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ABSTRACT OF THE DISSERTATION 
 
 

The role of alpha oscillations in visual information processing 

 
 

by 
 
 

Stephanie Nelli 
 
 

Doctor of Philosophy in Neurosciences with a Specialization in Computational Neurosciences 
 

 
University of California San Diego, 2019 

 
 

Professor John Serences, Chair 
 

 Neural oscillations are one the most prominent features of electrical brain recordings, 

involving the synchronized activity of large populations of neurons, and have been linked to a 

variety of important functions over the past century. Existing theories propose these oscillations 

allow the brain to dynamically switch between functional neural circuits, allowing computational 

flexibility on time scales too fast for the slow structural changes that characterize long-term 

cortical plasticity. In particular, alpha oscillations (~8-13 Hz) are often visible in raw scalp 

electroencephalography (EEG) recordings over visual and parietal cortex and seem to regulate 

the waxing and waning of visual attention and perception across time. However, many previous 
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results focus specifically on the phase, power or frequency of the alpha oscillation, neglecting 

the common dynamical systems that simultaneously generate all these metrics and impact 

visual information processing. In this dissertation, I begin by reviewing relevant literature about 

alpha oscillations, and then aim to link together disparate measures of the alpha oscillations in 

both behavior and the brain to address how dynamical alpha state regulates visual information 

processing. First, in C1 I find that both phase locked and purely power based analyses of 

imprecise attentional selection display alpha rhythms, suggesting a common impact on 

behavior. Indeed, in C2 I show that alpha frequency, which governs phase and amplitude are 

linked mathematically in simple models of harmonic oscillators, which I confirm in neural 

recordings. Thus, the impact of alpha oscillations on perception depend on circuit interactions 

with top-down driving oscillators, and in C3 I find that optimal oscillatory drive for visual 

perception depends intimately on each subject’s particular dynamical system and resultant peak 

alpha frequency. Together, this thesis challenges core assumptions underlying current 

theories of the role that alpha oscillations play in regulating visual information processing using 

both mathematical models and empirical data. I then propose a more unified theoretical 

framework in which alpha frequency, phase and amplitude should not be viewed as 

independent metrics to be correlated with behavior, but instead as the result of a common 

dynamical system that impacts visual perception.  

 



 1 

INTRODUCTION 

A seemingly simple string of behaviors such visually searching for an apple, allocating 

visual attention to that apple and finally reaching for the apple is really quite a feat that a narrow 

focus on the brain’s anatomical structures and pathways cannot entirely account for. The fact 

that humans easily accomplish these behaviors confirms the existence of these anatomical 

pathways through which early sensory representations are available for use by multiple 

downstream cognitive and motor processes, but the mere existence of these pathways cannot 

account for how the right representation is coordinated with the right downstream process. From 

allocating attention on a moment’s notice to flexibly switching between cognitive tasks, humans 

are constantly faced with situations in which different neural circuits must be dynamically 

coordinated. Neural oscillations are theorized to support this rapid, selective communication 

necessary to effectively coordinate networks at time scales too fast for structural changes in 

neural connectivity to be involved (Akam & Kullmann, 2014; Pascal Fries, 2005; Voytek et al., 

2015; Womelsdorf et al., 2007). Indeed, neural ensembles appear to shift easily between 

interference-prone complexity and robust oscillatory synchrony, a potentially efficient way for the 

brain to detect environmental changes all while preserving structural internal organization 

(Buzsáki, 2006). These neural oscillations are a prominent feature of macroscale 

electrophysiological recordings, and have been implicated across various temporal and spatial 

scales in virtually every behavior (Draguhn, Buzsáki, Andreas, & Draguhn, 2004).  

Generally, neural oscillations in human scalp and intracranial electroencephalography 

(EEG) are divided into several canonical frequency bands: delta (<1-4 Hz), theta (4-8 Hz), alpha 

(8-12 Hz), beta (15-30 Hz), gamma (30-70 Hz), and high gamma (>70 Hz; note the precise 

boundaries between these bands can vary between sources). While invasive studies in rodent 

and macaques have shown promise for the importance of various brain rhythms (Blatow et al., 

2003; Fiebelkorn, Pinsk, & Kastner, 2018; P Fries, Reynolds, Rorie, & Desimone, 2001; Mann & 

Mody, 2010), precisely characterizing the mechanistic roles of neural oscillations in the human 
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brain has proven elusive due to limitations in the available recording and stimulation techniques 

and conventional analysis approaches. 

The alpha oscillation is a particularly prominent neural oscillation maximal over visual 

regions in human scalp EEG that was first described nearly a century ago by Hans Berger 

(Haas, 2003). This discovery of rhythmic neural activity in the alpha band has since inspired well 

over 18,000 papers speculating about its function in cortical information processing (a 

conservative estimate obtained via Google Scholar). Part of the fascination with alpha 

oscillations stems from their pervasiveness – they are nearly always present and are often large 

enough in magnitude to be easily seen in raw EEG traces, in contrast to more transient 

responses in other oscillatory bands that are often only visible after filtering. Indeed, much has 

been observed about alpha physiology since their discovery. The generation of alpha rhythms is 

distributed throughout cortex and thalamus, and alpha oscillations have been observed both in 

intrinsically oscillating single neurons and in field potentials that result from network interactions 

in neural populations (F. Lopes da Silva, 1991; F. H. Lopes da Silva, Vos, Mooibroek, & van 

Rotterdam, 1980; Silva & Leeuwen, 1977), and it has since then been observed that the same 

macroscopic field potential can be brought about by various intrinsic cellular and network 

mechanisms (Buzsáki, 2006)s. Furthermore, the spectral parameters of alpha oscillations were 

noted to have the highest test-retest reliability of all EEG bands in 1985 - subjects showed 

similar alpha power and peak frequency in two recordings separated by nearly a year (Gasser, 

Bächer, & Steinberg, 1985), and since that observation, peak alpha frequency has been 

confirmed as a stable neurophysiological trait (Grandy et al., n.d.). However, although the 

physiology underling alpha oscillations was studied after the oscillations were discovered (from 

roughly the 1950s-1980), these rhythms were thought to reflect an “idling” of the brain and to 

have no causal involvement in brain functions (Adey, 1988). 

Since the 1980s, oscillations in general have begun to receive traction as being causally 

involved in brain function, with alpha oscillations being linked to the waxing and waning of visual 
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perception over time (Başar, 2012). Specifically, many reports have linked changes in various 

aspects of ongoing alpha oscillations, i.e. amplitude, phase, and frequency, with concurrent 

modulations in visually dependent behaviors (Klimesch, Sauseng, & Hanslmayr, 2007; 

Mathewson et al., 2011; Mierau, Klimesch, & Lefebvre, 2017; Palva & Palva, 2007). However, 

previous results measuring the impact of alpha amplitude, phase and frequency have led to 

distinct theories about the role of alpha oscillations in visual information processing. 

I begin by reviewing the central hypotheses of this thesis, along with relevant literature. 

Then, in Chapter 1: Alpha and theta band behavioral rhythms characterize low and high-fidelity 

visual information processing, I address whether there is rhythmicity in visual behaviors. I ask 

whether behaviors along the continuum from visual perception and attentional selection to the 

short-term retention of information wax and wane in the alpha range, and if the precision of 

behavioral performance modulates the frequency of this rhythmicity. In Chapter 2: Fluctuations 

in instantaneous frequency predict alpha amplitude during visual perception, I address the 

perceptual impact of the resonant alpha system. Specifically, I address whether fluctuations in 

alpha frequency and amplitude interact to impact early visual information processing. In 

Chapter 3: The efficiency of visual processing depends on deviations of alpha rhythms from 

their endogenous peak frequency, I drive alpha oscillations to determine how circuit interactions 

with endogenous oscillations determine behavior. Specifically, I determine how alpha 

oscillations in early visual populations interact with the endogenous alpha oscillation to impact 

behavior by clamping, through SSVEP entrainment, the frequency of early visual alpha 

oscillations. Finally, I make concluding remarks on the nature of the dynamical system that 

generates alpha oscillations, and their role in visual information processing. 
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Central Hypothesis: 

While decades of work have focused on measuring how the amplitude, phase and 

frequency of the alpha oscillations change with visual stimulation and task demands, the 

mechanisms underlying the metrics described above and how they relate are still unknown. 

First, a large literature has focused on how changes in amplitude impact perception, 

leading to the conception of alpha oscillations as an inhibitory process (the “tonic inhibition” 

account). This account proposes that the relatively large default alpha amplitude in visual cortex 

reflects suppression of visual information processing due to population-level synchronization. In 

contrast, when processing visual input, the E/I balance in certain circuits shifts, leading to a 

desynchronization from the default rhythm and a subsequent reduction in alpha amplitude 

(Pascal Fries, Womelsdorf, Oostenveld, & Desimone, 2008; Klimesch, 1996; Klimesch et al., 

2007; Pfurtscheller, 2001; Salinas & Sejnowski, 2001; Shao & Burkhalter, 1996; von Stein, 

Chiang, & König, 2000). Consistent with this framework, high alpha amplitude is associated with 

reduced perceptual sensitivity, presumably owing to a failure of circuits that process relevant 

information to desynchronize from the default rhythm (Foxe, Simpson, & Ahlfors, 1998). 

Furthermore, alpha amplitude modulations have also been shown to be topographically 

selective: spatial attention decreases alpha amplitude in areas of visual cortex encoding 

attended regions of the visual field and increases alpha amplitude in areas encoding task-

irrelevant regions (Händel, Haarmeier, & Jensen, 2011; Kelly, Gomez-Ramirez, & Foxe, 2009; 

Meeuwissen, Takashima, Fernández, & Jensen, 2011; Rihs, Michel, & Thut, 2007; Sauseng et 

al., 2005). Finally, the relatively slow time-scale of these amplitude modulations ( > 100 ms) 

suggests correspondingly slow alterations between periods of efficient and inefficient visual 

information processing (Figure 0.2B; for review see (Klimesch et al., 2007)). Thus, according to 

this framework, visual perception is more efficient when local circuits are operating 

independently of the widespread “inhibitory” alpha. 
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In addition to the tonic inhibition hypothesis, which focuses on relatively slow changes in 

alpha amplitude, rapid, cycle-by-cycle fluctuations in alpha oscillations are also thought to reflect 

alterations in the E/I balance and hence the efficiency of visual information processing (Atallah 

& Scanziani, 2009; Busch, Dubois, & VanRullen, 2009; Dugue, Marque, & VanRullen, 2011; 

Hasenstaub et al., 2005; Lakatos et al., 2009; Mathewson, Gratton, Fabiani, Beck, & Ro, 2009; 

Samaha & Postle, 2015; Womelsdorf et al., 2007). This account, referred to here as the phasic 

inhibition account, posits that epochs of neural excitability and efficient visual information 

processing are associated with a particular phase of ongoing alpha oscillations (Lorincz, Kékesi, 

Juhász, Crunelli, & Hughes, 2009). These shorter and more rapidly occurring alternations in the 

E/I balance are thought to enhance perception both by sharpening feature tuning to stimuli and 

by temporally concentrating neural activity, thereby increasing the probability that activity is 

propagated to downstream areas (Draguhn et al., 2004; Isaacson & Scanziani, 2011; E.M. 

Izhikevich, 2003; Kayser, Montemurro, Logothetis, & Panzeri, 2009; Wehr & Zador, 2003). 

Building off these previous results concerning alpha phase, it is useful to note that frequency is 

simply the first derivative of phase: specifically, at time t, 𝜔(𝑡) =  
1

2𝜋

𝑑𝜑

𝑑𝑡
(𝑡), where 𝜔= frequency 

and 𝜑= phase (pipeline for calculating frequency shown in Figure 0.1).  This means that 

modulations in frequency reflect the temporal density of periods of maximal perceptual 

sensitivity and the rate at which visual information is sampled and processed, supported by 

results associating faster alpha oscillations with enhanced perceptual performance (Nelli, 

Itthipuripat, Srinivasan, & Serences, 2017; Osaka, 1984; Samaha & Postle, 2015). For example, 

an increase from 10Hz to 10.5Hz should enhance visual perception by increasing the amount of 

visual information sampled in a fixed length of time. Thus, similar to the tonic inhibition account, 

the phasic inhibition account also holds that alpha oscillations index changes in the E/I balance 

and the efficiency of information processing. However, the transitions between information 

processing states indexed by alpha phase/frequency occur on a finer temporal scale than the 
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alpha amplitude modulations, and are linked theoretically to changes in the sampling rate of the 

visual system (Figure 0.2 B). 

 
Figure 0.1: Calculation of frequency from the alpha oscillation. A: Two different epochs of time 
of data bandpassed from ±2.5 Hz around each subject’s peak alpha frequency using a third 
order Butterworth filter are shown. From this, one can calculate the analytic signal using a 
Hilbert transform. Two seconds worth of data are shown for each timecourse, EEG data 
recorded for experiment in Chapter 2. B: Phase angle from –π to π is calculated from the 
analytic signal, from which cumulative phase is calculated by ignoring each reset from π to –π. 
Note the timepoints in which there are local discontinuities in phase that propagate to 
unwrapped phase (sudden bumps in the generally smooth line). All timecourses show two 
seconds worth of data. C: Frequency is calculated from unwrapped phase. Red circle indicates 
a timepoint with a sudden phase jump, leading to a discontinuity in the frequency calculation. 
Phenomena like these jumps often motivate post-processing frequency using median filters. 
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Figure 0.2: Tonic vs Phasic Inhibition. A: Top Inset- Amplitude (1.) and phase/frequency (2.) 
are plotted in reference to an oscillation to display each metric. 1 indicates alpha amplitude, 
which has been implicated in theories on tonic inhibition, while 2 indicates alpha phase or 
frequency, which is implicated in theories on phasic inhibition.  For illustration purposes, over 
one second of data from one subject is shown, averaged over red (undetected) and green 
(detected) trials. Note that these traces show how it is possible that two oscillations can go from 
in-phase to anti-phase through frequency shifts (target presentation occurred at gray vertical 
line at 1 second). B: The average oscillation over correct trials is replotted with cartoon neural 
action potentials (black dots) plotted to show how tonic (top) and phasic (bottom) inhibition are 
theorized to work. 

 
Thus, despite the abundance of data, a common unified theoretical framework has not 

been articulated. Instead, the key tenant of the above theories is that the amplitude and 

phase/frequency of ongoing alpha oscillations reflect the operation of independent mechanisms 

that uniquely contribute to the overall efficiency of cortical information 

processing. The assumption that these metrics are independent is intuitively appealing. For 

example, the most common way of describing a simple oscillation explicitly writes 

the amplitude and frequency as separable factors (e.g. the voltage (V) of a sinusoidal wave at 

time t is often expressed with the familiar equation V(t) = amplitude * sin(frequency * t)).  . 

However, reduced neuronal spiking has been associated with both alpha power and alpha 

phase in sensorimotor cortices of macaques performing somatosensory discrimination tasks, 
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suggesting alpha phase/frequency and power are describing a similar underlying generative 

dynamical system (Haegens, Nácher, Luna, Romo, & Jensen, 2011). 

Importantly, physiological experiments that measure inter-regional connectivity have 

shown that alpha operates as a “feedback” or “top town” signal(Bastos et al., 2015). Specifically, 

while attention decreases the amplitude of alpha oscillations in visual areas, connectivity 

between visual regions like the thalamus & V1(Saalmann, Pinsk, Wang, Li, & Kastner, 2012) 

and circuits representing overlapping receptive fields in V1 and V4(Bosman et al., 2012) actually 

increases with attention. Additionally, while visual alpha amplitude is negatively correlated with 

behavioral performance in the macaque, the opposite is true in higher order region IT 

(Bollimunta, Chen, Schroeder, & Ding, 2008), and alpha enhancement has also been observed 

in LGN and hippocampus(Başar, 2012). Together, these observations suggest alpha is not 

simply an inhibitory signal that completely shuts down all information processing, but instead 

may control the routing of visual information (Pascal Fries, 2015). Thus, whether metrics 

measured at the scalp concerning the alpha rhythm reflect changes in the same or different 

underlying oscillatory dynamical systems is unknown.  
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Figure 0.3: Attractor cycle perspective on alpha oscillations. A: Left panel: A few cycles of an 
oscillation is plotted, with four distinct phases indicated with different shades of gray. These 
points are replotted in the right panel, but instead visualized as a cyclic process by plotting the 
signal against its derivative. Right panel: the signal “x” is plotted against its temporal derivative 
“dx/dt”. The same points from the left panel are replotted. The dark black oval is the average 
attractor cycle (shape drawn arbitrarily), note that particular points may fall off this average due 
to variations in amplitude at a specific phase. In both plots, green and red shaded regions are 
cartoons indicating potential regions where information processing is enhanced or impaired, and 
gray arrows indicate the direction along which time increases. Note that amplitudes at the same 
phase but different times along the oscillation may be different, as outlined by differentially 
bolded white dots. Thus, the radius of the limit cycle (amplitude) is modulated by how fast it is 
traversed (frequency) B: I propose that complex neural interactions result in the link between 
the radius of the limit cycle in A (amplitude) and how fast it is traversed (frequency). This 
relationship, equations for which are in Chapter 2, results in the average amplitude spectrum, 
plotted for one subject here in black. This amplitude spectrum provides a general mapping from 
frequency to amplitude that is defined by each subject’s idiosyncratic dynamical alpha system.   
 

This problem is difficult, as oscillations in the brain are “metastable”, meaning they are 

perpetually in a state of transient stable phase synchrony due to the presence of multiple 

coupled oscillators continuously engaging and disengaging each other (Buzsáki, 2006). One 

popular model holds that weakly coupled limit cycle oscillators are desynchronizied until 

coupling strength K exceeds critical value Kc, and as K continues to increase more and more 

oscillators are recruited into the synchronized group (The Kuramoto model) (Kuramoto, 2003). 

As the brain is composed of non-identical oscillators with complex topology, metastable neural 

synchronization is even more complex than the original Kuramoto model suggests, further 

emphasizing the fact that interactions between neural oscillators lead to off-cycle timepoints by 

constant adjustments in amplitude (limit cycle radius), phase (location along limit cycle) and 

frequency (speed of limit cycle traversal; specific timepoints marked with circles in cartoon 
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Figure 0.3A) (Strogatz, 2001). Perturbation by outside events and dynamic coupling with other 

oscillators will accumulate as these dynamical systems continue to operate in time (Buzsáki, 

2006) to form the distribution of amplitudes at each alpha frequency commonly referred to as a 

spectra (Figure 0.3B). Hence, amplitudes at the same phase but at different times along the 

oscillation may be different due to coupled oscillatory interactions that lead to deviations from 

the limit cycle in the phase space – inherently linking the radius of the limit cycle (amplitude) to 

its traversal (frequency).  

Thus, perhaps the tonic and phasic inhibition accounts describe enhancements and 

impairments in visual perception that depend on oscillatory location in the alpha phase space at 

a particular time with respect to the limit cycle (Figure 0.3A: green/red shaded regions are 

cartoons of enhanced/impaired performance). Along these lines, I propose that tonic and phasic 

inhibition reflect a common dynamical system generated by complex circuit interactions that 

support efficient visual information processing (Draguhn et al., 2004; Hutcheon & Yarom, 2000; 

E.M. Izhikevich, 2003). Thus, I suggest that the amplitude spectrum is an average mapping 

between the amplitude and frequency of a dynamical system if measured in conditions ideal for 

the question at hand, and should be used as an individualized mapping for probing each 

subjects’ dynamical system (Figure 0.3B). 

 

Chapter 1: Alpha and theta band behavioral rhythms characterize low and high fidelity visual 

information processing 

 

Is visual perception discrete or continuous? Although our visual experience feels 

continuous, the existence of contrary evidence has led to the dogged pursuit of this question 

since the start of vision science. Indeed, both the detection of visual stimuli and the perception 

of TMS-induced phosphenes have been found to depend on the phase of endogenous alpha 

oscillation (Busch et al., 2009; Dugue et al., 2011; Mathewson et al., 2011, 2009). Consistent 
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with these results, recent results have shown that attention-dependent visual detection 

fluctuates in the theta and alpha range (Fiebelkorn, Saalmann, & Kastner, 2013; Landau & 

Fries, 2012). 

However, as these previous reports of behavioral rhythmicity rely on binary detection 

reports, they are limited by sparse behavioral measures. Additionally, they have not examined 

the continuum of visually-dependent behaviors from perception and attentional selection to 

working memory. Thus, I aimed to confirm the existence of behavioral rhythmicity in visual 

perception, and to determine if this rhythmicity is present in downstream visually-dependent 

processes using a rich behavioral paradigm allowing us to probe capacity limits at both cued 

and uncued locations in visual perception and memory.   

Idesigned an experiment that expanded on the classic partial-report iconic memory 

paradigms(Sperling, 1960). Iconic and short-term memory corresponding to delays <400 ms or 

between 400ms and several seconds respectively. Iconic memory is a high capacity but fragile 

perceptual buffer system from which prioritized information is selected to be more enduringly 

encoded in short-term memory. I designed a visual task utilizing partial report designs, a 

continuum of delays from iconic to short-term memory, and a full-field flash to induce phase 

resetting of oscillatory neural activity to investigate a) whether alpha oscillations impact the 

fidelity of visual working memory representations and b) if this impact varies along the memory 

delay continuum. 

Indeed, subjects recalled more cued letters and uncued-for letters just neighboring the 

explicitly cued letters, supporting the idea of iconic memory as a high capacity but imprecise 

perceptual buffer. Interestingly, these cued and neighboring responses under iconic delays are 

rhythmically structured in distinct ways. Cued recall was linked to with higher phase locking 

at theta frequencies, while neighbor recall was associated with both higher phase locking and 

power at alpha frequencies (Figure 1.5). Thus, I show theta vs alpha behavioral rhythmicity in 

high vs low fidelity visual perception and attentional selection, extending previous results finding 
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that theta and alpha rhythmicity depend on the spatial spread of attention (Fiebelkorn et al., 

2013; Landau & Fries, 2012). Specifically, I find alpha rhythmicity is associated with spatially 

imprecise attentional allocation that has a cascading effect on subjects’ ability to distinguish 

uncued locations from cued ones.   

Importantly, this effect in the alpha band is associated with both increased behavioral 

phase locking and power. I hypothesize that these metrics are yoked measurements of the 

operation of a common dynamical system(Nelli et al., 2017) in which the phase and power of 

alpha oscillations are simultaneously indexing inhibitory processes in visual perception and 

attention(Mathewson et al., 2011). I further explore this possibility for a joint impact on behavior 

in yoked alpha metrics in Chapter 2. 

 

Chapter 2: Fluctuations in instantaneous frequency predict alpha amplitude during visual 

perception:  

 

 Much of the empirical work concerning alpha oscillations has been carried out in the 

domain of visual perception, and this historic focus has led to the formation of the tonic and 

phasic inhibition accounts, which I outline above (Figure 0.2). However, in complex systems 

they can be tightly coupled, and indeed the alpha oscillation has been shown to be well-

modeled by a harmonic oscillator, although detailed biophysical models exist(Aronson, 

Ermentrout, & Kopell, 1990; Boccaletti, Kurths, Osipov, Valladares, & Zhou, 2002; Eugene M 

Izhikevich, 2001). First, let the uncoupled driving and target regions oscillate at characteristic 

frequencies. When considered as a coupled system, alpha amplitude in the target region (𝐴𝑇) 

will be a function of both the amplitude of the oscillatory drive (𝐴𝐷) and the difference between 

the frequency of the driving (ω𝐷) and target oscillator (ω𝑇), which themselves depend on 

connectivity and local E/I activity (Hutcheon & Yarom, 2000; Wang, 2010) (Figure 0.4). This 

dependence complicates the traditional interpretation of alpha amplitude and instead suggests 
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that shifts in amplitude reflect changes in the frequency of the underlying dynamical system, 

which could arise given changes in oscillatory drive (ω𝐷), local dampening (ω𝑒𝑇), or local 

characteristic frequency (ω𝑇; See Chapter 2).  

The amplitude spectrum of typical EEG signals recorded over visual cortex shows a 

pronounced and focal bump centered on the dominant alpha frequency (Figure 0.3B). This focal 

alpha bump is thought to be the result of resonant responses between interacting neural 

oscillators (Draguhn et al., 2004; Hutcheon & Yarom, 2000; E.M. Izhikevich, 2003) (note the 

similarity to Figure 2.2a). Thus, I hypothesized that the frequency-amplitude relationship 

outlined above is reflected in each subject’s alpha bump. I expect that changes in the 

instantaneous frequency will lead to changes in amplitude, and that the precise nature of these 

changes will be captured by the shape of each subject’s spectrum (Figure 2.1a-c).  

I used data from two separate experiments to empirically test this potential interdependence 

between frequency and amplitude. Our results show that shifts in alpha amplitude can be 

predicted by passing frequency through each subject’s alpha spectrum, suggesting that these 

metrics do not index independent neural mechanisms of information processing as assumed. I 

argue instead for viewing these metrics as indexing a common dynamical system underlying 

modulations in both amplitude and frequency that is reflected in each subject’s alpha bump. To 

this end, I found that how similar similarity of Predicted Amplitudes were to measured 

Amplitudes depended on the precise shape of each subject’s idiosyncratic alpha bump. For 

example, Subject 5 in our experiment had an alpha bump highly correlated with Subject 2 

(r=0.88, blue star in Figure 0.4 right panel) but poorly correlated with Subject 14 (r=-0.07, red 

star in Figure 0.4 right panel). I found that passing Subject 5’s frequency data through Subject 

2’s amplitude spectra still yielded good amplitude predictions (PaA in figure), as opposed to 

Subject 14’s (Figure 0.4). This drives home the fact that each individual subject’s alpha bump is 

reflecting particular characteristics of the dynamic and resonant alpha band interactions that 
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impacts visual information processing

 

Figure 0.4: Each subject’s idiosyncratic alpha bump matters. Three subject’s alpha spectra are 
plotted as examples. When I shuffled the amplitude spectra between subjects, the Amp-PaA 
correlation is 0.28 on average, lower than the empirical results but still greater than zero. 
However, this is because there’s a stereotyped shape of the general “alpha bump” -and on 
average subjects bumps are correlated at a rho of 0.2. This linear relationship is visualized on 
the right plot, where the degree of Amp-PaA correlation clearly depends on the correlation 
between subject’s alpha bumps.  Histograms on axes show counts collapsed on that axis. Red 
star indicates the correlation between the alpha bumps of Subjects 5 and 14, while Blue star 
indicates correlation between Subjects 5 and 2. 
 

Additionally, I note that shifts both above and below peak alpha could be one mechanism 

through which amplitude decreases, supporting the hypothesis that desynchronization occurs 

through a selective shift in the frequency of a task-engaged neural circuit (Figure 2.1). However, 

enhanced behavior seems to be preferentially associated with faster frequencies, an 

observation that is consistent with previous observations but not with a more general 

desynchronization role for alpha frequency. This may be due to the precise relationship between 

the dominant frequency in the local population representing the stimulus and that of the more 

global, phenotypic alpha oscillation, leading us to the experiment described in Chapter 3.  
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Chapter 3: The efficiency of visual processing depends on deviations of alpha rhythms from 

their endogenous peak frequency 

 

 Up to this point, I show that alpha phase/frequency and amplitude appear to be indexing 

the same resonant, dynamic system that impacts behavior. Specifically, in Chapter 1 I show 

similar effects on alpha band behavioral rhythmicity as measured with both phase locking and 

power, and link alpha frequency with amplitude in Chapter two. However, complex interactions 

between driving and target neural regions determine the dynamics of this resonant alpha 

system that in turn impacts visual perception (Nelli et al., 2017). A link between this alpha drive 

and visual perception has not been established in humans. Thus, I sought to use SSVEP and 

source separation techniques to drive early visual alpha rhythms and determine their impact on 

the endogenous alpha oscillations and behavior.   

