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COHERENCE IN MULTILEVEL SYSTEMS 

William George Breiland 

Inorganic Materials Research Division, Lawrence Berkeley Laboratory 
and Department of Chemistry; University of California, 

Berkeley, California 94720 

ABSTRACT 

Mathematical- descriptions of an excited state multilevel system -

are developed to include progressively the effects of coherent coupling, 

feeding, decay and relaxation, and the expressions are illustrated with 

several pulse coherence experiments utilizing zero field optically 

detected magnetic resonance of excited triplet states. 

A new method is described in which the time development of the 

coherent components in a multilevel system is monitored by using an 

observable that can measure only relative populations between the levels. 

The method is illustrated with zero field magnetic resonance experiments, 

and extension of the method to optical frequency pulse experiments is 

discussed. 

By treating a coherently driven excited state system as two levels 

in contact with a population reservoir, exact expressions are obtained 

for both transient and steady-state behavior in the presence of 

transverse and spin lattice relaxation, constant incoherent pumping, 

spontaneous emission between the two levels, and also decay back into 

the reservoir. The development reveals that a substantial steady-state 

coherent component may be maintained by the application of a high power 

off resonance driving field,and in many cases this component could be 

orders of magnitude larger than the component that is maintained by 

applying an on resonance driving field. In view>of the possible 
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significance that this may have in the optical frequency region, experi­

mental verification of the steady-state component for zero field triplet 

states is presented. 

After formulating the general.mathematical development, it is 

applied specifically to zero field microwave phosphorescence double 

resonance. Experimental methods.and apparatus are discussed in detail 

and results of optically detected transient nutations, spin echoes, 

and Fourier transform spectroscopy are presented. In addition, the 

effects of allowedness, molecular orientation, and driving field 

inhomogeneities are described and methods for either eliminating these 

effects or. utilizing them to gain further information are discussed. 
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Note on the References Cited 

The text of this work references either the original paper, 
or, where references would be too numerous, a review article 
or text, in the hope that.~ the reader is led to the most 
pertinent source. In addition to these fundamental works, 
the reference section contains a selected list of related 
papers that have been the most helpful to me. 



F 

F 
X 

F 
y 

f 

g(w 
0 

- w ) 
0 

y(wl) 

K 

kA 

~ 
k 

X 

k 
y 

N 

No 

Q 

S, 

a. 
J 

-x-

SUMMARY OF FREQUENTLY USED SYMBOLS 

feeding matrix (45) or vector (77) 

constant feeding rate into lower level 

constant feeding rate into upper .level 

allowedness or transition dipole moment factor 0 ~ f ~ 1 

inhomogeneous distribution function centered at an average 

frequency, w 
0 

inhomogeneous driving field distribution function 

decay matrix (43) 
k + k 

average of decay constants 
X y 

2 
k - k 

difference of decay constants --=.:x~2-Y"-
decay rate constant from lower level 

decay rate constant from upper level 

total population r + r 
y X 

total population in absence of a driving field under 

steady-state conditions r 0 + r 0 

y X 

total population in presence of a driving field under· 
' s s steady-state conditions r + r 

. y X 

non-unitary "evolution operator" (49) and (51) 

j = 1,2,3,x,y vector model components (4), (7), (50) 

components in absence of a driving field under steady-state 

conditions (54) or (73) 

initial value of components 

components in presence of a driving field under steady­

state conditions (56) or (73) 

time evolution operator (20) in absence of relaxation 

j = 1,2,3 Pauli spin matricies (8) 

.. 
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T effective transverse relaxation time (73) 

T effective transverse relaxation time (73) 
e 

T 
X 

spin-lattice relaxation time for lower to upper level transition 

T spin-lattice relaxation time for upper to lower level transition 
y 

totai spin-lattice relaxation time (71) 

r
2 

homogeneous relaxation time 

T
2
e homogeneous relaxation time along applied field direction 

* T2 inhomogeneous relaxation time 

t
1 

effective relaxation time (55) 

t 2 effective relaxation time (55) 

T effective relaxation time (73) 

U rotating frame unitary operator (15), (91) 

w driving field frequency 

w hw = energy level splitting in two-level system 
0 0 

driving field amplitude 

-w ' 2 2 w1 + 6w (21) nutation frequency 

w central frequency of inhomogeneous line 
0 

6w w - w off-resonance'frequency 
0 

6w w - w off-resonance frequency for inhomogeneous line 
0 
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I. INTRODUCTION 

A. Introductory Remarks 

This work resulted and grew largely from a desire by the author to 

find a·rigorous and fundamental mathematical description for the optical 

detection of magnetic resonance in zero field, particularly as it applies 

to the effects of feeding and decay in the presence of a coherent driving 

field. As new experiments and techniques were being developed to measure 

coherence in the excited states of molecular crystals, it became quite 

apparent that the well-known formalism of-conventional magnetic reso-

nance coherence experiments had limited applicability to the excited 

state problem, owing to the fact that the total population is not con-

served in such a situation. Investigation resulted in a problem that 

deals with the basic nature of a two level system, and rediscovery of the 

fascinating link between magnetic resonance, optical spectroscopy, and 

maser systems that evolves from such a study has been most rewarding. 

The aim of the formal development presented in the following chapters 

is not to concoct "high-powered" mathematical solutions to a very general 

problem. The models and resulting expressions are purposefully kept as 

simple as possible,-in the hope that the physics of the problem is never 

hidden in complicated equations. The state of experimental development 

in this field has just begun to evolve, and at this stage it is far more 

important to gain a semiquantitative understanding of basic effects before 

an attempt is made to "fit" a given set of data to a realistic mathemati-

cal model. In this way the full range of experimental possibilities may 

be realized by utilizing a basic and easily visualized theory that has 

sufficient mathematical rigor to set the principles firmly. Much of the 
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material presented here is a collection of facts, each of which may be 

'well-knoWn in some specific field, but they .are riot necessarily well-

known by all. These-formalisms are presented in order to convince both 

the reader and the author that they may indeed be·carried over from their 

respective fields, and, with the proper considerations and additions, 

form a reasonable description of observed experimental data. 

The author has endeavored to include within the formalism all the 

basic quantum mechanics that is relevent to the problem, and this effort 

.. would therefore be considered successful if any observed deviations from 

the ideal expressions presented here actually contain information relat-

ing to the molecular dynamics or excited state structure of a particular 

system, and are not simply trivial oversights dealing with results that 

are characteristic of all two-level systems. In addition, it is hoped 

that some of the new viewpoints presented here, such as the probe pulse 

method, will in turn prove to be useful and lend additional insight to 

the fields from which the basics were taken. 

B. Historical Context 

The first double resonance experiments measured changes in Zeeman 

level populations induced by radio frequency fields by monitoring the 

1 2 fluorescence emission from these levels. ' The method, which was ori-

ginally done for gas phase atomic systems, was adapted to inorganic sol­

ids by Geschwind et al., 3 ' 4 and was applied considerably later to triplet 

5 6 state molecular solids. ' This delay was perhaps due largely to the 

fact that conventional EPR of excited triplet state organic solids re-

mained an elusive problem until it was firmly established by Hutchison 
• 

7 8 and Mangum in 1961. ' Immediately following the high field double 

1/ 
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resonance experiments, optically detected magnetic resonance (ODMR) was 

9 observed in zero field. Following these preliminary experiments, a 

profusion of techniques related to zero field ODMR appeared, the major 

10 contributions being phosphorescence-microwave double resonance (PMDR), 

and the optical detection of E~OR11 and EEDOR. 12 The relavent 
I 

Hamiltonians that contribute to the hyperfine structure of the triplet 

state energy levels were elucidated as fast as the experimental techni~ 

ques were developed, and are now very well documented in a number of re­

view articles13~lS and books. 16~lB 

It became rapidly apparent that ODMR could provide a vast wealth of 

information dealing with the excited state that was unattainable by other 

methods. Since optical frequency photons are used to monitor the 

4 resonance, the sensitivity can be increased by a factor of 10 over con-

ventional methods of detection. In addition excited states whose life-

times were far too short for conventional detection could easily be moni-

tored by double resonance techniques. 

The triplet states of organic molecules are nondegenerate in zero 

field owing to the anisotropic distribution of electron spin density and 

the dipolar interaction between the electrons. This fact has opened. 

equally wide vistas for the investigation of organic excited states 

through the use of zero field ODMR. This field has the following advan-

tages. 

1.) Optical detection allows @Jle to eliminate the application 

of an external field. 13 The increased splitting of 

the triplet state levels is negligible compared to op-

tical frequencies and affords no increase in sensitivity. 



-4-

In fact, an external field becomes a hinderance since it 

tends to broaden EPR lines, increase spin-lattice 

relaxation, and decrease the natural spin alignment 

that occurs in zero field. In zero field the system 

is left to itself and the resulting measurements that 

are obtained reflect more directly the actual proper-

ties of the molecule. 

2.) Magnetic resonance may be done on randomly oriented 

molecules13 since the transition moment of the micro-

wave transition merely "takes the projection" of the 

magnetic component of the oscillating microwave field. 

The triplet state splittings are determined intrinsi-

cally and do not depend on the orientation of the 

molecule. 

3.) At sufficiently low temperatures sensitivity is 

enhanced even further by the fact that most organic 

molecules possess "preferential" or unequal popula-

ting mechanisms to the triplet state spin sublevels 

that may result in highly non-Boltzman population 

distributions. 19 

All the above features make zero field ODMR a particularly unique tool, 

and studies that have utilized this technique have revealed such diverse 

13 15 phenomena ' as zero field splittings, internal and external hyperfine 

interactions, excited and ground state nuclear quadrapole coupling con-

stants, relative radiative, non-radiative, and intersystem crossing rates, 

steady-state re~ative populations, individual triplet spin sublevel life-
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times, energy migration and trapping times, symmetry assignments for 

excited states and vibronic progressions, energy level anticrossing, and 

can be used to measure subtle effects related to radiationless relaxa-

20 tion theory. 

Despite the rapid advance of ;this field as outlined above, one major 

aspect of magnetic resonance was lacking in zero-field ODMR, namely co-

herence experiments. This situation existed simply because the standard 

experiments such as a spin echo could not be monitored directly with the 

double resonance technique. The first ramifi~ations of coherent coupling 

21 in triplet states were considered by Harris and optically detected 

transient nutations were observed subsequently. 22 Schmidt23 observed the 

first spin echo in the excited triplet state by conventional techniques. In 

1973 a new methoJ4; 1br observing coherence by means of the double resonance 

technique was developed and provided a means to introduce the highly in-

formative field of relaxation measurements to zero-field ODMR. It was at 

this point that explicit expressions were required to help formulate a 

working model that could deal with the effects of feeding and decay on a 

coherently driven excited state system, and provided a basis for the work 

presented in this thesis. 

C. Basis for the Treatment 

The rigid restrictions placed on the interaction of light with matter 

by the resonance condition allows one in many cases to treat a complicated 

spectroscopy problem as the_ superposition of responses from a large number 

of two-level systems having different properties. This situation is par-

ticularly advantageous for a number of reasons. First, the time evolution 

of a two-level system may be solved exactly for all strengths of the 



-6-

driving field, and the s'tandard textbook approach utilizing first order 

perturbation theory follows as a special case of very low driving-field 

strength. Second, the exact time evolution of the two-level system may 

be easily visualized in terms of a three dimensional vector that pre­

cesses about a well defined direction that is determined by the conditions 

of the experiment. This feature is perhaps the most important since the 

experimentalist may invent a sophisticated pulse sequence that requires 

a rather formidable set of analytical expressions to describe, but none­

theless, the sequence can be easilyvisualized by "wagging his fingers" 

according to the geometrical picture. Third, the applicability of the 

formalism is perfectly general for practically all regions of the electro­

magnetic spectrum and provides a satisfying linf between magnetic reso­

nance, in which coherence effects have been observed since its beginnings, 

and theoptical region where a rich variety of coherence effects have only 

begun to be observed. 

By assuming only that the triplet state can be made insensitive to 

the effects of spin-lattice relaxation, one may neglect the "odd" level 

and treat the problem as a two-level system. The formalism presented in 

Chapters II, III, and IV assumes this condition from the outset. The 

solutions are applicable to all regions of the spectrum, although care 

must be exercised when applying the results to the optical region, as 

will be discussed. 

The development is arranged in order of increasing complexity, 

partially for pedagogical reasons and also to present a series·of solu­

tions, the simplest one of which may then be appropriately applied to a 

specific problem. Chapter II treats the coherently driven two-level 
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system in the absence of relaxation. Chapter III presents a new method 

for monitoring coherence by means of a double resonance experiment and 

demonstrates the near equ;tvalence between the new and conventional methods. 

The effects of feeding and decay are considered in Chapter IV, and, with 

the addition of relaxation, complete solutions are obtained for both 

steady-state and transients. Chapter V deals with the specific applica-

tions of these results to zero-field ODMR experiments and a detailed 

account is given of the experimental methods and apparatus that are uti-

lized to perform coherence experiments on zero-field excited triplet 

states. 
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II. BASIC THEORY 

This chapter deals with the basic considerations of coherent 

coupling between two well defined eigenstates in the absence of relaxation 

or lifetime considerations. Although the problem is easily soluble by a 

• 25· 26 direct Schrodinger equation approach, a dens~ty matrix ' solution will 

be presented here in order to lay a foundation for ~he more complicated 

treatments to follow. In addition, the density matrix provides the most 

direct link between mathematical formalism and the geometrical picture. 

This particular problem has been solved since the beginnings of quantum 

theory, but since it forms the base of what is to follow, the formalism 

will be presented again in an approach that represents contemporary con-

cepts of a two-level system. 

The equations developed in Chapters II-IV apply to an ensemble of a 
I 

large number of weakly interacting two-level systems. A semiclassical 

approach is taken for the driving field which implies that the field is 

not quantized, and it is assumed that the wavelength of the radiation is 

large compared to the size of each two-level system, allowing the usual 

dipole approximation to be used. Furthermore, the wavelength of the ra-

diation is assumed at first to be large compared to the entire ensemble, 

allowing the spatial effects of the driving field to be ignored. 

These spatial effects will be dealt with at the end of Chapter IV. 

Finally, fields that are produced by the ensemble itself are assumed to 

be negligible compared to the driving field strength. All these approxi-

mations are quite valid, except the last, which must be assumed in order 

to avoid the inclusion of a complicated set of non-linear coupled 

Schrodinger and Maxwell equations that are generally insoluable. This 
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inclusion not only complicates the situation beyond intuition, but also 

deals with a problem that is quite removed from the original purpose of 

this work, and the treatment given here will thus be restricted to "thin 

samples". 

A. Coherent Coupling and the Geometrical Representation 

Consider an ensemble of two-level systems characterized by. the non­

degenerate states ly) and lx>, with Eigenv~lues hw
0

/2 and- hw0 /2, res­

pectively-that result from a time independent Hamiltonian X0 • At time 

t=o the entire ensemble is subjected to the ·same perturbation, V(t), and 

. 25 26 the density matrix ' will evolve in time according to the relation 

(The use of primed notation is necessary for the next section). 

iJl p 1 
( t) '= [ 3f

0 
+ V ( t), p 

1 
( t)] (1) 

If the ensemble consists of N independent systems all experiencing the 

' same V(t), the ensemble average that is implied for p (t) becomes a 

trivial multiplicative factor, N/N, and E~(l) reduces to the equatio~ of 

motion for a single two-level system. If this situation can be made to 

occur, V(t) couples the two levels coherently. Experimentally one needs 

only to apply a perturbation of sufficient strength (compared to the 

interactions coupling the individual members of the ensemble) in order to 

observe the manifestations of coherent coupling. 

For a single system the density matrix is just the projection 

operator for the state at timet, tt>. In terms of the usual time-depen-

dent coefficients, the state It> is given by 

It) = YIY> + xlx> (2) 

so that in the y-x basis an explicit form for the density matrix is given 

by 
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=[
yy* 

p'<t> = It>< tl 
xy* 

(3) 

The geometrical interpretation of Eq(l) was first introduced by 

27 Feynman, Vernon, and Hellwarth (FVH). A vector may be constructed from 

linear combinations of the time-dependent coefficients 

r 1 = yx* + xy* . 

r 2 = i(yx* - xy*) 

r 3 = yy* - xx* 

+ 
and, in terms of the vector r, Eq(l) takes the form 

where the components of Q are given by 

n1 = (Vyx + vxy)/h 

Q2 = (Vyx - Vxy)/h 

(4) 

(5) 

(6) 

The particular forms for Eqs(4) may be justified by a result from 

28 group theory. Since the vector rotation group has a two dimensional 

irreducible representation, it follows that a three dimensional vector 

may be represented by a two dimensional matrix. One choice is the well-

known vector identity for any 2X 2 matrix,p, 

p = 1/2(1 + -;.(h = 1/2 [1 + r3 rl - ir2] 
r 1 + ir2 1 - r 3 

+ 

(7) 

Where I is the identity matrix and a is the Pauli spin matrix vector with 

components 

=(~ !) crl 

az =(~ ~i) (8) 

a3 =(~ ~1) 

• 
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Note that Eq (7) is consistent with Eqs (3) and (4). 

' By representing p (t) as the matrix pin Eq(7), the total Hamiltonian 

' 'JC = 'JC + V(t) 
0 

Eq(5) follows. 

as hn·~/2, and from Eq(l) and the identity 

[n·~. ;;~] = 2i(n x ;>·~ 

I . f F ' i 1 . h h d · t · 25 n terms o ano s operat ona approac to t e ens~ty ma r~x, 

Eq(7) describes the density matrix as a minimum information term, I/2, 

(9) 

plus three matricies whose expectation values provide a simple geometrical 

interpretation of the equation of motion. _These three parameters serve to 

completely describe the system. 

The true value of the geometrical representation lies in the simply 

visualized equation of motion for r described in Eq(S) as a precession 

of the r-vector about a direction defined by S1. The fact that Eq(S) is 

identical in form to the torque equation of magnetic resonance29 is, of 

course, not a coincidence since the Zeeman spin 1/2 system is a special 

case of ·this general treatment. This similarity in form allows one to 

visualize experiments based on magnetic resonance analogies that would 

not be readily apparent from a straightforward density matrix or 

.. 30 31 
Scbrodinger equatio~ approach, the "photon echo" experiment ' perhaps 

being the best example of such an extension. The experiments described 

in the following chapters are all based on this concept. 

B. Rotating Frame Transformation 

By far the most common form of perturbation term V(t) that is used 

to couple the two levels in question is a linearly polarized electromag-· 

netic field given in general by (semiclassical approximation) 

V(t) = h w1 ~ cos(oot + ¢) (10) 
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where wl is proportional to the strength of the applied field, ~·is the 

quantum mechanical operator that contains off-diagonal elements in the 

y-x basis and is·usually related to an electric or magnetic dipole trans-

ition, w is the frequency of the driv.irtg field, and <I> is the phase of the 

applied field. Without loss of generality ~ may be considered to have 

real matrix elements (complex matrix elements cause only a trivial phase J 

shift) and one may thus either incorpo.rate the "allowedness" of the trans-

ition into w1 or leave it in an explicit form fw1 , 0~ f~ 1, and set ~ = o1 

(Eq (8)). .The "f value" becomes an important consideration when one is 

attempting to coherently couple a multiplet structure that contains lines 

of different allowedness, or f values, as is often the case in excited 

triplet states. 

If w is near the resonance frequency, w
0

, only one circularly 

32 33 polarized component of V(t) is important, ' resulting in a total 

Hamiltonian X'given by 

The 

JC' = J£'
0 

+ V(t) 

-iOJ(Wt + <f>) 
2 

icr3 (wt + cj>) 

2 
JC' ""' hw0 03 + hfw1 e 

- 2 2 

second term in Eq(l2) comes from the rotating field approximation 

(

0 1 . ~2 
w1 cr1 cos(wt + <f>) ~ w1 T c~s(wt + <f>) + T sin(wt + <f>) 

ignore: ~ ~ ' · + 2 cos(wt + <I>) - T sin(wt + <f>)/ 

and the exponential operator identity 

(11) 

(12) 

(13) 

-icr3 (wt + <f>) 

~l (cr1 cos(wt + <I>) + cr2 sin(wt + <t>>) = ~ e 2 

io
3

(wt + ¢) 

o1 e 2 (14) 

... 
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The time-dependent terms in Eq(l2) make the solution of Eq(l) 

difficult, but this problem may be eliminated by a suitable unitary trans-

formation that looks very much like the' interaction picture. Let U be 

given by 
·(-iWJC t ). -icr3wt 

u = exp tiw: ·. = e 2 
(15) 

and define a transformed density matrix 

p(t) = u-1 p'(t) u (16) 

This transformed matrix obeys an equation of motion similar to Eq(l) 

ilq)(t) = [JC, p(t)] (17) 

Except that K is a time independent Hamiltonian given by 

(18) 

The Hamilto'nian in Eq (18) is time-independent for any value of the 

' driving field frequency, w, and reduces to the interaction picture for 

"on-resonance" experiments, w=w0 • The unitary transformation given by 

34 Eq(l6) amounts to transforming to a rotating-frame coordinate system 

that is ~otating about the r 3 axis with a frequency w. This may be 

verified by performing the indicated transformation on generic components 

of p'(t) and noting that the result is the same as if a 3X3 rotation ma-

-+ 
trix were applied to the components of r. From analogy to magnetic re-

sonance, it should prove much more convenient to remain in the rotating 

frame, bearing in mind that stationary in-plane components r1·and r2 in 

the rotating frame correspond to rotating components in the lab frame. 

Since the in-plane components generally represent the expectation value 

of a macroscopic dipole moment, stationary components in the rotating frame 
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correspond to the amplitude of the signal that could be generated by such 

oscillating moments. 

Since 3C in Eq(l8) is time independent the solution to Eq(l7) is 

obtained from a simple unitary transformation 

(19) 

Where p(o) is. the initial value of the density matrix in the rotating 

frame. The time evolution operator 

-1 S = exp(-i3Ct/h) 

is given explicitly by 

wt i~w wt 
cos-r - iii sinz 

--ifw1 -icf> i .wt w e s n T 

-ifWl icf> Wt w e siu-r 
wt i~w i wt 

cos-r + iii s n T 

where the.following definitions have been used 

~w=w -w 
0 

- (f2 2 + A 2)1/2 W = Wl uW . 

(20a) 

(20b) 

(21) 

Eq(l9) may be used to calculate the time evolution of the density 

matrix, or, equivalently, the r-vector for any series of imposed condi-

tions (1,2,3 •.• n) by constructing an appropriateS-matrix for each con~ 

dition and performing successive unitary transformations. It is useful 

to expand Eq(l9) in terms of the r-vector components. Since the phase, 

cp, serves only to determine about what relative direction in the r 1-r2 

plane the r-vector will precess it is simpler to set <P=O in the equations 

of motion and to include phase shifts in the applied field by first rota-

ting the initial value in-plane coordinates through an angle <P, i.e. a 

J 
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{ 
0 

90° phase shift results in r 1 (o)+r2 (o) and r 2 (o)+-r
1

(o). In this way 

the r vector always precesses about some direction in the r
1
-r

3 
plane. 

