
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Efficient Routing In Wireless Networks And Information-Centric Networks

Permalink
https://escholarship.org/uc/item/51s6r64z

Author
Hemmati, Ehsan

Publication Date
2018

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, availalbe at https://creativecommons.org/licenses/by-
nc-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/51s6r64z
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

EFFICIENT ROUTING IN WIRELESS NETWORKS AND
INFORMATION-CENTRIC NETWORKS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

Ehsan Hemmati

December 2018

The Dissertation of Ehsan Hemmati
is approved:

Prof. J.J. Garcia-Luna-Aceves, Chair

Prof. Martine Schlag

Prof. Brad R. Smith

Lori Kletzer
Vice Provost and Dean of Graduate Studies

Copyright © by

Ehsan Hemmati

2018

Table of Contents

List of Figures v

List of Tables vii

Abstract viii

Dedication x

Acknowledgments xi

1 Introduction 1

2 Routing in Communication Networks 6
2.1 Routing in ICN . 6
2.2 Elements of NLSR and DCR Operation 9

2.2.1 NLSR . 9
2.2.2 DCR . 12
2.2.3 Performance Comparison 13

2.3 Routing in Mobile Ad-Hoc Networks 20
2.3.1 On-Demand Routing . 23
2.3.2 Hybrid routing . 28

3 Link State Content routing 31
3.1 LSCR Operation . 31

3.1.1 Messages and Data Structures 32
3.1.2 Routing to Nearest Replicas 35

3.2 correctness . 41
3.3 Naming . 46
3.4 Routing Complexity . 46

3.4.1 Traditional Link-State Routing (LSR) 47
3.4.2 Loop-free Distance-Vector Routing (LDVR) 47
3.4.3 Link-State Content Routing (LSCR) 48

iii

3.5 Simulation . 49
3.6 Summary . 52

4 Diffusion based Content Routing 53
4.1 DNRP operation . 53

4.1.1 Messages and Data Structures 54
4.1.2 Sufficient Conditions for Loop Freedom 56
4.1.3 DNRP Operation . 57
4.1.4 Example of DNRP Operation 64
4.1.5 Routing to all instances of a prefix 65

4.2 Correctness of DNRP . 65
4.3 Performance Analysis . 74
4.4 Summary . 76

5 Ordered Distance Vector Routing Protocol 77
5.1 ODVR Operation . 78

5.1.1 Information Exchanged 79
5.1.2 Information Stored . 80
5.1.3 Maintaining Routing State On Demand 82

5.2 Examples of ODVR Operation . 89
5.3 Correctness of ODVR . 91

5.3.1 Protocol Complexity . 95
5.4 Performance Comparison . 98

5.4.1 Simulation Results . 99
5.4.2 Effect of Mobility . 100
5.4.3 Effect of Number of Flows 102

5.5 Summary . 103

6 Adaptive Approach to Routing in Ad-Hoc Networks 104
6.1 ADRP Operation . 105

6.1.1 Information Exchanged 107
6.1.2 Information Stored . 108
6.1.3 Maintaining Routing State 110

6.2 Loop Freedom in ADRP . 116
6.3 Performance Comparison . 120

6.3.1 Simulation Results . 120
6.3.2 Effect of Mobility . 121
6.3.3 Effect of Number of Flows 123

6.4 Summary . 123

7 Conclusion 126

Bibliography 129

iv

List of Figures

2.1 AT&T Network Topology, adapted from [42] 15
2.2 Initialization: average number of messages sent per node, average

number of operations done per node, average number of events per
node . 16

2.3 Adding a prefix: Average number of messages sent, operations done,
and events processed per node . 18

2.4 Deleting a prefix: Average number of messages sent, operations
done, and events processed per node 18

2.5 Link failure: Average number of messages sent, operations done,
and events processed per node . 19

2.6 Link recovery: (Average number of messages sent, operations done,
and events processed per node . 19

2.7 Route requests are flooded because nodes must satisfy global con-
straints . 25

2.8 Routing-table looping in AODV resulting from deleted routing state 26

3.1 Sample Network . 36
3.2 Valid next hops to destinations: (a) destination p, (b) destination

q, (c) destination r . 37
3.3 Valid next hops to prefix j . 41

v

3.4 LSCR Performance: (a) average number of LSAs packets sent, (b)
average number of operations, (c) average number of discovered
anchor and number of anchors selected for routing per prefix per
node . 49

3.5 Impact of adding a new prefix: (a) average number of LSAs packets
sent, (b) average number of operations 50

3.6 Computation overhead of LSCR: (a) after prefix deletion, (b) link
failure, (c) link recovery . 51

4.1 DNRP Operation Example . 63
4.2 Simulation results showing average number of messages and average

number of operations vs number of replicas 72

5.1 No routing-table loop occurs with ODVR even when nodes lose
routing state and messages are unreliable 90

5.2 Nodes receive fewer requests when request aggregation is used . . 91
5.3 Nodes n, a and b are sources of data for d 96
5.4 Simulation parameters . 99
5.5 Performance comparison as a function of Node Speed. 100
5.6 Performance comparison as a function of Pause Time. 100
5.7 Performance comparison as a function Number of Sources. 102

6.1 Performance comparison as a function of Node Speed. 122
6.2 Performance comparison as a function of Pause Time. 123
6.3 Performance comparison as a function Number of Sources. 124

vi

List of Tables

4.1 State transit in DNRP . 59

vii

Abstract

Efficient Routing in Wireless Networks and Information-Centric Networks

by

Ehsan Hemmati

The current Internet architecture was designed at the 1960s and 70s, to ad-

dress communication needs of that time: sharing limited, expensive, and static

computer resources. Since then, the Internet usage pattern has been shifted from

conventional host-centric model to a flexible content-oriented model, in which

users and contents are distributed and mobile. Internet of Things is becoming

a new paradigm to describe global access to services and information offered by

billions of heterogeneous devices, "things", ranging from resource-constrained to

powerful devices in an interoperable way.

The first part of this dissertation studies the routing in Information-Centric

Networks (ICN). ICN has been recently proposed and is inspiring the design of

the future Internet architecture. The goal in these architectures is to provide a

cost-efficient, scalable and mobile content distribution networking by adopting a

content-based model of communication. ICN not only addresses the change in the

Internet usage pattern but also matches the IoT applications, since they target

data regardless of the identity of the object that stores or originates them.

In this dissertation, Named-data network (NDN) and Content-Centric Net-

working (CCNx) are presented and routing strategies for them are evaluated.

A comprehensive performance evaluation is done through the simulation experi-

ments. We enhanced the performance of link-state routing by introducing a new

protocol called LSCR, link-state content routing protocol, a loop-free name-based

routing algorithm that propagates link-state information selectively and provides

viii

multi-path routing to content that may be replicated in different locations. We

also introduced the first content routing protocol based on the diffusing compu-

tation, DNRP. DNRP provides multiple loop-free routes to the nearest instances

of a data using only distance information and without requiring periodic updates,

knowledge of the network topology, or the exchange of path information.

MANET paves the way for the development of brand new IoT communica-

tion platforms with a high potential for a wide range of applications in different

domains. Each layer in the design model require redefinition or modifications to

function efficiently in MANETs every is mobile and usually has limited resources

on computation, storage, power, etc.

Routing in Mobile Ad-Hoc Networks is studied in the second part of this dis-

sertation. We introduce ODVR (Ordered Distance Vector Routing), that provides

loop-free routes at every instant based solely on distances to destinations main-

tained by nodes and reference distances included in route requests. Routing state

is established on demand by means of route requests stating the reference distance

and replies from nodes that satisfy this distance. To make the routing more effi-

cient in an IoT environment with a base or gateway nodes, we introduce ADRP, a

hybrid routing algorithm that takes advantage of the strengths of reactive routing

algorithms as well as the benefits of proactive ones. ADRP uses the same signaling

for both reactive and proactive routing.

ix

To my beloved wife Faeze,

my extraordinary parents Masoumeh and Hossein,

and amazing brothers Amir and Arash.

x

Acknowledgments

First and foremost I want to thank my advisor, Professor J. J. Garcia-Luna-

Aceves, for the patient guidance, encouragement and advice he has provided

throughout my time as his student. He’s the funniest advisor and one of the

smartest people I’ve ever met. J. J. has supported me not only by providing a

research assistantship, but also academically and emotionally through the rough

road to finish this thesis. I hope that one day I could be as lively, enthusiastic,

and energetic as he is and to be able to command an audience as well as he can.

I would also like to thank my committee members, professor Martine Schlag

and professor Brad Smith. to serve in my committee despite their busy schedule

and and for all their valuable feedback.

I would like to extend my thanks to Emily Gregg and Tracie Tucker for all

their great help through my PhD program. Finally, I would like to thank my

awesome friends in CCRG (Computer Communication Research Group) Maziar

M. Barijough, Ali Dabirmoghaddam, Turhan Karadeniz, James Mathewson, and

Spencer Sevilla who were always there for me, in the hard and fun research and

personal times.

Last but not least, I would like to thank my mom and dad, Masi and Hossein

to whom I owe the happy life that I have led so far. Thank you for your endless

love, support, and encouragement.

xi

Chapter 1

Introduction

The Internet usage pattern has been shifted from conventional host-centric

model to a flexible content-oriented model, in which users and contents are dis-

tributed and mobile. On the other hand, Internet of Things (IoT) is becoming

a new paradigm to describe global access to services and information offered by

billions of heterogeneous devices (or things), ranging from resource-constrained to

powerful devices (and/or virtualized everyday life objects) in an interoperable way.

