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Abstract

Distributed simulation techniques are commonly used to improve the

speed and scalability of simulators for wireless sensor networks. However,

accurate simulations of dynamic interactions of sensor network applica-

tions incur large synchronization overheads and severely limit the per-

formance of existing distributed simulators. In this paper, we present

two novel techniques that significantly reduce such overheads by mini-

mizing the number of sensor node synchronizations during simulations.

These techniques work by exploiting radio and MAC specific character-

istics without reducing simulation accuracy. In addition, we present a

new mechanism that makes it possible to exploit any potential applica-

tion specific characteristics for synchronization reductions. We implement

and evaluate these techniques in a cycle accurate distributed simulation

framework that we developed based on Avrora, a popular parallel sensor

network simulator. In our experiments, the techniques achieve a speedup

from 2 to 3 times in our simulator and 3 to 6 times compared to Avrora in

simulating 1-hop networks with 32 to 256 nodes. In our multi-hop flood-

ing tests, they achieve a speedup of 1.5 to 1.8 times in our simulator and

3.9 to 5.6 times compared to Avrora. The experiments also demonstrate

that the speedups can be significantly larger as the techniques scale with

sensor network sizes and radio off times.

1 Introduction

Wireless sensor network (WSN) simulators are important in developing and de-
bugging WSN applications. By running sensor network programs on top of sim-
ulated sensor nodes inside simulated environments, the states and interactions
of sensor network programs can be inspected and studied easily and repeatedly.
In addition, the properties of the simulated entities (simulation models) such as
the locations of sensor nodes and the inputs to the sensor nodes can be readily
changed before or during simulations. By choosing appropriate simulation mod-
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els, one can build an entire WSN application, including the underlying operating
system, using simulations.

There are two key requirements to WSN simulators: fidelity and speed.
Fidelity reflects bit and temporal accuracy of events and actions. High fidelity
often leads to low simulation speed, defined as the ratio of simulation time to
wallclock time. Simulation time is the virtual clock time in the simulated models
[6] while wallclock time corresponds to the actual physical time used in running
the simulation program. A simulation speed of 1 indicates that the simulated
sensor nodes advance at the same rate as real sensor nodes and this type of
simulation is called real time simulation. In general, real time speed is required
to use simulations for interactive tasks such as debugging or testing.

The fidelity of WSN simulators is rapidly increasing with the use of high fi-
delity simulation models [12, 17, 16, 10]. However, most of these improvements
of fidelity are largely achieved at the cost of decreased simulation speed and
scalability because significant computational resources are required to execute
high fidelity simulation models. For example, even with TOSSIM [12], a pop-
ular and one of the fastest sequential WSN simulators, one can only simulate,
without cycle accuracy, about 32 nodes in real time on fast computers [12, 19].
As alternatives, parallel and distributed WSN simulators [19, 20, 3] leverage
the combined computing resources of multiple processors/cores on the same
computer and on a network of computers, respectively. They can significantly
improve simulation speed and scalability because sensor nodes may be simu-
lated in parallel on different processors or computers. Since different nodes may
get simulated at different speeds in this fashion, simulated nodes often need to
synchronize with each other to preserve causality of events and ensure correct
simulation results.

Synchronization of two sensor nodes is illustrated in Figure 1 which shows
the progress of simulating in parallel two sensor nodes that are within direct
communication range of each other. After starting the simulation for TW0 sec-
onds of wallclock time, Node A advances to simulation time TS2 while Node B
only advances to TS1. The speed of simulating the two nodes could be different
because the threads or processes used to simulate the nodes might either run
on processors of different speeds or receive different number of cycles from an
operating system (OS) task scheduler. At TS2, Node A is supposed to read
the wireless channel and continue its execution along different paths based on
whether there are active wireless transmissions or not. However, at TW0, Node
A may not be simulated any further than TS2 because Node A does not know,
at TW0, whether Node B is going to transmit at TS2 or not (since TS1 < TS2).
In other words, at TS2, the input of Node A depends on the output of Node B.

To maintain such dependencies, simulated sensor nodes often need to syn-
chronize with each other during simulations. There are two general approaches
to handle synchronizations: conservative [2] or optimistic [8]. Conservative syn-
chronization requires that Node A wait at TS2 until the simulation time of Node
B reaches TS2. The optimistic approach, on the other hand, would allow Node
A to advance assuming there will be no transmissions from Node B at TS2.
However, the entire simulation state of Node A at TS2 has to be saved. If Node
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Figure 1: The progress of simulating in parallel a wireless sensor network with
two nodes that are in direct communication range of each other

A later detects that Node B actually transmits to Node A at TS2, it can correct
the mistake by rolling back to the saved state and start again. To the best of our
knowledge, almost all distributed WSN simulators are based on the conservative
approach as it is simpler to implement and has a lower memory footprint.

