,T=1(t)fβ,uhC

(
FY |Ch,T=0(t)

)
fY |Ch,T=0(t)dt

=

∫
R
fβ,u`T

(
FY |Ch,T=1(t)

)
fβ,uhC

(
FY |Ch,T=0(t)

)
fY |Ch,T=1(t)fY |Ch,T=0(t)dt.

In certain special cases, fÛ(0) = fL̂(0). For example, imagine Y |Ch, T =

1 and Y |Ch, T = 0 are both standard uniform distributions, so fY |Ch,T=1(t) =

fY |Ch,T=0(t) = 1 for t ∈ [0, 1] and zero otherwise, and FY |Ch,T=1(t) = FY |Ch,T=0(t) =

t, and the question reduces to whether∫ 1

0

fβ,uhT (t)fβ,u`C (t)dt =

∫ 1

0

fβ,u`T (t)fβ,uhC (t)dt.

If p = 0.5, then uhC = 1 − u`C and fβ,uhC (t) = fβ,u`C (1 − t), and similarly for

T , so the integrals are the same: the second integral is equivalent to running t

backward (from one to zero) with the first integrand. With p 6= 0.5, the normal

approximation of the beta PDF shows that the integrals are equal up to smaller-

order terms, as in the single quantile case.

However, if the conditional distributions of Y are not uniform or otherwise

symmetric in a neighborhood around p, then there is a first-order difference. In that

case, the optimal bandwidth and CPE rates are the same as for one-sided inference.
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For the same reason, two-sided inference on linear combinations of quantiles also

lacks the cancellation in general, so the optimal bandwidth and CPE rates are the

same as the one-sided rates.



Appendix C

Technical appendix to Chapter 3

C.1 Accuracy of fixed-m critical value approxi-

mation

The approximate fixed-m critical value in (3.7) is quite accurate for all but

m = 1, 2, as Table C.1 shows. The second approximation alternative adds the

O(m−2) term to the approximation. The third alternative uses the critical value

from the Student’s t-distribution with the degrees of freedom chosen to match the

variance. To compare, for various m and α, I simulated the two-sided rejection

probability for a given critical given Tm,∞ from (3.4) as the true distribution.

One million simulation replications per m and α were run; to gauge simulation

error, I also include in the table the critical values given in Goh (2004) (who ran

500,000 replications each). Additional values of m and α are available in the online

appendix.

C.2 Edgeworth expansion (Theorem 3.1) where

γ 6= 0: differences with HS88 proof

Here I highlight the differences with HS88; the working paper contains a

sketch comparable to Hall and Sheather (1987, “HS87”), while the full proof is in
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Table C.1: Simulated rejection probabilities (%) for different fixed-m critical

value approximations, α = 5%.

rejection probability for critical value
m Goh (2004, simulated) including m−1 including m−2 t
1 4.93 8.21 5.84 6.87
2 5.03 6.25 5.20 5.47
3 5.05 5.70 5.10 5.28
4 5.15 5.46 5.06 5.21
5 4.92 5.23 4.96 5.08

10 5.01 5.14 5.06 5.14
20 5.04 5.01 4.99 5.04

the supplemental appendix.

As in Section 3.2, the null hypothesis is H0 : ξp = β, and the true ξp =

β − γ/
√
n. I continue from (3.11), which showed that

P (Tm,n < z) = P

(√
n(Xn,r − ξp) + γ(Sm,n/S0 − 1)

Sm,n
√
p(1− p)

< z + C

)
,

where C ≡ γf(ξp)/
√
p(1− p), S0 ≡ 1/f(ξp). I want to derive a higher-order

expansion around the (shifted) standard normal distribution. Since C is a constant,

it can be ignore for the expansion and simply plugged in later. For HS88, γ = C = 0

above.

The centering effect (since bnpc increases by unit jumps) when γ 6= 0 is the

same as in HS88. The definitions for ∆1, ∆2, ∆3, and ak are also identical, but

now Z has the extra γ term:

Z ≡ [p(1− p)]1/2[n1/2(Xn,r − ηp) + γ(Sm,n/S0 − 1)]/τ̂

= [n1/2(Xn,r − ηp) + γ(Sm,n/S0 − 1)][(n/2m)(Xn,r+m −Xn,r−m)]−1.