With these considerations, the r-vectdr components are given, in terms 

of the initial values r 1 (o), r 2 (o), r
3

(o) by 

C. Manifestations of Coherent Coupling 

An important special case of Eq(22) is the following. Before the 

application of the perturbation, V(t), the ensemble is assumed to be 

incoherent, and therefore r 1 (o) ·= r
2

(o) = 0. r
3

(o) corresponds to the 

initial population difference between the IY> and lx> levels. Under these 

conditions Eq(22) simplifies considerably. 

fw1t:.w -= r 3 (o) -- --[1-coswt] 
-2 w 

fw1 -= -r3 (o) _ sinwt 
w 

1 2 2 2 -= r
3

(o) _2 [b.w + f w1coswt] 
w 

(23) 

Eq(23),which corresponds to the "transient nutation," 35 represents the 

simplest form of coherent coupling and is therefore the easiest experiment 

to perform in order to determine whether the applied field is able to 

dominate relaxation terms. In general, all three components undergo 

sinusoidal oscillations reflecting the highly non-linear response of the 

system to the applied· field. Figures 1 and 2 give the response, r
3
(t), as 
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a function of time and of frequency. It is important to note that the 

response of the system as a function of /1w is not simply the "frequency 

domain" response to a "time domain" impulse as would be predicted from 

linear response theory. The dramatic difference between the two pre-

dictions is illustrated in Fig. 3, which is the frequency response from 

a o function spectral line, centered at w , under the influence of a 
0 

short pulse applied at a frequency w with strength w1 • If the system 

were to respond to the various Fourier components of a pulse as the 

applied field was swept slowly through resonance, the waveform (a) would 

be observed, independent of the magnitude of w1 • Curve (b) illustrates, 

r 3 (t) for a pulse where w1t = n. Doubling the pulse time yields curve (c) 

for a linear response, and curve (d) for the true coherent coupling res-

ponse. The "hole" in' curve (d) at w
0 

results from the fact that w1t = 2n 

resulting in a complete rotation of the r-vector. Experimental results 

that very closely follow this type of behavior are given in Ref. 16. The 

analytical expressions for (a) and (c) are obtained by assuming that the 

o function line yields an absorption signal that is proportional to the 

power (i.e. w y) of the Fourier component of the pulse whose frequency 

matches the resonance condition, w(Fourier) = w . Thus, as the frequency 
0 

of the applied field is swept through resonance, the o function response 

will effectively "map-out" the square of the frequency Fourier transform 

of the pulse shape, f(t). Explicitly, if f(t) is a simple square wave 

modulation lasting a time t, the frequency response of the o function 

1,/ 
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t =0.1 
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I\ / 
I \ / 
I \ 
I \ t=o.2 
I \ 
I \ 

-20 0 
ll w (Hz) 

w1 =I 0,. = 5 Hz 
XBL 755-6296 

Fig. 3. Comparison of the true nonlinear response, b and d, with a 
linear response a and c. Curve c has been scaled down by a 
factor of eight for comparison with d. a and b were purposely 
chosen to be as similar as possible, but in general the non­
linear response bears no resemblance to the linear response 
except for very short times or low power. 
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line will be proportional to 

' ' '[ 00 ]2 '[ t/2 F(w')o:: j e -iw't'f(t')dt' = J -iw t 
e 

-00 -t/2 

2 2 2 ' , · f w1sin (w-w ) t/2 
F ( w )a: --=----:---:--­

(w-w')2 

iwt' 
fw1 e 

2 

and changing variables to correspond to the previously defined term 

~w=w-w 
0 

2 2 
sin2 ~wt/2 

F(~w) et: f w1 Z 
~w 

(24) 

(25) 

Eq(25) is identical to the waveform that would result if first order time 

dependent perturbation theory were used to solve Eq(l7). The assumptions 

that must be used to obtain Eq(25) from perturbation theory are 

w1t<<l, x(o)=O, y(o)=l, and Eq(25) is the probabiiity, P~y of a trans­

ition from the state I y> to the state l.x>. It is gratifying to note that 

this expression may also be obtained from Eq(23). Since P~Y 

1 x(o)=O,then P~y = 2(1-r3(t)) if r 3 (o) = 1. From Eq(23) 

1 -(1-r (t)) 2 . 3 

= xx* if 

(26) 

and Eq(25) results only if w1t<<l. The "hole" at w
0 

will of course not 

appear owing to the fact that the vector never approaches a single. revo-

lution. 
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III. THE PROBE PULSE METHOD 

In the following sections a new method for monitoring the loss of 

coherence in a two level system will be presented and applied to a number 

of experiments that have been developed by other workers in the field of 

magnetic resonance. Since the technique does not utilize the conventional 

"in-plane" components to monitor coherence, experimental difficulties 

associated with cavity overload or sensitivity problems may be solved in 

some cases by the use of this method, and, owing to the general applica-

bility of the approach, this method should prove valuable in a wide variety of 

fields that possess a "two-level" nature. In addition to being an alternative 

method for performing coherence experiments, this technique may prove to 

be the only method for many excited state systems in which the lifetimes 

of the levels are far too short to provide a sufficient number of spins 

for conventional detection and should prove most valuable in this respect. 

A. Description of the Method 

The geometrical picture is useful not only in terms of a simple 

visualization of the equation of motion for a two-level system, but also 

because it is strongly linked:'with the density matrix, the macroscopic 

observables associated with the ensemble are simply visualized in terms 

of r-vector components as well. It is just this link between a complete 

set of independent observables and the density matrix that led Fano to 

deduce in his "operator approach", that the formalism for a two 

level system may be extended to an n-level system in which the density 

matrix is expressed as a "multipole expansion" k.=O,l,2 •.• , in terms of 

th . 25 37 k rank tensorial operators. ' The elements of these tensors are 

given by special forms of the Clebsch-Gordon coefficients and thus 
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represent purely geometrical considerations, as in the two-level case. 

It is unfortunate that Fano's work; which was done before FVH in a more 

general form, has not received the attention that it deserves from workers 

in the fields of spectroscopy and laser physics. 

For a two-level system, the r.3 component is proportional to the 

difference in populations between the two levels and is also proportional 

the expectation value of X
0 

and ~ 3 • The expectation value of the total 

' Hamiltonian X is given by 

(27) 

The in-plane components r 1 and_r2 are proportional to the expectation 

value of a complex dipole moment (~),magnetic or electric, provided that 

dipolar coupling is used to perturb the system and are also related to · 

the expectation value of the quantum mechanical operator responsible for 

coupling the two levels, e.g. < Sz) &r2 for zero-field triplet states coupled 

by the spin operator Sz. In addition r 1a:<cr
1

> and r
2

c:X:<cr
2

>. The coherence infor­

mation represented by the off-diagonal terms in the density matrix [r1 and 

r 2 in Eq(7)] cannot be monitored directly by means of an observable that 

monitors r
3

• This situation is unfortunate in view of the large number 

of double resonance techniques that provide an enormous increase in sen-

sitivity for the experimenter, but attain this increase in sensitivity 

by virtue of the fact that they effectively monitor the energy level popu-

lations (r3). Thus, one is apparently faced with the dilemma that in 

order to increase sensitivity, one must relinquish those measurements 

of relaxation phenomena that are based on coherence effects. This problem 

is exemplified explicitly by Eq(23). Coherence may be introduced into 

I 
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the ensemble by the application of a 7T/2 pulse (w1t = 7T/2, 6.w 

this case the components take on the values 

r 1 (7T/2) = 0 

= -r (o) 
3 

= 0 

0). In 

. (28) 

The time evolution of the system after the 7T/2 pulse is obtained from 

Eq(22) for 6.w = w1 = 0, r 1 (o) = 0, r 2(o) = -r3(o), and r 3(o) = 0, and it 

is readily seen that the components retain the values given in Eq(28) un-

less some relaxation mechanism causes r 2 (7T/2,t) to decay. Since r
3

(7T/2,t) 

remains zero, which means that the energy levels appear to be equally 

populated, the decay of r 2 cannot be observed directly. This situation 

can be remedied, however, byapplying an additional 7T/2 pulse that rotates 

the coherent component into the r
3 

direction where the loss of coherence 

can then be monitored point-by-point in time. In terms of the components, 

the decay of the coherence is given by (assuming the standard exponential 

form) 

r 1 (7T/2,t) = 0 

-t/T = -r3 (o)e . 2 

The coherence may then be monitored at any time, t, by applying a 7T/2 

probe pulse, yielding from Eq(22) 

r 1 (7T/2,t,7T/2) = 0 

r 2(7T/2,t,7T/2) = 0 

r
3

(7T/2,t,7T/2) -t/T 
= -r3 (o)e 2 

(29) 

(30) 
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Eq (30) demonstrates' that .if very little decay in the coherence occurred 

during the time t, then the Tr/2 probe pulse will cause a population in-

version between I y) and I x'·.), and the observable (e.g. emission) that is used 

to monitor the energy level populations will show a corresponding change. 

On the other hand, if all the coherence in the ensemble has decayed at 

time t, r
2

('1T/2,t) = 0 and the probe pulse will not bring about any fur­

ther change in r
3

• The final value of r 3 would range from an inversion 

to saturation as the coherence decays, and the probe pulse would thus sample 

the coherence remaining in the ensemble in a well-defined quantitative 

fashion. A pictorial representation of the probe pulse method is given 

in Fig. 4. 

Before obtaining ~xpressions for some specific coherence experiments, 

a brief discussion of relaxation ·is appropriate in order to discuss real 

systems. 

B. Relaxation 

The effects of relaxation on an ensemble of two-level systems may be 

included in a s'imple phenomenological manner by including Bloch-type re­

laxation terms38 in the equation of motion for r. Expanding Eq(S) and 

adding the appropriate terms yields. 

rl = -~wr2 - rl/T2e 

r 2 = ~wr1 -fw1r 3 r 2/T2 (31) 

r 3 = fw1r 2 + (r~ r 3)/T1 

Eq(31) expresses the modified form of the Bloch equations that was sugges-

ted by Redfield39 in order to include the fact that "spin-spin" relaxation 

along the r 1 direction requires that work be done against the oscillating 

field. T2 e will thus be a function of w1 and could range from T2 to oo 
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Fig. 4. Optically detected free precession i;n excited triplet states: 
A diagrammatical representation of the time development of the 
interaction representation r vector and the laboratory frame spin 
sublevel populations. (a) For simplicity, consider· a case where 
intersystem crossing occurs only to the middle sublevel, and 
only emission from the lower sublevel is monitored. Before the 
application of microwaves coupling the lower two sublevels, the 
r vector points along the positive z axis. (b) A TI/2 pulse 
applied along the rotating frame x axis tips the r vector along y 
and the populations of the lower two sublevels are equalized. 
The phosphorescence intensity now corresponds·t:o saturation. 
(c), (d) With the microwaves off, .the in-plane y component decays 
to zero due to variations in local fields within the sample and 
homogeneous dephasing processes. The laboratory frame sublevel 
populations remain constant, however, so that the decay of the 

· coherence is not directly manifested as a change in phosphorescence. 
(eO), (el), (e2) The decay of .the coherence can be detected 
optically, however, by the application of an additional TI/2 pulse. 
This probe pulse, applied along x, tips the coherent component 
down along z, producing an additional change in the sublevel 
populations and consequently in the phosphorescence intensity. The 
phosphorescence change induced by the probe pulse is proportional 
to the coherence remaining in the ensemble at the time the probe 
pulse is applied. This is shown in (eO), (el), (e2), which 
demonstrate the behavior of the r vectors and the laboratory 
frame su~level populations when the·probe pulse is applied at times 
corresponding to (b), (c), and (d), respectively. The probe at t=O 
results in population irtversion [relative to (a)] but the probe at 
t=T", after complete decay of the coherence, produces no further 
change in population. 
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OPTICALLY DETECTED FREE PRECESSION IN EXCITED TRIPLET STATES 
(Relationship between the laboratory frame and the interaction representation) 
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as the magnitude of w1 is increased from 0 to 00 • 

Of course there is no a priori ·inference that justifies the 

extension of Eq(31), which was formulated to describe magnetic resonance 

phenomena, to the general case, but these. equations should at least form 

a basis for semiquantitative descriptions of real two level systems. 

Specific relaxation mechanisms in the form of randomly varying external 

fields may then be included in a proper density matrix treatment in order 

to explain quantitative deviations from the simple expressions, but for 

the purposes of discussion, Eq(31) is adequate for describing specific 

exper:iments that are designed to monitor relaxation. 

Complete solutions to Eq(31) will be included in the more general 

treatment of Chapter IV. However, several special cases are considered 

in the remaining sections of this chapter in order to illustrate the new 

method for measuring coherence and to ·demonstrate that the expressions 

obtained by monitoring energy level populations are identical in form to 

those obtained by measuring the in-plane components of the r vector as is 

done in conventional magnetic resonance spectroscopy. 

In order to discuss spin echoes it is necessary to introduce 

inhomogeneousrelaxation in the form of subensembles, each obeying Eq(31) 

but having a distribution of Larmor frequencies w that may be described 
0 

in terms of a normalized distribution function g(w -w ) that is centered 
0 0 

about an average Larmor frequency w . A great number of systems exhibit 
' 0 

a Lorentzian lineshape for g(w -w ), and since Lorentzian functions are 
' 0 0 

easier to integrate than Gaussian lineshapes, they will be used in this 

discussion to illustrate the examples. 
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C. On Resonance Transient Nutation 

For flw = 0 and the initial conditions r 1 (o) = r 2(o) = 0, Eq(31) may· 

be solved easily by Laplace transform ·techniques yielding 

(32). 

-l/2(1/T1+1/T2)t I( r
8
3 ) [r2(o) ~ ) r 3 {t) = e r 3 {o)- 2 2 cosat+ 2 l/T2-l/T1 + 

1 + f w1 T1T
2 

rs{l/T -1/2(1/T +1/T) ( 1 ).~sinatl+ r: 3 l l 2 l+f2w 2 T T a l+£2w 2 T T 
1 1 2 1 1 2 

l2 2 . 2\1/2 
where a = \f w1 - 1/4 {l/T1 + l/T2) / 

Often T
2 

is very much shorter than T1 , and Eq(32) simplifies considerably 

in the limit T1-+ co 

2 2 where a = (f wl 

r {t) = 0 1 

fw
1 

~t 

r 2(t) = -r3{o)-a- ~ 2T2 sin6t 

r
3

{t) = r
3

(o) 

- l/4T 2 )1/2 
2 

.:.t( 1 ' e 2T2 \cos6t + 2aT
2 

·· sin61 

(33) 

2 In the limit of strong coherent coupling, (fw1T
2

) >>1, Eq(33) reduces 

to the form 

r 1 (t) = 0 
-t -· 2T 

• -r {o) e 2 
3 

(34) 
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For sufficiently high power and short times Eq(34) reduces to Eq(23) 

(6w = 0). 

1. Inhomogeneous Driving Field 

Equation (34) represents the waveforms that would be expected from 

an ensemble of interacting two-level systems under the influence of a 

strong, homogeneous resonant field, .where spin-lattice relaxation may be 

neglected. For an inhomogeneous resonant field, the transient nutation 

will die away faster ow::i.ng to the fact that a range of nutation frequen-

cies are suimned to produce the signal. This may be expressed as the inte-

gral 
00 

<ri> = ~Y(w1 ) ri(tlfw1)dw1 
0 

i =1,2,3 (35) 

Where the parametric dependence of ri(t) on the oscillating field 

strength has been indicated in the integrand. The distribution function 

y(w
1

) will be strongly dependent on actual experimental conditions and 

in general will be complicated and incalculable. Thus the transient nu-

tation experiment is not particularly useful for relaxation measurements, 

but it is essential for verifying strong coherent coupling and for deter-

mining the times of ~/2, ~, etc. pulses in order to set up other pulse 

sequences. 

2. Allowedness or f value considerations 

It is important to note that the nutation frequency in the strong 

coherent coupling limit, Eq(34), is determined by the product fw1 . Thus 

if two closely spaced spectral lines having different f values are driven 

by the field, the transient nutation signal will be the sum of two fre-

quencies, w1f 1 and w1f 2 , and will exhibit a characteristic "beat" pattern 
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that depends not only on the f values but also on the relative number of 

systems that contribute to each line. This "allowedness" consideration, 

which is not encountered in nuclear magnetic resonance, becomes a problem 

in specific applications to zero-field optically detected magnetic reso-

nance as will be shown in Chapter V. 

3. Orientation Effects 

One particular form of Eq(35) merits additional attention and arises 

from the possible polarized nature of the coupling matrix elements from 

the perturbation V(t) given by Eq(lO). If a homogeneous linearly polari-

zed driving field is applied to an ensemble of molecules whose transition 

moments are polarized along a certain direction of the molecular coordi-

nates, <ri> will reflect the actual spatial orientation of the molecules 

and is therefore not as trivial as the inhomogeneous y(w1) discussed 

earlier. Again this problem does not occur in conventional magnetic reso-

nance, for in this case the static high field serves to effectively define 

a polarization direction independent of the actual orientation of the 

molecules. Thus in zero-field optical or microwave experiments, the tran-

sient nutation will reflect a combination of driving field inhomogeneity, 

multiplet f values, and molecular orientation with respect to the direc-

tion of the driving field. In principle, inhomogeneity may be eliminated 

by better instrument des:fgn, and the orientational effects and multiplet · 

f values are calculable, but all three effects can complicate analysis 

under specific applications. 

It is worthwhile to consider one specific orientational effect that 

arises from .the response of a randomly oriented array of molecules to a 

homogeneous linearly polarized driving field. Each molecule is assumed 

; . 

. ' 
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to have a polarization direction defined in terms of the molecular axis 

system. This particular situation corresponds to many physically realiz-

able situations such as gases, liquids, polycrystaline solids, and guest 

molecules in a rigid glass matrix. All these examples display random 

orientation, and if they are not placed in some static external field, the 

strength of the driving field at each molecule will be determined by the 

local projection of the linearly polarized driving field on the molecular 

transition moment direction. The projection onto the transition moment 

is given in terms of the angle 8 
0 

wl =lwl cos8l (36) 

0 

where w
1 

is the strength of the homogeneous driving field. We consider the 
!_ ·' 

simplest form of on-resonance transient nutation in the absence of relaxa-

tion, Eq(23) !Y.w = 0, where r
3
(t) is a cosine function~ Equation (36) 

0 

implies that the range of integration is from zero to w
1 

as 8 ranges from 

TT/2 to zero. ·since the driving field is assumed to be homogeneous, the 

distribution function y(wl) is constant over the range of integration and 
0 

is given simply by the normalization constant l/w
1

. Equation (35) then 

becomes the simple relation 0 

wl 

j( cos(w1t)dw1 = 

0 

0 

sin w
1

t 
r3(o) o (37) 

w1 t 

Comparison of Eq(37) and Eq(23) is given in Fig. 5. Note that since the 
0 

nutation freq~encies range from zero to w1 , it is meaningless to talk 

about TT/2 pulses, etc in an ensemble of randomly oriented molecules in 

zero field, and coherence experiments are severely limited in this situa-

·tion. 
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Under ideal conditions, i.e. minimum driving field inhomogeneity, 

a single strong (f=l) transition, and sufficiently long relaxation times, 

the intermolecular angular correlation function for a distribution of 

molecules with well aefined polarized transition moments could be obtained 

from the Fourier transform of a series of <ri> and Eq(36). Since the 

transient nutation may be obtained on rather rapid time scales. this fea-

ture could be used to monitor angular reorientations of intrinsic or 

."tagged" molecular systems to study low temperature phase transitions or 

possibly reorientations of liquid crystal systems. Zero field PMDR tech-

niques may be particularly useful in this respect, owing to the very 

narrow EPR transitions that may be obtained from very broad optical lines, 

indicating that this type of experiment could be performed at elevated 

(>4°K) temperatures as well. 

Another specific application of Eq(35) to an orientations! situation 

is given in Chapter V in which the crystal structure of a molecular solid 

is used to predict the possible transient nutation waveforms resulting 

from the application of a linearly polarized driving field. 

D. Free Induction Decay 

The conventional sequence for a free induction decay consists of a 

single high-power n/2 pulse. Following the pulse, the r 1 and r 2 compo­

nents will decay as the individual isochromats in the distribution 

g(w -w) fan out in the rotating frame plane (see Fig. 4). The behavior 
0 0 

of the system is obtained from the time evolution operator S = S(w1t=n/2)ST 

Eq(20), where S denotes free precession for a time period T. Equation 
T 

(19) and integration over the lineshape yields 
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co 

rl = r 3 (o) J g(w
0 
-w

0
) sin(w -w)T dw 

0 0 
-co (38) 

co 

r = r 3 (o) J g(wo -Wo) cos(w -w)T dw 2 0 0 
·-co 

and for a LorentZ lineshape function, the conventional experiment 

measures the signal 

(39) 

* where r
2 

is the inhomogeneous relaxation time associated with the Lorentz 

lineshape 

g(w -W ) = 
0 0 

r* 
2 

- 2 *2) Tr(l+(w -w ) r 2 0 0 

The probe pulse method uses an additional Tr/2 pulse giving 

(40) 

S = S(w
1

t = 'IT/2) STS(w
1

t='IT/2) and, after integration, yields an expression 

identical to Eq(39) for r 3 • 

E. Spin Echo 

The conventional echo 40141 has S=S(n/2)STS(n)ST' yielding 

' ' T+T T-T 

r
2 

= r
3

(o)e T2 e T~ cos(w
0
-w)(T-T') (41). 

and the probe pulse has S = S('IT/2)S S(Tr)S •S(n/2) 
T T 

giving rise to an identical expression for r 3• In a similar fashion, 

i 1 ki 42,43 c p 11 41 d . h i h sp n oc. ng, arr- urce sequences, an ot er exper ments t at 

have been designed to measure various forms of relaxation in magnetic 

resonance can be applied to a two level system and monitored not only by 

an observable related to r 1 and r 2, but also by an observable related to 

r 3 by use of the probe pulse method. The expressions are the same. 
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F. Fourier Transform Spectroscopy 

The free induction decay, or equivalently, the echo shape is the 

cosine Fourier transform of the frequency distribution function, 'lf..w -w ) , 
. . 0 0 

Eq(38). One would therefore expect that Fourier transform spectroscopy 

(FTS) 44 would be feasible with the probe pulse method. In conventional 

NMR, FTS has many advantages over the spectral sweep method and has de­

veloped int~ a powerful technique for obtaining spectra. However, there 

are several fundamental problems which prevent advantageous use of FTS 

with the probe pulse method. The first problem lies in the method itself. 