A number of Information-Centric Networking (ICN) architectures have been devel-

oped to address the increasing demand for user-generated content [50, 16, 22, 40]

in the Internet.

ICN architectures are based on location-independent content naming rather

than location-oriented host naming. ICN architectures are implemented based

on name resolution and content routing, to provide a cost-efficient, mobile, and

scalable content distribution. In such architectures, content providers, i.e., pro-

ducers, create named data objects (NDOs), and publish name prefixes associated

with these content objects. A name prefix, or simply a prefix, is a location in-

dependent routable name that is associated with a content object and advertised

in the network by the publisher. A consumer of the content asks for the NDO

1

or name prefix by sending a request or interest that is routed along intermediate

nodes, i.e., content routers, toward the publisher(s).

The producers or any caching site that has the original or replicated copy

of the requested NDOs satisfy those interests and send back the corresponding

Data messages. Each content router in the network forwards Interests according

to its Forwarding Information Base (FIB), which stores next hop information

towards name prefixes. A routing protocol is needed to maintain these routes and

populate the FIB entries. An important feature of many such architectures is the

caching of named data objects that can be done everywhere and for everything in

the network. Designing a reliable routing algorithm that copes with adding and

deleting prefixes in caches is a challenging task.

In this thesis, we evaluate different routing and forwarding algorithms of cur-

rent ICN architectures. Most specifically we study routing algorithms for CCNx

and NDN, the most popular ICN architectures. We show by analysis and through

simulation that current routing algorithms for these ICN architectures face differ-

ent problems and can not scale well with respect to the number of contents. To

address such problems, we introduce new protocols that perform much better and

scale well, compared to current methods.

The ICN approach can be particularly beneficial in an ad-hoc networking en-

vironment. Mobile nodes can communicate based on what data they need. Many

MANET protocols exist for "data delivery" from resource discovery, to content dis-

tribution. Resource discovery is a non-trivial operation in a MANET. Resources

in a MANET include nodes, content, and services. Initially, researchers proposed

to use a centralized directory where resource information could be stored.

In chapter 2 we summarize previous studies on routing problem in both ICN

and MANETs. We study different ICN architectures and routing algorithms intro-

2

duced for these architectures. We summarize approaches that have been proposed

for content routing based on the names of objects that may be replicated in differ-

ent nodes of a network. Finally, we study the operation of the Named-data Link

State Routing protocol (NLSR) [52] protocol and the Distance-based Content

Routing (DCR) protocol [33], two well-known routing algorithms for CCNx/NDN

architecture. NLSR is a good representative of content routing based on link

states, and DCR is the first example of loop-free content routing based on dis-

tance information. As we summarized in chapter 2 no prior work has been reported

using partial information of publishers when multiple routers advertise the same

prefix.

Chapter 3 presents LSCR (link-state content routing), a loop-free approach

to name-based routing based on link-state and publisher information to create

routing tables pointing to the nearest instances of the NDOs or name prefixes

in an ICN. LSCR is a pure name-based routing algorithm that relies on router

names instead of IP addresses. Like other link-state routing algorithms, LSCR

uses a flooding mechanism to propagate link-state information regarding physical

link characteristics and builds a map of the network topology at each router.

However, instead of flooding publisher information, as it is done in NLSR [53] and

OSPFN [43], LSCR propagates publisher information by diffusing the information

selectively, based on distributed computation of preferred publishers. Hence, less

communication overhead incurred in LSCR.

The Diffusive Name-based Routing Protocol (DNRP) is introduced in chapter

4 for efficient name-based routing in information-centric networks (ICN). DNRP

establishes and maintains multiple loop-free routes to the nearest instances of

a name prefix using only distance information. DNRP eliminates the need for

periodic updates, maintaining topology information, storing complete paths to

3

content replicas, or knowing about all the sites storing replicas of named content.

DNRP is suitable for large ICNs with large numbers of prefixes stored at multiple

sites. It is shown that DNRP provides loop-free routes to content independently

of the state of the topology and that it converges within a finite time to correct

routes to name prefixes after arbitrary changes in the network topology or the

placement of prefix instances. The result of simulation experiments illustrates

that DNRP is more efficient than link-state routing approaches.

The second part of the dissertation, we focus on solving the routing problem in

mobile networks. A large number of routing protocols for mobile ad-hoc networks

(MANET) have been proposed over the years and the key motivation for their

development has been the looping and counting-to-infinity problems inherent in

any distributed routing algorithm in which a node simply updates its routing state

to a destination by selecting the shortest distance through any available neighbor.

Our study shows, even well-known standardized routing protocols suffer from

looping issue.

The Ordered Distance Vector Routing (ODVR) protocol is introduced in chap-

ter 5 for destination-based loop-free routing in mobile ad-hoc networks. ODVR

maintain loop-free routes using only distance information independently of the

state of the topology, how long a router maintains routing state for any destina-

tion, or the timing or fate of signaling messages. In contrast to all prior on-demand

routing protocols, ODVR does not require source or destination sequence num-

bers, sequence numbers for requests, path information, source routing, or having

a router wait for replies from all its neighbors before making changes to its routing

table.

Although ODVR as an on-demand protocol shows a great performance, a bet-

ter routing protocol is able to take advantage of the strengths of reactive routing

4

algorithms as well as the benefits of proactive ones and to adapt its behavior at

the appropriate time and for the appropriate scope of the network. This motivates

us to propose a hybrid routing protocol, ADRP, (Ad-Hoc Distance based Routing

Protocol), a hybrid routing algorithm for mobile ad-hoc networks that calculates

loop-free routes at every node based on the distances to the destination and ref-

erence distances maintained by nodes. Chapter 6 presents ADRP and describe

its operation.

5

Chapter 2

Routing in Communication

Networks

In this chapter, we summarize Information Centric Networking architectures,

their characteristics, and their routing protocols. We also study previous works

on routing in Mobile Ad-Hoc Networks.

2.1 Routing in ICN

Several ICN architectures have been proposed to handle name resolution and

routing [9, 60]. In general, these architectures implement one or some of the

following mechanisms to construct a path for acquiring data from a producer to

the consumer: 1) flooding the requests throughout the whole network; 2) flooding

the network topology information and the location of publishers; 3) using source

routes to content; 4) creating spanning tree using publish-subscribe signaling.

A number of content routing approaches rely on flooding of content requests

to cope with the fact that nodes requesting content by name do not know the

locations of copies of the content.

6

Directed Diffusion for Sensor Networks: [44] was one of the first proposals

for name-based routing of content. Requests for named content (called interests)

are diffused throughout a sensor network, and data matching the interests are sent

back to the issuers of interests. DIRECT [57] uses an approach similar to directed

diffusion for name-based content routing in ad hoc wireless networks subject to

connectivity disruption. Nodes use opportunistic caching of content and flood

interests persistently within and across connected network components.

Data Oriented Network Architecture (DONA) [49] is an ICN architecture

that uses name resolution to map the flat names to corresponding IP addresses

that can be local or global. It relies on an external and fast name resolution system

called Global Name Resolution Service (GNRS) to map the data object names,

(i.e., Globally Unique Identifier (GUID)) to network addresses. Name-based rout-

ing in DONA is accomplished using traditional IP routing and forwarding.

Mobility First [4] introduces a mobility-centric and trustworthy internet ar-

chitecture that uses geo-distributed names and a global name service to resolve

names to flexible attributes. MobilityFirst enables mobility through a separation

of names and addresses and enhances security by representing them using intrin-

sically verifiable identifiers. The routing approach in the Mobility First project

requires using either network addresses or source routing or partial source routing.

Publish Subscribe Internet Technology (PURSUIT) [3] (formerly known

as Publish-Subscribe Internet Routing Paradigm (PSIRP) [10]) each data object

has a unique name that is mapped to the publisher. A Topology Manager (TM)

in the network, that runs a distributed routing protocol [i.e. link-state routing]

to discover the network topology, is responsible to calculate a route between the

publisher and the consumer.

NetInf [66] proposes the use of a Name Resolution service. In this schema,

7

each provider publishes Information Objects (IOs) alongside their locators so con-

sumers can locate them. It adopts content routing modalities based on distributed

hash tables (DHT) running in overlays over the physical infrastructure to accom-

plish content routing. The NR service is underpinned by a DHT (or more precisely

Multi-level DHT - MDHT), allowing global content lookups on flat identifiers

whilst also supporting local resolution. A destination is assigned a home location

in the DHT that nodes can determine by using a common hash function from the

namespace of content or even meta-data to the namespace of nodes in the DHT.

DHT nodes can cache known mappings to improve efficiency, and the DHTs are

built using underlying routing protocols that discover the network topology.

Named Data Network (NDN) [5] is a developed version of Content-

Centric Network architecture (CCN) [1], which shares the same concepts of

the ICN paradigm for the future Internet architecture. The objective of CCN is to

completely redesign the Internet protocol stack by replacing IP address with the

name of content chunks as a universal component of transport. Content naming

is based on hierarchical names encoded with the publisher, content identifier,

data digest, version number and segment information (segments are equivalent

to packets). In these architectures, a content request is issued by sending an

Interest packet, which is routed through the network to a publisher node that hosts

that content. These messages are routed using a route-by-name paradigm. Each

content router in CCN forwards Interests according to its Forwarding Information

Base (FIB), which stores next hops toward the provider of name prefixes. Any

node having the original or replicated copy of that content satisfy the Interest

by responding with the corresponding Data, which traverse the way back to the

requester.