Specifically, I entrained posterior alpha rhythms at a variety of frequencies in the alpha 

band using SSVEP while subjects performed a simple contrast change detection task (Figure 

3.1B). Using task-independent estimates of peak alpha frequency, I then examined a) how 

perceptual performance depends on entrainment frequency relative to endogenous alpha 

frequency and b) the neural correlates of this dependence.  

Two dissociable patterns of behavior emerged as a function of alpha drive relative to 

each subject’s endogenous peak alpha frequency. In one group of subjects, entrainment at or 

above a subject’s peak alpha frequency impaired perceptual performance, consistent with the 

inhibition account. In contrast, entrainment at or above peak alpha enhanced performance in the 

second group, consistent with the perceptual sampling account. Importantly, subjects in group 

one had higher endogenous peak alpha frequencies compared to group two, indicating peak 

alpha as a stable trait for each subjects dynamical system that determines how clamped 

oscillations in early visual regions interact with the endogenous system to differentially impact 

behavior.  
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Furthermore, I performed a state space analysis to determine how exactly these 

entrained rhythms are differentially impacting subjects with high vs low alpha frequencies. 

Indeed, endogenous alpha oscillations in subjects with higher frequencies traversed the alpha 

state space less efficiently when entrained at higher frequencies, and vice versa. Thus, I found 

that whether activity at a subject’s peak alpha frequency impairs or enhances perceptual 

performance depends on each subject’s intrinsic peak alpha frequency. This observation 

suggests an optimal dynamical range for the alpha oscillation, possibilities for which I discuss 

further in Chapter 3. 

  
Concluding remarks 

Here I reviewed a broad literature showing the impact of alpha oscillations on visual 

perception and cognition. I additionally outlined the three chapters of my thesis, which further 

elucidate the role of alpha oscillations on visual perception.  

Future efforts in experimental design, analytical methods development, and 

computational modeling should explicitly probe the circuits that generate the alpha rhythm, and 

which of these circuits contribute to the alpha oscillation measured at the scalp. Additionally, 

rhythmic stimulation experiments (electric, magnetic, optogenetic, SSVEP, etc.) which can 

continuously vary the stimulating waveform and assess behavioral or physiological differences 

should be done in order to assess the causal impact of oscillations. Additionally, simultaneous 

recordings of field potentials and neuronal spiking will help us quantify relationships between 

alpha power, phase and frequency (See chapter 2).  

 

This introduction, in part, is an adaptation of the material that appears in:  

Nelli, S., Itthipuripat, S., Srinivasan, R., & Serences, J. T. (2017). Fluctuations in 

instantaneous frequency predict alpha amplitude during visual perception. Nature 

communications, 8(1), 2071 
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 Nelli S, Chen R, Serences J. (2019) Behavioral rhythmicity in alpha and theta bands 

differentially characterize precision of spatial attention. In Prep.  

Nelli S, Serences J. (2019) The efficiency of visual processing depends on deviations of 

alpha rhythms from their endogenous peak frequency. In Prep.  

The dissertation author was the primary investigator and author of these papers  
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Chapter 1: Behavioral rhythmicity in alpha and theta bands differentially characterize precision 

of spatial attention  

 

Abstract  

Rhythmic fluctuations in neural activity contribute to variability in the perception and 

recall of visual information. Specifically, theta (~4-7 Hz) and alpha (~8-12 Hz) band neural 

oscillations have been found to increase and impair, respectively, the ability to detect visual 

stimuli, deploy selective attention, and hold in mind information about stimuli over short periods 

of time (short-term memory). Interestingly, rhythmic fluctuations in visual detection have also 

been identified at similar frequencies. However, as these previous studies utilize sparse 

behavioral measures, little is known about whether theta vs alpha rhythmic behavioral 

fluctuations are selective to differential precision in and stages of visual information processing. 

To examine rhythmicity in behavior along the continuum from attentional selection to short-term 

memory, we designed a variant of a classic iconic memory paradigm. Subjects were briefly 

presented with an array of letters at an unpredictable time, and were post-cued to report a 

subset of these letters after either 100ms (iconic delay), 400ms (intermediate delay) or 1000ms 

(short-term memory delay). We found increased behavioral rhythmicity at theta frequencies for 

iconic delays when subjects correctly recalled cued letters. Additionally, we found that increased 

behavioral rhythmicity at alpha frequencies at iconic delays that was selective to when subjects 

incorrectly reported letters presented in locations immediately adjacent to the cued locations. 

These results demonstrate theta rhythmicity in high fidelity visual information processing, 

whereas alpha rhythmicity is selectively seen in the imprecise attentional selection of items from 

an iconic sensory representation.  
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Introduction 

Repeated presentations of identical stimuli do not always result in identical behavioral 

responses. Historically, such fluctuations in perception, memory and behavior were thought to 

result from unstructured noise in neural processing, and thus this variability was typically treated 

as a nuisance factor and discarded (for review see (Faisal, Selen, & Wolpert, 2008)). However, 

recent work analyzing neural signals recorded from both single units and populations of neurons 

(LFPs and scalp electroencephalography, or EEG) has found stereotyped neural oscillations 

that give rise to systematic, as opposed to random, fluctuations in behavioral performance 

(Herweg et al., 2016; Klimesch, 1999; Lisman & Jensen, 2013; Lopes da Silva, 2013; Nelli, 

Itthipuripat, Srinivasan, & Serences, 2017; van Kerkoerle et al., 2014). Indeed, both 

spontaneous fluctuations in neural activity as well as fluctuations related to cognitive factors 

such as the deployment of visual attention contribute to variability in behavior (M. R. Cohen & 

Maunsell, 2011; Marlene R Cohen & Maunsell, 2009). 

For example, theta oscillations have been associated with increased neural activity, 

memory processes, and high fidelity spatial encoding of stimuli or locations (Buzsáki & Moser, 

2013; Hasselmo, Hay, Ilyn, & Gorchetchnikov, 2002; Lisman & Jensen, 2013; Voytek et al., 

2015). In humans, scalp EEG theta (~4-7 Hz) power increases are associated with higher 

cognitive and memory loads as well as enhanced performance on memory and decision making 

tasks(Jacobs, Hwang, Curran, & Kahana, 2006; Jensen & Tesche, 2002). Thus, theta 

oscillations are thought to index an “on-line” state in which hippocampal and cortical systems 

are ready to encode and process incoming signals with high fidelity (Buzsáki, 2002; Lisman & 

Jensen, 2013; Scheeringa et al., 2008).   

Additionally, scalp EEG oscillations in the alpha band (~8-12Hz) play a role in visual 

perception and attention. Stimulus detection is impaired during certain phases of the alpha 

cycle, suggesting the fidelity of visual perception is modulated by alpha phase (Busch, Dubois, 

& VanRullen, 2009; Dugue, Marque, & VanRullen, 2011; Mathewson, Gratton, Fabiani, Beck, & 
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Ro, 2009). Additionally, shifts of visual attention increase alpha power over regions of cortex 

dedicated to processing spatial locations that are now unattended (Foster & Awh, 2018; Kelly, 

Gomez-Ramirez, & Foxe, 2009; Nelli et al., 2017; Rihs, Michel, & Thut, 2007; P Sauseng et al., 

2005; Worden, Foxe, Wang, & Simpson, 2000), consistent with other work suggesting alpha 

oscillations are a spatially selective mechanism mediating inhibition inefficient visual information 

processing (Jensen, Bonnefond, & VanRullen, 2012; Jensen & Mazaheri, 2010; Klimesch, 

Sauseng, & Hanslmayr, 2007; Noonan et al., 2016). 

Thus, phase and power of theta and alpha band neural oscillations at a given moment 

appear to govern the degree to which information processing is facilitated or inhibited, 

respectively (Busch et al., 2009; Lisman & Jensen, 2013; Milton & Pleydell-Pearce, 2016; 

Raghavachari et al., 2001; von Stein, Chiang, & König, 2000; Voytek et al., 2010, 2015). 

Interestingly, prior reports have also demonstrated structured rhythmicity in detection 

performance at theta and alpha frequencies (Fiebelkorn, Saalmann, & Kastner, 2013; Landau, 

Schreyer, van Pelt, & Fries, 2015; VanRullen, Carlson, & Cavanagh, 2007). For example, 

Landau and Fries (2012) presented a brief target stimulus that could occur from 750ms before 

to 1000ms after a 33ms flash event designed to reset ongoing oscillations and orient attention to 

one of two hemifields (Landau & Fries, 2012). The authors found theta rhythmicity in target 

detection that emerged only after the flash event, and that the frequency of this rhythmic target 

detection increased when the target was presented in the opposite hemifield as the attention 

flash event. In another report, Fiebelkorn et al. (2013) had subjects report targets that could 

appear in different objects, and found theta vs alpha band rhythmic visual detection at 

differentially attended objects (Fiebelkorn et al., 2013). These reports show that visual detection 

waxes and wanes at the same theta and alpha frequencies observed in neural oscillations 

during similar tasks (Fiebelkorn, Pinsk, & Kastner, 2018).  

However, these previous reports of behavioral rhythmicity are limited by their 

employment of binary detection reports, and also do not extend along the continuum of 



 26 

behaviors from attentional selection of information within early visual representations to 

encoding and storage in short-term memory. The use of binary response metrics is a key point, 

as there is debate about whether unattended stimuli are excluded entirely from perceptual 

processing or if they are still processed but with lower fidelity (Broadbent, 1958; Treisman, 

1964, 1969). In addition, while neural oscillations in the theta and alpha bands have been 

appear to enhance and impair behavior respectively, binary behavioral reports have only shown 

that rhythmicity frequency that is modulated by spatial attention.  

Thus, we aim here to probe if the frequency of behavioral rhythmicity is modulated by 

the fidelity and precision of neural representations underlying a continuum of behaviors. To do 

this, we used a behavioral paradigm that allowed us to probe capacity limits at both cued and 

uncued locations in order to establish the selectivity of theta vs alpha behavioral rhythms on the 

precision of behavioral reports along the continuum from visual perception and attentional 

selection to short-term memory.  

 

Results 

Behavioral Task  

To address how behavioral rhythmicity is modulated along the continuum from visual 

perception and attentional selection to short-term memory, we designed an experiment based 

on a classic partial-report paradigm that found remarkably faithful visual representations that 

remain perceptually available for a fraction of a second after a stimulus has vanished, termed 

iconic memory (Figure 1.1) (DI LOLLO, 1977; G Sperling, 1960). As these visual iconic 

representations are fragile, subject to rapid decay and being overwritten, they are thought of as 

a "perceptual buffer" from which information is selected for more durable but lower capacity 

storage in short-term memory (Cowan, 1988; Luck & Vogel, 1997; Shiffrin & Atkinson, 1969). 

Note, that only nonselective letter encoding occurs until the post-cue, at which time subjects 

allocate spatial attention within their visual representation to selectively report the cued letters 
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(Figure 1.1) (George Sperling & Gegenfurtner, 1993). Therefore, our design allowed us to probe 

rhythmicity in attentional selection during early stages of visual processing, as well as at longer 

delays for which recall increasingly depends on the sustained storage of information. In addition, 

the partial report design yields richer behavioral data compared with binary detection tasks, as 

we could probe the precision of attentional selection and fidelity of memory recall by quantifying 

how often subjects reported both cued and uncued elements of the target array.  

 
Figure 1.1: Task design. A: 31 subjects participated in the experiment. Trials started with a full-
field flash (FFF), followed by variable Flash-Onset Asynchrony (FOA) after which an array of 8 
letters appeared for 17ms (note the circular array is slightly enlarged here for visualization 
purposes, but was the same size as previous frames in the experiment). Either 100ms, 400ms, 
or 1000ms after the letters appeared (delay), subjects were cued to report 3 of the letters 
indicated by the location of a post-cue (white arc). Inter-trial intervals (ITIs) were chosen 
pseudo-randomly from a uniform distribution over 2259ms-2750ms. 

 

In our task, each trial began with a full field flash (FFF) to trigger a phase reset of 

ongoing cortical oscillations (Lakatos et al., 2009; Makeig et al., 2002; Rizzuto et al., 2003), 

followed by a variable flash-onset-asynchrony (FOA) ranging from 225 ms to 1400 ms (in 25 ms 
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steps) after which subjects were presented with a brief (~17 ms) circular array of 8 letters. The 

presumed phase reset of ongoing oscillations by the FFF and brief letter array presentation 

allowed us to systematically probe behavioral rhythmicity resulting, theoretically, from phase 

aligned neural oscillations. Following the presentation of the letter array, subjects were 

instructed to respond with the 3 target letters indicated by the spatial position of the post-cue. 

This cue was presented either 100 ms (iconic delay), 400ms (intermediate delay), or 1000ms 

(short-term memory delay) after the offset of the target array. Varying the cue delay allowed us 

to assess the interaction between behavioral rhythmicity in attentional allocation and recall as 

visual representations transition from the iconic sensory buffer to storage in short-term memory. 
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Figure 1.2: Spatial distribution of behavioral responses. Top row: Heat maps indicating the 
percent of trials on which subjects reported the letter presented at each location. For 
presentation purposes, we rotated response data so that the 3 cued locations were always in 
the lower-right quadrant indicated by the black bar (all 8 possible arrangements were equally 
likely to be cued in the actual experiment).  Stars indicate significance at p=0.01, + indicates 
significance at p=0.05, determined through comparison with null distributions computed by 
randomizing condition label. Bottom Row, left panel: % trials reported decreases at uncued 
locations and with longer post-cue delays; error bars indicate ±1SEM. Middle panel: Delay x 
Cue interaction highlighted by subtracting mean recall within each cue condition. Error bars 
indicate ±1SEM. Gray stars in bottom left plots indicate significance assessed with a repeated-
measures two-way ANOVA with Delay and Cue as factors. Bottom right heat map shows 
percentage of items recalled for each location at the longest cue delay subtracted from the 
shortest delay; significance determined by comparing paired t -statistics with those obtained by 
randomizing delay label 5000 times. 
 

Post-cue delay affects recall independent of flash-onset-asynchrony (FOA) 

We first analyzed the data without regard to the FOA to establish that our partial report 

paradigm produced the classic iconic memory recall effects (G Sperling, 1960) by subjecting the 

mean number of letters reported to a two-way repeated measures ANOVA with post-cue delay 

(100ms, 400ms, and 1000ms) and cue validity (cued, uncued) as factors. We found that recall 

of any of the 8 on-screen letters was higher at iconic delays compared to short-term memory 
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delays (Figure 1.1 Bottom left panel: Main effect of delay, F(2,60) = 59.5, p<10-14; to generate p-

values for this and subsequent ANOVAs F-values were compared to a null distribution of F-

values generated from randomizing condition labels 5,000 times; mean recalled letters 1SEM: 

100ms delay = 2.22 ± 0.08, 1000ms delay = 2.04 ± 0.08 letters, t(30) = 8.64, p<10-8; see 

Methods). Additionally, subjects were able to selectively report the cued subset of letters, 

indicating they understood the task (Figure 1.1; main effect of cue validity, F(1,30) = 328.5, 

p<10-15). Finally, subjects were more likely to report cued letters at shorter compared to longer 

delays (Figure 1.1; interaction between delay and cue: F(2,60) = 5.7, p=0.006). Post-hoc t-tests 

revealed a more nuanced pattern such that the increased likelihood of a letter being reported at 

the iconic compared to the short-term memory delay decreased with distance from the cue. In 

particular, the two locations just neighboring the cue were much more likely to be reported at 

iconic delays (Figure 1.1 Bottom right panel; t(30)s = 2.5, 6.6, 3.0, 4.2, 2.4, 0.3, 2.8, 4.1, with p’s 

= 0.02, <10-15, = 0.004, < 0.001, = 0.02, = 0.75, =0.01, <10-15 from the most clockwise cued 

location to its clockwise neighbor, respectively; to generate p-values for this and all subsequent 

t-statistics were compared to a null distribution obtained from 5000 randomizations of condition 

labels).  

 

Letter recall decreases with increasing cue delay and distance from cued positions  

Because subjects over-reported neighboring (i.e. adjacent to cue) letters at iconic 

delays, we next divide responses into cued, neighboring and opposite (i.e. opposite from the 

cue; Figure 1.3A; see Methods). Cued, neighbor and opposite recall all decreased with 

increasing cue delays, confirming that iconic sensory representations are high capacity (Reeves 

& Sperling, 1986; G Sperling, 1960) but relatively fragile (Becker, Pashler, & Anstis, 2000) (main 

effect of delay F(2,60) = 26.43, 18.05, 3.69 with p’s < 10-8, <10-6, = 0.031 for cued, neighbor and 

opposite reports respectively; Significance determined by comparing F-values from one-way 

repeated-measures ANOVA with delay interval as a factor to ANOVAs with randomized delay 
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labels; see Methods). As observed in the previous section, post-cue delay had less of an effect 

on behavioral reports with increasing distance from the cued location, confirmed by assessing 

slopes from linear fits to individual subjects’ recall metrics (Figure 1.3A; ME Delay: F(2,60) = 

5.98, p=0.004, Delay x Distance interaction: F(4,60) = 11.39, p < 10-7, 2-way repeated 

measures ANOVA with delay and distance as factors; on average subjects reported -4.0%, -

2.75% and -0.98% fewer letters per second of delay for cued, neighbor and opposite responses, 

respectively; t-tests of slopes against zero: t(30)’s = -5.84, -4.46 and -2.22, p’s <10-15, <10-15, 

and =0.027 for cued, neighbor and opposite recall, determined through 5000 randomizations of 

delay). Finally, post hoc t-tests revealed that iconic representations are particularly 

characterized by the imprecise recall of neighboring letters, as only neighbor recall significantly 

dropped from the iconic to intermediate delay conditions (Figure 1.3A; paired t-tests: t(30)’s = 

1.39, =4.72, = 1.3,  p’s = 0.18, <10-15, = 0.21 for cued, neighbor and opposite responses 

respectively, significance determined from 5000 randomizations of delay condition). Finally, 

guesses (i.e. reports of letters not presented in the target array) actually increased with 

increasing cue delays (Figure 1.3B; Main effect of repeated one way ANOVA F(2,60) = 30.46, 

p< 10-9; average Beta value was 0.12 more letters per second, t(30) = 6.06, p<10-5). This fact 

that guessing increases at longer delays is important because it confirms we subjects are 

imprecise within the iconic representation and not simply more likely to randomly respond. 

Finally, as opposite responses only showed marginally significant slopes over all delays and did 

not show a reduction from iconic to intermediate delays, we choose to exclude opposite 

responses from the rhythmicity results in the main text for ease of reading. Instead we mention 

opposite letter rhythmicity results as a control for the specificity and spatial spread of any 

observed behavioral rhythms where appropriate (Figure 1.7).  
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Figure 1.3: The impact of delay on cued, neighbor and opposite letter responses. A: Left Panel: 
We quantify three different types of behavioral responses by averaging over letters reported 
from the cued, neighboring or opposite regions of the letter array. For all plots, * indicates 
p<0.01, + = p<0.05 as determined through randomizing condition labels 5000 times. Middle 
Panel: Percent change from mean is plotted to display the interaction in which the effect of 
delay falls off with distance from cue; determined with repeated measures two-way ANOVA on 
each of the behavioral measures. Right Panel: Single subject slopes are plotted for each 
behavioral metric, significance determined by comparing t-statistics against zero to distribution 
of t-statistics from slopes determined through randomization of condition label. B: We also 
quantified guesses, or letters that were reported but not presented. These responses showed 
an increase with delay, determined through repeated measures one-way ANOVA and single 
subject beta values significantly above zero using a t-test. For both statistical tests, significance 
was determined through comparison to a null distribution obtained by randomizing condition 
labels 5000 times. 
 

Variability of recall within FOA and approach to analyzing rhythmicity in behavior 

In the previous section, we established that iconic delays are characterized by high 

capacity but imprecise, fragile recall, consistent with previous reports (Becker et al., 2000; G 

Sperling, 1960). The fact that subjects do not know which locations will be cued means only 

nonselective letter encoding occurs until the post-cue, at which time subjects allocate spatial 

attention to selectively report cued letters (George Sperling & Gegenfurtner, 1993). Thus, we 

next investigated how the reset of ongoing rhythms impacts the interaction between this initial 

nonselective encoding and the continuum from perception to more durable memory 

representations by quantifying behavioral rhythmicity. 

To do this, we take a slightly different analysis approach compared to previous results 

that have found rhythmic visual detection as these results average over all trials of a certain 

FOA, thus obscuring within-FOA variability. Averaging over all instances of a particular FOA 
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assumes that there is consistent within-FOA behavior across trials, which has not been 

confirmed. The existence of high within-FOA variability would, in our view, necessitate 

subsampling trials before subjecting them to Fourier-based analysis in order to preserve this 

variability. Therefore, we first compared within-FOA and between-FOA variability using a 

repeated measures one-way ANOVA (i.e. FOA-related Mean-squared error and “error”, or non-

FOA, Mean-squared error). While on average there was more between vs within FOA variance 

for both cued and neighbor responses, this effect was weak (Figure 1.4A; average single 

subject F ratios = 1.14, 1.02; 7/31 and 4/31 subjects had F ratios with parametric p’s<0.05 for 

cued and neighbor responses respectively). Across subjects, only cued responses showed 

consistently greater between vs within FOA variance across subjects (t-tests against 1 on F 

ratios: t(30)s = 3.37, 0.50 p’s = 0.002, 0.53 for cued and neighbor responses respectively; 

significance computed by randomizing mean squared errors 5000 times; See Methods).  
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Figure 1.4: FOA Variance, pseudotrial construction and spectral metrics. A: Variance within 
and between FOA is compared by plotting the mean squared errors assessed using a one way 
ANOVA (left panels). Corresponding F-values of main effect of FOA was also compared 
between repeated measures one- (x-axis) and two- (y-axis) way ANOVAs. Dotted black lines 
plotted at unity, each subject is plotted in a different color, * indicates that greater between than 
within FOA variance. B: Top: An example matrix of response data at cued and neighbor 
locations. We subsampled this data to create pseudotrials (bottom). The process for one 
hypothetical pseudotrial is used as an example. For each FOA, a behavioral response was 
averaged over an independent, randomly chosen subset of 5 trials. This process was repeated 
to create 150 pseudotrials for both cued and neighbor (nbr) responses. C: Sinusoidal cartoon 
depictions of high vs low phase locking and power are plotted, the x-dimension represents time. 
These metrics will be used to assess behavioral rhythmicity. D: Heat maps of cued response 
pseudotrials are shown for the shortest and longest delays for example subjects 25 and 21 (s25 
and s21). Yellow to blue colored areas indicate a high to low pseudotrials count for a specific 
number of letters and FOA, while gray areas indicate that no pseudotrials fell in that bin. Dotted 
line indicates the timecourse obtained by averaging over all trials within FOA. Finally, 
corresponding power and phase locking (PLI) plots are shown to the right of the example 
pseudotrial timecourses. 
 

Thus, while there is on average more between vs within FOA variance, this analysis 

highlights considerable within-FOA variance across subjects. Thus instead of averaging over all 

trials of a particular FOA we created pseudotrials by averaging cued and neighbor recall over 5 
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randomly chosen trials for each FOA, essentially bootstrapping behavioral data to retain this 

within FOA variability so it is controlled for when assessing behavioral rhythmicity (Figure 1.4B; 

data averaged simultaneously over all FOAs traditional way available in Supplementary Results; 

see Methods). Additionally, this resampling allows us to assess both power and phase locking, 

along with their variability, at each frequency for each behavioral metric (Figure 1.4C; See 

methods). High power at a particular frequency measures the average amount of rhythmicity, 

agnostic to phase. High phase locking, on the other hand, indicates behavior is consistently 

phase locked with respect to the FFF (Figure 1.4C). We show pseudotrial counts and the trace 

obtained by averaging over all trials for two example subjects at the shortest and longest delays, 

along with corresponding power and phase locking estimates (Figure 1.4D). 

 

Theta rhythmicity in cued recall  

We next investigated the central hypothesis of this manuscript – whether the frequency 

of behavioral rhythmicity in letter recall is modulated by response precision and delay. For cued 

responses, we found that phase locking in the theta range increased with decreasing delays 

(Figure 1.5A; at 5.25 Hz, phase locking decreased from 0.62 ± 0.15 SD to 0.53 ± 0.12 SD from 

100 ms to 1000 ms delays respectively; one-way repeated measures ANOVA with post-cue 

delay as factor: F(2,60) = 5.04, p=0; red dots indicate frequencies with p< 0.05, black stars 

indicate values that survive FDR correction at 0.05). A similar trend that did not survive FDR 

correction was seen at flanking frequencies (5 Hz and 5.5 Hz: F(2,60)’s = 2.7, 3.7, p’s = 0.038, 

0.006). Together, this indicates that cued iconic memory recall displays enhanced phase locking 

in the theta range.  

While no main effects of post-cue delay survived FDR correction in the power analyses, 

there was a trend for increased theta power at the longest delay (Figure 1.5A, 6, 6.25 and 6.5 

Hz; F(2,60)’s = 4.9, 5.5, 4.4, p’s = 0.011, 0.011, 0.026 respectively). This is interesting because 

it mirrors an increase in theta power selective for longer, short-term memory delays that was 
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significant when power as computed the all-trial average (Figure 1.6A and Supplementary 

Results). 

 
Figure 1.5: Rhythmic fluctuations in behavior. A: Left panels: Phase locking and power 
averaged over subjects, plotted for cued and neighbor responses. Dotted lines indicate the 
average 99th percentile of metrics randomized over subjects (see Methods). Frequencies with 
significant effect of post-cue delay indicated on the x axis (One-way repeated measures 
ANOVA; black stars mark frequencies that survive FDR correction at 0.05, gray dots do not 
survive FDR correction). Right Panels: Effects at significant frequencies are plotted. Colored 
points are plotted for frequencies that survive FDR correction, error bars indicate ±1SEM 
(significance determined by comparing to F values to those obtained from randomizing FOA 
over all delays). Gray lines are plotted for frequencies that do not survive FDR correction.  B: 
Percent of subjects that show significantly greater than chance phase locking or power are 
plotted for each of the three delays (p< 0.05, significance determined by comparing power or 
phase locking at each frequency to those computed from 5000 timecourses obtained by 
randomizing FOA).   



 37 

 

Alpha rhythmicity in neighbor recall during iconic delays  

Interestingly, rhythmicity in neighbor responses was modulated by post-cue delay, but at 

alpha frequencies (Figure 1.5A; one-way repeated measures ANOVA, red dots indicate 

frequencies with p< 0.05, black stars indicate values that survive FDR correction at 0.05). 