Synchronizations bring significant overheads to distributed simulations. With
the conservative approach, the overheads can be divided into management over-
heads and communication overheads. Management overheads come from man-
aging the threads or processes that simulate sensor nodes. For example, to
maximize parallel use of computational resources, the thread or process simu-
lating Node A in Figure 1 needs to be suspended while waiting for Node B so
another thread or process simulating another node can be swapped in for exe-
cution. Suspended nodes also need to be swapped back in for simulation later
on. These usually involve context switches and large numbers of them would
significantly reduce simulating speed and scalability. Communication overheads
arise because nodes need to communicate their progresses to each other during
simulations. For example, in Figure 1, Node B must notify Node A after it ad-
vances past TS1 so that Node A can continue. Communicating across processes
or threads is generally expensive. In the case where nodes are simulated on dif-
ferent computers, the communication overheads could be very high as messages
have to be sent across slow networks.

The performance gains of existing distributed WSN simulators are often
compromised by the rising overheads due to inter-node synchronizations. For
example, with Avrora [19], a cycle accurate parallel WSN simulator, it is faster
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to simulate 32 nodes with 1 processor than using all 8 processors of a parallel
computer in some of our tests (Figure 4 and 12) because of large overheads in
synchronizing threads (1 node/thread) across processors. In the case of DiSenS
[20], a cycle accurate distributed WSN simulator, if all nodes are within com-
munication range, DiSenS needs 16 computers to simulate 16 nodes in real time
despite of the fact that each of the computers can simulate 8 nodes in real time
[20]. This sub-linear performance in DiSenS is due to the large communication
overheads in synchronizing nodes that are simulated on different computers.

In this paper, we propose two novel techniques that greatly reduce synchro-
nization overheads by cutting the number of synchronizations. The techniques
work by exploiting radio and MAC specific characteristics without reducing
simulation fidelity. They are effective even when node processors or radios are
active and can significantly improve simulation speed and scalability. We also
present a new mechanism that enables exploiting any potential application spe-
cific characteristics for synchronization reductions. We validate our approaches
by their implementations in PolarLite, a cycle accurate distributed simulation
framework that builds upon Avrora and serves as the underlying simulation
engine [9].

We discuss related work in Section 2. The speedup techniques are presented
in Section 3 and their implementations are described in Section 4. In Section 5
we present the results of our experiments followed by our conclusion and future
work in Section 6.

2 Related work

Previous work in improving the speed and scalability of WSN simulators can be
broadly divided into two categories. The first category focuses on reducing the
computational demands of individual simulation model without significantly re-
ducing fidelity. For example, it is very computationally expensive to emulate an
actual sensor node processor in a simulation model for cycle accurate simulations
[16]. To reduce the large computational needs, TimeTossim [10] automatically
instruments applications at source code level with cycle counts and compiles
the instrumented code into the native instructions of simulation computers for
fast executions. This significantly increases simulation speed while achieving
a cycle accuracy of up to 99%. However, maintaining cycle counts also slows
down TimeTossim to about 1/10 the speed of TOSSIM (Section 1) which Time-
Tossim is based on. Our work makes this type of effort scalable on multiple
processors/cores.

The second category of work focuses on reducing overheads in parallel and
distributed simulations. DiSenS reduces the overheads of synchronizing nodes
across computers by using the sensor network topology information to partition
nodes into groups that do not communicate frequently and simulating each
group on a separate computer [20]. However, this technique only works well if
most of the nodes are not within direct communication range as described in
the paper. In [9], we describe a technique that uses sensor node sleep time to
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reduce the number of synchronizations. As demonstrated in the paper, using the
node-sleep-time based technique can significantly increase speed and scalability
of distributed WSN simulators. However, the technique is only able to exploit
the time when both the processor and radio of a sensor node are off for speedup
because it is not possible to predict the exact radio wakeup time when the
processor is running. The techniques we propose in this paper are orthogonal to
the previous techniques and work even when all the nodes of a WSN are within
direct communication range or the processors or radios of the nodes are active.

There is a large body of work on improving the speed and scalability of dis-
tributed discrete event driven simulators in general. Among them, exploiting
lookahead time is a commonly used conservative approach [5, 13]. Our tech-
niques belong to this category in the sense that we also improve speed and
scalability by increasing the lookahead time. However, our techniques are fun-
damentally different as we use different and application specific characteristics
in a different context to increase lookahead time.

