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1 dedicate this wornk to my parents. To my father
T owe any ability to Look at the world and see
sdmple basic forms, and to my mother 1 owe the
patience to deal with the wornld as it really 4is.

One does not Learn grom failures, but grom the
new attempts that are made aftern the failunes .

(From a Fortune Cookie)
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COHERENCE' IN MULTILEVEL SYSTEMS .
William George Breiiand
Inorganie Materials Research Division, Lawrence Berkeley Laboratory
and Department of Chemistry; University of California,
Berkeley, Californla 94720
ABSTRACT
. Mathematical desc¢riptions of an excited state multilevel system-.
are developed to include progressively the effects of coherent coupling,

feeding,-deeay and relaxation, and the expressions are illustrated with

several pulse coherence experiments utilizing zero field optically‘

" detected magnetic resonance of excited triplet states.

- A new method is described in which the time development of the
coherent eqmponents in a multilevel system is mqnitored by using an
observable that can measure only relative populations between the levels.

The method is illustrated with zero field magnetic resonance experiments

~and extension‘of the method to optical frequency pulse experiments is

discussed,

By treating a eoherently driven excited state system as two levels

in contact with a population reservoir, exact expressions are obtained

~ for both transient and steady-state behavior in the presence of

transverse and spin lattice relaxation, constant incoherent pumping,

spontaneous emission between the two levels, and also decay back into

the reservoir. The development reveals that a substantial steady-state

coherent component may be maintained by the application of a high power
off resonance driving field, and in many cases this component could be
orders of magnitude larger than the component that is maintained by

applying an on feeonance driving field; In view;ef the possible
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.'significancé that this may have in the optitai'ffequency fegion; experi-
mental Vefification'of the éteady—staﬁe éomponénf for.zero_field triplet
states is pfesented. |

' Aftefifofmulating thé general mathematical deVelépment, it is.
applied‘épécificallyrto zero field microwave ph0sphorescenCe‘ddu51e

-resonénce{ Experiméntal ﬁéthbds'and'épparétus'afeldiscusséd in-détail

"and results of optically detected transient nutations, spin echoes,
and Fourier transform spectroscopy are_presénted.‘ in'addition, the.-
effects of 5110wedness, molécular orientation,land driving field
1nhomogenéities are described and methods for»either eliminating these

effects drAutilizing them to gain further information are discussed.

~
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Note on the References Cited

The text of this work references either the original paper,
or, where references would be too numerous, a review article
or text, in the hope that.the reader is led to the most
pertinent source. In addition to these fundamental works,
the reference section contains a selected list. of related
papers that have been the most helpful to me.
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| decay matrix (43)

average of decay constants —5—5——1

~total population ry +r

- -

SUMMARY OF FREQUENTLY USED SYMBOLS

feeding matrix (45) or vector (77)

constant feeding rate into lower level

constant feeding rate into upper .level

‘allowedness or transition dipole moment factor 0 < f <1

inhomogeneous distribution function centered at an average

frequency, wo

inhomogeneous driving field distribution function

k. + k

. . k k
difference of decay constants —5—5——1
decay rate constant from lower level

decay rate constant from upper level -

X

total population in absence of a’driﬁing field under

steady-state conditions r; + ri

'total population in presence of a driving field under

" steady-state conditions ry + r
B non-unitary ' evolution operator" (49) and (51)
4§ =1,2,3,x,y vector model components (4), (7), (50)

'éomponents in absence of a driving field under steady-state

conditions (54) or (73)

initial value of components

components in presence of a driﬁing field under steady-

state conditions (56) or (73)

time evolution operator (20) in absence of relaxation

J =1,2,3 Pauli spin matricies (8)
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effective transverse relaxation time (73)

effective transverse relaxation time (73)

spin-lattice relaxation time for lower to upper level transition

spin-lattice relaxation time for upper to lower level transition

total,spin-lattice relaxation time (71)

homogéneous relaxation time

homogeneous relaxation time along applied field direction

inhomogeneous relaxation time

effective relaxation time (55)

effective relaxafioh time (55)

effegtive relaxation time (73)

roﬁatihg frame unitary operator (15), (91)
driving field frequency

hwo =venergy level splitting in two-level system
driving field amplitude |

Vtui"+ Amz (21) nutation frequency

centrai frequency of inhomogeneous line |

s , /
w, = w off-resonance frequency

5; - w off-resonance frequency for inhomogeneous line



I. INTRODUCTION

A. Introductory Remarks

This\@drk resulted and grew largely from a desire by the author to
find a rigorous and fundamental mathematical description for the optical
detection of magnetic resonance in zero field, patticularly as it applies

to the effects of feeding and decay in the presence of a coherent driving

'field. As new experiments and techniques'wefe being developed to measure
: cqherence_in.the excited states of molecular crystéls, it became quite
‘: appérent thaﬁ the well—known formalism of'convenfional magnetic reso-
t»ﬁance'cohe;éﬁée'experiments had limited applicability to the excited

_ state problem, owing to the fact that the total population is not con-

served in such a situation. Investigation resulted in a problem that

:déals with the basic nature of a two level systeﬁ, and rediscovery of the

fascinating link between magnetic resonance, optical spectroscopy, and

‘maser systems that evolves from such a study has been most rewarding.

The aim of the formal development presented in the following chabters
is not to»éoncoct "high-powered" mathematical solutiohs to a very general
prbblem. The_models and resulting expressions afe pufposefully kept as
.simple-as possible,  -in the hope that the physics of the'pfoblem is never
hidden in complicated equations. The state of experimental development
in this field has just begun.to evolve, and at this stage it is far more
imﬁortant fo'gain a semiquantitative understanding 6f basic effects before
an attempt is made to "fit" a given set of data to a realiétic mathemati-
cal model. 1In this way the full rahge of experiﬁental pOssiBilities may
be_:ealiied by utilizing a basic and easily visualized theory that has

sufficient m?thematical rigor to set the principles firmly. Much of the



'materiai p:esented here is a collectién éf facts, each of]ﬁhich ﬁay be
'well-knowﬁ in some specifié field, but they are not ﬁecéssarily well-
known by all. These'forhalisms are presented in ordér to convince both
the reader and the author that they may indeed be;carried over from their
respective fields, and, with the proper éonsidefations and additionms,
form a réasdnéble description of observed experimental data.
The.achér has endeavored to include within the formalism all the
basic quantum mechanics that is relevent to the problem, and fhis efféft.
. would thefgfpre be considered successful if_any.bbserved deviations from
the ideal expressions presented here actually contain information relat-
ing to the molecular dynamics or excited state structure of a parﬁicular
system, and are not simply trivial oversights dealiﬂg with reshits that
are characteristic of all two-level systems. In éddition, it is hbﬁed' :
that ste'pf the new’viewpoinﬁs bresentéd here, such as the probe ﬁulse
ﬁethod, will in turn prove to be useful and lend additional insight to |
the fieldsvfrom which the basics were taken.

B. Historical Context

The first double resonance experiments measured changes in Zeeman
level populations induced by radio freﬁuency fields by monitoring the?.
fluorescence emission from ;heSe levels{l’2 The method, which was ori-
ginally done for gas phase atomic systems, was adapted ﬁo inorganic.éol—
ids by Geschwind et al.,3’4 and was applied éonsidefably later to triplet

5,6

state molecular solids. This delay was perhaps due largely to the

fact that conventional EPR of excited triplet state orgénic solids re-

mained an elusive problem until it was firmly established by Hutchison

’ 7,8

and Mangum in 1961, Immediately following the high field double



resonance experiments, optically detected magnetic resonance (ODMR) was

9

observed in éero field. Following theée preliminary experiments, a

profusion of techniques related to zero field ODMR appeared, the major

contributibﬁs being phoSphorescence-microwave dduble resonance (PMDR),10

11 12

and the opti¢al detection of ENDOR and EEDOR. 'The relavent

" Hamiltonians that contribute to the hyperfiné‘strdcture of the’tfiplet'
- state energy levels were elucidated as fast as the experimental techni-

ques were developed, and are now very well documented in a number of re-
’ 13-15 16-18

view arfigles and books.
It became rapidly apparent that ODMR could provide a vast wealth of
'_-informatidn deéling with the excited state that was unattainable by other
meﬁhods. Since optical frequency photéns are used to monitor.the
resonance, the.sensitivity can.be increaéed by a factor of 104 over con-
ventional methods of detection. In addition excited states whose life—
fimes were far too short for conventional detectibn cﬁuld easily be moni-
tored by double resonance techniques. | |

~ The triplet.states of organic moleéules are nondegenefate in zero
field owing to fhe anisotropic distribution of eléctroﬁ spin density and
the dipolar iﬁteraction between the electromns. This fact has Opened_
equally wide'visfaé for'tﬁe investigation of organic excited states
through the uéé-of zero field ODMR. This field haé'the following adyan—
tages.

1.) OptiCal detection allows-gne to eliminate the application

of ah external fiéld._13

The increased éplitting of
the triplet state levels is'negligible coﬁpared to op-

tical frequencies and affords no increase in sensitivity. .



In fact, an external field becomes a hinderance sinée it
~ tends to broaden EPR liﬁes, increase spin—lattiée
relaxation, and decreése the natural spih alignment
that occurs in zero field. In zero field the system
is left to itself and the resulting measﬁrements that
are obtained reflect more directlybthe actﬁal proper-
ties of the molecule.
2.)"Magnetic resonance ma& be done on randomly oriented
molecules13 since the transition moment of the-micro;"
'wave transition merely "takes the projection" ofvthe.
magnetic component of the oscillating micfowave field.i~
- The triplet state splittings are determined intrinsi—v
- cally and do not depend on the orientation of the
" molecule.
3.) .Aﬁ sufficiently low temperatures sensitivity_is
enhanced even further by the fact that mos£'organié_
molecules possess "preferential" or ﬁnequAI popula-
_ting mechanisms to the tripiet state spin sublevels"
 that may result in highly non-Boltzman po?ul#tion
distribﬁtions.19
Alllthe above features make zero field ODMR a partiéulariy unique tool,
and studies ;hét have utilized this technique have.revealed such diverse

phenomena13’15

as zero field splittings, internal and external hyperfine
interactions, excited and ground state nuclear quadrapole coupling con-
stants, relative radiative, non;radiative, and'intersystem crossing rates,

steady-state relative populations, individual triplet spin sublevel life-
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times, energy migration and trapping times, symmgtry assignments for
excited'st#tés and vibronic progressions, energy level anticrossing, and
can be used to measﬁre subtle effects related té radiationless relaxa-
tidn theqr‘y.20 |

DeSpité the rapid advance Qf this field as:outlined above; one major
aspect of magnétic resonance was laék;ng in zero-field ODMR, namely co-
| herence experiments. This situation existed simply because the standard
experiments’such as a spin echo could not be monitoréd directly with the
double resonance technique. The first ramifications of coherent coupling .
in'tripiet states were considered by Harr1321 and optically detected
 :transient'nutations were observed subsequently.22 Schmidt23 observed the
first spin éChO in the excited ffiplet state by coﬂvehtional techniques. In
1973 a néw' methoc?“'i_’ﬁ)r observing coherence by means of the double resonaﬁc‘e
ftechnique was developed and provided a means to infroduce the highly in-
formative field of relaxation measurements to ierq—field ODMR. It was at
this point fhat explicit expressions were réduired to help formﬁlafe,a
working model that could deal with the effects of feeding and decay on a
‘coherently driven excited state system, and prévided a basis fof the work
presented in this thesis. |

C. Basis.for the Treatment

The rigid restriétiohs placed on the interaction‘of light with matter
by the resonance condition allows one in many caées to treat a complicéted
spectroséopy problem as the superposition of reépbqses from a large number
of two-level systems having different properties. This situation is par-
ticularly adﬁanfageouéAfor a number of réasons. First, the time evolution

of a two-level system.may be solved exactly for all strengths of the



driving field, and the standard textbook approach utilizing first order

~ perturbation theory follows ae a special case of vefy low driving-field
strength.: Second, the exact time evolution of the two-level system may

be easily visualized in terms of a ehree dimensional vector that pré-
cesses about a well defined direcfion that is detefﬁined by the conditions
of the experiment. Thie feature is perhaps the most important since thee
experimentalist may invent a sophisticated pulse sequence that requires

a rather formidable set of analytical expressions to describe, but none-
theless, the sequence can be easily visualized by "wagging his fingers"

according to -the geometrical picture. Third, the epplicability of the

formalism is perfectly general for practically all regions of the electro- ‘

magnetic spectrum and provides a satisfying link between magnetic reso-
nance, in which ceherence effects have been obsefved since its Begiﬁniﬁgs,
and the optical region where a rich variety of coherence effeets have only
begun to be observed.

By aseumiqg only that the triplet state can be made insensitive to
the effecte of spin-lattice relaxation, one may neglect the "odd" level
and treat the problem as a two-level system. The formalism presented in
Chapters II,'III, and IV assumes this eondition from the outset. The
solutions are epplicable to all regions of the spectrum, although care
must be exercised when applying the results to the optical region, as
will be discussed.

The deyelopmen; ie arranged in order of incfeasing complexity,
partially for pedagogical reasons and also to present a series-of solu-
tions, the simplest one of which may then be appropriately applied to a

specific problem. Chapter II treats the coherently driven two-level .
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. system in the absence of relaxation. Chapter III presents a new method

for monitorihg coherence by means of a double resonance experiment and
demonstrétes.ﬁhe near equivaleﬁcé between the new‘and conventional methbds.
The effects of feeding and decay are considered in Chapter IV, and, with
the éddition of relaxation, comﬁiefe.sdlutions are obtained for both

steady-state and transients. Chapter V deals with the specific applica-

tions of thése-results to zerb—field ODMR experiments and a detailed

account is given of the experimental methods and apparatus that are uti-

lized to perform coherence experiments on zero-field excited triplet

ghtates .
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II. BASIC THEORY

This chapter deals with ﬁhe basic considefatidnéidf coherent
coupling between two well defined eigensta;es in the absence‘of relaxation
‘.or lifetimevéonsiderations. Although tﬁe problem is'easily soluble by a
difect Schrﬁdinger equation approach;va-density matrix25526 solution will
be presented here in order to lay a foundation for the more domplicated
treatments ﬁo follow.v Iﬁ addition, the density.matrix provides the most
direct link between mathematical formalism ahd fhe.geometrical picture.
This particular problem hasvbeeh solved since the:béginnings of qhantum
theory, but éince it forms the base of wﬁat is to follow, the formalism
will be presented again in an approach th#t represents contemporary con-
cepts of a twq-level system.

.The eqﬁations developed in Chapters II-IV apply to an ensemble of a =
large numbér of weakly interacting two-level systemsf-lA semiclassical
approach is taken for the driving field which implieslthat the field is
not quantized, aﬁd it is assuméd that the waveleﬁgth'qf the radiation is
large comparetho the size of each two—level‘systém;'ailowing the usuél
" dipole apprbximation fo be used. Furthermore, thg wa&elengﬁh of the ra-
diation is assumed at first>to'be large compared to ﬁhe entire ensemble,
allowing the spatial effects of the driving field.to be ignored.

These spatial effects will be dealt with at the end of Chapter IV.
Finally, fieids that are produced by che ensemble itself are.assumed to
be negligible compared to the driﬁing field strength. All these approxi-
'mations are quite valid, excépt the.last, which must be assumed in order |

to avoid the inclusion of a complicated set of non-linear coupled -

Schrodinger and Maxwell equations that are generally insoluable. This



~ the density matrix

inclusioﬁ not only complicatés the situation beyoﬁd intuition, but also

deals with a problem that is quite removed from the original purpose of
this work, and the treatment given here will thus be restricted to "thin

samples".

A. Coherent Coupling and the Geométrical;Representation'

Consider an ensemble of two-level systems characterized by. the non-

‘degenerate states |y? and lx), with Eigenvélues hw,/2 and - hw,/2, res-

pectively that result from a time independent Hamiltonian Hy. At time

t=o0 the entire ensemble is subjected to the same perturbation, V(t), and

25,26 will evolve in time according to the relation

(The use of primed notation is necessary for the next section).

th p'(t) ='[Jco + (1), p'(¥) 1
If the ensemﬁle consists of N independent systems all experiencing.ﬁhe'
same V(t), the ensemble éyerage that is implied for p'(t) becomes a
triviai multiplicative factor, N/N, and'Eq(i) reducés to the equation of

motion for a single two-level system. If this situation can be made to

occur, V(t) couples the two levels coherently. Experimentally one needs

only to app1y a perﬁurbation of sufficient strength (compared to the
interactions cqupling.the individual members of the ensemble) in order to
observe the manifestations of.coherent cpuﬁling; |

For a single system the density.matrix is just the projeétioh
operator for the gtate at time t, ft). In'terms_of the usual time—depen—‘
dent coeffiéiénts, the state lt) is given by -

le) = yly) + x|x) ‘ o (2)

so that in the y-x basis an exélicit form for the density matrix is given

by
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. o Iyye yen
p'(r) = )¢ =[ | (3)

Xy* xk*
The geometrical interpretation of Eq(l) was first introduced by
Feynman, Vernon, and Hellwarth (FVH).27' A vector may be constructed from

linear combinations of the time-dependent coefficients

ry = yx* + xy*.
r, = 1(yx* - xy*) | (4)
r3 = yy* - xx*

and, in terms of the vector ;; Eq(l) takes the form
r=8xr | : (5

where the ébmponents of 2 are given by‘

0y = gy + V) /B o
Q2 = (Vyy = Vy)/h . (e
93=w°

The pa*ticular forms for Eqs(4) may bg justified by a result from
group theofy.28 Since the vector_rotétion‘group has a two dimensional
irreducible representation, it follows that a three dimensional vector
may be represénted by a two dimensioﬁal matrix. One choice is the well-

known vector identity for any 2X 2 matrix,p,
. l1+r r, - ir
3 .
b =1/2(1 + 7:3) = 1/2 1.2 D
: ry + ir, _l,- ?3

R >
Where I is the identity matrix and 0 is the Pauli spin matrix vector with

components
: o =<o 1)
1 lo
o -i ‘ '
02 =(1 o ) (8)
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Note that:E§(7) is consistent with Eqs (3) and (4).
By'repreeentiﬁg p'(t) as_the matrix pein Eq(7); the'totai Hemiltonian
x' = ﬂ% +_V(t) as h§-3/z, andvfrom Eq(1) and:the identity
| [, T:0] = 21(@ X )T | - 9)

Eq(5) foilowe. |

In ;efms of Fano's operational‘apﬁroach to the'density matrix,25
Eq(7) describes the density matrix as a minimuﬁvinformation term, I/2,
plus three ﬁarricies whose expeetation values prqvide'a simple geometrical
interpretation.of the equation of motion. ,Theée_three parameters serve to
completely describe the system. - | |

| The true valde of the geometrical representétion lies in the simply

visualized equetion of motion for r described 1n Eq(5) as a precession
of the r—eeetor about a direction defined by Q. The.fact that Eq(5) is
identical in form to the torque equation of magnetic resonance29 is, of
coﬁrse, not a coincidence since the Zeeman spin 1/2 system is a special
case of'rhis general treatment. This similarity in form allows one to
visealize experiments baeed on magnetic resonance analogies that would
not be readily apparent-from a straightforward deesity matrix or
Schraainger‘equation approach, the "photon'echo"vexperimenr30’3l perhaps
being the best example of such an extension. The experiments described

in the following chapters are all based.on this concept.

B. Rotating Frame Transformation
By far ;he most common form of perturbatien:term V(t) that is used
to couple the two levels in duestion is a linearly polarized electromag-"
netic field given in general by (semiclassical epprqximation).

v(t) =_h wy U cos(wt + ¢) » (10)
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where wg isvproﬁorfionai to the strength of thévépplied field, u is the -
~quantum mechanical operator.that contains off-diagonal elements in the
y-Xx basis and is'usuélly-related to an élecﬁric'6£ mégnetic dipole trans-
ition, w is the frequency of the driﬁing fieid, and ¢ is the phase of the.
applied field. Without loss of generélity U may Bé conéidered to haVe
real matrix elements (complex mat:i#vélements causé‘only a trivial phase

- gshift) and dﬁe may thus.eithef incorporate the '"allowedness' of the tréné—
ition into ml or lea\fe it in an explic.it form fwy, 0< f<1, and seﬁ M= 0y
(Eq(8))5 The "f value" becomes an important.consideration when one is
attempting to coherently couple a multiplet stfﬁcturé that contains lines
of differént allowedness, or f values, as is often the case in excited

triplet states.

If w is near the resonance frequency, Wys only one circularly

32,33

- polarized component of V(t) is important, resulting in a total

Hamiltonian ¥'given by

o=+ V() o (11)

~io3(wt + ¢) ' v 103@; + )

| | 2 T
30" = Dwg o hfw e ’ '
=003+ 5 _ 01 e _ (12)

The second term in Eq(12) comes from the rotating field approximation

. g . N ¢
= 1 2 '
wl ol cos (Wt + ¢) Wy (‘2 cgs(wt + ¢) + 3 sin(wt + ¢)
4 7 : 2 (13)
ignore: + cos(wt + ¢) - > sin(wt + ¢))
and the exponential operator identity
—iog(ut +9)  iogut + ¢)

U)l wl ——
—2-(01 cos(at + ¢) + 0, sin(ut + ¢)>= e ) o, e 2 (14)

[
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The tiﬁe-dependent terms in Eq(12) make the solution of Eq(1)
difficult, but this problem may be eliminéted by a suitable unitary trans-

formation that looks very much like the‘ihteraction picture. Let U be

given by . : :
' ' 1w t -iojwt
U = exp —_ﬁ-—o— = @ —m———
Wy 2. (15)
and define a ﬁransformed density matrix
o) =v o'y u (16)
This transformed matrix obeys an equation of motion similar to Eq(1)
tho(e) = [, p(0)] N (17)
Except that ¥ is a time independent Hamiltonian given by
- hfw ~-i0.¢ . Lo
h 1 3 : 3
K = 7 (wo-w)03 + 3 e 5 01(?-_ 7 : . (18)

The Hamiltonian in Eq(18) is time-independent for any value of the

driviﬁg field fréquehcy, w, and reduces to the interaction piéture for
"on-reéonénce" experiments, w=w,. The unitary trangforﬁation given by
Eq(16) amounts to>transforming_to a rotating—frame34.cobrdinéte system
that is ;otatipg about the ry axis with a frequency w. This may be
‘verified by ﬁerforming the indicated transformation on generic components
of b'(t) and poting ghat the result is the same as if a 3X3 rotation ma-
trix were applied to the components of ¥. From anaiogy to magnetic re-
sonance, it shduld brove much more convenient to remain in the'rotating
frame, bearing in mind that stationary in-plane cpmpouents_rlﬁand ro in
"the rotating'frame correspond to rotating componenté_in the lab frame.
Since the,inQplane compoﬁents generally représent the expectatioh value

of a macroscopic dipole moment, stationary componéﬂts in the rotating frame
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correspond';o the amplitude of the signal that could be generated by such
oscillating moments. |
Since ¥ in Eq(18) is time independent the sqlution to Eq(17) is
obtained from a simpie unitary transformation ‘ o
o) = slp(o)s a9 J
Where p(o) is_fhe initial value of the deﬁsity‘matrix in the rotating

frame. The time evolution operator

sl - exp(-iKt /h) (20a)
is given explicitly by | 4
i wt 1A Bt if i wt ]
cosmT - lT“)-sin?;— - _w e ¢ sin'%—-
s - : ' (20b)
_ligl ei¢ sinEE cos®t + 329 sin L
@ 2 2 w 2
. .

where the following definitions have been used
Aw=w -w

[o I .