Since the loss of coherence must be monitored point~by-point in time; a 

single pulse no longer suffices to take the entire spectrum. The probe 

pulse effectively monitors only a single point in the time domain which 

corresponds to only a single point in the frequency domain. This· implies 

that there is no theoretical advantage in FTS over the normal spectral 

sweep technique when the probe pulse is required. The "allowedness" of 

individual lines within a multiplet also becomes of critical importance 

in FTS, for, even under ideal conditions, a ~/2 pulse for a f=l transition 

will result in only a ~/4 pulse for a f=.5 transition. For similar rea-

sons, the relative spatial orientation considerations discussed earlier 
0 

will effect the nutation angle for a given applied field strength w1 , and 

both these factors will lead to large intensity errors in the spectrum. 

These problems, coupled with the fact that many two-level systems have 

inhomogeneous broadening or multiplet splitting that is the same order of 

magnitude as the maximum size.of w1 that can be generated experimentally, 

makes FTS a rather special kind of experiment and is limited to situa-

tions similar to that of NMR where multiplets are closely spaced relative 
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to w
1

, f=l for all transitions, and where there are no orientational 

·effects present. Since double resonance experiments are usual-ly much 

more sensitive than conventional detection, a spectral sweep while moni­

toring r 3 will be the most sensitive method for obtaining a sp.ectrum ex­

cept in those special cases in which FTS is particularly suitable. 
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IV. TWO LEVEL SYSTEM WITH FEEDING AND DECAY 

The basic formalism described in Chapters II and III serves to 

adequately describe a ground-state system in which the total population 

in the two levels remains constant, or could he applied to an excited 

state situation in which the experiment takes place on a time scale that 

is much shorter than. the lifetimes of the states themselves. However, 

if a general description for any two-level system is desired, the forma-

lism must include the possibility that each state. in the two-level system 

is capable of decay to a state outside the range ofconsideration and 

must also account for some mechanism that populates the states. By doing 

this, experiments that involve excited states, optical pumping, induced 

processes such as chemically induced nuclear and electron spin polariza­

tion,45•46 and Stark shift optical coherence47 may be treated for all 

time scales. By confining the problem to a reasonably simple fonil, exact 

solutions are possible that still reflect the important aspects of feed-

ing and decay under the influence of a coherent driving field. 

The theoretical development is broken into two parts, similar to the 

treatment of Chapters II and III. First a model system is established and 

easily.manageable solutions are obtained in the absence of relaxation. 

Second, relaxation is added in a manner similar to that in Chapter III 

and complete exact expressions are obtained for both the transient and 

steady-state behavior. Although these expressions embody all the equa-

tions·of previous chapters as special cases, the complete solutions are 

unwieldly enough to require a computer program, and it is the author '·s 

opinion that the simple vector picture discussed in Chapters II, III and 

the first part of IV will ultimately prove most useful in conceptualizing 
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any new experiment and, for this reason, justifies their inclusion. 

This particular problem has not been treated before. Perhaps· the 

48 closest approach is that due to Icsevgi and Lamb, but they considered 

a far more complex problem including the contribution of the ensemble to 

the total field and did not discuss the specific effects of feeding and 

decay on a coherently driven system. Similar approaches have been made 

by many other workers in 1 aser physics, 49 but since they all include the 

effects of the ensemble field or a resonant cavity, their results are too 

complicated to apply to excited state coherence experiments, and no gen-

eral closed form solutions exist. Early work in gas phase double reso-

50 nance experiments also considered ·the problem of feeding and decay, but 

no allowances were made to include separate decay channels from the ex-

cited state levels, andusually T2 was set equal to T1 • It is hoped that 

the solutions presented here will help the reader to follow the elegant 

treatments of Refs. 48, 58, 61 and 62 in the context of the geometrical 

model. 

A. Model System 

In order to discuss the role that feeding and decay play in the 

excited state two-level coherent coupling problem, the following model 

system given in Fig. 6 is formulated. The entire experimental system is 

divided into two parts. The first part consists of the ensemble of "ex-

cited" two-level systems that are coupled by a driving field. The second 

part is taken to be an infinite reservoir that represents both a source 

and a sink for population to enter and leave the ensemble of two-level 

systems. At a given instant of time, the ensemble of two-level systems 

is evolving. under the influence of the applied radiation field, and.is 
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XBL 755-6294 

Fig. 6. Model system used for the developments in Chapter IV. 
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also decaying into the reservoir at a rate which is characteristic of the 

decay rate constants k and k • Population is also constantly transferred 
X y 

incoherently from the reservoir into the ensemble at constant rates F 
X 

and F. Only those states, IY> andlx> that are affected by the radiation 
y 

field are included in the ensemble, implying that the reservoir is un-

affected by the field. As a consequence, population which is transferred 

incoherently from the reservoir to the ensemble enters the ensemble in 

one of the eigenstates, and not in a coherent superposition state. ·How-,. 

ever, once the population has entered the ensemble it·may evolve into a 

coherent superposition state since it is now influenced by the radiation 

field. In tetins of a density matrix description, this implies that feed-

ing occurs only to the diagonal elements of the density matrix and off-

diagonal elements occur only due to the effect of the radiation field on 

the population which is already in the ensemble. Decay, however, affects 

both the diagonal and off-diagonal elements. 

From this model and the results of Chapter II it becomes quite 

simple to visualize qualitatively how the creation and destruction of the 

states affects the properties of the ensemble in the presence of a coher-

ent driving field. At any given instant of time the ensemble may be de-

scribed in terms of the torque equation, Eq(S), the r-vector representing 

the population that is present in the ensemble. During a s~ll interval 

of time, new population is created as an additional vector that suddenly 

appears along r
3 

and is immediately driven by the radiation field. At 

the same time the original vector is driven and decays according to k 
X 

and k • The total time development is a sum over all the small time 
y 

intervals. This picture will be used to describe the results of the 

' - j 
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expressions obtained for the transient nutation and spin locking in the 

presence of feeding and decay. 

B. Solutions in Absence of Relaxation 

By constructing a model system consisting of a reservoir, details of 

the feeding arid decay processes are not considered explicitly and thus 

allow the many-body problem to become tractable~ The simplest way to in-

elude decay of a state is to assume that the amplitude for being in the 

51 state decays exponentially. For the two-level system this is expressed 

in terms of the rotating frame coefficients 
k 

. J 
y =- 2 y 

k 
• X 
X=- z X 

(42) 

k and k are physically observable rate constants associated with the 
y X 

decay of the states jy> and lx> respectively. 

As discussed earlier, the populating process occurs only to the 

eigenstates jy> and lx> and cannot appear in a superposition state. This 

implies that the equations describing the feeding process must deal only 

with the probabilities yy* and xx* and cannot affect the terms which de-

fine the relative phase factor as given by xy* or yx*. For this reason 

a density matrix formulation is ideal (Note Eq (3)) •· 

The decay terms in Eq(42) are incorporated into the density matrix 

by constructing the imaginary operator K given in the y-x basis by 

(43) 
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and the decay process is described by an anticonunutator relation 

(44) 

The operator K must be imaginary in order to cause the density matrix to 

decay. In accordance with earlier discussions, feeding is allowed to 

only the diagonal terms of p, and may be expressed in t~rms of a feeding 

matrix F given by 

(45) 

The total equation of motion which includes feeding, decay, and a driving 

field is thus given by combining Eqs(l7), (44), and (45) 

ihp(t) = [~.P] - [K p] + F ' • + 
A solution to Eq(46) is given by 

Where the matrix Q is 

p(t) = Qt [p(o) - p ]Q + p 
s s 

li (~ h+ K) tl Q = exp 

and ps,the steady-state value of the density matrix, is obtained from 

Eq(46) by setting p(t) = 0 and solving for p. Notice that since ~ is 

real and K imaginary the adjoint of Q is not the inverse 

(46) 

(47) 

(48) 

(49) 

and thus Q is not unitary. The operations in Eq(47) do not result in a 

similarity transformation. This is to be expected, however, since the 

decay process must cause the trace of p(t) to vanish - a result which is 

not possible with a similarity transformation.. Owing to the fact that 

the constant trace condition has been relaxed, one will need four, rather 

than the usual three, independent variables to describe the density matrix 

! 
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completely •. This can be done easily by defining the components of the 

density matrix as follows: 

r 1-ir2 
r 2 p(t) = 
y 

(50) 

r 1+ir2 r 
X 

2 

These components have a geometrical significance that is only slightly 

different from the FVH model. r is represented by a vector which points 
y 

"up" in a three dimensional r-space whereas r points "down". They both 
X 

share the same in-plane components r 1 and r 2 • The FVH vector component 

r
3 

is given by r -r • In terms of observables, r and r are proportional 
y X y X 

to the upper and lower level populations, respectively. 

An explicit form for Q is obtained from Eq(48) using Putzer's 

method. 52 

Q = e 

-kAt At ku+i~w . . At 
- 2- cos-y-+ A sin T 

ifwl At 
--sin-A 2 

At 
cosT-

Eq(Sl) incorporates the following definitions 
kx+ky 

kA = 2 

k -k 

~ 
X y = 2 

A = [f2wl + (~w-i~)2] 

ifwl sin At 
-A- 2 

It.o+i~w At 
A sin T 

1/2 

(51) 

(52) 

As would be expected, Q becomes S, Eq(20), when there is no feeding or 

decay. 
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Before obtaining explicit expressions for the steady-state density 

matrix, p , it is worthwhile to expand Eq(46) in terms of the four r s 

components. 

t = 
1 

t 2 = ~wr1-fw1 (rY-rx)-kAr2 

ty = fw1 r 2/2- kyry + FY 

t = ..o.fw
1

r
2

/2 - k r + F 
X X X X 

By comparing Eq{53) to the rotating frame Bloch equations, Eq(31), one 

(53) 

can see immediately that the average of the decay rate constants kA will 

have the same effect as a T2 process and the combination of feeding and 

decay will appear to be a T1 process. This is quite reasonable from a 

physical point of view since the in-plane components involve a super-

position state that can be viewed as being "undecided" from which 

eigenstate it will eventually decay, thus giving rise to kA. Also, an 

incoherent T1 process will have a similar effect as decay from l.y> or 

lx> into the reservoir with subsequent incoherent feeding into lx> and 

IY> respectively. The important difference between actual T1 and feeding 

and decay, however, is that the final population difference in the levels 

is determined by a Boltzmann distribution in the T1 case, as opposed to 

the feeding and decay process in which practically any population differ-:-

ence is possible, depending on the ratios of the feeding and decay con-

stante and on the conditions of the experiment. 

In view of the similarity between the rotating frame Bloch equations 

and Eq(53) the r components of p may be cast into a familiar form by 
s 
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defining the appropriate quantities. First, notirig that the steady-state 

populations in the absence of a driving field are given by (fw1=~w=O) 

0 

F /k r = y y y 
0 

r = F /k x· X X 

0 0 0 

r3 = r - r y X 

and by defining effective relaxation terms, 

t 2 = 1/kA 

t 1 = kA/kxky 

p in terms of the r components is given by s 

s 
[ 

0 

2 2 2 2 2 (F +F )J r = ry(l+flw t 2) + f w1 t 1 t 2 ~ Y /J] y 

s 
[ 

0 

2 2 2 2 2 (F +F )J r = rx(l+~w t 2) + f wl tl t2 x2 Y /D 
X 

s 0 . 2 2 
/D r3 = r 3 (l+flw t 2) 

where the denominator D is defined as 

(54) 

(55) 

(56) 

(57) 

The mathematical forms for Eq(56) are identical to those encountered in 

magnetic resonance for slow passage spectral sweep. When the "power 

2 2 factor", f w1 t 1t 2 in Eq(57), is small, the components reduce to 

Lorentzian lineshapes. It is interesting to note that the effective 

"transverse" relaxation, t 2 , is determined by the average of the decay 
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~constants whereas the effective spin-lattice relaxation, t 1 ,is 

determined by the average of the decay lifetimes. 

The expression for F in Eq(45) could be generalized easily to situa-

tions in which the feeding occurs to a superposition state · and also 

could be made time dependent. 

format. 

The solution for p follows a similar s 

If one wishes to monitor the effects of feeding and decay more 

explicitly, Eq(47) may be broken up into three parts. 

p(t) = Q t,p(o)Q 
.. 
1 2 

Qt XQ + X 
ps ps 

~......__..., 

3 

(58) 

Part 1 is the time evolution of the population that is in the ensemble 

at t=O. Part 2 is found by solving for ps' setting Fx=O, and similarly 

Part 3 is found by setting F =0. Parts 2 and 3 describe the time evolu­y 

tion of the population that subsequently feeds into IY> and lx>, respec-

tively. 

C. Special Cases of Eq (47). 

1. No Driving Field 

Consider first the trivial case in which there is no driving field. 

From the model system pictured in Fig. 5 one can write simple rate equa-

tions for the r components by inspection. These expressions agree with 

those obtained from Eq(47) after setting w1 = ~w = 0. ·Q has a very 

simple form 

-Kt t 
Q=e-=Q iii 
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and the solutions are 

-k .t 
rl = r

1
(o)e A 

-k t 
r2 = r

2
(o)e A 

-k t + F /k (59) r = (r (o)-F /k )e y y y y y y y 

-k t + F /k r = (r (o)-F /k )e x ·x X X X X X 

Notice that. r 1 and r 2 are not fed, but merely decay from whatever initial 

values they had at t=O. 

2. On Resonance Transient Nutation 
0 

In this case, r1 (o)=t"2 (o)=~w=O, ry(o)=ry, 

expressions as complicated as Eq(32). 

-k t 
r (t) e A 

y =7 

-k .t 
r (t) = g__A_ 
x cl 

2 2 where a = (f w1 -

0 

r (o)=r and Eq(47) yields 
X X 

Equation (60) has the basic ~orm of a damped harmonic oscillator. The 

qualitative appearance of the curves is quite simple, since for small 

values of w1 the exponential terms dominate _and mask the phase shifts 
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introduced by kn· However, as soon as fw1 becomes large enough to cause 

an appreciable number of oscillations, fw1>>kA' it also foliows that 

fw1>>~ an'd the waveforms approach simple expressions similar to those 

of Eq(34) 

r 1 (t) = 0 
-k t 0 r

3
k k 

r 2(t) o A sinfw1t X y 
= -r e 3 wlkA 

-kAt 
[(No-Ns) + 0 Ns 

r (f) e cosfw1 t]. (61) = 2 r3 +-
y 2 

-kAt Ns 
r (t) e [(No-Ns) 0 cosfw1t] = - r3 +-

X 2 2 

where 

No 0 + 0 = r r y X 

Ns s + s (F + F )/kA = r r = y X X y 

r and r may be combined in two ways. First, the r
3 

component may be 
y X 

computed. 

r -r = r
3

(t) 
y X 

0 -k t = r
3 

e A cosfw1t (62) 

The motion corresponds to what the geometrical picture would predict: 

oscillations with frequency fw
1 

damped by the average of the decay rate 

constants, reaching a steady-state vector sum of zero since a uniform 

"disc~' of vectors will be formed in the r
2
-r

3 
plane. Notice that the 

decay constant is kA = l/t2 as opposed to l/2T2 in Eq. (34). This 

factor of two arises from the fact that _T2 is responsible for decay of 

the inplane components only, and a high power field that drives the 

vector around amounts to the vector being in the plane only half the 
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~ 

time t, on the average. Decay from the states occurs for all components, 

however, and the high field will only serve to average the decay rate 

constants as evidenced by kA. 

The second combination of r and r results in a term that reflects 
y X 

how. the total population in the two-level ensemble develops in time as 

a result of feeding, decay, and a high intensity driving field. 

r + r = N(t) 
y X 

(63) 

Equation (63) may be obtained from intuitive arguments as its simple form 

would suggest. Figure (5) implies the following rate equations for r 
y 

and r in the absence of a driving field. 
X 

r = -k r + F y y y y 
(64) 

r = -k r + F 
X X X X 

These equations result in the last two solutions in Eq. (59). Equation (64) 

may be written in terms of the total population as 

N = -k r - k r + F + F yy XX X y 
(65) 

Now if a very strong field is applied, it may be assumed that the 

populations in the two levels remain equal throughout the time development 

of N. This is tantamount to the condition fw1 >> kA which implies that 

many nutations are made before appreciable feeding or decay can take 

place. Under this condition ry = rx = N/2 and Eq. (65) becomes 

. 
N = -k N + F +F A X y 

(66) 
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which has the same solution as Eq. (63). Note that this simple argument 
.. . . 

does not predict the correct behavior for r or r = N/2, Eq. (66) again, 
y X 

since there is no condition built into the mathemat.ics that gives 

0 nutation, and as a result the r
3 

cosfw
1

t term is missing. 

D. Coherence Experiments 

As is the case in magnetic resonance, the ability to do well-defined 

pulse rotations of the r-vector depends upon the relationship between 

the applied field strength and the effective relaxation, t
2
=1/kA. The 

similarity between Eq. (53) and the rotating frame Bloch equations 

makes it unnecessary to go through the same arguments as in Chapter III 

for the free induction decay and spin echo. In fact, for most systems 

of interest, the homogeneous relaxation time, T
2

, will be orders of 

magnitude shorter than the lifetimes of the two levels, and as long as 

the experiment is sufficiently short the arguments in Chapter III may 

be used directly, ignoring feeding and decay. 

There is one coherence experiment, not mentioned in Chapter III, 

that is worthwhile discussing in terms of the preceeding development. 

If the modified form of the Bloch equations is applicable to a particular 

42 43 system, a spin-locking ' experiment can be performed, and the 

coherent component can be made to last a time that greatly exceeds the 

homogeneous relaxation time. It would therefore be of interest to 

investigate the effects of feeding and decay on such an experiment. 

First a ~/2 pulse is applied, yielding from Eq. (61), kAt~ 0, 

. ' 
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r 1 (7T/2) = 0 

r 2 (7T/2) 0 
(67) = -r 

3 

r (7T/2) = N°/2 y 

r (7T/2) 
X 

= N°/2 

and the populations appear "saturated". Shifting the phase of the driving 

0 field is tantamount to redefining the initial conditions r
1

(0) = -r
3

, 

r
2

(0) = 0, and from Eqs. (53) and (61) the spin-lock signal is given by 

r
1

(t) 0 -kAt 
= -r e 

3 

r
2

(t) = 0 
(68) 

-kAt No 
Ns) Ns 

r (t) e 
= (-- +-y 2 2 2 

-kAt No 
Ns) . Ns 

r (t) e 
= (-- +-

X 2 2 2 

An additional phase-shifted 7T/2 probe pulse would be required to monitor 

r
1
(t) if'an observable associated with r or r is used to measure the 

y X 

spin-lock signal. It is interesting to note that the act of phase 

shifting effectively isolates the spin-lock component from the feeding 

process. In terms of the vector model, population that enters the 

ensemble subsequent to the establishment of the spin lock component 

forms a uniform. disc in the r
2
-r

3 
plane and does not affect the spin­

lock signal. This situation is not true, however, is the field is 

applied off"'"'resonance, for then the disc becomes a "cone" about the 

effective field direction resulting in a· component along the direction 

of the spin-lock signal. As will be demonstrated in the next section, 
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this component results from a steady-state solution, and can thus cause 

anomolous decay times for the spin-lock signal. 

E.' Feeding, Decay, and Relaxation-General Solution 

In order to obtain a complete descriptionfor the system pictured 

in Fig. 5, the modified Bloch equations, Eq. (31); will be combined 

with Eq. (53). This procedure is done mainly for the sake of completeness 

since the analytical expressions for the general solution mask all the 

physics that is contained within them. It is fortunate that for most 

experimental situations the simple approaches presented earlier do not 

vary qualitatively from the solutions to be presented in this section, 

for then meaningful experiments may be constructed by use of the 

vector model and Eq. (47). 

In terms of the r-vector components, the complete equations of 

motion that include driving field, feeding and decay and relaxation are 

given by 

. 
-&J.Jr2 - (kA + l/T2e)rl rl = 

r2 = ~wr1 - fw1 (ry-rx) - (kA + l/T2)r2 (69) 

r = fw1
r

2
/2 - (k + 1/T )r, +r /T + F y y y y X X y 

r = -fw1r 2/2 (k + 1/T )r + r /T + F 
X X X X y y X 

The new parameters 1/T and 1/T are related to the probability per 
X y 

unit time for a transition from lx ) to !Y ) and from IY ) to lx > 

respectively. This form allows for spontaneous emission from I y ) to 

lx), in addition to "spin-lattice relaxation" terms. Specifically, 
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(70) 

in which Tspon is the spontaneous emission lifetime, and T
1 

is related 
y . y 

to the no.rmal thermal probability for a transition from I y ) to I x ) • 

If spontaneous emission is negligible, as is the case in a rf region of 

the applied field, T
1

, as given in Eq. (31), is related by 

1 1 = -+--:rx Tly 

T and T
1 

are related by a Boltzman factor 
X y 

Tly = 
T 

X 

1. Steady-State Solutions 

-hw /kT 
e o 

The t=oo values for the r-vector components are easily obtained 

(71) 

(72) 

by setting the time derivatives in Eq. (69) to zero. As before, these 

solutions may be cast into a form that is easy to interpret by virtue 

of their similarity to magnetic resonance. counterparts. 
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s r~ £w1&uTTe/D r1 = 

s o-
r2 = -r·· fw T/D 

3 1 

s 
[r

0
(1 + &u

2
TT ) + 

£
2
wiTT 

r = 
y y e kA 

s [r
0

(1 + 11w
2
TT ) + 

£
2
wiTT 

r = 
X x e kA 

1 + 11w
2

TT 
2 2 

D = + f w1TT e 

1 1 
= kA +T T 2 

1 1 
-= kA +T T e 2e 

T = kA/(k k 
X y 

0 0 0 r = r - r 3 y X 

+ k /T 
y 

+ k /T ) 
X X Y 

(73) 

(Fx :· Fy)j /D 

(Fx : Fy)] /D 

These components may then be used to construct a steady-state density 

matrix, p , according to Eq. (50). 
s 
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2. Transient Solutions 

Equation (69) is difficult to express in a form such as Eq. (46), 

in which the density matrix equation of motion is described in terms 

of 2x2 commutators. A more general approach is.to use the "superoperator" 

or "Liouville operator"53 trick. In this case the four elements of the 

density matrix are treated as components of a four-vector operated on 

by a 4X4.matrix that not only implicitly contains the commutators 

indicated in Eq. (46), but in addition the method allows one to add 

phenomenological relaxation terms as easily as was done in Eq. (69). 