CCN and NDN use distributed routing protocols to build the routes over

8

which interests are forwarded. NLSR and OSPFN are two routing algorithms

designed for NDN network. They use link-state routing as topology based short-

est path routing to calculate shortest path between every router in such systems.

In NLSR, two types of link-state advertisements (LSAs), AdjacencyLSA and Pre-

fixLSA, propagate topology and publisher information in the network. Each router

uses topology information and runs an extension of Dijkstra algorithm to calculate

the next hops for each router, then maps the prefix to the name of the publisher

and create routing table for each name prefix. NLSR propagates information of

all anchors of all prefixes in the network and does not provide any mechanism to

rank publishers of the same prefix.

The Distance-based Content Routing (DCR) protocol is an example of distance

routing algorithm, which enables routers to maintain multiple loop-free routes to

the nearest instances of a named data object or name prefix, and establish content

delivery trees over which all or some instances of the same named data object or

name prefix can be contacted. In the next section, we study NLSR and DCR in

details and compare their performances.

2.2 Elements of NLSR and DCR Operation

2.2.1 NLSR

NLSR uses the link-state approach to compute the shortest paths from each

router to every other router and replica of a name prefix. It uses two types of

link-state advertisements (LSA): Adjacency LSAs and Prefix LSAs. Based on the

information available in LSAs, each node creates a Link-State Data Base (LSDB)

and ranks its interfaces to forward interests toward a name prefix and fills the

FIB.

9

An adjacency LSA advertises topology information and contains the name of

the router, its neighbors, and the list of all active links connecting the router

to its neighbors. Each router sends Adjacency LSA at startup and whenever

it detects a change in the links to which it is connected. NLSR sends “info"

messages periodically to its neighbors to detect changes in the topology. Prefix

LSAs advertise name prefixes that are available locally and contains the name of

the router and one name prefix. If the router has multiple local name prefixes,

it advertises several prefix LSAs, with each such LSA carrying one prefix update.

A prefix LSA contains a flag called isValid indicating the status of the prefix. A

node sends the prefix LSA with isValid=1 if the prefix is registered in that node

and isValid=0 whenever a name prefix is de-registered. An NLSR node receiving

this LSA will update the name prefix in the LSDB and update its FIB accordingly.

A router stores the latest version of LSAs it receives or creates in its LSDB

and uses this information to find the best next-hops to reach each name prefix

and ranks its interfaces. Based on link-state information, each node creates the

topology of the whole network and runs an extension of Dijkstra’s shortest-path

first (SPF) algorithm to calculate multiple paths to each router and ranks the next

hops to reach each destination in the network. To calculate the cost of a path

using a specific neighbor, the node removes all the links connected to itself except

the one that connects the node to that neighbor. Then it runs Dijkstra’s SPF

algorithm to calculate the distance to each destination through that neighbor.

This process is repeated for each neighbor. Then NLSR uses this information and

prefix information to map a name prefix to the name of a router and creates a

routing table entry for each name prefix. Routes calculated by this mechanism

are not loop-free and NLSR does not provide any mechanism to rank multiple

replicas of the same name prefix.

10

LSAs are propagated in the network using hop-by-hop synchronization ap-

proach (Sync) [8]. Each router periodically exchanges its hash of the LSDB with

its neighbors. In this way, each router can detect the inconsistencies between its

own database and the databases of its neighbors and updates its database with the

latest LSA information. Sync allows NDN components and applications to define

collections of named data in Repositories or Repo, called slices. Each router com-

putes a hash tree over the data stored in the LSDB slice and sends this root hash

to its neighbors. If the root hash values of two neighbors do not match, routers

exchange the hash values on the next tree level until they detect the inconsistency.

Each router sends special Interest messages, called Root Advise, containing Root

Hash Value of its LSDB slice to its neighbor. The neighbor router sends its own

root hash value back using Root Advise Reply. If the hash values do not agree

the router will recursively request for next level hash values until they find the

mismatch in their databases. Then the NLSR router requests data by sending

Content Interest and the neighbor router sends back the data in a Content Reply.

The router will update its LSDB with up-to-date information in the repository

and will run NLSR algorithm to update the FIB.

NLSR uses a hierarchal naming schema for both routers and LSAs. A router

in the network has a name in format of: / < network > / < site > / < router >.

where network and site are assigned based on the network and specific site the

router belongs to and router is a unique name in that network and site. Each LSA

has the name of format of: / < network > / < site > / < router > /NLSR/LSA

followed by the message specific naming. This naming for Adjacency LSA is

/LsType.1/ < version > and for prefix LSA is /LsType.2/LsId. < ID > / <

version >. V ersion field indicate the ordering and can be a sequence number.

LsId is a unique LSA Id assigned for each prefix.

11

2.2.2 DCR

DCR is the first name-based content routing approach based on distance in-

formation that can find routes to any or some replicas of an NDO or name prefix.

Routers running DCR do not need to know the network topology, complete paths

to destinations, or all the replicas of the desired content. A router that runs

DCR maintains three tables for the purposes of routing to the nearest replicas

of content: a link table stores the list of all neighbors and link cost connecting

the router to its neighbors, a neighbor table keeps track of routing information

reported by each neighbor (including the router itself), and a routing table stores

routing information for each known prefix.

A router advertising a zero distance to a name prefix is called an anchor of the

prefix. Each router sends periodic update messages to its neighbors containing a

list of updates to the distances to name prefixes. Each update states the distance

to a name prefix, the closest anchor for the prefix, and a sequence number assigned

to the prefix by the anchor. DCR uses the Successor-Set Ordering Condition

(SOC) to select valid next hops in a way that no routing-table loops are created

in the network. Based on the information reported by each neighbor and SOC,

router i can select its neighbor router k as a next hop to reach name prefix j if

and only if:

1. Router k reports a new anchor of prefix j that node i does not know or the

most recent sequence from a previously known anchor.

2. If router i has a finite distance to prefix j: Router k has shorter distance to

j, or routers i and k have the same distance to j, but i is a lexicographically

smaller name than k. If router i has an infinite distance to prefix j: Router

k offers the smallest finite distance to j among all its neighbors, and also has

the lexicographically smallest name among neighbors offering the smallest

12

distance to j.

Each router uses SOC to rank its neighbor for each name prefix, whenever it

detects a change in link costs or its neighbor table. Router i computes the distance

to a prefix as the minimum of distance of paths using neighbors that satisfy SOC.

Each router sends the updated routing information to its neighbors using update

messages.

The naming schema for DCR depends on the ICN architecture in which DCR

is implemented. A flat or hierarchical naming schema can be used for both routers

and update messages. If a hierarchical schema is used, each router is named in

the following format: ĂĲ/ < network > / < site > / < router > /. The update

messages can use a naming schema like this: / < network > / < site > / <

router > /DCR.”. DCR requires a mechanism to compare router names and

rank them lexicographically.

2.2.3 Performance Comparison

Protocol implementation

We implemented DCR and an optimized version of NLSR using the ns3 sim-

ulator tool with extensions for content-centric networks [54]. SCoNet supports

CCNx v.1 specifications and messages based on the TLV format.

The signaling overhead incurred in the transmission of an LSA in NLSR is

much larger than the overhead incurred by DCR, which is based on sender-

initiated signaling and incurs a single transmission per update message.

To eliminate the differences in performance due to sender-initiated or receiver-

initiated modalities, we implemented DCR and NLSR using sender-initiated sig-

naling, in which control messages are simply Interest messages that carry a pay-

load containing control information. As a result, our implementation of NLSR

13

in the simulation uses a single transmission per LSA, rather than sending them

as a result of Interests after neighbor routers determine the differences in their

local databases. NLSR propagates LSAs using intelligent flooding. We denote the

optimized implementation of NLSR by i-NLSR.

In our simulation of DCR, whenever a node receives an update, it checks its

information against the information stored in its neighbor table. If it detects any

changes in the anchor, distance or sequence number of a name prefix, it updates

the information in the neighbor table and schedules a routing update. A router

waits to receive updates from other neighbors before changing its routing table. A

router reports the updated routing information to its neighbors in its next update

message.

For simplicity, our implementation of DCR is such that each update message

contains the information regarding all the prefixes known to the router. In prac-

tice, only those name prefixes that have changed since the last update message

was sent would need to be reported. Each anchor sends a new sequence number

on each update message it sends for locally-available prefixes.

For the case of i-NLSR, whenever an LSA is received, the router updates

its LSDB and schedules the routing update to rank its interfaces to reach the

destination. If the received LSA is an adjacency LSA the router calculates multiple

next-hops for each destination and updates its routing table using the NLSR multi-

path calculation mechanism described in Section 2.2. If the router receives a prefix

LSA, it maps the name prefix to the destination and ranks the next-hops based on

routing table information for that destination, calculated in the previous phase.

If two or more routers advertise the same name prefix, the faces are ranked based

on distance to closest router advertising the name prefix. Adjacency LSA and

prefix LSA carry the information described in Section 2.2, as specified in [53].