Specifically, phase locking decreased with increasing delays at 11.5, 11.75 and 12 Hz (F(2,60) 

= 5.6, 5.4, 4.4, p’s = 0.003, 0, 0.002 respectively). A similar trend that did not survive FDR 

correction was seen at flanking frequencies (11.25 and 12.25 Hz: F(2,60)’s = 4.9, 3.3, p’s = 

0.012, 0.013). Additionally, neighbor recall showed a monotonic decrease in power with 

increasing delays at similar alpha frequencies (F(2,60)s = 8.1, 8, 7.3, 6.4; at 11.5 Hz this effect 

was a decrease from 0.025 ± 0.015 SD to 0.021 ± 0.01 SD to 0.15 ± 0.01 SD at 100, 400 and 

1000ms respectively). We also confirmed these effects from timecourses computing by 

averaging over all instances of an FOA simultaneously (Supplementary Results). Importantly, 

this effect was specific to the nearby, neighboring letters in the array, as no main effects of 

delay survived FDR correction in identical analyses concerning opposite responses (Figure 

1.7B). 

Together, these data provide evidence that iconic representations subject to an alpha 

rhythmic process governs imprecise spatial attentional allocation within iconic representations.  

 

Broadband behavioral rhythmicity 

Finally, subjects showed significantly greater than chance phase locking and power 

across the much of the power spectrum for both cued and neighbor responses (dotted black 

lines in Figure 1.5A and Figure 1.5B). This effect became especially pronounced at higher 

frequencies, where all subjects showed above-chance rhythmic behavior (individual subject 

significance evaluated at p < 0.05 determined by comparison to 5000 randomized timecourses). 

This indicates a substantial amount variability in the encoding of the letter array. 
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Conclusion 

Partial report experiments utilizing short post-cue delays have identified the existence of 

iconic memory, a buffer stage between the perception of a stimulus and its consolidation into 

short-term memory previously characterized by high capacity but fragile representations 

(Reeves & Sperling, 1986; G Sperling, 1960; George Sperling & Gegenfurtner, 1993). Indeed, 

we found that recall of both cued and uncued letters decreased along the continuum from iconic 

representations to short-term memory encoding. Iconic delays were particularly characterized 

by subjects responding with letters just neighboring the cued letters, but also by fewer guesses. 

In sum, our data show that iconic representations are high capacity but subject to imprecise 

encoding and attentional allocation. 

Interestingly, cued and neighboring letter responses appear to be rhythmically structured 

in distinct ways at iconic delays. Specifically, the recall of cued items was specifically associated 

with increased phase locking at theta frequencies, consistent with previous findings that theta 

oscillations positively impact cognitive and decision making performance (Landau, Marianne, 

Pelt, & Fries, 2015; Paul Sauseng, Klimesch, Schabus, & Doppelmayr, 2005; vanVugt, Simen, 

Nystrom, Holmes, & Cohen, 2012). This suggests the involvement of theta phase in the spatially 

precise attentional selection of perceived items. Interestingly, theta power was increased with 

increasing delays, in line with findings that theta rhythms underlie short-term memory processes 

(Jensen & Tesche, 2002; Klimesch, 1999; Paul Sauseng, Griesmayr, Freunberger, & Klimesch, 

2010). Thus, while the precise allocation of attention within the iconic, perceptual representation 

fluctuated phasically in the theta band, theta rhythmicity in memory is not phase aligned. Thus, it 

is possible that short-term memory encoding occurs with an ongoing theta rhythm distinct from a 

phase-locked, evoked theta rhythm that is involved in perception. Further experiments with 

simultaneous neural recordings are necessary to confirm this possibility. 
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In addition, alpha rhythmic neighbor recall was associated with both increasing phase 

locking and power with decreasing delays. As both the power and phase of neural alpha 

oscillations have been previously found to underlie cortical inhibition and attentional allocation 

(Busch et al., 2009; Jensen et al., 2012; Jensen & Mazaheri, 2010; Kelly et al., 2009; Klimesch 

et al., 2007), we hypothesize that alpha rhythmic behavioral mechanisms underlie spatial 

imprecision in attentional selection, which has a cascading effect on subjects ability to 

distinguish uncued from cued letters in the iconic representation. Interestingly, how the phase 

and power of alpha oscillations in the brain simultaneously represent inhibitory processes is 

underexplored(Mathewson et al., 2011), although these results are consistent with previous 

findings that these metrics may be yoked measurements of a common underlying dynamical 

system(Nelli et al., 2017).  

Together, our data show differential theta-rhythmic precise and alpha-rhythmic imprecise 

attentional selection using a paradigm with continuous response metrics. Note that alpha 

rhythmic detection is seen at passively monitored, cued objects in one previous report. We 

reconcile this with our results by observing the fact that letters are first passively encoded, after 

which subjects actually incorrectly confuse cued with neighbor letters. In that same report, theta 

rhythmicity was observed at uncued but actively monitored objects in that experiment, and we 

suggest our finding of theta rhythmicity in at cued locations is a result of a similar active 

engagement of attention in the iconic representation. Thus, our findings extend previous results 

showing that theta and alpha rhythmicity depend on the spatial spread of attention (Fiebelkorn 

et al., 2013; Landau & Fries, 2012).  

Additionally, our results find elevations in both imprecise alpha and high-fidelity theta 

behaviors during iconic memory delays, providing a potential explanation for the representations 

maintained over short, iconic delays can be simultaneously high capacity but fragile. Further 

experiments exploring whether the dynamics of these behaviors are nested and whether they 

correspond to neural oscillations will be fruitful in understanding iconic representations. 
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Finally both phase locking and power analyses indicate that behavior shows fluctuations 

above chance at a wide range of frequencies and from iconic to short-term memory delays. This 

could indicate the presence of unstructured noise on top of structured, behavioral rhythms, or 

could be associated with specific cognitive operations employed in our task, possibilities that 

necessitates further explicit investigation. 

 

 

Methods 

Apparatus and Stimuli 

The experiment was implemented using Psychtoolbox in the MATLAB programming 

environment running on a Windows PC with the XP operating system. Subjects were positioned 

60 cm from the display and stimuli were presented on a 15-inch CRT monitor with 1024 x 768 

resolution and 120 Hz refresh rate. The luminance output of the monitor was measured using a 

Minolta LS110 and linearized in the stimulus presentation software. 

 

Memory Task 

Here we use a partial report technique first reported in George Sperling 1960. 

Participants were instructed to recall 3 out of the 8 letters from a segment of the circle. Since the 

cue was randomized, participants had no prior knowledge about which letters to report and had 

to pay attention to as many letters as possible. Subjects were instructed to report all three 

letters corresponding with the spatial cue, and to guess when they were uncertain. The cue was 

centered on each of the 8 letter locations with equal probability, and with a uniform distribution 

over all trials and blocks. Subjects could freely report any number of letters with unrestricted 

time. However, if a subject’s mean or median response time was greater than 4500 ms, they 

received feedback that they should respond more quickly. As subjects entered letters, these 

letters appeared on the screen above the empty circle. Subjects were instructed to press enter 
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when they were done. Finally, subjects were rewarded for reporting the 3 cued letters and 

penalized for reporting any other letters, with a mean reward of $2.45. 

Each trial was separated by a variable ITI between 2250 and 2750 ms. At the beginning 

of each trial, the entire screen flashed white. A black circle with fixation point in the center was 

kept on the screen at all times except for when the entire screen flashed. At 1 of 48 possible 

variable intervals after this flash (pseudo-randomly chosen but uniform over all experimental 

blocks) an array of 8 letters was presented. The 8 presented letters could change on each trial 

but were sampled only from 16 possible letters. Out of 26 letters in the English Alphabet, the 6 

vowels (‘a’, ‘e’, ‘I’, ‘o’, ‘u’, ‘y’) were excluded to prevent subjects from forming words to aid in 

memory recall. To get rid of further potential mnemonic devices or unintended sources of visual 

confusability, 4 additional consonants were excluded if they were rotated or constrained 

versions of other consonants (‘b’, ‘m’, ‘p’, ‘w’). Thus, on each trial 8 of the 16 possible letters 

were chosen to be presented around the circle.  

On each trial, subjects were asked to report three of the eight presented letters at one of 

three different delays after the presentation of the array: 100 ms (iconic), 400 ms (border 

between iconic and short-term memory), and 1000 ms (short-term memory). Manipulating cue 

delay allowed us to replicate the results of Sperling’s experiment and further explore the 

relationship between behavioral rhythmicity and the continuum from perception to memory. 

Each subject completed 2 to 4 sessions of 15 blocks each, where each block comprised 

of 48 trials. This lead to a minimum of 1440 trials, or 10 per FOA x Memory condition, and a 

maximum of 2880 trials, or 20 per FOA x Memory condition. Most subjects completed 3 

sessions, leading to 15 trials per FOA x Memory condition (25/31 subjects, 2160 total trials). 

 

Response metrics 

For each trial, 3 different types of behavioral metrics were quantified. First, subjects 

could have accurate response counts from 0 – 3, depending on how many of the cued letters 
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were reported. Neighbor counts ranged from 0-2, depending on if one or both of the letters 

directly next to the cued location were reported. Opposite counts ranged from 0-3, and a 

response was considered a opposite response if it was one of the three letters not cued and not 

neighboring the cue (i.e. the letters farthest from the cued location). Responses of any of these 

three types contributed to the on-screen counts, which ranged from 0-3 and considered whether 

a typed letter was on the screen at all. Finally, error counts ranged from 0 to the number of 

responses made on each trial, and only consisted of reported letters that were not on the screen 

(note that skipped responses did not contribute to the error response count). Randomized 

values for each response metric were also created by shuffling the FOA and delay labels for 

response data 5000 times.  

 

Subsampled behavioral data analysis 

While previous studies have taken the mean over all instances of each FOA, this ignores 

much of the information that may be conveyed in the variability of responses over trials. We 

note that the ratios of between to within FOA variance were slightly but not significantly larger in 

a model controlling for delay (t(30)’s = 1.32, 0.77, 0.72, p’s = 0.20, 0.45, 0.48 for cued, neighbor 

and opposite metrics respectively; paired t-tests on main effect of FOA subtracting one way 

repeated measures ANOVA from two way repeated measures ANOVA with FOA and delay as 

factors).  

Due to this substantial within FOA variation, we chose to subsample FOA x Delay 

conditions in our behavioral estimates that were submitted to time frequency analyses. Fully 

averaged timecourses are still reported, but we also developed a subsampling method. During 

this method, we subsample 4, 5, or 6 trials within each FOA and contrast condition, and 

construct 150 subsampled trials from these timecourses. We determined these subsamples by 

computing the number of potential trial average combinations within FOA x Delay condition. 

Specifically, for subsamples from 1-10 we found 10, 45, 120, 210, 252, 210, 120, 45, 10 and 1 
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potential combinations of trial averages within FOA x Delay condition, respectively. Thus, we 

chose to analyze 4, 5, and 6 trial subsamples in order to maximize the within FOA variance we 

observed while still obtaining smooth behavioral estimates to submit to time frequency analysis. 

Note that this is somewhat conservative since the potential number of combinations is actually 

much higher than this since trials are selected independently for each FOA within a given 

pseudotrial. Using this method we are able to assess a more direct hypothesis of how this 

oscillatory modulation of visual memory should happen – namely phase locking. Phase locking 

over these subsampled trials should be high if responses are in fact consistent. 

 

Supplementary Results 

All trial effects 

We found similar delay effects for all trials. Theta rhythmicity in cued responses 

increased with delay (effects that survive FDR correction at p=0.05: F(2,60)’s = 4.42, 5.65, 4.76, 

p’s = 0.0002, 0.0002, 0.003 at 6, 6,25 and 6.5 Hz respectively; way repeated measures ANOVA 

red dots indicate frequencies with p < 0.05, black stars indicate values that survive FDR 

correction at 0.05).  

Alpha rhythmicity in neighbor responses similarly decreased with delay (1 way repeated 

measures ANOVA). Specifically, at 10.75-12.25 Hz, alpha power decreased with increasing 

delays (5.11 ≤ F(2,60)’s ≤ 7.78, 0 ≤ p’s ≤ 0.005). Finally, opposite responses did show 

rhythmicity at 9.5 Hz that decreased with delay (F(2,60) = 3.12,  p = 0.001). 
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Figure 1.6: Rhythmic fluctuations averaged over all FOAs for all response metrics A: Only 
cued, neighbor, and opposite power are assessed, as phase locking requires more than one 
trial of data. Frequencies that show significant effects of delay after FDR correction are 
indicated by colored dots and numbered on the x axis, gray lines without colored dots indicate 
effects that do not survive FDR correction. The average phase locking or power are plotted for 
each of the 3 memory conditions, error bars indicate ±1 SEM.  
 

Opposite responses 

  While on average there was more between vs within FOA variance for opposite 

responses, this effect was weak (Figure 1.7; average single subject F ratios = 1.02 and only 1 

out of 31 subjects had F statistics with parametric p’s<0.05 for opposite responses). Across 

subjects, opposite responses did not show consistently greater between vs within FOA variance 

(t-tests against 1 on F ratios: t(30) = 0.49, p =  0.5, significance computed by randomizing mean 

squared errors 5000 times; See Methods). 
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Figure 1.7: Opposite response results. A: Variance within and between FOA is compared by 
plotting the mean squares and corresponding F-values from main effects assessed using 
repeated measures 1 (x-axis) and 2 (y-axis) way ANOVAs. Dotted black lines plotted at unity, 
each subject is plotted in a different color, * indicates that there was more between than within 
FOA variance. B: Top Panels: Phase locking and power averaged over subjects are plotted for 
opposite responses. Dotted lines indicate the 99th percentile of randomized phase locking or 
power averaged over subjects. Frequencies that show significant effects of delay are indicated 
on the x axis (One way repeated measures ANOVA; black stars mark frequencies that survive 
FDR correction at 0.05, gray dots do not survive FDR correction). Bottom Panels: Frequencies 
with a significant effect of delay are plotted. The average phase locking or power are plotted for 
each of the delay conditions, colored points are plotted for frequencies that survive FDR 
correction on which error bars indicate SEM (significance determined by comparing to F values 
from ANOVAs on PLI and power computed from 3 timecourses chosen from 5000 in which we 
randomized FOA). Gray lines are plotted for frequencies at which the effect does not survive 
FDR correction. 
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Chapter 1, in full, is a reprint of the material as it appears in: Nelli, S., Chen, R., & 

Serences, J. T. (2019). In prep. The dissertation author was the primary investigator and 

author of this paper. 
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Chapter 2: Fluctuations in instantaneous frequency predict alpha amplitude during visual 

perception 

 

Abstract  

Rhythmic neural activity in the alpha band (8-13 Hz) is thought to play an important role 

in the selective processing of visual information. Typically, modulations in alpha amplitude and 

instantaneous frequency are thought to reflect independent mechanisms impacting dissociable 

aspects of visual information processing. However, in complex systems with interacting 

oscillators such as the brain, amplitude and frequency are mathematically dependent. Here we 

record electroencephalography (EEG) in human subjects and show that both alpha amplitude 

and instantaneous frequency predict behavioral performance in the same visual discrimination 

task. Consistent with a model of coupled oscillators, we then show that fluctuations in 

instantaneous frequency predict alpha amplitude on a single trial basis, empirically 

demonstrating that these metrics are not independent. This interdependence suggests that 

changes in amplitude and instantaneous frequency reflect a common change in the excitatory 

and inhibitory neural activity that regulates alpha oscillations and visual information processing.  

 

Introduction 

Encoding and transferring sensory information between neural ensembles relies on a 

balance of excitatory and inhibitory neural activity (E/I balance) that is reflected in ongoing 

oscillatory activity (Akam & Kullmann, 2014; Anderson, Carandini, Ferster, & Sherman, 2000; 

Atallah & Scanziani, 2009; Azouz & Gray, 2000; Brunel & Wang, 2003; Carandini & Heeger, 

2012; Draguhn, Buzsáki, Andreas, & Draguhn, 2004; Pascal Fries, 2005, 2015; Heeger, 1992; 

Isaacson & Scanziani, 2011; F. Lopes da Silva, 2013; Mazzoni, Panzeri, Logothetis, & Brunel, 

2008; Saalmann, Yuri B., Pigarev, Ivan N., Vidyasagar, 2007; Salinas & Sejnowski, 2001; van 

Vreeswijk & Sompolinsky, 1996). Many studies of information processing in visual cortex have 
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focused on the role of oscillatory activity in the alpha band – a particularly prominent set of 

oscillations ranging from approximately 8-13Hz. One theory, referred to here as the 

desynchronization account, holds that default alpha amplitude is relatively large in visual cortex, 

reflecting strong population-level synchronization and suppression of visual information 

processing. In contrast, when processing visual input, the E/I balance in relevant local circuits 

shifts, leading to a local desynchronization from the default rhythm and a subsequent reduction 

in alpha amplitude (P Fries, Reynolds, Rorie, & Desimone, 2001; Pascal Fries, Womelsdorf, 

Oostenveld, & Desimone, 2008; Wolfgang Klimesch, 1996; Wolfgang Klimesch, Sauseng, & 

Hanslmayr, 2007; Pfurtscheller, 2001; Salinas & Sejnowski, 2001; Shao & Burkhalter, 1996; von 

Stein, Chiang, & König, 2000). Consistent with this framework, high alpha amplitude is 

associated with reduced perceptual sensitivity, presumably due to a failure of relevant local 

circuits to desynchronize from the default rhythm(Busch, Dubois, & VanRullen, 2009; Dugue, 

Marque, & VanRullen, 2011; Mathewson, Gratton, Fabiani, Beck, & Ro, 2009). Furthermore, 

alpha amplitude modulations track the relevance of stimuli in a topographically selective 

manner: spatial attention decreases amplitude in areas of visual cortex encoding attended 

regions of the visual field and increases amplitude in areas encoding task-irrelevant regions 

(Bosman et al., 2012; Foxe, Simpson, & Ahlfors, 1998; P Fries et al., 2001; Händel, Haarmeier, 

& Jensen, 2011; Kelly, Gomez-Ramirez, & Foxe, 2009; Meeuwissen, Takashima, Fernández, & 

Jensen, 2011; Rihs, Michel, & Thut, 2007; Sauseng et al., 2005; Yamagishi, Callan, Anderson, 

& Kawato, 2008). Finally, the relatively slow time-scale of these amplitude modulations 

(>100ms) suggests correspondingly slow alterations between periods of efficient and inefficient 

visual information processing (For review see (Wolfgang Klimesch et al., 2007)). 

While the desynchronization hypothesis focuses on relatively slow changes in alpha 

amplitude, rapid, cycle-by-cycle fluctuations in alpha oscillations are also thought to reflect 

alterations in the E/I balance and hence the efficacy of visual information processing (Atallah & 

Scanziani, 2009; Busch et al., 2009; Dugue et al., 2011; Hasenstaub et al., 2005; Lakatos et al., 
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2009; Lakatos, Karmos, Mehta, Ulbert, & Schroeder, 2008; Mathewson et al., 2009; Samaha & 

Postle, 2015; Womelsdorf et al., 2007). This account, referred to here as the instantaneous 

frequency account, posits that epochs of neural excitability and efficient visual information 

processing are associated with a particular phase of ongoing alpha oscillations. These shorter 

and more rapidly occurring alternations in the E/I balance are thought to enhance perception 

both by sharpening feature tuning to stimuli and by temporally concentrating neural activity, 

thereby increasing the probability of propagation of activity to downstream areas (Draguhn et 

al., 2004; P Fries et al., 2001; Isaacson & Scanziani, 2011; E.M. Izhikevich, 2003; Kayser, 

Montemurro, Logothetis, & Panzeri, 2009; Lowet, Roberts, Peter, Gips, & Weerd, 2016; Wehr & 

Zador, 2003). Consistent with this account, a recent report suggests that instantaneous alpha 

frequency reflects the temporal density of periods of maximal perceptual sensitivity and the rate 

at which visual information is sampled and processed (Samaha & Postle, 2015). Thus, similar to 

the desynchronization account, the instantaneous frequency account also holds that alpha 

oscillations index changes in the E/I balance and the efficiency of information processing. 

However, the transitions between information processing states indexed by instantaneous 

frequency are theoretically linked to changes in the sampling rate of the visual system and occur 

on a finer temporal scale than the more sustained transitions associated with alpha amplitude 

modulations. 

As outlined above, alpha amplitude (A) and instantaneous frequency (ω) are typically 

assumed to reflect independent processes, meaning that a sinusoidal voltage measurement (V) 

at time t can be written simply as 𝐕(𝑡) =  𝐴sin(ωt). However, work in mathematics and 

dynamical theory suggests that these assumptions may be an over simplification, especially in 

complex systems like the brain (for review see (Boccaletti, Kurths, Osipov, Valladares, & Zhou, 

2002)). Instead, interactions between the oscillations in driving and target neural regions could 

give rise to interdependencies between amplitude and frequency. As a simple analogy, imagine 

jumping on a trampoline with a partner jumping at very dissimilar rate, or frequency. In this case, 
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the height, or amplitude, of your jumps will be relatively low. As your partner changes the 

frequency (and phase) of their jumps to match yours, the amplitude of your jumps will increase 

(a situation referred to as resonance). However, even with maximal resonance you cannot jump 

infinitely high because of other factors such as air resistance and the finite stretchiness of the 

trampoline, forces that act as damping mechanisms. Although not a perfect analogy, this 

conceptual framework can serve as a starting point to understand interactions between the 

amplitude and instantaneous frequency of cortical responses in the alpha band. Here we sought 

to first articulate the formal relationship between frequency and amplitude, and then to 

empirically test the proposed relationship using EEG. Our results suggest that amplitude and 

frequency are linked and thus both metrics likely reflect the operation of a common dynamical 

system that supports efficient visual information processing. 

 

Results 

 

Linking Amplitude and Frequency 

Amplitude and frequency are often discussed as independent metrics, although in 

complex systems they can be tightly coupled. Consider two interacting neural ensembles that 

naturally oscillate at different characteristic frequencies, such as might be observed in the 

thalamo-cortical or cortico-cortical circuits that give rise to alpha oscillations (Başar, Schurmann, 

Başar-Eroglu, & Karaka, 1997; F. H. Lopes da Silva, Vos, Mooibroek, & van Rotterdam, 1980). 

Here we focus on coupled harmonic oscillators for simplicity, although detailed biophysical 

models exist(Aronson, Ermentrout, & Kopell, 1990; Boccaletti et al., 2002; Eugene M Izhikevich, 

2001). First, let the uncoupled driving and target regions oscillate at characteristic frequencies 

ω𝐷 and ω𝑇, which themselves depend on connectivity and local E/I activity (Hutcheon & Yarom, 

2000; Wang, 2010). When considered as a coupled system, alpha amplitude in the target region 

(𝐴𝑇) will be a function (𝑓) of both the amplitude of the oscillatory drive (𝐴𝐷) and the difference 
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between the frequency of the driving and target oscillator, or 𝐴𝑇 =  𝐴𝐷 ∗ 𝑓(ω𝑇 −  ω𝐷) (See 

Methods for model and derivation). Additionally, the neural oscillations evoked by stimuli are 

transient (i.e. damped), making neurons sensitive to fine temporal structure in sensory inputs or 

inputs from other neuronal populations(Eugene M Izhikevich, 2001). Interestingly, the damping 

mechanisms that regulate the oscillatory response to these inputs (for example: leak 

conductance, capacitance, and voltage-gated currents(Draguhn et al., 2004)) will also modulate 

the effective characteristic frequency in the target region (ω𝑒𝑇)(Draguhn et al., 2004; Hutcheon 

& Yarom, 2000). This means that the maximum possible characteristic frequency in the target 

region is bounded by the theoretical characteristic frequency (ω𝑇 ≥ ω𝑒𝑇). Substituting into the 

above statement, we now have 𝐴𝑇 =  𝐴𝐷 ∗ 𝑓(ω𝑒𝑇 −  ω𝐷) (Methods).  This potential dependence 

complicates the traditional interpretation of alpha amplitude and instead suggests that shifts in 

amplitude reflect changes in the instantaneous frequency of the underlying dynamical system, 

which could arise given changes in oscillatory drive (ω𝐷), local dampening (ω𝑒𝑇), or local 

characteristic frequency (ω𝑇; Methods).  

The amplitude spectrum of typical EEG signals recorded over visual cortex shows a 

pronounced and focal bump centered on the dominant alpha frequency (Figure 2.1b). This focal 

alpha bump is thought to be the result of resonant responses between interacting neural 

oscillators (Draguhn et al., 2004; Hutcheon & Yarom, 2000; E.M. Izhikevich, 2003) (note the 

similarity to Figure 2.2.1a). Thus, we hypothesized that the frequency-amplitude relationship 

outlined above is reflected in each subject’s alpha bump. We expect that changes in the 

instantaneous frequency will lead to changes in amplitude, and that the precise nature of these 

changes will be captured by the shape of each subject’s spectrum (Figure 2.1a-c).  
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Figure 2.1: Hypothesis and task design a) A simulated example of an alpha oscillation that is 
both increasing in frequency and decreasing in amplitude over time, as exemplified in the left 
and right plots underneath, respectively. Vertical lines indicate evenly spaced time bins 
matching 1 cycle of the initial oscillatory frequency. Plotted below the amplitude and frequency 
traces are hypothetical raster plots corresponding with periods of efficient visual information 
processing according to the desynchronization and instantaneous frequency hypotheses, 
respectively. b) Amplitude spectrum from a representative subject. Note the general 1/f 
distribution of amplitude over frequency, and the pronounced bump in the alpha range. The 
circular outline indicates peak alpha frequency, while gray dots indicate hypothetical shifts away 
from the peak alpha frequency over the course of the trials outlined in c. c) Along with the same 
example trial in b), now termed a correct trial, we have plotted a hypothetical incorrect trial that 
decreases in frequency and amplitude with magnitudes corresponding with the spectrum in c). 
Note that on the left side of the panel, the two traces are in phase, but become out of phase 
over the course of the trial, meaning frequency shifts could lead to offsets in phase through a 
relative speeding or slowing of the underlying signals. In addition to phase offsets, shifts in 
frequency away from peak alpha could also impact alpha amplitude as shown in the bottom 
right panel. d) Task Design. The target was a Gaussian - windowed Gabor (mean contrast = 
5%) presented for 8.3 ms. The target was immediately preceded and followed by one frame 
(~8.3 ms each) of Gaussian - windowed white noise. Between target presentations, subjects 
passively fixated at the center of a grey screen for 3000-4000 ms (uniform distribution of ITIs). 
Target location (centered 8.5º left or right from fixation) was randomly selected with the only 
constraint that an equal number of trials were presented on both sides of fixation. 
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Figure 2.2: Oscillatory drive and dampening link amplitude and frequency a) When being driven 
at 10 Hz, amplitude in the target region is determined by the local frequency for a range of 
damping values (indicated by the colored lines and legend). With zero dampening (purple line), 
and frequency in the target region = 10 Hz, runaway resonance occurs (i.e. amplitude 
approaches infinity), as indicated by the purple arrow. b) This dampening that prevents infinite 
amplitude also effects the effective frequency in the target region, further determining where the 
target region falls on the x-axis of panel A. With more damping, the effective frequency in the 
target region falls. 
 

Experiment 1 

Visual Discrimination  

To test the potential interdependence between instantaneous frequency and amplitude, 

we designed a task in which subjects reported whether a low contrast Gabor presented for ~8.3 

ms was horizontal or vertical (two alternative-forced-choice orientation discrimination task, 

Figure 2.1d). A target Gabor could be presented on either the left or right side of the screen with 

a variable interval of 3000-4000 ms separating presentations. Performance during EEG 

recording was carefully titrated to 65% (± 2.8% SD) to obtain enough incorrect trials. Mean 

reaction time was 1106 ms, with faster RTs for correct (1073 ms) as compared to incorrect 

(1170 ms) trials (paired t-test t(15) = -6.33, p <0.0001). Finally, subjects performed equally well 
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on trials with vertical and horizontal targets and displayed no bias toward targets presented on 

one side of the screen (paired t-test, both t(15)’s < 0.87, p’s>0.4).  