(21)

2

1 + A(L)Z 1/2

&= (£ _
Eq(19) may Ee used to calculate the time e?olution of the density

matrix; or,vequivalently,.the r-vector for any series of imposed condi-
tions (1,2,3...n) by constructing an appropriate S-matrix for each con~
dition and performing guccessive unitary transformationé. It is useful
to expand Eq(19) in terms of the r-vector components. Since the phase,
¢; serves only to determine about what relative direction in the -1,
plane the r-vector will precess it is simpler to set ¢=0 in the equations

of motion and to include phase shifts in the applied field by first rota-

ting the initial value in-plane coordinates through an angle ¢, i.e. a



90° phase éﬁift results in rl(o)+r2(o) and rz(o)%;rl(o); In this way

the r vec#dr:élways precesses about some directioﬁ in,thé rl¥r3 plane.

With these cbhsidefations, the roectdr components are givgn, in terms

of the initial yalﬁes rl(o), r2(o), r3(o) by

rl(t) = '5?'{r1(°) [fzwi + szcosat] - rz(o)aAwsin&t + ri(o)fmlAw[l—cosat]}
w _

el o0 cos B - ot = Awsinbe ] 22
_ rz(t) —Agz{rz(o)w cos wt—r3(o)wfm1sinwt + rl(o)wAwsinwt} (22)

1 2, .22 - = - =
vr3(t) = Ez{r3(o)[Aw + £ wy coswt] + rl(o)fwlAq[l—cost]+ r2(o)fww151nwt}

C. Manifestations of Cohgrent Coupling
An important special case of Eq(22) is the following. Before the
application of the'perturbatioh, vV(t), the ensemble is assumed to bé
ingohérent, and the;efore rl(o)lé ré(o) = 0. r3ko) corresponds to the
initial population difference between the |y) and [x} levelé. Under these

conditions Eq(22) simplifies considerably.

r;(t) = ry(0) £?1ég[l—éosa)t]
®
£, (t) = -ry(0) 2 sinit | | (23)
. w S
. 1 .02, .22 -
.r3(t) = r3(o) = [Aw™ + f wjcoswt]
. W

Eq(23);Which corresponds to the "transient nut_ation_,"35 represents the
simplest form of coherent coupling and is therefore the easiest experiment
to perform in order to determine wﬁether the applied field is able to
dominate relaxation terms. In general, all thrée components undergo
sinusoidal oscillaiions reflecting the highly non-linear response of the

system to the applied field. Figures 1 and 2 give the response, r3(t), as
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a function of time and of frequency. It is imporfant to note that the

response of the system as a function of Aw is ﬁot simply the "frequency
domain" response to a "time domain" impulse as would be predicted from.
linear response theory. The dramatic differencekbetween the two pre¥
dictions is illustrated in Fig. 3, which is the frequency response from ,
a 8§ function spectral line, centered at w s under the influence of a
short puise applied a; a frequency w with strength w, . 1f the3system
were to respond to the various Fourier components éf'a pulse as the
applied fiela was swept slowly through resonance, the waveform (a) would
be observed, independent of the magnitude of wl; .Curve (b) illustrates.
r3(t) for a pulse where Wt =T, Doubling the pulse time yieldsvcurve (c)
for a linear response, and curve (d) for the true coherent coupling res~
ponse. The "hole" in curve (d) at w, results frém ;he fagt that wlt = 27
resulting in a complete rotation of the rrvectof. Experimental results
that very cloéely follow this type of behavior ére given in Ref. 36, The
analytical expressions for (a) and (c) are obtainedvby assuming that the
6 function line yields an absorption signal that is pfoportional to the
power (i.e.,u;%)vof the Fourier component of the pulse whose frequency
matches the reéonance condition, w(Fourier) = mo. Thus, as the frequency
of the applied field is swept through resonance, the § function response
will effecfivély "map-out" the square of the frequency Fourier transform
of thé pulse shape, f(t). Explicitly, if £(t) is a simple square wave

modulation lasting a time t, the frequency response of the § function
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Fig. 2. Response of the r., component fgf various values

of fwlt, as a function of Aw.
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Fig. 3. Comparison of the true nonlinear response, b and d, with a

linear response
factor of eight
chosen to be as

a and c¢. Curve c has been scaled down by a
for comparison with d. a and b were purposely
similar as possible, but in general the non-

linear response bears no resemblance to the linear response

except for very

short times or low power.
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line will be proportional to

» o 2 £/2 R o 2
— Tt _ '
P .fe iw't f(t')dt' - f . iw t fuy eiwt‘ it
=00 _t/2 ---—2
» 22 2  ' (24)
v Frwpsin”(w-w )t/2
Fw )= 5
(w-w')
and changing variables to correspond to the previously defined term
Aw=w-w
o
' 2 2 sin2 Awt/2 ,
F(Aw) « f U.)l -———2——- . (25)
Aw

Eq(25) is identical to the waveform that would result if first order time
dependent pérturbation theory were used to solve Eq(1l7). The assumptions
that must be used to obtain Eq(25) from perturbation theory are

w1t<<1, x(0)=0, y(o)=1, and Eq(25) is the probability, Px+y of a trans-
ition from the étate |y> to the state Lx>. It is gratifying to note that

this expression may also be obtained from Eq(23). Since Px+y = xx* if

x(0) O,then Px*y 2(1 r3(t)) if r3(o) = 1. From Eq(23)

Lta- =1 1¢2,2 2 _ p? - £2u2eosh
5(1-15(t)) i [f w -,+ Aw Awt £ w]coswt
9 sinzﬁ'f v (26)
Px«y = f w,f --——:§~—'
w

and Eq(25) results only if wjt<<l. The "hole" at wo.will of course not
appear owing to the fact that the vector never approaches a single revo-

lution.
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III. THE PROBE PULSE METHOD

In tﬁe following sectibné a new method for monitoring the loss of
coherenqe in a two level system will be presented_and‘applied to a nﬁmber
of experiments that have been developed by other workers in the field of
magnetié reSonance. Since the»technidue doeé not utilize the conventional
"in—plane"icombonents to monitor coherence, experimental diffiéﬁlfies
assoclated Qitﬁ cévity overload or sensitivity problems méy be solved in
some cases by the use of this method, and, owing to the general applica-
bility of the épprqach, this method should prove valuable in a wide variety of

fields that possess a "two-level" nature. In addition to being an alternative

-method for performing coherence experiments, this téchnique may- prove to

be the only method for many excited state systems in which the lifetimes
of the levels,ére far too short to provide a sufficient number of spins
for convenfional detection and should prove most valuable in this respect.

A. Description of the Method

The géomefrical picture is uéefui not only'in terms of a simple
visualization of the equation of motion for a twéeievél system, but also
because it is strongly linked 'with tﬁe density ﬁatrix,‘the macroscopic
observables aséociated'with the ensemble are éimply visualized in terms
of r-vector,éoﬁponehts as well. It is just this link bétween a cbmplete
set of independent observables and the deﬁsity matrix that led Fano to
deduce in his "6perator apéroach", that the formalism for a two.
level system may be ektended,to an n-level system in:whicﬁ the density
matrix is expreséed as a "multipole expansion" k=0,1,2..., in terms of

_th 25,37

k rank tensorial operators. The elements of these tensors are

given by special forms of the Clebsch-Gordon_coeffiqients and thus
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represent purely geometrical consideratlons, as rn the two- -level case.
It is unfortunate that Fano's work, which was done before FVH in a more
general form, has not received the attention that it deserves from workers
in the fielda of spectroscopy and laser physicsa

For a two-level system, the Ty component.is.proportional to the
difference in poﬁulations between‘the two levels and is also proportioﬁal
the expectation value of M% and O03. The expectation value of the total
Hamiltonianrﬂﬁ is given by |

"<Jc'>=2(rsz + 1,0, + 1 0,) | -@n

‘The ih-plape components r and_r2 are proportional to the expectation
value of a complex dipole moment ( u), magnetic or eiectric, provided that
dipolar coupling is used to pertdrb the system and are;also relatedvto'
the expectation value of the quantum mechanical operator responsible fer
coupling the two levels, e.g. (Sz) &r, for zero-field triplet states eéupled
by the spin operator Sz.' In addition rl¢<01> andAr2¢<02>. The coherence infor-
mation represented by the off-diagonal terms in the densit& matrix [rl'and
r, in Eq(7)1 cannot be monitored directly by meaﬁs-of an observable that
monitors e Thie situation is unfortunate in view of the large number
of double resonance techniques that previde an enormoua increase in sen-
sitivity for tﬁe experimenter, but attain this increase in sensitivity
by virtue of the fact that they effectively monitor the energy level popu-

lations (r Thus, one is apparently faced with the dilemma that in

3)'
order to increase sensitivity, one must relinqﬁish those measurements
of relaxation phenomena that are based on coherence effects. This problem

is exemplified explicitly by Eq(23). Coherence may be introduced into
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the ensembie.by the appiicatioh of a T/2 pulse (wlt.= /2, Mw = 0). 1In

this case the components take on the values

o :

RAULELE |
rz(H/Z) =-rye) o (28)
r3(ﬂ/2) =0

The time eleution-of'the system after the m/2 puise is obtained. from
Eq(22) for Aw = Wy = 0, rl(o) =0, rz(o) = -r3(o); and.r3(o) = 0, and ig
is readily seen that the components retain the values givén‘in Eq(285 un-—
less some relaxation mechanism causes ré(ﬂlz,t) to deéay. Since r3(ﬂ/2;t)
feﬁains zero, which means that the energy levels'appear to be equaliy
populated, the decay éf r, cannot be observed diréctly. This situation

can be remedied, however, by applying an additional m/2 pulse that rotates

3

can then be monitored point-by-point in time. 1In terms of the components,

the coherent component into the r, direction where the loss of coherence

the decay of the coherence is given by (assuming the standard exponential

form)
r (1/2,¢) = ) ,
t/T

S | ry(1/2,8) = ~ry(0)e™ /T2 @

r3(ﬁ/2,t)=v0
The coherence may then be monitored at any time, t, by applying a m/2

probe pulse, yielding from Eq(22)

rl(nlz,t,ﬂ/Z) =0
rz(ﬂ/Z,t,ﬂ/Z) =0 (30)
£, (1/2,£,1/2) = -z (0)e”/ 2
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Eq(30) demohs;rateg fhat if very little detéyvin the coherence occurred.
during the tiﬁé t, tﬁen the m/2 probe‘pulse will.cause a population in-
version between ly) andlxﬁ, aﬁd the observable'U;g;emission) that 1is used
to monitor the energy level populationsbwill'shpﬁré corfesponding change;
On the other‘hand; if all the coherence in the ensemble has decayed ét ‘
time t, rz(n/é,t) = 0 and the probe pulse will not bring about any fur-
ther change inbr3. The final value of'f3 would range frpm an inversion
to saturation as the coherence decays,.and the probe pulée would thus'sample
the coherencé'remaining in the énsemble'in'a well-defined quantitative
fashion. A pictorial representation of the probe pUlée methoalis given
in Fig. 4.

Before obtaining gxpressioﬁs for spme specific coherence experiments,
a brief discuséion of relaxation is appropriate in order to discuss real
~systems.
B. Relaxafion
The effects of relaxation on an ensemble of two-level systems may be
included in a éimple phenomenological'manner by'including Blochftype re-

laxation ter;ns38 in the equation of motion for r. Expanding Eq(5) and

adding the appropriate terms yields.

£ o= —Awr2 —'rl/T2e | _
t, = Awr1 -fwlr3 - r2/T2 - (3D
. S _ P
| By = fwlr2 + (r3 r3)/Tl
Eq(31) expresses the modified form of the Bloch equations that was sugges-

39

‘ted by Redfield”” in order to include the fact that "spin-spin'" relaxation

along the T, direction requires that work be done against the oscillating

2

field. T " will thus be a function of wl

and could range from T2 to «
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Fig. 4. Optically detected free prece831on in excited trlplet states:
A diagrammatical representation of the time development of the
interaction répresentation r vector and ‘the laboratory frame spin
sublevel populations. (a) For simplicity, consider a case where
intersystem crossing occurs only to the middle sublevel, and
only emission from the lower sublevel is monitored. Before the
application of microwaves coupling the lower two sublevels, the
r vector points along the positive z axis. (b) A 7/2 pulse
applied along the rotating frame x axis tips the r vector along y
and the populations of the loweér two sublevels are equalized.
The phosphorescence intensity now corresponds to saturation.
(c), (d) With the microwaves off, the in-plane y component decays
to zero due to variations in local fields within the sample and
homogeneous dephasing processes. The laboratory frame sublevel
~populations remain constant, however, so that the decay of the
coherence is not directly manifested as a change in phosphorescence.
(e ), (el), (e ) The decay of the coherence can be detected
optically, however, by the application of an additional /2 pulse.
This probe pulse, applied along x, tips the coherent component
down along z, producing an additional change in the sublevel :
populations and consequently in the phosphorescence intensity. The
phosphorescence change induced by the probe pulse is proportional
to the coherence remaining in the ensemble at the time the probe
pulse is applied. This is shown in 0y, (e ), (e2), which
demonstrate the behavior of the r vectors and the laboratory
frame sublevel populations when the probe pulse is applied at times
corresponding to (b), (c), and (d), respectively. The probe at t=0
" results in population inversion [relative to (a)] but the probe at
t=t", after complete decay of the coherence, produces no further
change in population.
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OPTICALLY DETECTED FREE PRECESSION IN EXCITED TRIPLET STATES
~ (Relationship between the laboratory frame and the ‘interactio»n representation)

XBL 734-395
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as the magnitude of w; is increased from 0 to ®.
| Of course there is no a Rriori‘inference thet justifies the

extension of .Eq(31), which was formulated ‘to descrihe magnetic resonance
phenomena, to the general case,butﬂthesewequations should at least form
a basis for semiquantitative descriptions of reei_two level-systems.
'SpecifiC'relexation mechanisme in the'forh of'randomiy varying exterﬁal
fields maf then behineluded in'a proper density matrix treatment in order
‘to explain quantitative deviations from the simpieﬂexpressions, but for‘
‘the purposes of discussion,_Eq(Bl) is adeqpate for oescribing specific
_ﬂexperimentsvthat arevdesigneo‘to monitor relaxation.v

Complete solutions to Eq(31)lﬁill be included in the more generel
treatment of Chapter Iv. However, several soecial cases are considered
in the remaining sections of this.chapter in order to illustrate the new
method for meaeuring coherence and to»demonstrate that the eioressions
.obtained by'moﬁitoring energy level populations are identical in form to
those obtained by measiuring the in-plane components of the r vector as is
done in conventional magnetic resonance spectroseopy.

" In order to discuss spin echoes it‘is heceSsary to introduce
inhomogeneous relaxation in the form of subensembles, each obey1ng Eq(31)
but having a distribution of Larmor frequencies w, that may be described
in terms of a normalized distribution function g(w -0 ) that is centered
about an average Larmor frequency‘mo} ‘A great number of - systems exh1b1t
a Lorentzian lineshape for g(wo-ab), and since Lorentzian funetions are

easier to integrate than Gaussian liﬁeshapes, they will be used in this

discussion to illustrate the examples. .
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C. On Resonance Transient Nﬁtation

For Aw = 0 and the initial con:ditions-'_rl(b) = (o) 0, Eq(31) may

be solved easily by Laplace 'tfansform i:echniques yielding

r (t) = 0.
-1/2(1/T; + /T8, /s | |
r,(t) =e 3 1/'1‘ + 1/'1' fu Ty ' ') sinot
2 \2- )5 3<°)f e
S
r, fw,T rS fw ' .
+ S 12 3 12 2 cosatz ———-————————32 122 (32)
| C1+f wl T1T2 1+f“w Wy T1Ty |
~1/2Q1/T+1/T)t r5 | r, (o) |
r, (t) =e r,(o)- —————— cosat+ | ——(1/T,.~-1/T, +
3 I3 2 2 2 2 1
: ~ 1+ fw T, T
1 172/ s
. r
(l/T -1/2(1/'1' +1/T ) 1 813“’1* —
_ _ 1+f2 12 nT))| T ) WeinT,

where @ = f2w12 - 1/4 (l/T + 1/T2)2>1/2

Often TZ is very much shorter than Tl, and Eq(32) simplifies considerably
in the limit Tl-wo' |
(0 =0
fwl i : k :
rz(t) = '—r3(°)T e 2T, sinft ' : (33)

. -t o
r3(t) = ‘r3(o) e '2'.;2 (co.th + Z—BJJIZ"-_sinBt)

2)1/2.

2
- 1/4'1'2

where 8 = (fzm1
In the limit of strong coherent coupling, (fu)sz)2 >>1, Eq(33) reduces

to the form

r.(t) =
! =t
r, (t) | -r3-(o) e sinfwlt | : (34)

| R | .
ry(t) = ry(0) e 7T, cos (fmlt - 2“’1'12')
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For sufficiently high power and short times Eq(34) reduces to Eq(23)

“(Mw = 0).

1. lnhomogeneous Driﬁingg?ield

Equation (34) represents the waveforms that would be expected from
an ensemble of interacting two-level systems under the influence of a
strong, homogeneous resonant field, where spin-lattice relaxation may ‘be
neglected. For an inhomogeneous resonant‘field, the transient nutation
will die auay faster owing to the fact that a range~of nutation frequen-
“dies are‘summed to produce the signal;‘ This may be expressed as the inte-

[+ ]

<r1> =./;Y(w1) ri(tlfwl)dwl ' i =1,2,3 (35)

Where.the parametric dependence of r (t) on the oscillating field
strength has been indicated in the integrand. The distribution function
Y(w ) will be strongly dependent on dctual experimental conditions and :
in general will be complicated and incalculable. . Thus the transient nu-
vtation experiment is not particularly useful for relaxatlon measurements,
but it is essential for verifying strong coherent coupling and for deter-
mining the times of m/2, m, etc. pulses in order to set up other pulse

sequences.

2. Allowedness'or f value considerations

It is important to note that the nutation frequency in the strong
coherent coupling limit, Eq(34), is determined by the'product’fwl.: Thus
if two closely.spaced spectral lines having different f values are driven
by the field, the transient nutation signal will be‘the sum.of_two fre-

quencies, w,f, and w,f,, and will exhibit a characteristic "beat" pattern
§ 1°1 172> % S g AN
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that depends'npt only on tﬂe f values but also oﬁ the relative number of
systems thét,contribute to eaéhvline.“Thisv"alloﬁedngss" considération,
which is not encountered in nuclear magnetic,respnahce, becomes a problem
in specific appliéatioﬁs to zero-field qptically defeéted magnetié-reso—

nance as will be shown in Chapter V.

3. Orientafion Effects

One péfticulér form of Eq(35)vmeri£é-édditionél attéhtion andvarises
from the possible polarized nature of the coqpiing matrix elemenﬁs from
the perturbation V(t) given by Eq(10). If a homogenéous lineafly polari-
zed driving field is applied to an ensemble of molecules whose transition
moments are polarized along a cértain direction of ;ﬁe molecula; coordi-
nates, <ry> ﬁill reflect the actual spatial orientation of the molecﬁles
and is thefefore not as trivial as the inhomogenéoﬁs 'Y(wl) discussed |
earlier. Agaip this problem does not occur in ¢opventional magnetic reso-
nance, for in'tﬁis case the static high field serVes.to effeqtively define
a pplarizafion &irection indepeﬁdenf of the actdal o;ieqtétion of the
vmolecules. Thus in zero-field optical or microwave experiments, the tran-
sient nutation will reflect a combination of driviﬁg fiéld inhomégeneity,'
multiplet f values, and molecular orientation with.réépect to the direc-
tion of the driving field. In principle, inhomogeneity may beveliminated
by better'instrpment‘désﬁyy and the orientational effects and nultiplet
f values are calculable, but all three effects can'coﬁplicate analysis
under specific':applicatidns.

It is wofthwhile,to consider one specific orienéafidnalleffect.that
arises from the response of a rahdomly orientéd arraj_of molecules to a

homogeneous linearly polarized driving field. Each molecule is assumed
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tovhaVe‘a polarization direction defined in terms of the moleéular axis
system. This_particular situation corresponds té ﬁany pﬁysically realiz-
‘able situations sucﬁ as gases, liquids, polycrystaline solids, and guest
molecules in #Irigid glass matrix. All these eXampieé display random
orientation; and if they are not placed in some static external field, the
strength éf the driving field aﬁ each molecule wili be determined by the
local érojectidn of the linearly poiarized driving field on the.molecular
tfansition ﬁoment direction. The projeétion onto tﬁé transition moment

is given in terms of the angle 6

wy =|w; cosell_ ’ - (36)

o

;,; %hére Wy isvthg strength of the homogeneous driving field. We consider ;he
- éimplest férﬁfof on—resbnance transient nutation in the absence of relaxa-
tiop, Eq(23) Aw = 0, where ;3(t) is a cosine funﬁtioh; Equatién (36)
implies that the range of integration is from zero to w; as § ranges from
w/2 to zero. "Since the driving field is assumgd tb be homogeneous, the'
"Adistriﬁutioﬁ éunction Y(wl) is constant over the‘rﬁnge of integration and
is given éiﬁpiy by the normalization constant llwi. Equation (35) then

becomes the simple relation o

ml v : ‘ °
r3(o) sin wt -
<r,> = T ] cos(w,t)dw, = ry(0) ——=— (37)
1 it

Comparison of Eq(37) and Eq(23) is given in Fig. 5. Note that since the
’ i ’ -] .
nutation frequencies range from zero to wl; it is meaningless to talk
about T/2 pulses, etc in an ensemble of randomly‘oriented molecules in

zero field, and coherence experiments are severely limited in this situa-

-tion.
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Fig. 5. Top: Normal transient nutation in the absence of relaxation. The times that
produce m/2 and T pulses are indicated. Bottom: -Nutation resulting from a
random array of molecules in a linearly polarized driving field also in the
absence of relaxation. '

I
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Under 1dea1 conditions, i.e. minimum driving fiéld iﬁhomogeneity,
a single Stroqg (f=1) transition, and sufficiently long relaxation tinmes,
the intermolééular angular correlation fuﬁction for a disfribution of
molecules.with well defined polarized transitidn ﬁoménts'could be obtained
from the Fourier transfofm éf a series'of <r.> and Eq($6). Sincé_;he.
transient‘ﬁutétion may be obtained on rather rapi& time séales; this fea-
ture could Bé used to monitor angular reorientétionskof intrinsic or
Mtagged" mblecﬁiar systéms to studleOﬁ temperature»ﬁhaée transitions'or
possibly reorientations of liquid crystal systems. Zero field PMDR tech-
- niques may be particularly useful in this respect, éwing to the very
narrow EPR tfansitions that may be obtained from very.broad optical lines,
indicating thét this type of eXperiment could be performed at elevated
(>4°K) temperétures_as well.