14

Simulation Scenario and Parameters

Network model: The AT&T core network topology shown in Fig. 2.1 was

used, which is often used as a realistic topology for simulations [42]. The AT&T

topology has 154 nodes and 184 links. A node has 2.4 neighbors on average, and

there are 14 nodes with only one neighbor. In our simulation model, each node has

a unique identifier. The hop count is measured as the distance to a destination;

therefore, the path cost is the number of hops between a source and a destination.

In the implementation, the existence of a link-level protocol assures that every

node detects the loss or recovery of connectivity with its neighbor in a finite time

after a router fails to receive the proper control messages a repeated number of

times. All messages, link failure, and link recovery are processed one at a time in

the order in which they occur and within a finite time.

Figure 2.1: AT&T Network Topology, adapted from [42]

In our scenario, 30 nodes are selected as anchors of 180 different name prefixes

and all anchors have a prefix list of the same size. Each prefix may have more

than one anchor. The anchors are selected randomly, and two or more anchors

may have some prefixes in common. For instance, a network with an average of

three replicas has 540 NDOs and each anchor publishes 18 unique name prefixes.

The simulations were run 20 times and different seeds and several quantities

are measured in the network. On each run, the input event generated was a single

15

Num. of Replicas

0 1 2 3 4 5

N
u
m

.
o
f
M

e
s
s
a
g
e
s
 p

e
r

N
o
d
e

0

500

1000

1500
i-NLSR DCR

Num. of Replicas

0 1 2 3 4 5

N
u
m

.
o
f
O

p
e
ra

tt
io

n
s
 p

e
r

N
o
d
e

0

2000

4000

6000

8000
i-NLSR DCR

Num. of Replicas

0 1 2 3 4 5

N
u
m

.
o
f
E

v
e
n
ts

 p
e
r

N
o
d
e

0

200

400

600

800

1000

i-NLSR DCR

Figure 2.2: Initialization: average number of messages sent per node, average
number of operations done per node, average number of events per node

link failure or recovery, and a single prefix addition or deletion. After each of the

events, the protocols are allowed to converge to the steady state, which means all

the messages are processed and no further changes are made to the routing tables.

The links or prefixes that are deleted or added, are selected randomly. Routers

perform their computations in zero time. i-NLSR sent info messages every 10

seconds and sends LSA whenever it selects a change in topology or local prefixes.

DCR sends update messages each 10-second interval. A neighbor is considered

as unreachable if the node does not receive four consecutive info messages, in the

case of i-NLSR or update messages, in the case of DCR.

The simulation started from a topology in which all the links and anchors are

operational, and all prefixes are attached to the anchors. The network was in a

steady state before any changes. All the quantities were measured from the time

that a router detected a change until the protocol converged. The performance

metrics are:

• Messages: The total number of control messages transmitted over the net-

work. The number of messages for i-NLSR includes the number of Hello

messages, adjacency LSAs, and prefix LSAs. In DCR this metric indicates

the total number of update messages transmitted as a result of any changes.

• Events: The total number of updates that must be processed by the protocol,

16

including changes in neighbor table in the case of DCR and changes in link

status or prefix status in the case of i-NLSR.

• Operations: The total number of operations performed by each protocol to

calculate the routing table. The operation count was incremented whenever

an event occurs, and whenever the statements within a loop are executed.

The flooding needed in i-NLSR was implemented in such a way that a router

forwards the LSAs toward those neighbors that did not send the LSA. Therefore,

the control messages in this study give us a lower bound of the total number of

messages that would be required by NLSR.

For the case of i-NSLR, the Dijkstra-SPF algorithm inserts data into a priority

queue. The number of operations required to do so is estimated to be log2N , where

N is the number of nodes. The simulation used the BOOST library with the time

complexity of O(NlogN + E) [56].

Performance Results

The results of our simulation experiments are shown in Figures 2 to 6. The

mean and the standard deviation of the value distribution are given. In each

graph, the horizontal axis is the average number of replicas of a name prefix, and

the average quantity (number of messages, events, and operations) is presented

for each router.

The results for the number of operations and events for DCR are an upper

bound, given that our implementation sends all name prefixes, rather than just

those that changed since the last update.

Figure 2 shows the results for the initialization phase. Routers do not have

any information about the topology, anchors, or prefixes at the beginning, except

for those prefixes that are available locally. Routers start sending their local

information for a random time after starting the simulation. The results give an

17

upper bound for real events, such as refreshing the LSDBs in all nodes or adding

a new node to the network.

Num. of Replicas

0 1 2 3 4 5

N
u
m

.
o
f
M

e
s
s
a
g
e
s
 p

e
r

N
o
d
e

0

5

10

15

20
i-NLSR DCR

Num. of Replicas

0 1 2 3 4 5
N

u
m

.
o
f
O

p
e
ra

tt
io

n
s
 p

e
r

N
o
d
e

0

1000

2000

3000

4000
i-NLSR DCR

Num. of Replicas

0 1 2 3 4 5

N
u
m

.
o
f
E

v
e
n
ts

 p
e
r

N
o
d
e

0

10

20

30

i-NLSR DCR

Figure 2.3: Adding a prefix: Average number of messages sent, operations done,
and events processed per node

Num. of Replicas

0 1 2 3 4 5

N
u
m

.
o
f
M

e
s
s
a
g
e
s
 p

e
r

N
o
d
e

0

5

10

15
i-NLSR DCR

Num. of Replicas

0 1 2 3 4 5

N
u
m

.
o
f
O

p
e
ra

tt
io

n
s
 p

e
r

N
o
d
e

0

1000

2000

3000
i-NLSR DCR

Num. of Replicas

0 1 2 3 4 5

N
u
m

.
o
f
E

v
e
n
ts

 p
e
r

N
o
d
e

0

5

10

15

20
i-NLSR DCR

Figure 2.4: Deleting a prefix: Average number of messages sent, operations done,
and events processed per node

In DCR, a router sends information regarding the closest anchor to each known

prefix to its neighbors. Therefore, the total number of messages for DCR does not

change as number of replicas increases, but the number of prefix LSAs in NLSR is

proportional to the total number of prefixes and increases as the average number

of anchors per prefix increases. The operation count for the Dijkstra-LS algorithm

(replicated at each node) was substantially higher than for the operation count

in DCR. NLSR updates the LSDB whenever it receives an up-to-date LSA and

schedule routing update; therefore, the number of events per node increases as

the number of messages increases.

The results of adding a new prefix to the network are depicted in Figure 3.

18

Routers running DCR exchange more messages than NLSR to converge when the

number of replicas is small. However, starting with three replicas, the number

of messages is comparable, and the number of messages in NLSR grows with the

number of replicas, while the opposite is true for DCR. For the case of prefix

deletion, the number of messages needed in DCR remains the same after two

replicas, while it keeps increasing in NLSR.

Num. of Replicas

0 1 2 3 4 5

N
u
m

.
o
f
M

e
s
s
a
g
e
s
 p

e
r

N
o
d
e

0

5

10

15
i-NLSR DCR

Num. of Replicas

0 1 2 3 4 5

N
u
m

.
o
f
O

p
e
ra

tt
io

n
s
 p

e
r

N
o
d
e

0

2000

4000

6000

8000
i-NLSR DCR

Num. of Replicas

0 1 2 3 4 5

N
u
m

.
o
f
E

v
e
n
ts

 p
e
r

N
o
d
e

0

5

10

15
i-NLSR DCR

Figure 2.5: Link failure: Average number of messages sent, operations done, and
events processed per node

Num. of Replicas

0 1 2 3 4 5

N
u
m

.
o
f
M

e
s
s
a
g
e
s
 p

e
r

N
o
d
e

0

2

4

6

8

10
i-NLSR DCR

Num. of Replicas

0 1 2 3 4 5

N
u
m

.
o
f
O

p
e
ra

tt
io

n
s
 p

e
r

N
o
d
e

0

2000

4000

6000

8000

10000
i-NLSR DCR

Num. of Replicas

0 1 2 3 4 5

N
u
m

.
o
f
E

v
e
n
ts

 p
e
r

N
o
d
e

0

5

10

15
i-NLSR DCR

Figure 2.6: Link recovery: (Average number of messages sent, operations done,
and events processed per node

Figures 5 and 6 show the results for link failures and recoveries. Each router

that runs NLSR has to process LSA updates corresponding to each direction of

a link, unless the link connects to a leaf node in the network. The number of

messages exchanged per node is smaller in DCR than in NLSR, independently of

the number of replicas of prefixes maintained in the network. A router execut-

ing NLSR runs Dijkstra on every node and every single neighbor; therefore, the

19

computation due to running Dijkstra’s SPF algorithm is dominant on both link

failure and recovery, and the computation cost is higher than in DCR.

2.3 Routing in Mobile Ad-Hoc Networks

MANET paves the way for the development of brand new Internet of Things

(IoT) communication platforms with a high potential for a wide range of applica-

tions in different domains. The IoT enables "things" to communicate and exchange

data among themselves and with existed or evolving commination infrastructure.

The IoT is fast becoming a global phenomenon and many issues are arising such as

standardization, sensors energy requirements, and efficient routing among others.

It is widely recognized that MANETs are key technologies for several IoT ap-

plication domains [97]. Their suitability is also boosted by their localized and

self-configuring capabilities, which can enable easier large-scale deployments. In

addition to academic interest, market research shows that many applications will

soon adopt MANETs, mainly for public safety, localization, environmental moni-

toring, and etc.