Thus Eq. (69) may also be represented as 

:fJi p = liLp + ihF 

The elements arising from K are given by 

lit = K o - o K mn,m'n' mm' nn' mm' n'n 

and the explicit form for L is 

L = 

-iK 
y 

fw
1 

--2-

i 
T 

y 

fw
1 ---2 

!Y.u-iK 
. A 

-i~ 

fw
1 

2 

-i~ 

-&u-iK 
A 

fw
1 

--2-

i 
T 

X 

fw
1 

--2-

- iK 
X 

(74) 

{75) 

(76) 
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whereas P and F are given by the column vectors 

pyy r F y y 

p r
1
-ir

2 
0 

yx 
p = = F = p r

1
+ir

2 
0 

xy 

p r F 
XX X X 

The following definitions have been employed 

K = k + 1/T y y y 

K = k + 1/T 
X X X 

KA = kA + l/2(1/T2e + l/T2) 

~ = l/2(1/T2e - l/T2) 

The solution to Eq. (74) is deceptively simple 

p(t) = e-iLt (p(O) - p ) + p 
s s 

(77) 

(78) 

(79) 

The entire problem of calculating the time dependence of p(t) now lies 

in the evaluation of the exponential operator which contains a 4x4 

non-hermitian matrix. The evaluation of such an exponential operator 

52 for any nxn matrix has been given by Putzer, and application of this 

theorem to the problem at hand is given in Appendix A. An important 

point to note is that since the evaluation involves an eigenvalue 

problem, the 4X4 matrix implies a quartic equation that may be solved 

exactly, and since this is the highest order polynomial that may be 

solved exactly, the 2x2 density matrix is the maximum size that may 

be evaluated in closed form. This feature has little practical signifi-

cance, however, since many iterative methods exist for finding the roots 
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of an nth degree polynomial to any degree of accuracy. Another point 

worth mentioning is that despite the attractively simple form for Eq. (79), 

it is highly impractical even for simple special cases, and equations 

such as Eq. (47) or Eq. (19) are far easier to work with. Equation (79) 

is therefore best left to the computer for evaluation. 

3. General Transient Solutions Including Inhomogeneous Broadening 

Equation: (79) may be programmed on a computer and a sum of solutions 

weighted by an empirical or analytical lineshape function may be taken to 

include the effects of inhomogeneous broadening. Figure 7 compares the 

waveforms produced by successive additions of relaxation parameters to 

the transient nutation. Note that for sufficiently high driving fields 

the inhomogeneous broadening has little effect on the transient nutation, 

(a) and (b)~ Curves (c) and (d) have been arranged so that kA=T2 of 

curves (a) and (b) in order to demonstrate the faster decay expected 

from kA as discussed in Sec. IV-B. Note that the difference in kD, 

(c) vs. (d), has little effect on the waveform. 

Therefore, for high power fields, the equations developed in 

Chapter III will be sufficient in most cases for .short times; and 

simple "rate equations" will be applicible for long times (see 

Sec. v-c). 

4. Inhomogeneous Broadening and Slow Passage Lineshapes 

By integrating Eq. (73) over the inhomogeneous distribution 

g(w -W ), Eq. (40), one obtains the expected lineshape that would be 
0 0 

observed in a slow passage spectral sweep. These averages, denoted 

by ( r i ) w , are 
0 
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( rs ) = {r0 
[ same as rs • • • ] + . . . } 

X W X y 
0 

* where T
2 

is the inhomogeneous relaxation time and 

6.w = w - w 
0 

For low driving field powers Eq. (80) reduces to the more familiar 

Lorentzian forms 

( rs ) 
y w 

0 

( rs ) 
X W 

0 

0 
-r3fwl r 

-2 2 1 + 6.w r (F + F ) 2 2 X y 
f w1 fT k + k 

~ ro + x y-
Y 1 + 6.w2 r 2 

0 s 
5:!! r + same as r 

X y 

(81) 
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and T ~ T 
e 

Equation (81) represents the expected lineshape from a low power cw 

spectrum of a single inhomogeneously broadened line. Note that the 

inplane components r 1 and r
2 

represent the dispersion and absorption 

lineshapes couunonly encountered in magnetic resonance. The signals are 

related by the Kramers-Kronig conditions and are also proportional 

to the amplitude of the applied radiation field.and the transition 

amplitude. r and r represent the energy absorbed or emitted by the y X 

system and the signal is proportional to the intensity of the applied 

field and the transition probability, as would be expected. 

The "saturation" characteristics of Eq. (80) may be investigated 

by looking at the high power driving field case. 

0 

s ) 
r 

3 
fw

1 
l1w 

( rl ~ 

wo f2 2T . 
/1w2 .+ 

w
1 

T 
(82) 

TT e 

s ) 0 ( r2 ~ 

s £2 2r w ro (fool 0 

if -2) N Wl T 

y * + !::.w + T TT 
T2 e e 

( rs ) ~ 2 2 y wo 
!::.w2 + 

f w
1

TT 

TT e 

The dispersion signal is a maximum off resonance; the absorption signal 

approaches zero for all values of !::.w; and the population components 

approach equal values and are a maximum on resonance. 
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All the .steady-state behavior is quite si.Jnple to picture in the 

vector model as demonstrated in the diagram of Fig. 8. ·The steady-

state condition i.Jnplies that a uniformly distributed cone of vectors 

about the effective field direction will result in the presence of 

high-power radiation. The vector sum results in a resultant that lies 

directly along the applied field direction and is thus effectively 

"spin-locked" without introducing any phase shifts. A simple geometrical 

argument shows that the resultant shrinks to zero either as one goes 

very far from resonance, or as exact resonance is approaced, and 

becomes a maXimum when fw1=8w. Since the effective field lies in the 
. s 

r
1
-r

3 
plane, < r

2 
)w will always be zero for high power driving fields. 

. 0 
s Non-zero values for ( r 
2 

) come ·about when the relaxation mechanisms 
WO 

compete strongly enough with the driving field such that each individual 

vector decays before a complete revolution about the effective field 

can occur. In this fashion a "lopsided' cone or disc is formed that 

has a resultant component in the r
2 

direction. 

F. Steady-State Coherence 

Equation (80) implies that a coherent component can be made to 

last an infinite amount of time. This may at first seem surprising 

since one might think that the lifetime of the states involved would 

obviously be the limiting ti.Jne that a coherent component could be 

maintained. However the suggestive forms of Eqs. (69) and (73) indicate 

that the mathematical formalism is no different than the Bloch equations, 

. 38 
and that the steady-state solutions correspond to "nuclear induction" 
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signals, u and v. In terms of the feeding and decay picture, it is easy 

to see that although individual members in the ensemble are constantly 

being fed, driven, and eventually decay, the coherent driving field 

serves to maintain the coherence indefinitely. 

It is worthwhile to find and compare the maximum values of the 

coherent components. s 
The maximum of < r 1 >w occurs off-resonance at 

0 

a value given by 

&J 
1 1 ..Jl + 2 2 = ?" + f w

1
TT 

max 2 v'TT 
(83) 

e 

yielding for the component 

0 

< r~ >w = 
r

3
fw

1 

1 1 ..J f
2
wiTT 

0 2 + ;;;;~; + -- 1 
T2 v'TTe . 

(84) 

This component attains its largest value for very high fields 

!J.w :!!! fw
1 * max e 

(85) 
and 

0 

~ s ) (max) 
r3 

< rl :!!! 
w 2 

0 

In the absence of appreciable spin-lattice relaxation, and if T -+ oo 2e 

as w
1

-+ oo, T =k , and if k =k ,the component becomes what the vector 
e A x y 

s 0 
model would predict, < r 1 >w = r/2 

s -= < r 3 > w , and !J.W=fw1 • The maximum 
0 0 . s 

value of < r 2 ) w is obtained for an intermediate value of 
0 

resonance and is therefore a more complicated function of the two 
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* relaxationtimes T2 and T
2

• In the absence of inhomogeneous broadening 

it is easy to show that 

VI. 
T 

(86) 

The important difference between Eq. (86) and Eq. (85) lies in the 

fact that T can be very much larger than T since Eq. (85) is obtained 
e 

under high driving field conditions. If Te is not dependent on w
1

, 

the maximum values of the components would be the same in the absence 

* of inhomogeneous broadening. Including the effects of T
2 

again favors 

the rl component, for the high field conditions make< r~ )w (max) 
0 

insensitive.to inhomogeneous broadening. It therefore becomes convenient 

to use the r
1 

component as a normalizing factor and plot the ratio 

of ( r 2 )w (max) 

* 0 T/T
2 

• This is 

to ( r
1 

) w (max) as a function of the unitless parameter 
0 

given in Fig. 9, where it has been assumed that T=T . e 

for the sake of comparison. Thus, through a combination of Te(w1). 

* and T
2 

, the largest possible value for a coherent component is obtained 

in the off resonance "dispersion" signal, and could be orders of 

magnitude larger than the on-resonance "absorption signal". 

This feature of coherence is not particularly important for the 

rf region of resonance frequencies, except perhaps for sensitivity 

considerations, but gains considerable importance in the microwave 

and optical regions owing to the fact that the coherent component 

represents a macroscopic oscillating dipole and is responsible for 

maser action in an inverted medium within a resonant cavity. 
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Since the amplitude of the maser radiation is proportional to the size 

of the inplane component in a conventional on-resonance amplifying 

system, it is tempting to consider the previous arguments comparing 

r
1 

and r
2 

components with respect to the maximum intensity of coherent 

radiation that could be obtained from a given system. These arguments 

predict that a properly chosen system that possesses a w
1 

dependent 

T
2

e and has appreciable inhomogeneous broadening could conceivably 

produce coherent radiation fields that are orders of magnitude larger 

that the fields that could be produced by on-resonance excitation. 

In the same sense that on-resonance coherence is self-regulating at 

saturation, the off-resonance experiment self-regulates about the 

value given in Eq. (85). Unfortunately the application of these 

results to optical systems that possess appreciable gain is not 

straightforward since the driving field must be modified to include 

spatial effects and the contribution of the co.herent component to the 

driving field itself, and it is not clear whether this property could. 

be exploited to increase the power output of a given system. 

One aspect of steady-state coherence may possibly be exploited, 

54 however, in the study of superradiance. Dicke first presented the 

idea in 1954, but it was not widely discussed until recently. The topic 

has been obscured by semantics and experimental misinterpretation and 

55 is presently the subject of considerable debate. The steady-state 

component provides a novel method for maintaining and controlling 

a superradiant state by use of a coherent driving field and 

incoherent feeding. By choosing an appropriate system consisting of a 
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thin sample with long relaxation times, a large 'steady-state vector 

may be maintained by an intense off-resonance coherent driving field, 

and the system may effectively be prepared in a state of any 

"cooperation number". The field may then be t1.,1rned off and the 

system studied as it evolves in time, and in this way the various 

properties of the superradiant state could be "mapped out". 

G. Extension to the Optical Frequency Region 

The previous treatments all utilized the following assumptions: 

(1) semiclassical, monochromatic, coherent driving fi~ld 

(2) wavelength of driving field is large compared to the size 

of the entire ensemble. 

(3) fields produced by ensemble are negligible. 

Assumption (1) may be modified in the semiclassical limit to include 

spatial effects and deviations from temporal and spatial coherence 

by considering a more general form for V(t) (Eq. (10)). 

V(z,t) = hcr1fw1 (z,t) cos(wt- kz + <j>(z,t)) (87) 

and Eq. (10) may be considered to have been derived from Eq. (87) with 

the approximations 

.£1 << k"' dZ 'I' ' * << w<P • (88) 

" Assumption (2) may be expressed in terms of the sample length, Z, 

kZ << 1 (89) 

and Eq. (10) then follows. 
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1. Spatial Considerations · 

Assumption (2) may be eliminated quite easily provided that (1) 

and (3) are retained. In this case the strength of the applied field 

does indeed vary spatially across the sample, put the relationship 

between any two points within the sample is trivially related by the 

speed of light in the sample medium. As long as (1) and (3) hold, 

there is no dispersion,and the ensemble may be considered to be 

coherently coupled, for although different parts of the sample do 

not "simultaneously" experience the same field, each point z will 

experience the same field at the "retarded" time t-z/c. A novel way 

to include this consideration in the formalism of chapter II is the 

following. Including the spatial dependence explicitly., Eq. (12) 

becomes 
wt-kz. wt-kz. 

2 
J "'J'' hw 

0 
h fw1 -icr3 

""j = 2 °3 + -2- e 

J 
2 (90) 

where 'JCj is now a different Hamiltonian for each molecule in the 

ensemble withposition zj. Utilizing the same reasons that prompted 

a rotating frame transformation, both the temporal and spatial 

dependence may be removed from the effective Hamiltonian, 'JC. Defining . 

a unitary operator similar to Eq. (15) 

wt-kz. 
-icr J 

U = e 3 2 
k,j (91) 
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Each density matrix for the jth molecule may be transformed as in 

Eq. (16), ~nd each transformed density matrix now obeys the same 

equation of motion which is identical to Eq. (17), and the entire 

development, from Eq. (17) on, may be applied •. Of course the spatial 

dependence has not actually been 11removed 11 by these manipulations, but 

since it is of a trivial nature, the dependence may be incorporated in 

the unitary operator where it does not interfere with the equation of 

motion, just as in the case of the rotating frame transformation. 

Notice that Eq. (91) is tantamount to transforming to a rotating 

frame in which the substitution for the retarded time t-z./c has been 
J 

made in Eq. (15). Since (1) and (3) insure no dispersion, the group and phase 

velocities are equal, c=w/k, and Eq. (91) follows. 

At this point one might speculate on a 11decay frame 11 transformation 

that would take the well-defined decay of the states and place it in a 

unitary transformation in the same fashion as the rotating frame and 

spatial transformation. If this could be done, the equations would 

reduce to very simple forms again. Unfortunately this is not possible, 

for even though it is well defined, the overall decay rate at any given 

time is strictly dependent on the position of the r-vector, and 

therefore the decay terms must necessarily be a part of the equation 

of motion. However, under the special condition k =k , the decay may 
X y 

indeed be removed from the equation of motion and incorporated in the 

unitary operator, for in this case the vector has the same probability 

for decay, independent of its position in r space. 
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2. Photon Echo 

The spatial transformation is not as trivial as the rotating frame 

transformation and will depend strongly on the shape of the sample, how 

it is driven by the applied field, and how it is observed. One special 

case worth considering is that of a small sample observed at a large 

distance. In this situation the observed behavior of the system will 

be the sum of each density matrix P. resulting from the Hamiltonian X .. 
. J J 

-+ -+ The spatial dependence may be left in as an effective phase with -k • r. 
. J 

replacing~ in Eq. (10) and Eq. (20). For the sake of example an 

echo sequence is taken in which the first ~/2 pulse enters the sample 

-+ 
with wavevector k1 and the~ pulse·enters at a different angle, but 

-+-+-+ -+ .... , 
with the same frequency, k2 , k1*k2 , lk1 1 = lk

2 
. Repeated application 

of Eq. (19) yields a final density matrix for each member in the ensemble 

assuming that everything starts in the ground state r =1 r =O=r =r 
X , y 1 2 

= 

1 
2 

-+ -+ 
(2k2-kl) 

i _ __;::;_=-
iei~w(t-t') e 2 

-+ . r. 
J 

1 
2 

-+ 
. r. 

J 

For a large number of closely spaced members in the ensemble, the 

-+ 
sum over j becomes an integral over the function G(r) that describes 

the shape of the sample. The form of Eq. (92) demonstrates that this 

-+ -+ 
will result in the spatial Fourier transform of G(r). If G(r) is 

(92) 

spherical with sufficiently large radius, the off-diagonal elements are 

-+ -+ 
reduced to o functions with argument 2k

2
-k

1
• A simple geometrical 

argument demonstrates that if the ~ pulse is applied at an angle a 
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with respect to the initial ~/2 pulse; a burst of coherent radiation 

associated with the formation of a photon echo will be emitted at an 

angle 2a with magnitude -jk1 j provided that a is .small enough, in 

accordance with the predictions and results of Ref. 31. Note that 

there would be no directional dependence associated with the normal 

spontaneous emission from r • 
y 

3. Photon Echo with Probe Pulse 

Several problems are present with the photon echo experiment, 

most of them associated with detector overload and sensitivity. In 

this situation the probe pulse method might prove to be more useful 

since the spontaneous emission may be monitored at any angle •. 

Specifically, if an additional n/2 probe pulse is applied to P. in 
J 

Eq. (92), r . is given by 
YJ 

1 =-
2 

.. .. 
and k

1 
may be set equal to k

2 
since the detector is not montoring the 

coherent radiation, again rendering the r component spatially 
y 

independent •. Assuming an on resonance echo and a Lorentz line shape, 

the photon echo would then be given by 

r 
y 

t-t') -~ 
2 e , (94) 

(93) 

which corresponds to no spontaneous emission at echo maximum and emission 

corresponding to saturation at values of t-t' far from echo maximum. 
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In order to accurately map out the actual echo shape the probe pulse 

must be sufficiently short compared to T~, but, since the echo shape 

is not particularly interesting anyway, this requirement is not 

essential. However, the echo maximum decay may be accurately monitored 

with pulses that do not meet this condition. An additional point 

must be made with respect to the method used to monitor Eq. (94). An 

optical system often cannot maintain temporal coherence for the time 

required to perform the entire echo sequence and may result in the 

condition in which each successive pulse has a random phase relationship 

with respect to the pulse preceeding it. It is easy to see that this 

fact has no particular significance in terms of the actual echo 

formation since the random phase merely causes the echo to form in 

different parts of the r
1
-r

2 
plane which implies that the burst of 

coherent radiation has a different phase each time the experiment is 

performed. This feature is much more important for the probe pulse, 

however, since a random phase will result in the vector being rotated 

"up" just as many times as it is turned "down" and a time average 

of many experiments will yield no signal unless a method that measures 

the "rms" excursions of the vector is used. Of course this problem 

is also present when microwave transition frequencies are being used, 

and one must therefore insure that a time-averaged probe sequence 

measures the decay due to molec~lar relaxation and not the residual 

FM of the microwave sweeper. 
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V. SPECIFIC APPLICATIONS TO PHOSPHORESCENT 
TRIPLET STATES IN ZERO FIELD 

In this chapter, the formalism developed in chapters II, III, and 

IV is applied specifically to the problem of zero field phosphorescent 

triplet states. The alterations and additional assumptions are first 

outlined and then illustrated with a few exemplary experimental results. 

The second part of the chapter gives a detailed account of the 

actual experimental techniques and equipment required to perform 

optically detected·coherence experiments in zero field. 

A. Relationship between the Geometrical 
Picture and Phosphorescence 

The triplet state of many molecular solids is nondegenerate in 

zero field, owing to the electron dipole-dipole interaction and is 

13 conunonly expressed in terms of the Hamiltonian 

(95) 

The three spin sublevel eigenfunctions, T , T , T , are often quantized 
X y Z . 

along the symmetry axes of the molecule, and can be•mixed by the 

~pin operators Sx' Sy, Sz. The matrix elements are given by 

i,j,k = x,y,z cyclic permutation • 

Since 3C is traceless, it is also expressed in terms of the two 
0 

parameters D and E. 

(96) 
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\ 
The triplet spin sublevels may be populated by excitation of a 

number of singlet states with broadband emission from a mercury arc 

lamp, and the weak interactions resulting from spin-orbit coupling 

allow intersystem crossing to triplet states of the proper symmetry. 

Rapid internal conversion populates the lowest triplet state, and, owing 

to symmetry restrictions, significantly large nonboltzman population 

distributions between the various spin sublevels may result at sufficiently 

. 19 
low temperatures, usually around that of liquid helium. A microwave 

field may be applied to such a system, and if there is any population 

difference between two of the three levels, the resonance spectrum may 

be recorded by monitoring the change in phosphorescence that results 

when the applied field alters the populations between the levels. 

The form of the perturbation given in Eq. (10) is explicitly for the 

triplet state 

(97) 

where H
1 

is the amplitude of the magnetic component of the EM field 

and y is the gyromagnetic ratio of the electron. The imaginary form 

for the matrix elements implies that X' in Eq. (12) should be expressed 

in terms of cr
2

, but, as Eq. (6) demonstrates, this amounts to only a 

90° phase shift in the applied field direction, and the results of the 

preceeding chapters apply with trivial modifications that do not warrant 

further consideration. 

In general, the observable that is associated with the triplet 

state phosphorescence arises from the coupling of the singlet and triplet 

56 57 states by a weak spin-orbit perturbation. ' The triplet state is 
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thus an admixture of triplet and singlet vibronic levels, 

1-ri > ~ 1-ri > + 1: ci Is > + triplet terms 
n n n 

(98) 

and emission to the ground state manifold, S , is made possible through 
0 

an electric dipole transition that couples with the.singlet admixture. 

< I I s > .:.. 1: ci < s I I s > = ci Ti ]JJ o - n n n ]JJ o J (99) 

The expressions in Eq. (98) and (99) are grossly oversimplified but are 

quite adequate to describe the problem. The subscript J denotes the 

polarization of the electric field, determined by symmetry considerations. 

The observed phosphorescence may now be obtained from the density 

58 matrix by constructing a "phosphorescence operator" 

(100) 

and determining its expectation value 

(101) 

this may be expressed in terms of the r-vector components from Eq. (7) 

or (102) 

2 2 
<PJ > = lc~l ry. + jc~l rx + Re(c~* C~) (r1-ir2) 

' may be identified with the radiative rate constants 

kr and kr respectively, where the r superscripts have been included 
Y x' 
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to 'allow for nonradiative processes that could also contribute to the 

total rate constant k. In general, the synunetry properties associated 

with many molecules place fairly strict limitations on the various 

allowed polarizations and usually one of the two coefficients ci or C~ 

is zero for a given polarization, J. Under this condition it can be 

seen that 

( P J ) ex r 
3 

+ constant • (103) 

Equation (103) implies that any change in the observed phosphorescence 

is manifested as a proportional change in r
3

, as would be expected. 

The special case in which ci and C~ are both nonzero merits 

further attention. Under this condition, the coherent components are 

actually manifested in the phosphorescence as a modulation at the 

larmor frequency. Furthermore, if cY = 
J 

X CJ' Eq. (102) reduces to 

(104) 

where the off-diagonal element of the density matrix has been converted 

back to laboratory coordinates. A 100% modulation of the phosphorescence 

occurs at the larmor frequency if a coherent state is created in the 

absence of relaxation. This phenomenon was first discussed in relationship 

to zero field phosphorescence by Harris21 and is quite similar to analagous 

59 60 results obtained in gases and solids in other double resonance studies. 

The effect has had considerable theoretical attention as well. 58 , 61 , 62 

Notice, however, that for the general situation a probe pulse would be 

required to monitor the coherence if phosphorescence is used as the 

observable. 
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The model system depicted in Fig. 5 will be quite weil suited to 

describe triplet state. coherence experiments provided that the constant 

feeding parameters F and F may be justified~ and also .there must be 
X y 

no interference from the third level through spin~lattice relaxation. 

The second requirement may be met by cooling the sample to a sufficiently 

low temperature~ and the first condition is valid provided that the 

singlet states are optically pumped at a constant. rate and that the 

ground state is not significantly depleted. All these conditions are 

experimentally attainable. 

In zero field, intersystem crossing occurs incoherently to the 

eigenstates, satisfying the form for Fin Eq. (45). Thus, themathemati-

cal formalism is quite easily applied to zero field triplet states. 