Anqther épecific appliéation‘of Eq(35) to ah orientational situation
is given in Cﬁapter V in which the crystal structure of a molecular solid

is used to predict the possible transient nutation waveforms resulting

from the application of a linearly polarized driving field.

.D. .Free Induction DeCay_
The_conventional'squence'for a free‘inductiOn Aecay consists of a
single high-power m/2 pulse. Following the pulse, the-rl and r, compo-
nents will decay as the individual isochromats in fhe distribution
g(wo-ao) fan oﬁf in the fotating frgme plane (see Fig. 4). The behavior
of the system is obtained from the time gvolution operatof S é*S(wlt=ﬂ/2)ST
Eq(20), where ST denotes free precession for a time period T. Equation

(19) and integration over the lineshape yields
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o - _
r, = r3(o) f g(wo-qo) sm(mo-w)"c duw
2. :

(38) ‘
C ® . -
‘ r, = r3-(°)f g(wo-wo) cos(wo-w)T dwo

and for a Lorentz lineshape function, the conventional experiment

measures the signal
*
s : "T/TZ - .
T, = r3(o)e cos(wo-m)I o (39)

* s ; v
where IZ is the inhomogeneous relaxation time associated with the Lorentz

*
T,

lineshape

glw -w ) = _ (40)
o0 w(lf(wo—ﬂ)o)sz*z)

The probe pulse method uses.an additional m/2 pulse giving
S = S(wlt =.n/2) STS(wltsn/Z) and, after integration,lyiélds an expression'
idénticai'to.Ed(39) for . | | |
E. Spin Echo
40541>has>S=S(ﬂ/2)S£S(n)Sf' yielding
Tt 1T ’

- - ) L . i

The conventional echo

,rz = r3(o)e

and- the probe pulse has S = S(NIZ)STS(H)ST'S(N/Z),
giving rise to an identical expression for r In a similar fashioh,
42,43

30

spin locking, Carr-Purcell sequencés,l'1 and other experiments that

have been designed to measure various forms of relaxation in maghetic
resonance can be applied to a two level system and monitored not only by

an observable related to ry and Tys but also by an observable related to

r, by use of the probe pulse method. The expressions are the same.

3
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F. Fourier Transform Spectroscopy

The frée’induction.decay, or equivalently, the echo shape is the
cosine Fourier transform of the frequency distribution function,giwo—ao),
Eq(38). One would therefo;e_expect that Foufier transform spectroscopy
(FTS)44 Qould be feasible with the probe pulsé method. In conventional
NMR, FTS has many advantages over the spectral s&eep'method and has de-
veloped 1n£6'a'powérful technique for obtaining spectra. However, there
are several fundamental problems which prevent advantageous use of FTS
with the pfqbé pulse method. The first problem lies iﬂ the method itself.
Since the>loss of coherence must be monitored point-by-point in time; a
single pulse no longer suffices to take the entire spectrum. The probe
pulse effectively monitors only a single point in the time domain which
corresponds to only a single point in the frequency domain. Tﬁis implies
that there is no theoretical advantage in‘FTS over the normal spectral
sweep technique when ﬁhe probe pulse is required. The "allowedness" of
individual lines within a multiplef also becomes of critical importance
in FTS, fof, even under ideal conditions, a T/2 pulse for a f=1 transition
will result in only a /4 pulse for a f=.5 transition. For similar rea-
sons, the relative spatial orientation considerations discussed earlier
will'effect'the nutation angle for a given appliéd,field strength mI, and
both these factors will léad to large intensity errdrs in the spectrum.
These problems, coupled with the fact that many two;level systems havé
inhomogeneous broadenihg or multiplet splitting that 1is the same order of
magnitude as the maxiﬁum size. of wl that can be_generated experimentaily,
makes FTS a rather special kind of experiment and is limited to éitua—

tions similar to that of NMR where multiplets are closely spaced relative
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to ml, f=1 for all transitions, and where there are no orientational

-effects present. Since double resonance experiments are usually much
more sensitive than conventional detection, a spectral sweep while moni~

- toring r

cept in those special cases in which FTS is_partieulerly suitable.

3 will be the most sensitive method for obteihing,a spectrum ex-
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IV. TWO LEVEL SYSTEM WITH FEEDINGfAND DECAY

‘The basic formalism'descfibed in Chapters iI'énd I1I serves.to
adequately'déscribe a ground-state system iﬁ which the total population
in the two 1¢§els remains constant, or could be apélied to an excited
state sifuatidn in which the experimént takes pla;e on a time scale that
is much sh&rtér thanjthe 1ifetimes of thé states tﬁémselves. However,
- if a general.descfiption féf any two-ievel systéﬁ is desired, the forma-
“lism must_include the possibility that each state in the two-level system
- 1s dapable of &ecay to a state outside the fangé ofJéonsideration and
must also‘aécount‘for some mechanism that populates the states. By doing
ﬁhis, experiﬁgnts that invdlve‘excited states, 6pﬁica1 pumping, induced
processes such as chemicaily induced nuclear and electron spin poiariza—

43,46 and Stark shift optical co’herence47 may be tréaied for all

tion,
time scales. By confining the problem to a reasonably simple form, exact
solutions are possible that still reflect the impbftant aspects of feed- |
ing and decay under the influeﬁce of a coherent d;iving field.

The théoretical'deveiopment is broken into two parts, similar to the
treatment of Chapters II and III. First a model system is established and
'easily.managéable solutions are obtained in the absence of relaxation.

- Second, relaxation is added'in é manner similar to that in Chapter III
and complete éxact expressions are obtéined for both the transient and_
steady-statevbehavior. Although these expressions embody all the equa-
tions of previdus chapters as speciai cases, the completé solutions are
unwieldly'enOugh to require a computef program, and it is thé‘author*s
opinion that the simple vector pictufé discussed:ip Chapters II, III -and

the first part of IV will ultimately prove most usefﬁl in conceptualizing
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any new exferiment and, for this reasbn, justifiesvtheir inclusion.
This.particular problem has not been treatéa-before. Perhaps' the
closest approach is that due to Icsevgi and LamB?S but<they considered
a far more coﬁplex problem including tﬁe contribution of the énsgmble to
the totallfiéld and did not discuss the specifié/effects of feeding and
decay on é-coherently driven system. Similaf apprdaches>haVe been made
by many otﬁef workers in lésér'éhysic§,49.but siﬁée‘they.all includé the
effects of ;hé énsemble field or a resonant cavitf; their results are tdé
complicatedvto apply to excited state coherence_expefiments; and no gen-

eral closed form solutions exist. Early work in gas phase double reso-

nance experiments also considered ‘the problem of feeding and decay;so but

no allow&hces ﬁere made to 1nc1ﬁde separate deéayjéhanne;s from the ex-
cited state levels, anéuéually T, wasvset eqUal'Lﬁlfl. It is hoped that
the solutions presented here will help the reader to follow ﬁhe elegant
treatments{ovaefs. 48, 58, 61 and 62 in fhe con;exf of ‘the geometrical
model.

A. Model System

In order to diécuss'the role that feeding and decay play in the
excited state two-lével_éohéreht coupling_probleﬁ; the following model
‘system given in Fig. 6 is fofmulated. The eﬁtire:éxperimental system is
divided info_fwo parts. The firsﬁ pétf consists’ofxfhe.ensemble of "ex-
cited" two-level systems thatbare coupled Sy a dfiVing field. The second
part is taken to be an infinite reservoir that represents both a source

and a sink er population to enter and leave thenensemble of two-level

systems. At a given instant of time, the ensemble of two-level systems

'isvevolving_junder'the influence of the applied radiation field, and is
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Fig. 6. Model system used for the developments in Chapter IV.
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also~decaying into the reservoir at a rate whichlié charaéteristic of the
decay rat¢ constants.kx andfky; Population is alSokéonStan;ly‘transferred
incoherently from the reservoir into the ensémble at constant rates Fx
and Fy. dnlyvthose states,|y> énd|x> that are affecfed by.the radiation
field are inciuded in the ensemble, implying that the reservoir is un-
affécted by'the field. As a consequence, populati@n thcb is.transférred
incoherently'ffom the reservoir to the ensemble enters the ensemble in
one of the eigénstates, and not in a‘cohegent superpdsition state. How-
ever, once the population has entered the eﬁsemble it‘may evolve into a
coherent superposition state'sincé it is now influencéd by the'radiatioq
field. In.terms of a density matrix description, ﬁﬁiS'implies that feed-
ing occurs only to the diagonal elements of the dehsity matrix and off-
diagonal eleménts occur'only due to the effect of the radiation field on
the popﬁlation which is already in the ensemble. Decay, however, affects
both the'diagonal and off-diagonal elements. - |

From this model and the results of Chapter Ii it becomes quité :
simple to visuaiize qualitatively how the creatioh'aﬁd destruction of the
" states affects the properties of the ensembie in the presence of a coher-
ent driving field. At any giveﬁ instant of time.the éﬁseﬁble may be de-
‘scribed in tefms of thé tofque equation, Eq(S), fhe r-vector representing
the population that is present in the ensemblé. During a small interval
of time, new population is created as an additional vector that suddenly

appears along r_, and is immediately driven by the radiation field. At

3

the same time the original vector is driven and decays according to kx
and ky. The total time development is a sum over all the small time

intervals. This picture will be used to deséribe_theAresults_of the
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expressiohs.bbtained for the transient nutation and spin locking in the
presence of -feeding and decay.

B. Solutions in Absence of Relaxation

Byv¢onstr§qting a model system consisting of a reservoir, details of
fhe feeding énd decay processes are not considefed explicitly and thus
allow the mahy-body problem to become tractable. Ihe simplest-way to in-
clude deﬁay of a state is to assume that the amplitude for being:in the

state decays ei{ponentially.51 For the two-level system this is expressed

"in terms of the rotating frame coefficients

y=-37

ol

- (42)
.———xx
XxX=""
k. and kx are physically observable rate constants associated with the
decay of the states |y> and |x> respectively.

As discussed earlier, the populating prbcess occurs only to the

'eigenstates'|y> and [x> and cannot appear in a supefposition state. This

implies that the equations describing the feeding process must deal only
with the probabilities yy* and xx* and cannot affect the terms which de-
fine the felétive phase factor as given by xy* or.&X*. For this reason
a density matrix formulation is ideal (Nofe_Eq(B)){

The decay'terms in Eq(42) are incorporated into the density matrix

by constructing the imaginary operator K given in‘the-y—x basis by

. i |k O

K = 5 . . (43)
0 i, |
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and the decay process is described by an anticommutator relatibn
ihg = -[K?.p]_’_ o (‘44)

The operator K must be imaginary in order to cause the density matrix to
decay. In accordance with earlier discussions, feeding is allowed to

only the diagonal terms of b, énd'may be expressed_in terms of a feeding

- F O . .
F=dh| 7 ] - (45)
: 0 F o . ,
X

The total equation of motion which includes feeding, decay, and a driving

matrix F given by

field is thus given by combining Eqs(17), (44), and (45)

| thp(t) = (0] - [K,pl+F 4)
A solution to Eq(46)'is given by . _v_
| p(e) = Q" [o(o) - p1Q + o | @n
Where the matrix Q is | 1
Rt 4®)

and ps,the steady-state value of the density matrix, is obtained from
Eq(46) by setting p(t) = O and solving for p. Notice that since ¥ is

real and K imaginary the adjoint of Q is not the inverse

Q" = exp {_i.(JC;K) té*Q’ll“ o %9)
and thus Q is‘npt unita;y. ' The operations in Eq(47)UAO'not result in a |
similarityItransformation. This is to be expeé;ed, however, since the
decay process must cause the trace of p(t) to vanish - a résult whicﬁ is
not possible_with a similarity tranéformation.- Owing to the fact that
the constant trace condition has been rel#xed, oné'will need four;'father

than the usual three, independent variables to dés¢ribe the density matrix
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completely.‘ This can be done easily by defining the components of the

density matrix as follows:

p(t) = , ‘ _ v ' (50)

These componehts have a geometrical significance that is only slightly
different from the FVH model. ry is represented by a vector which points
"up" in a three dimensional r-space whereas ro points "down". They both

share the same in-plane components Ty and ry. The FVH vector component

f=r3 is given by T Ty In terms of observables, ry and r* are proportional

to the upper ‘and lower level populations, respectively.

An explicit form for Q is obtained from Eq(48) using Putzer's

method.52
kat cosAE . kD+iAw '1n-AE ifwl'sinAE
Q=e 2 2z TR 2 TR 2
ifu’1 At At kDﬁA‘." At
Tsin—z— COS_"Z—-—'—A——Sin >

Eq(51) incorporates the following definitions

k .k
k=—£l
A 2

k -k
kD =X ¥

2 . | - o (52)'
' 1/2
A

1

[f2w12 + (Aw—ikD)?‘]

Asvwould be:éXpected, Q becomes S, Eq(20), when theie;is no feeding or

decay.
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Before obtaining explicit expressions for the steady—state density
matrix, Pgs it is worthwhile to expand Eq(46) in terms of the four r
componente.

f1'= —Amrz—kAr1 |

e

9 = Aqu-fwl(ry-rx)—kArz.

- (53)

e

= -kr + F
y fwlr2/2 " kyrg t Fy

.,=_:_ - +
£ fw1r2/2 erx Fx

By comparing Eq(Sé) to the rotating frame Bloch equations,-Eq(31),one
can see immediately that the average of the decay rete eonstants kA will
have the samé effect as a Té procéss and the combination of feeding and
decay will epnear to be a T, process. This is'quite reasonable from a
physical noint of view since the in-plane componente,involve a super-
position state that can be viewed as being "undecided" from which
eigenstate_itvﬁill eventually decay, thus giving rise to kA. AlsQ,'an
incoherent T1 process will have avsimilar effect as decay from l.y> or
|X> into the reservoir with subsequent incoherent feeding into lx> and

|y> respectively. The important difference between actual T, and feeding

1
“and decay, however, is that the final population difference in the levels

is determined by a Boltzmann distribution in the T case, as opposed to

1
the feeding and decay process. in which practically'eny population differ-
ence is possible, depending on the ratios of the feeding and decay con-
stants and on the conditions of the experiment.

In view of the similarity between the rotating frame Bloch equations

and Eq(53) the r components of p, may be cast into a familiar form'by
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defining the aﬁpropriate quantities. First, noting that the steady-state

'pbpulatiohs in the'abéeﬁce of a driving fielduare'given by (fwl=Aw=0)

r =F /k
y.y

a1}
1
L]
b
S~
=~

(54)

and by defining effective relaxation terms,

t, = 1/k, S o _
'tl kA/kxky

p8 in terms of the r components is given by

Awfw t / D

s
17 7%3
s
2

=-r, fw t. / D
1 2 (56)

]

8 '[r (1+Aw t ) + fzw

o]
n

+F \v.
(—-‘1"2 ) /D
F +F '
(x_z> /D

2

1 1
[; (1+Aw t ) + f2w
X 2

NN NN

2
15t 2

a]
|

s ° 2.2
3 = r3(l+Aw tz)_/D

where the‘denominatof D is defined as

_ 22, .22 . |
= 1+ Mt + frujtt, - 6D

The mathematical forms for Eq(56) are identical to those encountered in
magnetic fesonance for slow passage spectral sweep; When the‘"ﬁower
22
"
factor", f wy t 1 9

Lorentzian lineshapes. It is interesting to note that the effective

in Eq(57), is small, the components reduce to

"transverse" relaxation, t2, is determined by the average of the decay
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rate constants whereas the effective spin—lattite'relaxation, tl,is

determined.bf the average of the decay lifetiﬁés. 
The egpression for F in Eq(45) could be généralized easily to éifua-
. tions inIWhich the feeding occurs to a superpositién state and also
could be:made time dependent. Thg solution forfpsifollows a similar
format.
If one wishes to monitér the effects of feeding and decay mote

explicitly;-Eq(47) may be broken up into threé,pafts.

p(t) = Q'o(o)Q - Q*pZQ +0) - Q"o¥q + Py o (58)

1 2 -3

Part 1 is the time evolution of the population that.is'in'the‘ensémble

at t=0. faxt,Z is found by solving for Pgs setting Fx=0, and similarly
Part 3 is found by setting Fy=0. Parts 2 and 3 describe the time evolu-
tion of the pdpulation that suBsequently feeds into lyS and |x>, respec-
tively. L

C.. Special Cases of Eq(47)

1. No Driving Field

Consider first the trivial case in which there is no driving field.
From the model system pictured in Fig. 5 one can write simple rate equa-
tions for the r components by inspection. These expressions agree with

those obtained from Eq(47) after setting W, = Aw =. 0. -Q has a very

simple form -

Q= e-§§ = Q+ '
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and the solutions are

' o \ -k, .t

r1 = rl(o)e »A )
‘ - o

ry = ry(0)e th
r = (r_(o)-F_/k )e'kyt‘ + F /k_ . (59)
y v Uy - Yy
r = (r_(o)-F /k )e-kxt +F /k
: X x'x' x'x

Notice that r, and r, are not fed, but merely deCay'from whatever initial

1 2
values they had at t=0.

2. On Resonance Transient Nutation
' ° [
In this case, rl(o)=:2(o)=Aw=0, ry(o)=ry, rx(o)=rx and Eq(47) yields

expressions as complicated as Eq(32).

ri(t) =0

-k t 2 9
rz(t)‘ .' 7 (kD -f wy cosot) - (r3—r3)afw1sinat

o
) . _
, s
.f(ry-ry+rx—r )fwlkD(l-cosaF)J+r2 » 609
. -k t \ 2
= €A o_.8 at at,’ 8y 2 2 . 2.0t
ry(t) T2 [(ry ry)(acosir + kpsims) + (r r2) £ wysin®(59)
r2fw sirt--—-(OLcos-o—t£ + s1n——) Sb
2 1 kD y
- -k t ‘o ]
- €A _ _ _ 2 2 2. 0t
rx(t)_ a2 [(r Y )(acos—— kD in——) + (ry ry)f mlsin (2 )

271

+r fw sin——(acos—— - kD91n——4 +rS
X
1/2 '

- (€2, 2 .2
where o = (f wl kD)
Equation (60) has the basic form of a damped harmonic oscillator. The

qualitative appearance of the curves is quitevsimple,‘since for small

values of ml the exponential terms dominate and mask the phase shifts ~
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introducéd by kD;' Howevef, as soon as‘fu)1 beéomés'large enough to cause
an appreciable number df'oscillations,‘fml>>kA, it élso:foliows that

fw1>>kD and the waveforms approach simple expressionslsimilar to those

of Eq(34)
r.(t) = 0
e o Tyt rgk k
r,(t) = -r_e sinfw, t - —=Y
2'" 3 1 w. k
: .. 1A
. =k, t
- A - - :
L orey e o .8 o T | S
ry(t)v- 2 C[(NT-NT) + r, cosfwlt] + 7 (61)
| “kpt | s
N - e o.8 _ 0 N
rx(t) = 5 [(N-N) T, cosfwlt] + 7
where
No = r°.+ r
y
s _ 8, 8 _ '
‘N ry + rx (Fx + Fy)/kA

,ry and rx may be combined in two ways. First, the r, component may be

3
computed. o
: o ,‘kAt T
ry—rx é,r3(t) =rye cosfmlp : (62)‘,

The motionchrresponds to what the geometrical pictufe wéuld predict:

oscillations with frequency fw, damped by the average of the decay rate

1

constants, reaéhing a steady-~state vector sum of zero since a uniform

"disc" of vectors will-be formed in the r plane. Notice that the

2773
decay constant is kA = 1/t2 as opposed to 1/2T2 in Eq. (34). This

factor of two arises from the fact that T, is responsible for decay of

2
the inglaneucbmponents only, and a high power field that drives the

vector around amounts to'the vector beingvin the plane only half the




(‘;x

€}-€J~ 34 i} “ ;3 {3_53 ;3 .

.—49—
N
‘time t, on the averagg. Decay from the states occurs for all components,
however, and the high field will only serve to ﬁvérage the decay rate
constants aé.evidenced by kA; -
The second combination of ry'aﬁd rx'results inva term that reflects
how,the'totai population in the two-level ensemble develops in time as

a result of feeding, decay, and a high intensity driving field.

“kat -
r, + 7, = N(e) = (°x%)e AT 4 88 . (63)

Equation (63) may be obtained from intuitive arguments as its simple form
would suggést.  Figure (5) implies the following rate equations for ry

and-'rx in the absence of a driving field.

r
Yy

-k r +F
Yy y
' (64)

r =-kr +F
X - X X X

These equatiéns result in the last two solutions.invK.b(59). 'Equation (64)

may be ﬁrittén ip terms of the total population as |
N = kry - kT +F o+ Fy‘v; - (65)

Now if aVVery stréng field is applied, it may be ;ssuﬁed thaﬁ the

populations in thé‘twp levels remain equai througﬁout the time devélopment

of N. Tﬁis is tantamount to the condition fw

1

Imany nutations are made before appreciable feeding or decay can take

>> k, which implies that

place. Under this condition r,=r, < N/2 and Eq. (65) becomes

N = -kAN + Fx+Fy . o '. (66)
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which has the same solution as Eq. (63). Note that this simple argument
does not predict the correct behavior for fy or §x1='N/2,,Eq. (66) again,
since there is no condition built into the mathematics that gives

nutation, and as a result the rg cowalt term is missing.

D. Coherence Experiments .

As is the case in magnetic resonance, the ability fo do well-defined
pulse'rotacions of the r-vector depends upon thé télationship between
the applied field strength and the effeétive reiéxétion, t2=1/kA. -Tﬁe
similarity:betwéen Eq. (53) and the rotating frame Bloch equations |
makes it uﬁnecessary to go through the same arguments aé in Chaptef iII_'
for the free induction decay and spin echo. 'In'féct; for most systems
of interest,Ithe_homogeneous relaxation time, T2, Will be orders of.
magnitude shortér than the lifetimes of the two 1eve1s, and as long as
the experiment is sufficiently shﬁrt the'arguments in Chapter III may
be used directly, ignoring feeding and decay. |

There is one coherence experiment, not mentioned in Chapter III,
that is worfhwhile discussing in terms of the pfeéeéding development.
I1f the.modified form of thé Blochvequations.is apﬁlicabie to a particular

42,43 experiment can be performed, and the

system, a spin-locking
coherent component can be made to last a time that greatly exceeds the
homogeneous relaxation time. It would therefore be of interest to

investigate the effects of feeding and decay on such an experiment.

