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ABSTRACT OF THE DISSERTATION

Essays on Competition and Conflict

By

Blake A. Allison

Doctor of Philosophy in Economics

University of California, Irvine, 2015

Professor Stergios Skaperdas, Chair

These works contribute to the current understanding of conflict resolution and consumer

behavior, as well as to our ability to formally analyze these and other economic models.

The first chapter demonstrates that the use of negotiation in place of arbitration to settle

disputes may lead to an increase in surplus by reducing the incentives of the involved parties

to invest in their ability to engage in conflict. The second chapter derives the demand that

faces competing firms when consumers shop strategically and the prices and capacities are

fixed and common knowledge. The equilibrium motivates and justifies the implementation of

the well-known proportional rationing rule in studying price competition. The final chapter,

which is joint with Professor Jason Lepore, develops a verifiable sufficient condition for the

existence of a mixed strategy equilibrium in discontinuous games. This condition is then

used to demonstrate existence of equilibrium in a large class of games of price competition

for which existence of equilibrium had not yet been proven.



Chapter 1

Do Players Prefer to Bargain

Noncooperatively in the Shadow of

Conflict?

1.1 Introduction

In this paper, we study a bargaining problem in which the disagreement point or outside

option is endogenously determined by investments of the players. We investigate the impact

of the bargaining process on the investments made when disagreement results in costly

conflict. This allows for a Pareto ranking of bargaining solutions according to the efficiency

of the equilibrium that they induce.

Conflict is a source of numerous inefficiencies that have plagued economies and societies

throughout history. Even in times of peace, litigation and persuasion serve as a promi-

nent manifestation of non-violent conflict. There are two primary inefficient components of

1
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conflict: destruction, which involves a reduction of potential surplus due to conflict, and

wasteful investment, which results from a diversion of productive resources toward conflict.

The destruction is clear with physical conflict, while generally there are additional costs

associated with the utilization of the tools of conflict, be they weapons or influence, in ex-

cess of the investment in their capacity. This destructive component provides incentive for

individuals to avoid conflict, requiring that all involved parties agree to a settlement through

some bargaining process. Even if parties settle, however, they still incur the cost of their

investments in the tools of conflict, as they are sunk prior to bargaining. Though unproduc-

tive, these investments may be unavoidable when conflict does not occur since they influence

and enforce the settlements that are made. As such, it is common to observe an “armed

peace” or “cold war” whereby all parties exert efforts that would increase their likelihood

of winning in the event of conflict, though these efforts remain unused after an agreement

is reached. These expenditures can be substantial, McCloskey and Klamer (1995) estimate

that approximately one quarter of US GDP is persuasion, while Stiglitz and Bilmes (2012)

estimates a conservative lower bound of three trillion dollars for the cost of the wars in Iraq

and Afghanistan. Given the large costs that this behavior imposes, it is natural to under-

stand the factors that contribute to the investment in conflict as well as search for methods

to reduce such spending. To this end, this paper focuses on whether the bargaining process

can be structured to incentivize players to reduce these inefficient expenditures.

We model the outcome of conflict as a winner take all contest in which the outcome is

probabilistically determined by a contest function.1 Players participate in a three stage

game in which they choose efforts which determine the probability that either player wins

in the event of conflict and then engage in a bargaining process which may be used to avoid

conflict. Agreements made in the bargaining stage are non-binding; in the third stage of the

game, players choose whether to engage in conflict. The ability to impose conflict after an

1This approach, pioneered by Tullock (1980), has become standard in the literature on conflict.
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agreement is reached necessitates some amount of effort in order to enforce the settlement

that is agreed upon. While it serves this instrumental purpose, we largely ignore the third

stage as its equilibrium is trivial.

In the bargaining stage of the game, we examine two bargaining schemes in particular: the

Nash (1950,1953) bargaining solution will represent the category of cooperative bargaining

solutions and a Rubinstein-like alternating offers process in which conflict is an outside option

will represent the category of noncooperative solutions.2,3 Our main result is that the efforts

induced in equilibrium by the cooperative solution are greater than those induced by the

noncooperative solution. Consequently, implementation of the noncooperative solution re-

sults in greater efficiency. Interestingly, the noncooperative scheme does not typically admit

a pure strategy equilibrium in effort choices even when the cooperative solution does.4 While

cooperative solutions tend to be easier to analyze and have desirable properties, our results

suggest that their application may overestimate the equilibrium efforts and underestimate

the equilibrium surplus gained through bargaining.

Before continuing, we shall describe the noncooperative bargaining process on which we

focus. We adapt Binmore’s (1987) variant of Rubinstein’s (1982) alternating offers game to

allow for outside options. The process consists of a countable number of bargaining rounds

in which one player is selected at random to propose a division of the prize and the other

responds to that proposal. A proposal specifies a utility that each player will receive upon

agreement, while the possible responses are to accept the offer, reject the offer, or impose

2In the setting examined in this paper, utility is transferable. As a consequence, all well known cooperative
solutions coincide with the Nash bargaining solution, including the Kalai Smorodinsky (1975), egalitarian
(Kalai (1977), Roth (1979)), and equal sacrifice (O’Neill (1982), Aumann and Maschler (1985)) solutions.

3We focus on this scheme as it bears the greatest resemblence to realistic bargaining practices. We do not
consider the continuous time model which Abreu and Gul (2000) and others have used to study reputation
based bargaining as this model relies on asymmetric information, while ours is one of complete information.

4The only possible pure strategy equilibrium with the noncooperative scheme involves neither player
investing any effort in the contest. This occurs when players and very patient and and engaging in conflict
is very costly.
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conflict. If the offer is accepted, each player receives the utility specified by the proposal

provided that neither player imposes conflict in the third stage. If the offer is rejected, then

the bargain process advances to the next round and repeats. If a player imposes conflict,

then bargaining ceases and conflict occurs immediately. While players will never impose

conflict on the equilibrium path, they may prefer immediate conflict to a delayed agreement

as a result of the discounting of future payoffs. This environment admits a unique subgame

perfect equilibrium. The equilibrium agreement is independent of the effort decisions of the

players provided that the payoff to each player from conflict is sufficiently low. The reason

is that neither would find it worthwhile to impose conflict, and so the proposer may ignore

that option as an incredible threat.

The fact that conflict may not serve as a credible threat point to the noncooperative bar-

gaining process is the driving force behind our results. When players make similar effort

choices, they each expect a relatively small payoff in the event of conflict. Thus, in this case,

the equilibrium agreement would be independent of those choices. This prohibits the exis-

tence of a symmetric pure strategy equilibrium. To see why, consider any symmetric pure

strategy profile. Then since the equilibrium agreement is independent of the efforts chosen,

either player may reduce their effort, maintaining the same agreement but reducing their ex-

penditure. After such a deviation, the other player possesses a similar profitable deviation.

By iterating this logic, we derive an upper bound on equilibrium strategies that is strictly

lower than the unique pure strategy equilibrium effort that is induced by the cooperative

solution. Moreover, we are able to show that this upper bound strictly dominates all higher

effort choices. When conflict is very destructive and players are sufficiently patient, this

upper bound may actually be zero, thereby inducing a completely efficient outcome which

is impossible to achieve via the well known cooperative solutions.

Our result is not limited to the class of contests that possess pure strategy equilibria. Build-
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ing upon the results of Ewerhart (2013) and Siegel (2009), we extend our results to a large

class of contests which do not possess pure strategy equilibria. In these settings, there is not

a universal incentive to reduce contest efforts, as a small increase in effort may drastically

increase a player’s probability of winning the conflict, thereby sharply increasing his bargain-

ing power. In order to obtain our results, we appeal to Ewerhart and Siegel’s results that

rents are completely dissipated in all equilibria of such contests. Our results then extend

easily since each player can guarantee himself a larger payoff by choosing zero effort when

the noncooperative scheme is employed than the fully dissipated equilibrium rent when the

cooperative solution is used. Thus, cooperative solutions induce equilibria in which players

only earn the minimal payoff that they may secure with a choice of zero, while the analo-

gous payoff serves as an lower bound for equilibrium payoffs induced by the noncooperative

scheme.

To further investigate the robustness of our results, we consider a variant of the alternating

offers game where, in addition to the discounting of future payoffs, there is an exogenous

probability that the process breaks down after each rejected offer, the result of which is

conflict. Unlike the prior formulation, the equilibrium division always depends on the efforts

of the players since any response other than acceptance entails a positive probability of

conflict. Regardless, our results extend to this formulation of the model provided that the

probability of exogenous breakdown is less than one. The intuition remains unchanged.

With a probability of breakdown that is less than one, only a fraction of the disagreement

payoffs are considered in the equilibrium division. Given the reduced attention paid to the

conflict outcome, the only candidate for a pure strategy equilibrium involves a low choice

of effort for each player. If breakdown is sufficiently unlikely, then this candidate is near

zero, which allows for a player to choose a slightly larger effort and secure a large share of

the prize, ruling out pure strategy equilibrium. Otherwise, if breakdown is very likely, then

there is a unique, symmetric pure strategy equilibrium in which players exert an effort that
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is lower than that induced by the cooperative solution. In either case, equilibrium efforts

remain strictly below those induced by the cooperative solution.

Our results may seem surprising given the result of Binmore, Rubinstein, and Wolinsky

(1986). They assume that there is a fixed probability that the bargaining process breaks down

in every period and that there is no discounting of future payoffs. In this setting, they show

that the equilibrium agreement converges to the Nash bargaining solution as the probability

of breakdown tends to zero.5 In our setting, one would expect from this result that the

equilibrium efforts would converge to those induced by the Nash bargaining solution. Such

convergence does not occur, however, when players possess an outside option of sufficiently

high value, as has been observed by Binmore, Shaked, and Sutton (1989), Osborne and

Rubinstein (1990), Chiu (1998), and Chiu and Yang (1999).The reason that conflict could

have a greater value than rejection in our setting is due to a subtle distinction between

discounting future payoffs and a probability of breakdown. In the former case, when a player

rejects an offer and the process proceeds to the next round, both the utility possibility set

and the value of the outside option shrink due to discounting. In the latter case, no shrinking

occurs. More technically, when players reject an offer with exogenous breakdown they receive

either their continuation value or engage in conflict. With discounting, rejection yields the

discounted continuation value, which may be realized as a “probability” of receiving their

continuation value plus the remaining “probability” of receiving nothing. As a result, when

players discount future payoffs, they may prefer to engage in conflict immediately rather

than wait for a better settlement in the future.

There has been some work examining the effect that the bargaining solution has on the ef-

5This result has since been generalized significantly. Recently, Britz, Herings, and Predtetchinski (2010)
have allowed for a general stochastic process to determine the order in which players make proposals and
shown convergence to the asymmetric Nash bargaining solution with parameters corresponding to the limiting
properties of the stochastic process.
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forts that players exert in equilibrium, though only using cooperative bargaining solutions.6

Anbarci, Skaperdas, and Syropoulos (2002) provide a Pareto ranking of three well known

cooperative solutions when expenditure on contest efforts diverts resources from production,

showing that the equal sacrifice rule induces lower efforts than the Kalai-Smorodinsky and

egalitarian rules. Skaperdas (2006) examines incentives for and against settlement in various

settings and compares equilibrium efforts given various protocols within a class of coopera-

tive solutions that includes Nash bargaining. These two papers both demonstrate that the

solutions that are less reliant on the threat point (payoff from conflict) induce less effort and

more efficiency in equilibrium. Consistent with this intuition, the noncooperative solution

on which we focus may be independent of the players’ efforts, thus the outside option may

have minimal influence on the solution.

The remainder of the paper is organized as follows. In section 2 we construct the model.

In section 3 we detail the noncooperative bargaining scheme and solve for its equilibrium.

In section 4 we characterize the efforts induced by the solution to the bargaining process

of section 3. In section 5 we characterize the efforts under cooperative bargaining schemes

and prove the main result that players are better off with the noncooperative bargaining

scheme of section 3. In Section 6 we extend the main result of Section 5 to a class of contests

which do not possess a mixed strategy equilibrium. In Section 7, we consider an alternative

bargaining scheme in which the process has an exogenous probability of breakdown. We

demonstrate that the main results hold as long as players discount future payoffs. Finally,

we conclude in Section 8, with some proofs relegated to the Appendix.

6Powell (1996) employs Rubinstein’s bargaining framework in which conflict serves as an outside option
with the purpose of understanding the role of asymmetric information in the bargaining process. The
probability of winning in the event of conflict is exogenous in his model.
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1.2 The Model

Two players contest a perfectly divisible prize with common value V . A typical player will

be referred to as i, and we will use j to refer to the player other than i. The prize can be

acquired in one of two ways: either the players can agree to a division of the prize or they

can impose some sort of conflict to determine its allocation. The conflict may or may not

be physical in nature; while war is a natural application, other prominent examples include

litigation, contract negotiation and disputes, as well as lobbying.

There are three stages to the game. In the first stage, the players simultaneously choose

effort levels ei ∈ R+. These efforts determine the probability that each player wins the prize

in the event of conflict. These efforts may represent military investment or the contracting

of lawyers to prepare a legal case. In the second stage, players observe these efforts and then

engage in a bargaining process which we will describe shortly. Finally, in the third stage,

players decide whether to engage in conflict. In the case that an agreement is reached in

the second stage, that agreement is realized when neither player chooses to impose conflict.

Otherwise, conflict occurs if either player chooses to impose it or if no agreement was reached.

We make the following assumption regarding the cost of effort.

Assumption 1. The cost of effort c (·) is continuous everywhere and twice continuously

differentiable, with c′ (e) > 0 and c′′ (e) ≥ 0 for all e > 0. We normalize c (0) = 0.7

This assumption implies the existence of an E > 0 such that for all e > E, c (e) > V . Thus,

all e > E are strictly dominated by e′ = 0. We may therefore restrict attention to the

compact strategy set [0, E].

Conflict is inefficient, and the value of the prize is reduced to θV if conflict occurs, where

7The continuity of c allows for this normalization. We do not consider the possibility that participation
(ei > 0) incurs a fixed cost.
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θ < 1. This inefficiency may be the result of an additional cost of utilizing military forces,

lawyers fees that must be paid during lengthy negotiations or court cases, as well as physical

destruction or court fees that are incurred only if conflict occurs.8 This inefficiency provides

incentive for players to settle, as each player can receive a strictly higher payoff by reaching

agreement. The case of θ = 1 is theoretically and practically uninteresting. Engaging in

conflict is almost always more costly than settling, and if conflict is efficient, then players

cannot collectively (or individually) gain from settlement. A player could simply impose

conflict to obtain his share of the prize, so the only bargaining solution would be for the

players to receive their conflict payoff.

When conflict occurs, the players engage in a winner take all contest where the probability

that each player i wins is determined by a contest function pi : R+ × R+ → [0, 1].9 We use

a particular form for pi,

pi (ei, ej) =


f(ei)

f(e1)+f(e2)
if e1 + e2 > 0

1
2

otherwise
.

This functional form, axiomatized by Skaperdas (1996) and derived stochastically by Jia

(2008), is commonly employed in the conflict literature.10 As Skaperdas shows, this form

is implied by some innocuous continuity and monotonicity assumptions along with an inde-

pendence of irrelevant alternatives assumption.11 The specification of an equal probability

of winning when e1 = e2 = 0 is by a convention of symmetry, though other specifications

would not alter the results of this paper. Note that if f (0) = 0, then there is a discontinuity

8It would be possible to instead model the inefficiency of conflict as resulting from a fixed cost F incurred
by each player if conflict occurs, or dependent on the players’ investments. This would not cause any
qualitative changes to the equilibrium.

9Due to the risk neutrality of preferences, an equivalent interpretation is that pi is the fraction of the
prize that player i secures in the event of conflict.

10For further discussion on contest functions, see Jia and Skaperdas (2012).
11The I.I.A. assumption applies when there are K > 2 players. It states that the probability that a player

wins the contest is independent of the efforts selected by those not participating in the contest.



10

at e1 = e2 = 0.

Assumption 2. The function f (·) is twice continuously differentiable with f (e) ≥ 0 for all

e ≥ 0 and f ′ (e) > 0 for all e > 0.

Assumption 3. The payoffs in the event of conflict pi (e) θV − c (ei) are strictly concave in

ei on [0, E]× [0, E]� {(0, 0)} .

This assumption of concavity is not particularly restrictive. It still allows for a discontinuity

at zero efforts (when f (0) = 0), and does not require that f or pi be concave, just that they

are not too convex. If f is chosen to be concave, then assumption 3 is trivially satisfied. We

will discuss the implications of relaxing Assumption 3 in section 6.

Assumption 4. If θ > 1/2, there exists an e > 0 such that c (e) <
(
pi (e, 0) θ − 1

2

)
V .

Assumption 4 is necessary to prevent the existence of an equilibrium in which both players

choose zero efforts. While such a scenario is possible, there would be no need for any

bargaining. The unique equilibrium efforts would be zero regardless of the bargaining scheme

employed, and so comparing bargaining schemes would have no meaning. Note that if

f (0) = 0, then Assumption 4 is trivially satisfied.

Remark 1. Let us briefly discuss the contest functions that fit these assumptions. As men-

tioned, any concave f fits, so the most commonly used Tullock contest function f (x) =

αxm + β is accommodated. Another commonly used function is f (x) = ekx for some

k > 0. This contest function does not generally admit a pure strategy equilibrium when

applied to contest games with linear cost of effort, though it still has some desirable prop-

erties. Our model accommodates the exponential function provided that the cost function

is sufficiently convex. For example, a cost function c (x) = αeβx where β = k and α ∈((
5 + 3

√
3
)
θV/

(
3 +

√
3
)3
, θV/4

)
allows f (x) = ekx to fit our assumptions. In general,

many convex functions can be accommodated by selecting the cost to be of a similar form.
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Before we proceed, let us briefly discuss the equilibrium of the third stage of the game. If an

agreement is reached, there are two equilibria, one in which neither player imposes conflict,

and another in which both players impose conflict. The latter can be an equilibrium because

a bilateral deviation is required to reach an outcome in which conflict does not occur. We

will adopt as a convention that the players will choose to not impose conflict whenever the

an agreement has been reached that is Pareto superior to the outcome of conflict. It follows

that conflict will occur as an equilibrium outcome of the third stage exactly when either

one of the players receives a higher payoff from conflict than from the agreement or if an

agreement is not reached. In what follows, we will largely take these outcomes as given and

will not present the third stage strategies in the characterization of the equilibrium of the

game.

1.2.1 The Bargaining Process

We adopt the probabilistic version of Rubinstein’s alternating offers bargaining model as

first adapted by Binmore (1987). Bargaining takes place in a sequence of rounds. In each

round, one player i is chosen at random to be the proposer. The proposer may either offer

a division of the prize defined by the share si ∈ [0, 1] that he would receive, or he may

choose to withdraw from the bargaining process and impose conflict. We will henceforth

ignore the proposer’s option to withdraw, as we will show that in the unique equilibrium of

this process, the proposer obtains a share that is strictly larger than what he would obtain

through conflict. As a convention of symmetry, we assume that each player is chosen to be

the proposer with equal probability.

Once the proposer makes an offer, the responder either accepts the offer or rejects it. If

he accepts the offer, then bargaining ends and the game proceeds to the third stage. If he

rejects the offer, then he may choose to withdraw from the bargaining process and impose
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conflict, or he may delay until the next round. If he delays, bargaining proceeds to the next

round and the process repeats. Players discount future payoffs, so rejecting an offer reduces

the present value of the final division by a factor δ < 1. If the process repeats indefinitely,

then the prize is never allocated and each player obtains a payoff of zero less his cost of

effort, which is sunk in the first stage. Note that accepting an offer and withdrawing from

the bargaining process may lead to the same outcome if conflict yields a higher payoff for

one of the players than he would receive in the agreement. We assume as a convention that

if this is the case, then the responder will opt to withdraw rather than accepting the offer.

This has no effect on the equilibrium outcomes of the game, it serves only to simplify the

exposition, as reaching agreement becomes equivalent to allocating the prize according to

the agreement.

It is worth discussing the interpretation of δ. In models without outside options, δ may be

viewed as either a discount factor or an exogenous probability that bargaining continues. In

our model, breakdown is endogenous. Players choose whether or not to end the bargaining

process, and so it may not be fitting to have δ represent the probability of continuation.

Furthermore, there is a mathematical distinction between the interpretations. To see this,

let Vi denote the value to the current responder i in the next round if bargaining does

not break down. Then with the exogenous breakdown interpretation, the expected utility

of rejection is δVi + (1− δ) piθV − c (ei). With the time discounting interpretation, the

expected utility of rejection is δVi − c (ei). This distinction has an important qualitative

implication for the setup of the bargaining game: the threat point, the payoffs earned in the

event of disagreement, cannot be normalized to zero. The reason is that consumption cannot

occur until after the prize is allocated, which requires either conflict or agreement. As such,

delay in the bargaining process delays all consumption, thereby reducing the present value

of the consumption of the prize. This affects the value of the prize whether it is obtained

via agreement or conflict. While seemingly subtle, this distinction is responsible for the
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nonconvergence of the equilibrium division to the Nash bargaining solution.12

Let t be the round in which agreement is reached or a players withdraws. If no agreement

is reached and no player withdraws, then let t = ∞. Let si denote the share that i receives

from agreement. Then we may write the expected utility of player i as

ui =

 δt−1siV − c (ei) if conflict does not occur,

δt−1piθV − c (ei) if conflict occurs
.

We now analyze the equilibrium play of the game. We find a subgame perfect Nash equilib-

rium by first finding the solution to the bargaining game and then solving for the equilibrium

efforts. Note that the solution of the bargaining scheme must be independent of assumptions

1-4, as the efforts are fixed prior to bargaining.