3 Reducing synchronizations in distributed sim-

ulations of WSNs

Sensor node synchronizations are required for enforcing dependencies between
simulated sensor nodes due to their interactions over wireless channels. Our
approach to increase simulation speed and scalability is based on identifying and
exploiting parallelism by reducing synchronizations between nodes according
to their communication capabilities. A node can “lookahead” for a minimum
guaranteed interval to identify periods when no transmitting or receiving events
in a discrete event driven simulator would occur. Such a lookahead is often
closely tied to the event scheduling algorithm used in the simulators. Based
on the distributed scheduling algorithm in [9], we present two techniques for
reducing the number of synchronization events at the radio-level or at the MAC-
level.

3.1 Radio-level Speedup Technique

Radio-level duty cycling works by selectively turning radios on and off. Since
radios are one of the most power consuming components of sensor nodes, radio-
level duty cycling is ubiquitously used in WSNs to reduce energy consumptions
and extend working life of energy constrained sensor nodes. Due to its wide
applications and complex tradeoffs in energy savings and communication over-
heads, radio-level duty cycling is commonly built into energy efficient WSN
MACs such as S-MAC [21] and B-MAC [14].

Our radio-level speedup technique is illustrated in Figure 2 which shows the
progress of simulating two sensor nodes in parallel. In this simulation, Node B
turns its radio off at time TS1 and puts it back on at time TSx. With existing
distributed simulators, after running the simulation for TW0 seconds of wallclock
time, Node A has to wait at TS3 for Node B to catch up from TS2 despite of
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the fact that node B will not transmit any packets at TS3. Ideally, we can avoid
this unnecessary synchronization by having Node B notify node A at time TS1

that its radio is off until TSx. However, this will not work as it is not possible
for Node B to predict the exact radio wakeup time TSx at TS1. This is because
while the radio is off at TS1, the sensor node processor is still running and it can
turn the radio back on at any time based on current states, application logics
and sensor readings. In other words, it is just not possible for Node B to predict
when the radio will be turned on in the future.

Instead of predicting the exact radio wakeup time, our radio-level speedup
technique exploits the radio off period by calculating the earliest possible com-
munication time, TEarliestCom. TEarliestCom is the earliest time that a turned
off radio can be used to send or receive data over wireless channels and can
be calculated based on TAct, the amount of time to fully activate a turned off
radio. A turned off radio can not be activated instantly for sending or receiving
data. It takes time for the radio to be initialized and become fully functional
[15]. For example, the CC1000 radio of Mica2 nodes [4] needs 2.45ms to be
activated and the CC2420 radio of Telos nodes [15] needs about 1.66ms without
counting the SPI acquisition time [11]. The exact delays in terms of numbers of
clock cycles are hard coded into WSN MAC protocols and can be easily iden-
tified in the source code. For example, in TinyOS 1.1 [7, 18], B-MAC waits
for a total of 34300 clock cycles for the CC1000 radio of MICA2 by calling the
TOSH_uwait function. While the delays seem to be small, they are significantly
larger than typical lookahead times in simulating WSNs. For example, it is
about 11 times larger than the 3072 clock cycle lookahead time in simulating
Mica2 nodes [19, 9]. As mentioned, lookahead time is defined as the maximum
amount of simulation time that a simulated sensor node can advance freely
without synchronizing with other simulated sensor nodes [9].

Our radio-level speedup technique works by tracking when sensor node ra-
dios are turned on and off. When we detect that a sensor node radio is turned
off, we immediately send its TEarliestCom in a clock synchronization message to
all neighboring nodes and then repeatedly send the latest TEarliestCom every
TAct time until the radio is detected to be turned on. TEarliestCom can be calcu-
lated as the sum of current simulation time and TAct. As a result, neighboring
nodes no longer need to synchronize with the radio-off node until the latest
TEarliestCom. For example, as shown in Figure 2, when we detect that Node B
turns its radio off at TS1, we immediately send its TEarliestCom to Node A and
repeat that every TAct time which is fixed according to the radio of Node B.
The clock synchronization messages are shown as arrows from Node B to Node
A in the figure. Upon receiving the second TEarliestCom, the lookahead of node
A increases to a time beyond TS3 and therefore it no longer needs to wait at TS3

after TW0 seconds of simulations. In other words, Node A knows before TW0

that Node B will not be able to transmit any packet at TS3. Since the increase of
lookahead time (TAct −OldLookAheadT ime) may just be a very small fraction
of the total radio off period, it is critical to repeatedly send TEarliestCom every
TAct time to fully exploit the entire radio off period.