 

Characterizing ERPs Alpha Amplitude and Alpha Frequency 

Before directly assessing the potential link between alpha amplitude and instantaneous 

frequency, we first make contact with similar experimental paradigms by replicating event 

related potential (ERP), alpha amplitude, and instantaneous frequency results from electrode 

groups contralateral and ipsilateral to the target location (Figure 2.3a, Methods). We 

characterized task-related modulations of two ERP components evident in the grand average 

waveforms: an early negative deflection thought to index sensory processing and attentional 

selection (Heinze, Luck, Mangun, & Hillyard, 1990; Hickey, Van Zoest, & Theeuwes, 2010; 

Itthipuripat, Cha, Rangsipat, & Serences, 2015; G. R. Mangun & Hillyard, 1988; G R Mangun & 

Hillyard, 1987; George R. Mangun & Buck, 1998; Voorhis & Hillyard, 1977), and a central-

parietal late positive deflection  thought to index post-sensory decision-related processing (e.g., 

decision difficulty, speed, and confidence) (Elton et al., 1997; Itthipuripat, Ester, Deering, & 

Serences, 2014; George R. Mangun & Buck, 1998; Squires, Donchin, & Squires, 1977; 

Yordanova, Kolev, & Polich, 2001). The early negative deflection (210-260 ms post-stimulus, 

see Methods) was significantly larger in electrodes contralateral compared to ipsilateral to the 

target (t(15) = -3.4, p = 0.0001), and showed a significant interaction between electrode location 

and behavioral performance (t(15) = -3.1, p = 0.01, Figure 2.3b,c; Table 2.1). The late positive 

deflection (460-510 ms post stimulus, see Methods) was larger on correct compared to incorrect 

trials (t(15) = 6.5, p=0.0), and higher amplitude in contralateral compared to ipsilateral 

electrodes (t(15) = 2.1, p=0.0499, Figure 2.3b,c; Table 2.1). Note that the slightly delayed peaks 

of our ERP components are consistent with the low contrast of our stimulus and difficulty of our 

task(Busch et al., 2009; Cravo, Rohenkohl, Wyart, & Nobre, 2013; George R. Mangun & Buck, 
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1998). Together, these results suggest that sensory representations were topographically 

selective and that decision processes were impaired on incorrect trials. 

 

Table 2.1: Analysis of the early negative and the late positive event-related potentials. First, 
data were analyzed as a function of the location of electrodes with respect to the target (i.e. the 
amplitude of ERP responses in electrodes that were contralateral or ipsilateral to the target). 
Next, comparisons were made between correct and incorrect trials, separately for contralateral 
and ipsilateral electrodes. Finally, the interaction between electrode position 
(contralateral/ipsilateral) and behavioral accuracy was assessed. Note that all statistical tests 
are reported as t-tests on difference scores instead of F-values that would be obtained in an 
analysis of variance (ANOVA). This was done to maintain consistency across comparisons, and 
produces identical outcomes (t is the square root of F in this situation). All tests report t-tests on 
the average amplitude values within pre-defined 50 ms windows from 210-260 and 460-510 ms 
post stimulus for the END and LPD respectively. T values were compared against distributions 
obtained empirically by randomizing condition labels 10,000 times and then repeating the same 
statistical test (see Methods). * indicates a significant effect at p = 0.05. 
 

 Early Negative Deflection Late Positive Deflection 

Contralateral vs Ipsilateral *t(15) =-3.435, p= 0.0001  *t(15) = 2.129, p=0.0499 

Accuracy, contralateral 
electrodes 

t =-1.745, p=0.0984 *t(15) = 6.548, p=0.0 

Accuracy, ipsilateral 
electrodes 

t=1.258, p=0.2281 *t(15) = 7.028, p=0.0 

Location x Accuracy 
Interaction 

*t(15) = -3.053, p = 0.01 t(15) =-1.244, p=0.2301 
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Figure 2.3 Event-related potentials confirm involvement of perceptual processes. a ERPs on 
correct (blue) and incorrect (red) trials in the contralateral and ipsilateral electrodes indicated in 
the topography plot to the right in panel b (note that electrode labels are flipped accordingly so 
that, by convention, electrodes contralateral to the target are shown on the left, see Methods). 
Dashed vertical line indicates target onset. b Topography for contralateral and ipsilateral 
electrodes used for all analyses are outlined on the 64 electrode Biosemi electrode scheme 
used in these experiments. c Difference waves between correct and incorrect trials. The END is 
more negative in contralateral than ipsilateral electrodes, resulting in a significant interaction 
between behavioral performance (correct vs. incorrect) and electrode location (contralateral vs. 
ipsilateral). Most significantly, there is a sustained increase in LPD amplitude on correct as 
compared with incorrect trials in both contralateral and ipsilateral electrodes. Dots below 
waveforms indicate a significance difference from zero as obtained from resampled t-tests 
performed on average amplitudes within the 50 ms time windows indicated by the dot width 
(210–260 and 460–510 ms post stimulus for the END and LPD, respectively). Significant main 
effects are indicated in black while purple indicates a significant interaction, all at P = 0.05 
 

Next, we examined whether modulations in alpha amplitude predicted behavioral 

performance. Note that many previous studies utilized attentional cues and analyzed 

anticipatory, pre-stimulus decreases in alpha amplitude (Mathewson et al., 2009; Rohenkohl & 

Nobre, 2011; Yamagishi et al., 2008). However, since there was no advanced information 

concerning target location or timing in our paradigm, we expected to find amplitude decreases 

only for review 64). Consistent with previous reports, the average magnitude of post-stimulus 

alpha amplitude decreases depended on both behavioral accuracy and electrode location such 
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that there were larger decreases on correct trials, in contralateral electrodes compared to 

ipsilateral electrodes (leading to an interaction between behavioral performance and electrode 

location; Figure 2.4a;17,26,33,64,6517,26,33,64,65). These amplitude decreases are consistent with the 

desynchronization account that decreases in alpha amplitude reflect a desynchronization of 

local alpha rhythms from a state that impairs visual information processing. 

 

 

Figure 2.4: Topographically selective decreases in posts-timulus amplitude predict accuracy a) 
The timecourse of alpha amplitude on correct (blue) and incorrect (red) trials in the contralateral 
and ipsilateral electrodes indicated in Figure 2.1. Amplitude timecourses are baselined to -1000 
to -750 ms pre stimulus, and shaded areas indicate ±1 SEM within subject. b) Alpha amplitude 
decreases more on correct compared to incorrect trials in both contralateral and ipsilateral 
electrodes. Furthermore, the decrease in alpha amplitude is topographically selective, 
displaying larger decreases contralateral to the target. Topographic plots indicate the difference 
between correct and incorrect trials averaged over 100 ms bins centered on 0.4, 0.65 and 0.9 
seconds after stimulus onset. All dots indicate significance from zero, evaluated by comparing 
the obtained t-value with a null distribution of t-values computed by shuffling the condition labels 
10,000 times. This analysis was done on a timepoint-by-timepoint basis from stimulus onset to 
+1 second, as indicated by the non-shaded areas (see Methods). Main effects with P<0.05 are 
indicated in black, and gray dots indicate significance after FDR correction at P=0.05. 
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We then assessed whether higher instantaneous alpha frequency results in enhanced 

sensitivity to incoming visual information, as recently reported by Samaha & Postle 2015 

(Samaha & Postle, 2015) (for instantaneous frequency derivation see Methods and (Cohen, 

2014)). On average, we found significantly faster pre-stimulus instantaneous alpha frequency on 

correct trials, but only in contralateral electrodes (t(15) = 3.4, p=0.0008, Figure 2.5a,b; Table 

2.2). These pre-stimulus shifts in instantaneous frequency may reflect a voluntary process of 

preparing for target processing. However, we cannot rule out the possibility that these shifts in 

frequency reflect spontaneous fluctuations because we did not use a pre-cue and we post-hoc 

sorted the trials based on behavioral performance. In either case, this pattern of results is 

consistent with the hypothesis that increases in instantaneous alpha frequency in regions 

processing relevant information correspond to more efficient sampling and processing of visual 

information. Indeed, instantaneous frequency shifts of similar magnitudes have been reported to 

impact the effective resolution of visual perception(Samaha & Postle, 2015) and spike timing in 

biophysical models (Cohen, 2014).  
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Table 2.2: Amplitude, Frequency and PaA are modulated by experimental conditions. The 
empirically observed amplitude, instantaneous frequency and predicted alpha amplitude (PaA) 
as a function of electrode location and behavioral performance. All tests report the maximum or 
minimum timepoint-by-timepoint t-values over a temporal window extending from target onset to 
1000ms after target onset for the amplitude and PaA metrics, and from -500ms to target onset 
for the frequency analysis. T-values were compared against distributions obtained empirically by 
randomizing condition labels 10,000 times and then repeating the same statistical test (see 
Methods). Reported t-values are from the timepoint with smallest p-value. * indicates that p-
values were significant after FDR correction at alpha = 0.05 from stimulus onset to +1,000ms 
(amplitude and PaA) or -500ms to target onset (instantaneous frequency).  
 

 Amplitude Instantaneous 
Frequency 

PaA 

Contralateral vs 
Ipsilateral 

*t(15) = -3.576, 
p=0.0 

t(15)= - 1.823, 
p=0.0827 

t(15) = - 3.167, 
p =0.0009 

Accuracy 
(contralateral 
electrodes) 

*t(15) =-2.9994, 
p=0.0006 

*t(15) = 3.399, 
p=0.0015 

t(15) = -2.279, 
p = 0.0141 

Accuracy 
(ipsilateral 
electrodes) 

*t(15) = -3.878, 
p=0.0 

t(15) = 1.583, p= 
0.135 

*t(15) = -3.597, 
p=0.0001 

Location x 
Accuracy 

Interaction 

 *t(15) = -3.197, p= 
0.0002 

t(15) = 2.549, 
p=0.0248 

t(15) = 2.134, 
p=0.0399 

 

 

Predicting alpha amplitude (PaA) 

  As shown in Figure 2.5c, instantaneous alpha frequency is highly dynamic and fluctuates 

by 5.93 ± 0.64 Hz over the course of single trials (mean ± SD, Figure 2.5c). To test the 

hypothesis that task-related instantaneous frequency shifts result in concurrent modulations in 

alpha amplitude, we used instantaneous frequency to index into amplitude spectra for each 

subject and electrode. This analysis effectively treats the spectra as look-up-tables to generate 

predicted alpha amplitudes (PaA) on each timepoint and trial (Figure 2.1b, Figure 2.9c, see 

Methods).  
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Figure 2.5: Topographically selective increases in pre-stimulus frequency predict accuracy. a 
Contralateral and Ipsilateral electrodes show distinct target- locked patterns in instantaneous 
frequency. Blue indicates correct trials, red indicates incorrect trials, shaded areas indicate ± 1 
SEM within subject. b A pre-stimulus elevation in frequency on correct as compared to incorrect 
trials is localized to Contralateral electrodes. All dots indicate significance from zero, evaluated 
by comparing the obtained t-value with a null distribution of t-values computed by shuffling the 
condition labels 10,000 times. This analysis was done on a timepoint-by-timepoint basis from 
−500ms to stimulus onset, as indicated by the non-shaded areas (see Methods). Significant 
main effects are indicated in black, whereas gray dots indicate significance after FDR correction 
at P = 0.05. For illustration, Correct— Incorrect topographies reveal elevated pre-stimulus alpha 
frequency in 100ms bins centered around −400, −300 and −200ms before the stimulus. c Three 
example trials of instantaneous frequency highlight single trial dynamics. Boxplots on the upper 
right indicate the average single trial dynamic range (max—min) of instantaneous frequency on 
correct (blue) and incorrect (red) trials. Histograms in the lower right show distributions of 
instantaneous frequency as a function of the distance from peak alpha over all subjects, 
timepoints, and electrodes in each of the four conditions. Dots in histograms indicate the median 
shift for that condition 
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Figure 2.6: Characterization of Instantaneous Frequency and PaA.  a) The mean dynamic 
range of PaA and alpha amplitude on single trials. The max – min of PaA and Amplitude was 
taken on each trial, and the median over trials was stored for each subject and electrode. Data 
for all 3 contralateral electrodes were concatenated and displayed here. b) Mean amplitude and 
PaA vary with distance from peak alpha frequency. Each color is a single subject, all data are 
averaged over the 3 contralateral electrodes. Note that the shape of PaA reflects the amplitude 
spectra of each subject. c) PaA-Amplitude correlations and single trial instantaneous frequency 
dynamic range are plotted as a function of the window size used to estimate instantaneous 
frequency. The gray vertical line indicates the window size reported in previous analyses, 
chosen as the earliest point that variability nears the +/- 5 Hz bandpass range.  
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Figure 2.7: Shifts in instantaneous frequency predict alpha amplitude. A) On a trial-by-trial and 
timepoint-by-timepoint basis, instantaneous frequency was used to generate predicted alpha 
amplitudes (PaA). PaA was baselined to the same interval used for alpha amplitude 
(−1000:−750 pre-target). Shaded areas indicate ± 1 SEM within subjects for correct (blue) and 
incorrect (red) trials. Reported results are averaged over the same groups of contralateral and 
Ipsilateral electrodes previously reported. B) Correct— Incorrect differences are plotted for 
Contralateral and Ipsilateral electrodes. For illustration, topoplots indicate Correct—Incorrect 
topographies averaged over 100 ms bins centered on 400, 650, and 900 s after stimulus onset. 
All dots indicate significance from zero, evaluated by comparing the obtained t-value with a null 
distribution of t-values computed by shuffling the condition labels 10,000 times. This analysis 
was done on a timepoint- by-timepoint basis from stimulus onset to + 1000 ms, as indicated by 
the non-shaded areas (see Methods). Main effects of accuracy indicated in blue and yellow in 
contralateral and ipsilateral electrodes, red indicates a main effect of topography. Gray dots 
indicate significance after FDR correction at P < 0.05 
 

If the amplitude spectrum is a valid transformation between instantaneous frequency and 

amplitude, PaA modulations should track measured amplitude modulations. Indeed, average 

PaA on correct and incorrect trials resembled measured modulations in alpha amplitude (Figure 

2.7a, Figure 2.4a). Post-stimulus decreases in PaA depended on accuracy and electrode 
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location in a manner similar, although not identical, to alpha amplitude (Figure 2.7b, Table 2.2). 

As we were interested with the relationship between instantaneous frequency and amplitude 

within single trials, we computed timepoint-by-timepoint correlations between PaA and 

amplitude across all trials and found a significant relationship (mean correlation = 0.4773 ± 

0.0732 SD, p = 0, Table 2.3, Figure 2.7a; left panels, see Methods). These correlations were 

stable over time, and did not depend on behavioral performance or the position of the electrode 

with respect to the target (p-values do not survive FDR correction, Figure 2.6a; Table 2.4). 

Finally, modulations in PaA on single trials closely tracked those observed in amplitude (Figure 

2.6b).  

 

Table 2.3: Correlations are specific to the alpha bump. Control look-up table analyses were 
performed to generate PaAnoise, PaAshuffled, and PaA1/f, which were then correlated with amplitude 
(see Methods). Average correlation coefficients ± standard deviation are shown for all analyses. 
PaAnoise was generated with a series of white noise spectra as look-up-tables, producing small 
correlations with amplitude indistinguishable from 0. PaAshuffled was generated by repeatedly 
shuffling the frequency axis of a given look-up-table, but again PaAshuffled was uncorrelated 
amplitude. PaA1/f was generated with look-up-tableS captured the 1/f component but did not 
contain the characteristic alpha bump.  PaA1/f was also uncorrelated to the empirically observed 
alpha amplitudes. *indicates significance of empirically obtained PaA values, computed by 
comparing T-tests against zero of these values to T-tests the shuffled PaA values, and then 
FDR correcting at P=0.05. 
 

Correlation 
(Mean ± SD) 

PaANoise PaAShuffled PaA1/f PaAEmpirical 

Correct -3.35*10-20± 
9.2*10-16 

-0.0173 ± 
0.1209 

-0.0624 ± 
0.0948 

*0.4745 ± 
0.0728, p=0 

Incorrect 4.08*10-20± 
6.8*10-16 

-0.0183 ± 
0.1318 

-0.0594 ± 
0.1045 

*0.4802 ± 
0.0736, p=0 
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Table 2.4: Predicted alpha amplitude – amplitude correlations are stable. Predicted alpha 
amplitude shows a stable correlation with observed amplitude both over time and between 
experimental conditions. All tests report single time-point sliding t-tests performed on correlation 
values after values were compared against distributions obtained empirically by randomizing 
condition labels 10,000 times and then repeating the same statistical test (see Methods). 
Reported t-values are from the timepoint with smallest p-value. * indicates that p-values were 
significant after FDR correction at alpha = 0.05 from -500ms before stimulus onset to 1000ms 
after stimulus onset.  

 Correlation 

Contralateral vs Ipsilateral t(15) = 3.006, p=0.0072 

Contralateral Accuracy t(15) = -2.893, p=0.0015 

Ipsilateral Accuracy t(15) = -2.203, p=0.0467 

Location x Accuracy Interaction t(15) = 2.0355, p=0.0514 
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Figure 2.8: Predicted alpha amplitude correlates with observed amplitude. a) To assess how 
well PaA corresponds with alpha amplitude, we computed correlation values for each subject 
and electrode for each timepoint over the entire –750 to 1000 ms peri-stimulus interval. 
Histograms show correlation values concatenated over all subjects, timepoints and electrodes 
on correct (blue) and incorrect (red) trials in the contralateral and ipsilateral electrodes. Stars on 
each panel indicate that all correlation values shown in these histograms are significantly 
different from correlations obtained with shuffled LUTs (see Methods, Supp Fig. 4). Dots in 
histograms indicate the median correlations for that condition. Timecourses panels on the right 
show these correlations are relatively stable over time, where the y-axes of the plots run from 
0.425 to 0.525, corresponding to the gray shaded area in the histogram. All dots indicate 
significant difference in the correlations between conditions, evaluated by comparing the 
obtained t-value with a null distribution of t- values computed by shuffling the condition labels 
10,000 times. This analysis was done on a timepoint-by-timepoint basis from −500 to + 1000 
ms, as indicated by the non-shaded areas. Main effects of are in black, whereas purple 
indicates an interaction. Gray dots indicate significance after FDR correction at 0.05. b) Three 
example trials from three different subjects show that PaA shifts on single trials mirror those in 
alpha amplitude. The y-axis and traces for PaA are indicated in black, while those for amplitude 
are purple. Note that the y-axis range is different in each subplot to maximize visibility of 
amplitude and PaA (see Methods). c Trials were sorted according to mean pre (−350:−50 ms) 
and post (350:650 ms) stimulus frequency. Average amplitude and PaA were then computed on 
these trials and timepoints. Trials were further split by accuracy, as indicated by blue and red 
lines. Significant differences were evaluated using a two-way repeated-measures ANOVA. 
Black stars indicate a significant effect of frequency, whereas a purple star indicates a 
significant effect of accuracy in the two-way ANOVA 
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To further investigate how frequency, amplitude and behavior are related via the non-

monotonic shape of the amplitude spectra in the alpha band, we next sorted trials into four bins 

based on average instantaneous frequency in pre-stimulus and post-stimulus epochs that were 

significant in the analyses presented in Figures 2.4B and 2.5B (see Methods). We binned trials 

based on whether average frequency was much lower than peak alpha, lower than peak alpha, 

greater than peak alpha, or much greater than peak alpha (quartile split). We then averaged pre 

or post-stimulus alpha amplitude and PaA over the trials in each of these bins. We observed a 

clear inverted-U relationship between amplitude and instantaneous frequency in both pre-

stimulus and post-stimulus epochs (Table 2.5, Figure 2.8c). This is consistent with the main 

analysis showing that each subject’s alpha spectrum maps changes in instantaneous frequency 

onto changes in alpha amplitude (see Figure 2.1). Furthermore, only 25.1 ± 5% SD of trials in 

each pre-stimulus bin were still in that bin in the post-stimulus epoch, again emphasizing the 

dynamic changes in frequency that occur across single trials (25% is expected purely by 

chance).  
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Table 2.5: Frequency and accuracy similarly predict amplitude and PaA. Within frequency and 
accuracy condition, mean amplitude and PaA in pre and post stimulus epochs from -350:-50 ms 
or 350:650 ms relative to the stimulus were averaged (timepoints chosen according to the 
significant timepoints from Figures 2.4 and 2.5). Trials were binned by their average pre or post 
stimulus frequency, and then amplitude and PaA was computed for each of these bins. We then 
computed a two-way repeated measures ANOVA with frequency and accuracy as factors. F-
values were compared against distributions obtained empirically by randomizing condition labels 
10,000 times and then repeating the same statistical test (see Methods). * indicates that p-
values were significant alpha = 0.05. All statistics are reported for contralateral channels, as 
plotted in Figure 2.7C. 

 Amplitude PaA 

  Prestimulus Poststimulus  Prestimulus Poststimulus 

Frequency 
(bins 1-4) 

*F(3, 15) = 
16.921, p=0.0 

*F(3, 15) 
=16.895, 

p=0.0 

*F(3,15) = 
28.73, p = 

0.0 

*F(3, 15) 
=28.57, p=0.0 

Accuracy 
(correct vs 
incorrect) 

F(1, 15) = 
0.12, p=0.748 

*F(1, 15) = 
9.169, 

p=0.0028 

F(1, 15) = 
0.229, 

p=0.669 

F(1, 15) = 
2.49, 

p=0.1328 

Frequency- 
Accuracy 

Interaction 

F(3, 15) = 
0.11, p=0.958 

F(3, 15) = 
1.218, 

p=0.323 

F(3, 15) = 
0.269, 

p=0.858. 

F(3, 15) = 
0.314, 

p=0.829 

 
 

Together, these analyses show that amplitude modulations were accurately predicted by 

passing instantaneous frequency through amplitude look-up-tables, evidenced by similar 

average PaA and amplitude waveforms, significant timepoint-by-timepoint PaA - amplitude 

correlations, and similar modulations of PaA and amplitude over single trials. 

As both instantaneous frequency and amplitude are computed from bandpass filtered 

EEG data, we next addressed the concern that PaA-amplitude correlations were an artifact of 

filtering by passing instantaneous frequency through 5000 randomly generated white noise look-

up-tables to generate PaANoise (see Methods). This analysis yielded correlations between 

PaANoise and actual alpha amplitude that were close to 0 (mean correlation = 3.4*10-21 ± 8.1*10-

16 SD, Figure 2.9 Table 2.3). We next evaluated the empirical probability of observing the PaA – 

amplitude correlations reported in Figure 2.7 under the null hypothesis of no relationship 

between these factors. To do this, we shuffled the frequency axis of each look-up-table, and 

passed instantaneous frequency through these shuffled look-up-tables to generate PaAShuff, a 
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process we repeated 5000 times for each subject and electrode (see Methods). Average 

correlations between PaAShuff and amplitude were ~24x smaller than those empirically observed, 

and P-values computed by comparing observed correlations to the PaAShuff correlations were all 

= 0 (mean correlation = -0.0178 ± 0.1265 SD, Table 2.3, Figure 2.9). Finally, to evaluate 

whether our results are specific to the unique shape of the resonant alpha bump, we fit a two-

term exponential model to each spectrum, generating a new set of look-up-tables that captured 

only the 1/f falloff and not the alpha-bump (see Methods). We then passed instantaneous 

frequency through these new look-up-tables to generate PaA1/f. Again, PaA1/f was weakly 

correlated with amplitude (mean correlation = -0.0624 ± 0.0948 SD, Table 2.3). Together, these 

additional analyses indicate that the correlations obtained are not simply artifacts of our analysis 

pipeline, but instead reflect an intrinsic relationship between frequency and amplitude well 

described by the shape of each subject’s alpha bump centered on their peak alpha frequency 

(Figure 2.9). 
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Figure 2.9: Empirically observed correlations reflect an intrinsic relationship between amplitude 
and frequency. a) Plotted are histograms comparing the correlations for correct and incorrect 
trials for PaA computed with Noise, 1/f, and Shuffled LUTs (from black to light gray) with those 
empirically observed (blue and red) in contralateral electrodes. Each of these histograms are 
normalized to their maximum in order to show them on the same plot. The right panel shows 
timecourses for these alternative LUTs averaged over the contralateral electrodes. b) T-values 
computed from the shuffled spectrum are displayed for correct (blue) and incorrect (red) trials. 
Note the x-axis of these histograms correspond with the gray shaded area on the empirically 
observed T-value histogram. c) Empirical, 1/f fits and Noise LUTs averaged over contralateral 
electrodes are shown for each subject in a different color. Note the different y-axis for the 
empirical spectra. The “hooked” 1/f fit for the subject in blue is due to that subject’s additional 
prominent peak in the high delta/low theta range. 
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Experiment 2 

Generalizing the link between Amplitude and Frequency  

To assess the generalizability of the predictive relationship between frequency and 

amplitude, we computed PaA for a previously published data set in which 14 subjects 

completed 4 sessions and 2 subjects completed 6 sessions of a two-interval contrast 

discrimination task (with 1,176 trials per session; for more details see reference (Itthipuripat et 

al., 2014)). Briefly, after an attentional cue, two oriented stimuli were presented for 300ms to the 

left and right of fixation, followed by a blank interval of 600-800 ms followed by a second 

presentation of two oriented stimuli for another 300ms. The oriented stimuli were rendered at a 

variable contrast level ranging from 0% to 81.13% and subjects had to indicate which of the two 

stimulus presentation intervals contained a slight contrast increment.  We focused our analysis 

on data from the ‘divided attention’ cue condition in which either stimuli could be the target, 

because this condition most closely matched the spatial uncertainty of the stimuli in Experiment 

1.  

Consistent with the first experiment, we observed event-related shifts in average 

instantaneous frequency and amplitude in the same contralateral and ipsilateral groups of 

electrodes reported in the first experiment (Figure 2.10a). Importantly, these modulations in 

instantaneous frequency and amplitude are linked, as indicated by high single timepoint 

correlations between PaA and amplitude (0.458 ± 0.063 SD, Figure 2.10b), and the similarity in 

average PaA and amplitude waveforms (Figure 2.10a).  
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Figure 2.10: Frequency, amplitude and PaA in Experiment 2. A) Average instantaneous 
frequency, amplitude, and PaA in the same contralateral and ipsilateral electrodes examined 
previously, shaded areas indicate ± 1 SEM within subjects. All data are locked to the onset of 
the cue (indicated by dark shading). Alpha amplitude shows event-related decreases 
corresponding to the onset of the cue, stimulus array 1 and stimulus array 2. Similarly, the 
rightmost panel shows that average shifts in PaA mirror these changes in amplitude. B) 
Histogram of single trial correlations collapsed across subjects, timepoints, and electrodes. 
Traces to the right indicate timecourses of these correlations. Timecourses show these 
correlations are relatively stable over time, where the y- axes of the plots run from 0.4 to 0.5, 
corresponding to the gray shaded area in the histogram 
 

In the more complex paradigm used in Experiment 2, stimuli were presented for 300ms 

and were mostly suprathreshold. Thus, unlike Experiment 1, the design of Experiment 2 was not 

ideal to investigate the impact of alpha modulations on behavioral performance. However, for 

completeness, we examined the link between alpha amplitude, alpha frequency and behavioral 

performance using the data from Experiment 2. Like the modulations reported in Experiment 1, 

we observed lower post-stimulus alpha amplitude in contralateral posterior channels on correct 

compared to incorrect trials, reflected in an interaction between topography and accuracy ( 

F(1,14) > 4.44, Figure 2.11; Table 2.6). In addition, contralateral instantaneous alpha frequency 

increased before the onset of the first stimulus on correct compared to incorrect trials, but only 

when stimulus contrast was low (reflected in an interaction between accuracy and contrast with 

F(1,14) > 3.31; Figure 2.11; Table 2.7). The observation of a significant effect only with low 

contrast stimuli is consistent with the findings from Experiment 1 in which there was a high 
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degree of sensory uncertainty because stimulus location was unpredictable and the stimuli were 

low-contrast and masked (see Methods).  