1.3 The Bargaining Subgame

In the second stage of the game, players bargain in the infinite game described above. The

solution concept we use is that of a subgame perfect Nash equilibrium (SPNE). As we

will show, there is a unique SPNE of this bargaining process. This equilibrium exhibits

stationarity in the sense that each player i proposes the same proposal s∗i ∈ [0, 1] every

time that player i is the proposer, and adheres to the same response rule R∗
i in every round

that player i is the responder. The response rule R∗
i is a partition of the space of potential

proposals [0, 1] into three subsets, A∗
i ,D

∗
i and W ∗

i . Formally, if sj ∈ A∗
i then player i accepts

the proposal, if sj ∈ D∗
i then player i rejects the proposal and delays until the next round,

12This does not contradict the seminal results of Binmore, Rubinstein, and Wolinsky (1986) or other
generalizations in the literature that show convergence of the noncooperative solution to the Nash bargaining
solution. The noncooperative solutions in the literature that converge to Nash’s solution are not invariant
to affine transformations.
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and if sj ∈ W ∗
i then player i withdraws from the bargaining process and imposes conflict.

As a convention, we assume that players accept rather than reject proposals when they are

indifferent, and that they delay rather than withdraw when indifferent.13 Note that we are

free to ignore the cost of effort as it is sunk for both players after the first stage and does

not influence the utility received from the prize per the bargaining agreement.

Before we present SPNE of the bargaining game, it is worthwhile to demonstrate the method

by which the equilibrium is computed. Beginning with an assumption of stationarity (which

can be shown to hold), we may define a value function Vi (K) which specifies the expected

payoff that of player i conditional on the state in which player K ∈ {i, j} is the proposer.

The value Vi (I) is the solution to the proposer’s optimization problem, which is as follows:

Vi (I) = max
si

siV

subject to

(1− si)V ≥ Vj (I) .

As mentioned earlier, a responder may take actions to cause an immediate conflict. Thus the

value of responding Vi (J) must be at least as high as the i’s payoff in the event of conflict. If

a responder delays, he is equally likely to be the proposer and responder in the next round,

so his expected continuation payoff is δ (Vi (I) + Vi (J)) /2. We rewrite the optimization

13This assumption is necessary for guaranteeing existence of equilibrium. If players were to reject when
indifferent, then the proposer would have to offer the responder slightly more than his reservation value, but
regardless of the offer, he would always have incentive to offer less.
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problem with these two constraints as

Vi (I) = max
si

siV

subject to

(1− si)V ≥ pjθV , and

(1− si)V ≥ δ

2
(Vj (I) + Vj (J)) .

Since the objective function is strictly increasing in si, it follows that at least one of these

constraints must bind. The latter constraint is a function of the responder’s value of propos-

ing, and so both optimization problems must be solved simultaneously, meaning that two

of the four constraints (one for each player) bind in any equilibrium. Therefore, there are

four cases that must be checked corresponding to which constraints are binding. Solving

the constraints in each case will yield a candidate for the bargaining solution, while the

nonbinding constraint may be used to check the set of effort choices for which the candidate

is indeed an equilibrium.

Which of the constraints that bind in equilibrium depends on the efforts employed by each

player and their degree of patience as captured by δ. Intuitively, players with a lower

probability of winning in the underlying contest would be less likely to withdraw, and would

be expected to delay the bargaining process if offered an unsatisfactory share. Similarly,

impatient players would find waiting less appealing, and thus would be expected to withdraw

when faced with an unsatisfactory offer.

We now proceed to formalize the solution by first partitioning the strategy space of the first
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1a: δ < θ 1b: θ ≤ δ < 2θ 1c: δ ≥ 2θ

e1

e 2

A1

N
A2

e1

e 2

A1

N
A2

e1

e 2

A1

N
A2

Figure 1.1: The partition of the strategy space.

stage [0, E]× [0, E] into three regions of interest:

Ai (δ) =

 e : pj <
δ
2θ

1−θ
1−δ

if δ < θ

e : pi >
δ
2θ

if δ ≥ θ

 , i = 1, 2, and

N (δ) =

 e : min {p1, p2} ≥ δ
2θ

1−θ
1−δ

if δ < θ

e : max {p1, p2} ≤ δ
2θ

if δ ≥ θ

 .

The set Ai (δ) corresponds to the region in which player i has a significant advantage in

the underlying contest, while N (δ) corresponds to the region in which neither player has

a significant advantage. These regions are important as they will uniquely determine each

player’s threat of disagreement, i.e., which constraints bind, and determine the bargaining

solution. Figure 1.1 illustrates an example of a partition of the effort space into these regions,

with 1a corresponding to the case where δ < θ, 1b corresponding to the case of θ < δ ≤ 2θ,

and 1c corresponding to δ ≥ 2θ.
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Define the following proposal and response rules:

s∗i =


2(1−δ)
2−δ

+ δ
2−δ

piθ if e ∈ Ai (δ)

(1− θ) + piθ if e ∈ Aj (δ) or e ∈ N (δ) and δ < θ

2−δ
2

if e ∈ N (δ) and δ ≥ θ

,

A∗
i =

[
pjθ, s

∗
j

]
,

D∗
i =

 ∅ if e ∈ Ai (δ) or e ∈ N (δ) and δ < θ

[0, 1]�A∗
i if e ∈ Aj (δ) or e ∈ N (δ) and δ ≥ θ

,

W ∗
i =

 [0, 1]�A∗
i if e ∈ Ai (δ) or e ∈ N (δ) and δ < θ

∅ if e ∈ Aj (δ) or e ∈ N (δ) and δ ≥ θ
.

Lemma 1. Suppose that each player employs the following strategy. In each round that

player i is the proposer, he proposes s∗i . In each round that player i is the responder, he

accepts proposals sj ∈ A∗
i , rejects proposals sj ∈ D∗

i , and withdraws given proposals sj ∈ W ∗
i ,

where s∗i , A
∗
i , D

∗
i , and W

∗
i are as specified above. Then the expected share that each player i

receives is

σ∗
i =



1−δ
2−δ

+ 1
2−δ

piθ if e ∈ Ai (δ)

1−θ
2−δ

+ 1
2−δ

pjθ if e ∈ Aj (δ)

1
2

if e ∈ N (δ) and δ ≥ θ

1−θ
2

+ piθ if e ∈ N (δ) and δ < θ

.

The proof of Lemma 1 is located in the appendix.

We now proceed to characterize the equilibrium of the bargaining subgame.

Proposition 1. The unique subgame perfect equilibrium of the bargaining subgame is as
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follows. In each round that player i is the proposer, he proposes s∗i . In each round that

player i is the responder, he accepts proposals sj ∈ A∗
i , rejects proposals sj ∈ D∗

i , and

withdraws given proposals sj ∈ W ∗
i , where s

∗
i , A

∗
i , D

∗
i , and W

∗
i are as specified above.

The following lemma will be useful in the proof of Proposition 1. The proof of this lemma

consists of a simple computation and is located in a supplemental appendix.

Lemma 2. The following two statements are true.

(1) Suppose that δ < θ and pj < δ (1− θ) / (2θ (1− δ)) .Then pi ≥ δ/2θ.

(2) Suppose that δ ≥ θ and pj ≥ δ/2θ. Then δ (1− θ) / (2θ (1− δ)) .

In the proof that follows, we verify that the proposed solution is the unique equilibrium.

Proof of Proposition 1. The proof is broken into two parts. In the first part we verify that

the proposed solution is an equilibrium, and then we verify that there are no equilibria in

the second part.

The first part of the proof consists of two steps. Step 1: we show that the proposal strategy

is optimal. Step 2: we show that the responder’s strategy is optimal. In each step, it is

sufficient to consider a single period deviation.

Step 1:

Note that the strategies dictate that the responder j accept a proposal si if and only if

si ∈ A∗
j = [piθ, s

∗
i ]. Since the proposer i always prefers a greater share of the prize, s∗i is the

maximum he can possibly propose and still have player j accept. The proposer would never

find it optimal to make an offer that the responder will reject since he would get a lesser

share of the prize if the roles of the proposer and responder are reversed. Therefore, s∗i is

the optimal proposal in each round.
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Step 2:

To show that the responder’s strategy is optimal, we will examine two cases corresponding to

the player’s effort choices: Case 1: e ∈ Ai (δ) or e ∈ N (δ) and δ < θ, and Case 2: e ∈ Aj (δ)

or e ∈ N (δ) and δ ≥ θ. In Case 1, we show that the responder i prefers withdrawal to

delay given any proposal sj. We then show that acceptance is preferred to withdrawal if

sj ∈ A∗
i and vice versa if sj 6∈ A∗

i . In Case 2, we show that the responder i prefers delay

to withdrawal given any proposal sj. We then show that acceptance is preferred to delay if

sj ∈ A∗
i and vice versa if sj 6∈ A∗

i .

Case 1: e ∈ Ai (δ) or e ∈ N (δ) and δ < θ.

Note that delay yields a payoff of δσ∗
i V , while withdrawal yields a payoff of piθV . We

demonstrate that withdrawal is preferred to delay by manipulating the inequality

(1.1) δσ∗
i ≤ piθ

to show that it is equivalent to the conditions of Case 1. Since the structure of the payoffs

varies based on the effort choices, we consider two subcases: Subcase 1.1: e ∈ Ai (δ) and

Subcase 1.2: e ∈ N (δ) and δ < θ.

Subcase 1.1: e ∈ Ai (δ).

In this case, (1) becomes

δ (1− δ)

2− δ
+

δ

2− δ
piθ ≤ piθ

δ (1− δ)

2− δ
≤ 2 (1− δ)

2− δ
piθ

δ

2θ
≤ pi.
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This holds based on the definition of Ai (δ) and Lemma 2.

Subcase 1.2: e ∈ N (δ) and δ < θ.

In this case, (1) becomes

δ (1− θ)

2
+ δpiθ ≤ piθ

δ (1− θ)

2
≤ (1− δ) piθ

δ

2θ

1− θ

1− δ
≤ pi.

This holds based on the definition of N (δ).

Thus, the responder i prefers withdrawal to delay.

To show that acceptance is preferred to withdrawal if sj ∈ A∗
i and vice versa if sj 6∈ A∗

i , note

that in this case, A∗
i = [pjθ, 1− piθ]. Clearly, player i prefers agreement for any sj < 1− piθ

and prefers conflict otherwise. If player i accepts an offer sj < pjθ, then player j will impose

conflict after agreement is reached, and so player i would be equally well off withdrawing

given such an offer. Therefore, player i’s response strategy is optimal in this case.

Case 2: e ∈ Aj (δ) or e ∈ N (δ) and δ ≥ θ.

Similar to the previous case, we demonstrate that delay is preferred to withdrawal by ma-

nipulating the inequality

(1.2) δσ∗
i ≥ piθ

to show that it is equivalent to the conditions of Case 2. As before, the structure of the

payoffs varies based on the effort choices, we consider two subcases: Subcase 1.1: e ∈ Aj (δ)
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and Subcase 1.2: e ∈ N (δ) and δ ≥ θ.

Subcase 2.1: e ∈ Aj (δ).

In this case, (2) becomes

δ (1− θ)

2− δ
+

δ

2− δ
piθ ≥ piθ

δ (1− θ)

2− δ
≥ 2 (1− δ)

2− δ
piθ

δ

2θ

1− θ

1− δ
≥ pi.

This holds based on the definition of Aj (δ) and Lemma 2.

Subcase 2.2: e ∈ N (δ) and δ ≥ θ.

In this case, (2) becomes

δ

2
≥ piθ

δ

2θ
≥ pi.

This holds based on the definition of N (δ).

Thus, the responder i prefers delay to withdrawal.

To show that acceptance is preferred to delay if sj ∈ A∗
i and vice versa if sj 6∈ A∗

i , we will

again consider Subcases 2.1 and 2.2. In each subcase, we verify that the proposal s∗j is such

that 1− s∗j = δσ∗
i , so that delay is preferred to agreement if sj < s∗j and vice versa if sj > s∗j .

Subcase 2.1: e ∈ Aj (δ).
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In this case, player i’s share 1− s∗j given the optimal proposal is

1−
(
2 (1− δ)

2− δ
+

δ

2− δ
pjθ

)
= 1− δ

2− δ
θ − 2 (1− δ)

2− δ
+

δ

2− δ
piθ

=
δ (1− θ)

2− δ
+

δ

2− δ
piθ

= δσ∗
i .

Subcase 2.2: e ∈ N (δ) and δ ≥ θ.

In this case, player i’s share 1− s∗j given the optimal proposal is

1−
(
2− δ

2

)
=

δ

2

= δσ∗
i .

Lastly, as argued in Case 1, if player i is indifferent between accepting and withdrawing if

the offer sj is such that sj < pjθ. Thus, since delay is preferred to withdrawal, delay is also

preferred to acceptance. Therefore, player i’s response strategy is optimal in this case.

We conclude that the proposed solution is an equilibrium.

Next we show that this equilibrium is the unique subgame perfect equilibrium of the bar-

gaining subgame. The proof is similar to that found in Appendix 1 of Binmore, Shaked,

and Sutton (1989). In their paper, they prove a similar result given that the order in which

players make proposals is nonrandom and only one player possesses an outside option. In our

framework, the order in which players make proposals is random and each player possesses

an outside option. This does not change the method of proof, though it does create for
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additional cases which must be exhausted.14

Given the existence of equilibrium as verified in Part 1 of this proof, there exists a minimum

share mi and maximum share Mi of the prize that player i receives in any subgame perfect

equilibrium conditional on player i being the current proposer. Given these shares, the

smallest share that the responder j can obtain by rejecting an offer is δ (mj + (1−Mi)) /2,

which is the discounted expectation given that j receives his minimum share when he is the

proposer and i receives his maximum share when he is the proposer. Similarly, the largest

share that the responder j can obtain by rejecting an offer is δ (Mj + (1−mi)) /2, which is

the discounted expectation given that j receives his maximum share when he is the proposer

and i receives his minimum share when he is the proposer. It follows that the responder

j should accept any offer si ≥ piθ such that 1 − si > max {δ (Mj + (1−mi)) /2, pjθ} and

should not accept any offer si such that 1 − si < max {δ (mj + (1−Mi)) /2, pjθ}. These

place a lower and upper bound on accepted proposals and thus on mi and Mi, as follows:

mi ≥ 1−max {δ (Mj + (1−mi)) /2, pjθ}

1−Mi ≥ max {δ (mj + (1−Mi)) /2, pjθ} .

The system of inequalities above actually consists of four inequalities since i ∈ {1, 2}. This

gives rise to eight cases to check for uniqueness corresponding to which term is larger in

each of the maximum operators. Due to the symmetry of the problem, it is sufficient

to check the following six distinct cases: (i) δ (mi + (1−Mj)) /2 ≥ piθ for each player

i, (ii) δ (mj + (1−Mi)) /2 < pjθ < δ (Mj + (1−mi)) /2 and δ (mi + (1−Mj)) /2 ≥ piθ,

(iii) pjθ ≥ δ (Mj + (1−mi)) /2 and δ (mi + (1−Mj)) /2 ≥ piθ, (iv) δ (mi + (1−Mj)) /2 <

14The proof found in Binmore, Shaked, and Sutton (1989) requires the exhaustion of three possible cases,
while our proof requires six cases.
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piθ < δ (Mi + (1−mj)) /2 for each player i, (v) pjθ ≥ δ (Mj + (1−mi)) /2 and

δ (mi + (1−Mj)) /2 < piθ < δ (Mi + (1−mj)) /2, and (vi) piθ ≥ δ (Mi + (1−mj)) /2 for

each player i. In each of these cases we show that either mi = Mi for each player i, or

mi > Mi for some player i. If the former is true, then the subgame perfect equilibrium share

is unique, whereas the latter is a contradiction, implying that the case cannot occur.

Case (i): δ (mi + (1−Mj)) /2 ≥ piθ for each player i.

In this case, the system of inequalities is

mi ≥ 1− δ (Mj + (1−mi)) /2

1−Mi ≥ δ (mj + (1−Mi)) /2

mj ≥ 1− δ (Mi + (1−mj)) /2

1−Mj ≥ δ (mi + (1−Mj)) /2.

This reduces to

2− δ

δ
(1−mi) ≤ Mj

1−Mi ≥ δ

2− δ
mj

2− δ

δ
(1−mj) ≤ Mi

1−Mj ≥ δ

2− δ
mi.
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Combining the first and fourth inequalities yields

2− δ

δ
(1−mi) ≤ 1− δ

2− δ
mi

2 (1− δ)

δ
≤ 4 (1− δ)

δ (2− δ)
mi

2− δ

2
≤ mi.

By symmetry we obtain mj ≥ (2− δ) /2, which when substituted into the second inequality

yields

Mi ≤ 1− δ

2− δ

2− δ

2

Mi ≤ 2− δ

2
.

Thus, we have (2− δ) /2 ≤ mi ≤Mi ≤ (2− δ) /2, and so mi =Mi for each player i.

Case (ii): δ (mj + (1−Mi)) /2 < pjθ < δ (Mj + (1−mi)) /2 and δ (mi + (1−Mj)) /2 ≥ piθ.

In this case, the system of inequalities is

mi ≥ 1− δ (Mj + (1−mi)) /2

1−Mi > δ (mj + (1−Mi)) /2

mj ≥ 1− δ (Mi + (1−mj)) /2

1−Mj ≥ δ (mi + (1−Mj)) /2,
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which reduces to

2− δ

δ
(1−mi) ≤ Mj

1−Mi >
δ

2− δ
mj

2− δ

δ
(1−mj) ≤ Mi

1−Mj ≥ δ

2− δ
mi.

A repetition of the computations in Case (i) yields (2− δ) /2 ≤ mi ≤ Mi < (2− δ) /2, a

contradiction. Therefore, this case cannot occur.

Case (iii): pjθ ≥ δ (Mj + (1−mi)) /2 and δ (mi + (1−Mj)) /2 ≥ piθ.

In this case, the system of inequalities is

mi ≥ 1− pjθ

1−Mi ≥ pjθ

mj ≥ 1− δ (Mi + (1−mj)) /2

1−Mj ≥ δ (mi + (1−Mj)) /2,

which reduces to

mi ≥ 1− pjθ

1− pjθ ≥ Mi

2− δ

δ
(1−mj) ≤ Mi

1−Mj ≥ δ

2− δ
mi.
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From the first two inequalities we immediately obtain mi ≤ Mi ≤ mi, so that mi = Mi.

Substituting this equality into the third and fourth inequalities yields

2− δ

δ
(1−Mj) ≥ 2− δ

δ
(1−mj)

mj ≥ Mj.

Thus, mj =Mj.

Case (iv): δ (mi + (1−Mj)) /2 < piθ < δ (Mi + (1−mj)) /2 for each player i.

In this case, the system of inequalities is

mi ≥ 1− δ (Mj + (1−mi)) /2

1−Mi > δ (mj + (1−Mi)) /2

mj ≥ 1− δ (Mi + (1−mj)) /2

1−Mj > δ (mi + (1−Mj)) /2,

which reduces to

2− δ

δ
(1−mi) ≤ Mj

1−Mi >
δ

2− δ
mj

2− δ

δ
(1−mj) ≤ Mi

1−Mj >
δ

2− δ
mi.

This may be solved as in Case (ii) to obtain a similar contradiction (2− δ) /2 < mi ≤Mi <
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(2− δ) /2. Therefore, this case cannot occur.

Case (v) pjθ ≥ δ (Mj + (1−mi)) /2 and δ (mi + (1−Mj)) /2 < piθ < δ (Mi + (1−mj)) /2.

In this case, the system of inequalities is

mi ≥ 1− pjθ

1−Mi ≥ pjθ

mj ≥ 1− δ (Mi + (1−mj)) /2

1−Mj > δ (mi + (1−Mj)) /2

which reduces to

mi ≥ 1− pjθ

1− pjθ ≥ Mi

2− δ

δ
(1−mj) ≤ Mi

1−Mj >
δ

2− δ
mi.

As in Case (iii), we immediately obtain mi =Mi. Substituting this into the third and fourth

inequalities yields

2− δ

δ
(1−Mj) >

2− δ

δ
(1−mj)

mj > Mj.

This is a contradiction, so this case cannot occur.
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Case (vi): piθ ≥ δ (Mi + (1−mj)) /2 for each player i.

In this case, the system of inequalities is

mi ≥ 1− pjθ

1−Mi ≥ pjθ.

mj ≥ 1− piθ

1−Mj ≥ piθ.

This immediately yields mi ≤ Mi ≤ mi for each i, so mi = Mi. Therefore, the subgame

perfect equilibrium described in the proposition is the unique subgame perfect equilibrium

of the bargaining subgame.

Note that in equilibrium, if e ∈ Ai (δ), then player i’s threat of disagreement is to impose

conflict, while player j’s threat is to delay bargaining. This is because of i’s advantage in

the underlying contest and so the conflict option is more desirable. Moreover, this results

in i receiving a larger share of the prize in equilibrium, thereby increasing the cost of delay

due to discounting. When e ∈ N (δ), both players have the same threat point. Either they

both find it better to impose conflict (if they are impatient) or they both prefer to delay (if

they are patient) when the other makes an unsatisfactory offer as the proposer. This is not

surprising; the cost due to discounting is higher for impatient players, and so their value of

delaying is lower.

It is worth pointing out that if δ ≥ 2θ, which requires that θ < 1/2, then N (δ) = [0, E] ×

[0, E], the entire strategy space. The interpretation is that if players are very patient and

conflict is very inefficient, then players always find it better to delay rather than impose

conflict. This further implies that the share each player receives in equilibrium is independent
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of the players’ effort choices.

Regardless of effort choices, the proposer always makes an offer so that agreement is reached

in the first round of bargaining, as is typically the case with this alternating offers bargaining

setup with complete information. Upon inspection, it becomes apparent that when e ∈ Ai (δ)

or δ < θ, the equilibrium strategies dictate that at least one player withdraws from bargaining

and imposes conflict when they are offered extremely large shares of the prize by the proposer.

Such a reaction may seem unreasonable, but recall that we adopted the convention that

players choose to withdraw rather than accept when the one of the players will impose

conflict in the third stage anyway. Intuitively, the responder realizes that the proposer would

receive a lower payoff than under conflict, and so he anticipates that the proposer will impose

conflict and preempts this action. We find that there is little to be gained in specifying all

possible equilibria that lead to the same realized outcome in all subgames. Regardless of

how the behavior is accommodated, such actions will always lie off the equilibrium path, and

thus would never be observed in actual play.