The radio-level speedup technique also reduces the number of clock synchro-
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Figure 2: The progress of simulating two nodes that are in direct communication
range with the radio-level speedup technique

nizations. In distributed simulations, clock synchronization messages are used
to send the simulation time of a node to all its neighboring nodes so causality
can be maintained and suspended waiting nodes can be revived. To maximize
parallelism in simulations, a node needs to send 1 clock synchronization message
for every lookahead time of its neighboring nodes [19, 20, 9]. Since our radio-
level speedup technique increases the lookahead time of neighboring nodes, the
number of clock synchronizations can be greatly reduced. For example, in the
case of simulating Mica2 nodes, one TEarliestCom message can increase looka-
head time by a factor of 11 and therefore eliminates 10 clock synchronization
messages.

3.2 MAC-level speedup technique

While the radio-level speedup technique takes advantage of physical delays in
WSN radios, our MAC-level speedup technique exploits the random backoff be-
haviors of WSN MACs. Almost all WSN MACs need to perform random back-
offs to avoid concurrent transmissions [21, 14]. For example, before transmitting
a packet, B-MAC would first perform an initial backoff. If the channel is not
clear after the initial backoff, B-MAC needs to repeatedly perform congestion
backoffs until the channel is clear. Because a MAC will not transmit any data
during backoff periods, we are able to exploit the backoff times for speedups.
Although the backoff times are random and MAC specific, they are usually a lot
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longer than typical lookahead times in simulating WSNs. For example, in the
case of B-MAC, the default initial backoff is 1 to 32 times longer than the 3072
clock cycle lookahead time in simulating Mica2 nodes. The default congestion
backoff is 1 to 16 times longer in B-MAC

Our MAC-level speedup technique is illustrated in Figure 3 which is similar
to Figure 2 except Node B enters into a backoff period from TS1 to TS4. The
MAC-level speedup technique works by detecting the start and the duration of
a backoff period. When the start of a backoff period is identified, the end time
of the backoff period is first calculated based on the duration of the period and
then sent to the neighboring nodes. This effectively increases the lookahead time
of neighboring nodes and helps to eliminate unnecessary synchronizations. For
example, in order to avoid the unnecessary synchronization of Node A at TS3

after running the simulation for TW0 seconds of wallclock time, our MAC-level
speedup technique first detects at TS1 the start of Node B’s backoff period as
well as the duration of the backoff period. Then we compute the end time of
the backoff period and send that in a clock synchronization message to Node
A. Once Node A knows that Node B will not transmit until TS4, it no longer
needs to wait at TS3. Similar to the radio-level speedup technique, the MAC-
level technique also reduces the number of clock synchronizations and provides
additional speedup. We discuss how to detect the start and the duration of a
random backoff period in Section 4.

The MAC-level speedup technique is a good complement to the radio-level
technique as WSNs usually have very bursty traffic loads. Nodes in a WSN
usually do not communicate frequently and can duty cycle their radios exten-
sively until certain triggering events occur. Once trigged by those events, sensor
nodes need to actively communicate and interact with each other to accomplish
certain tasks. Our MAC-level technique is most effective when wireless channels
are busy.

4 Implementation

The proposed speedup techniques are implemented in PolarLite, a distributed
simulation framework that we developed based on Avrora [9]. Our simulation
framework provides the same level of cycle accurate simulations as Avrora but
uses a distributed synchronization engine instead of Avrora’s centralized one.
This makes it possible to implement and evaluate our speedup techniques in a
distributed simulation environment. The synchronization engine of PolarLite is
based on a distributed synchronization algorithm described in [9]. With this
algorithm, nodes can be synchronized separately according to their own looka-
head time. In other words, if a node is not accessing the wireless channel, it
only needs to communicate to neighboring nodes its simulation time and does
not need to wait for any other nodes.

As with Avrora, PolarLite allocates one thread for each simulated node and
relies on the Java virtual machine (JVM) to assign runnable threads to any
available processors on an SMP computer. We have improved the initial version
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Figure 3: The progress of simulating two nodes that are in direct communication
range with the MAC-level speedup technique

of our distributed synchronization engine with sorted clock lists to reduce the
overheads in computing minimum channel clocks (minclock) [9] when a large
number of nodes are in direct communication range.

To implement the radio-level speedup technique, we need to detect when
radios are turned on and off. In discrete event driven simulations, the changes
of radio states are triggered by events and can be tracked. For example, in
our framework, we detect the radio on/off time by tracking the IO events that
access the registers of simulated radios.

Detecting MAC backoff times and durations for the MAC-level speedup tech-
nique are considerately more difficult. The backoffs are MAC and application
specific and generally do not correlate to any unique events or actions that can
be easily tracked. In addition, the backoff durations are completely random.
One possible solution to this problem is to insert special code into the source
code of an application that is to be simulated. These special pieces of code
are compiled into the application and used to report to the simulator the MAC
backoff times and durations during simulations. However, this technique will
not work for cycle accurate simulators like ours.