First a m/2 pulse is applied, yielding from Eq. (61), kAt.E 0,
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rl'(jr/ 2) =0

r,(1/2) = -1 . (67)
'ry(ﬁ/Z) = N°/2

r (1/2) - N°/2

and the populations appear "saturated". Shifting the phase of the driving
field is tantamount to redefining the initial cdnditions rl(O) = —rg,

br2(0) = 0;7and from Egqs. (53) and (61) the spin-lpck signal is given by

=k,t
- A
rl(t) =-rje
rz(t) =0
« . (68)
—kpt o s
e b N s NS
r(8) = =5~ (F -¥) +5
<k,t
A o D58
= N__ & +
e A E S T R

An additional phase-shifted ﬂ/Z probe pulse'wpuia be required to monitor
rl(t) if‘§9 observ5b1e assoéiated with ry or rx'is ﬁsea to measure the
spin-lock signal. It is interesting to note thaﬁ the act of phase
shifting efféctively isolates the spin-lock compqnént from the feeding
process. In terms of the vectorvmodels-population that enters the |
ensemble shbsequent to the establishmeﬁt of the spin lock component

forms a dniform-disc in the r plane and does not affect the spin-

n 273
lock signal. This situation is not true, however, is the field is
applied offeresonance, for then the disc becomes a "cone" about the’

effective field direction resulting in a component along the direction

of the spin-lock'signal. As will be demonstrated in the next section,
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this component results from a steady-state solufioﬂ, and can thus cause:

aﬂomolous decay times for the spin-lock signal;;.

_E. Feeding, Decay, and Relaxation-General Solution

In'order po obtain a complete descpiptien,fer the system pictured
in Fig. 5, the modified Bloch equations, Fq. (31); will be combined
witﬁ Eq. (53). This procedure is done mainly for'fhe sake of completeness
since thefanalytical expressions for the general eolution mask all the
. physics'that is contained within them. It is fbrfunete’tﬁat for most
experimental situations the simple approaches pfesented earlier do net
vary qualltetively from the solutions to be presented in this sectioh,
for then meaningful experimen;s ﬁay be construcced_by use of the
vector model and Eq. (47). -

_In ter@s of the r-vector components, tﬁe complete equetions of

motion that include driving field, feeding and decay and relaxation are

given by
r, = -Ag)r2 - (kA + l/Tze)rlil”
r, = Awrl - fml(ry—rx) - (kA +‘1/T2)r2 (69)
T, = fwlrz/z - (kyi-l/Ty)ry + rx/Tx + Fy
Fx =v—fw1r2/2 -k _+ 1/Tx)rx + ry/Ty +F_

The new parameters 1/Tx and 1/Ty are related to the probability per
unit time for a transition from lx } to ly ) and from |y ) to |x ),
respectively. This form allows for spontaneous emission from |y ) to

|x?, in addition to "spin-lattice relaxation" terms.A Specifically,
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T. may be separated into-two terms
1 1 1 :
T T;pon le o

in which T;ppn'is the spontanéous-emission lifefime,'and le is related

to the nofmal thermal probability for a transition from |y) to [x).
If spontaneous emission is negligible, as is the case in a rf region of

the applied field, Tl’ as given in Eq. (31), is related by

TC T tnT Gy
1 X 1y -
T# and le are related by a Boltzman factor
T, —hwo/kT ' .
7FX. = e . (72)
< .

1. Steady-State Solutions

The t=~ values for the r-vector components are easily obtained
by setting the time derivatives in Eq. (69) to ‘zero. As before, these
solutions méy be cast into a form that is easy to interpret by virtue

of their similarity to magnetic resonance counterparts.
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r, =1, fq)-.lAwTTe/D
s_ 0.
r, ry fwlT/D
N . fzwiTT F_+F
2= 2@ + MwfrT ) + LS
y 'y e kA .2
- [ .. 9 fzwiTT Fx +F
ro = {2 + ATT ) + Y
X | x e k 2
o : A ,
where
D =1+ M2TT + FlwlTr
: e 17
1 1
= =k + =
T A T2
1 _ 1
T kYT
e 2e .
T kA/ (kxky + ky/Tx kx/'ry)
. " F +F
o =% Fk + f%——z
y A y X
o T F +F
r. = P F k +-—3%-JL
S Tx A (XY v
r®=1r°-r°
3 y X *

I

/D

/D

(73)

These components may then be used to construct a steady-state density

matrix, bé,'according to Eq. (50).
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2. Transient Solutions

Equation (69) is difficult to express'in a form such as Eq. (46),
in.whichsthe_density matrix equation of motion is described in terms

of 2xX2 commutators. = A more general approachvis,to.use the '"superoperator”

or "Liodville operator"'53 trick. In this case the four elements of the
density ma;fix arevt:eated as components of a'foﬁf;vector operated on
by a 4X4,mafrix that not only implicitiy contains the éommutatoré
indicated in Eq. (46), but in addition the method allows one to add
phenomenélogical relaxation terms as easily as was done in Eq. (69).

" Thus Eq.:(69) may also be represented as
ihp =hLp+ thF . (74)
The eleﬁents arising from ¥ are given by

hL oo =¥ 8, -6 K, (75)

and .the explicit form for L is

- _ -
ik ) fwl fwl } 1)
y 2 2 Ty
fw fw,
1 - _ _1
T2 Aw-1K, 1K, 2
. (76)
L = S
fw ' fw
- -1k -Mw-iK, -
i oy B i
T 2 2 X
Y .
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whereas P and F are given by the column vectors -

'p?y‘ T, , FFyY-
Dyx lrl—-:l.l:'2 : 0 . : .
poo= 1 Py T e, [ F=lo | | - D
_pxxJ —rx ] __Fx_J‘.

The following definitions have been employed

~
]

k + 1/T

y ¥y Y

K = kx + 1/Tx o

x o (78)
K, =k, + 1/2(1/'1'2e + 1/T2)_ :
K, = 1/2(1/T2e - 1/T2)

The solution to Eq. (74) is deceptively simple _  -
-iLt ' ' ,, |

p(t) = 7 (p(0) - p) + 0 | (79)

The entiféAproblem of calculating the time dependénce of p(t) now lies
in the evaluation of the exponential'operator'which‘contains a 4x4.
non-hermitian matrix. The evaluation of such én;éxﬁonential operator
for gBX.nxﬁ ﬁatrix has been given.by Putzer,52 é;d applicatibn of this

' theorem to the problem at hand is given in Appendi# A, _Ah importént’

~ point to poté is that since the evaluatibn involvés an eigenvalué
problem, thé:4x4 matrix implies a quartic gquation that may be solved
exactly, and since this is the highest order polynomial that méy be
solved exactly, the 2x2 densi;y matrix is the maximum size that may

be evaluatéd'in closed form. This featuré has litfie practical Signifi-

cance, however, since many iterative methods exist for finding the roots
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of an ngg'dégree polynomial to any degree of acouracy. Another point
ﬁorth mentioning is that despite the attractioely‘simple form for Eq. (79),
it is highiy impractical even for simple»special'cases; and oquations

such as Eq@o(47)‘o: Eq. (19) are far easier to woxkiwith. Equation (79)

is therefore best left to the computer for evaiuﬁﬁion,

3. General Transient Solutions Including Inhomogeneous Broadening

quéfion (79)'may be programmed on a computer and § sum of solutions
weightod by an empirical or analytical lineshapeofuoction may be taken to
‘includevtheveffects'of inhomogeneous broadening;_ Figure 7 compares the
waveforms produced by successive additions of relaxation parameﬁersvto
the Fraosient nutation. Note that for sufficieﬁtlyyhighvdriving fields
the inhomogeneous broadening has little effect on tho transient nutation,
(a) and (b); Curves (c) and (d) have been arrangeo~so that kA=T2 of
curves (a) and (b) in order to demonstrate the faStef decay expected
from kA as discussed in Sec. IV-B. Note that the difference in kD,
(c) vs. (d), has little effect on the waveform.

Therefore, for high_power fields, the equatioos developed in
Chapter ITI will be sufficient in most cases foroshort times, and
siﬁple'"rate equations' will be'épplicible for 1ong times (see
Sec. V;é).

4. Inhomogeneous Broadening and Slow Passage Lineshapes

By integrating Eq. (73) over the inhomogeneous distribution
g(wo-ﬁo),vK; (40), one obtains the expected lineshape that would be
observed in a slow passage spectral sweep. These averages, denoted

v‘by (ri )wo,.o:e
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' v. o D —
1 T gfw, Mu/D*

(.8 o 1 1 [ ~A/T -
(r2 )U) — '?r3 fwl [Te + _T—*— ( e )]a /D*

V1 + £70]Tr

2y, = {y [T; O S (/Hf,zwgn ; __1.__) ; m]
° -t e T, TyIT, ‘ _V1+f2wiT-r 4
£ 1T'r Fx+Fy 1 : 1 - *
+ o 5 el A : /D
O TA : e T, /IT /1 + f2wlrr
8 _ (.0 s
(rx o {r.x [ same a.s Too- - dJ+ 0000
where T2 is the inhomogeneous relaxation time and
A = © -0
0]
2 1 1 ‘/'—2' 7\’
D = A" + [z + 1+ fTw]Tt .
T* 1
2 TT

For low driving field powers Eq. (80) reduces to the more familiar

Lorentzian forms

rOfw. Ao T2
]fmo 1+Aw’I‘2
. o _
(rd) = ——:gffl—z— o
2w, 1+ Mw? 12 F 4+ F\
2 2 X y
fwlI‘T(k +k)
(r3) = 2+ 7
y Wy y 1+K<52I‘2
(r®) = % + same as r°
x W x : y

(80)

(81)



L ' ’fzwzrr
(rS ) = ro 1- —1
Biw 3 _  1+ EGQFZ _

/T = 1/t +.1/.T2* and T =T,
Equatioh,(Sl) représents the expected 1inéshap¢vfr§m a‘low‘power‘cw
spectrum of a single inhomogeneously broadenedviiné. Noté that the
inplanevgompénents.rl and r, repfesent theidispérSioﬁ and abéorption
lineshapes commonly encountered in magnetic resénance- The signals are
related byv;he Kramers-Kronig conditions and are also probortional‘

to the amplitude of the applied radiation field and the trénsitioh'j'
amplitude. ry and rx represent the energy abso:béd or émi;ted by_tﬁe'
system ahd.the signal is proportional to the intensitz of the applied |
field and fhe transition probability, as would bé expected. | |

The "saturation" characteristics of.Eq. (80) may be investigated

by looking at the high power driving field case.

o —
- £
(rs) = °3 “1
Vo, T T i o
e v
(r2) = o0
2w \ s ¢2
o o fwl T 5 . N f wlTT
i * ¥V 2 TIT
T2 e . e
(r )w = fzszT
0 ED-Z + 1
T -
e

The dispersion signal is a méximum off resonance; the absorption signal
approaches zero for all values of ZG} and the popﬁlation components

approach equal values and are a maximum on resonance.
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Alivthe,steady?state behavior is quite simp1é to picture in the
vector ﬁo&él as demonstrated‘in fhe'diagram of,Fig{ 8. The steady-
state cqﬁ&iﬁion implies that a uniforle'distfibpted'cone-of vectors
about the effective figldvdirectionvwili resuit in the presence of
high-powgr,radiation. The vector sum results in.a resultant that lies
directly along the applied field difecﬁion and is thus effectively
"spin—ldckéd" without introducing any phase shifts. A simple geometrical
argumgﬂt shows that the respltant shrinks to zerg.either as one goes
very far from resonance, or as exact resonance is aﬁproaced,‘and-

becomes a maximum when fw =Aw. Since the effecfiﬁe field lies in the

1
r)"T, plané,‘(r; nu - will always be zero for highApower driving fields.
‘ 0 : S .
Non-zero values for (rz nu come about when the relaxation mechanisms
[o} N

compete‘strbngly enough with the driving field such that each individual
vector decays before a complete revolution about the effective field
can occur. In this fashion a "lopsided' cone‘br disc is formed that

has a resultant component in the r direction. "

2

F. Steady-State Coherence .

Equation (80) implies that a coherent component can be made to
last an infinite amount of time. This may at first seem surprising

since one might think that the lifetime of the stétes involved would

obviously be the limiting time that a coherent component could be

maintained. ~However the suggestive forms of Egs. (69) and (73) indicate

that the mathematical formalism is no different than the Bloch equatidns,

and that the steady-state solutions correspond to "nuclear induction"®



~in ;ime. ' _ _1

I re

-29-

f L - C L A
: Bl 755-6292
Development” of steady-state components viewed in terms of the vector model."(a) initial
value of the vector along rj and the direction of the "effective field", dashed line
whose r% component is fwl and ri component is Aw. (b) through a combination of"

L0 e

relaxation and strong driving field a uniform cone is . established about the effective

field. (c) The vector sum of the cone yields an r. and r3,component that is stationary
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signals, u andrv. In terms of ﬁhe feeding and décay picture, it is easy
to see that‘altﬁough individual members in the ensemble are constahtly
being fed, driven, and éyenﬁually decay, the cohérent driving field
serves tbimaintain the coherenéé indefinitely.-

It is worthwhile to find and compare the maximum values of the

coherent compbnents. The maximum of (ri ho' occurs off-resonance at
. _ o o
a value given by v :
Mméx = Fl*- + 1 Vl + fzwiTT » : (83)
2 /TTe - o

yielding for the component

, » r2fw -
(r3y, = — ' S (8k)
° 2 L 1 1 + £20lTe :
_ TZ‘ ITe 1 .

This compbnent attains its largest value for vety'high fields

Aw = fw

‘LI_
max 1 T
e
. '(85)
and o
: v r T
(rf5) (max) = -2 V—E )
lwo : 2 v

In the absence of appreciable spin-lattice relaxation, and if Ty > @

as wl + o, T?= X and if kk=ky,the component becopgs what the vector

s _ .0 _ (.8 — .
modgl would predict, (rl)wo ?3/2 <r3)wo, and‘Aw—fwl. The maximum

1

_value of (rs-no is obtained for an intermediate value of fw, on

2

resonance and is therefore a more complicated function of the two
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2 2
it is easy to show that

S . R |
relaxation times T, and T,. In the absence of inhomogeneous broadening

H
“L» o

S a—
(r2 %u (max) =

T
(o)

VI (86)

The important difference between Eq. (86) and Eq. (85) lies in the

fact that T can be very ﬁuch larger than T since Eq. (85) is obtained -

1’

the maximum values of the components would be the same in the absence

under high driving field conditions. If Te is not dependent on w

E
2
S
1 1)w
[o]

insensitive to inhomogeneous broadening. It therefore becomes convenient

of inhomogeneous brqadéning. Including the effects of T, again favors

the r, component, for the high field conditionsfméke {r (max)

. to use the r., component as a normalizing factor and plot the ratio

1

of (r,) (max) to (rl.)(u (max) as a function of the unitless pafameter

2w
T/Tz*. ;Lis is given in(;ig. 9, where it has beenvéssumed<that TéIe
for the sake of comparison. Thus, through a coﬁbiQétidn of Te(wl)
and TZ*’ the largest possible value for a cohereht'éomponent is.obtained
in the off resonance "dispersion" signal, and cOuld be orders-of
magnitude_lafger than the on-resonance "absorpﬁion:signalﬁ.' .
This_feéture of coherence is notlparticulafly important forvthe
rf region of fesonance frequenciés, except perhaps for sensitivify
considerations, but gains considerable importancé in the ﬁicrowave
and optical regions owing to the fact that the cohérent component

represents a macroscopic oscillating dipole and is responsible for

maser action in an inverted medium within a resonant cavity.
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Fig. 9. Maximum value of r2, normalized by the invariant rs, as a function of the unitless

parameter T/TX. Appreciable inhomogeneous broadening (T/T2 > 1) causes a._

significant decrease in the rg component.
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Since theyaﬁplitude of‘the maser radiation islpfoéortional to the size
of the inbléne component.iﬁ a conventional oﬂ—fesonance amplifying
system, it is tempting to consider the previous arguments comparing .
'rl gnd r2 éémponents with respect to the maximum intensity of coherént
:adiation that could be obtained from a given'systém. These argumeﬁts
predict that a properly-chosen system that poséesses a ml dgpgndent
T2e and has appreciable inhomogeneous broadening cou1d conceivably
produce coherent radiation fields that are ordérs of magnitudellarger

that the fields that could be produced by on-resonance excitation.

In the same sense that on-resonance coherence is self-regulating at

.

saturation, the of f-resonance experiment self-regulates about the
value giQen'in Eq. (85). Unfortunately the appliqation‘of ﬁhese .
results to Opfical éystems that possess appreciéble gain is not
straightforward since the driving field must bevmodified to ihclﬁde
‘spatial effects and the contribution of the cqhéfént component to the
driving fiéld itself, and it is not clear whether this probefty could
be exploitedbto increase the power output of a giveﬁ system,

One aspect of steady-state coherence may possibly be exploited,

however, in the study of superradiance.54 Dicke first presented the

idea 1in 1954, but it was not widely discussed until recently. The topic

has been obscured:by semantics and experimentalJmisinterpretation and
is presentl& the subject of considerable debate.55 The steady-state
component prévides a novel method for maintaininguand controlling

a superradiant state by use of a coherent driving field and ‘

‘incoherent feeding. By choosing an appropriate éystem éonsisting of a
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thin sampleiwith long relaxation times, a large‘sﬁéady—state vector
may be maihéained by an intense off-resonance cohefent driving field,
and the éyétem may'effectively be prepared in‘a sfate'of any
"cooperatibn number"; The field may then be‘tﬁrnedvoff and the
systeﬁ sfudiéd as it evolves in time, and in tﬂiSFWay the various

properﬁiéé of the superradiant state could be "mépped out".

G. Extension to the Optical Frequency Region

The.préviOus treatments all utilized the following assumptions:
(@3] éehiclassical, monochrématic, cohereﬁf driying field
(2) waveiength of driving figld is large comééred to the»size
of the entire ensemble. |
(3):fields produced by ensemble are-negligible.
Assumptidn (1) may be modified in the semiclassicél limit to include
spatial effects and deviations from temporal and spatial coherence

by considering a more general form for V(t) (Eq. (10)).

- V(z,t) = ho fw, (z,t) cos(ut - kz + ¢(z,t)) (8D

and Eq. (10) may be considered to have been defived from Eq. (87) with

the approximations

ow : . ow
S <, = <Kw

9 1 ot

3 T -
1’ B2 << k¢f << wp - (88)

ot:

)

§

Assumption (2) may be expressed in ferms of the sample length, Z,
kZ <1 | (89)

and Eq. (10) then follows.
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1. Spatial Considerations

Assumption (2) may be eliminated quite easily provided that (1)
and (3) are retained. 1In thisicase the stréngth_of fhe applied field
does indeéd‘vary spatially across the sample, ﬁufvthe relationship
betweeﬁ aﬁy two points within the. sample is tri§ially related by the
speed of'light in the sample medium. As long és ¢)) and.(3) hold,
there is no dispersion,and the ensemble may be considered to be
coherently éoupled, for although different parts of the sample do
not "simuitaﬁeously" experience the same field,’éach point z will
experiencé the same field at the '"retarded" time f—é/c. A nerl-way
to include this consideration in the formalism of chapter II is the

following. Including the spatial dependence explicitlyd'Eq. (12)

becomes
wt-kz, wt-kz,
h h -ig, ———l _
% = % o fwl 1% T i03 2 . : 90
i 2 3 2 ¢ - Oy e o (90)

where ﬂg is now a different Hamiltonian for each mbiecule in the
ensemble with position zj.v Utilizing the same'feasdns'that prompted
a rotating frame transformation, both the temporal and spatial

dependence may be removed from the effective Hamiitonian, ﬂﬂ Defining,v.

a unitary operator similar to Eq. (15)
‘ wt-kz,

U .=e 3 2 | (91)
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ﬁach density ﬁé;rix for the jth molecule may.be_transtrmed as in
Eq. (16), and‘éggg transformed density-matrix-nbw;obeys the same
equation of'ﬁdgioﬁ which is identical to Eq. (17), and the entire
dévelopment,'from Eq. (17) on, may be applied.l of éourse the spatial
dependencevhas not actually been "removed" by these_manipuiations, but
since it.ié of a triviai nature, the dependence may-be incorpbréted in
thevunitaryvoperator where it does not interfere with the equafioﬁ of
motion, just as in the case of the rotating fréme transformation.
Notice ﬁhatiEq; (91) is tantamount to transformiﬁg'to a rotating
frame in which the substitﬁtionbfor the retarded.tiﬁe t-zj/c has been.
made in Eq. (15). Since (1) and (3) insure no dispersion, the'group and phase
velocities_ére equal, c%w/k,'and'Eq.‘(9l) follows.

At.fﬁisipoint one might speculate on a "decay f?ame" transformation
that would'téke the well-defined decay of the stafés‘and place if in a
unitary transfprmatidn in the same fashion as thg ;otating frame and
spatial'tfanSformation. If this could be done, the équations would
reduce to_véry simple forms again. Unfortunatelyvthis is not possible,
for even fhoﬁgh it is well defined, the overallldécayrrate at ény given
time is strictly dependent on the positioﬁ of thé r-vector, and
thereforé the decay’térms must necessarily be a parﬁ of the equation:
iof motion; However, under the special‘condition‘k¥=ky, the decay may
indeed be reﬁoved from the equation of motion and ihcorpbrated in the
unitary operator, for in this case the vector haé the same probability

for decay, indépendent of its position in r space.
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2, Photon ﬁcho

o The spatial transformation is not as trivial as the rotating frame
transformation aﬂd.will depend.sﬁrongly on ﬁﬁe shape of the sample, how
it is dri§en by the applied field, and howvit ianbserved. One special
case worth considering is that of a'small sampie.obsefved at a lafge
-distancg. .In this situation the observed behaviofvof the.systém will
be the éum of each density matrix pj resulting.froﬁ the HamiltOnian ﬂ}.
The spatial dependence may be left in as an effective phase with fK‘ ;j
replacing ¢ in Eq. (10) and Eq. (20)..1Fo: the sake of example én_

echo sequence is taken in which the first /2 pulse enters the sample
with wavevector il and the.ﬂ pulse enters at a.different angig, but
with the saﬁg frequency, EZ’ E1¢§2, |§i|==|i2|. HRépeatéd apﬁlicaf@on
of Eq. (19)vyie1ds a‘final &ensity matrix for eaéh‘membgr in fhe ensemble

assuming that everything starts. in the ground state rx=l, ry=0=ri=r2

| | | | @)
- | D N L
- 1 3
1 ‘ieiAw(t t ),e 2 3j
by T - (2k,-k.) | o (92)
bo-i—2 1 7 | 1
| _ie-iAw(t-t ) e 2 j . 5 g4 .

For a large number of closely spaced meﬁbers in thé ensemble, the.

sum over j becomes an integral over the function G(;) that déscribes
the shape of the sample. The form of Eq. (92) demonstrates that this'
will resulﬁ in the spatial Fourier transform of G(?). If G(;) ié
spherical with sufficientlyilarge radius, the off-diagonal elements are
reduced to § functions with argument ZK x,. A éimple geometrical

21

argument demonstrates that if the 7 pulse is applied at an angle o
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with respéctfto the initial /2 pulse; a burst 6f cphefent radiation
associated‘with the fofmation of a photoh echo wi11vbe emitted at an
angle 2a with magnitude ~Ikll provided that a is small enough, in
acéordaﬁée with the predictions and results of Rgf. 31. Note that
thére would Be no directional‘dependencé assdciated'with the normal.

spontaneous emission from ry.