Let us briefly discuss the patience of the players, measured by δ ≥ θ and δ < θ. We find the

former case to be far more interesting, as the bargaining is meant to take place rapidly, and

the latter would typically require that players be absurdly impatient. Further, we conduct

analysis as δ → 1, necessitating that δ > θ. We thus focus primarily on the former case,

though we analyze the latter for completeness.

1.4 Effort Decisions

Next we analyze the first stage of the game to find the equilibrium effort choices. Before we

characterize the efforts induced by the bargaining scheme of Section 3, let us first characterize

the equilibrium of the underlying contest.
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ri(ej)

rj(ei)

ê

ê

e1
e 2

Figure 1.2: Effort best response functions for conflict

Proposition 2. Consider a contest with payoffs of the form piθV
1

2−δ
− c (ei) for some δ ≤

1. Then if Assumptions 1-4 hold, there exists a unique pure strategy equilibrium. This

equilibrium is symmetric with e1 = e2 = ê.

The proof of Proposition 2 requires the following technical definitions. These concepts were

introduced by Reny (1999). Let G = (X, u) denote an n player game with strategy space X

and payoff vector u.

Definition 1. A game G is better reply secure if whenever x∗ is not an equilibrium and

(x∗, u∗) is in the closure of the graph of G, there exists for some player i a strategy xi and a

neighborhood V of x∗−i such that for all x−i ∈ V , ui (xi, x−i) > u∗i .

Definition 2. A game G satisfies payoff security if for all ε > 0 and all x ∈ X, there

exists for each player i a deviation x′i ∈ Xi and a neighborhood N (x−i) of x−i such that

ui (x
′
i, z) > ui (x)− ε for all z ∈ N (x−i).

Definition 3. A game G is reciprocal upper semicontinuous if for all (x∗, u∗) in the closure

of the graph of G, if ui (x
∗) ≤ u∗i for all players i, then ui (x

∗) = u∗i for all i.

Reny shows that payoff security together with reciprocal upper semicontinuity imply better

reply security. We will use the following theorem due to Reny (1999) to prove existence of

equilibrium,
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Fact 1 (Reny 1999). A compact, quasiconcave game that is better reply secure possesses a

pure strategy Nash equilibrium.

This result can be used to guarantee the existence of a mixed strategy Nash equilibrium by

applying these conditions to the mixed extension of the game. The following fact is useful

for proving that the mixed extension of a game is reciprocally upper semicontinuous.

Fact 2 (Reny 1999). If the sum of the payoffs
∑

i ui is upper semi continuous, then the

mixed extension of the game is reciprocally upper semicontinuous.

Proof of Proposition 2. First we prove existence. We show that the game is quasiconcave

first. By assumption 3 we have for all e such that e1 + e2 > 0

d2

de2i
(piθV − c (ei)) < 0

p′′θV < c′′.

Since 2 − δ ≥ 1, then for any e such that p′′ > 0, we have p′′θV/ (2− δ) < p′′θV < c′′.

If p′′ ≤ 0, then p′′θV/ (2− δ) ≤ 0 < c′′. Therefore the payoffs are strictly concave when

ei + ej > 0. If f (0) > 0, then it follows that the game is strictly concave. Otherwise, if

f (0) = 0, then we need to check that the game is quasiconcave for ej = 0. In this case,

utility is strictly decreasing in ei for all ei > 0, so we conclude that the game is strictly

quasiconcave.

Next we show that the game is reciprocally upper semicontinuous. The condition is satisfied

trivially for all points of continuity, so we need only check the point e∗ = (0, 0) if f (0) = 0.

Note that any point in the closure of the graph (e∗, u∗) is such that u∗1 + u∗2 = θV/ (2− δ).

Since ui (e
∗) = θV/2 (2− δ), then if ui (e

∗) ≤ u∗i for each i, then ui (e
∗) = u∗i for each i.
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Similarly, payoff security is trivially satisfied at all points of continuity. Note that

lim
e→0

uCi (e, 0) ≥ uCi (0, 0) ,

so for all ε > 0, for some sufficiently small e′i, for all ej in the neighborhood [0, e′i), we have

uCi (e′i, ej) > uCi (0, 0) − ε. Therefore the game is payoff secure. We conclude that the game

is quasiconcave and better reply secure, and so the game possesses a pure strategy Nash

equilibrium.

Note that the game is strictly quasiconcave, so given ej > 0, there exists a unique maximizer

ri (ej), and from the theorem of the maximum, the function ri must be continuous. Due to

a potential discontinuity at (0, 0), ri (0) may not exist.

We now prove that the equilibrium must be unique and symmetric. Note that the first order

condition for each player i when e1 + e2 > 0 is

f ′ (ei) f (ej)

(f (ei) + f (ej))
2

θV

2− δ
− c′ (ei) = 0.

We characterize the reaction function via the implicit function theorem:

∂ri (ej)

∂ej
= −

f ′ (ri (ej)) f
′ (ej)

f(ri(ej))−f(ej)

(f(ri(ej))+f(ej))
3

θV
2−δ

d2

de2i

(
pi

θV
2−δ

− c
) .

Note that the numerator is positive if and only if ri (ej) > ej. The denominator is negative as

we just showed, so we conclude that the reaction function ri (ej) is strictly increasing if and

only if ri (ej) > ej, and strictly decreasing if and only if 0 < ri (ej) < ej. If ri (ej) = 0 < ej,

then ri
(
e′j
)
= 0 for all e′j > ej, and so is weakly decreasing.

At any interior symmetric equilibrium (e, e), the first order conditions must be satisfied,
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which yield

f ′ (e)

4f (e)

θV

2− δ
− c′ (e) = 0.

If we differentiate this expression with respect to e we get

d

de

(
f ′ (e)

4f (e)
θV − c′ (e)

)
=

f ′′ (e) f (e)− (f ′ (e))2

4 (f (e))2
θV

2− δ
− c′′ (e)

=
d2

de2i

(
pi

θV

2− δ
− c

)∣∣∣∣
e1=e2=e

< 0.

Therefore, the first order condition may only be satisfied at a single interior symmetric

strategy profile. Since Assumption 4 implies that (0, 0) is not an equilibrium, then there is

a unique symmetric equilibrium if one exists.

Suppose that ri (x) 6= x for all x, then from above, either ri (x) > x for all x, implying the

contradiction that ri (E) > E, or ri (x) < x for all x, in which case ri (rj (x)) < x for all x,

so that no equilibrium exists, arriving at another contradiction. Thus, there exists a ê such

that ri (ê) = ê. It follows that (ê, ê) is the unique symmetric Nash equilibrium.

Next, we show that there are no other asymmetric equilibria.

From above, ri (x) = x if and only if x = ê. If ri (x) > x for some x > ê, then since

ri (E) ≤ E, continuity implies that ri (y) = y for some y > x, which would imply the

existence of an additional symmetric equilibrium. Therefore, ri (x) < x for all x > ê. If

ri (x) < x for some x < ê, then ri would be decreasing for all x < ê, implying that ri (ê) < ê,

a contradiction. Therefore, ri (x) > x for all x < ê. It follows that ri achieves its maximum

at ej = ê and that it is quasiconcave.

Suppose that there is an asymmetric equilibrium (x, y) with x < y. If x > ê, then rj (x) < x,
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so y cannot be a best response to x. Similarly, if y < ê, then ri (y) > y, so x cannot be a best

response. Thus, it must be that x < ê < y. Since rj is maximized when ei = ê, achieving its

unique maximum at rj (ê) = ê, it follows that y > ri (x) for all x, and so cannot be a best

response. We conclude that no asymmetric equilibria exist.

Let rδi (·) denote the best response function for player i in the contest with payoffs given as

in Proposition 2.

Corollary 1. The best response function rδi (ej) is quasiconcave and maximized at ej = ê.

This corollary is shown in the proof of Proposition 2. Figure 1.2 displays an example of best

response functions for such a contest, with the unique interior solution at the peak of the

best response function. The functional form used for Figure 1.2 is a simple Tullock lottery

contest, and so the best response is undefined at zero. When the response function is defined

at zero, the best response must be positive, a consequence of Assumption 4. Inclusion of the

term term 1/ (2− δ) will be useful for application in later proofs, as this term appears in the

payoffs resulting from the bargaining process. Note that δ = 1 is allowed in the statement of

Proposition 2, so this result guarantees the existence of a unique, symmetric pure strategy

equilibrium in the underlying contest of our game. The corollary will be used in the proof

of our main result.

It will be helpful to summarize the expected utilities induced by the noncooperative bar-

gaining solution.

ui (e1, e2) =



1−θ
2−δ

V + pi
θ

2−δ
V − c (ei) if e ∈ Aj (δ)

1−θ
2
V + piθV − c (ei) if e ∈ N (δ) and δ < θ

V
2
− c (ei) if e ∈ N (δ) and δ ≥ θ

1−δ
2−δ

V + pi
θ

2−δ
V − c (ei) if e ∈ Ai (δ)

.
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It is easily shown that for some values of ej, these payoff functions are not quasiconcave in

each player i’s own strategy. As a result, this game may not admit a pure strategy Nash

equilibrium for θ ≤ δ < 2θ. Indeed the only potential pure strategy equilibrium involves

e1 = e2 = 0, which requires that conflict is very destructive (θ < 1/2) and either that players

are very patient (δ ≥ 2θ) or that players have a sufficiently large probability of winning the

conflict when choosing zero effort (f (0) sufficiently large).

Figure 1.3 depicts the best response functions for efforts for these utilities when θ ≤ δ < 2θ.

It can be seen clearly that there is no pure strategy equilibrium. These response functions

can be obtained by plotting Figures 1.1b and 1.2 in the same graph, then replacing segments

of the best response functions with the boundaries of N (δ). The reason is that when the

graph of a conflict best response function falls within N (δ), payoffs are strictly decreasing in

efforts, and so the true best response would be to the boundary of N (δ). When the graph of

the conflict best response function falls within A1 (δ)∪A2 (δ), the marginal benefit of effort

is of the same functional form as that of the underlying conflict, and so there is no local

profitable deviation. Except for a small region, the best response functions with and without

the noncooperative bargaining solution coincide whenever the graph is in A1 (δ) ∪ A2 (δ).

The following proposition formalizes the nonexistence result when players are patient and

conflict is not too inefficient.

r2(e1)

r1(e2)

e1

e 2

Figure 1.3: Effort best responses under noncooperative bargaining.
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Proposition 3. Suppose that Assumptions 1-4 hold. Then for all 1/2 < θ ≤ δ < 1 no pure

strategy equilibrium exists.

Proof of Proposition 3. Suppose that δ ≥ θ. Note that there is a potential boundary solution

with ei = 0 for some player i. We first show that no interior solution exists, then we check

the boundary.

Clearly no interior solution exists with e ∈ N (δ) since payoffs are strictly decreasing in

efforts in that region, so we check the interior of A1 (δ) ∪A2 (δ) . Proposition 2 implies that

an equilibrium in this region must be symmetric, implying that p∗i = p∗j = 1/2 < δ/2θ.

Therefore, this solution is in N (δ), a contradiction.

Lastly, we must consider ej = 0. If no best response function ri (0) exists at 0, then there

is no equilibrium with a player choosing zero. Suppose that rδi (0) exists. If rδi (0) > 0 and

rδj
(
rδi (0)

)
= 0, then by symmetry both

(
0, rδj (0)

)
and

(
rδi (0) , 0

)
must be equilibria of the

underlying contest. But Proposition 2 proves that there is a unique equilibrium, so it must

be that ri (0) = 0.

If θ > 1
2
, by Assumption 4, we have for some e > 0

p (e, 0) θV − c (e) >
V

2
,

and further since c (e) > 0, we have that

p (e, 0) θ >
1

2
,

p (e, 0) >
1

2θ

>
δ

2θ
.
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Therefore, ui (e, 0) > ui (0, 0), contradicting 0 as a best response. We conclude that there is

no pure strategy equilibrium.

The next proposition characterizes the first stage equilibrium for θ ≤ 1/2.

Proposition 4. Suppose that Assumptions 1-4 hold. If δ ≥ θ and θ ≤ 1/2, then any pure

strategy equilibrium must have e1 = e2 = 0. If f (0) > 0 then ê1 = ê2 = 0 may be a Nash

equilibrium. If f (0) = 0 and δ < 2θ, then ei = ej = 0 is not a Nash equilibrium. For δ ≥ 2θ,

ê1 = ê2 = 0 is a dominant strategy equilibrium.

Proof of Proposition 4. The first statement follows from the proof of the previous proposi-

tion. The last statement follows from the utility being strictly decreasing in efforts when

δ ≥ 2θ.

We provide a parametric example to show that when f (0) > 0, both players choosing zero

effort may or may not be an equilibrium. Consider f (e) = e+α, where α > 0, and c (e) = βe,

β > 0, and V = 1. It follows that Assumptions 1− 3 are satisfied.

Consider θ ≤ 1/2. We solve for the best response function conditional on pi > δ/2θ.

e
j
+ α

(ei + ej + 2α)2
θ

2− δ
= β

rδi (ej) =

√
θ (ej + α)

β (2− δ)
− ej − 2α.

Evaluating at zero yields

rδi (0) =

√
αθ

β (2− δ)
− 2α.

Note that for β′ = θ
4α(2−δ)

, rδi (0) = 0. It follows that for β = β′, the best response is zero,
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and so ei = ej = 0 is an equilibrium. Note further that limβ→0 r
δ
i (0) = ∞, and so for some

sufficiently small β, pi
(
rδi (0) , 0

)
> δ

2θ
. For β such that pi

(
rδi (0) , 0

)
> δ

2θ
, the payoff at the

best response to zero is

ui (ri (0) , 0) =
1− δ

2− δ
+

1− α√
αθ

β(2−δ)

 θ

2− δ
− β

(√
αθ

β (2− δ)
− 2α

)

=
1 + θ − δ

2− δ
− 2

√
αβθ

2− δ
− 2αβ.

Taking the limit as β → 0 we find

lim
β→0

1 + θ − δ

2− δ
− 2

√
αβθ

2− δ
− 2αβ =

1 + θ − δ

2− δ
.

The following are equivalent.

1 + θ − δ

2− δ
>

1

2

2 + 2θ − 2δ > 2− δ

2θ > δ.

Therefore, if δ < 2θ, we may choose a sufficiently small β such that rδi (0) > 0 is a profitable

deviation from 0, so that ei = ej = 0 is not an equilibrium.

Next we show that when f (0) = 0, then ei = ej = 0 is not a Nash equilibrium. Suppose
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that f (0) = 0. Note that for any e > 0, p (e, 0) = 1 > δ/2θ, so

ui (e, 0) =
1− δ

2− δ
V +

θ

2− δ
V − c (e)

>
V

2
− c (e) .

Since the limit of the right hand side as e → 0 is V/2, it follows that there exists an e > 0

such ui (e, 0) > ui (0, 0), so ei = ej = 0 is not an equilibrium.

The following proposition verifies that an equilibrium always exists.

Proposition 5. Suppose that Assumptions 1-4 hold. Then a mixed strategy equilibrium exists

for the effort decisions in the first stage when bargaining is conducted with the noncooperative

scheme.

The proof of Proposition 12 mimics the proof of the main theorem in Allison and Lepore

(2014).

Proof of Proposition 12. Note that the sum of the payoffs V − c (ei)− c (ej) is continuous, so

the aforementioned fact implies that the mixed extension of the game is reciprocally upper

semicontinuous. The reminder of the proof is devoted to showing that the mixed extension

is payoff secure.

Denote by M the compact set of regular probability measures on [0, E]× [0, E]. Let ε0, and

suppose that µ ∈ M. Note that for each player i there exists some strategy ei in the support

of µi such that

∫
ui (ei, ej) dµj ≥

∫
ui (e) dµ.
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If ei > 0, continuity of ui at ei implies that limn

∫
ui (ei, ej) dµ

n
j =

∫
ui (ei, ej) dµj for any

sequence of probability measures µn
j → µj, and so payoff security is satisfied if ei > 0.

Suppose that ei = 0. Note that limei→0 ui (ei, ej) ≥ ui (0, ej) for all ej. Thus, there exists

an e′i > 0 and compact subset K ⊂ [0, E] such that ui (e
′
i, ej) > ui (0, ej)− ε for all ej ∈ K,

where µj (K) > 1− ε. Define X = [0, E]. Choose such an e′i. Note that

∫
K

ui (e
′
i, ej) dµj >

∫
K

ui (ei, ej) dµj − ε, and µj (X rK) < ε.

Defining M ≡ sup |ui| <∞ due to the fact that ui is bounded on X, we get

∫
ui (e

′
i, ej) dµj >

∫
K

ui (ei, ej) dµj − ε+

∫
XrK

ui (e
′
i, ej) dµj∫

ui (e
′
i, ej) dµj −

∫
ui (ei, ej) dµj >

∫
XrK

ui (e
′
i, ej) dµj −

∫
XrK

ui (ej, ej) dµj

> −2Mµj (X rK)

> −2Mε.

Therefore, we have

∫
ui (e

′
i, ej) dµ−i >

∫
ui (ei, ej) dµj − (1 + 2M) ε.

Since ui (e
′
i, ej) is continuous in ej, it follows that

∫
ui (e

′
i, ej) dµj

is continuous in µj. Therefore, there exists a neighborhood N (µj) such that for all λ ∈
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N (µj),

∫
ui (e

′
i, ej) dλ >

∫
ui (e

′
i, ej) dµj − ε.

Combining this with the previous inequality yields

∫
ui (e

′
i, ej) dλ >

∫
ui (ei, ej) dµj − 2 (1 +M) ε

for all λ ∈ N (µj). Therefore, since 2 (1 +M) ε → 0 as ε → 0, we conclude that the mixed

extension of the game is payoff secure.

Therefore, Reny’s theorem guarantees’ that the game possesses a mixed strategy Nash equi-

librium.

1.5 Comparison with Cooperative Bargaining

Before we may make comparisons, we need to briefly summarize the results of cooperative

bargaining. As is well known, when utility is transferrable, all of the well known cooperative

solutions (Nash, Kalai-Smorodinsky, egalitarian, split sacrifice, etc.) prescribe the same di-

vision of the prize, dividing the surplus, the aggregate gain from settlement, equally between

the parties.15

These solutions are illustrated in Figure 1.4, with threat point D and utopia point U . The

utopia point is the maximum utility each player could receive while the other receives at least

their threat payoff. The Nash bargaining solution maximizes the product of the normalized

15If the boundary of the utility possibility set is strictly convex, then the cooperative bargaining solutions
do not all prescribe the same division.
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payoffs, and so we plot the maximal indifference curve for that product. The solution is

the point of tangency between the indifference curve and the utility possibility frontier. By

definition, the egalitarian solution divides the surplus over the disagreement equally between

players, realized as the intersection of the 45 degree line emanating from the disagreement

point. The equal sacrifice solution divides the loss relative to the utopia point equally

between the players. Thus, the equal sacrifice is obtained by intersecting the 45 degree line

emanating inward from the utopia point with the frontier. Lastly, the Kalai-Smorodinsky

solution intersects the line connecting the threat and utopia points with the utility possibility

frontier. As can be seen, with transferable utility, all these points coincide.

D

U

(u1 − d1)(u2 − d2) = πc
1π

c
2

πc

V

V

u1

u
2

Figure 1.4: Cooperative bargaining solutions.

In this framework, the surplus from agreement is the fraction of the prize that is wasted by

conflict, (1− θ). Thus, cooperative bargaining solutions give each player their payoff under

conflict plus half of this surplus, yielding a share for each player i of

sCi =
1− θ

2
+ piθ.

Alternatively, it is possible to set a threat point of zero to corresponds to the infinite dis-

agreement of the noncooperative bargaining game, and use the payoffs from conflict instead

as constraints on the utility possibility set. Such a specification would be inappropriate in
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this setting, as the threat point should correspond to the payoffs that players receive in the

event of disagreement. In this model, when a cooperative bargaining solution is used, players

have a binary choice to either accept the specified division or not. If both players accept,

then the prize is divided, and otherwise conflict occurs. We ignore the trivial equilibrium in

which both players choose to reject the specified division, as accepting is weakly dominant.

The expected utility induced by cooperative bargaining is therefore

uCi (e1, e2) =
1− θ

2
V + piθV − c (ei) .

Note that for e ∈ Ai (δ) for either i, the variable portion of the payoffs under

noncooperative bargaining are a constant fraction of those under cooperative bargaining,

and so the marginal benefit of effort is strictly less with the former scheme. As players

become more patient (δ → 1) the marginal benefit of effort in these regions converges to

the marginal benefit earned under cooperative bargaining. For e ∈ N (δ) and δ ≥ θ, the

same holds for the marginal benefit of effort since the payoffs are strictly decreasing under

the noncooperative scheme, though the difference is not reconciled as δ → 1. Only when

e ∈ N (δ) and δ < θ do the marginal incentives induced by cooperative and noncooperative

schemes truly coincide. The following proposition characterizes the equilibrium efforts under

cooperative bargaining.

Proposition 6. Suppose that Assumptions 1-4 hold. Then when players employ a cooperative

bargaining solution, there exists a unique pure strategy equilibrium in which each player

chooses efforts eC > 0.

Proof of Proposition 6. From Proposition 2, we know that a unique pure strategy equilibrium

exists and must be symmetric. We need only check that e1 = e2 = 0 is not an equilibrium.

Suppose that ej = 0. First, consider the case that θ > 1/2.
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From Assumption 4, there exists an e > 0 such that

c (e) <

(
pi (e, 0) θ −

1

2

)
V

V

2
< pi (e, 0) θV − c (e)

uCi (0, 0) < uCi (e, 0)− 1− θ

2
V − c (e) .

Thus, we conclude that e is a profitable deviation from 0, so ei = ej = 0 is not an equilibrium

when θ > 1/2.

We now consider the case that θ ≤ 1/2.