B. Experimental Examples 

Figure 10 depicts an optically detected transient nutation for 

high power on and off resonance pulses. Since oscillitory behavior 
I 

is observed, it is possible to coherently couple two levels in the 

triplet state. Note that a rough determination of the nutation 

frequency corresponds reasonably well to w of Eq. (21) despite the 

strong damping present. The damping is caused primarily by applied 

field inhomogeneities as can be verified by lowering the power and 

observing that the same number of oscillations occur. This 

inhomogeneity is to be expected since the coupling to the sample is 

63 done through a slow wave helix. 
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OPTICALLY DETECTED TRANSIENT NUTATION 
h2 -1, 2,4,5 TETRACHLOROBENZENE IN h14-DURENE 

'l:x -t:y TRANSITION 

PHOSPHORESCENCE (0, 0) = 3781.5 A; I. 8 OK 

(a) On resonance 

(b) Off resonance 

(c) Off resonance 

w =w0 =3.6824 GHz 
w =w1 = 4.54 MHz 

w = 3.6794 GHz 
f:J.w = 3.0 MHz 

Exp. w = 5.26 MHz 
Colc.w = 5.45 MHz 

w = 3.6774 GHz 
f:J.w = 5.0 MHz 

Exp.w = 6.54 MHz · 
Cole. w = 6. 75 MHz 

0.5 1.0 1.5 
Time (psec) 

2.0 2.5 

XBL 7310-5453 

Fig. 10. Optically detected transient nutation. The change in 
phosphorescence intensity (« r 3) is plotted as a 
function of the duration of the microwave pulse. 
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Figure 11 illustrates the frequency response to a high power 

pulse for a: 7T and a 27T pulse whose theoretical forms are given by (b) 

and (d) in Fig. 3. Although inhomogeneities and unleveled power distort 

the waveforms considerably, the characteristic 27T "hole" can be seen, 

and the waveforms clearly demonstrate that the response is not merely 

the Fourier transform of a short pulse. Reference 36 gives a particularly 

convincing set of waveforms of this type for hypersonic molecular beams. 

Examples of optically detected electron spin echoes are given 

in Figs. 12 and 13. Notice that the probe pulse is required and is 

applied point-by-point in time in order to map out the echo shape. 

A transient nutation determines the length of time required to produce 

the pulses used in the sequence. Both the on and off resonance echo 

shapes are described by Eq. (41). 

The decay of the echo maximum peak as a function of the total waiting 

period, T+T'. in Eq. (41), will give the homogeneous relaxation time, 

T
2

, as illustrated in Fig. 14. The deG:ay is a single exponential for 

this particular· system. 

The problems inherent with optically detected Fourier transform 

spectroscopy are demonstrated in Fig. 15. As expected, there are 

large intensity errors present. The echo was obtained by utilizing 

pulses where w
1

=5 MHz. Since the multiplet structure is 5 MHz wide, 

this would also contribute to intensity errors because the proper 

condition for FTS is that wf>>&w. 

I! .,1, 
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/!.01 (MHz) 

XBL 755-6289 
Fig. 11. Experimentally determined response of the triplet state 

phosphorescence to a high power microwave pulse. These 
are to be compared to the predicted forms in Fig. 3. 
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Fig. 13. Echo traced out by the device shown in Fig. 23. 
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c. Comparison of Solutions to Previous Zero Field Experiments 

The optically detected cw spectrum given by Eq. (80) and (81) 

has of course been well established from the beginnings of zero.-field 

phosphorescence microwave double resonance~ However, the actual analytical 

form has never been derived but merely assumed to have the same form 

as in magnetic resonance. One advantage present in cw optical detection 

that is lacking in conventional EPR detection results from the different 

saturation characteristics, given by Eq. (82), allowing one to obtain 

a maximum signal with maximum power, and therefore there is no danger 

in making a sought after transition dissappear by applying the incorrect 

magnitude of driving field, as is often encountered with conventional 

magnetic resonance. For low powers, the optically detected EPR signal 

is linear in the power of the applied field, Eq. (81), and this behavior 

has been observed. 64 

At this point it is worthwhile to take the results of chapters II, 

III, and 'IV as they apply to phosphorescent triplet states and compare 

them to previous work by other authors. . 21 22 With two except~ons ' a 

"rate equation" approach has been taken to describe the transient behavior 

of the triplet state under th~ influence of a perturbing microwave field, 

and all this previous work may be shown to be special cases of Eq. (53) 

or Eq. (69). The earliest treatments65 •66 assl.tmed the same arguments 

that led to Eq. (63), namely that r (t)=r (t) during the entire time 
y X 

development of the populations. If steady-state conditions are achieved 

. . s 
under a strong rf field, the total population is N of Eq. (63), and 

by turning off just the optical pump, Fx=Fy=O, but leaving themicrowaves 
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on, Eq. (10) of Ref. 66 follows. 

-k t 
N = N8 e A (105) 

67 Shain and Sharnoff proposed a set of differential rate equations 

to describe a new method for measuring the various feeding and decay 

parameters associated with zero field triplet states. Their equations 

may be obtained as a special case of Eq. (69) if one considers the 

conditions on-resonance, 6w=O, negligible spin-lattice relaxation, 

1/T •1/T =0 and considering times after the coherent component transients . X y t 

have decayed away, r1=r
2
=0. Equation (69) then becomes 

r 1 = 0 

r 2 = -fw T(r -r ) 
1 y X 

r = fw1r 2/2 - k r + F y y y y 

rx = -fw1r 2/2 - kxrx + Fx 

(106) 

and Eq. (1) of Ref. 67 follows provided that one identifies the "induced 

transition rate", W,with the term 

w -
f2wiT 

2 

The expressions in Eq. (2) of Ref. 67 follow if this definition is 

incorporated into the steady-state terms given in Eq. (73). 

The explicit form for W and the conditions under which it is 

derived clarify the rather nebulous statements made by Shain and 

(107) 

Sharnoff relating to the applicability of their Eq. (1). Since T==T
2 

for triplet state systems, Eq. (106) will not be applicable until 
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t~OT2 , ·which is the time that it would take the transient nut'ation to 

ill i Th im 1 f El S d 1 65,66 stop osc at ng. e s p er arguments o - aye , et a • are 

a special case of Eq. (106) for W=, for then Ns results in the steady-

state solutions. 

In addition to the minor semantic difficulties associated with 

Ref. 67, a more serious error is made by assuming, without stating so, 

that the line is homogeneously broadened, hence effectively equating 
~· . 

(21TilV) with T
2

• The shortest T
2 

that has been measured is 3~ sec, 

implying that the homogeneous linewidth, should be 0.1 MHz, which is 

narrower by a factor of ten than the observed low power linewidths. 

This, coupled with the fact that the echo is observed, rules out 

homogeneous broadening, and an expression such as Eq. {80) must 

therefore be used. If an intermediate value of fw1 is used as 

* Ref. 67 suggests,. "yHrf << 21TilV", implying that fw1 T2 << 1, the true 

value of Bij(w) is not as simple as their Eq. (3), and care must be 

used when one attempts to obtain relative populations and feeding 

rates by their method. Further, prolonged application of a high 

power microwave field can physically heat the sample and alter 

the populations through spin-lattice relaxation. These, and other 

problems related to the measurement of kinetic parameters associated 

with the triplet state are amply discussed in Refs. 68 and 69. 

If the equations in (106) are further simplified by assuming 

steady-state conditions for r and r as well, Eqs. (1) and (2) of 
y X 

Ref, 70 follow, provided that the "cross section'' and "power'' are 

defined as crP=W, Eq. (107). 
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1. Extension to Three Levels 

An extensive search through the literature has not revealed any 

equations dealing with zero field ODMR that are not a special case 

of Eq. (69), save those treatments that consider spin lattice 

relaxation between all three 'triplet spin sublevels, in which case 

Eq. (69) does not apply. The extension to a three level system is 

straightforward since only relaxatiort terms and a third population 

component, r , need to be added to Eq. (69). A 9X9 Liouville matrix, 
z 

many of whose elements are zero, may be constructed and a solution 

analagous to Eq. (79) follows immediately. The evaluation of the 

exponential matrix would prove to be a formidablebut soluble problem. 

2. Comparison to the Work of Icsevgi and Lamb 

Equation (69) can be seen to be a special case of Eq. (52) from 

Ref. 48, if the following assumptions are made. Set r 2e=r2 and ignore 

spin-lattice relaxation and spontaneous emission in Eq. (69). Convert 

the r-vector components to the laboratory frame, and relate the rotating 

frame components r 1 and r
2 

to the in-phase and out-of-phase components 

of the polarization~ This may be done by considering Eqs. (13), (19), 

and (43) of Ref. 48, resulting in the relations C(v,z,t)=fr1 , 

S(v,z,t)•-fr2• Assuming that v=O and ignoring the spatial dependence, 

Eq. (52) of Ref. 48 reduces to Eq. (69) with the substitutions 
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(w-v) = !JJJJ 

c = fr
1 

s = -fr 
2 

yah = 1/T 

A = F 
a y 

~ = F 
X 

p = f 

e: = -llwl 

ya = k y 

yb = k 
X 

The steady-state solutions, Eq. (73), are also obtained in Sec. III of 

Ref. 48, the "monochromatic wave" case. Similarly, the solutions for 

"long pulses" and "ultrashort pulses" compare with Eq. (106) and Eq. (22). 

Note however that, owing to the complexity of the problem in Ref._ 48, 

numerical integration i~ required for the intermediate cases whereas 

Eq. (69) may be solved exactly. 

D •. Steady-State Coherence 

OWing to the possible ramifications of off-resonance steady-state 

coherence discussed earlier, it would be worthwhile to determine whether 

coherence may indeed be made to last times far exceeding the lifetimes 

of the. states involved •. To this purpose two experiments were performed. 

The first experimental pulse sequence utilizes a spin echo to detect the 

coherent component. First an off-resonance microwave field of long duration 

is applied to the sample, "long" implying sufficient time to establish 
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the steady-state values of the density matrix. This,pulse establishes 

the coherent component given by Eq. (82). At the end of the long pulse 

an optically detected echo sequence is performed on the coherent 

component produced by the long pulse. It should be noted here that 

since the coherent component is produced along r
1 

the echo corresponds 

to the first echo in an off-resonance Meiboom-Gill71 sequence. 

A second method that utilizes the probe pulse was also used to 

monitor the coherent component. Since the steady-state vector lies 

along the effective field direction, a phase shifted pulse is required 

to rotate the coherent component. The situation is complicated by the 

fact that both r
1 

and r
3 

components are produced by the long pulse. 

Therefore a probe pulse causes a change in.the total phosphorescence 

that is proportional to the contributions from both these components. 

This problem may be solved by performing another sequence in which the 

probe pulse is applied at a time t>>ST
2
*. In this case the r 1 component 

has completely dephased and the resulting contribution from the r 3 

component may be subtracted from the first sequence leaving only the 

contribution due to the steady-state coherent component. 

Eq. (85) gives the maximum value of the steady~state coherent 

component under high power conditions. If Te + 1/kA as w1 + 00 , and 

if spin-lattice relaxation is negligible,then the component is given by 

(108) 
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The radical. term is maximum when k =k ,and thus it is best to choose a 
X y. 

system in which two of the three levels have similar lifetimes, yet are 

0 . 
fed differently enough to produce a significant r

3 
.component. For these 

reasons, 1,2,4,5-tetrachlorobenzene as a 1% guest in a durene host was 

chosen. For this system the T. and T sublevels have similar lifetimes 
z y 

of 36 and 38 msec, respectively, yet the steady~state population 

difference is four times higher in T than it is in T , at 1.8°K. z . y 

Figure 16 outlines the echo method for steady-state coherence 

detection and also gives an experimental trace of such an optically 

detected echo. The long pulse was applied 5 MHz off-resonance for 

100 msec, and a suitable waiting time of 1 11sec was used to allow the 

coherent component to fan out yet not so long as to allow homogeneous 

relaxation to eliminate the echo signal. 

The observation of an echo graphically demonstrates the existence 

of the coherent component but unfortunately cannot be used as a 

quantitative measure of the size of the component owing to the method 

used to record it. After a pulse sequence is completed, it is desirable 

to wait at least five phosphorescence lifetimes before the next 

sequence is initiated in order to insure that the system has returned 

to equilibrium. For this system 175 msec is required. For a 100 msec 

"long" pulse, a reference frequency of 1.8 Hz must be used, when a lock-

in amplifier is employed and for longer pulses of course even lower 

frequencies must be used. These low frequencies contain a great deal 

of noise. In addition, the change in phosphorescence due just to the 

long pulse becomes a much larger signal than the echo signal. These 

conditions require an unusually high Q factor artd frequency independent 
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Fig. 15. Top: Optically detected spin echo of the 1.0552 GHz transition 
of 2,3-dichloroquinoxaline in 1,2,4,5~tetrachlorobenzene. The interval 
T between the initial ~/2 pulse and the TI pulse is 1.5 ~sec. The probe 
pulse is applied at time t after the initial TI/2 pulse and is swep.t in 
time. Bottom: Fourier transform of the echo superimposed on the low 
power conventiqnal omm. spectrum. 



-92-

KINETIC COHERENCE SPIN ECHO: 
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Fig. 16. Echo sequence desgined to detect the steady-state 
coherent component. 
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gain for regions in which a lock-in amplifier is not particularly well 

suited. Therefore, to avoid these difficulties, the second method 

involving two probe pulse sequences was employed to detect any decay 

of the coherent component that may not have been accounted for. 

Figure 17 outlines the pulse sequence and experimental waveforms 

that resulted from averaging the signal with a digital CAT. The lower 

part of the figure gives a plot of the difference between the two 

sequences. It can be seen from this figure that the amplitude of the 

coherent component remains constant for times as long as two seconds, 

corresponding to 57 triplet lifetimes and shows no tendency to decrease. 

E. Coherence Lifetimes 

The experimental results presented here demonstrate that the 

length of time that the coherent component can be made to last varies 

over a very wide range. As an example consider the tetrachlorobenzene-

durene system. A free induction decay reflects the lineshape, and 

the coherence lasts only 100 nsec. The echo sequence can refocus the 

fan but the homogeneous lifetime restricts the coherence time to 4 ~sec. 

Reference 72 obtained coherence times of 24 msec for this system by 

utilizing a spin locking sequence. Finally, the last experiment 

presented in this work demonstrated that it is possible to produce an 

infinite coherence time. Each of these experiments may deal with 

different sources of relaxation phenomena, including trapping and 

detrapping of excitation in relation to coherent energy migration in 

solids. The results presented here serve only to demonstrate the 



-94-

KINETIC COHERENCE: ROTATING FRAME AND EXPERIMENTAL DATA 

INITIAL 
POPULATION 
DIFFERENCE 

FEEDING 
MAINTAINS 

CONE 

RESULTANT RESULTANT 
VECTORS VECTORS 

J- ~- '~" :~~~~J"'" RO~~G 
a . . . . . . . . 
• • 
a 

a b 

\LIGHT 
EMITTED 

c 

b b c ........ .... 
b 

\ 

11! a: COHERENT + 
INCOHERENT 

COMPONENT 

. .... 