In general, the IoT network transmits the message from sensors to the corre-

sponding control nodes. Hence, we can define two types of nodes in an Ad-Hoc

network for IoT application: the sensor/edge nodes and sink/control nodes. The

edge nodes consist of distributed control nodes as well as IoT network and sensors.

The sink nodes consist of local management and centralized data center nodes as

well as the gateway nodes. In a typical scenario, edge nodes will send the data

to relay nodes, and then the relay nodes forward traffic information along the

optimized path to the sink node that is one or more hops away.

The limited resources in Ad-Hoc networks have made designing of an efficient

and reliable routing protocol a very challenging problem. Many routing algorithms

20

have been proposed for MANETs aiming to achieve good performance in terms

of high throughput, low control overhead, short delay, low energy consumption,

scalability, etc. Both proactive and reactive routing protocols have their advan-

tages and disadvantages. The motivation for proactive routing approaches is the

ability to have routes readily available whenever sources have data to send to any

destination. The price paid for such responsiveness is that signaling overhead is

incurred even for those destinations that are not popular. On-demand routing

approaches address this concern by requiring signaling overhead only for active

destinations at the expense of incurring slightly longer latencies while routes are

established.

Researchers have studied MANET routing features in designing reliable and

efficient routing protocols for the Internet of Things. Songfan et al. [98] compares

the performance of two typical routing protocols, AODV and DSR, in a real

multi-hop environment. In their study, they compared the performance of AODV

and DSR in terms of some applications based on IoT, such as Radio Frequency

Identification (RFID) service, voice service, and temperature monitoring service.

Several comparative analyses of the performance of on-demand versus proac-

tive routing schemes have been provided and to this date, it is not clear that either

approach is substantially better. However, some studies [67, 95] do show that on-

demand routing protocols can end up incurring more overhead than proactive

routing protocols in MANETs when topology changes that impact existing data

flows increase. As it has been pointed out in [74], to a large extent this is due

to the fact that typical on-demand routing schemes require each route request

(RREQ) to be disseminated throughout the network independently of others.

Many MANET routing protocols have been proposed and many surveys and

comparative studies exist (e.g., [88, 79, 95]). These protocols can be categorized

21

as proactive or reactive, with hybrid approaches using proactive and on-demand

mechanisms. Proactive approaches maintain routing information for all desti-

nations, regardless of whether traffic exists for them. On-demand or reactive

approaches maintain routing information for only those destinations for which

traffic exists and rely on flood search mechanisms to establish routes to destina-

tions. Furthermore, several of these protocols use various mechanisms to reduce

signaling overhead, such as geographical coordinates [72], virtual coordinates, con-

nected dominating sets [84], address aggregation [82], and clustering [88, 79, 76].

However, all MANET routing protocols must employ one or more mechanisms to

detect or eliminate routing-table loops, and this is the focus of our brief overview

of related work.

A simple way to detect or avoid routing-table loops consists of including path

information in routing-table updates and many on-demand and proactive routing

protocols have used this approach. Path information can be stated incrementally

by stating the second-to-last hops to destinations [70, 89] or with complete paths.

The latter is the approach taken in DSR [71], which is one of the most popular on-

demand routing protocols. The limitation with using path information in updates

is that many more or much larger signaling messages may be needed for on-demand

routing compared to approaches that simply state destination information.

A less common approach to prevent routing-table loops consists of synchro-

nizing routing-table updates among nodes so that no node changes its next hop

to a destination before receiving feedback from all its neighbors about its current

distance [92]. This approach has been successful in wired networks [68]; however,

the reliable transmissions needed for feedback messages becomes too onerous in a

MANET with high mobility.

Corson and Ephremides [65] introduced one of the first proposals for MANET

22

routing. Their specific approach incurs excessive signaling overhead because

replies to route requests are flooded. However, their use of sequenced route re-

quests has been adopted in many subsequent on-demand routing protocols based

on distances.

Many proactive and on-demand routing protocols use sequence numbering

of some type. OLSR and other MANET routing protocols based on link-state

information [64] use sequence numbers to denote the freshness of a link-state

update. Although permanent loops are eliminated, link states must be refreshed

periodically and temporary routing loops are possible in any routing approach

based solely on sequence-numbered link-state updates.

DSDV [90] was arguably the first proactive routing approach that advocated

the use of destination sequence numbers to cope with the looping problems as-

sociated with traditional routing based solely on distance information. A node

accepts a new next hop to a destination only if the destination sequence number

stated by that neighbor is smaller than the number held by the node or the des-

tination sequence number is the same but the distance offered by the neighbor is

smaller than the current node distance to the destination.

2.3.1 On-Demand Routing

The Ad-hoc On-Demand Distance Vector (AODV) [91] was the first on-demand

routing approach based on destination sequence numbers. To find a route to an

intended destination, a source broadcasts a route request stating the source and

destination nodes, the most recent sequence number known for each, a broadcast

identifier and a hop count to the source. Nodes maintain state for the requests

they originate or forward, and discard subsequent copies of requests that they have

forwarded. The intended destinations or nodes with valid routes to destinations

23

reply to route requests following the paths traversed by the requests in reverse.

A reply states the destination and source of the request, the destination sequence

number, and the hop count to the destination. A node receiving a reply establishes

a route to the destination stating the destination sequence number, the next hop,

and the neighbors using the route (precursors). Nodes forward only the first copies

of replies based on the destination sequence numbers. A router that forwards a

request for the first time creates a record for the RREQ stating the source and

BID pair of the RREQ; and a reverse route to the source of the RREQ stating

the next hop and hop count to the source, and the sequence number of the source.

It maintains any RREQ record and reverse route for a finite time. Link failures

can be recognized in AODV by the absence of HELLO messages sent periodically

between neighbors. When a node detects a link failure, it sends a route error to

all neighbor nodes that are precursors of a route that is broken because of the link

failure. Nodes receiving a RERR message invalidate all routes that were using the

failed link and propagate the RERR message to their precursor nodes.

Looping Problem of AODV

While AODV avoids some of the limitations of approaches based on path infor-

mation or synchronization, a number of looping problems have been identified

over the years with the original AODV proposal in [91] and subsequent versions

of AODV [62, 69, 94]. Various approaches have been proposed to make sequence

numbering more resilient [69, 80] than in the original AODV version [91] and pro-

posals have also been made to provide multiple paths per destination [73]. How-

ever, AODV and subsequent proposals based on destination sequence numbers do

not address in detail why the protocols work correctly when nodes experience the

loss of routing state and signaling messages are lost.

Consider the example shown in Fig. 2.7, which focuses on destination d.

24

Figure 2.7: Route requests are flooded because nodes must satisfy global con-
straints

The distance from node x to d is denoted by Dx
d and the sequence number

maintained by node x for d is denoted by snx
d. In the example, node s uses node

n as its next hop to destination d, nodes a and b have valid routes to d, and all

nodes have the same sequence number value of sn for destination d. Assume that

the AODV version of [91] is used. If link (s, n) breaks and node s is a source of

data for d, then node s must increase its sequence number to SN s
d = sn+1 before

it broadcasts a route request (REQ) for d stating the new sequence number sn+1

for d. The REQ from s must be flooded and destination d is the only node that

can respond to the REQ from s because only destination d can satisfy the global

constraint of SN s
d = sn + 1 imposed on d by increasing its own sequence number.

If a local constraint could be used, nodes a and b could respond to the REQ, or

s could determine that a and b were valid alternatives to n if multipath routing

were in place.

Next, we consider the routing-table looping problem associated with routing

protocols based on destination sequence numbers, and AODV in particular. The

conventional wisdom since the introduction of AODV [91] has been that AODV

is free of routing-table loops because of the use of destination sequence numbers.

However, as we show below, the proof given in [91] is invalid. Routing-table loops

may occur in such protocols as a result of complex interactions of events involving

25

one or more nodes losing routing state (for any reason), signaling messages being

lost, topology changes taking place, and the behavior of sources of traffic. Fig. 2.8

illustrates the routing-table looping problems in AODV with a simple example.

Figure 2.8: Routing-table looping in AODV resulting from deleted routing state

Fig. 2.8(a) shows the distance and sequence number pairs attained by nodes

s, a, b, and c to destination d. Node s was the original source that requested the

routing state. Node c crashes at time t1 and node b does not immediately detect

the crash due to the absence of data traffic. As Fig. 2.8(b) shows, node c quickly

reboots at time t2 with the corresponding loss of routing state. Furthermore,

due to mobility, node d is out of transmission range from node c and within

transmission range of nodes a and b. Fig. 2.8(c) shows that node c has traffic for

d at time t3 and sends a REQ with a 0 sequence number. This request is not

received by node b but is received by node a. Accordingly, node a sends a reply

to node c at time t4 as shown in Fig. 2.8(d). As shown in Fig. 2.8(e) the reply

makes node c adopt a as its next hop to d thus creating a routing-table loop.

A number of prior works have pointed out different routing-table looping prob-

lems in the original AODV proposal and subsequent versions (e.g., [62, 69, 94]).

26

The common thread in our example and the problems identified in prior work

is the complex interaction between the control plane (signaling), the data plane

(data traffic), and the physical layer (e.g., topology, failures, success of transmis-

sions).