For θ′ = 1/2 + ε where 0 < ε < θ/2 , Assumption 4 gives us

c (e) <

(
pi (e, 0) θ

′ − 1

2

)
V

1

2
V < pi (e, 0) θ

′V − c (e)

1

2
V < p (e, 0) (θ′ − θ)V + p (e, 0) θV − c (e)

uCi (0, 0) < uCi (e, 0) + pi (e, 0) (θ
′ − θ)V − 1− θ

2
V − c (g) .

In order to show that this e > 0 is a profitable deviation from zero, it is sufficient to show

that

p (ei, 0) (θ
′ − θ)V − 1− θ

2
V < 0

pi (e, 0)

(
1

2
+ ε− θ

)
<

1

2
− θ

2
.
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The last line is obtained by substituting the definition of θ′ and moving the second term to

the right hand side. Note that pi ≤ 1 and 1/2 + ε− θ < 1/2− θ/2 by the assumption on ε.

Therefore ei = ej = 0 is not an equilibrium when θ ≤ 1/2. We conclude that there exists a

eC > 0 such that e1 = e2 = eC is the unique Nash equilibrium.

We next show that the noncooperative solution does not converge to the Nash bargaining

solution as the players become infinitely patient. Let σδ
i denote the equilibrium expected

division from the noncooperative solution for a given δ.

Lemma 3. The division σδ
i does not converge to sCi as δ → 1. In particular, σδ

i (e) → sCi (e)

if and only if e1 = e2.

Proof of Lemma 3. First consider θ < 1/2. Then for δ > 2θ, σδ
i = 1/2. Further, sCi = 1/2 if

and only if e1 = e2.

Next consider θ ≥ 1/2. Recall that the expected divisions for δ > θ are

σδ
i =


1−θ
2−δ

+ pi
θ

2−δ
if e ∈ Aj (δ)

V
2

if e ∈ N (δ)

1−δ
2−δ

+ pi
θ

2−δ
if e ∈ Ai (δ)

→


1− θ + piθ if e ∈ Aj (1)

V
2

if e ∈ N (1)

piθ if e ∈ Ai (1)

.

Note that N (1) = {e : e1 = e2}, so this piecewise solution agrees with the Nash bargaining

solution if and only if e1 = e2.

Note that this nonconvergence result implies that the Nash bargaining solution may be an

inaccurate approximation of the noncooperative bargaining solution as the solutions disagree
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almost everywhere. In particular when δ is close to 1 and players choose slightly different

efforts, the noncooperative scheme results in one player receiving nearly the entire surplus,

while cooperative solutions prescribe an equal division of the surplus. Recall that equilibrium

efforts are in mixed strategies. When δ ≥ θ, in any equilibrium, efforts are chosen in

A1 (δ) ∪ A2 (δ) with positive probability, else the players would always receive a share of

1/2 and would have incentive to reduce their effort choices. Thus, in any realization of an

equilibrium, there is a positive probability that the cooperative and noncooperative schemes

prescribe drastically different divisions of the surplus.

This lack of convergence allows for the main result that both players prefer the noncoopera-

tive bargaining scheme due to the Pareto superior efforts it induces in equilibrium. Denote by

uCi the equilibrium expected payoffs under a cooperative bargaining scheme. Let uδi denote

the equilibrium expected payoffs under the noncooperative bargaining scheme for a given

δ < 1. Let eδ denote the maximum effort chosen in equilibrium, that is, eδ is the supremum

of the support of a player’s equilibrium mixed strategy.

Theorem 1. Suppose that Assumptions 1-4 hold. Then for all δ < 1 such that θ ≤ δ < 2θ,

uδi > uCi and eδ < eC. Moreover, limδ→1 u
δ
i > uCi and limδ→1 e

δ < eC. If δ ≥ 2θ, then eδ = 0

and the equilibrium is fully efficient.

pi(ei, ej) =
δ
2θ

pj(ei, ej) =
δ
2θ

ri(ej)ê

e1

e 2

Figure 1.5: Bounding the undominated strategies.

Figure 1.5 plots the best response in a simple Tullock lottery contest along with the partition
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of the strategy space into A1 (δ) ∪A2 (δ) ∪N (δ). This will allow us to clearly visualize the

result, as we will describe below. Note that Corollary 1 implies that eC is the maximum of

the the best response function in the absence of bargaining.

We provide an outline before we conduct the formal proof of this result. Define e < eC to be

argument where the graph of the best response function intersects the boundary of N (δ),

as in Figure 1.5. Our objective is to show that e strictly dominates all effort choices e > e.

In order to do this, we compare e to an arbitrary e > e in three cases corresponding to the

region in which (e, ej) lies, A1 (δ), A2 (δ), or N (δ). The argument is as follows. Within any

of these three regions, the payoff function is strictly quasiconcave in ei. Thus, given any

e > e′ ≥ r (ej) with (e, ej) and (e′, ej) in the same region A1 (δ) or A2 (δ), e
′ yields a strictly

higher payoff than does e. Given e > e′ with (e, ej) and (e′, ej) in N (δ), e′ yields a strictly

higher payoff since the utility of each player is strictly decreasing in their own strategy in this

region. It therefore suffices to show that e ≥ r (ej) for all ej such that (e, ej) ∈ A1 (δ)∪A2 (δ).

In order to deal with the case in which (e, ej) and (e, ej) lie in different regions, we simply

find an intermediate effort with e > e′ > e such that (e′, ej) lies on the boundary of the two

regions and compare e to e′ and e′ to e. After establishing that e strictly dominates all effort

choices e > e, we need only show that a player can guarantee himself a payoff strictly higher

than uC by choosing e.

Generally, the best response function ri (·) may intersect the boundary of N (δ) at multiple

distinct effort levels. In this case we simply consider e to be the supremum of these intersec-

tion points. Note that this upper bound on the support of the mixed strategy equilibrium

is larger than necessary. A tighter bound could be computed via iterated deletion of strictly

dominated strategies, however, such a process would not add value, as we make no attempt

to characterize the mixed strategy equilibrium of this game.

Proof of Theorem 1. Fix θ ≤ δ < 2θ. Let rδi (ej) denote player i’s best response function in
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the contest with payoffs given by

pi
θ

2− δ
V − c (gi) .

Note that rδi gives the best response for payoffs defined for e ∈ A1 ∪ A2. It is possible

that rδi (0) does not exist, which we consider separately as needed. We use êδ to denote the

symmetric pure strategy equilibrium effort in this contest, that is, rδi
(
êδ
)
= êδ. Recall that

the expected payoffs are

ui (ei, ej) =


1−θ
2−δ

V + pi
θ

2−δ
V − c (ei) if e ∈ Aj (δ)

V
2
− c (ei) if e ∈ N (δ) and δ ≥ θ

1−δ
2−δ

V + pi
θ

2−δ
V − c (ei) if e ∈ Ai (δ)

.

rδi (E)

e1

e 2

(a) ēδ = rδi (E)

xδ

e1

e 2

(b) ēδ = rδi (E)

yδ

e1

e 2

(c) ēδ = xδ

Figure 1.6: Possible bounds for the undominates strategies.

Define xδ and yδ as in Figure 1.6. Formally,

xδ = sup
{
rδi (ej) : ej < êδ and pi

(
rδi (ej) , ej

)
= δ/2θ

}
and yδ = sup

{
rδi (ej) : ej > êδ and pj

(
rδi (ej) , ej

)
= δ/2θ

}
. The supremum operator is nec-

essary as these sets may be empty. Note that if max
{
xδ, yδ

}
= êδ, then since rδi only obtains

its maximum êδ only at ej = êδ, this implies that pi
(
êδ, êδ

)
= δ/2θ > 1/2, a contradiction.
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Therefore, max
{
xδ, yδ

}
< êδ. Next, define eδ = max

{
xδ, yδ, rδi (E)

}
, noting that eδ < êδ.

We show that eδ strictly dominates all efforts e > eδ and so eδ is an upper bound for the

efforts employed in any Nash equilibrium.

Consider any ei > eδ. We consider three cases corresponding to whether (ei, ej) ∈ Ai (δ),

(ei, ej) ∈ Aj (δ), or (ei, ej) ∈ N (δ).

Case (i):
(
eδ, ej

)
∈ Ai (δ).

It follows that (ei, ej) ∈ Ai (δ) as well, so given the quasiconcavity of the payoffs in this region

it is sufficient to show that rδi (ej) ≤ eδ. Suppose to the contrary that rδi (ej) > eδ. It follows

that (ri (ej) , ej) ∈ Ai (δ). Since e
δ < êδ, it must be that ej < êδ, so Corollary 1 implies that

rδi is increasing in ej. Since pi
(
rδi (ej) , ej

)
> δ/2θ and pi

(
rδi
(
êδ
)
, êδ
)
< δ/2θ, then there

must be some ẽ ∈
(
ej, ê

δ
)
such that pi

(
rδi (ej) , ej

)
= δ/2θ. Thus, rδi (ej) ≤ rδi (ẽ) ≤ xδ ≤ eδ.

This is a contradiction, so we conclude that rδi (ej) ≤ eδ and thus uδi (ei, ej) < uδi
(
eδ, ej

)
.

Case (ii):
(
eδ, ej

)
∈ N (δ).

If (ei, ej) ∈ N (δ) then since the payoffs are strictly decreasing in efforts in that region, it

must be that uδi (ei, ej) < uδi
(
eδ, ej

)
. Suppose that (ei, ej) ∈ A1 (δ). Define ẽ ∈

(
eδ, ei

]
to be

such that (ẽ, ej) ∈ A1 (δ)∩N (δ) . Then we have that uδi (ẽ, ej) < uδi
(
eδ, ej

)
. A repetition of

the argument in case (i) will yield that rδi (ej) ≤ ẽ, and so the quasiconcavity of payoffs in

A1 (δ) implies that uδi (ei, ej) ≤ uδi (ẽ, ej).

Case (iii):
(
eδ, ej

)
∈ Aj (δ) \N (δ).

We first show that rδi (ej) ≤ eδ. Suppose first that yδ = −∞. then either rδi (ej) = 0 or(
rδi (E) , ej

)
∈ N (δ). If rδi (ej) = 0, then we have rδi (ej) ≤ eδ as desired. Otherwise, if(

rδi (E) , ej
)
∈ N (δ), then it must be that

(
eδ, ej

)
∈ N (δ), a contradiction. Next suppose

that yδ > −∞, and let ẽ > eδ such that pj
(
rδi (ẽ) , ẽ

)
= δ/2θ. It follows that ej > ẽ, and so
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from Corollary 1 we conclude that rδi (ej) < rδi (ẽ) ≤ eδ.

If (ei, ej) ∈ Aj (δ), then the quasiconcavity of the payoffs in this region ensure that uδi (ei, ej) <

uδi
(
eδ, ej

)
. If (ei, ej) ∈ N (δ), then consider e′i such that (e′i, ej) ∈ Aj (δ)∩N (δ). Then it must

be that uδi (e
′
i, ej) < uδi

(
eδ, ej

)
. Moreover, it follows from Case (ii) that uδi (ei, ej) ≤ uδi (e

′
i, ej).

We conclude that eδ strictly dominates ei. Thus in equilibrium, each player will only play

strategies in
[
0, eδ

]
. Given this restriction, equilibrium payoffs must be such that

uδi ≥ min
ej∈

[
0,eδ

]E [ui (eδ, ej)]
=

V

2
− c

(
eδ
)

= uCi + c
(
eC
)
− c

(
eδ
)

> uCi .

It remains to be shown that these results hold in the limit as δ → 1. Define e analogously

to eδ but for the game whose payoffs are given by uδi (ei, ej) with δ = 1. Let ri be the best

response function for the contest with payoffs piθV − c (ei). Then note that eδ → e as δ → 1.

From this we obtain

lim
δ→1

uδi ≥ lim
δ→1

min
ej∈

[
0,eδ

]E [ui (eδ, ej)]
= lim

δ→1

V

2
− c

(
eδ
)

=
V

2
− c (e)

= uCi + c
(
eC
)
− c (e)

> uCi .
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The final statement of the theorem has already been discussed.

Theorem 1 guarantees that the noncooperative bargaining scheme always induces lower effort

choices relative to a cooperative solution. Since efforts are entirely wasteful, this means that

the noncooperative bargaining scheme induces a more efficient outcome. The expected efforts

induced by the noncooperative scheme are lower still than the upper bound in the Theorem

since the equilibrium is in mixed strategies.

While the equilibrium strategies are not easily solved for, Theorem 1 demonstrates that it

is relatively easy to find an upper bound on the equilibrium efforts. Moreover, that strategy

dominates all larger effort choices, allowing a player to guarantee himself a payoff that is

strictly larger with the noncooperative scheme than he would receive under a cooperative

solution, even if he is unable to determine the equilibrium strategies.

1.5.1 Choosing a Bargaining Scheme

The implication of Theorem 1 is that players are strictly better off if bargaining is done

noncooperatively with the scheme described in section 3. Thus, given the option, players

would commit to this scheme prior to making effort decisions. Even if commitments could

not be made to use a particular scheme, the implementation of a cooperative solution would

require the consent of each player, and the following proposition shows that this would be

difficult to acquire.

Proposition 7. Suppose that ei < ej. Then for all δ > θ, σδ
i > sCi and limδ→1 σ

δ
i > sCi .

Proof of Proposition 7. Given any effort choices such that ei < ej,

σδ
i ∈

{
1

2
,
1− θ

2− δ
+ pi

θ

2− δ

}
.



53

If σδ
i = 1/2, then σδ

i > sCi since sCi = (1 − θ)/2 + piθ < 1/2. Otherwise, note that the

following are equivalent.

1− θ

2− δ
+ pi

θ

2− δ
>

1− θ

2
+ piθ

2− 2θ

2 (2− δ)
+

2pi
2 (2− δ)

θ >
2− δ − 2θ + δθ

2 (2− δ)
+

4pi − 2δpi
2 (2− δ)

θ

δ (1− θ)

2 (2− δ)
> 2pi

θ (1− δ)

2 (2− δ)

δ (1− θ) > 2piθ (1− δ) .

The final inequality holds since δ > θ and 2pi < 1. Due to the continuity of σδ
i , the limiting

statement follows since δ → 1 > θ.

Proposition 7 implies that the player with the disadvantage in the underlying contest strictly

prefers the noncooperative solution. This provides justification for the use of noncooperative

over cooperative schemes, as noncooperative bargaining would be imposed by the player

that chooses the least effort. Even if both players choose the same level of effort, they

are indifferent between solutions. After choosing efforts, players are at least as well off

bargaining than not, so there would be no advantage to choosing a different level of effort

in the anticipation of imposing conflict. Moreover, choosing a level of effort in order to gain

an advantage under a cooperative bargaining solution would not be beneficial, as gaining an

advantage would induce the other player to elect for the noncooperative scheme.

1.6 Contests with Mixed Strategy Equilibria

In this section, we extend our analysis to consider contest functions which do not satisfy

our previous assumptions. In particular, we examine contests which do not admit pure
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strategy equilibria. Our objective is to extend the previous results to a large majority of the

remaind of contests studied in the conflict literature. In the class of contests considered here,

the equilibrium involves total rent dissipation, whereas we show that there is less dissipation

when the noncooperative bargaining scheme is employed. We first present a general sufficient

condition for the extension of our main result.

Theorem 2. Suppose that in every equilibrium of the contest (the game in which efforts

are chosen and then conflict occurs), both players have an expected payoff of zero. Then

equilibrium expected payoffs are greater under noncooperative bargaining, uδi > uCi . Moreover,

limδ→∞ uδi > uCi .

Proof of Theorem 2. Since the cooperative solution shares equilibria with the underlying

contest, we immediately obtain

uCi =
1− θ

2
V.

Note that by choosing ei = 0, player i is guaranteed to receive a payoff of at least (1− θ)V >

uCi .

We now present a large class of contests that satisfy the conditions of Theorem 2. Assume

that each player i’s utility function in the event of conflict is given by

ui (e) = pi (e) θV − c (ei) ,

where pi is symmetric.16 In order to extend our results to a more general setting, we replace

Assumptions 2-4 with the following elasticity assumption due to Ewerhart (2013).

Assumption 5. ui is differentiable for all e such that e1 + e2 > 0. For all ei > 0, there is a

16By symmetric, we mean that p1 (e, e
′) = p2 (e

′, e) for all e, e′.
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constant λ (ei) > 0 such that

∂ui
∂ei

(e) > λui (e)

for any ej ≥ ei.

As Ewerhart demonstrates, a large class of contest functions satisfy this assumption, includ-

ing the Tullock function with exponent greater than 2 and the logistic specification mentioned

in Remark 1 when the cost function is linear. He obtains the following result that rent is

completely dissipated in all equilibria of contests satisfying Assumption 5.

Fact 3 (Ewerhart (2013)). Suppose that Assumption 5 is satisfied. Then in any equilibrium,

each player earns a payoff u∗i = 0.

Corollary 2. Suppose that Assumption 5 is satisfied. Then equilibrium expected payoffs are

greater under noncooperative bargaining, uδi > uCi . Moreover, limδ→∞ uδi > uCi .

Not that all we have shown is that there is less rent dissipation when the noncooperative

scheme is used relative to the when the cooperative solution is employed. We are unable

to verify whether rent is completely dissipated (save for the surplus that can guaranteed

by choosing zero effort) in the equilibrium when the noncooperative bargaining scheme is

employed. The reason is that the payoffs after bargaining no longer satisfy Assumption 5,

and thus Ewerhart’s analysis does not apply.

Another common model of conflict is as a deterministic contest in which the player that exerts

the highest effort wins with certainty. In this case, we are able to completely characterize

the equilibrium payoffs under each bargaining scheme.
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Assumption 6. The probability that player i wins the contest is given by

pi (e) =


0 if ei < ej

1
2

if ei = ej

1 if ei > ej

.

Contests satisfying Assumption 6 may be realized as the limit of a Tullock contest in which

pi (e) =
emi

em1 + em2

and m → ∞. In this setting we show that rent is completely dissipated in all equilibria

under any bargaining scheme.

Siegel (2009) characterizes the equilibrium payoffs of deterministic all-pay contests with

complete information. His results may be interpreted in our model as follows.

Fact 4 (Siegel (2009)). Suppose that Assumptions 1 and 6 are satisfied. Then in any equi-

librium, each player earns a payoff u∗i = 0.17

Corollary 3. Suppose that Assumptions 1 and 6 are satisfied. Then equilibrium expected

payoffs are greater under noncooperative bargaining, uδi > uCi . Moreover, limδ→∞ uδi > uCi .

For completeness, we shall verify that the game in which Assumptions 1 and 6 are satisfied

and the noncooperative scheme is employed fits the assumptions of Siegel’s model. This

implies that rent is completely dissipated in any equilibrium, and so players would receive

only that which they could secure by choosing zero effort. The reason that the intuition from

the previous section does not extend is that the region N (δ) coincides with the diagonal,

as can be seen in Figure 1.7. The incentives when players tie (e1 = e2) are thus reversed so

17Assumption 1 is stronger than necessary. It is sufficient that c be continuous and nondecreasing with
lime→∞ c (e) > V.
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δ < 2θ

e1

e 2

A1

N
A2

Figure 1.7: The partition of the strategy space with a deterministic contest.

that players ought to marginally increase their efforts from ties rather than decrease, as this

will tip them into the advantaged region. Thus, it is not possible to remove strategies that

would fully dissipate rent via deletion of dominated strategies.

Proposition 8. Suppose that Assumption 6 is satisfied and that the noncooperative bargain-

ing scheme is employed. If δ < 2θ, then the equilibrium expected payoff to each player i is

uδi = (1− θ) / (2− δ). If δ ≥ 2θ, then the dominant strategy equilibrium is ê1 = ê2 = 0, and

the expected payoff to each player i is uδi = V/2.

Proof of Proposition 8. Note that the partition of the strategy space with the deterministic

contest is

Ai (δ) =

 e : ei > ej if δ < 2θ

∅ if δ ≥ 2θ

 and

N (δ) =

 e : e1 = e2 if δ < 2θ

[0, E] if δ ≥ 2θ

 .

This is illustrated in Figure 1.7. Thus, for δ < 2θ, payoffs can be normalized with the



58

addition of the constant − (1− θ) / (2− δ) to

ui (ei, ej) =


−c (ei) if ei < ej(

1
2
− 1−θ

2−δ

)
V − c (ei) if e1 = e2

2θ−δ
2−δ

V − c (ei) if ei > ej

.

The previous fact then implies that the payoff to each player in this game is zero. Reversing

the normalization, we find that the true expected payoff to each player is

uδi =
1− θ

2− δ
V.

If δ ≥ 2θ, then the result follows from the fact that N (δ) = [0, E].

This proposition states that the total surplus is dissipated to 2 (1− θ) / (2− δ) when δ < 2θ.

As noted in the proof of Theorem 2, the total surplus under the cooperative scheme is

dissipated to (1− θ). Thus for sufficiently patient players the noncooperative scheme yields

approximately double the surplus of the cooperative solution. As in previous sections, when

conflict is sufficiently destructive (δ ≥ 2θ) the noncooperative scheme induces maximal

efficiency, while the cooperative solution would otherwise yield minimal efficiency. While

the analysis of this section does not guarantee that our result extend to all contests, it

does demonstrate its robustness, applying to the vast majority of models employed in the

literature on conflict.

1.7 Exogenous Breakdown

In this section we consider an alternative specification of the bargaining process to allow

for an exogenous probability of breakdown as in Binmore, Rubinstein, and Wolinsky (1986).



59

As noted in the Introduction, if players do not discount future payoffs and players have no

outside option, the equilibrium of this bargaining scheme converges to the Nash bargaining

solution. Our goal here is to demonstrate that the results of Section 5 are robust to the

possibility of breakdown provided that players discount future payoffs.

The framework of the bargaining problem is altered as follows. In each bargaining round, if

the offer is rejected by the responder, there is a probability that the process breaks down,

in which case conflict occurs. Let 1 −∆ > 0 denote the probability that bargaining breaks

down each round, so that the probability of continuation is ∆. Then the expected value of

delay to the responder j is given by

∆δ

(
1

2
Vj (I) +

1

2
Vj (J)

)
+ (1−∆) pjθV ,

where Vj (K) denotes the expected payoff that j receives when K ∈ {1, 2} is the proposer.

The key difference is that when both player’s optimal threat is to delay rather than withdraw,

the equilibrium division will depend on the effort choices since there is a probability that

delay results in conflict. As before, we partition the strategy space of effort choices, though

the partition now depends on ∆ as well.