Cycle accurate sensor network simulators [16, 19, 20, 9] offer the highest
level of fidelity among all types of sensor network simulators. They provide
simulation models that emulate the functions of major hardware components
of a sensor node, mainly the processor. Therefore, they take as input the same
binary code (images) that are executed by real sensor nodes. To detect backoff

9



times and durations without changing the source code of the applications under
simulations, we develop a generic mechanism based on pattern matching to
expose the internal states of sensor network applications during simulations.

Our mechanism works by first using patterns to pin point from compiled
applications the machine instructions that represent events of interest during
the start of a simulation. The identified instructions are then replaced by cor-
responding “hook” instructions to report the internal states of the applications,
such as the backoff durations, to a simulator during simulations. Hook instruc-
tions are artificial instructions that behave exactly the same as the original
instructions they replace except they will pass to a simulator the memory loca-
tions or registers accessed by the original instructions during simulations. The
values stored in those locations are the internal states of the applications that
correspond to the events of interest. Since an instruction may access multiple
locations, we associate with each pattern a list that indicates the operands of
interest based on their order in the instruction. As a result, an instruction
may be translated into different hook instructions according to the list. Note
that the values stored in the reported memory locations may not correspond to
lookahead time directly. In our current implementation, we simply assume the
values are in units of 3072 clock cycles, the amount of time to transmit 1 byte
with Mica2 nodes. (As future work, we are planning to differentiate that using
different types of hook instructions.) To maintain cycle accuracy, our simulator
ensures that the hook instructions consume the same number of clock cycles as
the original instructions.

We do not use addresses to locate instructions in a compiled application as
addresses tend to vary across compilations after source code changes, even if
the changes are at places not related to the instructions. With pattern match-
ing, we only need to create a set of patterns once, if the corresponding source
code does not change. For example, if an application is written with TinyOS,
the instructions that assign backoff durations to B-MAC are part of the OS,
regardless of whether the backoffs are calculated by default functions in the OS
or user supplied functions in the application. Therefore, we only need to create
a set of patterns once for each version of TinyOS to track the backoff times in
B-MAC during simulations.

We use regular expressions for pattern matching. To uniquely match an
instruction, we need to match additional instructions before or after that in-
struction as well. We implement the MAC-level speedup technique by hard
coding the backoff matching process in our simulator. It matches all three in-
structions (1 for initial backoff and 2 for congestion backoff) that assign backoff
durations to B-MAC and replaces them with appropriate hook instructions. For
simplicity, we consider that MAC backoffs start at the times that the hook in-
structions report the backoff durations. It is safe to do so as no data will be
sent from this point on until the end of the backoff periods.
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Table 1: Radio off periods under different duty cycling modes of B-MAC
Duty cycling Mode Radio off Time (ms)

0 0
1 20
2 85
3 135
4 185

5 Evaluation

We conduct a series of experiments to evaluate the performance of our speedup
techniques. All experiments are carried out on an SMP server running Linux
2.6.24. The server features a total of 8 cores on 2 Intel Xeon 3.0GHz CPUs and
16GByte of RAM. Sun’s Java 1.6.0 is used to run all experiments.

All of the experiments are based on the CountSend (sender) and CountRe-
ceive (receiver) programs from the TinyOS 1.1 distribution. These programs are
similar in nature to the programs used by other WSN simulators in evaluating
their performance [12, 19, 20]. CountSend repeatedly broadcasts a continuously
increasing counter at a fixed interval. CountReceive simply listens for messages
sent by CountSend and displays the counters inside on LEDs. The programs
are executed on simulated Mica2 nodes [4] and the starting time of each node
is randomly perturbed between 0 and 1 second of simulation time to avoid any
artificial time locks. All simulations are run for 300 seconds of simulation time
and for each experiment we take average of three runs as the results.

5.1 Performance of radio-level speedup technique

For experiments in this section, we modify the sender and receiver programs
slightly to enable B-MAC’s built-in radio level duty cycling feature. This can
be done by calling the SetListeningMode and SetTransmitMode functions of
TinyOS 1.1 at start. B-MAC supports a total of 5 radio-level duty cycling
modes in TinyOS 1.1 as shown in Table 1. Once enabled, B-MAC turns a radio
off periodically for a duration corresponding to the duty cycling mode. The
radio is turned back on either when there are data to transmit or a radio off
period ends. The radio is turned off again once there are no pending packets
to transmit and the channel is clear for a fixed period of time. In the case of
TinyOS 1.1 [7, 18] and Mica2 nodes, the channel clear time is the amount of
time to transmit 8 bytes over the radio.