The proof provided by Perkins and Royer [91], which is similar to the proof in

[73], attempts to establish a contradiction on the existence of a routing-table loop

L involving n > 0 nodes. The proof first states that sn1
d ≤ sn2

d ≤ ... ≤ snn
d ≤ sn1

d

and hence every node i ∈ L must hold the same sequence-number value. Given

that proposition, the proof states that node i makes node i + 1 its next hop only

if Di
d = Di+1

d + 1. Based on the two propositions, the conclusion is reached that

D1
d = Dn

d + (n − 1), which together with the fact that Dn
d = D1

d + 1 leads to the

contradiction that n = 0.

The fallacy in this argument, as well as the proof in [73], is that it assumes that

the protocol signaling must enforce the condition that sn1
d ≤ sn2

d ≤ ... ≤ snn
d ≤

sn1
d if loop L is created. However, this assumption is not true if at least one node

i that helps create L has erased its routing state for d for any reason just before it

helps create L by choosing a new next hop. According to the operation of AODV

in [91] and subsequent versions of AODV, sni
d = 0 if node i has no routing state

for d. This state allows node i to accept a response from node i + 1 if sni+1
d > 0

independently of the value of Di+1
d . As a consequence, as our second example

illustrates and prior work [62, 69, 94] discusses, a node can select a neighbor with

Di
d 6= Di+1

d + 1 when a node deletes routing state due to failures or timeouts,

which can lead to routing-table loops.

Zhou et al. [96] provided the sketch of a proof showing that AODV signaling

cannot create routing-table loops, provided that the destinations are the only

nodes that answer route requests. This restriction does render failsafe behavior;

27

unfortunately, it makes the signaling overhead of on-demand routing more onerous

than the signaling overhead incurred with proactive routing.

Bhargavan et al. [62] showed that the looping problems they identified in

AODV can be eliminated, provided that nodes never delete routing-table entries

and immediately detect when a neighbor node restarts its routing process. While

their proof is valid, the assumptions needed for guaranteed loop freedom are im-

practical.

Two lessons can be learned from this discussion. First, a valid proof that

AODV avoids routing-table loops is still missing. Such a proof should assume that

intermediate nodes may answer route requests, nodes may experience the loss of

routing state, and signaling messages may be lost. Second, sequence numbers by

themselves are not sufficient to avoid routing-table loops. This has been pointed

out before in the context of AODV [94]; however, our assertion is not based on

whether or not AODV is correct. Even when no node ever erases its routing state

for a given destination, nodes along a loop can have the same sequence number for

a destination. As a consequence, an additional constraint is required to prevent

routing-table looping. In AODV and similar on-demand routing protocols, this

additional constraint is based on distance values. Therefore, if distance values

are used to ensure loop freedom, then at least in principle an on-demand routing

protocol could be designed that eliminates using destination sequence numbers,

uses only constraints on distances to destinations, and consequently is simpler

than AODV and similar protocols.

2.3.2 Hybrid routing

There is a large design space for hybridization between various basic proac-

tive and reactive protocols, and many hybrid MANET routing schemes have been

28

proposed in the literature. These schemes can be classified into cluster-centric

and node-centric [99]. In the cluster-centric schemes [102, 101, 100], explicit clus-

ters are formed and maintained as efficient control structures for abstracting and

propagating routing information, and the boundary of clusters is the switching

point between different routing strategies. By contrast, in the node-centric rout-

ing schemes [105, 104, 103, 93] each node makes use of an implicit control structure

that is naturally associated with itself, that can be its k-hop neighborhood, the

application running on the node, or the amount of traffic routed to that node.

Such a structure is constructed and maintained as a by-product of exchanging

regular routing information among nodes.

The zone routing protocol (ZRP) [105] is a hybrid routing protocol that proac-

tively maintains routes within a local region of the network (which is referred to

as the routing zone). In ZRP, route discovery is based on a reactive route re-

quest/route reply scheme. A node proactively propagates LSUs to all the nodes

in its k-hop neighborhood, where k is called Zone Radius (ZR). This querying can

be performed efficiently through the proactive maintenance of a local routing zone

topology. The two subprotocols of ZRP are IntrA-zoneRouting Protocol(IARP)

and Inter-zoneRouting Protocol(IERP). The IARP (proactive routing) is generally

used within the routing zone of the node and IERP (reactive routing) is used be-

tween routing zones. Intra-zone routing protocols keep an up to date information

of the zone topology, which results in no initial delay while sending information

to the destination nodes within the zone.

TZRP [99] is a Two-Zone Hybrid Routing Protocol for Mobile Ad Hoc Net-

works. In contrast to the original ZRP where a single zone serves a dual purpose,

TZRP aims to decouple the protocol’s ability to adapt to traffic characteristics

from its ability to adapt to mobility. In TZRP each node maintains two zones: a

29

Crisp Zone and a Fuzzy Zone. By adjusting the sizes of these two zones indepen-

dently, a lower total routing control overhead can be achieved.

A node-centric hybrid routing protocol is proposed in [93] that divides network

nodes to normal and special nodes. Special nodes are called netmarks and are more

popular than others. Netmarks force common nodes to discover and maintain path

to them proactively, while routes between ordinary nodes are set up on demand.

Similar to [93], SHARP [106] also is based on the assumption of existence of

hot-spot nodes in an Ad-Hoc network. A proactive zone is defined around each

hot-spot node. Nodes within the proactive zone maintain routes proactively only

to the central node x. The nodes that are not in the proactive zone of a given

destination use the reactive component (AODV with the optimization mechanisms

of route caching and expanding ring search) to establish routes to that node. It

is interesting to note that SHARP’s proactive zone is far more light-weight than

ZRP’s routing zone.

AntHocNet [109] is a different hybrid routing algorithm for mobile ad hoc net-

works that is Inspired by Ant Colony Optimization and consists of both reactive

and proactive phases: reactive in route discovery and proactive in route mainte-

nance. Multiple paths are set up between the source and destination of a data

session during the reactive path setup phase, and during the course of the com-

munication session, ants proactively maintain current paths while exploring the

new ones. During the course of a session, the AntHocNet algorithm continuously

sample possible paths with ant-like agents, and to indicate the quality of paths

by means of artificial pheromone variables.

30

Chapter 3

Link State Content routing

A new approach for link-state name-based routing in Information-Centric Net-

works (ICN) is presented in this chapter. Link state content routing (LSCR) finds

multiple next hops for each named data object (NDO) or name prefix in the net-

work. LSCR uses two types of link-state advertisements (LSAs): a RouterLSA

that contains information about links connected to each router, and an An-

chorLSA that carries information regarding a name prefix and the router that

advertise that name prefix, also called the anchor of the prefix. AnchorLSAs are

propagated selectively based on a diffusing mechanism. LSCR creates routing

tables with no permanent routing loops, provides a ranking mechanism to find

multiple routes to multiple instantiations of name prefixes, and has better per-

formance compared to other link-state routing algorithms when a name prefix is

replicated at multiple sites in the network.

3.1 LSCR Operation

LSCR relies on two mechanisms: name resolution and topology-based rout-

ing. Like other link-state routing protocols, LSCR propagates link-state adver-

31

tisements (LSA) to create a local copy of the network topology and a mapping

schema from name prefixes to router identifiers (ID) at each router. Based on

topology and anchor information, LSCR creates a lexicographic ordering among

neighbors and calculates multiple routes to the nearest replica(s) of prefixes. Each

router in the network has a unique name or identifier, that can be flat or hierarchy

and a lexicographic value is assigned to the name. Routers are assumed to oper-

ate and store information correctly. Each router receives LSAs from its neighbors

correctly and processes them one at a time within a finite time. Link costs can

vary in time but cost values are always positive.

Every piece of content in the network is a named-data object (NDO), rep-

resented by name prefix or simply prefix. Prefixes can be simple and human-

readable or more complicated and self-certifying or even a cryptographic hash of

the content. An anchor is a content publisher, i.e., a router that has some or all

parts of the content, corresponding to the prefix and advertises that prefix in the

network. Both router and content can use flat or hierarchical naming schema.

3.1.1 Messages and Data Structures

LSCR propagate two type of LSAs: 1) "RouterLSA" that advertise the presence

of the router and its link configuration including link costs; 2) "AnchorLSA" that

advertise the anchor and its prefixes. A sequence number is associated with each

LSA to identify the message and its order. The RouterLSA can be initiated by

any router that runs LSCR. The RouterLSA sent by router i is denoted by RLSAi

and consists of the name of the router i; a message sequence number (msni); and

a list of links connected to the router i and their costs.

The AnchorLSAs can be initiated only by anchors and replicas of the prefix and

intermediate routers can forward, drop, or HOLD these LSAs. The AnchorLSA

32

sent by anchor m regarding prefix j is denoted by ALSAm
j and consists of the

name of the anchor (m); and one "PrefixUpdate" (PUm). PUm states the prefix

name j; the sequence number that is assigned to the prefix by the anchor (usnm
j);

and the "ValidFlag" or vFlag indicating if name prefix j is attached to anchor m or

detached (vfm
j). Anchor m sends just one prefix update per AnchorLSA because

of two considerations: first, prefixes are in different length and can be too large to

fit several prefixes in a single message, second, every intermediate router that runs

LSCR, process the AnchorLSA based on the prefix and decide whether to forward

or HOLD it. A router may forward one AnchorLSA with a specific prefix and

HOLD another AnchorLSAthat advertises different prefix from the same anchor.

A link between router i and its neighbor n is denoted by (i, n) and its cost is

denoted by li
n. N i represents a set containing router i and its neighbor routers.