"3, Photon Echo with Probe Pulse

Several problems‘are preseht witﬁ thé photoﬁ echo experiment,
most of théﬁ éssociated with detector ovefload-aﬁd';enéiﬁivity. In
this situafiou the probe pulse method might prove to be more useful
_ since the épontaneous emission may be monitorgd af any angle,
'Specificélly;‘if an additional 7/2 probe pﬁlse is applied to‘pj in

Eq. (92),’ryj is given by

| oy Ak k), b i K ),
- =% [1 _%_ (eiA@(t-t ), 2 3 - o 1w(t-t )e. 21 J)] (93)

- : -
and kl may be set equal to k2

coherent radiation, again rendering the ry component spatially

since the detector is not montoring the

independent. Assuming an on resonance echo-and-a»Lorentz line shape, R

the photon echo would then be given by
t-t"
. _—TT
r = = (1 e . 2 ) (94)
y 2 \" I :

which corresponds to no spontaneous emission at echo maximum and emission

cofresponding to saturation at values of t-t' far from echo maximum.
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In order to accurately map out the actual echo'shape the prbbe pulse
must be'sufficiently short compared to T%, but,.since the echo shape

is not parﬁicularly interesting anyway, this requirement is not
essential;' However, thé echo maximum decay may bé accurately monitored
with pulses that do not meet this condition. An édditiona1 point

must be'madé with respect to the method used t¢ monitor Eq. (94). An
optical system often cannot maintain temporal gdherénce for the time
required to perform the entire echo sequence and méy result in the
condition 'in thch each successive pulse has a réndom ﬁhase relatidnship
with respect to the pulse preceeding it. It iéveasy to see that £ﬁis’_
fact has no particular significance in terms of the actual eché
formation;sinCe the random phase merely causes the echo to form in

different parts of the r plane which implies that the burst of

172 !
coherent fadiation has a different phase each time the experiment is
performed. This feature is much more importantafér the probe pulse,
however, since a random phase will result in tﬁe.vector being rotated
"up" just as many times as it is turned "dqwn" and.a.time average

of many experiments will yield no signal unless.a method that measures
the "rms" excursions of the vector is used. Of.céﬁrse this problem ‘_
is also present when'microwave transition freqﬁehcies are being used,f
and one must therefore insure thaf a time—averaged probe sequence

measures the decay due to molecular relaxation and not the residual

FM of the microwave sweeper.
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V. SPECIFIC APPLICAIIONS TO PHOSPHORESCENT
TRIPLET STATES‘IN ZERO FIELD _
In_tﬁis chapter, the formalism developed in chapters 1I, IiI, and
"IV is applied specifically to the problem of zero:field phosphorescent
triplet statgs. The alterations an& additional,assﬁmptions are first
outlined aﬁd'then illustrated with a few exemplary experimental results.
The second part of the chapter gives a detaiied account of fhe »
#cfual-expé;imental techniques and equipment reQuifed to perform
opticallyhdeteCtedAcoherence experiments in zero field.

A. Relationship between the Geometrical
Picture and Phosphorescence

The triplet state of many molecular solids is nondegenerate in'
zero field, owing to the electron dipole-dipole'interaction-and is

commonly expressed in termé of the_Hamiltonian13

2

X = —x52 - YS© - 252 . S (95)
o X - y z <

The three spin sublevel eigenfunctions, Tes Tys Tz, are often quantized

y
- ‘along the symmetry axes of the molecule, and can be-mixed by the

-spin operétors Sx’ Sy, Sz. The matrix elements are given by -

('ri|Sj|Tk ) = ih B i,j,k = x,y,z cyclic permutation .  (96)

Since'ﬂ; is traceless, it is also expressed in terms of the two

'ﬁarameters D and E.
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The triplet spin sublevels may bée populated by excitation of a

number of sihglet states with broadband emission from a mercury arc.
lamp, and the weak interactions resulting from spin-orbit coupling - §
allow intersystem crossing to triplet states of the'proper symmetry. ' ?

Rapid internal conversion populates the lowest triplet state, and, owing

to symmetry restrictions, significantly large nonboltzman population

distributioﬁs between the various spin sublevels may result at sufficiently 5
. o ’ ]

low"temperatures, usually around that of liquid helium.19 A microwave o

field may be applied to such a system, and if there,is.any population

difference between two of the three levels, the resonance spectrum may

be recorded by monitoring the change in phosphorescence that resul;s
when the applied field alters the populations between the levels. . = i
The form of the perturbation given in Eq. (10) is explicitly for the

triplet state

w,il = ygl(rijsjlrk ) o (97} ;

where H is the amplitude of the magnetic componeﬁt of the EM field

.-and Y is the gyromagnetic ratio of the electron. The imaginary form

for the matrix élements implies that X' in Eq. (12) should be expreesed
in tefms of qz, ‘
90° phase shift in the applied field direction,'and‘the results of the

but, as Eq. (6) demonstrates, this amounts to only . a

preceeding chaptere apply with trivial modificatione that do not warrant
further consideration.

In. general, the observable that is associated wieh the triplet
state phosphorescence arises from ehe couplihg of the singlet and triplef

56,57

states by a Weak.spin—orbit perturbation. The triplet'state is
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thus an admixture of triplet and singlet vibronic leVéls,

Ity

) = t.) +Z Ci IS ) + triplet terms - (98)
B i n n ' n - .
and emission to the ground state maﬁifold; So’ is made possible through

,an‘electtic dipole transition that couplés with the singlet admixture.
’ o ) = 0 ' » .
(riluJ]so y = Z¢ <sn[uJ|so ) = ch | (99)

The‘expreSSions in Eq. (98) and (99) are grossly 6Vérsimplified but are
quite adequate to describe the problem. The subscript J denotes thé
polarization of the electric field, determined by syﬁmetry considerations.

The observed phosphorescence méy now be obtained from thé density

matrix by cthtructing a "phosphorescence operatorﬁsg

p# = Ju,ls, 2¢s_|u,l = | (100)
and deterﬁining its expectatién value

(PJ ) = Tr[p PJ] | ‘ .(101)

-this may be_exﬁreséed in terms of the r-vector components from Eq. (7)

2 2 ' o
= l Y ..1_ 23 - }'* X _ )
(Py) =3 chl (14r) + 3 |cJ| (1-ry) + Re(C] C)(r;-ir,))

or (102)

2 2
(p;) ch] r, * chI r_ + Re(C] _cJ) (r -ir,)

2 2
|C§| and |C§] may be identified with the radiative rate constants

k' and k;; respectively,'whére the r superscripts have been included
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»

to 'allow fbrnnpnradiétive processes that could also contribute to the
total rate cénstant-k. In geﬁeral, fhe éymmetry‘p?bpertiés associated
with many molecules place fairly strict limitatioﬁs_on the various
allowed polarizations and usually one of the two ééefficients C§ or C§
is zero fof a given polarization, J. Under.thisiébndition it canlbe
seen that..

+ constant ;  . ; - (103)

(PJ )«.r3

Equation (103) implies that any change in the observed phosphorescence

is manifestédAas a proportional change in r3, as_would be expected.
The special case in which Cg and Cj are both nonzero merits

further attention. Under this condition, the coherent coﬁponents‘are

actually manifested in the phosphorescence as a modulatibn at the

X

larmor frequency. Furthermore, if Cg = CJ,

Eq. (102) reduces to
(PJ ) = k' + r,coswt + rzsinwt)' - ' (104)

where the off-diagonal element of the density matrix has been converted

back to 1ab6fatory coordinates. A 1007 modulatidn of ﬁhe phosphorescence

occurs at the larmor frequency if a coherent state is created in the

absence of relaxation. This phenomenon was first discussed in relationship
to zero field phosphoréscencevby Harr1821 and is Quite similar to analagous

results obtained in gases59 and sol_ids60 in other double resonance studies.

The effect‘has had considerable theoretical attention as we11.58’61’62

Notice, however, that for the general situation a probe pulse would be
required to monitor the coherence if phosphorescence'is used as the

observable.

i
i
|
i
H
|
I
|
i
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The model system depicted in Fig. 5 will be qﬁite well suited to

describe triplet state. coherence experiments provided that the constant

feeding parameters Fx‘and Fy may be jdstified, and also there must be
no interference from the third level through s§1n~1attice relaxation.
The secoh&brequirement may be met by coolingrthe sémple to a éufficiently
low temﬁerature, and the firSt condition is validﬁpfovided that the
singlet stétes are optically pumped at a constant rate and that the
ground state is not'significantiy depleted.. All these conditions are
experimeptally attainable.

In zéro field, intersystem crossing occurs.incoherently.to.the
eigenstates, satisfying the form for_F'in Eq.. (45), Thus, the-mathémati-

cal formalism is quite easily applied to zero field triplet states.

B. Experimental Examples '

Figure 10 depicts an optically detected transient nutation for
high power on and off résonance pulses. Since oscillitory behavior
is observed;'it is possible to coherently couplé two levels in the

triplet state. Note that a rough determination of the nutation

frequehcy‘éorresponds reasonably well to w of Eq.'(21) despite7the

strong damping present. Thé damping is_éauéed primarily by applied
fiel& inhomogeneities as can ﬁe verified b& lowering the power and
obsérving_that the same nuﬁber of osciliations 6ccﬁr. This
inhomogeneity‘is to be expected since the coupling to the sample is

done through a slow wave helix.63
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_:OPTICALLY DETEGTED TRANSIENT NUTATION'
hp - 1,2,4,5 TETRACHLOROBENZENE IN h4-DURENE
Tx—Ty TRANSITION -

PHOSPHORESCENCE (0,0) =3781.5 A; ,|".s'°|,<-

] we=3.6824 GHz

(a) On resonance

> oL { _ i [ | . i
) - :
S (b) Off resonance w = 3.6794 GHz
= Aw=3.0MHz
— 1o Exp. @ =5.26 MHz
@ Calc & = 5.45 MHz
[ g
(3]
o
[72)
®
S
2 5
oy
(7]
o
P
ol ! 1 L | J
o (c) Off resonance w = 3.6774 GHz
Aw = 50 MHz
Exp.@ = 6.54 MHz -
Colc. @ =6.75 MHz )
) v
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o | i ] - A |
0 0.5 1.0 .5 : 2.0 25
Time (usec)
' XBL 7310-5453

Fig. 10. Optically detected transient nutation. The change in
phosphorescence intensity (« r3) is plotted as a
function of the duration of the microwave pulse.
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Figﬁrevil illusérates the frequency responée,tq‘a high power
pulse for am and a:2ﬂ ﬁulse whose theoretical forms are given by (b)
and (d) in Fig. 3. Although inhomogeneities and ﬁnleveled power distort
the waveforms considerably, the characteristic 2m "hole" can be seen,
and the aneférﬁs clearly demonstrate that the ;gép&nse‘is ﬁot merely
the Fourier transform of a short pulse. Refereﬁée'36 gives a particularly
convincing set of waveforms of this type for hypefsonic molecdiar‘béams.

Examples of optically détected électron spip‘eéﬁoes are given
in Figs.‘iz.and 13. Notice that the probe pdlsé is required and is 
applied point-by-point in time in order to mﬁp out the echo shape. )

A transient nutation determines the lehgth of tiﬁe required to broduce
the pulsgs_ﬁéed in the séqﬁence. Both the on aﬁdvdff resonance echo
shapes are déscribed by Eq. (41).

The decay of the echo maximum peak as a funcfion of the total waiting
period, T+t' in Eq. (41), will give the homogeneous relaxation time,
T2, as iliusﬁrated in Fig. 14. The decay 1is a sipgle exponential for
this particular system.

The broblems inherent with optically detected Fourier transform
spectroscopy are demonstréted in Fig. 15;' As e#beéted, there are
large intensity errors present. The echo was ob;éiged by utilizing
pulses‘whefe w.=5 MHz. Since the multiplet structure is 5 MHz wide,

1

this would also contribute to intensity erroré because the proper

condition for FTS is that wl

>>Mw.
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phosphorescence to a high power microwave pulse. These

are to be compared to the predicted forms in Fig. 3.




: OPTI..CALLY DETECTED ELECTRON SPIN -ECHO

IN THE 27777* STATE OF dp-TCB IN di4- DURENE

On resonance

Relative Phosphorescence Intensity after the 77/2 Probe Pulse
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il B 3778 A
m/2 T /4
(50 ns) (I00ns)
Off resonance
s | 1 ! L L 1 I 1 -
0 - 05 1.0 . B} .20 25 . 30 35 40 - 45 50
' u Sec :
S . | XBL73I- 5689
Fig. 12. Optically detected zero-field electron spin echo. The T refocussing pulse is applied

-2 usec after the initial m/2 pulse and the final /2 probe pulse is swept 'in time.

The echoes at the right are traced out point by point as the probe pulse is applied
at the time given on the abscissa. The vertical lines are noise at each point in time.
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ECHO
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Fig. 13. Echo traced out by the device shown in Fig. 23. : ?
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F1g 14, Trace of the echo/maximum decay from the device shown in Fig. 24.
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C. .Cogpérison of Solutions to Previous Zero Field Experiments

The optically detected cw spectrum given by Eq. (80) and (81)

has of course been well established from the beginnings of zero-field

phosphorescénce microwave double resonance. However, the actual analytical

form has'néver been derived bpf merely aésumed'to‘have the same form
as in magnetic resonance. Oﬁe advantage preseﬁf in cw opfical deﬁection
that is lacking in conventional EPR detection résults from the different
saturation.charactéristics, given by Eq. (82), aliowing one to obtain
‘a maximum signal with maximum power, and therefbré ;here is no dénger.-
in making a sought after transition dissappear 5yiapplying the incorrect
magnitude of driving field, as is pften enCounteréd with conventional
magnetic iésonance. For low'powers, the opticaiiy~detécted EPR signal
is linear in the power of the applied field, Eq. (8l), and this behaviqr
has been‘observed.64 |
At this point it is worthwhile to take the feéults of chapters 11,
IITI, and 'IV as they apply to phosphorescent‘tfipiet states and compare
them to previéus work by other authors. With two éxéeptions 21’22 a
"rate equation'" approach has been taken to descfibe ;he tfansient behavior
of the tripiet state under the influence of a pérﬁufbing microwave field,
and all this pfevious work may be shown to be special cases of Eq. (53)

or Eq. (69). The earliest treatments65’66

assumed the same arguments
that led to Eq. (63), namely that ry(t)=rx(t) during the entire time
development of the populations. If steady-state conditions are achieved
under a strqng rf field, the total population is ﬁs of Eq. (63), and

by turningIOff just the optical pump, Fx=Fy=0’ but 1gaving the'ﬁicrowaves
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on, Eq. (10) of Ref. 66 follows.
S . k.t -
N o= N A , (105)

Shain and Sharnoff67 proposed a set of differential rate eduations

~ to describe a new method for meaéurihg the various. feeding and decay

parameters associated with zero field triplet states. Their equations
may be obtéined as a special case of Eq. (69) if 6ne considers the

condifions,on—resonance, Am#O, negligible spin-lattice relaxation,

‘l/Tx=1/Ty=O; and considering’timéé after the coherent component transients

have decayed away, i'=f2=0. Equation (69) then.becomes

1
"rl =0
r, = ~-fw T(r_-r_ )
2 1 y x _ (106)
'r_ = fw,r /2 ~-kr +F
'y 1 2/ Yy y
Lot = cfur,/2 -kxr +F

and Eq. (1) of Ref. 67 follows provided that one identifies the "inducéd

transition rate", W,with the term

fszT

1 ' : _’. '
3 ‘ - (107)

=
th

The expressions in Eq. (2) of Ref. 67 follow if this definition is
incorporated into the steady-state terms given in qu (73). |

The éxpliéit form for W and the conditions under which it is
derived clérify,the rathef neBulous statements made by Shain and
Sharnoff relating ﬁo the,aﬁplicability of their ﬁq. (i). Since TET2

for triplet state systemé, Eq. (106) will not be app1icab1e until
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t=10T,, which is the time that it would take the transient nutation to

65,66
are

stop oscillating. The simpler arguments of'El—Sayéd, et al.
a special case of Eq. (106) for W=~, for then N° resulté in the steady-
‘state solutions.

In addition to the minor semantic difficulties éssociated with

Ref. 67, a mofe serious error is made by assuming, without stating so,

that the line is homogeneously broadened, hence gffectively equating
(ZﬂAv)—l with TZ.' The shortest T2 that has beenVﬁeasured is:3u sec,
implying that the homogeneous linewidth, should be 0.1 MHz, which is

narrower by a factor of ten than the observed low power linewidfhs.
This, coupiéd with the fact that the echo is obsefved, rules out
homogeneousAbroadening, aﬁd an expression‘Such‘as Eq. (80) must
therefore'he used. If an intermediate value of fw. is used as

1

v ' *
Ref. 67 suggests, "YH _ << 27Av", implying that fw.T, << 1, the true
' : rf 172

value of Bij(m) is not as simple as their Eq. (3), and'care must be

used when one attempts to obtain relative pppulatidns and feeding

\lggggg by their method. Further, prolonged application of a high
power microwave field can physically heat the sambie and alter
the populations through spin-lattice relaxation.. These, and other
problems related to the measurement of kinetic‘paramete:s associated
with the triplet state are amply discussed in Réfs, 68 and 69.

If the‘equations in (106) are further simplified by assuming
steady-state conditions for ry and rx as well, Eqs. (1) and (2) of
Ref. 70 follow, provided that the "cross sectién" and "power" are

defined as oP=W, Eq. (107).
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1. Extension to Three Levels

An extensive search through the literaturé_has»not revealed any
_equations deeling with zero field ODMR that are not a special case
of Eq. (69)cvsave those treatments that conSidet spin lattice
‘relaxation between all three triplet spin sublevele, in.which case
Eq. (69) doee not apply. The extension to a three lenel system is
straightforwatd since only relaxation terms and a third population
component,'rz, need to be added to Eq. (69). A §X9_Liouville matrix,
manyvofvwhose‘elements are zero, may be constructed and a solution
enalagoue‘to Eq. (79) follows immediately. The evalnation of the
exponential matrix would prove to be a formidable‘but soluble problem.

2. Comparison to the Work of Icsevgi and ‘Lamb

Equation (69) can be seen to be a special case of Eq. (52) from

Ref. 48, if the following assumptions are made. . Set T2e=T2 and ignore'

spin-lattice relaxation and spontaneous emission iniEq. (69). Convert
the r-vectof components to the laboratory,ffame, endifelate the rotating

frame components r1 and r2 to the in-phase and out-of-phase components

of the polarization. This may be done by consideting Eqs. (13), (19),

and (43) of Ref. 48, resulting in the relations C(v,z,t)=frl,

S(v,z, t)=—fr Assuming that v=0 and ignoring the spatial dependence,

2°
(52) of Ref. 48 reduces to Eq. (69) with the substitutions
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(w-v) = Aw
C = fr1
s = --fr2
Yab =t
A = F

a y
Ay =F
: x
P = f
€ = —hwl
Y, = ky
Yb B kx

The stead&-state solutions, Eq. (73),vare also obtained in Seé. III of
Ref. 48, the "monochromatic wave" case. Similarly,fthe solutions for
"long puiseé" and "ultrashort pulses" compéfe with Eq. (106) and Eq. (22).
Note howevef that, owing to the complexity of.fhe problem in Ref._48, |
numerical integration is required for the intermediate éases whereas

Eq. (69) may be solved exactly.

D. Steady-State Coherence.

Owing to the possiﬁie ramifications of off-rééonance steady—st#te
coherence discussed earlier, it would be worthwhile to determine whether
coherence may indeed be made to last times fér_ekceeding the lifetimeé'
of the,states‘involved. . To this pufpose two experiments were performed.

The first ekperimental pulse sequence utilizes a spin echo to detect the
coherent éomponent. ‘First an off-resonance microwaye field of long duration

is applied to the sample, "long" implying sufficient time to establish

%
i
i
i



fact that both r and T
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the steadnytate values of the density matrix.-'This,pulse‘éstablishes

“the cohereﬁé component given by Eq. (82). At the end of the long pulse

an optically detected echo sequence is performed'on the coherent

component produced by the long pulse. It should be noted here that

since the:coherent gomponent is pioduced albng ry the echo corresponds
to the first echo in an off-resonance Meiboom—Gili7l‘sequence.

| A sécond'methOd that utilizes the brobe pulse was also used to
monitor thevcoherent component. Since the steady-state vector lieé
along the éffective field direction, a phase‘shifted pulse is requiréd
to rotafe ;he coherent component. The situatidn is complicated by the
.components are produced by the long pulse.

1 3

Therefore a probe pulse causes a change in the total phosphorescence

that is proportional to the contributions from both these components.

This problem may be solved by performing another seqﬁence in which the

probe pulse is applied at a time t>>5T2*. In this case the r, component

has completeiy dephased and the resulting contribution from the T,
component may be subtracted frqm the first sequence leaving only the
contribution’due to the steady-state coherent compOneﬁt.

Eq. (85) gives the maximum value of the steédyéstate coherent
component»ﬁnder high ﬁower conditions. If Te + 1/kA as wl - W, and

if spin-lattice relaxation is negligible, then thébcémponent is given by

k

e

- N
(rl hu (max) = (108)

o

“ﬂupo
T



-90-

The radical term is maximum when kx=ky;and thus it is best to choose a -
system in which two of the'thtee levels havé similar lifetimes, yet are

fed differehtly enough to produce a significant r_ component. For these‘

o
-3
reasons, 1;2,4,5—;etrachlorobenzene as a 17 guéstfin a durené'host,was.
chosen. vKr this gystem the Tz and Ty subleve1§ have similar lifetimes
of 36 and 38‘méec, respectively, yet the‘steadyrState population v
differencé is four times highef in Tz than it is iany, at 1.8°K. '

Figuregl6voutlines the echo method for steadyfstaté coherence
détection and also gives an expérimental trace of:such an optically
 detected echo. The long pulse was appligd 5 MHz off-resonance for
100 msec, and a suitable waiting time of 1 usecvﬁéé usgd to allow the
coherent Comﬁonent to fan out yet not so'long‘asvto allow homogeneoﬁs .
relaxation to eliminate the echo Signal.' |

The observation of an echo graphically demonétrates the ekistence
of the coherent component but unfortunately cannot be used as a
quantitatiVe measure of the.size of the componeﬁt owing to the method
used to record it. After a pulse sequence is coﬁpleted, it is desiréble
to wait at least five phosphéréécence lifetimesvbefbre the next
sequence is initiated in order to insure that the system has returned
to equilibrium. For this s&stem 175 msec is requi;éd. ‘For a 100 msec
"long" pulse, a reference frequency of 1.8 Hz mqu be used, when a lock-
in amplifier is employed and for longer pﬁlses of course evén lower
frequencies must be used. These low fréquencies ébntain a greét deél
of noise. In addition,.the change in phosphorescence due just to the
long pulse becomes a much larger signal than the echo signal. These

conditions ?équire an‘unusuallybhigh Q factor-and'frequency_indgpendent
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Fig. 15. Top: Optically detected spin echo of the 1.0552 GHz transition
of 2,3-dichloroquinoxaline in 1,2,4,5-tetrachlorobenzene. The interval
T between the initial #/2 pulse and the T pulse is 1.5 usec. The probe
pulse is applied at time t after the initial 7/2 pulse and is swept in
time. Bottom: Fourier transform of the echo superimposed on the low

power conventiqnal ODMR spectrum.
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KINETIC COHERENCE SPIN ECHO:
ROTATING FRAME AND EXPERIMENTAL DATA
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gain for”fegioﬁs in which a lock-in amplifier is not particu1arly’we11
suited. Thérefore, to avoid these difficulties, the second method
involving two prdbe pulse seéuences was employéd to detect aﬁy decay
of the cdﬁerent component that may not have been accounted for.
Figure'l7‘outlines the pulse sequence and experimentél waveforms
that resulted from aVeraging the signal with a digital CAT. The lower
part of the figure gives a plot of the diffetence b¢tween the two
sequences. It can be seen from this'figure'thﬁt.thé amplitudé of the
coherent component remains constant for times as'iong as two seconds,

corresponding to 57 triplet lifetimes and shows no tendency to decrease.