Subsequently, Y , R, and δ are defined the same, but B includes the additional Ψ

terms defined below:

B ≡ δΨ + (n/m)(b1∆1 + b2∆2)∆2 + (n/m)b3(∆1 + ∆2)(∆3 + Ψ)

+ (n/m)2b4(∆1 + ∆2)2(∆3 + Ψ) + b5∆3(∆3 + 2Ψ),

Ψ ≡ γ/(pg(p)
√
n).
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The bi are identical other than now b2 ≡ −p/2, which is simplified to drop a term

that ends up in the remainder later anyway.

Here, Y is of the same form as HS88, but with Ψ now additionally showing

up in the higher-order B terms. In the definition of Z, γ only appears in the

numerator, not in the denominator. From the stochastic expansion of Sm,n, which

is already required for the denominator of Z, Sm,n/S0 = 1 + ν, where ν contains

the higher-order terms that are dropped for the first-order asymptotic result,

ν =
n

2m
p(∆1 + ∆2) +

a2

2a1

(∆1 + ∆2 + 2∆3) + (m/n)2 g
′′(p)

6g(p)

+Op((m/n)2+ε + n−1/2m−1/2 +mn−3/2).

Thus, γ enters only in higher-order terms, through the numerator of Z.

HS88 (A.2) now contains additional Ψ terms, while preserving the other

terms:

E[(−p−1Y )`] = E[(1 + δ)(D2 +D3)]`

+ n−1/2`
{
− (`− 1)(2p)−1Ψ

√
nE(D`−2

3 )− `(2p)−1E(D`−1
3 )

− (a2/a1)E(D`
3)Ψ
√
n− (a2/2a1)E(D`+1

3 )
}

+m−1`
{`− 1

4
E(D`−2

3 )Ψ2n+
`

2
Ψ
√
nE(D`−1

3 ) +
`+ 1

4
E(D`

3)
}

+ δ`E(D`−1
3 )Ψ

√
n+ op

(
m−1 + (m/n)2

)
.

(HS88 uses the HS87 definition of Di =
√
n∆i.)

Defining K and L the same way, HS88 (A.3) is reached but with different

αi, whose respective Fourier-Stieltjes transforms are

a1(z) ≡ −
[
Ψ
√
n

(
2b5 −

1

2(p− 1)

)
z

+ [(1/2)− b5(1− p)][p(1− p)]−1/2z2

]
φ(z),

a2(z) ≡ 1

4

[
−Ψ2n

p

1− p
z + 2Ψ

√
n

(
p

1− p

)1/2

z2 − z3

]
φ(z), and

a3(z) ≡

[
Ψ
√
n

(
p

1− p

)1/2
]
φ(z).

The characteristic function of L is the same.
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Zieliński, R. and Zieliński, W. (2005). Best exact nonparametric confidence inter-
vals for quantiles. Statistics, 39(1):67–71.

http://users.stat.umn.edu/~sandy/courses/8053/Data/mybs.R
http://users.stat.umn.edu/~sandy/courses/8053/Data/mybs.R

	Signature Page
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	IDEAL quantile inference via interpolated duals of exact analytic L-statistics
	Introduction
	Fractional order statistic approximation error
	Application to quantile inference
	One-sample inference on a single quantile
	Joint one-sample inference on multiple quantiles
	One-sample inference on linear combinations of quantiles
	Two-sample quantile treatment effect inference
	Estimation of bold0mu mumu 
	Further approximation and intuition (two-sample)

	Empirical application
	Simulation study
	Conclusion

	IDEAL inference on conditional quantiles
	Introduction
	Fractional order statistic theory
	Setup
	Optimal bandwidth and CPE
	Optimal rate of bandwidth and CPE
	Plug-in bandwidth
	Conditional quantile treatment effects and other objects of interest

	Simulation study
	Computation of plug-in bandwidth
	Results
	Computation time
	Conditional quantile treatment effect inference

	Empirical application
	Conclusion

	One- and two-sample population quantile inference via fixed-smoothing asymptotics and Edgeworth expansion
	Introduction
	Quantile estimation and hypothesis testing
	Fixed-m asymptotics and corrected critical value
	Fixed-m asymptotics
	Corrected critical value

	Edgeworth expansion
	One-sample case
	Two-sample case

	Optimal smoothing parameter selection
	Type I error
	Type II error
	Choice of m

	Simulation study
	Conclusion

	Technical appendix to Chapter 1
	Mathematical proofs

	Technical appendix to Chapter 2
	Lemma 2.2 proof
	Plug-in bandwidth calculations
	Corollary 2.4 proof

	Technical appendix to Chapter 3
	Accuracy of fixed-m critical value approximation
	Edgeworth expansion (Theorem 3.1) where =0: differences with HS88 proof

	Bibliography