5.1.1 Speed and Scalability with respect to the number of processors

Our first set of experiments evaluates the performance of our radio-level speedup
technique over different numbers of processors, or cores in this case. For these
experiments, we simulate a WSN of 32 nodes that are within direct communi-
cation range using 2 to 8 processors. The 32 nodes are set up in such a way
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Figure 4: Speed of simulating with Avrora and PolarLite running the radio-level
speedup (1 sender 31 receivers, mode 3)

that one node is configured as a sender and the rest as receivers. Since all nodes
are within direct communication range, any one of the nodes can be chosen
as the sender. The frequency that the sender transmits packets is varied for
different experiments. The radio duty cycling mode of all nodes is set to 3 for
both transmitting and receiving. For comparisons, we conduct the same exper-
iments using Avrora, PolarLite without any speedups and PolarLite with the
radio-level speedup.

As a baseline, Figure 4 shows the speeds (Section 1) of simulating with
Avrora and PolarLite running the radio-level speedup technique. We can see
that PolarLite running the radio-level speedup technique is considerably faster
than Avrora (up to 544% or 6.44 times) and scales with the number of proces-
sors. In contrast, the speeds of simulating with Avrora decrease with increasing
number of processors in the experiments due to larger synchronization over-
heads1. We can also see that the speeds of simulating with our radio-level
speedup technique increase with transmission intervals. This is because our
radio-level speedup technique is based on exploiting radio off time and large
transmission intervals increase that. In these B-MAC based experiments, the
transmission interval affects the radio off time of the senders more than the
receivers because a sender has to transmit a preamble longer than the radio off

1Our results are different from results of similar expriments in [19] as our experiments use
faster 3.0GHz CPUs, compared to 900MHz ones of theirs.

12



period of the receivers before transmitting a packet. This is to make sure the
receivers with duty cycled radios can still receive the packet.

Figure 5 shows the percentage reductions of synchronizations based on num-
bers collected by running with and without the radio-level speedup technique
in PolarLite. For accurate evaluations, we only show the percentage reductions
within our PolarLite framework because PolarLite and Avrora are based on
different synchronization algorithms and our speedup techniques are only im-
plemented in PolarLite. As shown in Figure 5, the percentage reductions of syn-
chronizations are significant in all cases and actually grow very slowly with the
number of processors. This is because more nodes can be simulated in parallel
when the number of processors increases and as a result our radio-level speedup
technique has more radio sleep time to exploit simultaneously for synchroniza-
tion reductions. Although the reduction numbers are very close with respect
to the number of processors, simulation speeds increase significantly with the
number of processors in Figure 6 which shows the speed of simulating with and
without the radio-level speedup technique in PolarLite using different number
of processors. The reason is that per-synchronization overheads increase with
the number of processors due to high inter-processor communication overheads.

As shown in Figure 6, using the radio-level speedup technique increases
simulation speeds significantly (up to 111%) in PolarLite. Comparing with Fig-
ure 4, we observe that PolarLite alone without any speedup techniques is faster
than Avrora in these experiments. This is because our distributed synchroniza-
tion algorithm (Section 4) can provide more parallelism by allowing nodes to
be synchronized separately according to their own lookahead time. Avrora on
the other hand synchronizes all nodes together at a fixed time interval. How-
ever, as shown in Figure 6, even with our distributed synchronization algorithm,
PolarLite alone does not scale well with the number of processors. Using the
radio-level speedup technique significantly improves the scalability.

5.1.2 Speed and Scalability with respect to network sizes and radio

off times

We also evaluate the radio-level speedup technique over WSNs of different sizes
and radio sleep durations (radio-level duty cycling mode). Nodes in the experi-
menting WSNs are within direct communication range and one sender transmits
a packet every 10 seconds to the rest of the receiver nodes. Figure 7, 8, 9 and 10
show the results of simulating with or without the radio-level speedup technique
in PolarLite using all 8 processors.

Figure 7 shows significant percentage reductions of synchronizations using
our radio-level speedup technique. We do not see any reductions when the radio
is on all the time because our radio-level speedup technique works by exploiting
radio off time. Figure 7 also shows that the reduction percentages scale with
radio off durations as larger durations bring more radio-off time. While the
reduction percentages are about the same for all network sizes at a given radio
off duration, the percentage increases of simulation speed actually grow with
network sizes as shown in Figure 8. This is because in a network where all
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nodes are in direct communication range, the total number of synchronizations
in a distributed simulation is in the order of N ∗ (N −1) where N is the network
size. Therefore, the total number of reductions in the experiments grow with
network sizes. This can be seen clearly in Figure 9 which shows the total number
of synchronizations in logarithmic scale.