COHERENT COMPONENT vs TIME T 

LAB 
FRAME 

1,2,4,c' TETR;\CHLOROBENZENE 

1% IN DURENE 

2 E TRANSITION~ I. 744 GHz 

+ 5 MHz OFF RESONANCE 

1.6 °K 

AVG. LIFE OF STATES ~0 35sec 

~~~~~~----~~----~------~------------------------------,~I 
(PUMP) 

TIME. T. sec. 
XBL 745-6284 

Fig. 17. Probe pulse sequence designed to measure the coherent 
component for extended periods of tieme. 
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formalism of chapters II, III and IV, and to establi_sh the feasibility 

of optically detected coherence experiments in zero field phosphorescence 

microwave double resonance. 

F. Further Considerations Associated with 
ODMR Coherence Measurements 

As was discussed earlier, inhomogeneous driving fields, allowedness 

considerations and orientational effects can all contribute to difficulties 

with the transient nutation. Since the transient nutation serves as the 

keystone in practically all coherence experiments, it is desirable to 

minimize any problems that may interfere with this experiment. These 

factors will now be discussed. 

1. Allo'fJedness 

This problem has already been discussed in reference to Fourier 

transform spectroscopy. Very little can be done about this since it 

is an intrinsic property of the system. In some situations it might 

be useful to produce an effective ~/2 pulse by starting at some value 

6w from the center of a multiplet and then turning on a very intense 

field slowly. enough that the adiabatic theorem holds for all lines in 

the multiplet. This assumes that there are no lines that are orders of 

magnitude different in f value, for in this case the adiabatic theorem 

may not be satisfied for all lines simultaneously. However if the f 

values lie within the same order of magnitude, the r vectors can be 

made to follow the effective field as it rotates down toward the plane, 

and in this fashion a more "accurate" ~/2 pulse may be achieved. 
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Unfortunately, the field strengths that are experimentally attainable 
' . 

could hardly be classified as "very intense" compared to normal EPR 

linewidths encountered in ODMR, and some compromising must still be done. 

2. Driving Field Inhomogeneities 

This problem arises entirely from the traditional method for 

coupling microwaves to the sample through a slow wave helix. If one 

molecular system is to be studied extensively,it would be well to 

sacrifice the broadband characteristics of a slow wave helix for a cavity 

that would be homogeneous, but unfortunately, a cavity does not have 

as high H1 field strengths as a helix. In some cases the "fan" caused 

by inhomogeneous broadening may be "folded back" by phase shifting 

180° in different parts of the pulse sequence. This is the basis for 

the "rotary echo"73 which is simply a periodically phase shifted 

transient nutation. The probe pulse echo could also utilize this 

3. Orientational Effects 

Much of EPR is done in rigid glass matricies, but, as was demonstrated 

earlier, a random array of "polarized transitions" in zero field will 

not yield a particularly useful transient nutation in zero field. 

Coherence experiments must therefore be done in single crystal systems, 

in which there is a regular array of "oriented" molecules. Even in 

single crystal systems, however, orientational effects will still occur 

from the translationally inequivalent molecules within the unit cell. 

This problem may be exemplified by considering a single crystal of 

durene, in which a small percentage of 1,2,4,5-tetrachlorobenzene (TCB) 
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has been introduced. Since the.relative sizes of the two molecules are 

the same, TCB molecules are arranged within the lattice by substituting 

for durene molecules, and.one must therefore consider the durene 

crystal· structure in order to determine the orientational effects on 

the TCB transient nutation. 

Durene is monoclinic with two molecules per unit cell, and belongs 

74 to the space group P21/a. The unit cell dimensions are 

a = 11.57 A 
0 

b = 5.77 A 
0 

c = 7.03 A 
0 

B = 113° 18' 

The general atom positions are listed in Table I. This table also lists 

the direction cosines of each molecule in the unit cell with the 

orthogonal crystal axis system a,b,c' and also the direction cosines 

and associated angles of the molecules with respect to each other. 

Table I reveals that a transition associated with the x axis of 

TCB doped substitutionally in durene could have strong orientational 

effects since the transition moment directions are nearly orthogonal. 

Figure 18 illustrates the frequency spectrum of effective nutation 

frequencies that would result from a linearly polarized driving field 

that is inftially applied (0°) along the x axis of one of the 

molecules of the unit cell with strength w~. The crystal is then rotated 

about the c' axis, which roughly corresponds to the z axis· of both 

molecules, and Fig. 18 gives the nutation frequencies as a function of 
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Table I. Durene Crystal Structure 

a =11.57 
0 

b =5. 11 
0 

c =7.03 
0 

GENERAL POSITIONS (in unit cell dimensions) 

a b c I 
1 0.188 0.314 0.267 

2 0.093 0.157 0.127 .5 

3 . o. 037 -0.005 0.212 

4 ·-o.o55 -0.162 0.090 

5 -0.108 -0.325 0.194 

Direction Cosines for Molecule 1 

xl Y_l zl 

0.7459 -0.6619 0.0739 

0.6552 0.7492 0.0973 

-0.1168 -0.0207 0.9929 

Molecule 2 

[ x2 
y2 

"2 ] -0.7459 -0.6619 -0.0739 

0.6552 -0.7492 0.0973 

-0.1168 0.0207 0.9929 

a 

b 

c' 

z 

3 

a 

b 

c' 

Between 1 and 2 Associated Angles 

[ x1 
yl 

"1 ] -0.1237 -0.9918 0.0274 x2 [ 97.1 172.7 

0.9918 -0.1225 0.0356 y2 7.3 97.0 

-0.0274 0.0356 0.9991 z2 91.6 ·88.0 

88.4] 
88.0 . 

2.4 

i . 
i 
1 

.~· I 
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the angle of rotation, e. As the crystal is rotated, the two .nutation 

frequencies reflect the respective projections of the polarized 

driving field direction on the x axis of each molecule in the unit cell, 

Eq. (36). 

The observed transient nutation resulting from the contributions 

of these two nutation frequencies would exhibit a characteristic "beat" 

pattern. This is exemplified in curve (a) Fig. 19 which is a plot of 

the function 

f(t) = -e-t/. 3 (coslOrrt + cos5~t) (109) 

in which one nutation frequency was arbitrarily chosen to be twice the 

other. Curve (b) is the Fourier transform power spectrum of curve (a) 

and of course reflects the two frequency components that were 

introduced into curve (a). In taking the Fourier transform of (a), 

the data l.lere purposely "phase-shifted" by starting at the position 

indicated by the arrow, and an incorrect baseline was artificially 

introduced to simulate experimental conditions. These factors have the 

effect of introducing a false zero frequency component and distorting 

the lineshapes. Since experimental data never begins right at the "top" 

of the cosine function, this apparent phase shift introduces both 

absorbtive and dispersive (real and imaginary) components in the Fourier 

transform necessitating the use of the power spectrum which is the 

absolute value of the complex Fourier coefficients. 

An experimental optically detected transient nutation that reflects 

this orientational dependence is given in Fig. 20(a) and its Fourier 

transform is given in (b). Here four, rather than the expected two 
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Fig. 19. Top: Transient nutation resulting from the superposition 
of 2.5 and 5 Hz nutations. An arbitrary damping factor has 
been added to simulate experimental conditions. 
Bottom: Fourier transform power spectrum of top trace , 
reflecting the two nutation frequencies. Experimental 
conditions were again simulated by starting the Fourier 
transform at the point indicated by the arrow and 
introducing a false baseline indicated by the dashed line. 
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frequency components are present. This is most likely caused by crystal 

"twinning" or two different kinds of lattice sites~ Curve (c) is the 

Fourier transform of an experimental transient nutation that reflects the 

two molecules in the unit cell. It might be mentioned that the 

transient nutations exhibited in Fig. 10 have single nutation frequencies 

because the transition is associated with the z axis in TCB, the axes being 

roughly parallel in the durene unit cell (2.4° from Table I). A slight 

beating effect may be seen on the on-resonance "tail" of the nutation. 

For other transitions, a single frequency may be obtained by rotating 

the crystal to the proper orientation, A-D, as illustrated in Fig. 18. 

Table II lists the same parameters for TCB crystal as were given in 

Table I for dutene ., 

The angularly dependent nutation frequencies illustrated in Fig. 18 

suggest that the exact directions of the transition moments could be. 

obtained from the Fourier transforms of a set of zero-field transient 

nutations and knowledge of the crystal structure, much in the same way 

as is done in high-field EPR measurements of the ~m = ±1. transitions. 

Thus, in theory the complete anisotropic g-tensor could be mapped out 

in zero field. Several problems would have to be overcome before this 

method would prove practicable. First, a linearly polarized, homogeneous, 

strong driving field would have to be produced either by building a 

fast response cavity or improving helix design. In addition the 

microwave driving field devic·e must also contain some kind of goniometer 

for orienting and rotating the crystal sample with respect to the linearly 

polarized field. For such purposes an exponential horn arrangement 
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0.4 
TIME (I' II C) 

a 

c 

20 

XGL 755-6286 

Fig. 20. a) Experimental Transient nutation that reflects several 
nutation frequencies. b) Fourier transform of this 
nutation. c) Fourier transform of a transient nutation 
reflecting the two molecules in the durene unit cell. 
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Table II. TCB Crystal Structure 

a =3.85 
0 

b =10.60 
0 

c =9. 73 
0 

GENERAL POSITIONS (in unit cell dimensions) 

a b c I 
1 -0.0272 0.2805 0.0915 

2 0.4246 0.0690 0.2985 

3 0.1680 0.0290 0.1320 

4 -0.0113 0.1250 0.0380 

5 0.1950 -0.0921 0.0830 

Direction Cosines 
xl yl zl 

[ 0.9014 0.2319 -0.:3602] a 
0.0970 0.7086 0.6989 b 

0.4111 -0.7101 0.5717 c' 

x2 Y2 z2 

r-0.9014 0.2320 0.3602] a 
0.0969 -0.7087 0.6989 b 

0.4112 0. 7099 0.5718. . c' 

8=103.28° 

z 

5 

Between Molecules Associated Angles 
xl yl zl 

[-0.8885 0.3287 -0.3294 J x2 [153.1 70.8 109.3 J 
-0.3287. -0.0043 0.9426 Yz 109.2 90.2 19.5 

0.3293 0.9426 -0.0082 z2 70.7 19.5 90.4 
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75 introduced by El-Sayed et al. for polarized studies might prove most 

practical, although field strengths would present a problem. The zero 

field transitions must not contain multiplet structure with different 

f values, for this would also create a spectrum of nutation frequencies. 

Of course in theory this consideration may be taken care of by 

·calculation. 

As a final remark it should be noted that the intensities of the 

nutation frequency spectrum would reflect the number of molecules 

contributing to a particular frequency only if the molecules are 

excited uniformly. The effects of singlet absorbtion selection 

rules, the polarization of the exciting light, excitation mechanisms, 

and the geometry of the optical viewing apparatus all play a part in 

the intensity contributions to the Fourier transform peaks. For 

example, the crystal may be excited by linearly polarized light 

propagating along the x· axis in the laboratory with the phosphorescence 

viewed along the y axis. The 'only molecutes that can be "seen" by 

the spectrometer are those molecules whose singlet transitions may be 

excited by the x-propagating light and, in addition,have the proper 

phosphorescence polarization to allow y-propagation to the spectrometer. 

The intensity will be weighted according to the appropriate 

projections. To complicate things further, the crystal will have 

depolarization effects, and, for doped systems, additional consideration 

must be given to the situation in which the host is excited and 

transfers excitation toguesttraps via polarization selection rules. 

This latter "problem" may be used to advantage in the study of exciton 
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trapping by effectiveiy isolating translationally inequivalent exciton 

chains with. the transient nutation and selective optical excitation. 

G. Experimental Methods and Techniques 

In the following section, details of the experimental apparatus used 

to measure coherence in excited states by optical detection are presented, 

and the general set-up for a pulse spectrometer and the methods used 

to obtain coherence information are discussed. 

1. Apparatus 

The conversion of a cw optically detected magnetic resonance 

spectrometer to a pulse spectrometer is quite simple because the optical 

detection feature of the instrument completely avoids "cavity" and · 

detection system overload problems encountered in conventional ESR 

pulse spectrometers. Only a pulse generator, a fast microwave switch 

device, and a high power microwave amplifier are required in addition 

to the nortll!il cw setup. The experimental details of the cw spectrometer 

b
. d 1·. 76 have een describe e sewhere. A block diagram of the pulse 

spectrometer is given in Fig. 21. 

The heart of the pulse spectrometer lies in the pulse sequence 

unit, which generally consists of a device constructed from transistor-

transistor logic integrated circuit chips. These devices are quite 

easy to design, simple to build, and are exceedingly reliable as far as 

"homemade" equipment is concerned. Logic circuit diagrams for a 

number of these devices are illustrated in Figs. 22-24. For experiments 

41 such as the Carr-Purcell train, it is necessary to sweep the probe 

pulse linearly in time relative to the strobe pulse at pulse separations 
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OPTICALLY DETECTED MAGNETIC RESONANCE PULSE SPECTROMETER 
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Fig. 21. Block diagram of an optically detected magnetic 
resonance pulse spectrometer. 
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of several hundred microseconds. The jitter in this interval must be 

less than 10 nsec for accurate recording of echoes. A device with this 

capability is shown in Fig. 22. The strobe pulse opens a gate that 

allows a train of pulses produced by the 1 MHz crystal clock to pass 

through. The lower part of the circuit takes only the first pulse 

• in the train and produces a "zero-time" pulse. The upper part of the 

circuit keeps track of the number of pulses, spaced 1 ~sec in time, 

by counting down from a number preset with six decade thumb switches. 

When the counter reaches zero, a pulse is produced, thus providing a 

digital time delay from 0 to 1 sec in steps of 1 ~sec. This delayed 

pulse shuts the gate before any more pulses arrive at the counter, 

reloads the counter, and activates a monostable multivibrator having 

aprecision 10-turn variable resistor and several possible capacitors 

in the timing circuit. This allows one of several continuously 

variable delay ranges to be added to the digital delay. The zero-time 

pulse circuit utilizes the same capacitance timing circuits without 

the variable resistor plus an additional delay labelled "trim" so 

that the two pulses can be overlapped in time, should it become necessary. 

The center circuit produces a variable pulse that ranges from zero to 

the maximum time determined by the Vftriable resistor-capacitor combination 

and is valuable for producing transient nutations. A synchronous clock 

motor attached to the variable resistor provides a convenient way to 

sweep linearly in time. 
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Figure 23 .illustrates circuits for a transient nutation and a 

probe pulse echo shape. As in the previous circuit, the time base is 

controlled by a variable resistor combined with a SN74121 monostable 

multivibrator. 

The'echo maximum decay curve pictured in Fig. 14 can be convieniently 

measured by constructing the circuit illustrated in Fig. 24. '!'his 

circuit maintains a synunetrical time interval between the three pulses, 

insuring that the probe pulse stays on the echo maximum. The device 

picks out three pulses from a pulse oscillator whose period may be 

expanded finearly with a variable resistor. 

Table III gives descriptive information on the equipment pictured 

in Fig. 2. It is important to use high isolation PIN diodes such as 

Hewlett Packard 33124A. Often, two or more of these diodes are placed 

in series in order to prevent feedthrough which would cause partial 

or total saturation of the microwave transition when the switch is in 

the off position. The PIN diodes are controlled by the pulse generator 

output into a DM 8830N buffer in conjunction with a National 

Semiconductor·corporationDH0035C PIN diode switch driver using the 

circuit given in the driver data sheet. This particular system 

provides relatively clean pulses with rise times on the order of 15 nsec. 

Flexibility in the pulse sequences used is made possible by the 

four-channel phase shifter illustrated in Fig. 25. Each of the PIN 

diode switches is controlled by a separate driver. Thus, any part of 

the pulse sequence may be phase shifted by 0°, 90°, 180°, or 270°. 

This is essential for experiments such as the Carr-Purcell echo train 
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Table III. Details on the Equipment represented in Figs. 21 and 25. 

Figure 21 Equipment 

Hg arc lamp: PEK 100 watt high pressure. 

Filters: 4 em H2o, 2800 A or 3100 A Schott interference. 

Spectrometer: Jarrell-Ash 3/4 meter Czerny-,rurner. 

Photomultiplier: EM! 6256S with cooled (-20°C) housing. 

Lock-in amplifier: PAR model HR-8. 

Oscilloscope: Tektronix 454. 

50 n rigid coaxial line: Micro Delay Division, Uniform Tubes, Inc. 

Isolators, directional couplers, bandpass filters: Hewlett-Packard 
(HP) and Narda Corporation. 

Microwave generator: HP 8690B sweep oscillator with plug:-ins. 

Frequency counter: HP ·s245L with plug-ins. 

Precision crystal clock: obtained from frequency counter standard. 

1 w:attand 20 watt microwave amplifiers: Varian TWT with separate 