 

Table 2.6: Amplitude during the divided attention condition as a function of electrode location 
and behavioral performance. All tests report the maximum and minimum timepoint-by-timepoint 
F-values over poststimulus timepoints. F-values were compared against distributions obtained 
empirically by randomizing condition labels 5,000 times and then repeating the same statistical 
test (see Methods). * indicates that p-values were significant after FDR correction at alpha = 
0.05 from stimulus onset to +750ms. The minimum uncorrected p-value is also reported for 
each interval (note all intervals have a maximum uncorrected p-value of 0.05 since they were 
chosen on this basis). 

 Post Stimulus 1 
Amplitude 

Post Stimulus 2 
Amplitude 

Topography (contralateral 
vs ipsilateral) 

4.39 < F(1,14)  < 6.73 
0.02 ≤ p < 0.05 

n.s. 

Accuracy (correct vs 
incorrect) 

n.s. 4.24 < F(1,14)  < 
5.60 

0.026 ≤ p < 0.05 

Contrast (levels 1-3) 3.23 < F(1,14)  < 4.87 
0.013 ≤ p < 0.05 

3.19 < F(1,14)  < 
5.18 

0.008 ≤ p < 0.05 

Topography x Accuracy 4.46 < F(1,14) < 10.71 
*0.005 ≤ p < 0.05 

4.44 < F(1,14)  < 
15.40 

*0 ≤ p < 0.05 

Topography x Contrast n.s. n.s. 

Accuracy x Contrast n.s. 3.50 < F(1,14)  < 
3.65 

0.047 ≤ p < 0.05 

Topography x Accuracy x 
Contrast 

n.s. n.s. 
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Table 2.7: Frequency during the divided attention condition as a function of electrode location 
and behavioral performance. All tests report the maximum and minimum timepoint-by-timepoint 
F-values over prestimulus timepoints. F-values were compared against distributions obtained 
empirically by randomizing condition labels 5,000 times and then repeating the same statistical 
test (see Methods). * indicates that p-values were significant after FDR correction at alpha = 
0.05 from -500 to stimulus onset. The minimum uncorrected p-value is also reported for each 
interval (note all intervals have a maximum uncorrected p-value of 0.05 since they were chosen 
on this basis). 
 

 Pre Stimulus 1 
Frequency 

Pre Stimulus 2 
Frequency 

Topography (contralateral 
vs ipsilateral) 

4.6 < F(1,14) < 8.44 
0.009 ≤ p < 0.05 

n.s. 

Accuracy (correct vs 
incorrect) 

4.41 < F(1,14) < 4.42 
0.048 ≤ p < 0.05 

n.s.  

Contrast (levels 1-3) 3.31 < F(1,14) < 3.70 
0.030 ≤ p < 0.05 

n.s.  

Topography x Accuracy    n.s. n.s. 

Topography x Contrast 3.37 < F(1,14) < 4.01 
0.031 ≤ p < 0.05 

n.s. 

Accuracy x Contrast 3.31 < F(1,14) < 10.44 
*0 ≤ p < 0.05  

n.s. 

Three Way Interaction n.s. n.s.  
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Figure 2.11: Data from Experiment 2. Amplitude (left panel) and frequency (right panel) locked 
to the onset of the first stimulus (top half) and the onset of the second stimulus (bottom half). All 
plots are during the divided attention condition, and are shown as a function of topography 
(contralateral and ipsilateral) and behavioral performance (correct in blue, incorrect in red). 
Results of a 3-way repeated-measures ANOVA analysis with topography, accuracy and contrast 
level are plotted at the bottom of each subplot indicating uncorrected p-values < 0.05 with colors 
corresponding to the legend. Effects that survive FDR correction are in black (full results of this 
analysis are described in Tables 2.6 and 2.7). Post-hoc t-tests were performed between correct 
and incorrect timecourses to further understand these effects. Timepoints with p < 0.05 from 
these t-tests are plotted at the top of each subplot in black, with timepoints that survive FDR 
correction in cyan (contralateral) or yellow (ipsilateral). In keeping with previous figures, all 
amplitude statistics were performed on post-onset timepoints, while frequency statistics were 
performed on pre-onset timepoints. Note that like other analyses of Experiment 1, all p-values 
reported here were determined by randomizing conditions 5,000 times and comparing observed 
values to these empirical distributions.  
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Taken together, we found that alpha amplitude can be predicted from instantaneous 

frequency in two different tasks with different stimuli and cognitive demands. This suggests that 

each subjects’ amplitude spectrum is a general link between the modulations in frequency and 

amplitude that correlate with changes in visual perception.  

 

Discussion  

In the present study, we show that alpha amplitude and instantaneous frequency are 

linked by the spectral characteristics of each subject’s alpha oscillation This result suggests that 

amplitude and frequency do not reflect unique properties of cortical oscillations., Instead, 

amplitude may depend on how close instantaneous frequency is to peak alpha, as predicted by 

a simple model based on coupled oscillators.  Furthermore, modulations of alpha oscillations 

impact visual information processing. Our data is consistent with two lines of research that 

highlight the importance of either alpha amplitude or shifts in instantaneous alpha frequency. 

We found a contralateral decrease in alpha amplitude and an increase in instantaneous 

frequency when subjects correctly discriminated a brief target. Historically, these results have 

been discussed largely in the context of different theoretical frameworks, with amplitude 

primarily associated with desynchronization(Wolfgang Klimesch et al., 2007) and frequency 

associated with changes in the sampling rate of incoming visual information (Samaha & Postle, 

2015). However, our results suggest a revision of these traditional accounts and highlight the 

need for a more unified framework.  

Note that post-stimulus drops in alpha amplitude on correct trials correspond to shifts in 

instantaneous frequency both above and below peak alpha, as no mean post-stimulus 

differences in instantaneous frequency are observed between correct and incorrect trials. 

However, the fact that correlations between frequency and amplitude remain stable after the 

stimulus suggests that changes in instantaneous frequency are related to those in amplitude. To 



 80 

understand this, it is important to remember that amplitude and frequency do not have a unique, 

one-to-one mapping. Instead, they are related by the non-monotonic bump shape of the 

amplitude spectra. This means that significant differences in one metric may average out in 

another metric. For example, amplitude could be equal at timepoints in which instantaneous 

frequency has moved from below to above peak alpha (or vice versa). Thus, it is possible that 

before the stimulus, an increase in instantaneous frequency enhances perception, but upon 

stimulus presentation a shift either above or below peak alpha is necessary for efficient visual 

information processing.  

These observations suggest a possible mechanism for how the desynchronization of 

alpha oscillations results in efficient sensory processing. In the desynchronization account, 

fewer visual neurons are entrained at a common alpha frequency as activity in relevant circuits 

shifts to process sensory stimuli. The current data suggest that shifts in instantaneous alpha 

frequency predict changes in alpha amplitude, which could be interpreted as a mechanism for 

this “drop out”. For example, shifts in instantaneous alpha frequency away from the peak or 

resonant frequency – akin to a pianist drifting from a metronome – may be the mechanism by 

which desynchronization and drops in alpha amplitude occur. At a neural level, these frequency 

changes could occur when the E/I balance shifts to allow the formation of local circuits that 

process relevant sensory stimuli (Gray & Singer, 1989; Mazzoni et al., 2008; Okun & Lampl, 

2008; Vogels, Sprekeler, Zenke, Clopath, & Gerstner, 2011).  For example, changes in the 

activity of specific sub-sets of inhibitory interneurons likely modulate the instantaneous 

frequency of the local circuit (Atallah & Scanziani, 2009; Blatow et al., 2003; Buzsáki & Chrobak, 

1995; Mann & Mody, 2010; Wang, 2010). Thus, increases and decreases in instantaneous 

frequency could be due to a variety of changes in the E/I balance during sensory processing 

and future research will be required to determine the contribution of factors such as dampening, 

changes in a region’s characteristic frequency, and changes in the driving region’s characteristic 

frequency.  
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Finally, in addition to alpha amplitude and frequency, several previous studies have 

found a correlation between behavioral performance and alpha phase (Busch et al., 2009; 

Dugue et al., 2011; Mathewson et al., 2009). While we did not find consistent dependence of 

performance on alpha phase, the non-stationarities that we observed in instantaneous 

frequency might impair our ability to detect performance-related phase offsets (Cohen, 2014; 

Lowet et al., 2016) (Figure 2.12, see Figure 2.1c). Further work is needed to understand how 

frequency shifts might contribute previously reports of phasic modulations in perceptual 

sensitivity. 

In sum, our results show that fluctuations in the instantaneous frequency of alpha 

oscillations are associated with both behavioral performance and alpha amplitude. This 

suggests that changes in instantaneous frequency and amplitude do not reflect completely 

independent mechanisms for mediating visual information processing, and our results provide 

new insights into understanding how coupled changes in oscillatory frequency and amplitude 

jointly impact visual information processing.  
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Figure 2.12: Phase Locking and Bifurcation are not associated with accuracy. a) Contralateral 
and Ipsilateral phase locking values are plotted for correct and incorrect trials. There are no 
significant differences in prestimulus (indicated by the unshaded regions) phase locking 
between conditions. b) Similarly, prestimulus phase bifurcation (BIF) in contralateral and 
ipsilateral electrodes does not show significant difference from zero, indicating no significant 
phase concentration on either incorrect or correct trials (see Methods). Phase bifurcation ranges 
from 1 (perfect phase locking in both conditions at opposite phases) to -1 (perfect phase locking 
in only one condition), while values around zero indicate random distributions for correct and 
incorrect trials. Note that post-stimulus phase locking is not easily interpreted due to phase 
resets and ERPs(Busch et al., 2009; Dugue et al., 2011; VanRullen, 2016). 
 

METHODS 

Subjects 

In Experiment 1, 17 subjects (eight male) were recruited at the University of California 

San Diego and all data were collected at UCSD’s Perception and Cognition Lab. The age range 

of the subjects was 19-30 years old (22.06 mean ± 3.98), and all subjects had normal or 

corrected to normal vision. All subjects provided written informed consent in accordance with 

the Institutional Review Board at UCSD. Subjects were compensated $10 / hour for behavioral 

training and $15 / hour for EEG. One subject was excluded due to a high number of 
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independent components showing blink related activity (i.e. 5 frontally localized components 

exceeding >30 mV).  

Experiment 2 is described in detail in Itthipuripat et al 2014(Itthipuripat et al., 2014). In 

brief, 17 subjects (18-31 years old, 9 females) underwent a 2.5-hour behavioral training session 

and then 14 subjects completed 4 EEG sessions and 2 subjects completed 6 EEG sessions for 

a total of 4704 or 7056 trials, respectively. One subject withdrew after the second EEG session, 

yielding 16 subjects for the final analysis. 

 

Apparatus and Stimuli 

The experiment was implemented using Psychtoolbox in the MATLAB programming 

environment running on a Windows PC with the XP operating system. Subjects were positioned 

60 cm from the display and stimuli were presented on a 15-inch CRT monitor with 1024 x 768 

resolution and 120 Hz refresh rate. The luminance output of the monitor was measured using a 

Minolta LS110 and linearized in the stimulus presentation software. 

In Experiment 1, all stimuli appeared 8.5° of visual angle to the left or to the right (with 

equal probability) of the central fixation point (with 0° offset from the horizontal meridian). At the 

start of each stimulus presentation sequence, a disk of Gaussian white noise (5.7° diameter) 

was presented for one video frame (8.33 ms) in one of the two possible locations. Next, either a 

vertically or horizontally oriented Gabor target stimulus was presented for one video frame in the 

same spatial position as the white noise stimulus (also 5.7° diameter). Following the offset of the 

Gabor, a second white noise stimulus was presented for one video frame. Subjects reported 

whether the orientation of the Gabor stimulus was vertical or horizontal by pressing one of two 

buttons on a small keypad. Subjects were instructed to respond as quickly as possible, and to 

do their best to avoid blinking until after a response was made. After subjects responded, there 

was an inter-target-interval (ITI) of 3000-4000 ms (pseudo randomly sampled from a uniform 
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distribution). Each experimental block (72 trials) lasted for approximately 7 minutes. Subjects 

completed 14 blocks of trials during the EEG recording session.  

The main goal of Experiment 1 was to determine whether frequency shifts in the alpha 

band predicted behavioral performance. Before the EEG recording session, the contrast 

threshold yielding vertical/horizontal discrimination accuracy between 60 - 65% was determined 

in a separate thresholding session using the method of constant stimuli. In the EEG recording 

session, the mean accuracy across subjects after trial exclusion was 65% ± +/-2.8%, and mean 

contrast was 5.02% ±1.12% (mean ± SD). Aside from titrating contrast to estimate the threshold 

for each subject, the stimulus presentation sequence and timing of the trials in the behavioral 

and the EEG sessions were identical. 

In Experiment 2, subjects performed a two-interval forced choice contrast discrimination 

task in which each trial began with a 500 ms cue instructing subjects to attend to locations in 

either the left, right or both hemifields (100% valid)(Itthipuripat et al., 2014). The cue was 

followed by a 400-600 ms inter-stimulus interval (ISI) in which only the fixation point was 

present. At a pseudo-randomly chosen time within this ISI window, a first stimulus pair was 

presented (two sinusoidal Gabor patches, one in each hemifield) for 300 ms, where each Gabor 

was presented at one of seven pedestal contrasts. After another 600-800 ms ISI in which only 

the fixation point was visible, a second pair of Gabors was presented for 300 ms. A small 

contrast increment was added to the pedestal contrast of the target Gabor patch during either 

the first or second presentation interval, and subjects were asked to report if the increment 

occurred during the first or second presentation. For the first 6 pedestal levels, the magnitude of 

the contrast increment was adjusted to maintain ~76% accuracy, while accuracy the highest 

pedestal contrast level could not be titrated because the contrast was too high and so was not 

included in the analysis in Figure 2.9 (consistent with exclusion of that condition in the published 

manuscript(Itthipuripat et al., 2014)). Additionally, several aspects of this design make it 

conceptually different from the relatively simple design employed in Experiment 1 to examine 
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frequency and amplitude modulations. These include the longer (300 ms) stimulus presentation, 

the reliance of the task on working memory during the delay interval, the presentation of 

bilateral stimuli, and the use of different pedestal contrasts in each hemifield on each trial (as 

contrast is known to modulate frequency(Cohen, 2014)).  

 

EEG recording 

All EEG recordings took place in a sound-attenuated and electromagnetically shielded 

room (ETS Lindgren, Cedar Park, TX). EEG and electrooculogram (EOG) were recorded with a 

Biosemi Active2 System (Amsterdam, The Netherlands) using a headcap with standard Biosemi 

64 electrode layout. In addition to the 64 scalp electrodes, one reference electrode was placed 

on each mastoid, and 6 electrodes were placed around the eyes to identify and reject trials with 

blink and saccade artifacts. All EEG data were recorded at a sampling rate of 512 Hz. Event 

triggers were recorded in the EEG data file to mark the time of target presentation and the time 

of the subject’s response. 

 

EEG preprocessing 

After data collection, data from the scalp electrodes were re-referenced to the algebraic 

mean of the two mastoid electrodes. Then, the raw time series from each electrode was 

bandpass filtered between 0.1 to 55 Hz using a third order Butterworth filter to attenuate slow 

drift and 60 Hz line noise. After filtering, data were epoched into 6 second intervals centered on 

the presentation of each target. Trials were excluded from further analysis if the EOG electrodes 

located above or below either eye reached ± 85 mV (blinks) or EOG electrodes located outside 

either outer canthi reached ± 45 mV (saccades) within ±1 second of target presentation (7.8% ± 

8 % S.D. of trials were excluded). Additionally, entire blocks of trials were rejected when there 

was a failure to record the precise timing of any of the target onsets (i.e. a trigger that was sent 

to the EEG recording software was not recorded: 5 out of 256 total blocks across all subjects). 
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For each subject, electrodes showing voltage fluctuations exceeding the 95th percentile of data 

from all electrodes and timepoints were also excluded from further analysis (1.8 ± 1.8 S.D. 

electrodes excluded). Finally, trials with RTs > 2000 ms were excluded from further analysis 

(another 4.8% of trials). After applying these exclusion criteria, subjects had an average of 868 

± 89 S.D. trials, 35% of which were incorrect. Thus, a proportionate number of correct and 

incorrect trials were rejected due to artifacts. In addition, after artifact rejection, 50.25% (range 

48.7% - 53.2% across subjects) of remaining target presentations were on the left side of the 

screen, indicating that artifacts were distributed equally between left and right targets. 

Performance was quite stable across the course of the EEG recording session (paired t-test 

comparing accuracy in the first and last block t(15)<0.058, p> 0.95).  

 

Statistics 

For all analyses we report results from contiguous groups of 3 electrodes of interest 

(EOIs) located over the left and right occipital cortex identified a priori based on previous studies 

– namely: P3, Po7 Po3 over left occipital cortex and P4, Po8 and Po4 over right occipital 

cortex(Itthipuripat et al., 2014; G. R. Mangun & Hillyard, 1988; G R Mangun & Hillyard, 1987; 

Sauseng et al., 2005). All data are arranged according to target location such that electrodes 

were subsequently referred to as contralateral and ipsilateral electrodes throughout the paper. 

Finally, all statistical comparisons were paired t-tests where p-values were computed using an 

empirical null distribution of t-values computed by randomizing condition labels 10,000 times 

(except for Figure 2.8c and Figure 2.9 where ANOVAs were used, see below). For example, to 

compare responses between contralateral and ipsilateral electrodes, we generated an empirical 

null distribution by pseudo-randomly swapping or maintaining the contralateral/ipsilateral labels 

on each trial for each subject and then repeating the entire statistical analysis pipeline as normal 

(and this procedure was repeated 10,000 times). Thus, note than any p-values reported as 0 

indicate that the observed effect was larger than any of the 10,000 iterations of this 
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randomization procedure. For consistency across analyses, we also used t-tests on difference 

scores to evaluate interaction terms, in which case the t-values we report are equivalent to the 

square root of the F-values that are produced by an analysis of variance (ANOVA). For ERPs, 

statistical comparisons were performed on average amplitudes in 50 ms time windows centered 

on peak latencies in the grand average waveforms(Luck, 2012), or from 210-260 and 460-510 

ms post stimulus for the END and LPD respectively(Busch et al., 2009; Hickey et al., 2010; 

Itthipuripat et al., 2015, 2014; George R. Mangun & Buck, 1998). Note that our slightly delayed 

ERP epochs (when compared to some previous studies) are consistent with the low contrast of 

our stimulus and difficulty of our task(Busch et al., 2009; Cravo et al., 2013; George R. Mangun 

& Buck, 1998). Otherwise, statistical comparisons were performed at each sample in either a 

500 ms prestimulus epoch (for instantaneous frequency) or a 1000 ms poststimulus epoch 

(amplitude, PaA), based on previous studies (Busch et al., 2009; Dugue et al., 2011; Pascal 

Fries et al., 2008; Wolfgang Klimesch, 1996; Wolfgang Klimesch et al., 2007; Mathewson et al., 

2009; Pfurtscheller, 2001; von Stein et al., 2000). Statistical comparisons of the correlations 

between real alpha amplitude and PaA were performed over the entire 1750 ms epoch to err on 

the side of being conservative since there is no precedent in the literature. All p-values were 

then FDR corrected at p<=0.05(Benjamini & Hochberg, 2016).  

For the analysis in Figure 2.8c, trials were sorted based on their average frequency in 

either a pre (-350:-50 ms) or post (350:650 ms) stimulus epoch based on timepoints significant 

for Figures 2.4B and 2.5B. Specifically, the lowest (<<) bin consisted of trials in the lower half of 

a median split of trials with a mean frequency below peak alpha. Accordingly, the second lowest 

(<) bin were trials in the upper half of a median split of trials with frequency below peak alpha. 

The > and >> bins were computed similarly, but were composed of trials with means greater 

than peak alpha. Average amplitude and PaA were then computed for these trials and epochs. 

A two-way repeated-measures ANOVA with frequency bin and accuracy was used to assess 

how amplitude and PaA depended on frequency in these epochs, and p-values were computed 
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by comparing observed F values to a distribution obtained from 10,000 randomizations of 

condition labels. Finally, Figure 2.9 and Tables 2.6 and 2.7 were computed using a three-way 

repeated measures ANOVA with the pedestal contrast of the target (collapsed across 

consecutive pedestals to yield 3 instead of 6 levels), accuracy and topography as factors. The 

analyses in Figure 2.9 and Table 2.6 and 2 use only the divided attention trials to make the 

interpretation of these timecourses more comparable to those analyzed in Experiment 1 (in 

which the location of the target was not pre-cued). P-values were computed by comparing F-

values to distributions obtained by shuffling condition labels 5,000 times. 

 

ERPs 

ERPs were obtained by averaging stimulus-locked time courses for each electrode of 

interest and then using a low-pass third order Butterworth filter with a cutoff frequency = 5 Hz). 

All time frequency analyses were performed using custom MATLAB scripts (see below for 

details). To avoid edge artifacts, all filtering was applied to 6 second epochs centered on 

stimulus presentation, after which peri-stimulus time epochs of interest were extracted (i.e. 

epochs +-1,000 ms around the presentation of each target). Note that all statistical analyses 

were performed on data before the 5Hz low-pass filter was applied. The low-passed data were 

presented in the figures for visualization purposes only. Also note that there was not a 

pronounced P1 component (assessed by using a cutoff frequency of 15 Hz), consistent with the 

use of a low contrast or briefly presented target stimulus(Busch et al., 2009; Itthipuripat et al., 

2014).  

 

Alpha amplitude  

The time course of stimulus-locked alpha amplitude at each electrode’s peak alpha 

frequency was extracted by bandpass filtering the data with a third order Butterworth filter 

spanning ± 2.5 Hz centered on the peak frequency to EEG data from each electrode and 



 89 

subject and then applying a Hilbert transform to this filtered time series. As in the preprocessing 

of the EEG data for generating ERPs (see above), we applied the bandpass filter to a 6,000 ms 

epoch surrounding target onset to avoid contaminating the peri-stimulus window (1,000 ms) 

with edge artifacts. Alpha amplitude on trial k at time t was estimated by Hilbert transforming the 

bandpassed time series to yield a complex representation of the form Ceiω. Note that C 

describes the amplitude and ω the frequency of the signal. Thus, we take the absolute value of 

these complex coefficients to yield an amplitude estimate:  

 

𝐴k(t) = |𝐶k(t)ei𝜔k(t)| 

All amplitude values were then baselined on a trial-by trial basis by subtracting the mean 

amplitude -1000 to -750 ms before the stimulus.  

 

Instantaneous Frequency  

Instantaneous frequency is defined as the first derivative in time of the phase of the EEG 

signal, or the change in phase per unit time as time approaches zero (see (Cohen, 2014) for 

review). For each subject and EOI, artifact free epochs were bandpass filtered at ±2.5 Hz 

around peak alpha using a 3rd order Butterworth filter (again, bandpass filtering done on 6000 

ms epochs surrounding target onset to attenuate edge artifacts in the peri-stimulus window). We 

then applied a Hilbert transform to the filtered data from each epoch to obtain the amplitude and 

phase of the EEG response at each point in time on each trial. The phase angle was unwrapped 

to be cumulative so that there were no discontinuities at –pi and pi. We then calculated 

instantaneous frequency by approximating the derivative of these unwrapped phase angles. To 

yield an estimate of frequency in Hz at time t and trial k, we then normalized this approximate 

derivative by the sampling rate (sr). Because computing numerical derivatives of discretely 

sampled timeseries can produce sharp discontinuities, we attenuate the influence of these 
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outliers by low-pass filtering our estimates of the derivative of the phase angle. More formally, 

we estimated the instantaneous frequency on trial k and time t by fitting a line of the following 

form to the unwrapped phase data in temporal window of 88 data samples centered on time t:  

𝑝t,k = 𝑑
k(t)𝐱 + 𝐼t,k  

 

Where 𝑝t,k corresponds to the estimated unwrapped phase, parameterized by scalar 𝑑
k(t), or 

an estimated slope (change in phase angle ), vector x, the time axis, and scalar 𝐼t,k, the y 

intercept. The window size of 172 ms for x, corresponding to 88 data samples at sr = 512 Hz, 

was selected because it was the smallest window that kept the average instantaneous 

frequency fluctuations on single trials within the 5 Hz wide bandpass range (Figure 2.2.1). Given 

this fit, we defined instantaneous frequency at time t and trial k: 

 𝜔𝑖𝑛𝑠𝑡(k, t) =
𝑑

k(t) 

2𝜋
∗ 𝑠𝑟 + 𝐼t,k 

Where  𝜔𝑖𝑛𝑠𝑡(k, t) corresponds to an estimate of the instantaneous frequency at time t on trial k. 

The regression lines were estimated using a least squares fitting algorithm to the unwrapped 

phase data and the fits were generally quite good (R2 = 0.995 ± 0.016, mean ± SD). We also 

evaluated our results by estimating instantaneous frequency by simply subtracting sequential 

points along the timeourse of the unwrapped phase: 

 𝑑
𝑘(𝑡) = 

k(t+1) − 
k(t) 

 𝜔𝑖𝑛𝑠𝑡(k, t) =  
𝑑

k(t)

2𝜋
∗ 𝑠𝑟 

However, due to occasional sharp discontinuities in the first derivative, this second 

method then requires the application of median filters over large temporal windows to attenuate 

the influence of fluctuations far outside of the bandpass range (see (Cohen, 2014; Samaha & 

Postle, 2015)). In our data sets, both methods yielded similar results. 
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Look-up-tables relating frequency and amplitude 

To generate the look-up-tables (look-up-tables) that were used to relate changes in 

instantaneous frequency and amplitude, we used a wavelet decomposition based on a family of 

Morlet functions with center frequencies ranging from 3 to 20 Hz in 0.1 Hz steps. Using these 

wavelets, the amplitude at each frequency in this band was estimated and stored for use in the 

main analysis. To avoid biasing the results, the amplitude look-up-tables were calculated from a 

set of 6-second-long epochs drawn from an equal number of correct and incorrect trials 

separately for each subject and electrode (mean number of trials across subjects: 325 ± 36 SD). 