Ai (∆, δ) =

 e : pj <
δ
2θ

1−θ
1−δ

if δ < θ

e : pi >
δ
2θ

1−∆δ−(1−∆)θ
1−δ

if δ ≥ θ

 and

N (∆, δ) =

 e : min {p1, p2} ≥ δ
2θ

1−θ
1−δ

if δ < θ

e : max {p1, p2} ≤ δ
2θ

1−∆δ−(1−∆)θ
1−δ

if δ ≥ θ

 .
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Define the following proposal and response rules:

s∗∗i =


2(1−∆δ−(1−∆)θ)

2−∆δ
+ ∆δ+2(1−∆)

2−∆δ
piθ if e ∈ Ai (∆, δ)

(1− θ) + piθ if e ∈ Aj (∆, δ) or e ∈ N (∆, δ) and δ < θ

2−∆δ
2

1−∆δ−(1−∆)θ
1−∆δ

+ 1−∆
1−∆δ

piθ if e ∈ N (∆, δ) and δ ≥ θ

,

A∗∗
i =

[
pjθ, s

∗
j

]
,

D∗∗
i =

 ∅ if e ∈ Ai (∆, δ) or e ∈ N (∆, δ) and δ < θ

[0, 1]�A∗∗
i if e ∈ Aj (∆, δ) or e ∈ N (∆, δ) and δ ≥ θ

,

W ∗∗
i =

 [0, 1]�A∗∗
i if e ∈ Ai (∆, δ) or e ∈ N (∆, δ) and δ < θ

∅ if e ∈ Aj (∆, δ) or e ∈ N (∆, δ) and δ ≥ θ
.

Lemma 4. Suppose that each player employs the following strategy. In each round that

player i is the proposer, he proposes s∗∗i . In each round that player i is the responder,

he accepts proposals sj ∈ A∗∗
i , rejects proposals sj ∈ D∗∗

i , and withdraws given proposals

sj ∈ W ∗∗
i , where s∗∗i , A∗∗

i , D∗∗
i , and W ∗∗

i are as specified above. Then the expected share that

each player i receives is

σ∗∗
i =



1−∆δ−(1−∆)θ
2−∆δ

+ 2−∆
2−∆δ

piθ if e ∈ Ai (∆, δ)

1
2−∆δ

(1− θ) + 2−∆
2−∆δ

piθ if e ∈ Aj (∆, δ)

1
2
1−∆δ−(1−∆)θ

1−∆δ
+ 1−∆

1−δ∆
piθ if e ∈ N (∆, δ) and δ ≥ θ

1−θ
2

+ piθ if e ∈ N (∆, δ) and δ < θ

.

The proof of Lemma 4 is identical to that of Lemma 1 and is located in the supplemental

appendix.

The following propositions characterize the unique Markov perfect equilibrium of the bar-
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gaining subgame when there is an exogenous probability of breakdown between bargaining

rounds.

Proposition 9. Suppose that there is an exogenous probability of breakdown ∆ ∈ [0, 1] and

δ < 1. The unique subgame perfect equilibrium of the bargaining subgame is as follows. In

each round that player i is the proposer, he proposes s∗∗i . In each round that player i is the

responder, he accepts proposals sj ∈ A∗∗
i , rejects proposals sj ∈ D∗∗

i , and withdraws given

proposals sj ∈ W ∗∗
i , where s∗∗i , A∗∗

i , D∗∗
i , and W ∗∗

i are as specified above.

The proof is identical to that of Proposition 1 and is located in the supplemental appendix.

The following proposition demonstrates that so long as players discount future payoffs and

are reasonably patient (δ ≥ θ), then they will prefer the noncooperative bargaining scheme.

Let u∆,δ
i denote the payoff earned by player i in an equilibrium induced by this bargaining

scheme, and let e∆,δ denote the supremum of the support of the equilibrium strategies.

Proposition 10. Suppose that Assumptions 1-4 hold. Then for all δ ∈ [θ, 1), for any ∆ ∈

(0, 1], u∆,δ
i > uCi and e∆,δ < eC. Moreover, lim(∆,δ)→(1,1) u

∆,δ
i > uCi and lim(∆,δ)→(1,1) e

∆,δ <

eC.

Proof of Proposition 10. Let ê∆,δ denote the symmetric pure strategy equilibrium effort for

the game whose payoff to each player i is

2−∆

1−∆δ
piθ.

The existence of this equilibrium is guaranteed by Proposition 2. Let r∆,δ
i denote the best

response function of that game.
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Then analogous to the proof of Theorem 1, define

x∆,δ = sup

{
r∆,δ
i (ej) : ei < ê∆,δ and pi

(
r∆,δ
i (ej) , ej

)
=

δ

2θ

1−∆δ − (1−∆) θ

1− δ

}

and

y∆,δ = sup

{
r∆,δ
i (ej) : ej > ê∆,δ and pj

(
r∆,δ
i (ej) , ej

)
=

δ

2θ

1−∆δ − (1−∆) θ

1− δ

}
.

Now define z∆,δ to be the symmetric pure strategy equilibrium effort for the game whose

payoff to each player is

1−∆

1−∆δ
piθ,

which reflects the payoffs in N (∆, δ) . If we define the upper bound on equilibrium strategies

to be e∆,δ = max
{
x∆,δ, y∆,δ, r∆,δ

i (E) , z∆,δ
}
, then the remainder of the proof is identical to

that of Theorem 1, where e∆,δ takes on the role of eδ.

This result states that players are better off in the equilibrium induced by the noncooperative

scheme even if there is an exogenous probability of breakdown as long as the have even the

slightest time preferences.

Even though the payoffs in N (∆, δ) depend on the effort choices of the players, the marginal

benefit is still lower than under conflict. If the probability of breakdown is sufficiently high,

then there is a unique pure strategy equilibrium in which both players choose symmetric,

positive efforts, though these efforts are strictly below the cooperative effort level since the

probability of conflict is less than one and in a sense, the conflict outcome is discounted.

Otherwise, if the probability of breakdown is sufficiently low, then the pure strategy equi-

librium candidate effort is not optimal since either player could slightly increase their efforts
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and obtain a sufficient advantage so as to be guaranteed a much larger share of the prize.

In this case, a dominating strategy may be computed as before that players may choose and

guarantee themselves a higher payoff than they would receive in the equilibrium induced by

the cooperative solution.

As a final note, if breakdown is certain (∆ = 0) or players do not discount future payoffs (δ =

1), then the equilibrium efforts induced by the noncooperative scheme and the cooperative

solution are identical, as are expected payoffs. When ∆ = 0, then the bargaining process

reduces to the ultimatum game, in which the only equilibrium is for the proposer to take

the entire surplus, leaving the responder with his conflict payoff. If δ = 1, then not only

does the equilibrium division converge to the Nash bargaining solution as shown by Binmore,

Rubinstein, and Wolinsky (1986), but the equilibrium division is a function of ∆ plus the

conflict payoff. Thus, if either ∆ = 0 or δ = 1, the expected payoff for each player coincides

with that specified by the cooperative solution, inducing the same equilibrium.

1.8 Conclusions

We have provided a general characterization of concave, symmetric contests. Using this, we

have shown that the noncooperative alternating offers bargaining scheme in which conflict

serves as an outside option induces equilibrium effort choices in mixed strategies for the most

interesting portion of the parameter space, and zero effort for the remainder. Payoffs are

strictly higher for both players in the equilibrium induced by the noncooperative scheme

relative to the equilibrium induced by any cooperative scheme. Moreover, the use of a

cooperative bargaining solution always induces positive effort choices, while a noncooperative

solution can induce an efficient, zero effort equilibrium. We have further shown that our

results extend to symmetric contests which do not possess pure strategy equilibria.
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While some situations such as war lend themselves naturally to the timing of actions used in

this paper, it is at other times natural to only exert effort in the event that conflict occurs.

The unique property of conflict is that it supersedes agreements, so that regardless of the

bargaining scheme or solution that is used, the agreement is nonbinding. It follows that after

efforts have been chosen, players would have an opportunity to renegotiate their agreement.

Regardless of the bargaining scheme or solution that is employed prior to effort selection,

if either player would receive a lower payoff after effort selection than he would under the

noncooperative scheme considered here, then he would have incentive to renegotiate to earn

that expected payoff. Thus, as long as players have the ability to renegotiate then the timing

of actions will not change the results of this paper.

These results should extend predictably to games with multiple players and to the case where

players are mildly asymmetric. If they are too asymmetric, however, then the pure strategy

equilibrium efforts of the underlying contest will lie sufficiently outside of the symmetric

region N and thus be a pure strategy equilibrium of the game with any bargaining scheme.

It may be possible that the results hold in asymmetric contest games if the players have

different discount factors or with a more general random process by which a proposer is

selected. An interesting avenue for future research would be to investigate the extension of

our results to compare a noncooperative scheme with these asymmetries to the corresponding

asymmetric Nash bargaining solution.

An implication of our results is that the use of cooperative bargaining solutions in modeling

may overestimate effort decisions and underestimate efficiency. In the process of proving

our results, we have demonstrated that the marginal benefit of an increase in effort is zero

for large subset of the strategy space. This has further implications for the motivation

for investments such as government defense spending and firms hiring dedicated lawyers,

possibly even lobbying. While an argument for increasing investment in these activities may
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be that this would increase the government or firm’s bargaining power, we have shown that

such increases may have no effect whatsoever on bargaining outcomes, and thus may be

entirely wasteful.



Chapter 2

Directed Search and Consumer

Rationing

2.1 Introduction

In this paper, we study a model in which heterogenous consumers engage in directed search to

obtain a good. Distinct from other models of directed search, when consumers are rationed,

they may search another firm in a later round. Using this model, we derive equilibrium

consumer rationing rules and the demand facing each firm in the market, providing a better

understand of the role that consumers play in firm competition.

Demand rationing, the process by which firms’ goods are allocated to consumers, is a fun-

damental aspect of price competition that can have vast influence on firms’ equilibrium

behavior. Rationing has traditionally been considered as exogenous in the literature on

Bertrand-Edgeworth price competition, which studies the pricing strategies of capacity con-

strained firms. In these models, consumers shop according to the surplus they would obtain

66
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from purchase. The rationing rules employed are equivalent to all consumers shopping at

the firm from which they derive the greatest surplus, then moving to the next firm only after

their preferred firm exhausts its capacity. Such a convention is satisfactory with Bertrand

competition, where a single firm is able to satiate the entire market, though it may fail to

reflect strategic consumer behavior when firms are capacity constrained. As a simple exam-

ple, consider two firms selling homogenous goods, with one firm setting a price higher than

the other by an arbitrarily small amount. If both firms have sufficiently low capacity, then

there will be consumers that are unable to purchase a good. If all consumers shop first at

the firm with the lower price, it stands to reason that a consumer that would receive a large

surplus from either firm would be better off shopping at the higher priced firm initially. This

would guarantee that consumer a purchase, while the potential surplus loss is arbitrarily

small. Given that traditional rationing rules may not reflect strategic behavior on the part

of consumers, how might strategic shopping influence the behavior of firms?

We show that given any capacities and prices set by the firms, there always exists an equilib-

rium in which the quantity sold by each firm coincides with that specified by the proportional

rationing rule, one of the two most prominently employed traditional rationing rules. More-

over, if there exists an equilibrium in which a firm sells a different quantity, the “proportional

equilibrium” maximizes the expected payoffs of all consumers whose strategies differ across

equilibria, suggesting a coordination on this equilibrium. This result suggests that the use of

traditional rationing rules accurately represents market demand from the firms’ perspective,

thereby justifying its application in the literature.

The model we use is as follows. There are two firms selling substitute goods with exogenously

fixed capacities and prices. There are a continuum of consumers each demanding a single

unit of either good, for which they possess possibly asymmetric valuations. Consumers take

part in a two stage game in which they choose where to shop in each period. In a given
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stage, all consumers that shop at a particular firm arrive in a uniformly random order at

that firm.

The equilibrium of this game is characterized by a critical ratio of surplus at firm 1 versus

firm 2 such that all consumers whose surplus ratio is larger will shop at firm 2 in the first

round, while the remaining consumers shop at firm 1. This rule is most easily interpreted

when products are homogenous. In this case, individuals with the highest valuation of the

good shop first at the firm with the higher price, which exhibits the same logic that we used

to argue that traditional rationing rules do not portray strategic behavior. In addition to

the clearer interpretation of equilibrium strategies, when goods are homogenous, we are able

to show that concavity of demand is a sufficient condition for all equilibrium quantities to

coincide with the proportional rule.

The literature on directed search is rooted in the study of the labor market, though has been

applied to markets for consumer goods as well.1 The standard assumption in this literature

is that rationed consumers are unable to search again. That is, if consumers do not receive

a good at the firm they initially select, then they go unsatiated. While this may the case

for some markets, it is not true in general. A prominent result of these models is to explain

market frictions, inefficiencies due to failures of the market to match willing buyers and

sellers. Such an outcome occurs because consumers are unable to coordinate their decisions

and thus some firms face excess demand while others hold excess capacity. As we consider

markets in which additional search is possible, such frictions are not present. Instead, we

focus on the quantity that each firm is able to sell, as this corresponds most closely with the

Bertrand-Edgeworth literature.2

1See for example, Montgomery (1991), Moen (1997), Burdett, Shi, and Wright (2001), Lester (2010), and
Geromichalos (2012).

2Another literature which studies the strategic actions of consumers is that of undirected search. These
models focus on the role of asymmetric information regarding prices. See for example Diamond (1971) and
Stahl (1989).
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Outside of the literature on consumer search, the literature on Bertrand-Edgeworth price

competition has modeled the consumer side of the market via demand rationing rules. There

are two prominent rationing rules that are employed in the this literature: the efficient rule

and the proportional rule. In characterizing the equilibria of these games, these two rules

have been used exclusively.3 The efficient rule, so named because it maximizes consumer

surplus, is the first of the rules described in our example above, specifying that the highest

value consumers receive the lowest price goods.4 This rule was first introduced by Levitan and

Shubik (1972), which motivates the rule with the fact that it is generated by the demand of a

representative consumer. A single consumer would be best off purchasing as much as possible

(or desired) from the low price firm before shopping at the high price firm. Alternatively,

Dixon (1987) notes that the efficient rule can be realized when each consumer receives an

equal share of the low price good.5 The alternative proportional rule was formally introduced

by Shubik (1959). The proportional rationing rule formalizes the following statement by

Shubik, “if a percentage of consumers is satisfied by the low price firm, then the same

percentage of consumers at any price level will have been satisfied.” This story is equivalent

to a uniformly random arrival of consumers at the low price firm. Both of these rules are

widely used in the literature, though the former is much more prominent.

While Shubik is the first to formalize the proportional rule, its origin can be traced back

to the first use of a rationing rule by Edgeworth (1925). The pricing story he describes is

dynamic in nature and informal, with firms each monopolizing a distinct half of the market,

then sequentially lowering prices to steal customers until reaching some threshold, at which

3Maskin (1986), Bagh (2010), and Allison and Lepore (2014) prove existence of equilibria with more
general rationing rules.

4The efficient rule is difficult to describe when products are differentiated, and depends critically on how
the consumer side of the market is specified.

5Such behavior may arise from policies such as “limit x units per customer,” however, this requires the
individuals have downward sloping demand. If individuals each demand one unit of a good, then a limiting
policy would not induce efficient rationing.
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point they raise their prices to the aforementioned monopoly price.6 The terminology he

uses is that firms serve individual customers, with an indication that those served first are

the first to arrive. Informally, Edgeworth was describing the proportional rationing rule.

Since each customer is satiated before the next makes a purchase, even after the low price

firm sells its capacity, the high price firm faces the full demand of the remaining customers.

Given the symmetry of consumers, this means that the residual demand is proportional to

the total demand, with the proportion being the fraction of consumers not served by the low

price firm.

Dixon (1987) derives a different rationing rule using a traditional Marshallian demand ap-

proach which he calls the true contingent demand. In his specification there is a represen-

tative household and one of the two relevant firms is not capacity constrained. The rule he

derives is similar to the efficient rule (since there is a representative consumer) except that

there are endogenous income effects due to purchasing goods at different prices. Due to the

computational complexity of the income effects, this rule has not been used in the studying

price competition.

Little attention has been paid to rationing rules when products are differentiated, owing

largely to the continuous demand structure that is commonly employed to avoid capacity

constraints and enable the existence of a pure strategy equilibrium of the pricing game. At a

glance, it seems that there might not be rationing issue without demand discontinuities, but

in fact, only the sharing rule is irrelevant in this case.7 When capacity constraints have been

introduced into a differentiated product framework, the efficient rationing rule has been used

exclusively and without explicit reference. In this paper, we introduce a more general defini-

tion of proportional rationing that applies to both homogenous and differentiated products

6This story is formalized as an equilibrium of the dynamic pricing game by Maskin and Tirole (1988).
7A sharing rule determines how utility is split at points of discontinuity. In a pricing game, a sharing

rule would determine the fraction of consumers which purchase from each firm when prices are equal. Thus,
a rationing rule includes a sharing rule, but not vice versa.
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and is independent of the structure of the differentiation.

A segment of the literature that has most notably put focus on the choice of rationing rule is

that which examines the equivalence between the Cournot equilibrium and the equilibrium

of the two stage Bertrand-Edgeworth in which firms first choose capacities and then choose

prices. Kreps and Scheinkman (1983) showed that the equilibrium outcomes of these two

models coincide when the efficient rationing rule is used. This result has since been extended

to different settings including less restrictive demand [Osborne and Pitchik (1986)], non-

binding capacity constraints [Boccard and Wauthy (2000)], differentiated products [Maggi

(1996)], asymmetric information regarding costs [Lepore 2008], proportional rationing [Lep-

ore (2009)], and demand uncertainty [Lepore (2012)]. One such finding is that the Cournot

outcome is not necessarily an equilibrium under all specifications, and in particular, with

all rationing rules. Davidson and Deneckere (1986) find a counterexample using the pro-

portional rationing rule, while Lepore (2009) demonstrates that the Cournot outcome is an

equilibrium if and only if the costs of capacity are sufficiently high. All of this research gives

rise to the question of whether this equivalence would hold for any rationing rule. Our re-

sults suggest that answering this question is not a priority, as there is always an equilibrium

in which the proportional rationing rule specifies the quantity sold, and there is reason for

consumers to coordinate on such an equilibrium.

The discussion of rationing rules is not limited to the justification of the Cournot equilibrium.

Indeed any study of Bertrand Edgeworth competition requires the use of a rationing rule.8

This necessitates both the selection of a rule and the justification of that selection. Our

results may be used to fill both of these roles, which have previously been filled by informal

8Some examples include studies of collusion [Brock and Scheinkman (1985), Benoit and Krishna (1987),
and Davidson and Deneckere (1990)], large markets and the competitive equilibrium [Allen and Hellwig
(1986a,1986b)], sequential pricing [Deneckere and Kovenock (1992)], triopoly [Hirata (2009) and De Francesco
and Salvadori (2010)], competition with input and output prices [Loertscher (2008)], and price discriminating
monopoly [Dana (2001)].
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arguments.

The remainder of the paper is organized as follows. In the following section, we describe the

formal model. In Section 3 we characterize the consumer behavior, with the homogenous

goods case characterized in Section 4. Finally, we conclude in Section 5.

2.2 The Model

Consider a duopoly in which firms sell substitute goods. We use the subscript i to refer

to a typical firm and j to refer to the firm other than i. The price pi ≥ 0 and capacity

xi > 0 of each firm i are exogenously fixed and common knowledge.9 There are a continuum

of consumers in the market with possibly heterogenous valuations for each good. Each

consumer demands exactly one unit of a good and may be satiated by either firm.10 The

distribution of consumer valuations v = (v1, v2) is described by the function D : R2
+ → R+,

where D (p) is the mass of consumers with value v > p.11 We refer to D (p) as the market

demand. Let ∆ represent the measure induced by D. Often more relevant than prices or

values is the surplus that a consumer receives from purchase. Since we frequently refer

to this, we use si (pi) to denote the surplus that a consumer with value vi receives when

purchasing a good from firm i, that is, si (pi) = vi − pi. For notational convenience, we will

suppress the argument of si (pi) in proofs and refer to the surplus as simply si.

Assumption 7. D (p) is nonincreasing for all p. For all p 6= (0, 0), D (p) <∞.

We need only assume that the law of demand holds and that demand is finite whenever prices

9If one firm’s capacity is zero, then the market is a monopoly with trivial outcome.
10The assumption that each consumer demands a single good is not necessary. We will discuss how the

model extends to the case in which consumers have individual demand curves in the conclusion.
11The notation v > p denotes vi > pi for both i. To avoid confusion, we will always include subcripts

when referring to an element of a vector and omit subscripts when referring to a vector. Thus, we use pi
and vi to refer to the price and value of good i, whereas p and v refer to vectors of prices and values.
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are not simultaneously zero. We place no restriction on the shape of the demand curve for

now, nor do we make any assumptions about continuity. Our model thus accommodates any

structure of product differentiation, demand functions which are convex, concave, or neither,

as well as those for which limp→0D (p) = ∞ or limq→0D
−1 (q) = ∞. Later, we will make

additional assumptions in order to obtain more precise results for the case in which the two

firms’ goods are homogenous.

Consumers decide where to shop in a two round game. In the first round, each consumer

chooses a firm at which to shop. Shopping is voluntary, so that individuals that would

receive a negative surplus from purchase will not shop in our model. Consumers arrive in

a uniformly random order at their selected firm, so all consumers who shop at a given firm

receive a good with equal probability. In the second round, any consumers that did not

receive a good (due to insufficient firm capacity) may shop at the other firm, provided that

it has remaining capacity.12

Given that market demand is not assumed to be continuous, it is possible that a mass of

consumers is indifferent between purchasing and not purchasing. As such, it is necessary to

specify the actions of such consumers. As a convention, we assume that any individual with

si (pi) = 0 for some i will attempt to shop at firm i rather than not shop. This particular spec-

ification is purely for convenience; any specification for the fraction of indifferent consumers

that decide to shop may be used. Different specifications will alter the shopping decisions

of consumers, as having more indifferent consumers shopping will result in a decreased like-

lihood of any particular consumer receiving a good. If there are more of these indifferent

consumers for one firm than the other, then some of the consumers who would otherwise

have shopped at that firm will switch to the other firm to increase their likelihood of receiv-

ing a good. While consumer behavior may be nominally changed, the qualitative aspects of

12We explicitly prohibit the possibility of a secondary market for the good. This is natural in cases where
the good must be consumed immediately, for example, when the good is service at a restaurant.
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the equilibrium and the results regarding the quantity sold by the firms in equilibrium will

remain unchanged if a different decision rule were used by the indifferent consumers.