high voltage floating power supplies. 

PIN driver circuits: see text. 

Recording devices: Roytron paper tape punch, HP 7iOOB strip chart 
recorder. The analog to digital converter, strobe pulse 
generator and pulse generator were constructed from transistor­
transistor logic devices. 

Figure 25 Equipment 

Hybrid tees: Anaren Corporation. 

Constant impedance adjustable lines: General Radio 874-LKlOL 

Variable attenuators: Narda model 792FF. 

PIN diodes: HP 33124A high isolation (often two or more of these 
diodes are placed in series in order to reduce microwave leakage 
in the "off" configuration). 
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Fig. 25. Block diagram of the four-channel phase shifter. 
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with the Meiboom-Gill modification, 71 in which the 'IT refocussing 

pulses are phase shifted by 90° from the initial 'IT/2 pulse. Multiple 

42 phases are also required for spin locking and adiabatic demagnetization 

77 in the rotating frame. Phase adjustments are made by observing the 

response of a crystal diode detector to the output of the network 

when separate channels are switched on individually and to the resultant 

signal when two channels are opened concurrently and added together. 

Theproce~ure is as follows: the individual signals from two 

channels beingcompared are equalized by adjusting, the variable attenuators 

in the lines. Combining two signals phase shifted by 180° produces 

zero detector output, and 0° phase shift produces the maximum combined 

output which varies from 2-4 times the output due to' individual channels, 

depending on the total incident power and the response characteristics 

of the crystal. A 90° phase shift produces an intermediate signal. 

In three-channel experiments, an accurate 90° phase shift can be obtained 

by adjusting the phase of the signal in question, A, relative to two 

other signals, B and C, which are set to be 180° out of phase. One 

· merely adjusts the phase of A until the crystal detector responds 

equally to A+ B and A+ c. In two-channel experiments, the 90° phase 

shift can be achieved by setting the length of the adjustable line 

halfway between 0° and 180° positions. Alternatively, the ODMR echo 

or sp~n.lock signal itself, whose amplitude will be phase sensitive, 

can be used to set the phases. 
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2. Sample Preparation 

Compounds of 1,2,4,5 tetrachlorobenzene (TCB) and 1,2,4,5 

tetramethylbenzene (durene),· were purified by extensive zone refining 

("'·300 passes). -Deuterated TCB was synthesized by five exchanges with 

concentrated o
2
so

4 
at 150°C under a nitrogen atmosphere. 78 The 

concentrated o
2
so

4 
was made by distilling a stoichiometric amount of 

79 so
3 

into 99.98% o
2
o under nitrogen. The d

2 
TCB was then zone refined 

in the same fashion as TCB and durene. Other compounds were obtained 

commercially except for 2,3, dibromoquinoxaline,_which was synthesized 

and purified by Dr. Robert Chen. 

All samples were prepared by growing single crystals in a 

Bridgman furnace, and a combination of cleaving and cutting were used 

to form the crystal to a size that could be inserted inside a slow wave 

helix. 

3. Methods 

The methods used to measure coherence optically can be divided 

into two parts. This division is based on the relative time scale of the 

experiments. For pulse sequences, such as the spin echo, that last times 

·much less than the lifetimes of the states, a lock-in amplifier is used 

to monitor the final value of the phosphorescence. Experiments that 

involve sequences that last for times on the same order or longer than 

the triplet state lifetimes, such as the spin locking experiment, are 

best recorded as transient waveforms on a digital CAT. 
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For short sequences the procedure is as follows: The optical 

spectrometer is set on one of the lines in the phosphorescence spectrum, 

and the microwave sweeper is tuned to the appropriate resonance frequency 

associated with one of the triplet state transitions. A strobe pulse 

generator, which can be a square wave, is used to initiate a pulse 

sequence device and also serves as a reference frequency for the lock-in 

amplifier. The reference frequency is largely determined by the 

triplet state lifetime, the period being roughly determined as five 

times the average of the lifetimes of the states involved. Since the 

pulse sequence lasts only on the order of microseconds, it is reasonable 

to neglect changes in phosphorescence during the sequence. Thus, on 

the timescale of milliseconds, the entire pulse sequence is completed 

"instantly~' and the final value of the phosphorescence, which is 

proportional to the coherence remaining in the ensemble at the time the 

probe pulse was applied, will decay towards the steady-state value 

present in the absence of microwaves. The strobe then initiates another 

sequence, and this repetitive signal may be fed into the lock-in 

amplifier resulting in a DC signal that is proportional to the 

coherent component at the time the probe pulse was applied. If the 

probe pulse isnow swept slowly, the DC signal from.the lock-in will 

trace out an echo shape, transient nutation, or whatever experiment 
I 

is being done. Figure 26 illustrates the actual "spikes" that are fed 

into the lock-in amplifier. In some situations it is advantageous 

to eliminate a large baseline by performing a two part series that 

results in '.'on echo maximum", "off echo maximum" and monitor at half 
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OPTICALLY DETECTED ELECTRON SPIN ECHO 
IN THE 37T 7T* STATE OF h2 -TCB {y -trap) 
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Fig. 26. Photomultiplier output observed in an optically detected spin 
echo experiment. The first spike is observed when the three 
pulses are equally spaced, so that the probe pulse occurs at 
the rephasing time, T, after the TI refocussing pulse, i.e., 

·on the echo maximum. The second spike is seen when the probe 
pulse is applied off maximum at T + 2 ~sec. The two spikes 
result from separate three pulse sequences, applied several 
hundred milliseconds apart. 
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the strobe frequency. 

The long pulse sequences are done in a similar fashion except that 

the repetitive transient response is recorded on a time averaging 

computer rather than being fed into a lock-in amplifier. The forms in 

Fig. 17 were recorded in this fashion. 

It might be noted that the first step in any coherence experiment 

is to perform a transient nutation. This insures that the system is 

coherentlycoupled and provides the necessary times for rr/2, 1T, etc. 

pulses. Often times it is useful to employ an in-line "trombone" 

impedance matching device in order to couple the helix most efficiently 

to the microwaves. Optimum conditions may be determined by ad~usting 

the lock in signal to a maximum for a pulse time w1t < rr/2, since in 

this case the signal will always increase if the driving field power 

is increased • 

. I 
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APPENDIX A 

Evaluation of the Exponential Matrix 

The'exponential matrix resulting from the general solution to 

Eq. (69) ~iven in Eq. n9) is of the form exp(At) where the matrix A 

is given by the 4X4 matrix 

A = 

.;..K 
y 

-ifw . 1 
2 

1 
T 

y 

The Theorem 

-K -i~w 
A 

-~ 

-ifw 
1 

2 

-ifw 
1 

2 

-~ 

1 
T 

X 

-K 
X 

Theorem 2 from Putzer52 is easiest to use in this case and will 

be repeated here. For an nxn matrix, A, 

where 

p = 
0 

P. = 
J 

At 
e = 

n-1 
~ rJ.+l (t)PJ. 
j=O 

nxn identity matrix, I 
j 
n (A-f.ki) j=l, ••• n 

k=l 



0 0 

-121-

r
1

(t), ••• rn(t) is the solution of the triangular system 

. = >.lrl rl 

rj = rj-1 + >.jrj j=2, ••. n 

initial conditions r
1

(0)=l r, (0)=0 j:#l 
J 

and >.
1

, ••• >. are the eigenvalues of the matrix A. It is worth mentioning n . 

several special cases of theorem 2. 

At e 

(2) All eigenvalues distinct 

At e where 

note that any 2x2 matrix satisfies either (1) or (2). In particular 

the Hermitian matrix 

has.the explicit exponential form 

iHt iat e = e 

where 

[

coswt +* i (a:) 

ib sinwt 
w 

a= 2.:!:£ 
2 

sinwt 
ib - sinwt w 

coswt + i(c-a) 
w 
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if w=O the matrix collapses to the proper form by observing that 

lim~ sinwt/w = t. This is useful for evaluating the unitary operators 

U and SEq. (15) and Eq. (19). 

For the 4X4 matrix the problem breaks up into threemain groups: 

solution of the eigenvalue problem, calculation of the r.(t), and 
J 

calculation of Pj. 

Eigenvalue Problem 

The characteristic equatio11 for the matrix A yields a fourth order 

polynomial in A. 

where the coefficients are given by 

c3 = Kx + Ky + 2KA 

c2 = KA2 - K2 + 11w
2 + 2KA(K +K ) + K K - 1/ (T T ) 

TI X y X y X y 

c
1 

= (K +K )(KA2-r+l1w2) + 2KA(K K - 1/ (T T ) ) . 
X y -TI X y X y 

f2w2 
+ ----2 l [2(KA + K_) + (K - 1/T ) + (K - 1/T )] 

-TI X X y y 

C = (K K -1/(T T ))(KA2-K
2

+11w2) + (f2w
1
2/2)[(K.· -1/T) + (K -1/T )] 

0 X Y X y -TI X X y y 

Since the coefficients are all real, the quartic equation may be solved 

by the following algorithm: first solve the cubic ·· 

y
3 

- c2y
2 

+ (c1c
3

-4C
0

)y - C~C0 - 4C2c0 - ci = 0 

using any root of y find R = ~C~/4 - c2+y 



and the roots are 

Al = -c3/4 + R/2 + D 

A2 = -c3/4 + R/2 - D 

Once the eigenvalues are obtained, 
• 

to the five possible cases 

Case (1) Al' A2' A3' 

(2) Al' Al' A2' 

(3) Al' Al' A2' 

(4) Al' Al' Al' 

(5) Al' Al' Al' 

Calculation of the r .ffi 
J 

A4 

A3 

A2 

A2 

Al 

-123-

if R=O 

D - t ~!$- 2c2 + z,J/-4c
0 

E = _! ... he; - 2C 2 ,_ 4 2 

A3 = -C/4 - R/2 + E 

A4 = -c3/4 - R/2 - E 

they must be classified according 

The calculation for each r. always involves a first order 
J 

differential equation of the form 

i: - Ar = f(t) 

which has the general solution 

r = .e't lt ' ' 1\ f (t '·)e-At dt' 
0 
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and the various r. are obtained through successive integration. 
J 

The problem falls naturally into the five.cases listed above and the 

results are summarized in the following Table. 

(1) 

(2) - (5) 

(1) 
r = 

3 

(4) '(5) 
2 Alt 

(2) 

r = t e /2 
3 

A
1

t A2t A
3

t 2 
r4 = te /[(Al-A2)(Al~A.3)] + (e -e )/[(Al-A2) (A2-A3)] 

A t A t · 2 Alt A.3t . 2 
- (e 1 -e 3 ) /( (Al-A2) (Al-A3)] - (e -e ) /[ (A.l-A.2)(Al-A.3) ] 

(3) . A1t A2t 2 . A2t A1t 3 r 4 = t(e +e )/(A
1

-A2) + 2(e -e )/(A.1-A2) 

(5) 3 Al t 
r = t e /6 

4 
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Calculation of the Pj 

The following table summarizes the procedure for each case. 

First define the matrix B. 
J 

B. :: (A-A.I) 
J J 

then for each case the P. are given by 
J 

Case 

(1) 

(2) 

(3) 

(4) 

(5) 

p 
0 

I 

1 

B2Bl 

I Bl 
B2 

1 
1 

I 

and finally the exponential matrix is given by 

B3B2Bl 

2 
. B2Bl 

B3 
1 
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APPENDIX B 

Computer Program for General Solutions 

The program follows very closely the treatment outlined in 

Appendix A, and is liberally interspersed with conunent cards that describe 

what is being done. It should be noted that the inhomogeneous lineshape 

integration is time consuming by its very nature and a relatively 

small number of isochromats have been taken (N=24) as a result. This 

limits the accuracy to about 7% so care must be excercised when 

"new effects" are discovered with the program. 

A problem is present in the quartic solution subprogram that is 

a result of round-off errors. It is the author's belief that this 

subprogram should be replaced with another method for determining the 

roots of a polynomial in order that it will behave for all magnitudes of 

the coefficients. As the program stands now it will work for quantities 

of order unity or higher and the parameters should be scaled to conform 

to this restriction. 
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DIMENSION Rl6),AYC10rlOI,PClO,lO,lOI,RHOOllOI,RHOSll01,~00TilOI, 
1 B2110,101•B311C,lGitARilO),EVOC10tl01tRH0110) . 

COMPLEX AY,P,RHOO,RHOS,ROOT,B2,B3,AR,EVO,RHO,ZERO,TYME,EI,EIIo 
* ~lii,EJV,LioLiltLIIltLIV,SAYl,SAYII 

COMMON /SHP/ I:IEE,CANORM,N,T2S 
DATA PIE/1721 6220 7732 5042 0550 8/ 

C CALCULATES R-VECTOR COMPONENTS WITH FEEDING,DECAY,AND RELAXATION PARAMETERS 
C USES EITHER REGULAR OR MODIFIED BLOCH EQUATIONS 

C DATA IS ReAD 1N AS FOLLOWS 

C .IRST CARD ~ElC.~ PHYSICAL PROPERTIES 
C XK=DECAY CONSTANT FROM LOWER LEVEL 
C YK=DECAY CONSTANT FROM UPPER LEVEL 
C FX•FEE~ING RATE TO LOWER LEVEL 
C FY=FEEDING RATE TO UPPER LEVEL 
C T2=HOMOGENEOUS RELAXATION TIME 
C T2S=INHOMOGENEOUS RELAXATION TIME 
C IF T2S=O INTEGRATION OVER INHOMOGENEOUS LINE IS. NOT PERFORMED 
C TX=LIFETIME FOR DECAY FROM LOWER TO UPPER LEVEL 
C TY=LIFETIMf FOR DECAY FROM UPPER TO LOWER LEVEL 
C FOR CONVIENIENCE, lERO VALUES OF THE TIME PARAMETERS IMPLIES THAT 
C THEIR RECIPROCALS ARE ZERO. ANY NUfi!BER OF PULSE CONDITONS HAY FOLLOW 
C -~A NEGATIVE VALUE FOR XK TERMINATES THE PROGRAM. 
C SECOND CARD 12r8X,5El0o0t12 PULSE CONDITIONS 
C INI·T NEGATIVE ALLOWS COMPONENTS TO BE READ IN 
C lNlT ZERO CALCULATES INITIAL STEADY-STATE VALUES FROM FEEDING AND 
C DECAY PARAMETERS. RONE AND RTWO ARE SET TO ZERO 
C INIT POSITIVE USES R-VALUES FROM PREVICUS PULS~ AND PHASE-SHIFTS 
C THE DRIVING FIELD BY PHI*PIE 
C WI=.DRIVING FIELD FREQUENCY IN HZ. NEGATIVE VALUE CAUSES NEW SET OF. 
C PHYSICAL PROPERTIES TO BE READ IN 
C OELW=AMOUNT OFF RESONANCE IN HZ 
C TINT=TIME INTERVAL. PRINTOUT WILL GIVE STATUS OF SYSTEM EVERY TINT 
C TSTOP~TOTAL LE~GTH Of' PULSE. PRINTS EVERY TINT UNTIL TStOP IS REACHED 
C IF TINT=TSTOP ONLY THE INITIAL AND FINAL R-~ECTOR COMPONENTS ARE 
C PRINTED. THEFINAL VALUES ARE RETAINED FOR THE NEXT PULSE. 
C PHI=PHASE SHIFT ANGLE CPHI*PIEIIFOR 90 DEGREE PHASE SHIFT PHI=0.51 
C MOO=O IMPLIES THAT T2 ALONG THE DRIVING FIELD DIRECTION IS ZEROCMODIFID 
C MOD=OTHERWISE IMPLIES NORMAL BLOCH EQUATIONS 
C THIRD .CARD Clf NECESSARY) INITIAL VALUES OF R COMPONENTS 
C RONE,RTWO,RX,RY 4ElO.O 
C THUS CARDS ARE AS FOLLOWS PHYS PROP,PULSE CONO,CINIT VAllrPULSE,CI~IT VALl •• 
C ooPHYS PROP,ETC 
C **IMPORTANT** TO TERMINATE THE PROGRAM NEGATIVE VALUES FOR WI AND XK MUST BE 
C READ IN AS THE LAST TWO CARDS IN THE DATA SET 

ZERO•CMPLXCO.,O.) 

C SET UP THE FIRST P MATRIX WHICH IS THE IDENTITY MATRIX 



DO 101 J=1,4 
PC1,J,JI=CMPLXC1.,0.1 
JJ=J+1 
IFCJJ.GT.41GO TO 101 
DO 102 K=JJ,4 
PC1,K,JI=ZERO 
Pll,J,K.I 2 ZERO 

102 CONTINUE 
101 CONTINUE 
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C ~EAD IN PHYSICAL PROPERTIES AND ESTABLiSH CONSTANTS TO BE USED 

9 READ lO,XK,YK,FX,FY,T2,T2S,TX,TY 
IFCXKI1,2,2 . 

<' TT2=0. 
· nx=o. 
TTY=O. 
TEE=O. 
TAU=O. 
IFCT2.NE.C.)TT2•1./T2 
IFCTX.NE.O.)TTXz1./TX 
IFCTY.NE.O~ITTY=1./TY 
AK= ( XK+YK I /2. 
BIGKY=VK+TTY 
BIGKX=XK+TTX 
lf·CAK.NE.C •• OP.TT2.NE.O.ITEE=1./lAK+TT21 
IFCCYK.NE.O •• AND.TTX.NE.O.I.OR.CXK.NE.O •• AND.TTY.NE.O.I 

* .OR.CXK.NE.~ •• AND.YK.NE~O.IITAU=AK/(XK*YK+YK*TTX+XK*TlY) 
SAVEX=FX 
SAVEY=FY 
PRINT 50,XK,YK,FX,FY 
PRINT 70,T2,T2S,TX,TY 
PRINT 100,TEE,TAU 

C ESTABLISH NORMALIZATION FACTOR FCR SHAPE FUNCTION 
C FUNCTIONS SUBROUTINE SHAPE CAN BE AN EMPIRICAL OR AN~LYTICAL SHAPE 
C THAT RETURNS A VALUE FOR EACH J 

BEE=12. 
N=24 
KINT=2*N+1 
NUM=N-1 
CANORtl.=l. 
IFCT2S.EQ.O.IGO TO 43 
ANORM=O. 
DO 41 J=l,KINT 
ANORM=ANORM+SHAPECJI 

41 CONTINUE 
CANORM=l./ANOPH 

43 CONTINUE 

C kEAD IN PULSE CnNOITIONS AND ESTABLISH INITIAL VALUES. SR STORES THE R--
C VECTOR COMPONENT VALUES FOR EACH ISOCHROMAT. 

22? READ 20,INIT,WI,DELW,TINT,TSTOP,PHI,HOD 
IFCWII9,6,13 



p 0 0 ~; • 0 

13 IFCMOUI8,ll,6 
ll TT2E=~·. 

GO TO 12 
fJ TT2E=TT2 

0 
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12 CONTINUE 
IFCT2S.EQ.O.IKINT=l 
IFC INITI3,4,5 

3 READ lO,RCli,RI21,RC31,RI4) 
GO TO 6 . 

4 R C 11 :(, • 
. R I 21 =0. 

C TAKE c•RE OF PATHOLOGICAL CASES 

R( 3)a(' • 
R ( 41 :( • 
IFCAK.EQ.O.IGO-TO 301 
IFIXK.EQ.C'.IGO TO 302 
IFIYK.EQ.O.IGO TO 303 
RI31•1FX*aiGKY+FY*TTYI*TAU/A~ 
RI41•CFY*BIGKX+FX*TTXI*TAU/AK 
GO TO 3Cl 

302 IFITTX.NE.O.IRI31=FY*TTY/I~TX*YKI 
RI41•FY/YK 
GO TO 301 

303 IFCTTY.NE.O.IRI41=FX*TTX/ITTY*XKI 
RI31=FX/XK 

301 CONTINUE 

~ DO 21 J=l,KINT 
JJ=4*1J-ll 
S•SHAPEIJ I 
DO 22 K=l,4 
SRIJJ+KI=KIKI*S 

2£_ CONTINUE 
21 CONTI"'IUE 

GO TO 26 
5 IFIPHI.EQ.O.IGO TO 26 

ANG=PHI*PIE 
CO•COSCANGI 
SI•SINIANGI 
DO 23 J=l,KINT 
JJ•4*( J-1) 
RI=SRCJJ+11*CO+SR(JJ+21•SI 
RII•SRCJJ+21*CO-SRCJJ+ll*SI 
SRIJJ+l)aRI 
SRI J.J+ll =lUI 

23 CONTINUE 
26 PRINT 40,WI,OELW,TINT,TSTOP,PHI 

IF C M0lll24,25,24 
2'i PRINT 80 

GO TO 27 
24 PRINT 90 
27 PRINT 60 

Wl:o2.*PIE*WI 
SDELW=2.*PIE*DELW 



BIGKA=AK+ITT2E+TT2)/2. 
BIGKD=ITT2E-TT2)/2. 
WISQ=WI*WI 
PLUS=B IGK X+B IGK Y 
TIMES=BIGKX*BIGKY-TTX*TTY 
APD=BIGKA+BIGKD 

-130-

C SET UP PART OF THE A MATRIX FOR THE LIOUVILLE OPERATOR 

AYC1,ll=CMPLXC-8IGKY,u.) 
AYC1,~l=CMPLXCTTX,O.I 
AYC2,2l=CMPLXC-BIGKA,~.) 
AYC2,3l=CMPLXC-81GKD,(.) 
AYC3,2l=AYC2,31 
AYC3,3)=AYC2,21 
AYC4,ll=CMPLXCTTY,O.I 
AYC4,4l=CMPLXI-BIGKX,O.) 
WW-=WI/2. 
AYC1r2l=CMPLXCO.,WW) 
AYC1,31=CMPLXCO.,-WWI. 
A Y C 2 , 1 l =A Y C1 , 2 ) 
AYC2,4l=AYC1,3l 
A Y C 3, 1 I =A Y C1 , 3) 
A Y C 3, 4 I =A Y I 1 , 2 l 
AYC4,2l=AYC1,3l 
AY C 4, 3 ) =A Y U rl ) 
SAYI=AYC2,2) 
SAYil=AYC3,31 

C CALCULATE PART OF THE COEFFICIENTS 

CIII=BlGKX+BIGKY+2.*BIGKA 
SCII~2.*BIGKA*PLUS+TIMES+WISQ 
SCI=2.*BIGKA*TIMES+WISQ*I2.*APO+PLUS-TTX-TTYI/i. 
SCO=WISQ*APD*IPLUS-TTX-TTYI/2. 

C NITTY-GRITTY COMPUTATION. If KINT=1t INTEGRATION OVER THE LORENTZ LINE IS 
C NOT PERFORMED CONLY ONE PASS THRU LOOP 281. THE COMPLETE TIME DEVELOP~ENT 
C FOR EACH ISOCHRClMAT IS COMPUTED IN INTERVAL.S OF TINT TO A TOTAL TIME TSTOP 
C AND IS STORED IN THE TWO DIMENSIONAL ARRAY RTIMECK,KT). K SUBSCRIPT DEFINES 
C fHE R-VECTOR COMPONENT AND KT DEFINES THE INTERVAL IN TIME. THEN ANOTHER 
C ISOCHROMAT IS TAKEN, CALCULATED, AND ADDEEO TO RTIM~ 

DO 28 J=l ,KINT 
JJ=4*(J-l) 

C INITIALIZE TIME FOR EACH ISOCHROMAT 

KT=O 
DELW=SDELW 
IFCT2S.GT.O.)DELW=SDELW+BEE*FLOATIJ-N-ll/IFLOATINI*T2Sl 
FX•SAVEX*SHAPEIJ) 
FY=SAVEY•SHAPECJI 

C PULL ISOCHROMAT INITIAL VALUE FROM STORAGE ANO PUT INTO INITIAL 
C DENSITY MATRIX 



0 2 
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RHOO(ll*CMPLXISRCJJ+4l,O.I 
R~0012l=ICMPLXISRIJJ+11,-SRIJJ+2lii/C2.,0.1 
AH0013l=CONJGIRHOOC211 
RHOOC4l=CHPLXCS~CJJ+1),0.1 
Rlli=SRIJJ+ll 
RC2l=SRCJJ+21 
RC3l=SRIJJ+31 
Rl't I =SRI JJ+41 

C FINI~H THE A MATRIX 

AYI2 1 21•SAYI+CMPLXlO.,-DELWI 