We can also see from Figure 8 that the percentage increases of simulation
speed scale very well with radio off durations. The unusually high percentage
increase of speed in the case of simulating 16 nodes with a 135ms radio off
duration is not a result of high synchronization reductions according to Figure 7.
It is caused by the slow speed in simulating that configuration in PolarLite
without using the radio-level speedup technique. In fact, without the radio-level
speedup technique, we observe no change of simulation speed by increasing the
sleep duration from 85ms to 135ms in the 16 node test case.

We also evaluate the scalability of the radio-level speedup technique over
larger WSNs under a fixed transmission rate of 1 packet/10 seconds and the re-
sults are shown in Figure 10. We can see that the radio-level speedup technique
increases simulation speed in large WSNs as well. It provides a 197% increase of
simulation speed when simulating 256 nodes in PolarLite. That is an additional
76% improvement over the 119% speed increase in simulating 32 nodes as shown
in Figure 8. In other words, although simulation speeds decrease with network
sizes due to the limited computational power of our server, the percentage in-
creases of simulation speed using the radio-level speedup technique still grow
with network sizes.

5.2 Performance of the MAC-level speedup technique

The performance of our MAC-level speedup technique depends on how busy
wireless channels are and how often sensor nodes transmit around the same
time. Instead of evaluating with a large number of scenarios, we study the
maximum speedup that can be achieved in simulating a WSN with the MAC-
level speedup technique. For experiments in this section, we allow CountSend
to send as fast as possible by modifying CountSend such that it sends out a new
packet as soon as it is notified by the MAC that the previous packet is sent. We
also disable the radio-level duty cycling for both CountSend and CountReceive.

We simulate two WSNs that have 1 receiver and 31 or 63 senders using
Avrora, PolarLite without speedups and PolarLite with the Mac-level speedup.
Unless explicitly specified, the default backoff calculation functions in TinyOS
1.1 are used for the senders. The results are shown in Figure 11, 12, 13 and 14.

5.2.1 Speed and Scalability with respect to the number of processors

and backoff times

As shown in Figure 11, our MAC-level speedup technique reduces synchroniza-
tions by about 44% to 47% in PolarLite. Although the reduction numbers are
about the same with respect to the number of processors, simulation speeds
actually increase with the number of processors in Figure 12 which shows the
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speeds of simulating with the MAC-level speedup technique using different num-
bers of processors. Similar to Figure 5 and 6, this is because per-synchronization
overheads increase with the number of processors. As shown in Figure 12, the
MAC-level speedup technique brings a speedup of 14% to 31% in PolarLite and
96% to 323% compared to Avrora using the default backoff calculation func-
tions of TinyOS 1.1. However, the backoff windows produced by the default
backoff calculation functions are not large enough for our experiments as we ob-
serve a significant amount of colliding transmissions causing dropped packets.
This limits the performance of our MAC-level speedup technique as nodes may
transmit at the same time without backoffs. We perform the same experiments
by doubling the sizes of the default backoff windows and the results are shown
in Figure 13. We can see that our MAC-level speedup technique brings more
significant increases of simulation speed with larger backoff windows.

5.2.2 Speed and Scalability with respect to network sizes

Figure 11 also shows that the percentage reductions of synchronizations using
the MAC-level speedup technique increase with network sizes in PolarLite. As
explained in Section 5.1.2, the total number of synchronizations in these exper-
iments are in the order of the square of the network size. Therefore, the total
number of reductions is very significant when the network size doubles from 32
to 64. We can see in Figure 14 that the speeds of simulating with the MAC-
level speedup technique scale with network sizes even with the default backoff
windows. We notice the unusually low increase of speed in simulating 64 nodes
with 6 processors. Since the reductions are consistent as shown in Figure 11,
we believe this is caused by the asymmetrical use of all 4 cores of 1 CPU and
2 cores of another CPU in our server. This can also be observed in Figure 12
which shows slow grows of simulation speed when using 6 processors.

5.3 Performance over multi-hop networks with both tech-

niques

We evaluate the combined performance of our speedup techniques with a real
world scenario. In this scenario, we simulate a WSN service that floods data to
every node in a WSN. This service works by having every node in a WSN relay,
by broadcasting, messages it receives. To avoid sending duplicate messages, a
node only relays messages with IDs greater than the largest IDs of the messages
it has already sent. For experiments in this section, we modify CountReceive
to relay messages the way we just described.