Without capacity constraints, the minimal quantity demanded from a given firm i is the

mass of consumers that both receive a positive surplus from shopping at firm i and receive a

greater surplus at firm i than firm. Formally, the minimal demand for firm i in the absence

of capacity constraints is given by the function

Di (p) = ∆ ({v : si (pi) > sj (pj) and si (pi) ≥ 0}) .

Note that the realized demand facing firm i may be larger than Di (p) if there is a mass I (p)

of consumers that is indifferent between purchasing from either firm, given by

I (p) = ∆ ({v : s1 (p1) = s2 (p2) ≥ 0}) .

We do not specify the decision rule of these consumers, as their decisions are determined in

equilibrium.

Lastly, in order to completely specify the demand facing each firm, we will refer to the

consumers that receive a nonnegative surplus at both firms, as these are the consumers that

would be willing to shop in the second round conditional on not receiving a good in the first

round. In particular, we define di (p) to be the mass consumers that strictly prefer firm j to

firm i at prices p, but prefers i to not shopping. Formally,

di (p) = ∆ ({v : sj (pj) > si (pi) ≥ 0}) .
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2.3 Equilibrium Rationing

The classic assumption is that consumers shop from the firm with the lowest price, but this

may not reflect equilibrium behavior. To see why, suppose that both firms sell out their

capacity. Then there is a positive probability that a given individual does not obtain a good

if they shop at the low price firm first, whereas this shopping rule would guaranteed them a

good if they were to shop at the high price firm first. If the firms’ prices are close enough,

then some of the consumers are better off guaranteeing themselves a reduced surplus rather

than taking the risk of receiving no surplus at all.

In the general setting, the classic assumption corresponds to consumers shopping at the

firm from which they receive the greatest surplus. Such behavior has most commonly been

considered with two consumer rationing schemes: efficient and proportional. Under efficient

rationing, the consumers with the highest surplus receive the goods first. As this requires

that firms discriminate between perfectly between individuals, the efficient rationing rule

cannot be reasonably implemented. Note that in our model, efficient rationing cannot occur

since this would require a nonrandom order of arrival by consumers. More plausible is the

proportional rule, which is realized within our model when consumers all shop first at the

firm from which they receive the greatest surplus.13 This rule is formalized below.

Definition 4. Under proportional rationing, the residual demand facing firm i is

DP
i (p) = Di (p) + λi (p) I (p) + max

{
0,

(
1− xj

Dj (p) + λj (p) I (p)

)
(di (p) + I (p))

}
,

where λi (p) ∈ [0, 1] and λ1 (p) + λ2 (p) = 1.14

13The proportional rationing rule does not rely on the specification provided here in which each consumer
demands a single good. This rule may instead be derived from a continuum of identical consumers each with
downward sloping demand.

14For application to a pricing game, one would require that each λi be measurable. As the prices are fixed
in our model, this assumption is not required.
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The λi’s simply represent the fraction of indifferent consumers that shop at firm i first. We

now characterize the consumers’ equilibrium shopping rules.

Proposition 11. Any equilibrium is characterized by a critical ratio r∗ ∈ [0,∞] and a

fraction λ∗ ∈ [0, 1] such that consumers shop according to the following rule:

(i) any consumer with si (pi) ≥ 0 > sj (pj) shops at firm i first and does not shop in the

second round,

(ii) any consumer with min {s1 (p1) , s2 (p2)} ≥ 0 and s2 (p2) /s1 (p1) > r∗ shops at firm 2 in

the first round,

(iii) any consumer with min {s1 (p1) , s2 (p2)} ≥ 0 and s2 (p2) /s1 (p1) < r∗ shops at firm 1 in

the first round, and

(iv) λ∗ of the consumers with min {s1 (p1) , s2 (p2)} ≥ 0 and s2 (p2) /s1 (p1) = r∗ shop at firm

1 first while the remaining 1− λ∗ of these consumers shop at firm 2 first.

Proof of Proposition 11. Clearly, any consumer with si ≥ 0 > sj will shop at firm i in the

first round and not shop in the second round. Taking this behavior and any shopping rule

by the consumers with min {s1, s2} ≥ 0, let αij denote the probability that a consumer with

min {s1, s2} ≥ 0 receives a good from firm j when shopping at firm i first. Given these

probabilities, a consumer with values v ≥ p will strictly prefer to shop at firm 1 in the first

round if and only if

(2.1) α11s1 + α12s2 > α21s1 + α22s2.

Similarly, such a consumer strictly prefers to shop at firm 2 first if and only if the inequality
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in (1) is reversed. Note that we may rearrange (1) as

s2
s1
<
α11 − α21

α22 − α12

.

Thus, defining

r∗ =


α11−α21

α22−α12
if α12 < α22

∞ o.w.
,

we can say that consumers with values v ≥ p strictly prefer to shop at firm 1 first if and

only if s2/s1 < r∗. To complete the proofs of parts (ii) and (iii), it suffices to show that r∗

is well defined. This is the case if either α11 − α21 > 0 or α22 − α21 > 0. Given the shopping

decisions of the consumers, let Nij denote the mass of consumers that shops at firm j in

round i. Note that

αii = min

{
xi
N11

, 1

}
and

αij = (1− αii)min

{
max

{
xj −N1j

N2j

, 0

}
, 1

}
.

Thus, if αii < 1, then αji = 0 and αii − αji > 0, while if αii = 1, then αij = 0 and

αjj − αij > 0. It follows that r∗ is well defined.

Lastly, note that any consumer with valus v ≥ p and s2/s1 = r∗ is indifferent between

shopping at either firm first, and so any shopping order by these consumers is optimal. If

the mass of these consumers is zero, then their shopping decisions will not influence the

probabilities αij, and so any decisions by these consumers represents equilibrium behavior.

Alternatively, if the mass of these consumers is positive, then the probabilities αij and critical

surplus ratio r∗ will depend on the fraction of these consumers who shop at firm 1 first. Let



78

Figure 2.1: Equilibrium shopping rule.

r∗ (λ) represent the critical surplus ratio as a function of this fraction. We have shown that

in equilibrium, there is a critical surplus ratio r∗ such that (ii) and (iii) in the statement of

the proposition hold. It follows that in any equilibrium, the fraction λ∗ of consumers with

s2/s1 = r∗ that shop at firm 1 first must be chosen such that r∗ (λ∗) = r∗.

This equilibrium shopping rule is depicted in Figure 2.1. Individuals with values in regions

A and E shop only at firm 2 and firm 1, respectively. Those in region B shop at firm 2

first, then at firm 1 if unsatiated. Similarly, those in region C shop at firm 1 first and

then at firm 2. Lastly, individuals whose valuations are below the prices (region D), do not

shop. Note that the region betweenn the red and grey lines corresponds to individuals who

shop at firm 1 first even though they would receive the greatest surplus from firm 2. These

individuals choose to shop at their least preferred firm in order to increase their probability

of consumption.

Note that the equilibrium is necessarily nonunique when 0 < λ∗ < 1 as there are a mass of

consumers with surplus ratio s2/s1 = r∗. In this case, any allocation of λ∗ of the indifferent
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consumers shopping at firm 1 first and 1−λ∗ at firm 2 first would be an equilibrium. If there

is not a mass of indifferent consumers, then any λ ∈ [0, 1] would constitute an equilibrium,

as it would not influence the probability of any consumer receiving a good. This is not the

only source of multiplicity of equilibrium. As we will demonstrate shortly with Example 1,

there may be multiple equilibria in which the quantity sold differs across equilibria.

Before continuing, we may express now the demand facing a firm i in an equilibrium. To

do so, we must first define some notation. Given an equilibrium characterized by (r∗, λ∗),

let Di (p, r
∗) denote the mass of individuals who strictly prefer to shop at firm i in the first

round, di (p, r
∗) the mass of individuals who strictly prefer to shop at firm j in the first round

but would shop in the second round, and I (p, r∗) the mass of individuals who are indifferent

between shopping at either firm in the first round. Formally,

D1 (p, r
∗) = ∆ ({v : s2 (p2) /s1 (p1) < r∗ or s1 (p1) ≥ 0 > s2 (p2)}) ,

d1 (p, r
∗) = ∆ ({v : s2 (p2) /s1 (p1) > r∗ and s1 (p1) ≥ 0}) ,

I (p, r∗) = ∆ ({v : s2 (p2) /s1 (p1) = r∗}) ,

where D2 (p, r
∗) and d2 (p, r

∗) are defined analogously. Given this notation, we may express

the demand facing firm 1 as follows, with the demand facing firm 2 defined similarly.

D∗
1 (p, r

∗, λ∗)

= D1 (p, r
∗) + λ∗I (p, r∗)

+max

{
0,

(
1− x2

D2 (p, r∗) + (1− λ∗) I (p, r∗)

)
(d1 (p, r

∗) + (1− λ∗) I (p, r∗))

}
.
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Note that the basic form of the demand is identical to the proportional rationing rule. In

particular, r∗ = 1 yields a proportional rationing rule.

The following proposition guarantees that a pure strategy equilibrium exists.

Proposition 12. A pure strategy equilibrium exists.

The following lemma will be useful in proving the existence of an equilibrium. Define Nij

to be the mass of consumers that shop at firm j in round i and N = (Nij)i,j=1,2 . Define

r (N) to be the set of critical surplus ratios in the sense of the equilibrium shopping rule of

Proposition 11.

Lemma 5. Suppose that Nn
ij → N∗

ij for i, j = 1, 2 and that rn ∈ r (Nn) for each n with

rn → r∗. Then r∗ ∈ r (N∗).

Proof of Lemma 5. Suppose that r∗ <∞. Then rn <∞ for sufficiently large n, and so

rn =
α11 (N

n)− α21 (N
n)

α22 (Nn)− α12 (Nn)
.

It follows that

α11 (N
n)− α21 (N

n)

α22 (Nn)− α12 (Nn)
→ α11 (N

∗)− α21 (N
∗)

α22 (N∗)− α12 (N∗)
,

so

r∗ =
α11 (N

∗)− α21 (N
∗)

α22 (N∗)− α12 (N∗)
= r (N∗) .

Note that we are free to redefine the critical ratio as q = s1/s2 via a relabelling of firms. If

r∗ = ∞, then q∗ = 0, and the previous analysis applies.
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The main idea behind the proof of Proposition 12 is to realize the critical surplus ratio as a

rotation of an arbitrary line through p, which can parameterized by its angle θ ∈ Θ = [0, π/2].

We then use the best response correspondence for all consumers as an upper hemicontinuous

correspondence and apply Kakutani’s fixed point theorem to obtain an equilibrium.

Proof of Proposition 12. Note that for any r ∈ [0,∞], there is a unique angle θ ∈ [0, π/2]

such that the all values with s2/s1 = r lie on the line of angle θ through p. Let ρ (θ) denote

the ratio r corresponding to the angle θ. Then the angle θ is defined by the law of cosines,

and so ρ (θ) is such that

θn → θ if and only if ρ (θn) → ρ (θ) and

rn → r if and only if θ (rn) → θ (r) .

Let ι (θ) = {v : r = ρ (θ) and s1 > 0}. Define the correspondence Φ : [0, π/2] × [0, 1] →

[0, π/2] × [0, 1] as follows. For any (θ, β) ∈ [0, π/2] × [0, 1], let ψ (θ, β) denote the set of all

critical ratios (angles) ρ−1 (r∗) when consumers shop according to the rule (r∗, λ) for some

λ ∈ [βµ ({p}) / (βµ ({p}) + µ (ι (θ))) , 1] . Then define Φ (θ, β) = (ψ (θ, β) , [0, 1]).

By continuity of each Nij in λ and the continuity of r (N) , the sets Φ (θ, β) must be closed,

convex, and nonempty. In order to apply Kakutani’s fixed point theorem, we need only show

that Φ has a closed graph.

Let (θn, βn) → (θ∗, β∗) with (φn, γn) ∈ Φ (θn, βn) and (φn, γn) → (φ∗, γ∗). Note that for

all n, there exists a λn ∈ [βnµ ({p}) / (βnµ ({p}) + µ (ι (θn))) , 1] such that φn is the angle

of a critical ratio when consumers shop according to (ρ (θn) , λn). This corresponds to a

ϕn ∈ [0, 1] such that ϕn of the ι (θn) consumers shop at firm 1 first. Define the following
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sets.

Ai = {v : si ≥ 0 > sj}

B (θ) = ∆ ({v : s2/s1 < ρ (θ) , min {s1, s2} > 0}) , and

C (θ) = ∆ ({v : s2/s1 > ρ (θ) , min {s1, s2} > 0}) .

We will use these sets to show that Nn
ij → N∗

ij. The previous lemma will thus imply that

(φ∗, γ∗) ∈ Φ (θ∗, β∗).

Consider three cases: (i) θn < θn+1 < θ for all n, (ii) θn = θ for all n, (iii) θn > θn+1 > θ

for all n. Note that an arbitrary sequence (θn, βn) may not satisfy (i), (ii), or (iii), but there

must exist a subsequence that satisfies on of these cases. Since all subsequences converge to

(θ∗, β∗), we are free to pick a subsequence which falls into one of the three cases, and without

loss of generality, we may take that subsequence to be θn itself.

(i) Note that

B (θn) ∪ ι (θn) ⊂ B
(
θn+1

)
C (θn) ⊃ C

(
θn+1

)
∪ ι
(
θn+1

)
.

Then note that

lim
n
B (θn) ∪ ι (θn) = B (θ∗) and

lim
n
C (θn) = C (θ∗) ∪ ι (θ∗) .
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The statement then follows from Theorems 9D and 9E of Halmos (1974), which states that if

a sequence of sets is monotonic (by the order of containment) and at least one of the sets has

finite measure, then the measure of the limit of the sets is equal to the limit of the measure

of the sets. Thus

lim
n
Nn

11 (ϕ
n) = µ (A1) + lim

n
µ (B (θn)) + ϕnµ (ι (θn)) + βnµ ({p})

= µ (A1) + µ (B (θ∗)) + β∗µ ({p})

= N∗
11 (ϕ = 0) ,

lim
n
Nn

12 (ϕ
n) = µ (A2) + lim

n
µ (C (θn)) + (1− ϕn)µ (ι (θn)) + (1− βn)µ ({p})

= µ (A2) + µ (C (θ∗)) + µ (ι (θ∗)) + (1− β∗)µ ({p})

= N∗
12 (ϕ = 0) ,

lim
n
Nn

21 (ϕ
n) = lim

n
(1− αn

11) (N
n
12 − µ (A2))

= (1− α∗
11) (N

∗
22 (ϕ = 0)− µ (A2))

= N∗
21 (ϕ = 0)

lim
n
Nn

22 (ϕ
n) = lim

n
(1− αn

22) (N
n
11 − µ (A1))

= (1− α∗
22) (N

∗
11 (ϕ = 0)− µ (A1))

= N∗
22 (ϕ = 0) .

(ii) Note that B (θn) = B (θ∗) , C (θn) = C (θ), and ι (θn) = ι (θ) for all n. Thus, the limits

in the previous case all hold, except with Nn → N∗ (ϕ = limϕn).

(iii) This case is identical to case (i) except that the containments of the B’s and C’s are

reversed. Thus, Nn → N∗ (ϕ = 1).continuous in θ′, and so Φ is an upper hemicontinuous

correspondence.
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We conclude by Lemma 1 that (φ∗, γ∗) ∈ Φ (θ∗, β∗). Thus, we may apply Kakutani’s fixed

point theorem to obtain a fixed point (θ∗, β∗). Note that there must be a corresponding

λ∗ ∈ [β∗µ ({p}) / (β∗µ ({p}) + µ (ι (θ∗))) , 1] for which the shopping rule (ρ (θ∗) , λ∗) is an

equilibrium for consumers.

A natural follow up question is whether the equilibrium rationing rule is unique. The fol-

lowing example shows that this is not the case, even when demand is continuous and the

revenue function (piD (pi)) is concave.

Example 1. Suppose that products are homogenous and that market demand is given by

D (pi) = 2 −√
pi. Since demand is continuous, then the fraction λ has no influence on the

equilibrium, so we omit the λ. There exists a neighborhood N of (0, .3, 1, .75) such that for

all (p1, p2, x1, x2) ∈ N , r∗1 = 1 is an equilibrium and some r∗2 in a neighborhood of 0.82 is an

equilibrium. Moreover, the quantity sold by firm 2 under r∗1 is strictly less than under r∗2.

To see this, note that for r∗ = 1, firm 2 does not sell its full capacity. It follows that

α12 = 1−α11, so shopping at firm 1 is strictly better than shopping at firm 2 for all consumers.

To find the other equilibrium, note that r∗ corresponds to some ω > p2, for consumers have

v > ω if and only if s2/s1 > r∗.15 Thus, this equilibrium is defined by

x1√
ω −√

p1
(ω − p1) +

x2 − (2−
√
ω)√

ω −√
p2

(ω − p2) = (ω − p2) ,

which holds when the individual with value ω is indifferent provided that all consumers with

v > ω shop at firm 2 first and the others shop at firm 1 first. This equation reduces to

x1
(√

ω +
√
p1
)
= (2−√

p2 − x2)
(√

ω +
√
p2
)

which can be solved numerically.

15This transformation from r to ω is formalized in the following section.
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Example 1 shows that not only is the equilibrium rationing rule not unique, but the quantity

sold by firms is not unique either. In general, this may result in the existence of an equi-

librium selection that varies discontinuously in the price and at some prices may actually

be increasing in price. While this is problematic, the following proposition shows that there

is an equilibrium selection that coincides with the proportional rationing rule, making it

a natural selection for application. Let qi (r
∗, λ∗) denote the quantity sold by firm i when

consumers shop according to the rule (r∗, λ∗).

Proposition 13. For any prices and capacities, there exists an equilibrium in which the

quantity sold by each firm coincides with that specified by the proportional rationing rule. If

(r∗1, λ
∗
1) and (r∗2, λ

∗
2) are both equilibria in which qi (r

∗
1, λ

∗
1) < qi (r

∗
2, λ

∗
2) for some firm i, then

r∗1 = 1 and qi (r
∗
1, λ

∗
1) = DP

i (p) for each firm i.

Proof of Proposition 13. For any equilibrium in which r∗ 6= 1, both firms must sell their

capacity. Otherwise, the shopping rule specifies that some individuals shop at their least

preferred firm first. Since firms do not sell out, these individuals are guaranteed a good

regardless of their shopping decision, and thus should shop for their most preferred good in

the first round. It follows that the quantity sold by a firm in equilibrium may only differ

from the proportional quantity if a firm does not sell its full capacity under the proportional

rule, that is, DP
i (p) < xi for some firm i.

Suppose that some firm i does not sell its capacity with proportional rationing. Without

loss of generality, suppose that i = 2. Given the rule r∗ = 1, α12 = 1 − α11, α22 = 1, and

α21 = 0. Clearly, individuals with s2 > s1 should shop at firm 2 first. For any individual
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with s1 > s2, the following are equivalent

α11s1 + α12s2 > α22s2 + α21s1

α11s1 + (1− α11) s2 > s2

α11 (s1 − s2) > 0.

so these individuals should shop at firm 1 first. Therefore, r∗ = 1 is an equilibrium.

It is worth highlighting the latter result of Proposition 2. The standard assumption in

economics is that is that individuals shop for the lowest price or greatest surplus, which

corresponds to the shopping rule r∗ = 1. In addition to this being the intuitive equilibrium,

it is also a surplus maximizing equilibria for the consumers whose equilibrium strategies

differ across equilibria.

Proposition 14. Suppose that (r∗1, λ
∗
1) and (r∗2, λ

∗
2) are equilibria with the property that

qi (r
∗
1, λ

∗
1) = DP

i (p) < qi (r
∗
2, λ

∗
2) for some firm i. Then all consumers with s2 (p2) /s1 (p1) ∈

(r∗1, r
∗
2) receive a greater expected utility under (r∗1, λ

∗
1) than under (r∗2, λ

∗
2).

Proof of Proposition 14. Note that all consumers with s2/s1 ∈ (r∗1, r
∗
2) receive a good with

certainty under (r∗1, λ
∗
1), while this is not necessarily the case under (r∗2, λ

∗
2). Further, under

(r∗1, λ
∗
1), all such consumers have a higher probability of receiving a good from their most

preferred firm than under (r∗2, λ
∗
2).

This proposition suggests that a subset of the consumers would have incentive to coordinate

their strategies and select the equilibrium in which the proportional quantity is sold. Thus,

both intuition and collective action justify the selection of the “proportional” equilibrium,

while other equilibria require the expectation that consumers fail to coordinate optimally.

The next section focuses on homogenous goods and strengthening the result of Proposition
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2.

2.4 Homogenous Goods

In this section, we focus on the case of homogenous goods. This is most relevant to the liter-

ature, as the vast majority of studies of Bertrand-Edgeworth competition is conducted with

homogenous goods. In this setting, we are able to find stronger support for the proportional

rationing rule, as well as gain some additional insight into the equilibrium rationing rule.

For this section, we let D (pi) be the measure of consumers with values strictly higher than

pi. We maintain the subscript on the pi so as to clarify that the price is a scalar. Henceforth,

we use v to refer to a consumer’s value of consumption. There should be no more ambiguity

whether v is a vector since v1 = v2 = v. Define A = limpi→0D (pi), possibly infinite.

Assumption 8. Market demand D (·) is continuous.

The following lemma characterizes the equilibrium rationing rule in a more salient manner

than Proposition 1.