These spectra were also used to define peak alpha for each subject and EOI (10.3 Hz ± 1.1Hz 

SD across subjects in the 6 posterior electrodes of interest). The use of averaging many long 

epochs to estimate amplitude spectra (for our look-up-tables) is related to Welch’s 

method(Welch, 1967). This method is common in spectral density estimation for achieving both 

1) high frequency resolution and 2) low variance and stability in the estimate. Thus, this 

procedure produces stable amplitude spectra for each subject and electrode. In fact, within a 

subject the three contralateral channels we analyzed are correlated at 0.97 ± 0.02 SD, 

illustrating that our technique tends to converge on similar, stable spectra for neighboring 

channels. In contrast, the three contralateral channels show a much weaker correlation of 0.69 

± 0.09 SD between subjects, confirming that these spectra are phenotypic and subject specific.  

To generate white noise look-up-tables, we used the built in white Gaussian noise (wgn) 

function in Matlab with parameter output power set to 1 dBw. We generated 6 second epochs of 

white noise separately for each subject using the number of trials in their dataset. Look-up-

tables were then estimated by using a wavelet decomposition of these trials as described 

above. This process was repeated for 5000 iterations so we could assess the stability of 

resultant PaA estimates. 
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Shuffled look-up-tables used for statistical comparison were computed by pseudo-

randomly shuffling the frequency axis (3:20 Hz in steps of 0.1) of each subject and electrode’s 

original look-up-Table 2.5000 times. 

Finally, to generate 1/f look-up-tables, we fit a two-term exponential to each subject and 

electrode’s original look-up-table using Matlab’s built in fit function and excluded the alpha bump 

(i.e. fit only amplitudes at frequencies below 5 and above 14 hz) in the fitting procedure. 

 

Predicted alpha amplitude  

We evaluated the hypothesis that changes in alpha amplitude and shifts in 

instantaneous frequency are interdependent by using each subject’s amplitude spectra as a 

look-up-table to link these two metrics (as shown in Figure 2.1b). On every trial and timepoint, 

instantaneous frequency was used to index into this look-up-table, yielding a predicted 

amplitude value for each timepoint and trial. The alpha amplitude distribution is known to be a 

stable trait(Grandy et al., n.d.) – hence we are using each subject’s phenotypic amplitude 

spectrum to generate single trial predicted alpha amplitude (PaA, Figure 2.2b). Single trial 

examples of PaA and amplitude are shown for 3 subjects (2, 13 and 15) on trials and electrodes 

814, 623, 193 and 30, 26, 63, respectively (Figure 2.7b). 

 

Correlations with observed alpha amplitude 

We correlated PaA timecourses – computed by passing instantaneous frequency 

through the amplitude look-up-table – with empirically observed amplitude timecourses on a 

time-point by time-point basis. Note that these correlations emphasize the similarity of the 

timecourses as opposed to matching the exact scaling of the PaA with respect to the scale of 

the empirically observed data. Indeed, differences in the overall magnitude of PaA and the 

observed amplitude vary because a) wavelet transforms were used to estimate the look-up-

tables while Hilbert transforms on bandpassed data were used to generate empirical estimates 
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of alpha amplitude and b) stable amplitude look-up-tables result from averaging many trials, and 

thus PaA reflect these average magnitudes as opposed to the single trial magnitudes for 

observed amplitude. We used wavelets to generate the look-up-tables so that we could increase 

the frequency resolution of our look-up-tables (i.e. smaller step sizes along the x-axis in Figure 

2.1b). In Experiment 1, we computed correlations over 2,000 ms epochs centered on target 

presentation. In Experiment 2, we computed correlations over 4,000 ms epochs locked to an 

attentional cue that occurred 0.5 seconds into each trial.  

 

Phase locking and phase bifurcation index  

To make contact with previous papers, we also examined the relationship between alpha 

phase and behavioral performance. We first computed the intertrial phase locking index (PLI) by 

applying Hilbert transforms to data bandpassed around peak alpha as described previously. PLI 

was estimated from the complex values obtained from this Hilbert transform at time t over trials 

1 to k using the formula: 

𝑃𝐿𝐼(t) =  
1

𝑘
∑

𝐶k(t)e
i𝜔k(t)

|𝐶k(t)e
i𝜔k(t) |

𝑘
1 . 

Where Ceiω is the same complex representation of the data as outlined in the amplitude section 

above. This value ranges from 0 - 1 (no phase locking - perfect phase locking at any phase). 

Since stimulus onset was unpredictable, alpha phase should be randomly distributed pre-

stimulus over all trials. Thus, we computed a phase bifurcation index from PLI to assess 

whether any observed phase locking occurred at the same or opposite phases between 

accuracy conditions (as described in (Busch et al., 2009; Dugue et al., 2011)). Bifurcation was 

computed over correct and incorrect trials at time t: 

𝐵(t) = (𝑃𝐿𝐼(t)correct − 𝑃𝐿𝐼(t)all) × (𝑃𝐿𝐼(t)incorrect − 𝑃𝐿𝐼(t)all). 

Note that this value ranges from 1 (perfect phase locking in both conditions at opposite phases, 

leading to PLIall = 0) to -1 (perfect phase locking in only one condition). Values close to zero 
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indicate random phase distributions for correct and incorrect trials (Figure 2.12, (Busch et al., 

2009)). 

 

Harmonic Oscillators - Amplitude and frequency are linked through oscillatory drive and 

local dampening 

Here we derive an expression for amplitude in a target region (AT) as a function of 

parameters of oscillators in the target and driving regions. We model voltage changes in time 

v(t) in the target region as a damped, driven harmonic oscillator with a second order differential 

equation of the form: 

 
(1) mv(t)′′ +  cv(t)′ +  kv(t) = D(t) 
 

Where I(t) is sinusoidal driving force, let D(t) =  ADcos(ωDt) without loss of generality (using sin 

to model the driving force yields identical results). The characteristic frequency in this target 

region (i.e. absent of driving force D(t)) depends on the parameters of this oscillator: 

 

(2) ωT = √k m⁄  

 
Using the method of undetermined coefficients, the steady state (particular) solution of (1) is  

 
(3) vss = acos(ωDt) + bsin(ωDt) 

 
Where amplitude in the target region (AT) depends on coefficients a and b as follows  
  

(4) AT =  √a2 + b2   
 
To find expressions for a and b, and thus for AT, we substitute vss in (2) for v in (1) to obtain  
 

(5) (−𝑎𝑚ωD
2 + 𝑏𝑐ωD + 𝑎𝑘) cos(ωD𝑡) +  (−𝑏𝑚ωD

2 − 𝑎𝑐ωD + 𝑏𝑘) sin(ωD𝑡) = ADcos(ωDt) 
 
Equating terms with sin and cos yields the following system of equations: 
 

(6) 𝑎(𝑘 − 𝑚ωD
2) + 𝑏𝑐ωD =  AD 

𝑏(𝑘 − 𝑚ωD
2) − 𝑎𝑐ωD =  0 

 
Solving this system for a and b, we obtain 
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(7) 𝑎(𝑘 − 𝑚ωD
2)2 + 𝑎𝑐2ωD

2 = AD(k − mωD
2)  

𝑎 = AD  
k − mωD

2

(𝑘 − 𝑚ωD
2)2 + 𝑐2ωD

2
 

𝑏(𝑘 − 𝑚ωD
2)2 + 𝑏𝑐2ωD

2 = ADcωD 

𝑏 = AD  
cωD

(𝑘 − 𝑚ωD
2)2 + 𝑐2ωD

2
 

 

Given (k − mωD
2)2 +  ωD

2c2 ≠ 0. We then utilize the identity in (2) to write the system of 

equations in terms of ωT 

 

(8) a = AD

m(ωT
2 − ωD

2)

m2(ωT
2 − ωD

2)2 +  c2ωD
2

 

b =  AD

cωD

m2(ωT
2 − ωD

2)2 +  c2ωD
2
 

 
Finally, we can combine a and b using (4) to show that 
 

 (9) AT = √a2 + b2 

=
AD

√m2(ωT
2 − ωD

2)2 + c2ωD
2
 

 
This demonstrates that AT depends directly on ωT. If there is no dampening, i.e. 𝑐 = 0, maximal 

AT is achieved as ωD → ωT (note that without dampening, AT is infinite when ωD = ωT). In the 

case of dampening, 𝑐 > 0, the effective characteristic frequency in the target region, ωeT is 

bounded as follows: ωeT ≤  √ωT
2 − 

c2

2m2 and maximal AT is achieved as ωD → ωeT. In both 

cases, amplitude in the target region will be maximal when that region is receiving ωD close to 

its intrinsic frequency, and will fall off as |ωD −  ω(e)T| grows. This demonstrates that there are 

inherent dependencies between amplitude and frequency using the simplest possible model of 

a driven oscillation.  

 

Data availability 

EEG data and Matlab code supporting the frequency and predicted alpha amplitude 

findings of this study have been deposited in the open science framework with accessible at 
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https://osf.io/wkx5h/. Further data that support the findings of this study are available from the 

corresponding author upon reasonable request.  
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Chapter 3: The efficiency of visual processing depends on deviations of alpha rhythms from 

their endogenous peak frequency 

 

Abstract 

Findings concerning how the amplitude and frequency of alpha oscillations (8-12 Hz) 

impact the efficiency of visual processing make distinct predictions. Specifically, increased alpha 

amplitude at peak alpha frequency has been linked to cortical inhibition and impaired visual 

information processing (tonic inhibition hypothesis), while increases in peak frequency appear to 

improve perception by increasing the rate of visual information sampling (perceptual sampling 

hypothesis). As recent reports suggest that alpha amplitude and frequency are linked 

measurements that result from dynamic circuit interactions, we leveraged this interaction 

between top-down and bottom-up circuits to simultaneously examine these theories. Subjects 

(both sexes, N=52) performed a contrast change detection task while bottom-up neural activity 

was clamped at multiple alpha frequencies using a steady-state flickering stimulus. Two 

dissociable perceptual patterns emerged as a function of flicker frequency relative to each 

subject’s endogenous peak alpha frequency. Clamping alpha at or above peak frequency 

impaired perceptual performance in one group of subjects, consistent with the tonic inhibition 

account, while entrainment at or above peak alpha enhanced performance in the second group. 

Interestingly, subjects adhering to the tonic inhibition account displayed naturally faster alpha 

oscillations that traversed the alpha state space less efficiently when clamped at higher 

frequencies, and vice versa. Thus, clamping neural circuits away from their natural alpha 

frequency leads to more efficient traversal, exposing the perceptual importance of the 

interaction between alpha drive and endogenous oscillations. This complex relationship also 

offers an explanation for seemingly disparate findings that alpha oscillations impair vs enhance 

visual perception. 
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Significance statement  

Complex interactions between oscillations in top-down and bottom-up neural regions 

jointly impact both alpha amplitude and frequency as measured with scalp EEG. However, 

distinct predictions about how alpha oscillations impact perception have been postulated based 

on amplitude vs frequency. By clamping bottom-up circuits, we find evidence for both theories in 

distinct subjects. A particular subject’s perceptual pattern appeared to depend on their peak 

frequency and the effect of alpha drive on the efficient state-space traversal of endogenous 

alpha oscillations. Thus, the interaction between alpha drive and each subject’s natural, 

endogenous frequency determines the impact of alpha oscillations on visual perception.   

Introduction  

A dynamic balance between excitatory and inhibitory neural activity leads to brain 

rhythms such as the prominent set of oscillations in the alpha band (~7-12 Hz) that mediate 

visual information processing (Akam & Kullmann, 2014; Anderson, Carandini, Ferster, & 

Sherman, 2000; Atallah & Scanziani, 2009; Azouz & Gray, 2000; Brunel & Wang, 2003; 

Carandini & Heeger, 2012; Draguhn, Buzsáki, Andreas, & Draguhn, 2004; Pascal Fries, 2005, 

2015; Heeger, 1992; Isaacson & Scanziani, 2011; Lopes da Silva, 2013; Mazzoni, Panzeri, 

Logothetis, & Brunel, 2008; Saalmann, Yuri B., Pigarev, Ivan N., Vidyasagar, 2007; Salinas & 

Sejnowski, 2001; van Vreeswijk & Sompolinsky, 1996). On one account, which we refer to as 

the tonic inhibition hypothesis, relatively sluggish increases in alpha amplitude are linked to the 

suppression of task-irrelevant visual information (For review see (Klimesch, Sauseng, & 

Hanslmayr, 2007)). For example, the high alpha amplitude typically observed during passive 

rest is quickly attenuated upon visual stimulation, task engagement, or the deployment of visuo-

spatial attention, presumably due to a release from inhibition during active information 

processing (Bosman et al., 2012; Foxe, Simpson, & Ahlfors, 1998; P Fries, Reynolds, Rorie, & 

Desimone, 2001; Haegens, Handel, & Jensen, 2011; Kelly, Gomez-Ramirez, & Foxe, 2009; 
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Meeuwissen, Takashima, Fernández, & Jensen, 2011; Rihs, Michel, & Thut, 2007; Yamagishi, 

Callan, Anderson, & Kawato, 2008). Moreover, alpha amplitude is selectively higher over 

cortical areas that encode stimuli presented in unattended spatial locations, consistent with a 

link between alpha amplitude and the inhibition of irrelevant visual inputs (Sauseng et al., 2005). 

A second account, which we term the perceptual sampling hypothesis, results from 

observations that faster alpha oscillations lead to higher perceptual acuity (Nelli, Itthipuripat, 

Srinivasan, & Serences, 2017; Samaha & Postle, 2015). Interestingly subjects who increase the 

frequency of their alpha oscillation via neurofeedback improve on working memory and 

cognitive tasks (Escolano, Aguilar, & Minguez, 2011; Zoefel, Huster, & Herrmann, 2011), and 

higher alpha frequencies lower two-flash fusion thresholds and higher detection rates between-

subjects (Cecere, Rees, & Romei, 2015; Nelli et al., 2017; Samaha & Postle, 2015).The 

perceptual benefit associated with faster alpha rhythms is thought to arise from faster sampling 

of incoming visual information due to more rapid cycling between periods of inhibition and 

excitation as indexed by alpha phase (Busch, Dubois, & VanRullen, 2009; Busch & VanRullen, 

2010; de Graaf et al., 2013; Mathewson et al., 2011; Spaak, de Lange, & Jensen, 2014; Zauner 

et al., 2012). This hypothesis that alpha frequency sets the rate at which the visual system 

samples and processes visual information provides an alternative to the purely inhibitory 

account of alpha espoused by the tonic inhibition account (Busch et al., 2009; Busch & 

VanRullen, 2010; Cecere et al., 2015; de Graaf et al., 2013; Foster & Awh, 2018; Landau & 

Fries, 2012; Mathewson et al., 2011; Palva & Palva, 2007; Samaha & Postle, 2015; Spaak et 

al., 2014; VanRullen, 2015; Zauner et al., 2012).  

While previous reports have documented changes in alpha oscillations and behavior 

consistent with either the tonic inhibition or the perceptual sampling accounts, interpreting these 

findings is challenging because modulations in both alpha amplitude and frequency depend on 

complex interactions between top-down and bottom-up factors. For example, changes in top-
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down demands such as expectation and attention modulate alpha amplitude and frequency in 

visual cortex, likely from circuit interactions with higher order driving regions that shift the 

excitatory/inhibitory balance (P Fries et al., 2001; Pascal Fries, Womelsdorf, Oostenveld, & 

Desimone, 2008; Klimesch, 1996; Klimesch et al., 2007; Nelli et al., 2017; Pfurtscheller, 2001; 

Rohenkohl & Nobre, 2011; Salinas & Sejnowski, 2001; Samaha & Postle, 2015; Shao & 

Burkhalter, 1996; von Stein, Chiang, & König, 2000). Consistent with these top-down effects, 

alpha current generators have been identified in infragranular cortical layers, a major source of 

feedback projections into visual cortex(Bollimunta, Chen, Schroeder, & Ding, 2008; Buffalo, 

Fries, Landman, Buschman, & Desimone, 2011; Felleman & Van Essen, 1991; Markov et al., 

2014). Additionally, microstimulation of higher visual areas like V4 unidirectionally enhance 

alpha power in earlier areas like V1 (van Kerkoerle et al., 2014), consistent with causality MEG 

data suggesting that alpha oscillations propagate selectively from higher to lower-order areas 

along the cortical hierarchy (Michalareas et al., 2016). In addition to top-down influences, 

bottom-up factors such as simply opening one’s eyes or presenting a salient stimulus also 

modulate the amplitude and phase/frequency of ongoing alpha oscillations (Lakatos et al., 2009; 

Rizzuto et al., 2003; Woertz, Pfurtscheller, & Klimesch, 2004). Thus, both top-down factors such 

as behavioral goals and bottom-up factors such as sensory stimulation interact to drive alpha 

oscillations as measured with scalp EEG (Nelli et al., 2017).  

Here, we exploit the sensitivity of alpha oscillations to both top-down and bottom-up 

factors to determine the relative contributions of tonic inhibition and perceptual-sampling to 

visual perception. We recorded scalp EEG as subjects (N=52) viewed a flickering stimulus while 

performing an attentionally demanding change-detection task at fixation. The visual stimulus 

was flickered at multiple frequencies around the alpha band to ‘clamp’, or continually entrain, 

alpha rhythms in visual regions (from 6-13Hz; Figure 3.1A). Critically, the demanding change 

detection task allowed us to hold top-down attentional factors constant while we systematically 
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varied the frequency of the bottom-up stimulus drive. Importantly, we also recorded EEG during 

an independent rest period to estimate each subject’s natural, endogenous peak alpha 

frequency. Thus, we were able to carefully characterize changes in behavior as a function of the 

offset between the driving frequency and each subject’s endogenous peak alpha frequency 

(Figure 3.1B). If alpha oscillations primarily regulate perception via inhibitory processes 

associated with gradual changes in amplitude, then providing stimulus drive at each subject’s 

peak alpha frequency should magnify suppression and negatively impact perception (Tonic 

Inhibition: Figure 3.1A, bottom left panel). However, if alpha oscillations primarily regulate 

perception via modulating the rate of perceptual sampling, then clamping rhythms above each 

subject’s peak alpha frequency should systematically improve behavioral performance, and vice 

versa (Perceptual Sampling: Figure 3.1A, bottom right panel).  

 

Materials & Methods 

Participants 

57 participants (33 in continuous version and 24 in trial-wise version, see below; 29 

male) were recruited at the University of California San Diego and all data were collected at 

UCSD’s Perception and Cognition Lab.  All participants provided written informed consent in 

accordance with the Institutional Review Board at UCSD. Subjects were compensated $15 / 

hour for EEG.  The age range of the subjects was 19-30 years old, and all participants had 

normal or corrected to normal vision. 5 participants (2 in continuous version, 3 in trial-wise 

version) were excluded due to having a negative sensitivity metric for one of the entrainment 

frequency conditions. 

 

Apparatus and Stimuli 
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The experiment was implemented using Psychtoolbox in the MATLAB programming 

environment running on a Windows PC with the XP operating system. Subjects were positioned 

60 cm from the display and stimuli were presented on a 15-inch CRT monitor with 1024 x 768 

resolution and 120 Hz refresh rate. The output of the monitor was linearized in the stimulus 

presentation software. 

 

Task and stimulus procedure 

We flickered a centrally presented checkerboard at 8 frequencies encompassing the 

traditional alpha band (6.3, 7.1, 8, 9.2, 10, 10.9, 12 and 13.3 Hz; 25% Michaelson contrast and 

subtending 7.2 degrees visual angle Figure 3.1B). Subjects were instructed to maintain fixation 

on a black, centrally presented fixation dot, and the target was a dimming of this fixation dot for 

16 ms at an unpredictable time. We determined a contrast threshold necessary to maintain 

roughly 75% hit rates for each subject in a short behavioral session before EEG data 

acquisition. We ran two versions of the task utilizing either “continuous” or “trial-wise” 

entrainment, described in detail below. 

In the “continuous” entrainment version of the task, we continuously flickered a 

checkerboard at one frequency for an entire block consisting of 48 target presentations leading 

to a total of 96 presentations per frequency (two blocks per frequency, 16 total blocks). The 

flickering stimulus was up for a total of 151.8 seconds (2.53 minutes), and potential target times 

were selected randomly from 1.2 to 148.8 seconds into the block with the only stipulation that 

consecutive targets were separated by at least 1.2 seconds and at most 5 seconds. Subjects 

could respond at any time, and we ensured that consecutive blocks of trials did not occur at the 

same entrainment frequency and randomized frequency order between subjects.  

In the “trial-wise” version, the entrainment frequency was chosen pseudo-randomly on 

each trial within a block, with 48 trials per block and 10 total blocks. Fixation contrast changes 
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only occurred on 2/3 of trials, leading to a total of 60 trials per frequency. We randomly chose 

target times to occur within 2208 – 2525 ms after the onset of the flickering stimulus to allow the 

entrained rhythm to reach a stable steady state before the target occurred (stimulus flickered for 

a total of 3000 ms). For the trial-wise version, the difference between the earliest and latest 

target times were fixed to be at least 95% of the total possible target onset time range (equal to 

301 ms) to make sure target times were maximally unpredictable. Subjects could respond 

anytime during the trial or intertrial interval, which was chosen pseudorandomly on each trial 

from 1750 to 2250 ms. 

 

Behavioral metrics 

For the continuous entrainment task version, a response was considered a correct 

detection (a “hit”) if it occurred from 84 – 1000 ms after a target while any response made 

outside this temporal window was considered a false alarm. This minimum RT of 84 seconds 

was also used in the trial-wise version of the experiment, although note that subjects could 

respond anytime during the ITI, which exceeded 1000 ms in the trial-wise version. An estimate 

of sensitivity (d') was calculated from hit and false alarm rates by: Z(hit rate) -  Z(FA), while bias 

(criterion) was calculated as –0.5*(Z(hit rate) + Z(FA)).  

 

EEG recording and preprocessing 

All EEG recordings took place in a sound-attenuated and electromagnetically shielded 

room (ETS Lindgren, Cedar Park, TX). EEG and EOG were recorded with a Biosemi Active2 

System (Amsterdam, The Netherlands) using a headcap with standard Biosemi 64 electrode 

layout. In addition to the 64 scalp electrodes, one reference electrode was placed on each 

mastoid (2 total), and 6 electrodes were placed around the eyes to identify and reject trials with 

blink and saccade artifacts. All EEG data were recorded at a sampling rate of 1024 Hz. Event 



110 

triggers were recorded in the EEG data file to precisely mark the time of each target 

presentation and the time of the subject’s response. 

After data collection, data from the scalp electrodes were re-referenced to the algebraic 

mean of the two mastoid electrodes. Then, the raw time series from each electrode was 

bandpass filtered between 0.25 to 55 Hz to attenuate eyeblinks, drift, and 60 Hz line noise. Data 

were either aligned to the nearest “on” frame of the flickering stimulus (for steady state visual 

evoked potential, or SSVEP, analyses) or to the target (event related potential, or ERP, 

analyses) before epoching. This was done because neural activity evoked by the SSVEP rely 

heavily on the phase of the stimulus, while ERP analyses depend only on the target time.  

 

Peak endogenous frequency estimation 

In addition to the main task, we recorded scalp EEG data in order to independently 

estimate each subject’s endogenous peak alpha frequency. Subjects first completed half of the 

experimental blocks, which took approximately 20 minutes for both experiments (8 blocks for 

the continuous flicker, 5 blocks for the trial-wise flicker). Then, subjects were simply instructed to 

relax and fixate on a central fixation point for 3 minutes and then subsequently asked to close 

their eyes and relax for 3 minutes. We report peak frequency estimates from this latter, 3 minute 

eyes closed portion of the data due both precedent in the literature and higher signal-to-noise 

(SNR, see below) (Cohen, 2014; Samaha & Postle, 2015; Zauner et al., 2012). We computed 

spectra from raw, unfiltered data, which was epoched into 2000 clean (e.g. artifact free) 4 

second intervals. Specifically, uV cutoffs were set to be more than 3 standard deviations from 

average, and cutoff ceilings and floors were set at 100 uV and 50 uV, respectively. Epochs were 

excluded from selection if they included more than 3 timepoints in any channel that exceeded 

this cutoff, and an entire channel was considered “bad” if more than 1.5% of total timepoints 

exceeded this cutoff (average channel/trial rejection counts were 9.7/28.2 and 9.4/20.4 for the 

continuous and trial-wise versions respectively). We extracted complex coefficients for these 
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2000 epochs at center frequencies from 2 to 20 Hz in steps of 0.1 Hz using overcomplete 

wavelets decomposition with 0.15 fractional bandwidth (equivalent to the bandwidth at full-width-

half-max divided by the center frequency). We then estimated power at each frequency by 

squaring the absolute value of the complex coefficients for each epoch before averaging over all 

epochs (e.g., computing endogenous alpha power (Welch, 1967)). Peak alpha frequency was 

estimated from these spectra by extracting the frequency with maximal power within the range 

of 7 – 12.5 Hz. For each subject we discarded channels that did not have an apparent alpha 

bump, quantified by low SNR. Specifically, we computed the percent increase from the average 

power at the frequencies ±3 Hz from the estimated peak alpha frequency, and channels with a 

SNR value < 1 were input with a NaN. For eyes closed spectra, this lead to roughly 12.8 ± 13.8 

SD out of 57 subjects with an NaN value per channel, while eyes open spectra had roughly 19.4 

± 12 SD out of 57 subjects that had a NaN value per channel, and this increase in number of 

subjects with no alpha bump in the eyes open condition was consistent across all electrodes 

(t(63) = 16.8, p <10-24) . Finally, in the main text we report peak alpha frequency as the mean 

endogenous frequency averaged across Oz and 4 surrounding electrodes as the  peak alpha 

frequency (POz, Iz, O1 and O2; consistent with previous literature(Cohen & Gulbinaite, 2017)). 

For these 5 electrodes, an average of 7.2 ± 1.6 SD subjects had no peak frequency when 

estimated with eyes closed, compared with 16.6 ± 2.2 SD for eyes open (t(4) = 15.7, p 

<0.0001). 

 

Rhythmic Entrainment Source Separation (RESS) analysis 

Although we briefly describe methods for this data here, source-localized RESS 

timecourses were extracted for single trials using exactly the procedure and Matlab scripts 

described in (Cohen & Gulbinaite, 2017). For each flicker frequency, the covariance matrix of 

the data at that frequency was computed (covariance at, or CA), as well as the covariance 

matrices ± 1Hz from the flicker frequency (covariance surround, or CS).  We then found the 



112 

eigenvalues (evals) and eigenvectors (evecs) such that CA*evecs = CS*evecs*evals using Matlab’s 

builtin eig function. For each subject and frequency, we extracted the eigenvector with 

maximum eigenvalue as a scalp map for that entrainment frequency and entrainment frequency, 

which were used in two ways in the data. First, we obtained single trial RESS timecourses by 

filtering data at each timepoint and trial by that scalp map (evec*data). Second, PCA analyses 

were computed on data with the entrained scalp map projected out (described in PCA trajectory 

methods section). 

 

Entrainment analyses 

After preprocessing, task engaged RESS and raw data were subjected to wavelet 

decomposition to determine whether there was selective entrainment at the flicker frequencies. 

Data were averaged over all trials of each flicker frequency, and then complex coefficients were 

extracted using overcomplete wavelet decomposition with fractional-bandwidth of 0.1 at all of 

the possible entrainment frequencies due to the narrow spacing of the flicker frequencies. For 

analyses comparing entrainment between detected and undetected trials, we randomly sampled 

the minimum number of trials 100 times to balance between detected and undetected trial 

counts. 5 subjects had ≤ 1 trial in which the target went undetected trials for at least one of the 

entrainment frequencies, and thus these subjects were excluded from these specific statistical 

comparisons. 