The lexicographic value of a neighbor router n is denoted by |n|. Router i main-

tains a Link Cost Table LT i storing the cost of the link from router i to each of

its adjacent routers. Each LSCR router exchanges periodic Hello messages with

its neighbors to detect link and/or node failure as well as any changes in the link

cost. A predefined parameter defines the time interval between sending ĂHello

messages. If a router does not receive a Hello message for a specified amount of

time, time-out, from its neighbor, that link will be considered as down. Afterward,

router will send recovery Hello message to detect the recovery with time intervals

relatively longer than normal Hello message interval. Router can not detect if

the link is down or the neighbor node has failed. However, this distinction does

not affect the algorithm since in either case, that neighbor should not be used to

forward traffic through. Each router that run NLSR sends an update �RouterLSA

at startup and whenever it detects a change in one of its links.

Each LSCR router maintains a Forwarding Table FT i, storing the set of valid

33

next hops for each destination. The row for destination p in FT i specifies: (a)

the name of the router p; (b) the sequence number rsn(p) reported by router p;

(c) the Distance List (RDi
p) consist of the set of shortest distance from neighbor

routers n ∈ N i to destination p (rdi
pn); (d) shortest distance to router p (rdi

p); and

(e) the set of neighbors that are valid next hops toward destination p (RSi
p);

Router i updates FT i based on RouterLSAs received from other routers in the

network. The RLSA form router k received by router i is denoted by RLSAi
k.

The information stored in RLSAi
k is router sequence number rsni

j and cost value

of the link between router j and each of its neighbors.

Router i stores information of prefixes and corresponding anchor(s) in its Prefix

Table PT i. The information regarding prefix j is denoted by PT i
j and consist of:

the name of the prefix j and the prefix anchor information of prefix j (PAI i
j).

Each entry of the PAI i
jm consists of: (a) the anchor m of the prefix j; (b) a "valid"

flag; vfjm for anchor m, indicating if router m advertises the prefix j or not; and

(c) the sequence number (snjm) reported by anchor m for prefix j;

Router i updates PT i based on AnchorLSAs that are received from anchors.

The ALSA form anchor m received by router i regarding prefix j is denoted by

ALSAi
mj and consists of the name of the anchor (m); the prefix name j; the

sequence number assigned to the prefix by the anchor (usni
mj); and the vFlag

indicating if name prefix j is attached to anchor m or detached (vf i
mj).

Router i also maintains a Routing Table (RT i), that stores routing information

for each known prefix. The information stored in RT i regarding prefix j is denoted

by RT i
j , and consist of routing information for the nearest anchor of the prefix j.

The routing information stored in routing table includes: (a) the name of prefix

j; (b) shortest distance di
j to nearest anchor of prefix j; (c) the set of neighbors

that are valid next hops for prefix j (Si
j); (d) the king anchor: that is the anchor

34

with the smallest legicographic name among those anchors that are at the same

shortest distance to j (ki
j); and (e) a neighbor that is the best next hop in the

shortest path to anchor ki
j of j (si

j ∈ Si
j);

Router i will update PT i and RT i based on the other two tables, LT i and FT i,

and the information available in AnchorLSA. The AnchorLSA received by Router

i sent by anchor m regarding prefix j is denoted by ALSAi
jm. The information

extracted from ALSAi
jm is the sequence number assigned to the prefix by the

anchor (usni
jm) and the vFlag uvf i

jm.

3.1.2 Routing to Nearest Replicas

A router calculates the best routes to nearest copies of a prefix in two steps:

first, calculates valid next hops for all the anchors advertise that prefix, second,

selects some of the neighbors from previous step as valid next hops to the prefix.

For every anchor in the network, the result of the first phase is a directed acyclic

graph tree.

Next-Hop Ordering Condition (NOC)

Every router keeps track of the sequence numbers reported by the routers in the

network. Whenever a router receives a RouterLSA from another router, it checks

the sequence number. If the message sequence number is greater than stored

sequence number for that router, it will update the topology information and also

forward it to its neighbors, otherwise, the router will drop the message. Using the

sequence number and a termination detection mechanism similar to those used in

OSPF prevents advertisement messages from circulating in the network forever.

Based on the information received from other routers in the network, router i

creates the network topology NT i and calculates path cost to every destination

35

p in the network from each of its neighbors as well as the router i itself. Router

runs Dijkstra’s algorithm, or any other shortest-path algorithm, on the network

topology to construct a source graph, which constitutes shortest-path trees to

every destination from every neighbor. The results will be stored in the Distance

List of the Forwarding Table (RDi
p). The router also stores the shortest distance

di
p. Router i will select a subset of its neighbors as valid next hops to reach

destination p based on the following condition. We will show that no permanent

routing loop can be created if routers use the following condition to select next

hops to forward messages to each destination.

Router i can select its neighbor n ∈ N i as a valid next hop to reach destination

p if:

rdi
pn <∞∧ (rdi

pn < rdi
p ∨ (rdi

pn = di
p ∧ |n| < |i|)) (3.1)

Figure 3.1: Sample Network

Router i selects router n as next hop to reach destination p if the neighbor n is

closer to the destination or neighbor n and router i are at the same distance to p

and |n| < |i|. Figure 3.1 shows the network topology. For each router the distance

36

Figure 3.2: Valid next hops to destinations: (a) destination p, (b) destination
q, (c) destination r

to the destination p is represented by the number next to the node. Figures 3.2

a,b, and c show the valid next hops for each router to reach destinations p, q, and

r respectively. The arrowheads are pointed to valid next hop of each destinatin.

For instance, router u can be selected as next hop in routers s and t to reach

destination p, and u itself can select routers l and f to forward messages toward

p.

Algorithm 1 illustrates how a router updates its forwarding table when it

receives a RouterLSA. We assume that router waits for a reasonable time since

it received the last Router LSA, before starts algorithm 1, and router will not

process any new RouterLSA while executing the algorithm.

King-Anchor Selection Condition (KSO)

Based on forwarding table and the information available in the AnchorLSA

received by router i, the router looks up the forwarding table and ranks the next-

hops for each prefix based on their costs to reach the anchor(s). Each router

calculates the king anchor among all the anchors advertise the same prefix. If two

or more anchors are at the same distance, router will select the lexicographically

smallest anchor as the king anchor. Whenever router receives a new attache

AnchorLSA, i.e., AnchorLSA with the up-to-date sequence number and valid flag

37

Algorithm 1 Update FT i

Input: RLSAi
k, LT i, FT i

1: if rsni
k > rsn(k) then

2: rsn(k) = rsni
k

3: Create the Network Topology T i

4: Run Dijkstra’s algorithm and Update rdi
p

5: for (every n ∈ N i) do
6: Run Dijkstra’s algorithm on n;
7: for (every router p ∈ T i) do
8: Update rdi

pn

9: end for
10: end for
11: for every router p ∈ T i do
12: RSi

p := ∅
13: if rdi

p <∞ then
14: for every n ∈ N i do
15: if (rdi

kn < rdi
k) ∨ (di

kn = di
k ∧ |n| < |i|) then RSi

p = RSi
p ∪ {n}

16: end if
17: end for
18: end if
19: end for
20: end if

Algorithm 2 Update PT i

Input: ALSAi
mj , PT i

1: if usni
mj > sni

mj then
2: sni

mj = usni
mj

3: vf i
mj = uvf i

mj

4: end if

38

equal to 1, it will update the Prefix Table and calculate the king anchor. Algorithm

2 illustrates how router i updates its Prefix Table PT i, when it receives a fresh

AnchorLSA from anchor m regarding prefix j.

The router forwards the AnchorLSA and set the forwarded flag, if the an-

chor is the king anchor, otherwise it HOLDs the LSA, i.e., do not propagate the

AnchorLSA, but if anytime in the future, that anchor becomes the king anchor,

because of topology changes or the current king anchor stops publishing that pre-

fix, then the router will restore the AnchorLSA and forward it as well as setting

the forwarded flag in the Prefix Table. Router keeps track of forwarded LSAs

and uses this forwarded flag information to avoid sending duplicate AnchorLSAs.

Detach AnchorLSAs (AnchorLSA with vFlag = 0) will be forwarded all the time,

regardless of whether it is from king anchor or not.

Anchor m can be selected as king anchor (ki
j) if the following statement is true:

vf i
mj = 1 ∧ ∀[a, vf i

aj] ∈ PI i
j, vf i

aj = 1∧

[rdi
m < rdi

a ∨ (rdi
m = rdi

a ∧ |m| < |a|)]
(3.2)

The king anchor is an active anchor that is smallest closest anchor among all

active anchors. The distance to prefix j is the minimum of distances to anchors

advertising j and is equal to the distance to king anchor. di
j = Min{rdi

m|m ∈

PAI i
j} = rdi

ki
j
. If no active anchor advertise prefix j or non of the active anchors

are reachable then PAI i
j = ∅ and di

j =∞ and prefix j will be marked as unreach-

able. Router i uses algorithm 3 to select the king anchor. After king selection,

router will select valid next hops. A neighbor can be selected as valid next hop for

a prefix, if it is valid next hop for the anchor that advertise that prefix and that

neighbor is closer to the prefix or it is at the same distance but has lexicographi-

cally smaller names. If the following condition is satisfied, then the neighbor will

39

be selected as a valid next hop.