Lemma 6. Suppose that goods are homogenous, Assumption 2 holds, and p1 < p2. Then

any equilibrium is characterized by a critical value ω > p2 such that

(i) all consumers with value v ∈ [p1, ω] shop at firm 1 in the first round,

(ii) all consumers with value v > ω shop at firm 2 in the first round.

If p1 = p2 and x1 + x2 ≤ D (pi), then xi/ (x1 + x2) of the consumers with value v ≥ pi shop

at firm i. If p1 = p2 and x1 + x2 > D (pi), then any division of consumers is an equilibrium.

Proof of Lemma 6. The first fact follows immediately from the fact that the ratio s2/s1
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is strictly increasing in v for p1 < p2. The second fact is necessary since consumers in

equilibrium must have the same probability of receiving a good at each firm. The last result

follows as the when x1 + x2 > D (pi) for p1 = p2, all consumers are guaranteed a good

regardless of shopping decisions.

Thus, we find that those with the highest valuation for the good will pay a premium to

guarantee themselves a good. Note that for a given ω, the equilibrium demand facing each

firm is

Di (p, ω) =


D (pi)−D (ω) if pi < pj

max {λi (p)D (pi) , D (pi)− xj} if pi = pj

D (ω) + max
{
0,
(
1− xj

D(pj)−D(ω)

)
(D (pi)−D (ω))

}
if pi > pj

.

where λi = xi/ (x1 + x2) if x1 + x2 ≤ D (pi), λi ∈ [0, 1] otherwise, and x1 ≤ D (pi)−D (ω) if

pi < pj and ω < A.

It is worth highlighting that the residual demand facing the firm with the higher price is a

function of the capacity of that firm through ω. While this is fairly intuitive, the traditional

efficient and proportional rules lack this property.

We use the following example to demonstrate how one might go about deriving the equilib-

rium rationing rule, and demonstrate the different properties that it exhibits when compared

with traditional rationing rules.

Example 2. Suppose that demand is given by D (pi) = A − bpi. We begin by finding

the equilibrium candidates. Any candidate equilibrium, characterized by ω, must satisfy the

condition that a consumer with value ω is indifferent between shopping at either firm in the

first round. Since the low price firm must sell out in the first round, then any such ω must
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be defined by either

x1
D (p1)−D (ω)

(ω − p1) =
x2

D (ω)
(ω − p2) or(2.2)

x1
D (p1)−D (ω)

(ω − p1) +
x2 −D (ω)

D (p2)−D (ω)
(ω − p2) = (ω − p2) .(2.3)

The equation in (1) corresponds to the case in which x2 ≤ D (ω), so that firm 2 exhausts its

capacity in the first round. Thus, the expected utility from shopping at either firm would be

the probability of receiving a good at that firm multiplied by the surplus received from such a

purchase. The equation in (2) corresponds to the case in which x2 > D (ω), so that firm 2

does not exhaust its capacity in the first round. As such, the expected utility from shopping

at firm 2 first is simply the surplus from purchase, while the expected utility from shopping

at firm 1 is as in (1) except with an additional term corresponding to the probability of being

rationed and receiving a good from firm 2 multiplied by the corresponding surplus.

In the linear case, (1) reduces to

x1
b

=
x2

A− bω
(ω − p2) ,

which may easily be solved to obtain

(2.4) ω =
x1 (A− bp2)

b (x1 + x2)
+ p2.

Alternatively, (2) reduces to

x1 = D (p2)− x2.

Thus, any ω is a candidate for an equilibrium if x1 + x2 = D (p2).
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Next, we check whether these candidates are equilibria. For the first candidate, ω was found

by assuming that x2 ≤ D (ω). Further, as in the characterization, it must be that ω > p2.

Thus, we need only verify the parameters for which these conditions are satisfied. Clearly,

ω > p2 as defined in (3). It remains to check whether x2 ≤ A − bω. The following are

equivalent.

x2 ≤ A− bp2 −
x1 (A− bp2)

x1 + x2

x1x2 + x22 ≤ Ax2 − x2bp2

x1 + x2 ≤ D (p2) .

Thus, ω as defined in (3) is an equilibrium if x1 + x2 ≤ D (p2). Any ω > p2 such that

x2 ≥ D (ω) is an equilibrium if x1 + x2 = D (p2), and so ω = A is an equilibrium otherwise.

Lastly, it is easy to verify that ω = A is not an equilibrium if x1 + x2 < D (p2).

In summary, the set of equilibria Ω is given by

Ω =



{
x1(A−bp2)
b(x1+x2)

+ p2

}
if x1 + x2 < A− bp2

(p2, A] if x1 + x2 = A− bp2

{A} if x1 + x2 > A− bp2

.

This simple example allows us to easily compare the equilibrium rationing rule to the tradi-

tional proportional and efficient rules by examining the residual demand associated with each

rule. Under efficient rationing, the residual demand is a parallel shift of the market demand

curve.16 Under proportional rationing, the residual demand is a pivot of the demand curve

from the price at which demand is zero. Unlike these traditional rules, equilibrium residual

16The alternative name for the efficient rule, the parallel rule, is taken from this property.
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Figure 2.2: Residual demand with equilibrium and traditional rationing.

demand is not a rigid transformation of the market demand. Despite market demand being

linear, the equilibrium residual demand is nonlinear and is discontinuous. The nonlinearity

results from the fact that ω is a function of prices, while the discontinuity in this example is

due to the fact that there are a continuum of equilibria when x1 + x2 = D (p2).

For clarity, it is worthwhile to examine the proportional rule when goods are homogenous

and I (p) = 0. In this case, proportional rule is given by

DP
i (p) =


D (pi) if pi < pj

max {λi (p)D (pi) , D (pi)− xj} if pi = pj

max
{
0,
(
1− xj

D(pj)

)
D (pi)

}
if pi > pj

.

Recall that in equilibrium, the low price firm must sell its capacity in the first round if ω < A.

Thus, it is immediately apparent that the quantity sold by each firm in equilibrium is at

least as large as the proportional quantity. Formally, min {xi, Di (p, ω)} ≥ min
{
xi, D

P
i (p)

}
for each firm i. Example 1 shows that this inequality may be strict, even if the revenue

function is concave. Naturally, we would like reasonable conditions under which no such

“ill-behaved” equilibria exist.

Assumption 9. Market demand D (p) is continuously differentiable and concave.
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The following proposition shows that Assumption 3 is a sufficient condition for all equilibria

to be quantity equivalent, and thus profit equivalent for the firms.

Proposition 15. Suppose that goods are homogenous and Assumption 3 is satisfied. Then

the quantity sold by each firm in any equilibrium coincides with the quantity specified by

the proportional rationing rule. If DP
i < xi for some firm i, then the unique equilibrium is

ω∗ = A (r∗ = 1).

Proof of Proposition 15. The latter statement follows as a corollary from Proposition 13.

Since both firms sell their full capacity in any equilibrium that is not proportional, it suffices

to consider prices and capacities such that DP
i (p) < xi for some firm i. Without loss of

generality, suppose that p1 < p2, so that DP
2 (p) < x2.

Suppose that x1 + x2 ≤ D (p2). Then note it must be that

D (p2)

D (p1)
x1 + x2 < D (p2) ,

x2 < D (p2)

(
1− x1

D (p1)

)
= DP

2 .

This is a contradiction, since we assumed that DP
2 < x2. Therefore, x1 + x2 > D (p2).

Let ui (v, ω) denote the expected utility of a consumer with value v when shopping at firm i

first and all other consumers shop according to the rule ω. Note that in any equilibrium the

individual with value ω must be be indifferent, so that u1 (ω, ω) = u2 (ω, ω). Thus, ω must
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be defined by one of the two following equations:

x1
D (p1)−D (ω)

(ω − p1) =
x2

D (ω)
(ω − p2) or(2.5)

x1
D (p1)−D (ω)

(ω − p1) +
x2 −D (ω)

D (p2)−D (ω)
= (ω − p2) .(2.6)

We begin by showing that (5) may not define an equilibrium when x1 + x2 > D (p2). We

rewrite (5) as

x1
D (p1)−D (ω)

(ω − p1) =
D (p2)− x2

D (p2)−D (ω)
(ω − p2) .

Note that x1 > D (p2)− x2, so the left hand side is such that

x1
D (p1)−D (ω)

(ω − p1) >
D (p2)− x2

D (p1)−D (ω)
(ω − p1) .

The following are equivalent.

D (p2)− x2
D (p1)−D (ω)

(ω − p1) ≥ D (p2)− x2
D (p2)−D (ω)

(ω − p2)

D (p2)−D (ω)

ω − p2
≥ D (p1)−D (ω)

ω − p1

−D (p2)−D (ω)

p2 − ω
≥ −D (p1)−D (ω)

p1 − ω

D (p1)−D (ω)

p1 − ω
≥ D (p2)−D (ω)

p2 − ω
.

The final statement is true since D is concave and p1 < p2. Therefore, we conclude that

x1
D (p1)−D (ω)

(ω − p1) >
D (p2)− x2

D (p2)−D (ω)
(ω − p2) ,
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and so (5) cannot hold.

We next use (4) to show that if ω∗ = A is an equilibrium, then there is no largest equilibrium

ω < A. Let Ω be the set of equilibria and consider ω = supΩ\ {A}. Since Ω is closed, then

ω ∈ Ω. Note that

lim
v→A

x1
D (p1)−D (v)

(v − p1) =
x1

D (p1)
(A− p1) ,

while

lim
v→A

x2
D (v)

(v − p2) = ∞.

Thus, it must be that ω < A. We subtract the right hand side from both sides of (4) and

differentiate with respect to ω to get

∂

∂ω

(
x1

D (p1)−D (ω)
(ω − p1)−

x2
D (ω)

(ω − p2)

)
=

x1
D (p1)−D (ω)

+
x1

(D (p1)−D (ω))2
D′ (ω) (ω − p1)

− x2
D (ω)

+
x2

(D (ω))2
D′ (ω) (ω − p2) .(2.7)

Evaluating at ω = ω, we substitute the relation (4) into (6) to get

x1
D (p1)−D (ω)

+
x1

(D (p1)−D (ω))2
D′ (ω) (ω − p1)

− x1
D (p1)−D (ω)

ω − p1
ω − p2

+
x2

(D (ω))2
D′ (ω) (ω − p2)

=
x1

D (p1)−D (ω)

(
1− ω − p1

ω − p2

)
+

x1

(D (p1)−D (ω))2
D′ (ω) (ω − p1) +

x2

(D (ω))2
D′ (ω) (ω − p2) .
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Since ω−p1 > ω−p2, then the first term is negative, while the last two terms are nonpositive

since D′ ≤ 0. Thus, we conclude that there is some ε > 0 such that

u1 (ω + ε, ω + ε) < u2 (ω + ε, ω + ε) .

Since DP
2 < x2, there is some M > 0 such that for all ω > M ,

D (ω) +

(
1− x1

D (p1)−D (ω)

)
(D (p2)−D (ω)) < x2.

This further implies that

u1 (ω, ω) > u2 (ω, ω) .

Therefore, ω+ε < M . By continuity of u1 and u2, the intermediate value theorem guarantees

the existence of an ω∗ ∈ (ω + ε,M) such that u1 (ω
∗, ω∗) = u2 (ω

∗, ω∗). But this implies that

ω∗ ∈ (ω,A) is an equilibrium, contradicting the definition of ω. The result follows.

This result is particularly relevant for the literature on the coincidence of the Cournot out-

come and Bertrand Edgeworth equilibrium. Concavity of demand is a common assumption

in this literature, as well as in many studies of BE competition, and thus the previous propo-

sition suggests that the proportional rationing rule is the only rule that should be considered

in such studies.

2.5 Conclusion

In this paper, we have provided a general model of direct search in which consumers endoge-

nously determine the demand faced by firms. We have shown that the quantity specified
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by the proportional rationing rule is always an equilibrium quantity. This is not necessar-

ily the only equilibrium quantity, though we have shown that it is obtained in a surplus

maximizing equilibrium when other equilibrium quantities exist. Moreover, when goods are

homogenous, concavity of demand is a sufficient condition for the proportional rationing

quantity to be realized in every equilibrium. This provides a strong support for the use of

the proportional rationing rule in studying Bertrand Edgeworth oligopoly, with or without

product differentiation.

It should be cautioned that this does not imply that the equilibrium of this game is pro-

portional rationing. Only the quantity sold by firms agrees with the proportional rule, not

consumer decisions. In this sense, equilibrium rationing and proportional rationing are iden-

tical from the firms’ perspective, though not the consumers. In particular, when goods are

homogenous, we have shown that in equilibrium, consumers with the highest valuations of

the good shop at the high price firm initially. This results in an allocative inefficiency that is

not present with the proportional rationing rule. In general this will lead to a disparity be-

tween the consumer surplus realized in equilibrium and that computed using the proportional

rule.

There are three directions in which the results of this paper could be generalized. First, one

could allow for oligopoly rather than duopoly. The model would need to be appended to

add enough rounds of shopping so that each consumer would have an opportunity to shop at

each firm, and the equilibrium rules would be cumbersome to formally define, however, they

ought to share the same basic properties as our analysis. Equilibria would be characterized

by surplus ratio thresholds which would determine the order of shopping as in Proposition 11,

and proportional rationing quantity will always be an equilibrium. Second, one could allow

for individual consumers’ demand to depend on the prices. This would be accommodated

simply by modifying the measure that represents the distribution of consumers so that



97

it reflects the quantity demanded by consumers at a given price rather than the mass or

density of consumers with a given valuation. Lastly, the results of Section 4 may be trivially

extended to a case of vertical differentiation in which the surplus ratio is nondecreasing in

the consumers’ underlying value.



Chapter 3

Verifying Payoff Security in the Mixed

Extension of Discontinuous Games

3.1 Introduction

We provide a new sufficient condition for payoff security that generalizes the set of games in

which existence of mixed strategy equilibrium can be readily verified. Reny (1999) introduced

the class of better reply secure games and showed existence of pure strategy Nash equilibrium

in such games.1 In addition, Reny provided two conditions that together are sufficient for a

game to be better reply secure: payoff security and reciprocal upper semicontinuity.2 The

results apply to both the normal form of a game and its mixed extension. In the context of

mixed strategies, the sufficient conditions of Reny are difficult to verify since they are based

1A game is better reply secure if for every nonequilibrium strategy profile x∗ and every limiting payoff
vector u∗ at x∗, there is a player i that has a strategy that gives payoff strictly higher than u∗

i even when
other players deviate slightly from x∗.

2A game is payoff secure if at any strategy profile x, each player has a strategy that earns a payoff close
to that of x against slight deviations from x by the other players. Roughly speaking, a game is reciprocally
upper semicontinuous, if whenever some player’s payoff jumps down, some other player’s payoff jumps up.

98
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on the mixed extension of a game.3 Our new sufficient condition is relatively straightforward

to verify for a large class of games in which other sufficient conditions have not been readily

applicable.

We introduce the concept of disjoint payoff matching, which imposes minor structure on the

discontinuities of the game instead of solely on the payoffs. A game satisfies disjoint payoff

matching if, given any strategy of a player, that player possesses a sequence of deviations

that are at least as good in the limit and whose discontinuity sets are sufficiently disjoint.

Sufficiently disjoint in this context means that there is no strategy profile by the other

players that constitutes a discontinuity for a subsequence of these deviations.4 The advantage

that disjoint payoff matching has over other sufficient conditions for existence of mixed

strategy equilibrium is that it is easily verifiable, owing to the fact that other conditions

appeal to arbitrary probability measures or neighborhoods of strategies. Disjoint payoff

matching can replace payoff security of the mixed extension of the game in Reny’s or Bagh

and Jofre’s (2006) theorems that additionally require (weak) reciprocal upper semicontinuity

to guarantee better reply security and thus existence of equilibrium in mixed strategies.5

Most closely related to the concept of disjoint payoff matching is a sufficient condition in-

troduced in Bagh (2010). He introduces the notion of variational convergence of finite

approximations of games. A result of this analysis is a sufficient condition for existence that

involves computation of limits of mixed strategies of the finite approximations. To alleviate

the difficulty of this computation, he establishes a stronger sufficient condition on the set

of all mixed strategies of the game. Disjoint payoff matching places less restriction on the

discontinuity sets along with more restriction on the payoffs than does Bagh’s condition,

3Recent papers by Tian (2010), Nessah and Tian (2010), and McLennan et al. (2011), have worked to
generalize the work of Reny (1999) and made great pushes toward a better understanding of Nash equilibria.

4We require that the limit superior of the discontinuity sets of the deviations be empty.
5Bagh and Jofre (2006) show that reciprocal upper semicontinuity can be replaced with the weaker concept

of weak reciprocal upper semicontinuity.
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facilitating greater ease of verification.

Other sufficient conditions in the literature that have attempted to alleviate the burden of

computations of payoffs in the mixed extensions of games are uniform payoff security due to

Monteiro and Page (2007) and uniform diagonal security due to Prokopovych and Yannelis

(2012). Uniform payoff security, a condition on the set of pure strategies, is a sufficient

condition for payoff security of the mixed extension of a compact game. Uniform diagonal

security is similarly a condition on the set of pure strategies which under certain conditions

is a generalization of uniform payoff security, but with the advantage of being a sufficient

condition for existence of equilibrium rather than just payoff security of the mixed extension.6

The rest of the paper is formatted as follows. In Section 2, we introduce the necessary

preliminaries. Section 3 defines disjoint payoff matching and proves that it implies payoff

security for the mixed extension of the game. In Section 4, we use our results to show

existence of equilibrium for a Bertrand-Edgeworth price setting oligopoly and we use an

example from Sion and Wolfe (1957) to demonstrate how an equilibrium may not exist when

disjoint payoff matching does not hold.

3.2 Preliminaries

An N -player compact game is a 2N -tuple G = (Xi, ui)
N
i=1, where the strategy space of each

player i is a compact Hausdorff space Xi and the payoff of each player ui : X1× ...×XN 7→ R

is bounded and measurable. The mixed extension of the game is G = (Mi, Ui)
N
i=1 where the

strategy space of each player i is Mi, the set of regular probability measures on Xi, which is

compact and convex, and the payoff function of player i is Ui =
∫
uidµ, µ ∈ M =

∏N
i=1Mi.

6Prokopovych and Yannelis (2012) also adapt the concept of hospitality from Duggan (2007) to the
domain of nonzero sum games. This condition involves the verification of deviations to a specific subset of
the set of mixed strategies.
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Note that, as defined, G and G are also the graphs of the games. The closure of the graph

is denoted clG. Finally, the frontier of G, denoted FrG, is defined to be the elements of the

closure that are not in the graph, that is FrG =clG r G. The closure and frontier of the

mixed extension are defined analogously.

Our condition and proofs will make reference to the sets of discontinuities of each player.

Specifically, we reference the points at which a player’s payoff is discontinuous in the other

players’ strategies. These are given by the discontinuity map Di : Xi 7→ P (X−i), where

P (X−i) is the power set of X−i, defined for all xi ∈ Xi as

Di (xi) = {x−i ∈ X−i : ui is discontinuous in x−i at (xi, x−i)} .

3.3 Disjoint payoff matching and payoff security

We now introduce disjoint payoff matching. The condition has two parts: the first is that any

player can deviate from any strategy and remain almost as well off, while the second imposes

that the discontinuity sets of each deviation have limited intersection. The name “disjoint

payoff matching” for our condition follows from the existence of a sequence of strategies

which “match” the payoff of the original strategy and for which the discontinuity sets are

sufficiently disjoint.

Definition 5. The game G satisfies disjoint payoff matching if for all xi ∈ Xi, there exists

a sequence of deviations
{
xki
}
⊂ Xi such that the following holds:

(i) lim infk ui
(
xki , x−i

)
≥ ui (xi, x−i) for all x−i ∈ X−i,

(ii) lim supkDi

(
xki
)
= ∅.7

7Given a sequence of sets En, the limit superior is lim supn En =
⋂∞

N=1

⋃∞
n=N En. This is equivalently
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Remark 2. It follows that one need only check this condition for xi such that Di (xi) is

nonempty. That is, if ui (xi, x−i) is continuous in x−i at xi, then the conditions of disjoint

payoff matching are trivially satisfied by the constant sequence xki = xi.

The second condition is clearly satisfied when Di

(
xki
)
∩ Di

(
xli
)
= ∅ for all k 6= l. This

stronger empty intersection condition holds for the prominent examples in the literature.

Unlike security concepts, there is no reference here to neighborhoods of the opponents’

strategies. Further, the payoffs at the discontinuity points of the deviations are irrelevant

since they are completely avoided in the limit, making the condition easy to verify and

unrestrictive. It is worth noting that games in which discontinuities do not satisfy part

(ii) of DPM often share best responses with a game that does satisfy DPM. That is, if

ui (x) is player i’s utility function in the game of interest and does not satisfy DPM, then

there is often some strategically equivalent game for which player i’s utility is of the form

vi (x) = ui (x) + f (x−i), where vi satisfies condition (ii) of DPM.

We need one more definition before we prove the main result. The following concept was

introduced by Reny (1999).

Definition 6. The game G satisfies payoff security if for all ε > 0 and all x ∈ X, there

exists for each player i a deviation x′i ∈ Xi and a neighborhood N (x−i) of x−i such that

ui (x
′
i, z) ≥ ui (x)− ε for all z ∈ N (x−i).

The definition is analogous for the mixed extension of the game. Reny (1999) showed that

payoff security combined with another condition is sufficient to guarantee the existence of a

pure strategy Nash equilibrium.8

Payoff security is easily verified in the set of pure strategies, but is particularly difficult to

all points x ∈ X such that x ∈ En for infinitely many n.
8Payoff security along with reciprocal upper semicontinuity together imply that a game is better reply

secure, which in turn guarantees existence of equilibrium in a compact, quasiconcave game.
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verify in the mixed extension of a game. Our main result shows that disjoint payoff matching

implies that the mixed extension of the game is payoff secure.

Theorem 3. Let G be a compact game. Suppose that G satisfies DPM, then G is payoff

secure.

The advantage of DPM is that it is straightforward to verify and still fairly general. The

condition in the following lemma is easier to use in the proof of our main result, but more

difficult to verify directly.