E. Coherence Lifetimesu;

The experimental results presehted hére deﬁonstrate that the
length of time that-the coherent compohent can be made to last varies
over a very wide range. As an example consider the‘tetrachlorobenzene— -
durene'SYSteﬁ.' A free induction decay reflectS'thellineshabe, and
the cohereﬁ;é'lasts only 100 nsec. The echo seqﬂence can refocus>the
fan but thevhémogeneous lifetime restricts the cohéfence time to 4 psec.
Reference 72 obtained cdherencévtimes.of 24 msec.for tﬁis system by
utilizing a spin locking séquence. Finaily, the.last expériment
presented in this work demonstrated that it is.possible to produce an
infinite‘cohe?ehce time. Eaéh of tﬁese experiméﬁfs may deal with
different sburces of relaxation phenomena, including trapping and
detrapping of excitation in relafion to coherent .energy migration in

solids. The results presented here serve only to demonstrate the
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Fig. 17. Probe pulse sequence designed to measure the coherent
component for extended periods of tieme.
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formalism of chapters II, III and IV, and to establish the feasibility
of optiéally detected coherence experiments in Zero_field phosphorescence

microwave double resonance.

" F. Further Considerations Associated with
ODMR Coherence. Measurements

As was discussed earlier, inhomogeneous driving fields, allowedness
considerations and orientational effects can all.ééntribute to difficulties
with theitrahéientvﬁutation. Since the transient nutation serves és the
keystone in practically all coherence experiments, it is desirable to
minimize any'problems that may interfere with this experiment. These
factors will now be discussed.

1. AlloﬁedneSS

This"problem has already been discussed in refefence to Fourier
transform spectroscopy. Véry little can Ee doné about this since it
is anrintrinsic property of the system. In some'éituatioﬁs it might
be uséful_ﬁo produce'én effective m/2 pulse by é;arting at some value.
Aw from the cehter-of a multiplet and then turning‘on a very intense
field sioﬁly,enough that the adiabatic theorem ﬁblas'for all lines in
the multiplet.. This assumes that there are nb'lingé_that are orders of
magnitude diffe:ent in f value; for in this case the adiabatic theorem
’may not be satisfied for all lines simultaneously. ‘Howévef_if the f
values lie within the same order of magnitudé, the r vécfors can be
'madé to foilOﬁ-theveffeCtive field as it rotates down toward the plane,

and in this fashion a more "accurate" /2 pulse may be achieved.



Unfortunately, the field strengths that are eXperimentally attainab1e> 
could hardly be classified as "very intense" compared to normal EPR
linewidths encountered in ODMR, and some compromising must still be done.

2. Driving Field Inhomogeneities

This problem arises entirely from tﬁe tra&itioﬁél methpd for
couplingvmiér0waves to the sample through a sléw?waQe.helix. If one.
molecular sysﬁém is to be studied extensiﬁely,itzﬁquld be wéll;to
sacrifice the broédband charac;eristics of a slow_ane helix for a cavity -
that would be homogeneous, but unfortunately, a'ééviﬁy does not have
as high H, field strengths as a helix. In some qaégé the "fan" caused -
by inhomogeneous broadening may be ''folded back“ by ﬁhase‘shifting
180° in different parts of the pulse sequence. 'This‘is the basis for‘

the "rotary_écho"73

which is simply a periodically phase shifted
transient nutation. The probe pulse echo could 5130 utilize this
feature, eg (7/2, 0°), (w, 180°), (w/2, 0°).

3. Orientational Effects

Much of EPR is done in rigid glass matricies;.but, as was demonstrated

earlier, a random array of "polarized transitions" invzero field will
not yield a particularly useful transient nutation in zero field. |
Coherence experiments must therefore be done;in singie crystal systems,
in which there is a regular array of "oriented" molecules. Even in
single crystal sjstems, hoﬁéver, orieﬂtational effects will still occur
from the translatioﬁally inequivélent molecules witﬁin the unit cell.
This probleﬁ may be exemplified by considering a singie crystal of

durene, in_whi@h a small percentage Qf‘l,2,4,5-tetrachlorobenzene (TCB)




molecules of the unit cell with strength
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haé been iﬁtroduced; lSincé the re1étive sizeé 6f the two molecules are
thé same,‘TCB ﬁolecules are‘arrénged within the-lattice by substituting
for durgné mélecules,'and\one must therefore cohsider the durene
crystal“étructﬁre in order to deterﬁine the orientétioﬁal effects on
the TCB-t;ahsient nutation. | |

Durene is monoclinic with two moleculesvpef’unit éell, and belongs

to the sﬁace group P21/a.74 The unit cell dimensions are

a =11.57 A

o .
b = 5.77A

o

c = 7.034

o .

113° 18'

o)
li

The geﬁeral atom positions are listed in Table I;‘:This table also lists
the’directioﬁ cosines of-each molecule in the uﬁi;-cell with the
orthogonalwcrystal axis system a,b,é' and also the direction cosines
vand'associatedvangles of the molecules with respect #o each other.
Table I reveals that a transition associated with thg x axis of
TCB dopedisubétitutionally in durene could have strong orientational
effects since the transition moment directions.éré'nearly orthogonal.
Figure lS:iliustrates the frequency spectrum_of efféctive'nutation

frequencieé_that would result from a linearly polarized driving field

that is iniﬁiélly applied,(0°)'along the x axis of one of the

i. The crystal is then rotated

about the c¢' axis, which roughly corresponds to the z axis of both

"molecules, and Fig. 18 gives the nutation frequeﬁciés as a function of
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P2,/a -~ a =11.57 b
1 e}

=5.77 c =7.03. - B=113° 18"
O o B i

GENERAL POSITIONS (in unit ¢

ell‘dimensions)

. a b c
1 0.188 0.314 | 0.267
2 0.093 0.157 0.127
3 ' 0.037 -0.005 0.212
4 | -0.055 -0.162 | 0.090
5 | -0.108 -0.325 0.194

Direction Cosines for Molecu

1

0.7459
0.6552
-0.1168

Molecule 2
*2
-0.7459
0.6552

-0.1168

Between 1 énd 2
b R 71 1
-0.1237  -0.9918  0.02
0.9918  -0.1225  0.03
-0.0274 0.0356 0.99

le 1

V-1 1
-0.6619  0.0739
0.7492  0.0973

-0.0207 0.9929

Y2 z

© -0.6619 -0.0
-0.7492 0.0
0.0207 0.9

74 x2
56 y2
91 z

2
739
973 -
929

c

a
b

Associated Angles

97.1

7.3

91.6

172.7
197.0

-88.0 -

88.4

88.0

2.4
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Fig. 18. Transient nutation frequencies expected from a molecule doped in durene
as a function of the angle of rotation about the z axis of the molecule-
~¢' axis of the crystal. Points A-D exhibit only a single nutation frequency.
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the gnglé.of'rotation, 0. As the crystal is r&ka;ed,.the tﬁoinutation
frequencies reflect the respective projectiqns7§f,the polarized
driving fieid direction on the x axis 6f each molécﬁle in the unit cell,
Eq. (36),"

The 6bserved transient nutation resulting from.the contribﬁtions 
.of these two nutation frequencies would exhibit a characteris;ic "beat"
pattern. This is exemplified in curve (a) Fig;.19'which is a plot of
thevfunction |

-t/

£(t) = - /3 (coslomt + cossTE) - (109)

in which one nutation frequency was arbitrarily chosen to be twice the
other. Curve. (b) is the Fourier transform powef spéctrqm of curve (a)
and of course reflects the two frequency components that were
introduced into curve (a). In taking the Fourief fransform of (a),
the data.wénapurposely "phase~shifted" by starting at the position
indicated by the arrow, gnd an incbrregt baseline was artificially
introduced to simulate experimental coﬁditions.'_Thésé»factbrs have the
effect of iﬁtroducing a false zero frequency component and distorting
the linéshapes. Since experimental data never begins right.at the "top”
of the cosine function, this apparent phase shift introduces both
absorbtive and dispersive (real and imaginary) components in the Foufier
transform necessitating the use of the power spectrum which is the
absolute valué of the complex Foﬁrier_cqefficients.-

An experimental optically detected transient_nutation that reflects

this orientational dependence is given in Fig. 20(a) and its Fourier

transform is given in (b). Here four, rather than the expected two
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AMPLITUDE

Fig. 19.

'FOURIER TRANSFORM

POWER SPECTRUM
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Top: Transient nutation resulting from the superposition
of 2.5 and 5 Hz nutations. An arbitrary damping factor has

"been added to simulate experimental conditions.

Bottom: . Fourier transform power spectrum of top trace"
reflecting the two nutation frequencies. Experimental
conditions were again simulated by starting the Fourier_

 transform at the point indicated by the arrow and
’_1ntroducing a false baseline indicated by the dashed line.
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frequency éomponents are présent. This is mqst iikély caused By'crystal
"twinniﬁg" or ﬁwo different kinds of lattice si;eé;  Curve (c)iis the
Fourier tfgﬁsform of an experimental transient nutation that refleéts the
two molecules in the unit cell. It might be meqtibned that the

transient nutétions exhibited'invFig. 10 have siﬁgie nutation frequencies
because the'transition is associated with tﬁe z axis in TCB, the axes being
roughly paraliel in the durene unit cell (2.4° ftom Table I). A slighﬁi
beating‘effect may be seen on the on-resonance ﬁtaiiﬁ of the nutatioﬁ.
For other traﬁsitions, a single frequency may befob;ained by rotating

the crystai to the proper orientation, A-D, as iliﬁstrated in Fig. 18ﬂ
Table II lists the same parameters for TCB cryst;ai'.l as were given in

Table i for durene.

The'angﬁiarly dependent nutation frequencies illustrated in Fig. 18
suggest that the exact directions of the transition moments could be .
obtained from.the Fourier transforms of a set of zero-field transient
nutations ;nd knowledge 6f the crystal structure, mﬁch in the same way
as is done iﬁ high-field EPR measurements of fhé Am = ilvtransitions.
Thus, in theory the complete anisotropic g—tensoruébuld.be mapped out
in zero field. Several problems would have to Eérévércome before fhis'
hethod would prove practicable. First, a lineayiy:pdlarized, hOmogeneous,
~ strong driving field would have to be produced either by building a
fast résponsefcavity or improving helix design. - In addition the
microwave dfi?ing field device must also contain some kind of goniometer
for orienting and rotating the crystal sample with respect to the linearly

polarized field. For such purposes an exponential horn arrangement
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Fig. 20. a) Experimental Transient nutation that reflects several
- nutation frequencies. b) Fourier transform of this
nutation. <¢) Fourier transform of a transient nutation
- reflecting the two molecules in the durene unit cell.
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Table II. TCB Crystal Structure

?21/37

 =3.85
[0}

b =10.60
: o]

c =9.73 :
o) i

B=103.28°

GENERAL POSITIONS (in unit cell dimensions)

_a_ b c
11 -0.0272 | 0.2805 | 0.0915
2 0.4246 0.0690 0.2985
13 0.1680 0.0290 0.1320
4 -0.0113 0.1250 0.0380
5 0.1950 -0.0921 0.0830

Direction Cosines
, x, v,

0.9014  0.2319

0.0970 0.7086

0.4111 -0.7101

) 4

-0.9014 0.2320

0.0969  -0.7087

0.4112 0.7099

Between Molecules
o 41 %

-0.8885 0.3287 -0.3294 | x,
-0.3287 . -0.0043 0.9426 | vy,

0.3293 0.9426 -0.0082 J z

%

~0.3602 ]
0.6989
0.5717.] ¢!
z, '.
0.36027 a
0.6989 | b

0.57184 c'

'Associated Angles

153.1

109.2
70.7

70.8
90.2
19.5

109.3
"19.5

90.4
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introdnced ny El-Sayed et al.,75 for polarized studies might prove most.
practical;;although field strengths would prénent é problem. The zero
field transitions must‘not contain multipletlstructure with different
f values; fbrvthis would also create a spectrun of nutation frequencies.
of coursérin theory this consideration may be taken care of by |
:calculatinn.- | |

As a final remark it should be notedvthatvthé intensities.of»the'
nutation frequency spectrum would reflect the number of moiecules
contributing to a particular frequency only if the molecules are
excited unifnrmly.' The effects of singlet absorbtion nelection
_rules, tne polarization of the exciting light, Exqitation mechanisms, 
‘and thérgeometry‘of the optical viewing apparatusnnll play a part in
‘thé intensity contributions to the Fourierrtrangform peaks. For
example, the crystal may be excited by linearly polarized light
propagating along the x axis in the 1aboratory withnthe phoéphorescence
viewed along the y axis. The only molecules that.cén be "seen"'by
the spectrometer are those molecules whose singiét transitions may be
excited by the x-propagating light and, in addition,have the proper
phosphorestencevpnlarizatinn to allow y-propagation to'the spectrometer.
The intensity'will be weighted according to the appropriate
projections. ‘To complicate things further, the cr&stal nill have
depolarization effetts, and, for doped systems, additional consideratinn
must be given to the sitnation.in which the host,istexcited and
transfers excitation tx)guesttrans via pblarization selection rules.

This latter "problem" may be used to advantage in the study of exciton
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trépping by,effectiveiy isolating translationally‘inéquivalent éxciton

chains with the transient nutation and selective optical excitation.

G. Egperimental Methods and Téchﬁiques

In the following section,bdetails of the experimental apparatus used

to measure coherence in excited states by bpticalidetectiOn are presented,

and the:génera1 set-up for a pulse spectrometer and the methdds used_
to obtaiﬁ éoherencevinformation are discussed.
1. Apparatus | |

The conversion of a cw optically detected magnetic reéoﬁanqe
spectrometer to a pulse spectrometer is quite simple'because{the'optical
detection feature of the instrument completely avoids "cavity" and'
detection‘syétem ovgrload problems’encountered‘in.cbnventional ESR
pulse spectfometers. Only a pulse generafor, a fast microwave switch
device; #nd a high power microwave amplifier'are-reqhired in addition
to the normal cw setup. The experimental details,of the cw spectroﬁeter‘
have been deécribed eléewhere.76“A block diagram of the pulse
spectrometer is given in Fig. 21.

The héaét of the pulse spectrometer'iiesvin the:pulse sequence
unit, which éenerally consists of a device constructéd'from transistor;
transistor iogic'integrated circuit chips. These devices are quite
easy to design, simple t§ build, and are exceedingly reliable as far as
"homemade" equipment is concerned. Logic circuit'diagrams for a
number of these devices are illustrated.in.Figs. 22-24. TFor experiments
such as the Carr-Purcell trai_n,41 it is necessary to sweep the probe

pulse linearly in time relative to the strobe pulse at pulse separations
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- Fig. 21. Block diagram of an optically detected magnetic
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of severaibhﬁndred microseconds. Thg jitter in‘;ﬁis in;eryal must be
zless thanTlO.nsec for accurate reﬁording of‘ecﬁdes;  A device with.this
capabilityfis“shown»in Fig. 22.  The strqbe pulse dpens a gate that
allows a train of pulses produced by the 1 MHz ;gysfallclock to.pass'
‘through. The lower part of the circuit takes ohly'ﬁhe first pulse

in the train.and pfoduces a ﬁzéro~time" pulse. ;The-upﬁer part of tﬁe 
circuit keéps track of'the‘number of pulses, sﬁacéa_llusec in tiﬁef :

by counfing &own from a number preset witﬁ'six decéde‘thumb‘switches. N
When the couﬁter reaches zero, a pulse is prbducéd,'thus-proviaing.a |
digital time delay from O fo_l sec in steps of Ijﬁsec. This deléyed
pulse shut§ the gate before any more pulses afrive at the é&untef;
reloads the qounter,'and'activates a monostable muitivibrator havingbn
->a”precisioﬁ‘10—turn Variable resistor and severai.poésible caﬁaciﬁors
in the timiﬁg‘circuit. ' This allows one of Severél épntinnously
variable dela& ranges to be added to the digitai’delay. The zero-time
pulse cirpuit utiiizes the same capacitance timing“circuits without

the variable resistor plus an additional delay‘labélled "trimﬁ S0

that the ﬁwb ﬁﬁises.can?be overlapped in time, shoul& it become necessary.
The center circuit produées a variable pulse that ranges from zer§ to
the maximuﬁ’time determined by the variable resisth;capacitor combinatidn
and is valuable for producing transient nutations. A syﬂchrondusiclock
~motor attachéd to the variable resistor provides'a.gonvenient wéy'to

sweep linearly in time.
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Fig. 22. Schematic diagram of a digital plus varlable delay device capable of producing
two pulses w1th highly reproducible pulse separation.
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Figﬁre 23 illustrates cirguitS'for a transieﬁtinutation and a
probe pﬁléé echo shapeF As in the previous circuit, the time baseAis
controlled;byba variable resistor combined withfa-SN74121 monostablé
multivibrator. o

The’échd maximum decay curve pictured in Fié. 14 gan Be convieniently
measﬁred by éonstruéting the circuit illustratéd iq.Fig. 24, This, |
circuit.maiﬁﬁains a symmetrical time interval betﬁeén the th;ee pulses, -
insuring th#f the probe.pulse stays on the echo'ﬁéximum. The device
picks out three pulses from a pulse oscillator ﬁhdée period.may be .
expanded lineérly with a variable resistor. | |

Table III gives descrip;ive information on tHe equipmeht piqtured
in Fig. 2. It is important to use high isolation)PIN diodes such as
Hewlett Packérd 33124A. Often, two or more ofvthese diodes Are piaced
in series in order to prevent feedthrough whicﬁ wouId'Cauée partial |
or total saturation of the microwave transition whep the switch is in
the off position.' The PIN diodes are cohtrolléd by ;he pﬁlse generator
.output inté #'DM 8830N buffer in conjunction Qith a Nationa1
ngiconductorvCorporation,DH003SC PIN diode switqh driver using the
circuit givénfin the driver data sheet. This particﬁlar system
provides reldatively clean pulses with rise times on the order of 15 nsec.

'Flexibility in the pulse sequences used is'méde-possible by the

four-channel phase shifter illustrated in Fig. 23.. Each of the PIN
diode switches is controlled by a separate drivéf; Thus, any part of
the pulse seqﬁénce may be phase shifted by 0°,-90°, 180°, or 270°.

This is essential for experiments such as the Carr-Purcell echo train
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Fig. 23. Schematic diagrams for a transient nutation pulse device that starts at
zero and sweeps linearly in time, and a linearly swept device that maps
out the echo shape. : '
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maximum decay by creating a symmetrically displaced three pulse sequence,
/2, T, T, T, n/2 where T is lengthened in a linear fashion

-
]

-CT1-




OO0 v d4agsU 23893

-113-

Table III. Details on the_EQuipment'represented in Figs. 21 and 25.

Figure 21 Eqpipment

Hg arc lamp: PEK l00 watt high oressure.

Filters; 4 cm HZO,.2§00 A or BlQOIA schott interference.
Spectrometer: Jarrell-Ash 3/4 meter Czernyﬁ;urner.‘ |
Photomultiplier: EMI 6256S with cooled.(—20°C) housing.

Lock-in amplifier: PAR model HR-8.

Oscilloscope " Tektronix 454.

50 @ rigid coaxial line Micro Delay Division,_Uniform Tubes, .Inc.

Isolators, directional couplers, bandpass filters: Hewlett-Packard
(HP) and Narda Corporation. ‘ ' B

Microwave generator: HP 8690B sweep oscillator with plug-ins.
Frequency counter: HP 5245L with plug-ins..
Precision crystal clock: obtained from frequency counter standard.

1 watt and 20 watt microwave amplifiers Varian TWT with separate
high voltage floating power supplies. . '

 PIN driver circuits: see text.

Recording devices: Roytron paper tape punch, HP 7100B strip chart
recorder. The analog to digital converter, strobe pulse
generator and pulse generator were constructed from transistor—
transistor logic devices

Figure 25 Equipment
Hybrid tees: Anaren Corporation.
Constant impedance adjustable lines: General Radio 874-LK10L
Variable attenuators: Narda model 792FF.
PIN diodes: HP 33124A high isolation (often two or more of these

- diodes are placed in series in order to reduce microwave leakage
in the "off" configuration) -
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Fig. 25.. Block diagram of the four—cha_nne‘ll phase shifter.
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with the Meiboom—Gill modification,?1 in which the T refocussing

vpulSes are phase ;hifted:by 90° from thé initial v/2 pulse; Multiplé

vphases aré‘also required for spin 1ocking42 and”adiabétic demagnetization

- in the rotating frame.77 Phase édjustménts are‘madé by observing the

response of a crystal diode detector to the output'qf the network |

when separate channels arevswitched on individuaily and>to the resuitani

signal when tﬁo channels are opened concurrently’aﬁd:added together.
The.proceQQrevis as follows: the individdai Signa1s from two

fghannels béingﬂcompared are equalized by adjustihg tﬁé va;iable.atﬁenuators

in the lines. Combining two sigﬁais phase shiftedbby 180° producéé

zero detecfor output, and 0° phase shift producéévthé maximumicombinéd

_ output whi¢h varies from 2-4 times.the output due to individual chénﬁels,

. depending on the total iﬁéident power and the response characteristics

of the crystal. A 90° phase shift producés an Intermediate signal.