 

Behavioral Interpolation 

We interpolated behavioral metrics for each subject to their peak alpha frequency as 

estimated during an eyes closed resting period. To do this, we chose to use a 1D shape-

preserving piecewise cubic interpolation (“pchip”) because this algorithm interpolates locally 

(instead of considering all of the data) without being subject to overshoots and without 
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introducing oscillations in the case that the data are not smooth(N. Fritsch & E. Carlson, 1980). 

Specifically, the pchip interpolating function p(X(j)) = Y(j), satisfies the following conditions: 

1) p’ is continuous.  

2) p’(X(j)) is chosen so that p(x) respects monotonicity, meaning if the data is monotonic so 

is p(x). 

We chose to interpolate from -1.5 to +1.5 Hz around each subject’s endogenous peak 

frequency in steps of 0.5 Hz for all interpolation analyses.  

 

Sinusoidal regression model 

To quantify behavior aligned to peak alpha, we fit each behavioral metric separately for 

each subject using a model that included a linear and two sinusoidal regressors that were each 

one cycle defined over the 7 interpolated points (a sine and a cosine function). The cosine 

regressor reached a minimum at the peak frequency while the sine regressor was simply one 

orthogonal cycle (phase shifted by 90 degrees), thus forming a complete basis over the period 

defined by the interpolation range. We also included an intercept and a linear term in the model. 

We estimated beta (𝛽) values for each regressor for each subject separately. To determine 

significance, we randomized the frequency axis 5000 times and estimated 𝛽 for each of these 

iterations. We then performed t-tests against zero on both randomized and observed 𝛽s, and 

also computed P-values on the t-statistic for the difference between observed vs randomized 

𝛽s.   

Finally, our sinusoidal model appeared to capture the range of interpolated frequencies 

equally, as fit residuals were not impacted by whether the entrainment frequency was above, at 

or below peak alpha (One way repeated measures ANOVA on average residuals below, at, and 

above peak alpha: F(2,155)’s = 0.80, 2.19, 0.66, 1.04 with p’s= 0.45, 0.12, 0.52, 0.36 for hits, 
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RTs, sensitivity and bias respectively; F(2,128)= 0.09 with p = 0.91 for false alarms as this was 

computed excluding 9 subjects that had no false alarms at ≥1 flicker frequency). 

K-means Clustering 

K-means clustering was performed on the matrix of sinusoidal beta values from 

regression models for all behavioral metrics. Thus, this resulted in a 52 subject by 10 feature 

matrix as input to MatLabs k-means algorithm with squared Euclidean distance as the distance 

metric for minimization. We iterated through the process 100 times, and on each iteration we re-

initialized the centroid cluster positions five times to find a lower local minimum. The subject 

grouping with the lowest within-cluster sum of point-to-centroid distances was chosen out of 

these 100 iterations. To assess the best number of clusters, we repeated the above process 

using cluster sizes ranging from 1 to 6.  Both the sum and mean of all within-cluster sum of point 

to centroid distances received the largest reduction from 1 to 2 clusters, compared with any 

number of clusters beyond 2 (Figure 3.6). Additionally, we computed silhouette statistics for our 

cluster assignments to assess goodness of fit. This metric compares the relative distance, in our 

case Euclidean, between each subject’s point to other points in its assigned cluster to the 

distance to points in the next nearest cluster. Values close to one indicate that a given 

observation is a good fit for its cluster (Rousseeuw, 1987). 

For each subject i, silhouette value s is defined as: 

s(i) =  
b(i)−a(i)

max {b(i),   a(i)}
  

Where a(i) is the average distance between i and other data within the same cluster, and b(i) is 

the smallest average distance of i to all points in any other cluster. Finally, note that -1 ≤ s(i) ≤ 1. 

Silhouette values for 2 clusters were highest, with a sum of 20.03, and mean ± SE of 0.39 ± 

0.02 (paired t-tests on silhouette values: t(51)’s = 3.4, 3.1, 2.6 and 3.9, with p’s = 0.001, 0.003, 

0.01 and 0.0003 for clusters from 3-6, respectively). For this reason, we chose to separate 

subjects into 2 clusters. 
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PCA trajectories 

For each subject, we computed PCA trajectories on data that had the RESS scalp map 

projected out. Specifically, we did this by taking the remaining, non-SSVEP eigenvectors (evecs) 

and re-projected single trial electrode data (data) into this space: evecs*pinv(evecs)*data, where 

pinv is the Moore-Penrose Pseuoinverse.  We then filtered this data from -1 to +1 Hz around 

each subject’s independently estimated peak alpha frequency using a third order zero-phase 

digital Butterworth filter. After concatenating trials and time, we correlated the electrode-by-

time/trial matrix with itself and performed PCA on this electrode-by-electrode correlation matrix, 

known to give similar results as the covariance matrix (Baria, Maniscalco, & He, 2017).  We 

then chose the first 10 principle components (PCs) that explained the most variance, and 

projected each timepoint and trial into the space formed by the span of these PCs. Finally, we 

calculated both velocity and Euclidean distance in this PC space, and averaged metrics and 

trajectories over either detected or undetected trials.  

Behavioral control across a wide range of flicker frequencies 

To ensure that any observed linear trends weren’t part of a larger, overarching trend we 

ran a separate cohort of 27 subjects (16 male, age = 21.7 ± 3.1 SD) for continuous (768 trials, 

n= 15) or trial wise (672 trials, n=12) versions of the task in which all parameters were identical 

except that the flicker frequencies used were 0 (static), 1.5, 4, 6, 10, 15, 20 and 24 Hz .  

Experiment-version differences 

Because of the different structure of the tasks, there were some average differences in 

subject behavior. Sensitivity, Bias and false alarms rates were not significantly different between 

the two experiments (ranksum test, p values determined by comparison to 10,000 randomized 

iterations: z’s = -1.86, 0.93 and 0.76 with p’s 0.062, 0.34 and 0.45, respectively). RTs were 

increased in the trial-wise structure by definition, as we defined a relatively narrow (i.e. 
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~1000ms) time frame during which subjects had to respond due to the ambiguity of a response 

in the continuous structure, whereas subjects could respond within a much longer time frame for 

the trial wise version (2225-3042 ms depending on intertrial interval; 759.68 ± ms 245.1 SD vs 

466.77 ± 59.6 SD ms; z = 4.76, p<10-15). Finally hit rates were slightly higher during the 

continuous version of the task due to differences in the success in thresholding subjects at 

~75% detection rates, as contrast thresholds were determined on a subject by subject basis in a 

behavioral session before the task (zvalue = -2.05, p = 0.036: Trial-wise hit rate = 66.4% ± 

18.2% SD vs Continuous hit rate = 76.2% ± 13.1% SD). Finally, it appeared that average 

entrainment was significantly higher in the continuously entrained experiment, with SNR = 5.27 

±0.3 SE vs 2.7 ± 0.03 SE in the trial-wise version (2-way ANOVA, F(1,51) = 106.5, p<10-13). 

Importantly, however, subject group had no interaction with k-means subject grouping (Two-way 

repeated measures ANOVA: Experiment X Subject-group interaction F(1,51) = 0.58, p=0.45). 

Thus, due to the lack of an interaction and the fact that there was significant entrainment in both 

experiments, we decided to collapse all data across experiment-entrainment type (paired t-tests 

of RESS SNR against 1: Continuous 7.9 ≤ t(30)’s ≤13.7, p’s<10-8; Trial-wise 4.3 ≤ t(20)’s ≤ 6.1, 

p’s<0.001 ).  

 

Results 

Task Design and behavior 

We flickered a centrally presented checkerboard at 8 frequencies encompassing the 

traditional alpha band (6.3, 7.1, 8, 9.2, 10, 10.9, 12 and 13.3 Hz; Figure 3.1B). The target was a 

16 ms dimming of a black, centrally presented fixation dot for 16 ms on which subjects were 

instructed to maintain fixation. Each subject participated in a short behavioral session before 

EEG data acquisition to determine their contrast threshold, resulting in Hit rates = 72.27 ± 15.98, 

False Alarm rates = 4.69 ± 6.55%, and RTs = 585.06 ± 216.14ms during the task (mean ± SD). 
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From these measures we calculated sensitivity, an estimate of the ease with which a subjects’ 

perceptual system can detect the target from noise, and bias, an estimate of the extent to which 

a subject’s responses are biased to report a target. Signal sensitivity was relatively high while 

bias suggested relatively conservative response criteria, indicating subjects understood the task 

(Sensitivity: 2.94 ± 0.86 SD, Bias: 0.8 ± 0.43 SD) 

 

Figure 3.1: Study Motivation and Task Design. A: Three max normalized example power 
spectra are shown, and the peak alpha frequency of each individual subject is indicated with a 
dotted line. We used steady-state-visual evoked potentials (SSVEPs, indicated by lightning 
bolts) to test two hypotheses concerning the impact of alpha oscillations in visual cortex. Tonic 
inhibition (Hypothesis A) proposes that driving early visual alpha away from the resonant, 
endogenous peak frequency will positively impact perception. Perceptual Sampling (Hypothesis 
B) predicts that perceptual performance increases monotonically with increased early visual 
alpha frequencies. B: We flickered a centrally presented checkerboard at 8 different frequencies 
tiling the alpha band as subjects performed a contrast change detection task at fixation. 
Subjects were either presented with a continuously flickering checkerboard during which targets 
were separated by a variable inter-target interval (“Continuous”), or a checkerboard that was 
removed from the screen during a short inter-trial interval (“Trial-Wise”).  
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Subjects completed two slightly different versions of the task, one in which we flickered 

the stimulus continuously (“continuous flickering”) and one which employed a trial-by-trial 

structure (“Trial-wise flickering”). Although we designed the continuous version to optimize 

entrainment of the alpha rhythm, we also found significant entrainment in the trial-wise version 

and so we report results collapsed across these versions in the main text (Entrainment statistics 

reported in section below; version-specific parameters, along with behavioral and SSVEP 

statistics are reported in Materials and Methods).  

Entrainment manipulation successfully clamps posterior alpha rhythms 

Importantly, we first sought to confirm that brain rhythms were in fact driven at the 

intended frequency by our flickering stimulus, as, to our knowledge, there are few previous 

reports manipulating brain rhythms at similarly narrowly spaced frequencies within a frequency 

band. We employed a source-separation technique optimized to isolate entrained rhythms 

(RESS, or Rhythmic Entrainment Source Separation; see Methods; (Cohen & Gulbinaite, 2017)) 

to assess clamping of brain rhythms, but first validate its performance against traditional 

analysis techniques. To do this we calculated average RESS and electrode-based SSVEP 

amplitudes in a 2000 ms window surrounding target presentation (-1000 ms to +1000 ms) 

separately for each entrainment frequency, resulting resulted in a three-dimensional subject-by-

entrained frequency-by-estimated frequency amplitude matrix (i.e. for 6.3 Hz stimulation trials, 

we estimated amplitude for all 8 alpha frequencies, for 7.1 Hz stimulation trials we estimated 

amplitude at all 8 frequencies, etc.). Importantly, the RESS scalp map allowed us to selectively 

project entrained alpha rhythms out of the data in order to investigate their impact on 

endogenous alpha oscillations in later analyses. Both electrode-based and RESS analyses 

confirmed successful entrainment of brain rhythms at each flicker frequency (Figure 3.2A; ME of 

stimulation in one way repeated measures ANOVA; RESS: F(1,103) = 75.96, p < 10-10; 

Electrode: F(1,103) = 48.67, p<10-8).  
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Figure 3.2: Entrainment of visual alpha oscillations. A: Successful clamping of alpha rhythms 
compared between electrode-based SSVEP and rhythmic entrainment source separation 
(RESS) methods. Plotted is average amplitudes within entrainment frequency, line color 
indicates entrainment frequency, errorbars indicate between-subject SEM, black stars indicate 
significance at p<0.01 using a one-way repeated measures ANOVA on entrainment; EF in 
legend = Entrainment Frequency. B: Amplitude estimates at non-entrained frequencies are 
larger using electrode-level (dotted black) compared with RESS data (black). Errorbars indicate 
SEM; black stars indicate significance at p<0.01 of two-way repeated measures ANOVA with 
technique and frequency as factors. C: Entrainment ratios calculated by dividing amplitude 
estimates at each entrained frequency by amplitude at non-entrained frequencies (Dotted lines 
= electrode-level, solid lines = RESS; black stars indicate significant main effect of entrainment 
for electrode-level and RESS. Errorbars indicate SEM; gray stars indicate within frequency 
paired t-tests at p<0.01. Gray line at entrainment ratio of one indicates the amplitude at a 
particular frequency was equal to the average of all other frequencies. D: Projection of 
topographic weights used to isolate the entrained rhythm using RESS, projection done using 
code from Cohen & Gulbinaite (2017). Red areas indicate high activation by the flickering stimuli 
averaged over all flicker frequencies. E: The amplitude of entrained rhythms decreases post-
target, an effect greater on trials in which the target was correctly detected. Errorbars indicate 
SEM, black stars indicate significance at p<0.01 using two-way repeated measures ANOVA 
with time interval and detection as factors.  
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RESS better isolates entrained rhythms from endogenous alpha oscillations 

Although both electrode-based and RESS methods selectively estimated SSVEP 

amplitudes relative to a baseline, this baseline was significantly contaminated by endogenous 

(i.e. non-entrained) alpha activity in traditional electrode-based estimates. Electrode-based 

amplitudes showed a baseline increase at non-entrained frequencies when compared with 

RESS estimates (Baseline plotted in Figure 3.2B; ME of technique: F(1,51) = 216.25, p<10-15). 

Additionally, we found an increase in amplitude at 10 Hz, likely because the average 

endogenous alpha frequency was 10.08 ± 0.92 Hz across subjects (mean ± SD at electrode 

POz; ME of wavelet frequency: F(7,357) = 13.6, p<10-14; Interaction between frequency and 

technique: F(7,357) = 10.33, p<10-11; see Methods). This indicates a degree of nonselectivity 

such that electrode-based SSVEP amplitude estimates also include the brain processes that 

give rise to the endogenous alpha ‘bump’. 

To control for this non-selectivity we calculated entrainment ratios by dividing the 

amplitude at each combination of entrained and estimated frequencies (e.g. each cell of the 8 x 

8 matrix produced by subjecting each of the entrainment trial types to wavelet decomposition at 

each frequency) by the average amplitude at all other combinations. Although entrainment at all 

frequencies was again significant using both methods (Figure 3.2C; one sided t-test that 

entrainment ratios > 1; Electrode entrainment ratios: 5.99 ≤ t(51)s ≤ 8.1, p ≤ 10-7; RESS 

entrainment ratios: 7.9 ≤ t(51)s ≤ 11.2, p ≤ 10-10), RESS indeed displayed higher entrainment 

ratios at each of the entrained frequencies (Figure 3.2C; Main effect of technique: F(1,357) = 

237.6, p <10-15; paired t-tests: 3.79 ≤ t(51)’s ≤ 9.8, p’s ≤ 0.0003), and lower entrainment ratios 

away from entrained frequencies compared to the electrode-based analyses (paired t-test: -7.1 

≤t(51)s ≤ -2, p’s ≤ 0.044). Finally, note, significant entrainment was also found at several flicker 
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frequency harmonics (for (entrainment, estimation) pairs: Electrode entrainment ratio t(51)’s for 

(6.3 Hz, 12 Hz) = 3.1 and (7 Hz, 13.3 Hz) = 2.6, p’s = 0.0015 and 0.0062 respectively; RESS 

entrainment ratio t(51) for (6.3 Hz, 12 Hz) = 3.03, p=0.0019). Thus, we were able to isolate 

entrained alpha rhythms from endogenous alpha oscillations using a source decomposition 

technique. 

Additionally, RESS spatial maps indicated maximal loadings over the back of the head, 

consistent with previous topographic characterizations of both SSVEPs and the endogenous 

alpha rhythm (Figure 3.2D shows average over all entrainment frequencies as the topographic 

size of the map was not modulated by entrainment frequency (One way ANOVA on number of 

electrodes with spatial filter loadings greater than a particular percentile: Main Effect of 

entrainment frequency F(7, 392)s = 1.7,1.2,1, 0.5, 1.3 with p’s = 0.09, 0.31, 0.42, 0.78, 0.26 for 

75, 80, 85, 90,and 95 percentiles respectively; p-values determined by comparing to a null 

distribution of F values obtained by running ANOVAs on counts after randomizing entrainment 

frequencies 1000 times).  

Finally, prestimulus RESS amplitude (estimated from -1000:-500ms prestimulus to avoid 

stimulus evoked effects) was higher than poststimulus amplitude (500:1000ms post stimulus), 

and this effect was more pronounced when the stimulus was detected (averaged over all 

stimulation frequencies; ME of timing: F(1,45) = 13.3, p<0.001; Interaction between timing and 

detection: F(1,45) = 15.2, p<0.001). Thus, RESS amplitudes appeared to reflect attentional 

engagement, as seen in previous electrode-based reports (Morgan, Hansen, & Hillyard, 1996; 

Müller et al., 1998). 

Behavioral performance as a linear function of entrainment frequency 

We next determined whether there were purely linear modulations in behavior across 

entrainment frequency without considering each subject’s alpha frequency. There were linear 
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trends in several behavioral metrics that indicated better performance with higher entrainment 

frequencies (Figure 3.3A; multiple linear regression 𝛽s/p’s: Detection: 0.93/<10-8; RT: -4.5/ <10-9 

; Sensitivity: 0.04/0.003; Bias: -0.008/0.2;  FA: -0.09/0.28; we also report t-tests against zero on 

individually fit subject 𝛽𝑠 to be consistent with later analyses and due to the high degrees of 

freedom - 51 subjects and 8 frequencies: Detection: t(51) = 4.86, p =10-5; RT: t(51) = -5.16, p 

<10-5; Sensitivity: t(51) = 3.04, p =0.004; note RTs are only considered for trials on which the 

target was accurately detected, or ‘hit’ trials).  

 

Figure 3.3: Linear trends in behavioral data. A: Average behavioral metrics within each 
stimulation condition are plotted, shaded areas indicate SEM. * indicates that linear regression 
𝛽 had a p-value <0.01 (left panel). B: Behavioral metrics for each subject were interpolated 
around each subject’s respective peak alpha frequency (left panel). The linear relationship 
between each behavioral metric was assessed as in A, and beta values with a p<0.01 are 
indicated with *.  

 

However, viewing the behavioral data without accounting for each subject’s unique peak 

alpha frequency does not address the hypothesis that entrainment frequency modulates 
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behavior with respect to each subject’s peak alpha frequency. Therefore, we first estimated 

each subject’s peak alpha frequency during a separate block of EEG recordings in which 

subjects were not viewing the entrainment stimuli or performing any other task aside from 

fixation (Figure 3.3 inset: 10.1 ± 0.8 Hz mean ± SD; see Methods). Next, we interpolated 

behavioral data in a window from -1.5 Hz to +1.5 Hz centered on each subject’s peak alpha 

frequency (See Methods for interpolation details). We found that while Hit rates and RTs still 

increased with entrainment frequency after aligning to peak alpha, sensitivity was no longer 

significantly modulated by entrainment and a modest decrease in bias emerged (Figure 3.3B; 

multiple linear regression 𝛽s/p’s: Detection: 1.5/<10-6; RT: -8.9/ <10-7 ; Sensitivity: 0.05/0.06; 

Bias: -0.02/0.038;  FA: -0.27/0.06; due to the high degrees of freedom - 51 subjects and 8 

frequencies – and to be consistent with later analyses, we also report t-tests against zero on 

individually fit subject 𝛽𝑠; Detection: t(51) = 3.2, p =0.002; RT: t(51) = -3, p =0.004; Bias: t(51) = 

-1.1, p = 0.27). Thus, while perceptual performance appears to improve with stimulation 

frequency, the perceptual mechanisms, i.e. sensitivity vs bias, are not clear. Qualitatively, we 

note the source of ambiguity could be due to substantial non-linear modulations around peak 

alpha frequency. 

Finally, we ran behavioral versions of the experiment with parameters identical except 

the stimulus was flickered at a wider range of frequencies to verify that these linear trends are 

specific to the alpha band (0 Hz, or static, 1.5, 4, 6, 10, 15, 20 and 24 Hz; see Methods). We 

then fit a regression line to the entrainment frequencies (excluding 0) as was done for the main 

task, and only found a marginally significant linear decrease in RTs across all stimulation 

frequencies, suggesting that entrainment within the alpha band engages distinct mechanisms 

from entrainment outside of the alpha band (Figure 3.4; Hits: 𝛽 = 0.0004, p=0.57; False Alarms: 

𝛽 = -0.0006, p=0.13; RT: 𝛽 = -0.64 ms, p=0.012; Sensitivity: 𝛽 = 0.0068, p=0.16; Bias: 𝛽 = 

0.0031, p=0.19; additional statistics in Materials and Methods). Additionally, only hit rates were 
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reduced at 10 Hz compared with both 1.5 and 24 Hz, and entrainment at 10 Hz did not differ 

from entrainment at 4-15 Hz in any behavioral metric (t(26)s = -4.1, -3.9, p’s=0, 0.0004), while 

RTs were slower and sensitivity reduced at 10 Hz compared with 20 and 24 Hz (Figure 3.4; RT 

t(26)s = 2.08, 3.9, p’s= 0.04, 0.0004; Sensitivity t(26)s = -2.3, -3.8, p’s = 0.03, 0; Post-hoc t-tests 

between 10 Hz and all other flicker frequencies: significant differences from 10 Hz are noted 

either below the x axis or next to the red dot indicating no stimulation; significance was 

assessed by randomizing frequency 5000 times). Finally, stimulation at 10 Hz resulted in fewer 

hits, more false alarms, slower RTs and reduced sensitivity compared with no entrainment (Post 

hoc t-tests: t(26)s = -3.3, 3.1, 8.1, -4.8 with p’s = 0, 0.003, 0, 0). Together, this confirms that 

observed linear trends are specific to the alpha band.  

  

Figure 3.4: Behavioral trends over a larger frequency range. Mean Hit rates, False Alarm rates, 
Reaction times, Sensitivity and Bias are plotted, with error bars indicating SEM. Red dots 

indicate the no stimulation condition. 𝛽𝑠 and significance indicators from linear regressions are 
reported next to dotted regression lines. Significance for paired t-tests comparing behavior at 10 
Hz and each other entrainment frequency are indicated next to the numerical label for relevant 
frequency. 
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Figure 3.5: Sinusoidal modeling of behavioral data. A: Each subject’s behavioral data was fit 
separately using two sinusoidal regressors (sine and cosine) and a linear regressor (left panel). 
Three example subjects are shown, with beta values for each regressor and the resultant fit 
(dotted blue lines, middle panels). True behavior (solid blue lines) are plotted alongside these 

fits. Right panel: these sinusoidal 𝛽𝑠 can be visualized on a polar plot. Red shaded regions 
indicate that entrainment at or above peak alpha results in increases in a particular behavioral 
metric. Blue shaded regions indicate decreases when subjects are clamped at or above peak 
alpha. Example regressors are plotted along the perimeter. B: The polar plot legend is 
reproduced (Left panel). Radial distance indicates the number of subjects for the gray shaded 
histograms (inner line is 5 subjects, outer line is 10). Black line indicates the mean vector over 
all subjects, where the outermost radial line labeled with n=10 is the maximal vector length. + 
indicates significance at 0.05 and * indicates significance at 0.01 computed based on t-tests 
against zero on 𝛽𝑠 for the regressor indicated by shading color (light gray is cosine, gray is sine, 
black is linear). 

 

Sinusoidal modulations in behavior aligned to endogenous alpha frequency 

Although we evaluated only linear trends in behavioral data as a first pass, a linear 

model is not sufficient to investigate the tonic inhibition hypothesis, and we qualitatively note 

prominent non-monotonic modulations around each subject’s peak alpha frequency (Figure 

3.4B). To quantify these non-linear modulations, we fit each behavioral metric separately for 

each subject using sine and cosine regressors to capture periodic modulations in the behavioral 

data, along with a regressor to capture the linear trend (Figure 3.5A; See Methods). We show 

three example subjects to illustrate how this model captured subject behavior (Figure 3.5A).  
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These sinusoidal beta values can be summarized using polar plots, and we provide a 

guide for how locations on these polar plots reflect the impact of entrainment at frequencies at 

or above a particular subject’s peak alpha (Figure 3.5A Right Panel). First, RTs were 

significantly faster with entrainment at peak alpha as compared to above or below (Black 

vectors indicate mean over all subjects in Figure 3.5B; Note 𝛽s for the sinusoidal model are in z-

score units; 𝛽𝑐𝑜𝑠 = 0.445 ± 0.16 SE, p=0.005). Second, bias marginally decreased with 

entrainment above peak alpha (𝛽𝑠𝑖𝑛 = 0.38 ± 0.17 SE, p = 0.037). Finally, hit rates, RTs and 

sensitivity retained marginal linear effects in the sinusoidal model (𝛽𝑙𝑖𝑛 = 0.41 ± 0.19 SE, 

p=0.033; 𝛽𝑙𝑖𝑛 = -0.64 ± 0.24 SE, p=0.012; 𝛽𝑙𝑖𝑛 = 0.46 ± 0.22 SE, p = 0.046). However, we note 

bimodal distributions apparent in sinusoidal 𝛽s (Figure 3.5B), implying substantial heterogeneity 

across subjects. This bimodal pattern motivated us to cluster subjects based on their pattern of 

behavioral results.  

Distinct patterns in the impact of entrainment on subject behavior 

Clustering apparent when circular histograms were plotted for the sinusoidal regressors 

indicated that there might be multiple sub-types of behavioral modulation in our experiment. To 

explore this possibility, we used an unsupervised k-means clustering algorithm to divide our 

subjects into groups based on beta weights from the sinusoidal model (see Methods). According 

to the “elbow method” and silhouette values, separation into 2 groups produced the most 

parsimonious account of the data (Figure 3.6; Silhouette values for 2 clusters were highest: 

t(51)’s = 3.4, 3.1, 2.6 and 3.9, with p’s = 0.001, 0.003, 0.01 and 0.0003 for clusters from 3-6, 

respectively). This resulted in 21 subjects in Group 1 (white circles) and 31 subjects in Group 2 

(gray circles; Figure 3.7; See Methods). For comparison purposes, we replot peak-aligned 

behavior separately for each group for comparison (Figure 3.7A Bottom Row). 
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Figure 3.6: K-means cluster number determination. Left Panel: The mean distance of each 
point to the center of the cluster for different cluster numbers. Dots indicate mean, error bars 
indicate standard deviation over clusters (hence no bar for 1 cluster). Right Panel: Individual 
subject silhouette values were investigated as a goodness of fit measure. We plot from -0.1 to 1 
on the x axis, and indicate 0.25 and 0.5 with dashed lines. Each bar indicates the silhouette 
value for one subject, and are colored differently according to cluster membership.  
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Figure 3.7: Behavioral groupings A: Polar plot interpretation guide (left panel) is plotted 
alongside single subject vectors (top row), where subjects are color coded according to their 
behavioral group (Group 1 is purple, Group 2 is green). The outermost ring indicates a 
sinusoidal ß vector length of 2.5 (i.e. combining both sinusoidal regressors). Middle row shows 
group average vectors for Group 1, Group 2 and all subjects (black), where the outermost radial 
ring is the maximal vector length. Bottom row shows the behavioral patterns separately for each 
subject group. Error bars indicate SEM.  