Lemma 7. Suppose that the compact game G satisfies disjoint payoff matching. Then for

all ε > 0, xi ∈ Xi, and µ−i ∈ M−i there exists a deviation x′i ∈ Xi and a compact set

K ⊂ X−i rDi (x
′
i) such that the following holds:

(i) ui (x
′
i, x−i) > ui (xi, x−i)− ε for all x−i ∈ K,

(ii) µ−i (X−i rK) < ε.9

Proof of Lemma 7. Assume that G satisfies disjoint payoff matching and consider any player

i, ε > 0, and µ−i ∈ M−i. Take
{
xki
}

to be a defection sequence from the definition

of DPM. Define the collection of sets Ek =
{
x−i ∈ X−i : ui

(
xki , x−i

)
> ui (x)− ε

}
. Then

notice that lim infk Ek = X−i, so µ−i (lim infk Ek) = 1.10 Further, lim supkDi

(
xki
)
= ∅, so

µ−i

(
lim supkDi

(
xki
))

= 0. By statement (5) in Section 9 of Halmos (1974), µ−i (lim infk Ek) ≤

lim infk µ−i (Ek) and µ−i

(
lim supkDi

(
xki
))

≥ lim supk µ−i

(
Di

(
xki
))
, and so limk µ−i (Ek) =

1 and limk µ−i

(
Di

(
xki
))

= 0. It follows that there exists a k such that µ−i (Ek) > 1− (ε/3)

and µ−i

(
Di

(
xki
))
< ε/3. Choose such a k and by regularity of µ−i, we may choose a closed

9These conditions are equivalent to a slight weakening of disjoint payoff matching: for all players i and all
xi ∈ Xi and µ−i ∈ M−i, there exists a sequence

{
xk
i

}
⊂ Xi such that (i) lim infk ui

(
xk
i , x−i

)
≥ ui (xi, x−i)

µ−i-almost everywhere, and (ii) lim supk Di

(
xk
i

)
is µ−i-measure zero. This definition seems less useful due

to its dependence on an arbitrary probability measure.
10The limit inferior of a sequence of sets En is lim infn En =

⋃∞
N=1

⋂∞
n=N En. This is equivalently the set

of points are are in En for all but finitely many n.



104

(and thus compact) subsetK ⊂ EkrDi

(
xki
)
such that µ−i (K) > µ−i

(
Ek rDi

(
xki
))
−(ε/3).

It follows that µ−i (X−i rK) < ε.

Now we proceed to the proof of Theorem 1 which is based on showing that the condition in

Lemma 1 implies the mixed extension is payoff secure.

Proof of Theorem 3. Let ε > 0 and suppose that µ ∈ M. Note that for each player i there

exists some strategy xi in the support of µi such that

(3.1)

∫
ui (xi, x−i) dµ−i ≥

∫
ui (x) dµ.

From disjoint payoff matching and Lemma 7, there exists a deviation x′i and a set K (ε) ⊂

X−i rDi (x
′
i) such that

ui (x
′
i, x−i) > ui (xi, x−i)−

ε

6
for all x−i ∈ K (ε)

and

µ−i (X−i rK (ε)) <
ε

6M
,

where M ≡ sup |ui|. It follows that

(3.2)

∫
K(ε)

ui (x
′
i, x−i) dµ−i >

∫
K(ε)

ui (xi, x−i) dµ−i −
ε

6
.
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Further, we have that

∫
X−irK(ε)

ui (x
′
i, x−i) dµ−i −

∫
X−irK(ε)

ui (xi, x−i) dµ−i

> −
∫

X−irK(ε)

(|ui (xi, x−i)|+ |ui (x′i, x−i)|) dµ−i

> −2 sup |ui|µ (X−i rK (ε))

> −2ε

6
.(3.3)

Combining (2) and (3) yields

(3.4)

∫
ui (x

′
i, x−i) dµ−i >

∫
ui (xi, x−i) dµ−i −

ε

2
.

Define

ui (x−i) = sup
V 3x−i

inf
x′
−i∈V

ui
(
x′i, x

′
−i

)
,

where the supremum is taken over all neighborhoods V of x−i. As noted by Reny (1999) in

the proof of Theorem 3.1, ui (x−i) is lower semicontinuous. From Reny’s proof of Proposition

5.1, it follows that
∫
ui (x−i) dµ−i is lower semicontinuous in µ−i. This property implies the

existence of a neighborhood N (µ−i) such that for all λ ∈ N (µ−i),

(3.5)

∫
ui (x−i) dλ >

∫
ui (x−i) dµ−i −

ε

6
.
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Since M bounds ui as well as ui, we have that

∫
X−irK(ε)

(ui (x−i)− ui (x
′
i, x−i)) dµ−i ≥ −

∫
X−irK(ε)

(|ui (x−i)|+ |ui (x′i, x−i)|) dµ−i

> −2Mµ (X−i�K (ε))

= −2ε

6
.

Further, since ui (x
′
i, x−i) is continuous in x−i at all x−i ∈ K (ε), then ui (x−i) = ui (x

′
i, x−i)

on K (ε).11 Therefore,

∫
ui (x−i) dµ−i =

∫
ui (x

′
i, x−i) dµ−i +

∫
X−irK(ε)

(ui (x−i)− ui (x
′
i, x−i)) dµ−i

>

∫
ui (x

′
i, x−i) dµ−i −

2ε

6
.(3.6)

Using the fact that ui (x
′
i, x−i) ≥ ui (x−i) and combining (5) and (6), we have that for all

λ ∈ N (µ−i),

∫
ui (x

′
i, x−i) dλ ≥

∫
ui (x−i) dλ

>

∫
ui (x−i) dµ−i −

ε

6

>

∫
ui (x

′
i, x−i) dµ−i −

ε

2
.(3.7)

11The continuity here is with respect to the topology on X−i, not to be confused with the subspace
topology on K (ε). Otherwise, if the function were only continuous with respect to the subspace topology,
it might be that ui > ui on the boundary of K (ε).
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Lastly, we combine (1), (4), and (7) and find that for all λ ∈ N (µ−i),

∫
ui (x

′
i, x−i) dλ >

∫
ui (x

′
i, x−i) dµ−i −

ε

2

>

∫
ui (xi, x−i) dµ−i − ε

≥
∫
uidµ− ε.

Therefore, the mixed extension G is payoff secure.

3.4 Examples

In the first part of this section, we use Theorem 1 to prove existence of mixed strategy

equilibrium for a Bertrand-Edgeworth price-setting oligopoly with general specifications of

costs, residual demand rationing, and tie breaking rules. In the second part of this section,

an example from Sion and Wolfe (1957) is used to demonstrate that equilibrium may not

exist if disjoint payoff matching does not hold.

3.4.1 Bertrand-Edgeworth oligopoly

A Bertrand-Edgeworth (BE ) price-setting oligopoly is a competition between producers of

homogenous products where prices are the only strategic variables. We apply disjoint payoff

matching to a BE oligopoly specification that subsumes much of the large literature and

offers a basis to generalize the analysis in these games.12 Existence of equilibrium in such

12The literature on BE games includes: Kreps and Scheinkman (1983), Davidson and Deneckere (1986),
Osborne and Pitchick (1986), Deneckere and Kovenock (1992), Allen and Hellwig (1993), Deneckere and
Kovenock (1996), Allen et al.(2000), Boccard and Wauthy (2000) and Lepore (2009)).
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games has been examined by Dixon (1984), Allen and Hellwig (1986a), Dasgupta and Maskin

(1986a&b), Maskin (1986), Deneckere and Kovenock (1996), and Bagh (2010). With the

exception of Allen and Hellwig, which studies a symmetric oligopoly with constant marginal

cost, these papers only demonstrate existence for a BE duopoly.13 Most of these results rely

upon Dasgupta and Maskin (1986a) to guarantee existence, while Deneckere and Kovenock

construct an equilibrium and Bagh (2010) develops and applies the concept of variational

convergence to show existence. In addition to extending existence results to an oligopoly

setting, our formulation greatly generalizes the set of rationing rules which are permitted.14

Consider a homogeneous product industry with a set of firms N , with |N | = n. All firms

simultaneously announce prices, then production decisions are made after demand is realized.

Each firm i has a continuous, nondecreasing cost of production ci with ci (0) = 0.15 The

market demand F : R 7→ R is continuous and nonincreasing in x with F (0) > 0. Further,

assume that there exists a x > 0 such that F (x) = 0 for all x ≥ x. Note that any price

x > x is weakly dominated by x′ = x, so we may restrict the strategy space to X = [0, x]n.

We denote by pi the price of any firm i and by p the vector of all firms’ prices.

Each firm i has a capacity ki, which serves as an upper bound on the quantity that it can

produce. Thus, the production problem faced by the firm at a price pi is

max
z∈[0,ki]

πi (pi, z) = piz − ci (z) .

We refer to the solution to this problem as si (pi).
16 We assume that si (pi) is a continuous

13The result of Allen and Hellwig has been used to study BE oligopoly in other settings. Vives (1986)
studies the an BE oligopoly as the number of firms gets large with efficient rationing and constant marginal
cost up to capacity. Two recent articles Hirata (2009) and De Francesco and Salvadori (2010) characterize
equilibria of a BE triopoly with efficient rationing and constant marginal cost up to capacity.

14Most of the literature focuses on either efficient or proportional rationing. Maskin (1986) and Bagh
(2010) consider a larger class of rationing rules, although many reasonable rules are excluded from their
frameworks.

15It is well known that equilibrium may not exist if ci is discontinuous or ci (0) > 0.
16The specification of si(pi) follows from Dixon (1984), Maskin (1986) and Bagh (2010).
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nondecreasing function. Further, we assume that if q < q′ < si (pi) and πi (pi, si (pi)), then

πi (pi, q
′) > πi (pi, q). This is necessarily true if ci is strictly convex.17 The quantity si (pi)

may be referred to as firm i’s supply, the maximum quantity that it is willing to produce

at any given price. Inherently, si ≤ ki, so the supply functions account for the capacity

constraints.

For any price vector p, order the players so that p1 ≤ p2 ≤ ... ≤ pn. The demand served

by firm 1 is Q1 = min {F (p1) , s1 (p1)}. We make minimal assumptions as to which portion

of demand is served by firm i, only that for all j > i there is a continuous function λij (p)

which denotes the share of i’s quantity that satiates j’s demand.18 In the event that multiple

firms choose the same price, there are multiple ways to order the players such that prices

are nondecreasing. In this case, some tie breaking rule α is used to allocate the demand.

Specifically, α serves to give each player some weighted average of the demand they would

receive under each possible ordering of the prices. Most commonly in application α gives

a uniform weight to each possible ordering, however, this is not necessary. Let O be the

collection of possible orderings of the prices. For each o ∈ O, we let αo denote the weight

applied to the order o, o (i) the position of player i in the ordering o, and Qo
i the quantity

served by firm i as if the ordering under o were a strictly increasing order of prices. That is,

Qo
i = min

{
F (pi)−

∑
j<i

Qo
jλji (p) , si (pi)

}
,

where λji = 1 for all j such that pj = pi.
19 We require that

∑
o∈O αo = 1, so that demand is

17Notice that for symmetric constant marginal cost c ≥ 0, we can restrict the strategy space to X = [c, x]n

and the supply functions satisfy our assumptions.
18A simple way to understand the purpose of λij is to consider the case in which a continuum of consumers

have unit demand. In this case, λij specifies the fraction of consumers served by firm i that have willingness
to pay of at least pj .

19One way to interpret Qo
i is that o represents a strict preference order for consumers, whereby pi at firm i

is strictly preferred to pj at firm j for all i < j. Thus, the demand Qo
i reflects the notion that this preference

induces consumers to shop at firm i before firm i+ 1.
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always fully allocated, though α may be any measurable function.20 Let I denote the set of

players that charge pi and J the set of players that charge a price strictly less than pi. The

actual demand served by firm i is then given by

Qi = min

{
F (pi)−

∑
j∈J

Qjλji (p)−
∑

o∈O
αo

∑
o(j)<o(i)

Qo
j , si (pi)

}
.

Thus, each firm i serves the minimum of its capacity, supply, and the demand left by the

firms with lower prices than i. The purpose for this formulation is to allow any possible

rationing between tied firms. When multiple firms are tied, this allows any order of satiation

of supply, be it simultaneous, partially sequentially, or fully sequentially.

This very general framework captures the notion that consumers shop first at firms with

lower prices. Consider two choice for the functions λij given by λeij (p) = 1 and λpij defined

iteratively as

λpij = min

{
Qi

D (pi)−
∑

j<iQjλ
p
ji (p)

, 1

}
.

The rationing rule under λeij is the well known efficient, or parallel rule, whereas the rule

under λpij is the proportional rationing rule.

The profit of each firm i can then be written as

ui(p) = piQi (p)− ci (Qi (p)) .

We now turn to establishing that this game satisfies DPM.

Proposition 16. The BE oligopoly game satisfies disjoint payoff matching.

20Both α and the λ functions may depend on the full vector of prices as well as the capacities. We suppress
the capacity arguments for clarity. The quantities Qo

i and Qi depend on capacities only through the supply
functions, α, and the λ functions.
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Proof of Proposition 16. For any firm i, ui(0, p−i) = 0 for all p−i. Consequently, Di (0) = ∅.

Let pi > 0. Note that the set of discontinuities Di (pi) is a subset of points where pj = pi

for some i 6= j. Thus, if pi 6= p′i, then Di (pi) ∩ Di (p
′
i) = ∅. It follows that for any

sequence pli → pi with p
l
i < pl+1

i < pi for all l, condition (ii) of DPM is satisfied. Note that

limlQi

(
pli, p−i

)
≥ Qi (p) for all p−i. Since si is continuous, limlQi

(
pli, p−i

)
≤ si (pi). By

definition, ui is increasing in Qi (p) for Qi (p) ≤ si (pi), and since ui is continuous in Qi (p),

it follows that

lim
l

(
piQi

(
pli, p−i

)
− ci

(
Qi

(
pli, p−i

)))
= pi lim

l
Qi

(
pli, p−i

)
− ci

(
lim
l
Qi

(
pli, p−i

))
≥ pi lim

l
Qi (p)− ci (Qi (p)) .

Therefore, the game satisfies DPM.

Since this game satisfies DPM, we know from Theorem 1 that the mixed extension is payoff

secure. Now we establish that the game has a mixed strategy equilibrium by appealing to

results from Reny (1999) and Bagh and Jofre (2006). The following definitions are necessary

for our proof of existence.

Definition 7. The game G is weakly reciprocal upper semicontinuous (WRUSC) if for all

(x∗, u∗) ∈FrG, there exists for some player i with a deviation xi ∈ Xi such that ui
(
xi, x

∗
−i

)
>

u∗i .

Definition 8. The game G is better reply secure if whenever x∗ is not an equilibrium and

(x∗, u∗) is in the closure of the graph of G, there exists for some player i a strategy xi and a

neighborhood N (x∗−i) of x
∗
−i such that for all x−i ∈ N (x∗−i), ui (xi, x−i) > u∗i .

The definitions are analogous for the mixed extension of the game. Reny (1999) showed that
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a compact game whose mixed extension is better reply secure possesses a Nash equilibrium.

He also showed that payoff security together with reciprocal upper semicontinuity implies

that a game is better reply secure. Bagh and Jofre (2006) showed that the latter condition

can be replaced with WRUSC.

To prove that the game has a mixed strategy equilibrium we only need to show that the

mixed extension of the game is WRUSC.

Proposition 17. The BE oligopoly game has a mixed strategy equilibrium.

Proof of Proposition 17. Since the strategy space X is compact and Hausdorff, we need only

show that the game satisfies WRUSC. We begin by defining for each player i

ui (p) = lim sup
x→p

ui (x)

and u = (u1, ..., un), noting that each ui is upper semicontinuous. Since si (p) is continuous

and Qi (p) ≤ si (p) for all p, then lim supx→pQi (x) ≤ si (p). Further, by assumption, for any

Q such that Qi (p) < Q ≤ si (p), πi (pi, Q) > πi (pi, Qi (p)). Thus, it follows that

ui (p) = pi lim sup
x→p

Qi (x)− ci

(
lim sup

x→p
Qi (x)

)
.

Note that

lim
xi→p−i

Qi (xi, p−i) = lim sup
x→p

Qi (x)

≡ Qi (p) .
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Thus, for any p ∈ X with pi > 0,

(3.8) lim
xi→p−i

ui (xi, p−i) = ui (p) .

Let (µ∗, u∗) ∈FrG and let µl → µ∗ be such that
∫
udµl → u∗. Note that

u∗ = lim
l

∫
udµl

≤ lim sup
l

∫
udµl.

Since each ui is upper semicontinuous, then as Reny (1999) shows in the proof of Proposition

5.1,

lim sup
l

∫
udµl ≤

∫
udµ∗.

Thus, we have that u∗ ≤ u (µ∗).

Define Yi =
{
p ∈ X : Qi (p) < Qi (p)

}
and Y =

⋃
i Yi. We consider two cases: (i) µ∗ (Y ) = 0,

and (ii) µ∗ (Y ) > 0.

(i) In this case, Qi (p) = Qi (p) µ
∗-almost everywhere for all players i. Thus, as noted above,

ui = ui µ
∗-almost everywhere, so we conclude that u (µ∗) = u (µ∗) ≥ u∗. Since (µ∗, u∗) /∈ G,

then it must be that ui (µ
∗) > u∗i for some player i. It follows that µi = µ∗

i satisfies the

definition of WRUSC.

(ii) We begin by showing that ui (µ
∗) > u∗i for some player i. For any p ∈ Y , at least

two firms must charge the same positive price, and at least one such firm i must have

Qi (p) < Qi (p) ≤ si (p). Let I be the set of firms j with pj = pi and J the set of firms j
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with pj < pi. Note that

(3.9)
∑

j∈I
Qj (p) ≤ F (pi)−

∑
j∈J

Qjλji (p)

for any choice of α. The inequality in (3.9) must hold with equality else there would be

excess demand that firm i would be able to satiate.

Let A (p) ≡
∑n

j=1 uj (p) and A (p) ≡ lim supx→pA (x). We will show that

A (p) <
∑n

j=1
uj (p) .

Let xm → p be such that A (xm) → A (p), and for each j let Q̃j(p) ≡ limmQj (x
m). Since

∑n

j∈I
Q̃j (p) = F (pi)−

∑n

j∈J
Q̃jλji (p) ,

then there still exists at least one firm i′ such that Q̃i′(p) < Qi′ (p). By our assumption,

πi′(pi′ , Q̃i′(p)) < πi′
(
pi′ , Qi′ (p)

)
, so

∑n

j=1
uj (p)− A (p) =

∑n

j=1
πj
(
pi′ , Qi′ (p)

)
− πj(pi′ , Q̃i′(p))(3.10)

≥ πi′
(
pi′ , Qi′ (p)

)
− πi′(pi′ , Q̃i′(p))

> 0.

The inequality in (3.10) holds based on the facts that: (i) uj(p) ≥ limm uj(x
m) for all

players j, and (ii) based on (3.8), uj (p) = πi′
(
pi′ , Qi′ (p)

)
and limm uj(x

m) = πi′(pi′ , Q̃i′(p)).

Therefore for all p ∈ Y ,

A (p) <
∑n

i=1
ui (p) .
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Since A is upper semicontinuous, then

∑n

i=1
u∗i =

∫
A (p) dµl

≤
∫
A (p) dµ∗

<

∫ ∑n

i=1
ui (p) .

The final line follows from the fact that µ∗ (Y ) > 0.

Let i be the player with ui (µ
∗) < u∗i . Consider the deviation functions

fm (pi) =

(
1− 1

m

)
pi.

We construct a sequence of measures that transfers any mass or density from each pi to

fm (pi). For each m and every measurable set E, define µm
i (E) = µ∗

i (f
−1
m (E)). By Theorem

39C in Halmos (1974),

lim
m

∫
ui (pi, p−i) dµ

m
i dµ

∗
−i =

∫
ui (fm (pi) , p−i) dµ

∗.

Since ui is bounded, there is a constant, integrable function which bounds ui, so the Lebesgue

dominated convergence theorem states that

lim
m

∫
ui (fm (pi) , p−i) dµ

∗ =

∫
lim
m
ui (fm (pi) , p−i) dµ

∗.

As noted, for all p, limmQi (fm (pi) , p−i) = lim supx→pQi (x), so limm ui (fm (pi) , p−i) = ui.

It follows that

lim
m

∫
uidµ

m
i dµ

∗
−i =

∫
uidµ

∗.
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Therefore, for sufficiently large m, µm
i satisfies the definition of WRUSC.

3.4.2 Nonexistence

The following example is constructed by Sion and Wolfe (1957) as an example of a game

without equilibrium.

There are two players with strategy spaces X1 = X2 = [0, 1]. The game is zero-sum, with

u1 (x1, x2) =



1 if x1 > x2

0 if x1 = x2 or x1 +
1
2
= x2

−1 if x1 < x2 < x1 +
1
2

1 if x1 +
1
2
< x2

.

It is easy to see that this game does not satisfy disjoint payoff matching. The discontinuities

occur at ties of the form x1 = x2 and x1 + 1/2 = x2. For true ties (x1 = x2), player 1

benefits from deviating to points with x′1 > x1, while at shifted ties (x1 + 1/2 = x2), player

1 benefits from deviations to points with x′1 < x1 or x′1 > x1 + 1/2. If we consider x1 = 1/2,

then if x2 = 1/2, a improvement requires x1 > 1/2, while if x2 = 1, then an improvement

requires x′1 < 1/2. This tension where one discontinuity demands deviations upward while

another demands deviations downward to improve is what causes DPM to fail. Indeed,

given any sequence of deviations from x1 = 1/2, each individual deviation must make player

1 discretely worse off at either x2 = 1/2 or x2 = 1.

A lesson in general is that DPM tends to hold whenever players can always improve their

payoffs at all discontinuities by deviations in a single direction, as is the case with the

Bertrand-Edgeworth game where firms can always lower their prices any be at least as well

off, or in any contests, where players can increase their bids or efforts and be at least as well
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off. In the current example, different discontinuities require conflicting deviations to improve,

and so a single sequence of deviations cannot uniformly improve a player’s positions.
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