In three-channel experiments, an accurate 90° phase shift can be obtained

.by adjusting ﬁhe phase of the signal in question, A, relatiVé to two

other signals, B and C, which are set to be ISQf but of phase. One

- merely adjuSts the phase of A until the crystalj3étector responds

-equally to,A-+'B and A + C.  In two-channel expefiméhts, the.90°_phase

shift can beiachieved by setting the length of thé'adjustable line

halfway betweénV0° and 180° positionms. Alternativéiy, the ODMR echo

or spin,lbck signal itself, whose amplitude will be phase sensitivé,

can be used to set the phases.
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2. Sample Preparation

| Compound; of 1,2,4,5.tetrachlorobenzene (Tcﬁj“and 1,2,4,5
tetramethyibenzene (durene);wefe'purified by extéﬁsive zdne'refining
(~300 passéé),lDeuterated TCB was synihesized by fiYe exchanges wiﬁh
concentrate'dvaD.ZSO4 at 150°C under a nitrogen at@bsyhére.78 Thé

concentrated DZSO was made by distilling a stoiéhipmetric amount of

4

SO3 into 99.98% D20 under nitrogen.79 "The dé T¢B'was then zone refinéd
in the same fashion as TCB and durene; Other compounds were obtained |
commercially except for 2,3, dibromoquinoxaline,cwhich was synfhesized
and purified by Dr. Robert Cheh. | )

All samples were prepared by growing single érystals in 5 
Bridgman furnace, and a combination of cleaving and_Cutting were ﬁsedi
to form the crystal to a size that could be inserted inside a slow wavé
helix. |
3. Methods

The methods used to measure coherence opticaliy can bé'divided
into two parts. This division is based on the.félétive time scale of the
experimenté. For pulse sequences,. such as‘the sbin»echo, that last times
"much less than the lifetimes of the states, a 1ock;ih amplifier is used
to monitor the final value of the phosphorescénce. Experimerits that
involve sequences that last for times on the same order or longer than

the triplet state lifetimes, such as the spin: locking experiment, are

best recorded as transient waveforms on a digital CAT.
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For shoft seﬁuences the procedure is as fblibwé: The optical
spectrometer is set on one'éf the lines in the-phosphoréscence spectrum,
and the microwave sweeper is tuned to the appropfiate resonance frequency
associatéd,with one of the triplet state transitionsl A strobe pulse
génerator,'which can be a square wave, is usedvté initiate a pulse
seqﬁence»déyice and also servés as a reference‘fre§Uency for the 1§ck—in
amplifier. The reference frequency is largely de;ermined by the
triplet,s;éfe lifetime, the period being roughly.determined.as five'
times the;average of the lifetimes of the states iﬁvolved. Sincé the
pulse sequence lasts only on the order of micrésecohds,it ié reasonable
to negleé; changes in phosphorescgnce durihg the séquen¢e. Thus, on
"thg timeséalé of milliseconds,>the entirg pulsé sequence is completed
"instantly??and the final value of the phOsphorescénce;'which is
proportionélito'the'cohereﬁce remaining in the eﬁsemble at the.time.the
probe'puise‘Was applied,'will decay toWardsbthe s;eady—state value |
prééent in thé absence of microwaves. The strobe then initiates anofher
sequence, and this'repetitiVeiéignal may be fed into the lock-in
5amplifier_re$ﬁlting in a DC signal that is éropdrtional to the.
coherent component at the tiﬁe the probe pulse waé applied. If the
probe pulse is. now swept slowly,'the DC signal ffom'thevlock—in will
trace.out an echo shape, tranéient nutation, or whatever experiment
is being done. Figure 26 illustrates the actuai."spikes" that afe fed
into the lock-in amplifier. In some situations it is advantageous
to eliminate a large baseline by performing’a twq.paft series that

results in "on echo maximum", "off echo maximum" and monitor at half
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OPTICALLY DETECTED ELECTRON SPIN ECHO
IN THE 37 7™ STATE OF hy-TCB (y-trap)

/2 (50ns) 77 (I00ns) ‘IT/zn(sons) F”
' R
o ‘J

‘..__.z' ___.l*———JC'———o-i

T+2us

1.3°K
D-|E| Tronsition
T =1l usec

PHOSPHORESCENCE INTENSITY

T T+2usec

IXBB 733-2371

Fig. 26. Photomultiplier output observed in an optically detected spin
echo experiment. The first spike is observed when the three
pulses afe equally spaced, so that the probe pulse occurs at
the rephasing time, T, after the T refocussing pulse, i.e.,
‘on the echo maximum. The second spike is seen when the probe
pulse 1is applied off maximum at T + 2 usec. The two spikes
result from separate three pulse sequences, applied several
hundred milliseconds apart. :
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the.strobglfrequency.

The lbﬁg'puise sequehces are done in a similér fashion exéept'that
the repetitive transient response is recorded on a time averaging
computer,féﬁher ﬁhan being'fed into a lock-in amplifier. The forms .in
fig. 17 ﬁere reéorded in this fashion.

It might be noted that the first.step in any coherence éxperiment
is to perfbrﬁ a transient nutatioﬁ. This insurés that_the'systgmvis
coherently coupled and provides the necessary ti@es for w/2, T, etc.
pulées. Often times it is useful to employ an.in-line "trombone"
impedence éatcﬁing device in order to couple the hélig.most efficiently
té the'micfowaveé. Optimum conditions may be determined'by adjusﬁing_
the_ibck‘iﬁ signal to a maximum for a pulse time wlt < n/z, since‘in_

this case the signal will always increase if the'dfiving field power

is increased.
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- APPENDIX A

Evaluation of the Exponential Matrix

The "-exp‘ohential matrix resuiting from the general solution to
Eq. (69)':_g_.iven in Eq. (79) is of the form ekp(A't) where the matrix A

is given by the 4%x4 matrix ‘

F";k : 1fw1 —1fwl | i_ -
.y 2 2 ’ Tx‘
ifw ifw
1 R 1
7 Ky-iho ) 3
A = o

_..ifwl . ifwl

2 —KD —KAfiAw 7

1 —ifwl 1fw1 «

T 2 2 X

LY J

The Theorem

Theorem 2 from Putzer52 is easiest to use in ﬁhis case and will -

be repeated here. For an nxXn matrix, A,

' n-1
At _
e | = j§0 rj+1(t)Pj

where

o ‘nXn identity matrix, 1
J

. I (a-A 1) j=1,...n

d
L]

d
L]
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rl(t), ..,Vr#(t) is the_solution of the.triangular'system
=M
£, =1 + A,r
3 ﬁj‘l 33 ‘ o
initial conditions r1(0)=l rj(0)=0 j#i .

'j¥2;...n

and A 'An are the eigenvalues of the matrix A. It is worth mentioning

127"

several special cases of theorem

N

(1) All eigenvalues degenerate Xl A =...An=k

2

n?l k

eAt - elt &g% 'ET (A—AI)k'

(2) All eigénvalueé distinct ’Ai#lj#...k

 n At . n fA-XI
At = > e k L " where L =11 —)
. — _ . k . A=A,
k=1 j=1 V'k 3
| 3%k
note that any 2x2 matrix satisfies either 1) or'(Z). In particular

the Hermitian matrix

has .the explicit exponential form

coswt + i.(a;q sinwt '%?-sinwt
iHt dot
e =.e R
. x |
iab)-—,sinwt coswt.+_1S%Fll sinwt
where N _ ate
2
w = Va2+bb*—ac’
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if w=0 the ﬁatrix cOllapses to the'proper formvby'observing that
limw+o'sla¢t/w.= t.. This is useful for evaluating the unitary operators
U and S Eq (15) and Eq. (19).

For the 4%4 matrix the problem breaks up 15&6 three'main groups:
solution of the eigenvalue problem, calculation of the rJ(t), and
calculation of P,. |

3

Eigenvalue Problem

The characteristic equation for the matrix A yields a fourth order

polynomial in A.
4 3 2 o
A+ C3l + CZA + ClA + C0 = 0.

where the coefficients are given by

C. =K +K_+ 2K |
3 X y A
C2 = Ki KD + Amz + ZK (K +K ) +K Ky - 1/(T T ) + fzmi
C1 =‘(K +K )(K KD+Am ) + 2K (K K - 1/(T T ))
. fzwz , ;_ )
+ . [2(1(A + KD) + (K- l/Tx) + (Ky - 1(Ty)]
RPN 2.2, 2 22,0 - .
co = (KxKy_l/(TxTy))(KA—KD-FAw ) + (f w1/2)[(Kx-l/Tx) + (Ky l/Ty)J

Since the coefficients are all real, the quartic equation may be solved

by the following algorithm: first solve the cubic ~
3. 2 _ _f2n 2
Y- Gy 4 (C,Cy 400)y €3¢, 4CZC0 c, =0

using any root of y find R = JC§/4 - C2+y



w N

*]

N

2 — 3

' C - : 4C,.C_-8C_.~C

_1 3 _~ _ 23 1 3 =
D= 2 V73 C y + iR D

202'+ 2\Jyz—acé'

SN

W N

N =
|

c - 4C,C,-8C, ~C -
E=1J—3——c —y-—23_13 E = ‘/ - 2. - 2Vylac
2 2. 2 4R 2 , o

and the rpots are

>
]

_;c3/4'+ R/2 + D , A -Cj/a,; R/2 +E

>
L]

;—03/4 +R/2-D | | A& —C3/4 - R/2 - E

Once the eigenvalues are obtained, they must be é1assified according -

to the five'possible cases

1* A Ape Ay

(2) Al’ Al’ AZ’ A

case (1) A

3

B A, s Ay, Ry
(5) A, A

1’ "1’

Calculation of the r, (t)
: . J

The calculation for each rj always involves a first order
differential equation of the form

r - Ar = £(t)

which has the general solution

r = -e)‘t f _ f(t'-)e'-kt dt' -
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and the various rj are obtained through successive integration.
The problem falls naturélly into the five cases 1is£ed above and the

results are summarized in the following Table.

Case (1) - (5)

r ALt
1| po=e 1
At . ALt
(1) r, - (e 1 - e 2 )/ (=)
r . '
2
@ -G,
| 1
r2 = te
¢} : ")\lt Agt Ayt At o
ry= (e e T /IO AANT = (e 7 e T I A) (A y-Ay)]
@,y ALt At
| rgmte /O F el —e )0
@, 5,
' ry = t2e 1 /2
S At At : At X4t : . ‘
(e T me /IO O A T=Ce T me THTO) Ay AgApT
Xt At At At ' |
~(e T e TH/IOGA Oymhg) Gy A TeGe T e T/ T0GA) () O]
® . e s .
r, = te  /[,(>\1->\2) 0\1-)\3)] + (e 7 -e )/[-0'\1-?\2.) 0\2-}\3)] :
‘ At ALt
At A3ty ooy 5 240 L P A A 2
) - M55 /AN 0T - (e T e T /IO ) (A
4 3) _ Alt v }\zt 5 . Azt )\lt 3
r, = t(e = +e )/(Al—kz) + 2(e -g )/(Alsz)
(4) : .
Xt ALt At ALt
= tfe /120 ] te T /OA  + et e Phra )7
(5) 3 Mt | |

r, = t'e /6
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Calculatibﬂ'of the Pj

: Thé'following table summarizes the proceduie‘for each case. -

First defiﬁe'the matrix.Bj

B,'é A-)\ I
3 ( i )

then for each case the Pj are given by

Case.: - PO Pl P2 3
1 B,B, B4ByBy
(2)

. ani
3) - I Bl

» 2
B
4) 3
, B
: 1

and £ina11y:;he exponential matrix is given by

e_lLt = éAt =r Po +rP. +r.P.+1r,P

1

21 32 43 _"
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APPENDIX B

Computer'Prqgfam for General Solutions

The pfogram follows very closely the treatment outlined in

Appendix A, and is liberally interspersed With'comment cards that describe

what 1is being‘done. It éhould’be hotéd that the.iﬁhombgeﬁeous lineshape
integration is time consuming by its very natufe:gnd.a rélatiVély
small numbér of isochromats havé been taken (N=24) as a result. This
limits the,éccuracy to about 7% so care must be excercised when
"new effecté" are discovered with the program.

A problem is present in the quartic solution‘subprogréﬁ‘thatvié
a result of round-off errors. It is the author'é'belief that ;hié
subprogram shéuld be répiaced with another method for determining_theb
foots of a polynomial in order that.it'will beha?é fdr all magnitudes of
the coefficients. As the program stands now it will work for quantities
of order unity,or higher and the parameters should bé scaled to conform

to this restriction.

[
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PROGRAM RELAX{ INPUT,0UTPUT)

ODIMENSION RTIME(4,100)4SR(805)

DIMENSION R{6),AY{10,410),P(10410,10), RHOO(IO).RHOS(IO).RODT(IO).
1 B2(10,10)4B3(1C,1G)+AR(10),EVO(10,10),RHO{L10) - - .

COMPLEX AY,P,RHOO,RHOSyRO0OT,82,4B3,AR, EVO.RHD'ZERO TYHE'EloEII"
* EIIILEIVLI,LII,LIII,LIV,SAYI,SAYII

COMMON. /SHP/ BEE,CANORM,N,T2S

DATA PIE/1121 6220 7732 5042 0550 B/

LALCULATES R-VEC TOR COMPONENTS HITH FEEDING, DECAY AND RELAXATKON PARAHETERS
USES EITHER REGULAR OR MODIF!ED BLOCH EQUAT[ONS

DATA lS_READAiN AS FOLLOWS

FIRST CARD B8ELC.C PHYSICAL PROPERTIES
XK=DECAY CONSTANT FROM LOWER LEVEL
YK=DECAY CONSTANT FROM UPPER LEVEL
FX=FEEDING RATE TO LOWER LEVEL
FY=FEEDING RATE TO UPPER LEVEL
T2=HOMOGENEOUS RELAXATION TIME
T2S=INHOMOGENEOUS RELAXATION TIME
IF T25=0 INTEGRATION OVER INHOMQGENEQUS LINE IS NOT PERFORMED
TX=LIFETVIME FOR DECAY FROM LOWER TO UPPER LEVEL :
TY=LIFETIME FOR DECAY FROM UPPER TO LOWER LEVEL
FOR CONVIENIENCE, ZERO VALUES OF THE TIME PARAMETERS IMPLIES THAY
THEIR RECIPROCALS ARE ZERO. ANY NUMBER OF PULSE CONDITONS MAY FOLLOH
~=A NEGATIVE VALUE FOR XK TERMINATES THE PROGRAM.
SECOND CARD 1248X95€10.,0,12 PULSE CONDITIONS
INI'T- NEGATIVE ALLOWS COMPONENTS TO BE READ IN o
INIT ZERO CALCULATES INITIAL STEADY-STATE VALUES FROM FEEDING AND
DECAY PARAMETERS. RONE AND RTW(O ARE SET TO ZERO
INLT POSITIVE USES R-VALUES FROM PREVICUS PULSE AND PHASE- SHIFTS
THE DRIVING FIELD BY PHI*PIE
WI=DRIVING FIELD FREQUENCY IN HZ. NEGATIVE VALUE CAUSES NEW SET OF'
PHYSICAL PROPERTIES TO BE READ IN .
OELW=AMOUNT OFF RESONANCE IN HZ
TINT=TIME INTERVAL. PRINTOUT WILL GIVE STATUS OF SYSTEM EVERY TINT
TSTOP=TOTAL LENGTH OF PULSE. PRINTS EVERY TINT UNTIL TSTOP IS REACHED
1F TINT=TSTOP ONLY THE INITIAL AND FINAL R-VECTOR COMPONENTS ARE
PRINTED. THEFINAL VALUES ARE RETAINED FOR THE. NEXT PULSE. ]
PHI=PHASE SHIFT ANGLE (PHI*PIE)(FOR 90 DEGREE PHASE SHIFT PHI[=0.5)
MOD=0 IMPLIES THAT T2 ALONG THE DRIVING FIELD DIRECTION IS ZERO(MODIFIO
MOD=0THERWISE IMPLIES NORMAL BLOCH EQUATIONS -
THIRD .CARD (IF NECESSARY) INITIAL VALUES OF R COMPONENTS
RONERTWO,RX,RY &E10.0
THUS- CARDS ARE AS FOLLOWS PHYS PROP,PULSE COND, (INIT VAL).PULSE CINIT vaL)..
e« PHYS PROP,ETC
SXIMPORTANT** TO TERMINATE THE PROGRAH NEGATIVE VALUES FOR WI AND XK MUST BE
READ IN AS THE LAST TWO CARDS IN THE DATA SET

ZERO=CMPLX(0.40.) _
SET UP THE FIRST P MATRIX WHICH IS TVHE IDENTITY MATRIX



-128-

DO 101 J=1,4 _
P(1yJgJ)=CMPLX{1.,0.)
Vd=J+1
IF(JJ.6T.4)GO TO 101 -
DO 102 K=J4J,4
P(1,K,J)=2ERD
P(1,J,k)=2ERD
102 CONTINUE
101 CONTINUE
c READ IN PHYSICAL PROPERIIES AND ESTABLISH CONSTANTS TO BE USED

9 READ 109XKsYKyFXyFYoT25T25¢TXsTY
IF(XK)1,2,2
7 TT2=0.
‘TTx=0.
TTY=0.
TEE=0.
TAU=0.
IF(T2.NE.Ca)TT2=1./12
[F(TX.NE.O.)TTX=1./TX
CTF(TYLNE.OL) TTY=1./TY
AK=(XK+YK) /2.
BIGKY=YK+TTY
BIGKX=XK+TTX
TFAAK.NE<CeoOR o TT2.NE.OL ) TEE=1./ (AKSTT2) -
[F((YKNEOoeoANDoTTXeNEoOy) eOR. (XKoNE Qoo AND. TTY.NE.O. )
*  OR. (XK.NE.M..AND.YK.NE.O.) ) TAU= AK/ (XK$YK+YKETTX+XK*TTY)
 SAVEX=FX
- SAVEY=FY
PRINT S504XKy VYK FX,FY
PRINT 704T2,T2S,TX,TY
PRINT 100, TEE, TAU

C LSTABLISH NORMAL I ZATION FACTOR FCR SHAPE FUNCTION
c FUNCTIONS SUBROUTINE SHAPE CAN BE AN EMPIR[FAL OR ANALYTICAL SHAPE
C THAT RETURNS A VALUE FOR EACH J .

BEE=12.
N=24
KINT=2%N+1
NUM=N-1
CANORM=1,
" IF(T25.EQ.0.)GO TO 43
ANORM=C.
D0 41 J=1,KINT
_ANORM=ANORM+ SHAPE ( J)
41 CONTINUE
CANORM=1./ANORM
43 CONTINUE

C KEAD IN PULSE CONDITIONS AND ESTABLISH INITIAL VALUES. SR STORES THE R--
c VECTOR COMPONENT VALUES FOR EACH ISOCHROMAT. ’

22?2 READ 20,INIT,WI,DELW,TINT, TSTOP.PHI.HOD
IF{WI)9,8,13



©

)

S

13
11

.5
12

S0 540 |

-129-

IF(MOD)By11,8

TT2E=C,
60 TO 12

TT2E=TT2

CONTINUE
IF(T2S.EQ.C.)KINT=1
IFUINIT)3,4,5

READ 10.R(1),R(2).R(3).R(4)
GO TO 6

R(1)=C,

"R(2)=0,

TAKE CARE OF PATHOLOGICAL CASES

R{3)=C.

" Rl&)=c,

302

303
301

22

21

IF(AK.EQ.C.)GO" TO 301

IF{XK.EQ.Co )G TO 302
IF(YK.EQ.G.)GD TO 303
R(3)8(FX*B!GKY#FV*TTV)*YAU/AK
R(4)31FY‘BIGKX#FX*TTX)‘TAUIAK :
GO TO 3C1 )
IF(TTX.NE.Q. )R (3) =FYSTTY/ (TTX*YK)

. RU4)=FY/YK

G0 TO 301

IF(TTY .NE. 0. )R (4) FX*TTXI(TTY*XK)
R(3)=FX/XK

CONTINUE

DO 21 J=1,KINT

JJ=4%(J-1)
S=SHAPE(J)

DO 22 K=l,4
SR{JJ+K)=K(K)*S
CONTINUE
CONTINUE

G0 TO 26

IF(PHI .EQ.0.)GO TO 26
ANG=PH [ *P I E
€0=COS (ANG)
SI=SIN{ANG)

DO 23 J=1,KINT
JJ=4%(J-1)

CRI=SR(JJ+1)1#CN+SR(II+2)#S]

23
26

25

‘24
27

RIT=SR{JJ+2)*CO-SR (JJ+1)*S]
SR(JJ+1)=RI ‘
SR{JJ+2)=R1I
CONTINUE

PRINT 40,H1,DELW, TINT,TSTOP,PHI
TF (MO )24,25,24

PRINT 80

60 TO 27

PRINT 90

PRINT 60

Wl=2,%PIE*WI
SDELNW=2.%PIE*DELW



C

OOOOO

[a X

-130-

BIGKA=AK+(TT2E+TT2)/2.

- BIGKD=(TT2E-TT2)/2.
WISQ=WI*W]
PLUS= BlGKX#BlGKY
TIMES=BIGKX*#BIGKY-TTX&TTY
APD=BIGKA+BIGKD

_SET UP PART OF THE A MATRIX FOR THE LIOUVILLE OPERATOR

AY (1,1 )=CMPLX{-BIGKY,C.)
AY{1y%&)=CMPLX{TTX 0.}

AY (242 )=CMPLX(-BIGKA,(.}
AY(243)=CMPLX{~-BIGKD L)
AY(3,2)=AY(2,3)
AY(3,3)=AY(2,2)

AY (4,1 )=CMPLX(TTY,0.)

AY {444 )=CMPLX(~ BlGKX:O.)
WW=Wl/2,.
AY(I’?)-CHPLX(O-vHH)
AY(1'3)-CMPLX(0.,’HH)
AY(2,1)=AY{(1,2)
AY(2,4)=AY(1,3)
AY(3,1)=AY(1,3)
AY(3,4)=AY(1,2)
AY(4,2)=AY(1,3)
AY(4,3)=AY(1,2)
SAYI=AY(2,2)
SAYII=AY(3,3)

CALCULATE PART OF THE COEFFICIENTS

CIII=BIGKX+BIGKY+2.%BIGKA
SC11=2.%#BIGKA*PLUS+TIMES+WISQ

SCI=2 . *BIGKA*TIMES+WISQ¥ (2. *APD+PLUS-TTX-TTY) /2,
SCO=WISQ*APD*{PLUS-TTX-TTY) /2.

NITTY-GRITYTY COMPUTATION. IF KINT=1, INTEGRATION OVER THE LORENTZ LINE IS
NOT PERFORMED (ONLY CNE PASS THRU LOOP 28). THE COMPLETE TIME OEVELOPMENT
FOR EACH ISOCHROMAT IS COMPUTED IN INTERVALS OF TINT TO A TOTAL TIME TSTOP
AND IS STORED IN THE TWO DIMENSICNAL ARRAY RTIME(K.KT)e K SUBSCRIPT DEFINES
THE R-VECTOR COMPONENT AND KT DEFINES THE INTERVAL IN TIME. THEN ANOTHER
[SOCHROMAT IS TAKEN, CALCULATED, AND ADDEED V0O RTIME

00 28 J=1,KINT
JJ=4%(J4-1)

lNlTlALIlE TIME FOR EACH [SOCHROMAT

KT=0

DELMW= SDELH

IF(T25.GT,0.)DELW=SODELW+BEE*FLCAT (J-N- 1)/(FLOAT(N)*TZS)
FX=SAVEX*SHAPE (J) .
FY=SAVEY®SHAPE (J)

-PULL lSOCHROﬂAT INITIAL VALUE FROM STORAGE AND PUT INTO INITIAL
DENSITY MATRIX . . .
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RHOO(l)-CMPLX(SR(JJ*QloO )

RHOO(2)= (CMPLX(SR(JJ+1)'-SR(JJOZ)))/(2.10 )

~RHOO(3)=CONJG(RHOODO(2))

RHOO(4)=CMPLX{SR(JJ+3),0.)
RUL)=SRIJJ+1)
R(2)=SR{JJ+2)
R(3)=SR(JJ+3)

»R(4)=SR(JJ¢4)

FI

NISH THE A MATRIX

AY(2,2)=SAYI+CMPLX (04 »=DELW)

CFIN

CAL

304

AY(3.3)=SAYII0CMPLX(05,OELN)
NISH CALCULATION 0OF COEFFICIENTS

REP=B]GKA*BIGKA*B!GKD#BIGKD*DELH‘DELH
Cl1=SCII+REP

Cl=SCT+PLUS*REP

CO=SCO+TIMES*REP

CULATE THE STEADY STATE DENSITY MATRIX
THREE CASES TO CONSIDER
CO IS ZERD BECAUSF THERE IS NC FEEDING

DO 304 JUNF=1,4

RHOS ( JNF) =ZERC

CONTINUE
IF(FX.CQeTesANDFY.EQ.0.)G0O TO 307

NO DRIVING FIELD

311

IF(WI.NE.O.)GO TO 306

IF({XK.EQ.0.)GD TO 311

IF(YK.EQ.D,)GD TO 312
RHOS(1)=(FY*BIGKX+FX*TTX)*TAU/AK
RHOS(4)={FX*BIGKY+FY*TTY)*TAU/AK

GO TO 307

IF{TTXNE.O IRHOS(4)=FY*TTY/(TTX2YK)
RHOS(1)=FY/Y¥K

.60 TO 307

312

IF(TTY.NE.O.)RHOS(1)= FX$TTX/ (TTY#XK)

" RHOS (4 )=FX/XK

GO TO 307

€O IS NOT ZERD

306

A=((FX*BIGKY+FY#TTY)‘REPONISQ‘APD*(FY#FX)IZ )y/Cco

'RHOS{4)=CMPLX{A,0.)