In our experiments, we simulate WSNs that have nodes laid 3 meters apart
on square grids of different sizes. For each of the WSNs, a corner node is config-
ured as the sender and the rest of nodes are configured as relaying nodes running
the modified CountReceive program. The sender transmits a new packet every
20 seconds with an increasing ID. The radio-level duty cycling mode of all nodes
is set to 4 (Table 1) and the backoff windows are doubled from TinyOS 1.1 de-
faults. The transmit range of all nodes is set to 19 meters. The results of our

15



experiments are shown in 15 and Figure 16.
As shown in Figure 15 and 16, PolarLite running both speedup techniques is

significantly faster and provides a speedup of 51% to 75% over PolarLite alone
and 289% to 462% compared to Avrora. We can also see from Figure 16 that
the speedup techniques reduce synchronizations significantly by 58% to 70%.
However, we observe that the reduction percentages decrease with increasing
network sizes. This is caused by our simple flooding protocol. As the net-
work size increases, the number of relaying messages grows as well. Although a
node does not transmit the same message twice, it can be forced to receive the
same message multiple times from different neighboring nodes. In other words,
a transmitting node can keep all nodes within its communication range from
turning off their radios. This significantly reduces the sleep times of the nodes
and lowers the performance of our radio-level speedup technique. However,
even under this setup, our speedup techniques still provide significant increases
of simulation speed. This is because our MAC-level speedup technique benefits
from an increasing number of backoffs in the larger networks. In practice, more
advance protocols are usually used to reduce the number of unnecessary relaying
messages. Therefore, we expect significant better performance with the speedup
techniques in these cases.

.

6 Conclusion and Future work

We have described two speedup techniques that significantly improve the speed
and scalability of distributed sensor network simulators by reducing the number
of sensor node synchronizations. We implemented these techniques in PolarLite,
a cycle accurate distributed simulation framework based on Avrora. The signif-
icant improvements of simulation performance on a multi-processor computer
in our experiments suggest even greater benefits in applying our techniques to
distributed simulations over a network of computers because of their large over-
heads in sending synchronization messages across computers during simulations.

We have also developed a general mechanism that can expose the internal
states of any sensor network applications during simulations. By knowing the
internal states of a sensor network application during simulations, one can ex-
ploit any application specific characteristics for the increase of lookahead time
and as a result, improve simulation speed and scalability.

As future work, we are planning to use the mechanism to exploit scheduled
transmission slots in TDMA type of MACs such as S-MAC [21]. With this type
of MAC, a node can only send data in scheduled transmission slots. By knowing
the time of the slots during simulations, we can identify the periods that a node
does not transmit any data and therefore increase the lookahead time. We also
plan to merge our implementation with the latest development branch of Avrora.
This would make it possible to simulate TinyOS 2.0 [1] based applications with
our speedup techniques. Although the techniques are currently implemented
in a cycle accurate simulator, they can also be applied to other simulators like
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TOSSIM to make them more scalable over multiple processors.
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Figure 5: Percentage reductions of synchronizations using the radio-level
speedup technique in PolarLite (1 sender 31 receivers, mode 3)
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Figure 6: Speed of simulating with and without the radio-level speedup tech-
nique in PolarLite (1 sender 31 receivers, mode 3)
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speedup technique in simulating WSNs of different sizes and radio off times
in PolarLite (1 packet/10 seconds, 8 processors)

20



-20

0

20

40

60

80

100

120

140

0 20 85 135 185

Radio off period (ms)

In
c
re

a
s
e
 o

f 
s
im

u
la

ti
o

n
 s

p
e
e
d

 (
%

)

1 sender, 7 receivers 1 sender, 15 receivers
1 sender, 31 receivers

Figure 8: Percentage increases of simulation speed using the radio-level speedup
technique in simulating WSNs of different sizes and radio off times in PolarLite
(1 packet/10 seconds, 8 processors)
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Figure 9: Total number of synchronizations in simulating WSNs of different
sizes and radio off times with and without the radio-level speedup technique in
PolarLite (1 packet/10 seconds, 8 processors)

22



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

64 128 256

Number of Nodes

S
im

u
la

ti
o

n
 S

p
e
e

d

PolarLite with radio-
level speedup

PolarLite without
speedup

Avrora

Figure 10: Speed of simulating WSNs of different sizes (1 packet/10 seconds, 8
processors, mode 3)

23



0

15

30

45

60

2 4 6 8

Number of processors

S
y

n
c
h

ro
n

iz
a

ti
o

n
 R

e
d

u
c

ti
o

n
 (
%

)

31 senders, 1 receiver 63 senders, 1 receiver
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Figure 14: Percentage increases of simulation speed with MAC-speedup on
WSNs of different sizes in PolarLite (No duty cycling)
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