AYI3 0 3l=SAYII+CMPLXIO•,DELWI 

C FI~ISH CALCULATION OF COEFFICIENTS 

REP=BIGKA*BIGKA-BIGKO*BI~KD+DELW*DELW 
CII•SC II+REP 
CJcSCl+PLUS*RF.P 
CO=SCO+TIMES*REP 

C CALCULATE THE STEADY STATE DENSITY MATRIX 
C THREE CASES TO CONSIDER 
C CO IS lERO BECAUSE THERE IS NO ~EEDING 

DO 30~ JNF=l ,4 
RHOSIJNFI=ZERO 

304 CONTINUE 
IFIFX.EQ.O •• AND.FY.EQ.O.IGO TO 307 

C NO DRIVING FIELD 

l,IWJ.NE.O.IGO TO 306 
IFCXK.EQ.O.IGO TO 311 
IF~YK.EQ.O.lGO TO 312 
RHOSili=CFY*BIGKX+FX*TTXI*TAU/AK 
RHOSC41=1FX*BIGKY+FY*TTYI*TAU/AK 
GO TO 307 

311 IFCTTX.NE.O.IRHOSI41=FY•TTY/ITTX•YKI 
RHOS 11 I =F Y/YK 
GO TO 307 

312 JFCTTY.NE.O.IRHOSI11=FX*TTX/CTTY*XKI 
RHOS I 4 I =F X/XK 
GO TO 3(17 

C CO IS NOT lERO 

306 A=ICFX*BIGKY+FY*TTYI*REP+WISQ*APD*IFY+FXI/2.1/CO 
RHOSC41=CMPLXCA,O.I 
A•IIFY*BIGKX+FX*TTXI*REP+WISQ*APD*IFY+FXI/2.1/CO 
RHOSCli=CMPLXCA,O.I 
A•FY*CBIGKX-TTYI-FX*IBIGKY-TTXI 
B•A*WI*DELW/ll.*COI 
C•A*WI*APD/12.*COI 
RH0Sl21=CMPLXIB,CI 



RHOSC31=CONJGCRHOSC211 
307 CONTINUE 
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C FIND EIGENVALUES Of THF CHARACTERISTIC EQUATION 

CALL QUARTICCCIIItCIItCI,CO,ROCTI 

C ORDE~ DEGENERACIES AND DETERMINE CASE NUMBE~ 
C NCASE=l FOUR DISTINCT ROOTS 1,2,3 1 4 
C NCASE=2 THREE ROOTS 1 1 1 1 2,3 
C NCASE=3 TWO ROOTS ltlt2t2 
C NCASE=4 TWO ROOTS 1,1,1,2 
C NCASE=~ ONE ROOT 1,1,1,1 
C ROOTS ARE ORDERED, HIGHEST DEGENERACY FIRST, DEGENERACIES NOT REPEATED 

CALL DEGENCROOT,NCASEI 

C WE ARE NOW IN A POSITION TO CALCULATE THE EXPONENTIAL OPERATOR 
C r.ALCULATF. THE 8 MATRICIES 

DO 105 KK=1o4 
DO 106 KKK=lo4 
PC2 9 K~ 1 KKKI~AYCKK,KKKI 
IFIKK.EQ.KKKI PC2 1 KK 1 KKKI=Pl2oKK 1 KKKI-ROOTC11 
IFINCASF..GT.31GO TO 106 
82CKK 1 KKKI=AYCKK 1 KKKI 
IFCKK.EQ.KKKI 82(KKoKKKI=B2lKK,KKKI-ROOTC21 
IFINCASE.NE.11GO TO 106 
83CKK 1 KKKI=AYCKK,KKKI 
IFCKK.EQ.KKKI B3CKK,KKKI=B3CKK 1 KKKI-ROOTC31 

106 CONTINUE 
10~ CONTINUE 

C CALCULATE THE P MATRICIES 

DO 107 KP=1 1 2 
DO 10H KK=1 9 4 
DO 104 KKK=1 1 4 
IFCKP.EQ.21GO TO 111 
Pl3tKK,KKKI=ZERO 
GO TO 112 

111 PI4,K~,KKKI=ZERO 
112 DO 113 KDUM=1t4 

lf(KP.EQ.21GO TO 114 
IFCNCASE.EQ.11GO TO 115 
PI3 1 KK 1 KKKI=PI3 1 KK,KKKI+P(2,KK,KOUMI*PC2,KDUM,KKKI 
GO TO 113 

115 PC3 1 KK,KKKI=PC3 1 KK 1 KKKI+B2(KK,KDUMI*P(2,KCUM,KKKI 
GO TO 113 

114 CONTINUE 
GO TOC116 1 117,117 1 118,1181,NCASE 

116 PC4,KK 1 KKKI=PC4,KK,KKKI+B3(KK,KDUMI*Pl3oKDUM,KKKl 
GO TO 113 . 

117 Pt4,KK,KKKI=PC4,KK 1 KKK1+82(KK,KDUMI*Pl3,KDUM 1 KKKI 
GO TO 113 

11B PC4,KK 1 KKKI=PC4 1 KK,KKKI+P(2 9 KK,KDUMI*Pl3 1 KDUM 1 KKKI 



0 0 

113 CONTINUE 
109 CONTWUE 
108 CONT H!UE 
107 CONTINUE 
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C· THIS BEGINS THE TIME DEVELOPMENT LOOP 

31 KT=KT+ i 
TIME=FLOATIKTI*TINT 
DO 32 'Kz1,4 
IFIJ.N~oliGO TO 72 

11 RTIMEIKrKTI=RIKI 
GO TO 32 

12 RTIMEIKrKTI=~TIMEIK,KTI+RIKl 
. 32 CONTI~UE 

C TEST TO SEE IF TSTOP HAS BEfN REACHED 

IFITIME.GT.TSTOPIGO ro 33 

C CALCULATE COMPLEX- EXPO~ENTIALS TO BE USED AND ABBREVIATE EIGENVALUES 

TYME=CMPLXCTtME,O.I 
LI =RODTC 11 
EI=CEXPILI*TYMEI 
lFCNCASE.EQ.51GO TO 121 
LII=ROOTI21 
EII=CFXPCLII*TYMEI 
IFINCASE.GT.21GO TO 121 
LIII=P.OOTC31 
Elli=CEXPCLIII*TYMEI 
IFCNCASE.GT.liGO TO 121 
L I.V .. ROOTC 41 
EIV=CEXPCLIV*TYMEI 

121 CONT HIUE 

C CALCULATE PUTZEkS R VALUES 

ARili=EI 
1FINCASE.EQ.liGO TO 122 
ARI21=TYME*EI 
GO TO 123 

122 ARC21=CEI-Elii/ILI-LIII 
123 CONTINUE 

GO TOI124,125,125,126,1261,NCASE 
124 ARC31=11EI-Eilii/ILI-LIIII-IEII-Eilli/CLII-LIIlii/CLI-Llll 

GO TO 127 
125 ARI31=1TYME*El+CEII-EII/ILI-LIIII/CLI-LIII 

GO TO 127 
12b ARI31=TYME*ARI21/CMPLXC2.,0.1 
127 CONTINUE 

GO TOI12B,129,13lr132rl331tNCASE 
128 ARC41=CCEI-EIVI/ICLI-LIIII*ILI-LIVII-CE1II-EIVI/CCLI-LIIII 

* *ILIII-LIVII-CEII-EIVI/CCLII-LIIII*ILII-LIVII+IEIII-EIVI/ 
* IILII-LIIII*ILIII-LIVIII/ILI-LIII 

GO TO 134 
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129 ARI4l=ITYME*El/ILI-lllii+IEII~EIIII/IILI-LIII*ILII-Lillll 
* -IEI-EIIIl/llll-LIII*ILI-Lillli-IEI-EIIIl/IILI-lllll*lll-lllllll 
* II ll-llll 

GO TO 134 
131 ARI4l=ITYME*IEI+EIII+CMPLXI2.~0.I*IEII-EII/Ill-lllll/llll-llll 

* *lll-LIIII 
GO TO 134 

132 ARI4l=ITYME*TYME*EI/CMPLXI2.,0.1-TYME*El/ILI-LIII+IEI-Elll/l(ll­
* llll*ILI-LIIIII/ILI-llll 

GO TO 134 
133 ARI4l=TYME*TYME*TYME*EI/CMPLX(6.~6.1 
134. CONTINUE 

C THE FINAL FORM FOR THE t:XPOIIIENTI Ill MATRIX MAV NOW BE CALCULATED 

00 135 KK=1,4 
00 136 KKK=1,4 
EVOIKK,KKKI=lERO 
00 131 KOUM=1,4 
EVOIKK,KKKI=EVOIKK,KKKI+ARIKOU~I*PIKOUM,KK,KKKI 

131 CONTINUE 
13l· CONT lt.!UE 
135 CONT ltJIJE 

C COMPUTE DENSITY MATRIX 

DO 141 KK=1,4 
RHO ( KK l =ZERO 
DO 142 KDUM=1,4 
RHOIKKl=RHOIKKI+EVOIKK,KOUMl*IRHOOIKDUMl-RHOSIKDUMll 

142 CONTINUE 
RHO(KKI=RHO(KKI+RHOSIKKI 

141 CONTINUE 

C CONVERT TO R VECTOR COMPONENTS 

RI11=2.*REALIRH0(7.11 
R12l~2.*AIMAGIRH0(3ll 
Rl3l=REALIRHOI411 
Rl41=REALIRH0(1ll 
GO TO 31 

C fNO OF TIME DEVELOPMENT LOOP. STORE FINAL VALUES OF COMPO~ENTS IN SR FOR 
C NEXT PULSE CONDITION. 

33 DO 34 K=1,4 
SRIJJ+Kl=R(Kl 

34 CONTINUE 
28 CONTINUE 

C PRINT OUT STORED, INTEGRATED VALUES AND READ IN ANOTHER PULSE CONOITION 

DO 35 J=l,KT 
RTHREE=RTIME(4,Jl-RTIHE(3,Jl 
TOT=RTIME(4,JI+RTIMEI3,JI 
TIME•TINT*FLOATIJ-11 



u 
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PRINT 30,TIME,IRTIMEIK,JI,K=lr41,RTHREE,TCT 
35 CONTINUE 

GO· TO 222 
1 CONTINUE 

1( FORMATi8ElO.UI 
2C FORMATII1~,5ElO.O,llOI 
3:· FORMAT I l5X,E9. 3,5X,61El0. 3,4X I I 
~~ FORMATI//,lOXr*PULSE CO~OITIONS WI=*rE8.2~* DELW•*,E8.2,* TINT=. 

* *rE8.2,* TSTOP•*rE8.2,• PHl=*,E8.2,//I 
5J FORMATI//1/,l(X,*FEEOING AND DECAY PARAMETER~ XK=*,EK~2,* YK=*• 

• ea.2,• Fx=•,Es.z,• FY=•,ee.21 
6v FORMATI22X,*T*rllXr*RONE*rlOX,*RTWO*rllXe*~X*el2X,*RY*ol2X, 

* *R3*r9Xe*TOT POP*e/1 . 
1~ FORMATI/,lOX,*RELAX~TJON PARA~ETERS T2=*oE~.2,• T2S=*oE8.2, 

* * TX=*oE8.2o* TY=*oE8.2,/I 
80 FORMAT ILOX,*MilOif JED BLOCH EUUATIONS USEC* ,II I 
90 FORMATILDX,*NORHAL BLOCH EQUATIONS USED*o//1 

100 FORHATI10X,*EFFECT1Vf RELAXATICN PARAMETERS T=* 0 E8.2,* TAU=*• 
1 E8.2,/l 

END 



-136-

SUBROUTINE QUARTJC(Ctii,CII,CI,CO,ROOTI 
DIMENSION ROOT(lO), 
DOUBLE PRECISION A3,42,Al,AO,DUM,DUMI,DUMII,DUMIIItDU~IV,OUMV, 

* A,B,C,RP.,RI,OR,OI,ER,EI , . 
COMPLFX ROOT,CR . 
COMMON /CLAM/ RR,RI,OR,DI,ER,EI,A3,A2,Al,AO 
A3~DB~ECCIIII . 
A2=0BLECCIII 
Al=DBLEICI I 
AO=OBL EICOI 

C REMOVE ZERO ROOTS 
1 DO 4 J=lt 4 

ROOTCJI=(O.,O.I 
4 CONTHHJE 

IFCCII.EQ.O •• AND.CI.EQ.O •• ANO.CO.EU.O.IGC TO 3 
IFCCI.EQ.O •• ANO.CO.EQ.O.IGO TO 5 
IFCCO.fQ.C.IGD TO 6 
GO TO 1 

3 ROOTC41=CMPLXC-Cillt0•1 
RETURN 

5 CALL QUAOCA3,A2,DliM,OUMI,OUMII,OUMIIII 
ROOTC31sCMPLXCSNGL(DUMI,SNGLCOUMIII 
ROOTC41=CMPLXCSNGL(OUMIII,SNGLC00MIIIII 
RETUR~: 

6 CALL CUBICIA3,A2tAl,OUM,OUMI,OUHII,DUMIIItOUMIV,KASEI 
ROOTCli=CMPLXCSNGL(DUHI,O.I 
ROOTI21=CMPLXISNGLIOUMII,SNGLIOUMIIII 
ROOTI31=CMPLXCSNGLIOU~IIIItSNGL(OUMIVII 
RETUR~ . 

C GENERAL QUARTIC 
7 CONTINUE 

A=-Ai 
B=Al*A3-4.DC'*AO 
C•4.0G*AO*AZ-Al*Al-A0*A3*A3 
CALL CUBICCA,B,C,OUM,OUHI,OUMIII,OUMII,OU~IV,KASEI 
OUHV=C.OO 
CALL kOECOUM,OUMV,ROnTI 
RETU~N 

END 

.. 



.. 
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SU~ROUT)NE CUBICIA2,Al,AO,Xl,X2R,X21,X3R,XJI,KAS(I 
DOUBLE PRECISION A2,Al ,AO,Xl, X2R,X2l ,.X3R, X3 I o.R,O,P.E,YM, Sl,S2 

* ~ANG,~HIRD,SIXTH 
TH IiW= L.D0/3,.00 
SlXTH=t.o:./6.00 
R=IA2*14.5DO*Al-A2*A21-13.5DO*AOI/27.DO 
O=lAO*I27.00*AO-lR.00*Al*A2+4.00*A2*A2*A2l+Al*Al*I4.DO*AL 

* -A?*A2li/108.DO 
IFC0)1,2,3 

1 S2=0SQRTI-Dl 
KASEz-1 
Sl=OEXPISIXTH*DLOGIR*R-011 
ANC=OATAN21S2,RI/3.DO. 
REcSl*DCOSIANG I 
VH=Sl*DSINIANGI*DSQRTI3.001 
S2=A2/3.00 
xta·z.oo•RE-52 
X2Ra-RE-S2+YM 
X2l=O.OJ 
X3R=-RE-S2-YM 
X3l=0.00 
RETURN 

2 KASE=I 
1FIRI4,L4,9 

q Sl=DEXPITHIRD*DLOGIRll 
GO TO 5 

4 Si=-DEXPITHIRO*DLOGI-Rll 
GO TO 5 

14 Sl=O.DO 
5 S2=A2/3.DO 

Xl=2.DO*Sl-S2 
X2R=-Sl-S2 
XZI=O.DG 
X3R=X2R 
X3I•O.DO 
RETURN 

3 S1 =R+£l SQR TC D I 
KASE=l 
S2•R-OSQRTCOI 
IF I Sll6rl5,12 

12 Sl=DEXPITHIRD*DLOGISlll 
GO .TO 11 

15 S1=0.DO 
11 IF I 5217,16,13 
13 S2=DEXPCTHIRD*DLOGCS2;l 

GO TO 8 
~. S1•-0~XPCTHIRO*DLOGI-Slll 
1 S2•-DF.XPITHIRD*DLOGI-S21l 

GO TO 8 
16 52=0.00 

8 D=-A2/3.DO 
Xl=-Sl+S2-0 
X2R=-IS1+S2l/2.DO-O 
X21=DSQRTC3.DOI*IS1-S21/2.00 
X3R=X2R 
X31 =-X21 



RETURN 
END 

SUBROUTINE MATCHIA,B,NOPEI 
COMPLEX A,B 
AR=REALIAI 
BR=REAL IB I 
AI=AH1AGIAI 
BI=AIMAGIBI 
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, 

NOPE=l 
IFIAB~IAR-BRI.GT.l~~-08.0R.ABSIAI-BII.GT.l.E-081NOPE=O 
RETURN 
END 

FUNCTION SHAPECJI 
COMMON /SliP/ BEE,CANORM,N,T2S 
FACTo:l. 
IFIT2S.GT.O.IFACT=l.+BEE*BEE*FLOATIIJ-N-li*CJ-N-lii/FLOATIN*NI 
SHAPE=CANORM/FACT 
RETURN 
END 

SUBROUTINE DSQtiX,YI 
DOUBLE PRECISION X,Y,ANG,R 
lfiX.FQ.O.DO.AND.Y.EQ.O.OviRETURN 
IFIY.fQ.O.OOIGO TO 2 
R•DEXPC.25Dv*DLOGIX*X+Y*YII 
ANG•OATAN2(Y,XI/2.DO 
X•R*DCOSIANGI 
Y•R*DSINIANGI 
RETURN 

2 IFCX.GT.O.OOIGO TO 3 
y,.DSQR TI-X I 
X•O.Dl 
RETURN 

~ X=DSQR Tl X I 
RETURN 
END 



.. 
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SUBROUTlNf KDF I YR, Yl ,ROOT) 
DIMENSIO~ ROOTClv) 

-:-139-

DOUBLF PRECISIO~ RR,KI,OR,OI,ER,EI,YR,YI 1 A3eA2~Al,AO,OUM,OUMI 
COMPLI'X ROOT ,CR 
COMMON '/CLAM/ RR,RI,OR,DhER, EI,A3,A2 ,Al 1 Al' 
RRaA3*A3/4.DO-A2+YR . 
Rl•Yl 
CAL( DSQCCRR,Rl) 
OUMI=DABSCA3l+DABSIA2)+0ABSIA1)+0ABSIA0) 
SUM= S~l GLI DUM I l 
JfiCSNGLCRR+Rll+SUMl-SUM.EQ.O.lGO TO 1 
OUM=(A3*14.DO*A2-A3*A31-B.OO*Al)/(4.DO*CRR~RR+Rl*Rl)) 
DR~A3*A3/2.DO-A2-YR+RR*DUM .. 
01=-Rl*DUM-Yl 
ER=A3*A3/2.DO-A2-YR-RR*OUM 
EI=RI*OUM-Yl . 
GO TO 2 

l RR=O.OO 
Rl=O.OO 
OUM=YR*YR-Yl*YI-4.DO*AO 
OUMI=Z.DO*YR*Yl 
CALL OSQCCDUM,OUMll 
~R=3.DO*A3*A3/4.Dr-2.DO*CA2-DU~I 
01•2.0CI*DUMI 
ER=3.1iO*A3*A3/'toDC":-2 .OO* ( A2+0UM l 
EI•-2.DO*OUMI 

l CALL. OSQCCDR,Oll 
CALL DSQC(ER,Ell 
RR.:RR/2.00 
Rl•Rl/2.00 
OR•DR/2.00 
01•01/2.00 
ER•ER/2.00 
El=EI/2.0( 

· OUM•-Al/4.00 
ROOT(l)=CMPLXCSNGLtOUM+RR+ORl,SNGLtRl+OIIl 
ROOTC2)=CMPLXCSNGLCOUM+RR-ORI,SNGLCRI-Dl)l 
ROOT(3l=CMPL~CSNGLCOUM-RR+ERI,SNGLC-Rl+Elll 
ROOT(4)=CMPLXISNGLCDUM-RR-ERI,SNGLI-RI-Eil) 
IFCSUM.EQ.O.)RETURN 
00 3 K =1 1 4 
SAVER'= REALI ROOT (K) I 
A•.SAVFR/SUM 
SAVEI~AIMAGCROOTCKII 
B=SAVEI/SUM . 
IFCABSCAI.LT.l.E-C6)SAVER=O. 
IFCABSCBI.LT.l.E-C61SAVEI•O. 
ROOTCKl•CMPLXtSAVER,SAVEII 

3 CONTINUE 
RETURN 
END 
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SUBROUTINE DEGENIROOT,NCASE) 
DIMENSION ROOT(10J,MARK(4) 
COMPLfX ROOT,SAVE,A,B 
KPASS=O 
MATCHM=l 
LOCK=5 
NCASE= 5 
NDEG=C 

:• NMARK=O 
K=MATCH;,. 

2 K•K+l 
IFIK.FQ.LOCK)GO TO 1 
A= ROOT 110 
a:ROOT(MATCHHI 
CALL MATCH(A,B,NOPE) 
IFINOPE.EO.OIGO TO 2 
NHARK=NMARK+l 
NDEG=NOEG+l 
MARKINMARKI=K 
GO TO 2 

1 KPASS=KPASS+l 
IFIKPASS.GE.21GO TO 8 
IFINDEG.EQ.3)RETURN 
NCASE=4 
IFINOEG.EQ.O)GO· TO 5 

9 00 6 J=l,NMARK 
KDUM=MARKINHARK-J+l) 
IFIKOUM.EQ.LOCK-J)GO TO 6 
SAVE=ROOTIKOUM) 
ROOTIKDUHI=ROOT(LOCK-J) 
ROOTILOCK-JI=SAVE 

t CONTINUE 
MA TCHM =MA TCHM+ 1 
LOCK=LOCK-NMARK 
IFINDEG.EO.ZIRETURN 
GO TO 1 

5 SAVE=ROOTIMATCHH) 
ROOTIMATCHMI=ROOTILOCK-11 
ROOT(LOCK-li=SAVF. 

1 CONTINUE 
GO TO 3 

8 NCASE=3 
IFIINPEG.EQ.ZI.AND.INMARK.EO.liiRETURN 
NCASE=4 
IFINOfG.EQ.21GO TO 9 
NCASE=2 
IFIINMARK.EQ.r I.ANO.INOEG.EQ.liiRETURN 

NDEG=Z 
IFINMARK.EQ.liGO TO 9 
NCASE=l 
A•ROOTIZI 
B•ROOT(3) 
CALL MATCHIA,B,NOPEI 
IFINOPE.EO.OIRETURN 
NCASE=2 . 
SAVE=ROOTill 



0 0 l.) ,{~ 3 0 !',) 

R00Til)=ROOT(2) 
ROOTI2 )~SAVE· 
ROOTI3)~ROOTI4) 

RETURN 
END 

4 :') l. 7 

-141-

SUBROUTINE QUADlAl.AO.XlR.Xli.X2R.X21) 
DOUBLE PRECISION Al.AO.XlR.Xli.X2R.X21.D 

• ;ROUND 
ROUND=lOABSIAl)+DABStA0))/2.00 
D•lAl•Al-4.00•A0)/4.DQ 
IFIIROUNO+O)-ROUND)l•2•3 

l D•OSQRTI-0) 
XlR•-Al/2.00 
Xli•D 
X2R•XIR 
X21•-D 
RETURN 

2 XlR•-Al/2.DO 
Xli•O.OO 
X2R•XlR 
X21•0.Df' 
RETURN 

3 XlR•-Al/2.DO+DSQRTlDI 
Xli•O.OO 
X2R•-Al/2.DO-DSQRT(0) 
X2I•O.OO 
RETURN 
END 
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APPENDIX C 

The following tables list the unitary time evolution 'operator 

Sij(a,<j>) corresponding to a pulse involving the ij transition in the 

zero field tripletstate spin sublevels, on resonance for a= TT/2 and 

a = TT, and with phase <f>. Also listed are the results of applying Eq. (19) 

to a general hermitian matrix, A, utilizing the pulse matricies S .. (a,¢). 
1] 

• 
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s (e ,cp) - xy transition 
xy 

PHASE cp· e = n/2 e = n 
. ,, 

jz> jy> lx> lz> jy> lx> 

1 0 ·o 1 0 0 

•' 12 12 oo ·0 2 -2. 0 0 -1 

0 
12 12 ·0 1 0 

2 2 

1 0 0 1 0 0 

90° 0 12 i/2 0 0 i 
2 2 

0 i/2 12 
I 0 i 0 

2 2 
L. L. 

1 0 0 1 0 0 

180° 0 
12 12 0 0 1 

2 2 

0 
12 12 0 -1 0 -2 2 

1 0 0 1 0 0 

.270° 0 12 -i/2 0 0 -i 2 2 

0 -iii 12 0 -i 0 
2 2 



-144-

(a,<jl) ' s - xz transition xz '' 

PHASE <jl a = 7T/2 a = 7T 

lz> IY> lx> lz> ly> lx> 

12 0 4 0 0 1 
2 2 '• ' 

oo 0 1 0 0 1 0 

~ 0 12 -1 0 0 -2 2 

12 0 -i/2 

r 
0 0 -i 

2 2 

9oo 0 1 0 0 1 0 

12 0 12 l-i 0 0 -i- 2 2 

v'2 0 
12 

0 0 -1 
2 -2 

180° 0 1 0 0 1 0 

12 0 12 1 0 0 
2 2 

12 0 i/2 0 0 i 2 2, l 
•i 

270° 0 1 0 0 1 0 

''· 
ill 12 

0 i 0 0 
2 2 
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s (8,<1>) ' - yz transition yz· 

PHASE <I> a = TT/2 a = n 

lz> ly> lx> lz> ly> lx> 

12 12 0 0 -1 0 ., 
2 2 

oo 12 12 0 '1 0 0 2 2 

0 0 1 0 0 1 

rn .12 0 

r ~ 
i 

:1 .~ 
1-

2 

90° 
12 

0 0 

lio2 2 

lo :j 0 1 0 
[. 
t 

12 12 
0 0 1 0 

2 2 

180° 
12 12 0 -1 0 0 -2 2 

0 0 1 0 0 1 

12 -i/2 0 0 . -i 0 
2 2 

270° -iii 12 
0 -i 0 0 . 2 2 

0 0 1 0 0 1 



(9,<1!) 

(rr/2,0°) 

(rr,0°) 

(rr/2,90°) 

(rr,90°) 

* A zz 

i<A;z + A:z) 

v'I(A* ·- A\) 2 xz . y 

* A zz 
* A xz 

* -A yz 

* A zz 
~~ 2 . yz 

fi * 
L·-u . 2 u 

* A zz 
* -iA xz 

* -iA yz 

* - iA ) xz 

* iAyz) 

- -- ----------------

A*xy (9,<1!) - xy transition 

~(A* +A:) 
2 zy ~.x 

1 * i: ) -(A + A 
2.xx YY 

. * +ReA yx 

1 * * * -(A - A ) - iimA 
2 xx :'Y yx 

* A zx 

* A 
XX 

* -A yx 

lj_(A * + iA * ) 
2 zy zx 

1 * * * -(A +A ) - ImA 
2 XX yy yx 

i * * * -(A -A ) +ReA 
2 XX Y"l yx 

* +iA 

* A 
XX 

* A yx 

zx 

/f(A* - A* ) 
2 zx · zy . 

1 * * * -
2 

(A - A ) + ilmA 
XX yy yx 

1 * * * -(A +A ) - ReA 
2 XX yy yx 

* -A zy 

* -A 
xy. 

* A yy 

lj_(A * + iA * ) 
2 zx zy 

i * * * -(A - A ) +ReA 
2yy xx yx 

1 * * * -
2 

(A + A ) + ImA 
XX yy yx 

* +iA 

* A. 
xy 

* A yy 

zy 

,, 

I .... 
.p. 
0\ 
I 



(a ,<j>) 

(11"/2,180°) 

(11",180°) 

(11"/2,270°) 

(11",270°) 

* A zz 

li_(A* -A* ) 
2 yz xz 

li_(A * + A:z) 
2 yz 

* A 
zz 

* -A. 

* A 

xz 

yz 

* A 
zz 

* * ) v1(A + iA z 2 yz x 

lf(A* 
2 xz 

* A zz 

* iA xz 

* iA yz 

* + iA ) yz 

A*xy (9,tj>) - xy transition 

·12 * * -(A - A ) 2 zy . zx 

1 * * * -
2 

(A + A ) - ReA yy XX yx 

1 * * * -(A - A ) - iimA 2 yy xx yx 

* -A zx 

* A 
XX 

* -A yx 

v1._(A * - i.A* ) 
2 zy zx 

1 * 'f: * -
2 

(A + A ) + ImA 
yy XX yx 

i * * * -
2 

(A - A ) + ReA 
yy XX yx 

* -iA 

* A 
·XX 

* A yx 

zx 

''.· 

/I(A* +A* 
2 zy zx 

1 * * * -
2 

(A - A ) + ilmA yy xx yx 

1 * * * -
2 

(A + A ) + ReA 
yy xx yx 

A:y l 
-A* I xy 

' 
A;y J 

v1._(A * - U * ) 
2 zx zy 

i * * * -(A . . - A ) + ReA . 2 xx yy yx 

1 * * * -(A + A ) - ImA 
2 yy XX yx 

* -iA 

* A xy 

* A 
yy 

zy 

I 
~ 
~ ..... 
I 

0 

C" . < 

......... 
"-:.. .... " 

""'"" ~~ 

--~-

C.< 
.r·•n ... 
'-' 
,; ~--~ 

'·~lr ~ 

-~ 

0 



(9,<1>) 

(-rr/2,0°) 

(Tr,Oo) 

('11'/2,90°) 

(Tr,90°) 

1 * * * -(A +A ) - ReA 
2 ZZ XX XZ 

'2 * * l'!:_(A - A ) 
2 yz yx 

1 * * * 
-
2 

(A - A ) + iimA 

* A 
XX 

* -A 

ZZ XX XZ 

yx 

* -A zx 

.J. * * * -(A +A ) - ImA 
2 ZZ XX XZ 

IleA* - iA* > 
2 yz yx 

. * * * 
L. .!:.

2 
(A - A ) + ReA 

* A 
XX 

ZZ XX XZ 

* -iA 

* A 

yx 

zx 

A*xz (9,<1>) - xz transition 

vi(A* -A* ) 
2 zy xy 

* Ayy 

vf(A * + P..* ) 
2 zy xy 

* -A xy 

* A 
yy 

* A zy 

4(A* + iA:,) 
2 zy 

* Ayy 

~A* + iA:y) 2 xy 

* iA 

* A 

xy 

yy 

* iA zy 

- _____ .,. __ -·.-- --- ·- -·-- ---- ·-· ·-·-···· - ---~--------·-----· 

1 * * * -(A - A ) - iimA 2 ZZ XX XZ 

vf(A* +A* ) 
2 yz )'"X 

1 * * * -
2 

(A + A ) + ReA 
ZZ. XX XZ 

-A* l xz 

A* J yz 

* A zz 

i * * -(A - A ) 
2 XX ZZ 

vi(A* - iA* ) 
2 yx yz 

* +ReA 
xz 

1 * * * . -
2 

(A + A ) + ImA 

* A xz 

ZZ XX XZ 

* -iA 

* A zz 

yz 

~- ~-- . ······-~----·-·- --------------

I ...... 

""" 00 
I 



• .. 

<e ,¢) I A*xz (6,¢) - xz transition 

-
1 * * * /f(A* + A* ) 1 * * * (;r/2,180°) II 2(A +A ) + ReA -(A - A ) - iimA I 0 ZZ XX XZ 2 zy xy 2 .XX ZZ XZ 

12. * * ·* 12 * * I c:~ -(A . +A ) A -(A - A ) 
2 yz yx yy 2 yx yz 

1 * * * 12 * ~·( 1 * * * 2(A - A ) + iimA -(A - ~ . ) -(A +A ) - ReA 
XX ZZ XZ 2 xy zy 2 zz XX XZ 1 

* * * ., .1;· 
" (if ,180°) II Axx A -A 

xy xz I (,.,! 

* * * A A -A I Cz,. yx yy yz 

* * * I v· -A -A A . ' 
zx zy zz 

J'.::. 

v-1(A * - u ... * ) 
I 

1 * * * . . . *l ..... 
(;r/2,270°) II 2(A +A ) + ImA t<A - A ) + ReA ~ 

ZZ XX XZ 2 zy xy zz XX XZ 1.0 
I 

/%.(A* + iA * ) * II<A* + iA* ) -A 2 yz yx yy 2 yx yz 

i . * * * ./f_(A * - iA * ) 1 * * * -(A - A . ) + ReA -(A +A ) - ImA 
2 XX ZZ XZ 2 xy zy 2 · zz XX· XZ 

* * * (;r,270°) II A -iA A 
XX xy xz 

* * * iA A iA 
yx yy yz 

* * * A -iA A 
zx zy zz 



(6,(jl) 

(n/2,0°) 

(1T ,Oo) 

(n/2,90°) 

(1T,90°) 

r..!.(A* +A*.) I 2 zz yy 

l
1 * * -A -A ) 2( yy zz 

/f_(A* +A* ) 
2 xz . xy 

r A;y 

* -A 

* A 

zy 

.._ xy 

* +ReA 
zy 

* - ilmA zy 

,-1 * . * * 
-(A +A ) - ImA 
2 zz yy zy 

. * * 
}<Ayy - Azz) 

II< * + iA* > 2 Axz · xy 
\-. 

,- * 
Ayy 

* A zy 

LiA~ 

( 

* +ReA 
zy 

*yz 
A (6,(jl) - yz transition 

1 * * * -(A - A ) + ilmA 2 vy zz zy 

1 * * -(A +I. ) 
2 zz yy 

/f(A* - J.* ) 
2 xy xz 

* -A 

* A 

yz 

zz 

* -A xz 

* -ReA 
zy 

i * * * -(A - A ) +ReA 2 zz . yy zy 

* * ) !(A + J. y 2 zz y 

lf(A* + iA:z) 2 xy 

* A 
yz 

* A 
zz 

* iA xz 

* +ImA zy 

t1(A* +A*) 
2 zx y 

/f_(A* -A\) 
2 yx. z 

* A 
XX 

* A yx 

* -A 

* A 

zx 

XX -

-

-

/f_(A * - iA *yx) 
2 zx 

* lf_(A* - iAZX) 2 yx 

* Axx 

* -iA 
yx 

* -iA 

* A . 
XX 

zx 

-

-

.. 
~ 

-

-

I 
1-' 
V1 
0 
I 



.. (' .. 

(9,<!>) 

'r 1 * * (rr/2,180°) I -2 (A + A. ) 

I 
zz yy 

1 * * -(A - A ) 

(rr,180°) 

(rr/2,270°) 

(7T ,270°) 

I 2 ZZ yy 

li_(A* - A* ) 
2 xz xy 

'-

,... * 
Ayy 

* -A zy 

* -A 
~ xy 

,...1 * * -(A + A ) 
2 zz yy 

. * * .!.(A - A ) 
2 zz yy 

lf(A* - iA * ) 
2 xz xy 

'-

If A;y 

* A zy 
* -iA 
xy 

L 

* -ReA zy 

* - iimA 

* +ImA 

zy 

zy 

* +ReA zy 

A*yz (9,6) - yz transition 

1 * * * 
-
2 

(A - A ) + iimA . zz yy zy 

1 * . * * -(A +A ) +ReA 
2 · zz yy zy 

12. * * -
2

(A +A ) xz xy 

* -A yz 

* A zz 

* A xz 

i * * * -
2 

(A - A ) + ReA yy zz zy 

1 * * * -(A + i• ) - ImA 
2 zz yy zy 

l'j_(A * - :..A* ) 
2 xy xz 

* A yz 
-;,'( 

A zz 

* -iA xz 

~( .~< -A* ) 
2 . zx yx 

/2(A* + A* ) 2 zx yx 

* Axx 

* -A 
·-

yx 

* A zx 

* A 
XX -

-

-* ) lf(A* + iAyx 2 zx 

~ *) v1_(A* + iAZX 
2 yx 

* Axx 

-
* iA yx 

iA* 
zx 

* A 
XX 

-

-

I ..... 
\JI ..... 
I 

0 

c 

c:: 
..t~. 

.
,. ! 

"""""' 

c~ 

,, .. ..... . 

J,.~.l~ 

1\J 
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