A=((FV*B[GKXOFX‘TTX)*REPONISQ*APD‘(FV*FX)/2 y/¢c0

‘RHOS (1 )=CMPLX(A,0.)

A=FY®(BIGKX-TTY)-FX*(BIGKY-TTX)
B=A*WI*DELW/ (2.%*C0) ’
C=ASWI*APD/(2.%CO)
RHOS(2)=CMPLX(B,C)}
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RHOS(3)= CONJG(RHOS(Z))Y

307 CONTINUE

FIND EIGENVALUES OF THF CHARACTERISTIC EQUATION

CALL‘QUARTIC‘CIII’Cll'CliCO'ROCT)

CRDER DEGENERACIES AND DETERMINE CASE NUMBER

WE ARE MOW IN A POSITION TO CALCULATE THE EXPONENTIAL OPERATOR

NCASE=1 FOUR DISTINCT ROOTS 1+2,3,4
NCASE=2 THREE ROOTS 1,1,2,3

NCASE=3 TWO ROOTS Llel,2,2

NCASE=4 TwWO ROOTS 1le141,2

NCASE=5 ONE ROOT 1,1,1,1 .

ROOTS ARE ORDERED, HIGHEST DEGENERACY FlRSTy-DEGCNERACIES NOT REPEATED

CALL DEGEN(ROOT,NCASE)

CALCULATE THE B MATRICIES

106

DO 105 KK=1,4

D0 106 KKK=]44 o

P(2yKK4KKK)=AY (KK (o KKK)

IF(KK.EQ.KKK) P(29KKoKKK)}=P (2 KKy KKK)~-ROOT (1)
IF INCASE.GT,3)60 TO 106

B2{KKy KKK ) =AY (KK, KKK)

IF(KK.EQaKKK) B2 (KKysKKK)=B2 (KK, KKK) RGOT(Z)
IF(NCASE.NE.1)GO TO 1C6 :

B3 (KKy KKK ) =AY (KK, KKK)

IF(KK.EQ.KKK) B3 ({KKyKKK)=B3(KK,KKK)-ROOT {3}’
CONTINUE

105 CONTINUE

CALCULATE THE P MATRICIES

111
112

115
114
116
117

116

DD 107 Kp=1,2

DO 108 KK=1l,4

DO 109 KKK=1l,4

IF(KP.EQ.2)G0 TO 111

P{3,KKKKK}=ZERO

GO TO 112

Pl4,KKKKK)=ZERD

DO 113 KDUM=1,4%

IF(KP.EQ.2)G0 TO 114

IF(NCASE.EQ.1)GO TO 115

P(34KK 4KKK) = P(3'KK|KKK)0P(ZoKK’KDUH)*P(Z9KDUH KKK)
GO 70 113

PU3,KK,KKK}=P(3,KK,KKK)+B2 (KK, KDUM)*P(Z:KCUMQKKK).
GO 70 113

CONTINUE

GO TO(116,117,117,118,118),NCASE

Pl4,KK KKK)= P(4.KK.KKK)+B3(KK.KDUM)*P(3:KDUM.KKK)
GO TO 113

PL4yKKsKKK)=P (4, KK,KKK)*BZlKK.KDUM)*P(3.KDUM,KKK)
GO 7O 113

Pl4,KK KKK} =P (4 KK, KKK)0P(2.KK,KDUM)‘P(3.KDUM.KKK)
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113 CONTIMUE
109 CONTIMUE
108 CONTIMUE
107 CONTINUE

C- THIS BEGINS THE TIME DEVELOPHENT LooP

.31 KT=KT+1
 TIME=FLOAT(KT)*TINT
. 'D0 32 K=l,4 :
IF(J.MNELLIGO TO T2
71 RTIME(KKT)=R{K)
GO T0 .32 :
T2 RTIME(KyKT)=RTIME(K,KT)I+R(K)
.32 .CONTIMUE

C TEST 10 SEE IF TSTOP HAS BEEN REACHED

lF(TlME GT TSTOP)IGO TO 33
c CALCULATE COMPLE X- EXPONENTXALS TQ BE USED AND ABBREVIATE EIGENVALUES

- TYME CMPLX(TIME-O.)

- LI=ROOT(L)

- EI=CEXP{LI*TYME)
IF(NCASE.EQ.5)G0 TO 121
ALTI=R0O0T(2)
E11=CEXP{LII*TYME)
IF(NCASE.GT.2)G0 TO 121
‘LI1I=Kk00T(3) :
EIII=CEXP(LIII*TYME)
1F(NCASE.GT.1)160 TO 121
LIV=ROODT(4)
EIV=CEXP(LIV*TYME)

121 CONTINUE

C CALCULATE PUTZERS R VALUES

AR(1)=EI
IFINCASE.EQ.1)G0O TO 122
AR(2)=TYME*E]
GO TO 123
122 AR(2)=(EI-EIT)/(LI-LII)
123 CONTINUE
GO TO(124,125,125,126,126) ,NCASE’
124 AR(3)=((EI-EITI)/(LI-LIIT)-(ELI- ELID /ALEII-LITD) ) /(LI-LIT)
: GO TO 127
125 AR(3)=(TYME*ET+(EII-EI)/ (LI~ Lll))/(Ll-Lll)
_ GO T0 127
126 AR(3)=TYME*AR(2)/CMPLX(2.,0.)
127 CONTINUE
GO T0(128,129,131,132,133) NCASE
128 AR(4)=((EI-EIV)/((LI-LITT)*(LI-LIV))=(ETLI~- —EIVI/ CILI-LITT)
* S(LITI-LIV))=(EIT=EIV)/((LIT-LITD)*(LIT-LIV) )+ (ETTI-EIV)/
* CILII-LITD S (LITI-LIVI) ) /(LI-LIT) :
60 TO 134
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129 AR(4)=(TYMESEL/Z{LI-LITD)+(ETI-ELI1)/CALI-LIDI*(LEL-LELLD)
* —(EI-EIID)/7CC(LI-LID)*(L]- Llll))’(E[ Elll)/((Ll LITDI*(LI-LITIII D)
* /Li-L1n
GO TO 134
131 AR(4)‘(TYME*(EI*E[I)*CMPLX(Z.,0.)*(Ell El)/(Ll Llll)/((Ll Lin
* x(LI-LII))
GO TO 134
132 AR(4)=(TYME*TYME*E]/CMPLX(2.,0. )-TYME*E]/(LI LID+(EI-EIL)/LLLI~
* LITy*(LI-LIT)))/Z (LI Lll) :
GO 1O 134
133 AR(4)= TYME*TYME*TYME*Fl/CMPLX(b.'0 )
134, CONTINUE :

THE FINAL FORM FOR THE EXPONENTIAL MATRI X MAY NOW BE CALCULATED

DO 135 KK=1l,4

DO 136 KKK=1,4

EVO (KK 4KKK)=ZERO

D0 137 KDUM=1,4

EVO (KK KKK)=EVO (KK, KKK)#AR(KDUP)*P(KDUM KK s KKK)
137 CONTINUE
136 CONTINUE
135 CONTINUE

COMPUTE DENSITY MATRIX

DO 141 KK=1,4
RHO (KK ) =ZERO
DO 142 KDUM=1,4
RHO (KK ) =RHO (KK ) +EVO (KK ;KDUM) % (RHOO (KDUM) =RHOS (KDUM) )
142 CONTINUE _
RHO (KK ) =RHO (KK ) +RHOS (KK)
141 CONTINUE

CONVERT TO R VECTOR COMPONENTS

R{1)=2.%REAL(RHO(2))
R{2)=2.%ATMAG(RHO(3})
R{3)=REAL(RHO(4))
R(4)=REAL{(RHO(1))

GO 70 31

END OF TIME DEVELOPMENT LOOP. STORE FINAL VALUES OF COMPO“ENTS IN SR FOR
NEXT PULSE CONDITINN, : : - ‘

33 DO 34 K=1,4
SR{JJ+K)=R(K)

34 CONTIMUE

28 CONTINUE

PRINT OUT STORED, INTEGRATED VALUES AND READ IN ANOTHER PULSE CONDITION

DO 35 J=1,KT
RTHREE=RTIME (4, J)~RTIME(3,J)
TOT=RTIME(4,J) +RTIME (3,4)
TIME=TINT#FLOAT(J-1)

i
;
!
|
|
!
!
|
!
!
i
i
i
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PRINT 30leME (RTYIME(KqyJ) gK= 114'1RTHREEQTCT
35 CONTINUE.
GO - T0 222
1-CONTINUE °
1{ FORMAT(8E10.0)
27 FORMAT(I1%,5E10. 0.110)
30 FORMAT(15X4E9.3,5X¢6(EL10.3,4X)) : i .
4. FORMAT(//+10X,%PULSE COMNDITIONS WI=%,E8.2,% DELW=%,EB,2,% TINT=
* %,E8,2.% TSTOP=*,ER.2,% PHI=*,E8.2,//) C
55 FORMAY(////7s)7 X *FEEDING AND DECAY PARAMETERS XK=#¥,EH,2,% VYK=%,
® EBs2¢% FX=%,E8.2,% FY=%,E8.2) ‘
60 FORMAT (22X, ®T#, 11X *RONE® 10Xy *RTWO* 5 L1 X s #RX* 4 12X, *RY %, 12X,
® #R3%,9X,*TOT POP*,/)
T FORMAT (/,10X*RELAXATION PARAPETERS T2=%, EB 2.*; T2S=%,E8.2,
* * TX=%,E8,2,% TY=%,E8,2,4/)
80 FORMAT(IOX *MODIFIED BLOCH EQUATIONS USEF‘,//),
90 FORMAT(10X,*NORMAL B1L.OCH EQUATIONS USED*,//) : .
FORMAT (10X, *EFFECTIVE RELAXAT!CN PARAHETERS T=#%,E8,2,% TAU=%,
1 E8.2,/7)
END .
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SUBROUTINE QUARTIC(CIII,CIT,CI,CO,ROO0T) -

_ DIMENSION ROOT(10),

DOUBLE PRECISION A3,A2,A1,AG, DLH'DUMIQDUH]I DUMIIIQDUMIVQDUMV'

* A B’C’RP’RI,DR'Dl'f‘R El ) . .
COMPLEX ROOT,CR - o ) :

-COMMON /CLAM/ RR’RI'DR'DK'ER'E11A3|A2'A19AO
A3=DBLE(CIII) T
A2=DBLE(CII)

Al=DBLEI(CI)
-A0=DBL E(CO)
REMOVE ZERO ROOTS
1 DO 4 J=1,4
CROOT(JYI=(0e40.)
4 CONTIMNUE
IF(CII.EQe0soAND.CI.EQ.Os.AND. CU.EQ.O )GC TO 3
IF(CI.EQeCe.ANDCN.EQ.0.)GO TO 5
IF(CO.FQ.C.)GO TO 6
G0 10 7 ' ,
3 ROOT(4)=CMPLX(-ClI140.)
RE TURN
CALL QUAD(A3,A2,0UM, DUMI.DUM[',DUMIIX)
RUUT(‘)’CMPLX(SNGL(DUM)'SNGL(DUHI)’
ROOT(4)=CMPLX(SNGL (DUMII) 4SNGLIDUMIII))
RE TURM
6 CALL CUBIC‘A3,A2’A1,DUMQDUF11DUMIXQDUMIIIQDUMleKASE)

" ROOT(1)=CMPLX({SNGL(DUM),0.)

- ROOT(2)=CMPLX(SNGL (DUMI) o SNGL{(DUMII}) .
ROOT(3)=CMPLX{SNGL{DUMIII) SNGL(DUMIV))

RE TURN o

(%1

GENERAL QUARTIC
7 CONTINUE
A=-A2
 B=A1%A3-4,DC*A0
C=24.DG*A0*A2-A1*A1-AN*A3*A3
CALL CUBIC{A,BsC,NUM,DUMI,DUMIII,DUMII,DUNMIV,KASE)
DUMV=(: .00
CALL KDE(DUM,DUMV,RONT)
RETURN
END
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SUBROUTINE CUBIC(A29AL A0, X1y X2R9X21¢X3RoX31,KASE)
DOUBLE PRECISION A2, AI.AO X1 g X2R ¢ X214 X3R4 X3 1, R,D.PE,VM.SI'SZ
¥ . 9 ANG,THIRD, SIXTH
THIRD=1.D00/3,00
SIXTH=1.D3/6.D0 .
R=(A2% (4.5D0%AL-A2%A2)~-13, SDO%*A0)/27.D0
" D=(AQ*(27.D0%A0-1R.DO%AL*A2+4, DO*AZ‘AZ‘AZ’*AI‘A[*(4 DO*AL -
* ..-A?*AZ))/lOB 00
IF(D)1,2,3
1 $2=DSQRT{~D)
© KASE=-1
S1=DEXP(SIXTH*DLOG (R*R-D))
ANG=DATAN2(S2,R)/3.00
RE=S1*DCOS(ANG)
YHSSl*DSlN(ANG)‘DSQRT(3 DO)
§2=A2/3. Do
X1%2.DO*RE=S2
X2R==RE-S2+YM
X21=0.00
- X3R=-RE=-52-YM
X31=0.D0
RETURN
2 KASE=(
TF(R)4414,9
9 S1=DEXP(THIRDO*DLOG(R})
GO 70 5
4 S1=-DEXP{THIRD*DLOG{- R)’
G0 70 5
14 51=0,D0
S $2=A2/3.D0
X1=2,D0%51~-S52.
X2R=~S1-S2
X3R=X2R
'X31=0.,D0
RE TURN
3 S1=R+DSQRT(D)
.. KASE=1
$2aR-DSQRT(D)
IF(S1)6415,412
12 S1=DEXP(THIRD*DLOG(S1))
GO T0 11
15 S1=0.D0O
11 IF(S2)Ts16,13
13 S2=DEXP{(THIRD*DLOG(S2})
GO 70 8
ﬁ-Sl*'DEXP(THlRD‘DLﬂG(-Sl))
1 S2==-DEXP({ THIRD*DLOG(-S2)})
GO T0 8
16 $2=0.00
8 D=A2/3.D0
X1=S1+52-D
X2R==(S1+52)/2.,00-D
X21=DSQRT{3.00)*(S]1~ 52)/2 Do .
X3R=XZR
X3I=-X21
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RE TURN
END

SUBROUTINE MATCH(A,B,NOPE)
COMPLEX A,B .
AR=REAL (A)

BR=REAL (B)

AI=AIMAG(A)

BI=AIMAG(B)

NOPE=1 - oo .
IF (ABS (AR-BR) .GT. 1,E~08,0R.ABS(AI-B1) .GT.1.E-08)NOPE=0
RETURN '

END

FUNCTION SHAPE (J)

COMMON /SHP/ BEE,CANDRM,N,T2S

FACT=1. ' ‘ L
IF({T25.6T.0.)FACT=1,+BEE*BEE*FLOAT{(J=-N-1)*(J=N-1))/FLOAT(N#*N)
SHAPE=CANORM/FACT

RE TURN

END

SUBROUTINE DSQC(X,Y)

DOUBLE PRECISION X3Y3ANGsR
IF(XeFQe0.D0,AND.Y.EQ.0.DCGIRE TURN
IF(Y.EQ.0.DG)GO TU 2

R=DEXP { «25DG*DLOG( X*X+Y®Y) )
ANG=DATANZ2(Y,X)/2.00
X=R*DCOS(ANG)

Y=R*¥DS IN(ANG)

RE TURN

I[F(X.GCT,0.D0)G0 .TC 3
Y=DSQRT(-X)

X=0,D¢

RETURN

X=DSQRT(X)

RETURM

END




SUBROUT INE “RDF (YR, YI,ROOT)
DIMENS ION. ROOT (10} ‘
DOUBLF PRECISION, Ra.kx.oa.ox.sa.en.va.vx.aa.az AI.AO,DUM.DUMI
COMPLEX RODT,CR
COMMOK /CLAM/ RR.RI.DR.DI.ER El1,A3,A2,A1,A0
RR=A3%A374.00-A2+YR
RIsY[ -
CALL DSQC(RR,RI)
DUMI-DABS(A3)¢DABS(A2)#DABSIAI)#DABS(AO)
SUM=SNGL (DUM] )
IF ( (SNGLIRR+RI)+SUM)-SUM.EQ.0.)GD TO 1
DUM=(A3%(4.D0%A2-A3%A3)-8.D0*A1)/ (4. DO*(RR*RR#RI*RI))
DR=A3#A3/2.D0-A2- YR¢RR¥DUM -
D1=-RI*DUM-Y]
ER=A3%A3/2.D0-A2- YR-RR*DUM
E1=RI*DUM-YI
G0 10 2
RR=0.D0
RI=0.P0
DUM=YR $YR-Y#Y [-4,DO*AQ
DUMI=2.DO*YR*Y |
CALL DSQC (DUM,DUMI)
OR=3.00*A3#A3/4.DC-2.D0% (A2-DUM)
D1=2.0U*DUNI
ER=3.H0*A3%A3/ 4, DC=2.D0% (A2+DUM)
E1=-2.DO¥DUM]
CALL DSQC{(OR,DI)
CALL DSQC(ER,EI)
RR=RR/2.D0
RI=R1/2.D0
DR=DR/2.D0
DI=D1/2.D0
ER=ER/2.D0
EI=EI/2.DC

- DUM=-A3/4.D0

ROOT(I)‘CMPLX(SNGL(DUM#RR*DR)'SNGL(RIODK))
ROOT(2)=CMPLX{SNGL {DUM+RR=DR) ¢ SNGL (RI-DI))
ROOT(3)=CMPLX( SNGL (DUM-RR+ER) s SNGL(-RI+EL))
ROOT(4)=CMPLX{SNGL {DUM-RR~ER) ¢y SNGL (-RI-EI})
IF(SUM.EQ.0.)RETURN

SAVER=REAL{ROOT(K))

A=SAVER/SUM

SAVEI=AIMAGIROOT(K))

B=SAVEI/SUM .

IF(ABS(A) LT.1.E-C6)SAVER=0,
IF(ABS(B).LT.1.E-{6)SAVEL=0.
ROOT(K)=CMPLX({SAVER,SAVEL)

CONTIMUE

RETURN

END-
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SUBROUTINE DEGEN(ROOT,NCASE)

DIMENSION ROOT (10) yMARK(4)

COMPLEX ROOT,SAVE,A,B

KPASS=0

MATCHM=1"

. LOCK=5 -

~ NCASE=5 : ' o :

NDEG=( - = 5

* NMARK=0 oL S o .

K=MATCHM S EE
) KK+l : ' o S _ .
IF (K.EQ.LOCK)GO TO 1 ' : ‘ -

A=ROOT (K) v

8=ROOT (MATCHM)

CALL MATCH(A,B,NOPE)

IF (NOPE.EQ.0)GO TO 2

NMARK=NMARK+1

NDEG=NDEG+1

MARK (NMARK ) =K

GO T0 2 -

KPASS=KPASS+1 .

IF(KPASS.GE.2)GO TO 8 . 1

IF (NDEG.EQ.3)RETURN s :
!

NCASE=4
IF(INDEGL.EQ.C)IGO TOD 5
DO 6 J=1,NMARK
KDUM=MARK (NMARK~J+1) i ‘ :
IF (KDUML.EQ.LOCK-J)GO TO 6 - : -
SAVE=ROOT (KDUM). '
ROOT(KDUM)=ROOT(LOCK-J} o :
ROOT(LOCK-J)=SAVE ‘ . . ) '

- - I

: CONTINUE

MATCHM=MATCHM+1

LOCK =L OCK—-NMARK ' S |
IF INDEG.EQ.2)RETURN SR o _
GO T0 7 : v B 1
SAVE=RO0OT (MATCHM) R e
ROOT (MATCHM) =ROOT(LOCK=1) S ‘ : :
ROOT(LOCK-1)=SAVE : ‘ ) ;
CONTINUE ‘ - :

GO TO 3

NCASE=3

IF ((NDEG.EQ.2) « AND, (NMARK. EQ.1) )JRETURN
NCASE=4

IF(NDEG.EQ.2)G0 TO 9

NCASE=2

IF ( {NMARK «EQ.( ) . AND. (NDEG. EQ l)lRETURN
NDEG=2

IF (NMARK.EQ.1)GO TO 9

NCASE=1

A=ROOT(2)

8=RO0T(3)

" CALL MATCH(A,B,NOPE)

IF (NOPE.EQ.C)RETURN ' o : - _
NCASE=2 : ‘
SAVE=R0OT(1)



ROOT(1)=RO0T(2)
ROOT(2)=SAVE -
ROOT(3)=R00T(4)
* RETURN

END -

SUBROUTINE QUAD(A1,A0¢X1R X111 ,X2ReX21)
DOUBLE PRECISION Al,A0 ¢X1RyX11,X2RyX2[,40
o * +RDUND :
- ROUND=(DABS(ALl)+DABS(A0))/2.DO
D=(Al*A1-4.D0%A0)/4.DC '
IF((ROUND+D)-ROUND}1,2,3
D=DSQRT(-D) o
X1R=-A1/2.,00

X11=D

X2R=X1R

X21==D
- RETURN

X1R=-A1/2.D0

X11=0.D0

X2R=X1R"

X21=0.00

RE TURM )
X1R=-A1/2.D0+DSQRT(D)

X11=0.D0 ’
X2R=~A1/2.D00-DSQRT(D)

X21=0.D0

RETURN

END
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APPENDIX C

The following tables list the unitary timé_evblution operator
’Sij(e’¢) corresponding to a pulse involving theﬂij tfansition in the
zero field‘triplet_staté spin sublevels, on resohénce for 6 = w/2 and

8 = m, and with phase ¢. Also listed are the resultsfof applying Eq. (19)

to a genér31 hermitian matrix, A, utilizing the pulse matricies Sij(6,¢);
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szb(6,¢) - Xz t;ans%tion
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