 

These subject groups showed dissociable impacts of driving alpha at or above peak 

frequency on both hit rates, false alarms and sensitivity (Figure 3.7A). Subjects in Group 1 had 

higher false alarm rates and reduced sensitivity when entrained at peak alpha as compared to 

away from peak alpha (False Alarms 𝛽𝑐𝑜𝑠 =0.59, p=0.003; Sensitivity: 𝛽𝑐𝑜𝑠 =1.03, p=0.0008), as 

well as lower hit rates, more false alarms and reduced sensitivity when entrained above as 

compared with below peak alpha (Detection 𝛽𝑠𝑖𝑛 = 0.70, p = 0.028; RT: 𝛽𝑠𝑖𝑛 =-0.93, p=0.001; 

False Alarms 𝛽𝑠𝑖𝑛 =-1.2, p<10-15; Sensitivity: 𝛽𝑠𝑖𝑛  =1.18, p<10-15). Thus, perceptual performance 

is relatively impaired when subjects in Group 1 are entrained at or above their peak alpha 

frequency, in line with the tonic inhibition hypothesis. On the other hand, Group 2 showed higher 

sensitivity at peak alpha, contributed to by both higher detection and lower false alarm rates 
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(Detection 𝛽𝑐𝑜𝑠= -0.65, p=0.003; False Alarms: 𝛽𝑐𝑜𝑠=0.59, p=0.003; Sensitivity 𝛽𝑐𝑜𝑠= -0.71, 

p<10-15). Additionally, subjects in Group 2 had higher hit rates, higher sensitivity, and faster RTs 

when entrained above peak alpha, parsimonious with the perceptual sampling account 

(Detection 𝛽𝑠𝑖𝑛 = -0.93, p <10-15; RT: 𝛽𝑠𝑖𝑛 =0.83, p=0.0004; Sensitivity: 𝛽𝑠𝑖𝑛 = -0.63, p=0.0016). 

Thus, when alpha oscillations are clamped at or above each subjects peak endogenous 

frequency, subjects in Group 1 perform relatively worse while performance is actually enhanced 

in Group 2.  

Finally, note that these subject groups did not differ on their levels of alpha entrainment 

(RESS entrainment ratios for Group 1 = 4.18 ± 0.25 and Group 2 = 4.32 ± 0.39 SE for; two-way 

ANOVA on RESS entrainment ratios with Subject group and Experiment-version as factors: 

main effect of subject group: F(1,51) <10-4, p=0.99). Finally, the behavioral groupings had no 

association with which experiment type the subject participated in (i.e. the blocked or trial-wise 

frequency manipulation experiments, Experiment-by-subject group interaction in two way 

ANOVA: F(1,51) = 0.58, p=0.45; χ2(1, 51) = 0.008, p = 0.78, significance based on 10,000 

randomized subject groupings). 

https://en.wikipedia.org/wiki/Chi_(letter)
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Figure 3.8: Relationship between behavior and peak alpha frequency A: Behavioral group, as 
assigned based on patterns in behavioral performance, was associated with peak alpha 
frequency, with Group 1 showing higher peak alpha frequencies over nearly all electrodes 
(52/64, top scalp map). The bottom scalp map shows z statistics for each electrode, electrode 
areas circled in white were not significant after 10,000 randomizations and FDRr correction at 
0.05. B: Circular-linear correlations were computed for each behavioral metric between single 
subject sinusoidal vectors and their peak alpha frequency. Each circle is a single subject where 
the distance from the center of the polar plot is determined by the peak alpha frequency (which 
is also indicated by the color of each dot). Rho correlation values that were significant at p<0.01 
are accompanied by *, while those significant at 0.05 have +. C: 𝛽s vs peak alpha frequencies 
are plotted for regressors and behavioral metrics, Rho correlation values significant at p<0.01 
are accompanied by *, while those significant at 0.05 have +. Dotted line at 0 denotes where 𝛽s 
switch from negative to positive sign. Dotted regressors are provided along the y-axis for 
guidance. 

Behavioral groupings are linked to the frequency of the endogenous alpha rhythm 

We hypothesized that differences in endogenous alpha oscillations may underlie the 

observed dissociable patterns in behavior. To test for this we compared peak alpha power and 
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frequency as estimated from the independent resting session (For both power and frequency we 

computed group level differences at each electrode using a Wilcoxon ranksum test due to an 

unequal number of subjects in each group, and compared the observed z-statistic to z-statistics 

obtained from 10,000 randomized group assignments; See Methods). Importantly, note spectral 

data is independent of the data used to group subjects, as group assignment was based solely 

on behavioral data. 

We found no difference between the power, or amount, of resting alpha between Group 

1 and Group 2 in any electrode (p’s ≥ 0.28, -0.67 ≤ z’s ≤ 1.15). However, there was a marked 

difference in peak alpha frequency between the groups: subjects in Group 1 had an average 

peak alpha frequency of 10.53 Hz compared with 10.02 Hz for Group 2 over all channels. All 64 

electrodes showed higher peak alpha frequencies in Group 1 compared with Group 2, and this 

elevation reached significance in 52 electrodes (significant frequency differences after FDR 

correction at 0.05 ranged from 0.303-0.764 Hz; 1.8 ≤ z‘s ≤ 2.92 with 0.0015 ≤ p’s ≤ 0.04 as 

determined by comparing observed z statistics to 10,000 randomizations of group membership; 

all frequency differences ≥ 0.1 Hz).  

Thus, subjects that performed worse when clamped at or above their peak alpha 

frequency had naturally faster endogenous alpha oscillations (Group 1), while subjects that 

benefit behaviorally from clamping alpha at or above their peak frequency had slower 

endogenous alpha oscillations (Group 2). 

Sinusoidal patterns in behavior resulting from clamping alpha are predicted by endogenous 

alpha frequency 

We next investigate whether the association between behavior and peak alpha 

frequency holds in a more continuous manner. To that end, we computed circular-linear 

correlations between peak alpha frequency and the angle of each subject’s sinusoidal regressor 



132 

(tan−1 ᵦ𝑠𝑖𝑛

ᵦ𝑐𝑜𝑠
). We found that each subject’s peak alpha frequency was associated with their 

sinusoidal pattern in hit rates, RTs, bias and false alarms (Hit Rate: r = 0.404, p = 0.01; RT:  r 

=0.425, p= 0.006; Bias: r = 0.34, p=0.048; False Alarms: r =0.382, p=0.038; p-values based on 

a comparison to a null-distribution of correlations obtained by randomizing peak alpha frequency 

10,000 times). Interestingly, no significant correlations were seen between peak alpha and the 

linear trend term (p’s > 0.3 for all behavioral metrics). We further decomposed these sinusoidal 

patterns for each behavioral metric. First, we found that the sine regressor that peaked away 

from peak alpha summarized the relationship between hit rates and peak alpha (Figure 3.8C; r 

= 3.8, p = 0.003), while the cosine regressor that peaked at peak alpha dominated the 

relationship between peak alpha frequency and both bias and false alarms (Bias: r = 0.31, p 

=0.02; false alarms: r = -0.31, p = 0.033). Finally, RTs showed both sine and cosine correlations 

with peak alpha (cos: r = -0.34, p = 0.01; sin: r = -0.29, p =0.03). Finally, it is of note that the 

regressor was essentially flipped between subjects with high and low frequencies for each of 

these correlations, indicated by 𝛽 estimates of opposite signs.  

Thus, we confirm that there is a fine-grained relationship between perceptual 

performance and peak alpha frequency consistent with the previously observed differences 

between behavioral groups. Specifically, we again found that subjects with high endogenous 

alpha frequencies were concentrated in the portion of the sinusoidal space associated with 

worse performance when entrained at or above peak alpha, while subjects with low endogenous 

alpha frequencies showed the opposite perceptual patterns.  

State space velocity is modulated by interactions between endogenous and entrained frequency 

So far we have described how the perceptual impact of driving alpha rhythms is linked to 

the endogenous alpha rhythm. Thus, we next explore the possibility that the impact of this 

interaction between entrained and endogenous frequency on behavior is due to the dynamical 
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state of endogenous alpha at different entrainment frequencies. To test this, we projected out 

the RESS scalp maps to remove the entrained alpha signal and performed PCA on the isolated 

endogenous alpha oscillation (EEG data filtered ± 1Hz around each subject’s peak alpha 

frequency with a 3rd order zero-phase digital Butterworth filter; See Methods). We then selected 

the components that explained the most variance to form a state space onto which we projected 

single timepoints of endogenous alpha data from both correct and incorrect trials. We verified all 

analyses reported below using the first 1-10 components that explained the most variance to 

ensure any observed effects were robust to the dimensionality of the state space (Figure 3.9A 

right panel shows the percent variance explained for these PC choices; analysis strategy is 

based on prior work from (Baria et al., 2017), also see Methods).  

When single subject trajectories were plotted, we qualitatively observed that trajectories 

appeared to move a greater distance from the time of target onset to the time that a response 

was made on trials on which the target was detected. In contrast, there was little deviation from 

this pre-target region on undetected trials, with the location in state space at response 

indistinguishable from that at target onset (Figure 3.9A). To quantify these differences, we 

calculated the Euclidean distance between state space location at the time of target 

presentation and each timepoint on both detected and undetected trials, and found both 

reduced pre-target and greater post-target distances on correct as compared to incorrect trials 

(Figure 3.9B; switch from negative to positive t-values occurs at 160 ms post-target; timepoints 

where p survives FDR correction at 0.01: negative t(54s)= from -2.68 to -4.9; positive t(54)s 

from 2.75 to 8.78). Indeed, movement in the state space was slower before the target but faster 

after the target on detected compared with undetected trials (based on average velocities for the 

500 ms before and after target presentation: pretarget t(54) = -6.34, p <10-7; postarget t(54) = 

6.30, p<10-7).  Thus, it appears that a stable pre-target location in the state space and 
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subsequent high velocity movement away from this location characterizes the dynamic 

trajectory of endogenous alpha oscillations when the target was correctly detected.  

Given that subjects with high peak alpha frequencies performed worse when clamped at 

or above peak alpha, we next investigated if post-target state-space velocity was slower when 

subjects with higher peak frequencies were clamped at higher alpha frequencies (and vice 

versa for low alpha frequency subjects; 500 ms window indicated in Figure 3.9B, gray shaded 

area). Interestingly, peak alpha and entrainment frequency interacted to impact state-space 

velocity on detected but not on undetected trials (Figure 3.9C right and bottom panels; linear 

mixed effects model that included entrainment frequency, peak alpha frequency, and an 

interaction term between the two factors as fixed effects, and subject as random effects: 𝛽s 

range from -0.003 to -0.006 from PC 1 to 10; -3.65 ≤  t(436)s < -2.4, p’s ≤0.007, significance 

determined from 5000 randomizations of peak alpha frequency; See Methods). We median split 

subjects into high and low alpha frequencies to visualize this interaction, and observed that 

movement in the state space is slower when alpha oscillations are entrained at lower 

frequencies for subjects with naturally low peak alpha frequencies, while movement was slower 

for subjects with high peak alpha frequencies when alpha rhythms are entrained at higher 

frequencies (Figure 3.9C Top Left Panel). Finally, because the pairwise correlation matrix can 

be impacted by phase locking, we confirmed that this interaction could not be simply accounted 

for by the degree of phase locking or the ERP in the same 500 ms post-target window (PLI: 

t(436)’s = -0.94, -1.48, p’s = 0.25, 0.08; ERP: t(420)s = -1, 1.1, p’s = 0.16, 0.13; significance 

determined from 5000 randomizations of peak alpha frequency; PLI and ERP predicted using 

linear mixed effects model with included entrainment frequency, peak alpha frequency, and an 

interaction term between the two factors as fixed effects, and subject as random effects). 
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Figure 3.9: Endogenous alpha state space. A: Each row shows PCA trajectories for an example 
subject on detected (left panels) and undetected (right panels) trials. Black circles denote target 
onset, black X denotes average reaction time, purple timepoints start 500ms pre-target and 
yellow timepoints end 1000ms post-target. Variance explained is plotted for all subjects as a 
function of the number of principle components (Top right panel; shaded area indicates 
minimum to maximum across subjects). B: Top: Euclidean distance from the target location in 
the two-dimensional PC space plotted for detected and undetected trials. Black dots indicate 
timepoints with t-statistics that remained significant after comparison with 5000 t-statistics 
computed from randomized condition labels and FDR correction at p<0.01. Gray shaded 
rectangle indicates timepoints used for analysis in C. Bottom: example distances computed in 1, 
5 and 10 dimensional state spaces are also plotted, significance computed and plotted 
identically as for top panel. C: Velocity in a 500ms post-target epoch on trials in which the target 
was detected (left panel) and on trials when it was not (right panel). Subjects were median split 
based on peak alpha frequency to display the significant interaction between entrained 

frequency and peak alpha frequency. 𝛽 (right column) and t-values (bottom row) from linear 
mixed effects models fit separately for detected and undetected velocities. The x-axis displays 
models fit separately for PCs 1-10; significance indicated by * for p<0.01 and + for p<0.05 
determined from 5000 randomizations of velocity between subjects. 
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Discussion  

Alpha oscillations have long been associated with visual attention and perception. 

However, the precise mechanisms of their impact on visual information processing are a topic of 

much debate, in part because distinct theoretical frameworks have been built on observations 

concerning changes in alpha power and changes in alpha frequency. Results showing that high 

alpha power impairs behavioral performance have led to the tonic inhibition hypothesis, which 

holds that the alpha oscillations inhibit visual information processing. On the other hand, results 

showing that faster alpha oscillations lead to enhanced behavioral performance have led to the 

perceptual sampling hypothesis, which holds that more rapid fluctuations between periods of 

excitation and inhibition increases the effective sampling rate of the visual system. 

We did find evidence across some, but not all, behavioral metrics for a monotonic 

improvement in visual perception with increasing entrainment frequencies, consistent with the 

perceptual sampling account. However, aligning behavioral metrics to each subject’s peak alpha 

frequency revealed sinusoidal patterns in behavioral performance that suggest a more complex 

relationship between alpha drive and the efficiency of information processing. Indeed, clamping 

posterior alpha rhythms resulted in two distinct patterns of behavioral responses with respect to 

endogenous, peak alpha frequency. One group of subjects displayed impaired performance 

when clamped at or above their peak alpha frequency, in line with the tonic inhibition account 

and inconsistent with the perceptual sampling hypothesis. In contrast, the other group of 

subjects displayed enhanced performance when clamped at or above their peak alpha 

frequency, consistent with both the perceptual sampling hypothesis and with perceptual 

enhancement at peak alpha.  
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Critically, while the separation of subjects into two groups was based solely on their 

behavioral data, subject group was systematically associated with each subject’s endogenous 

alpha rhythm. We found that subjects with behavioral patterns more closely adhering to the 

tonic inhibition hypothesis (impaired behavior at or above peak alpha) had naturally faster alpha 

rhythms, while subjects adhering closer to the perceptual sampling account (enhanced behavior 

at or above peak alpha) had naturally slower alpha rhythms. Furthermore, this relationship 

between behavior and endogenous alpha held up in a continuous manner such that each 

clamping alpha at or above peak frequency resulted in worse performance for subjects with 

higher endogenous frequencies, more parsimonious with the tonic inhibition account, while the 

opposite pattern was seen for subjects with lower endogenous frequencies. Thus, individual 

subjects’ endogenous alpha frequency determined the perceptual impact of alpha drive. 

Interestingly, no significant correlations were seen between peak alpha and the linear trend 

term, suggesting that sinusoidal but not linear perceptual patterns in response to alpha drive are 

associated with peak alpha frequency. 

We then investigated whether these differential behavioral responses observed in 

subjects with high vs low alpha frequencies could be due to the dynamical state of the 

endogenous alpha rhythm under alpha drive. First, increased state space velocity was 

associated with target detection, suggesting rapid changes in the state of endogenous alpha are 

key to efficient perceptual performance. This fits with theoretical models that emphasize 

transient dynamics through neural state spaces rather than arrival or staying at a stable state, 

as the information present in these trajectories are robust to initial state and naturally generate a 

representation of incoming stimuli in the context of previous ones (Baria et al., 2017; 

Buonomano & Maass, 2009; Maass, Natschlager, & Markram, 2002; Misha, Ramon, & Gilles, 

2008). Slow cortical activity trajectories during conscious but not unconscious perception have 

also been found to be fast evolving (Baria et al., 2017), a result we extend to the alpha band 
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here. Importantly, we show that efficient traversal of endogenous alpha oscillations is 

perceptually beneficial, even when the visual system is being clamped at a particular frequency. 

Additionally, each subject’s natural endogenous frequency interacted with the driving frequency 

to impact state-space velocity. Specifically, subjects with high endogenous alpha frequencies 

traversed their alpha state space less efficiently when clamped at high frequencies. Conversely, 

subjects with low endogenous alpha frequencies traversed their alpha state space more 

efficiently when clamped at high frequencies. This suggests that driving neural circuits at alpha 

frequencies distinct from the dominant, natural state of the alpha oscillation may be perceptually 

beneficial because it aids in the efficient traversal through the state space, which is in turn 

necessary for visual perceptual. 

To summarize, we find different subjects show perceptual patterns consistent with both 

accounts of the alpha oscillation. Specifically, when natural, endogenous alpha oscillations are 

fast, driving these circuits even faster is not perceptually beneficial. In contrast, if endogenous 

alpha oscillations are slow, driving early visual circuits at a faster frequency does benefit 

perception. Finally, our results that clamping alpha away from the endogenous frequency results 

in more efficient, transient dynamics suggests that decoupling from the dominant alpha 

oscillation but staying within the bounds of the alpha band is key for perception. This central 

tendency is striking, as it suggests the middle of the alpha band as an optimal dynamical range 

for the neural circuits involved in alpha oscillations and their impact on visual perception. The 

existence of an optimal dynamical range for human visual information processing and transfer 

may be conceivable. Specifically, large scale anatomical wiring of the visual system is relatively 

stereotyped between subjects (Felleman & Van Essen, 1991; Takemura et al., 2016; D. C. B. 

T.-P. in B. R. Van Essen, 2005; D. C. Van Essen & Maunsell, 1983), and the size of such 

networks is known to play a key role in the temporal dynamics of information propagation 

(Buzsáki, 2006; Draguhn et al., 2004).  
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Finally, future studies are necessary to establish why peak alpha frequency, generally 

viewed as a stable trait, has such striking differential impacts on perception under alpha drive. 

Are alpha oscillations inherently different processes in subjects with fast and slow rhythms? Or 

does each subject have multiple steady-states for endogenous alpha oscillations, the most 

dominant of which we call the endogenous rhythm, such that switching between fast and slow 

dynamical states is key for perception? Studies without alpha entrainment in which subjects 

switch between rest and task engagement would be necessary to answer whether these 

differential dynamical alpha states exist either within or between individual subjects. 

Together, we found that driving early visual circuits processing a relevant visual stimulus 

in the alpha band interacts with the endogenous rhythm to impact perception. This interaction 

depends on each subject’s particular alpha frequency, suggesting knowledge of the 

endogenous alpha rhythms could have implications for the optimization of visual information 

processing through both brain stimulation and the presentation of information. Additionally, we 

note that the observed between-subject differences in the interaction between driven and 

endogenous alpha frequency could account for the discrepancies between empirical findings 

supporting tonic inhibition vs perceptual sampling accounts. 

 

Chapter 3, in full, is in preparation for publication of the material at it currently appears 

in: Nelli S, Serences J. (2019). The efficiency of visual processing depends on deviations of 

alpha rhythms from their endogenous peak frequency. In Prep. The dissertation author was the 

primary investigator and author of this paper. 
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CONCLUSION 

The alpha oscillation, a prominent (~8-12 Hz) oscillation maximal in visual regions, 

seems to determine how perception waxes and wanes in time. Nearly a century of research has 

linked modulations in the amplitude or phase/frequency of ongoing alpha oscillations with 

modulations in behavior (Başar, 2012). Observations concerning alpha amplitude has led to the 

tonic inhibition theory that relatively slow changes in alpha amplitude lead to a release from 

inhibition (Klimesch, Sauseng, & Hanslmayr, 2007). Alternatively, observations concerning 

alpha phase and frequency have contributed to the phasic inhibition account that more rapid, 

cycle-by-cycle changes in alpha phase determine the efficiency of visual information processing 

(Samaha & Postle, 2015). However, how tonic and phasic inhibition are related through the top-

down mechanisms that drive alpha oscillations has not been fully explored. The three chapters 

in this thesis aimed to address these outstanding questions about the role of alpha oscillations 

in human vision. Specifically, I propose that each subject’s phenotypic alpha characteristics 

result from the attractor cycle of an underlying dynamical system. Thus, instead of representing 

distinct processes, measurements of alpha amplitude, phase and frequency are likely simply 

byproducts of the alpha dynamical state at that specific moment. In this thesis, I use 

mathematical analysis and empirical data to challenge core assumptions underlying current 

theories of the role that alpha oscillations play in regulating cortical information processing. We 

then propose a more parsimonious and unified theoretical framework in which alpha frequency, 

phase and amplitude should not be viewed as independent metrics to be correlated with 

behavior, but instead as the result of a common dynamical system that impacts visual 

perception.  

In Chapter 1, I addressed the question of whether visual perception, attentional 

selection, and the short-term retention of information wax and wane in the alpha range using a 

classic partial report paradigm (Sperling, 1960). Interestingly, we found that cued recall was 

linked to with higher phase locking at theta frequencies, while neighbor recall was associated 
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with higher phase locking and power at alpha frequencies. This suggests that the mechanisms 

underlying high fidelity attentional selection of perceived items operates at theta 

frequencies, while those underlying responses for nearby but uncued letters operate at alpha 

frequencies. As alpha-band behavioral rhythmicity decreased with memory delay, we 

hypothesize that alpha rhythmic behavioral mechanisms underlie spatial imprecision in 

attentional selection, which has a cascading effect on subjects ability to distinguish uncued from 

cued letters in the iconic representation. Imprecise attentional selection shows elevated alpha 

rhythmicity as measured through both amplitude and phase locking metrics, indicating similar 

behavioral impacts of both the tonic and phasic inhibition accounts.  

In Chapter 2, I addressed how endogenous fluctuations in alpha frequency and 

amplitude interact to impact early visual information processing. We record 

electroencephalography in human subjects and show that both alpha amplitude and 

instantaneous frequency predict behavioral performance in the same visual discrimination 

task. Consistent with a model of coupled oscillators, we show that fluctuations in instantaneous 

frequency predict alpha amplitude on a single trial basis, empirically demonstrating that these 

metrics are not independent. This interdependence suggests that changes in amplitude and 

instantaneous frequency reflect a common change in the excitatory and inhibitory neural activity 

that regulates alpha oscillations and visual information processing. Within this updated 

framework, I hypothesize that shifts in frequency and phase may be the mechanism by which 

local populations desynchronize from the inhibitory alpha rhythm to process incoming stimuli, 

thereby resulting in reductions of alpha amplitude as measured at the scalp. This would link the 

observations about alpha phase, frequency and amplitude into a parsimonious framework. 

In Chapter 3, I aimed to determine if the entrainment of alpha rhythms in early visual 

populations interact with the endogenous alpha oscillation to impact behavior. We found that 

whether activity at a subject’s peak alpha frequency impairs or enhances perceptual 

performance depends on each subject’s intrinsic peak alpha frequency. Specifically, when the 
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oscillatory frequency set by top-down mechanisms is already fast, entraining stimulus-driven 

circuits even faster is not perceptually beneficial. In contrast, if the endogenous oscillatory 

frequency is slow, entraining these early circuits at a faster frequency does in fact benefit 

perception. This is striking, as it suggests the existence of an optimal dynamical range for the 

neural circuits involved in alpha oscillations. First, given that the anatomical characteristics of 

networks play a key role in determining information propagation times(G. C. N. Buzsáki, 2006; 

G. Buzsáki & Chrobak, 1995; Draguhn, Buzsáki, Andreas, & Draguhn, 2004), this optimal 

dynamical range may reflect stereotypy in anatomical pathways (perhaps conserved through 

evolution) between subjects. Interestingly, task-driven, rapid traversal through the alpha state 

space is perceptually beneficial, and the speed of this traversal is impacted by the interaction 

between driven and endogenous alpha frequency. The precise dynamical organization 

underlying this result need further explanation. Specifically, it is possible that each subject may 

have multiple dissociable steady-attractor states for endogenous alpha rhythms, as, it has been 

observed that the same macroscopic field potential can be brought about by various intrinsic 

cellular and network mechanisms, meaning the resonance and perturbation properties of two 

oscillations nominally in the alpha band can actually be quite different (G. C. N. Buzsáki, 2006). 

Conversely, our findings could reflect a phenotypic, between-subjects difference in the 

dynamical alpha system. Together, the impact of alpha oscillations on perception depends on 

circuit interactions with top-down driving oscillators, and we find that optimal oscillatory drive for 

visual perception depends intimately on each subjects particular dynamical system and 

resultant peak alpha frequency. This oscillatory drive appears to impact the efficient traversal of 

endogenous oscillations through the alpha state space. 

In sum, I find an interaction between behavioral rhythmicity and perceptual fidelity (C1), 

of a link between alpha amplitude and frequency (C2), and a dependence of the perceptual 

impact of alpha drive on the natural alpha oscillation (C3). These results suggest an intimate 

dependence on the underlying dynamical system, offering the explanation that seemingly 
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disparate previous findings that alpha oscillations can both impair and enhance perceptual 

performance could actually be due to incomplete characterization of each subject’s individual 

dynamical system. 

We note that the dynamical system governing alpha oscillations is extremely complex 

and widespread, involving interactions with higher-order driving regions. Thus, the posterior 

alpha oscillation responds not only to incoming visual information but also to top-down cognitive 

factors such as shifts in attention. Further dynamical and state-space analyses should be done 

to consider alpha oscillations as attractor states, as outlined in the introduction, instead of 

quantifying certain aspects such as phase, frequency and amplitude and correlating these 

specific aspects with behavior. Indeed, this thesis opens the possibility that there are distinct 

alpha dynamical states that differ in their impact on visual perception, and that driving visual 

cortex at specific alpha frequencies can modulate this impact. Further exciting directions 

include: 1) whether cognitive factors such as task switching can induce top down factors to 

endogenously drive posterior rhythms, and whether this interaction modulates the perceptual 

impact of alpha oscillations in a similar way that we see in C3; 2) whether the amplitude 

spectrum reflects different alpha oscillations in independent circuits that sometimes interact, or 

whether it reflects one large circuit governing the alpha oscillation that sometimes changes its 

properties to impact visual perception; 3) whether it is portions of the alpha phase plane, or the 

attractor state itself that impacts visual perception. 

Finally, these results suggest that different dynamical alpha states can both enhance 

and impair visual information processing. I propose that confusion in the literature concerning 

alpha oscillations has arisen because it is simply an ill-posed problem to characterize this space 

from simply measuring one oscillatory metric, such as power, phase or frequency. As the 

question of whether these macroscopic oscillations obey harmonic, relaxation, or some more 

complex oscillatory behavior, and whether this is modulated by brain region, is still 

outstanding(G. C. N. Buzsáki, 2006), it is our suggestion for experimenters to use each subjects 
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individual amplitude to frequency mapping (the amplitude spectra) as an empirical starting point 

for determining the coupling properties of rhythmic networks in each particular case. 
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