Algorithm 3 King selection for prefix j

Input: FT i, PT i

1: ki
j := null; di

j :=∞
2: for ecery m ∈ PIi

j do
3: if vf i

mj = 1 then
4: if rdi

m < di
j ∨ (rdi

m = di
j ∧ |m| < ki

j then
5: di

j = rdi
m

6: ki
j = m

7: end if
8: end if
9: end for

Successor-Set Ordering Condition (SOC)

We define the distance from neighbor to prefix j n (di
jn) as the minimum of

distances to anchors of j known by router i:

di
jn = Min{rdi

mn|m ∈ PAI i
j} (3.3)

Router i selects router n as a valid next hop to prefix j if the following statement

is true:

di
jn <∞∧ (di

jn < di
j ∨ (di

jn = di
j ∧ |n| < |i|)) (3.4)

Neighbor n can be selected as next hop toward prefix j if the neighbor is

closer to the prefix or router i and its neighbor n are in the same distance from

destination and the neighbor has lexicographically smaller name than the router

i. Figure 3.3 shows the final state of executing LSCR assuming routers p, q, and

r, all advertising prefix j. The bold numbers in figure 3.3 indicate links pointing

to best next hop of each router. For instance, both f and l offers paths of distance

two to router u, since |f | < |l|, router f is selected as best next hop at router u

40

toward destination p. Each tuple on a link represents the closest smallest anchor

and distance to that anchor through that link. In this figure, minimum distance

from router d to prefix j is through neighbor g and costs two. Consider router a,

router d can reach p in three hops via its neighbor a, because a is not a valid next

hop for those destinations and also a is two hops away from prefix j (anchor p)

and |a| < |d|. These conditions satisfy the Eq. 5 therefore neighbor a is selected

as next hop to reach prefix j.

Figure 3.3: Valid next hops to prefix j

Whenever a router receives an up-to-date LSA indicating a change in the net-

work, it runs algorithm 1 or 2, whether they received RouterLSA or AnchorLSA,

and then algorithm 4 to update their routing tables. In section 4 we prove that

no permanent routing-loop will be formed if routers choose their next hops based

on the SOC conditions.

3.2 correctness

The following theorems prove that LSCR is correct for routing to the nearest

anchor of each prefix and routing tables do not contain any permanent loops. It

has been verified that sequence numbers can be used correctly to validate updates

41

Algorithm 4 Update RT i
j

Input: LT i, FT i, PT i, prefix j
1: Ecexute Algorithm 3;
2: if di

j <∞ then
3: for (every n ∈ N i) do
4: dn

min =∞
5: for (every m ∈ PAIi

j) do
6: if rdi

mn < dn
min then

7: dn
min = rdi

mn

8: end if
9: end for
10: if dn

min <∞ then
11: if (di

jn < di
j) ∨ (di

jn = di
j ∧ |n| < |i|) then

12: Si
j = Si

j ∪ {n}
13: end if
14: end if
15: end for
16: end if

[18]. In the rest of this section we assume that there is a finite number of link cost

and anchor changes up to time t0, and no more changes occur after that time,

and routers can determine which updates are more recent than others. Also every

router has correct information about network topology.

Lemma 1. The king anchor is the same for all the routers along the shortest path

from each router to the king anchor.

Proof. The proof is by contradiction. Assume that the shortest path Pi from

router i to king anchor of prefix j mi
j, resulted from Dijkstra, consists of h

hops and each router selects next hop according to equations 3 and 4. Let

Pi = {n1, n2, S, nh}, where n1 = i, nh = mi
j, and nk+1 ∈ RSn

m for 1 ≤ k ≤ h − 1.

We know rdi
m = rdi

nk
+ rdnk

m ∀k, 1 ≤ k ≤ h − 1. Assume that router np selected

router a 6= m as king router therefore either rdnp
a < rdnp

m or rdnp
a = rdnp

m ∧|a| < |m|.

If rdnp
a < rdnp

m then rdi
np

+ rdnp
a < rdi

np
+ rdnp

m . Therefore, rdi
a < rdi

m hence a is

the king anchor which contradict our assumption that m is the king anchor. If

42

rdnp
a = rdnp

m ∧ |a| < |m| then rdi
np

+ rdnp
a = rdi

np
+ rdnp

m ∧ |a| < |m|. Therefore,

rdi
a = rdi

m∧|a| < |m|. Again a is the king anchor which contradict our assumption

that m is the king anchor.

Lemma 2. Each router receives a AnchorLSA from the closest anchor, advertises

that prefix.

Proof. There are two types of AnchorLSAs based on the vFlag parameter. De-

tachLSAs, i.e., AnchorLSAs with vF lag = 0, are propagated in the network us-

ing flooding mechanism and termination detection is based on sequence number.

Therefore every router receives DetachLSA from each anchor including the clos-

est one. AnchorLSAs with vflag = 1 are propagated using diffusion mechanism.

Based on lemma 1, all the routers along the shortest path from the king anchor to

the router has the same king anchor. Based on the LSA forwarding mechanism,

each router forwards AnchorLSA form the king anchor. Assume that router i

didn’t get any AnchorLSA from its new king anchor m. Also assume that the

shortest path Pi from router i to king anchor of prefix j, mi
j, resulted from Di-

jkstra algorithm, consists of h hops. Asume that Pi = {n1, n2, S, nh}, is such a

path. King anchor k is the king anchor of np, 1 ≤ p ≤ h− 1. Also assume that a

router nm ∈ Pi did not forward the AnchorLSA from its king anchor. This is in

contradiction to forwarding mechanism of AnchorLSA. Therefore, router i should

already received the AnchorLSA form its king anchor.

Theorem 3. All the routers in the network will converge to the shortest distance

to the nearest anchor of the prefix in a finite time after t0.

Proof. First note that there is a finite number of prefixes and there is a finite

number of anchors and each router process and forward each unique LSA message

only once. Without loss of generality, we focus on a specific prefix j. The prefix

43

can be considered as a virtual node connected to its anchor via a virtual link.

Prefix detachment and attachment to the anchor can be considered as link failure

and link recovery respectively. For each direction of a link, there is one router (one

head of the link) that detects and reports the change in the link in that direction.

Therefore for any link li, that can be a physical link or virtual link, each router

sends at most one LSA for that link after t0.

Consider an arbitrary router r0 that never terminates LSCR. Therefore it must

send infinite LSA messages after time t0. Because the network is finite r0 must

processes updates from at least one link lf . Router r0 forwards infinite number of

LSAs regardinglf if it receives infinite number of messages regarding Lf , in other

words, it is not the case that a router send infinite number of messages regarding

lf because of receiving infinite messages regarding link lh. It is a direct conclusion

of the statement that each router processes and forwards each LSA message only

once. If router r0 receives finite number of LSAs regarding lf , it will forward finite

number of LSAs too. Therefore at least one of its neighbors, call it r1, must send

infinite number of update messages containing an update for link lf that makes

r0 processes and forward unlimited messages. Neighbor r1 can send an infinite

number of LSAs regarding lf if at least one of its neighbors, called r2 forwards an

infinite number of LSAs regarding lf . It is impossible to continue the same line

of argument, since the head node of any link can generate at most one update

for that link after time t0 and the network is finite. Therefore, our algorithm

can produce only a finite number of update messages for a finite number of link

and/or prefix changes and must stop within a finite time after t0.

Theorem 4. No routing-table loops can be formed if NOC is used to select the

next hops to anchor at each router.

Proof. The proof is by contradiction. Assume that a routing loop Lm for anchor

44

m is formed at time t1 > t0 when routers update their next-hops satisfying NOC

condition. Assume Lm = {r0, r1, S, rq−1}, consisting of q routers is such a loop.

We can consider this loop as a path Pm = {r0, r1, S, rq−1, rq}, where r0 = rq. Note

that rdr0
rq

= rdr0
r0 = 0 and rdrq

m = rdr0
m . Router ni selects its next hop from the

RSni
m , therefore for 0 ≤ i ≤ q−1, ri+1 ∈ RSni

m . Based on the NOC for every router

ni ∈ Pm it must be true that rdni
mni+1

< rdni
m or rdni

mni+1
= rdni

m and |ni+1| < |ni|.

Based on definition, rdni
mni+1

is the distance from n+1 to m calculated at i. Routers

i and n has the same topology information therefore, rdni
mni+1

= rdni+1
m . Which

results: :

(rdni+1
m < rdni

m) ∨ (rdni+1
m = rdni

m ∧ |ni+1| < |ni|) (3.5)

Note that ∀ri ∈ Pm, rdi
m 6= ∞. Next hop can not have infinite distance to desti-

nation, otherwise it contradicts NOC. Therefore, for any two routers ru, rv ∈ Pm

and 0 ≤ u < v ≤ q we have:

(rdrv
m < rdru

m ∨ (rdrv
m = rdru

m ∧ |rv| < |ru|) (3.6)

The equation is valid for any two routers ru, rv ∈ Pm including r0 and rq. therefore

it must be true that rdr0
m < rdrq

m, which is a contradiction, or rdr0
m = rdrq

m ∧ |r0| <

|rq|,which is also a contradiction for our assumptions.

Lemma 5. For every router i and its neighbor n and for any arbitrary prefix j it

is true that di
jn = dn

j

Proof. First note that the distance of route n from prefix j is distance of route

n from its king anchor: dn
j = rdn

kn
j
. Every router forward the AnchorLSA from

its king anchor. Therefore, router i is aware of anchor kn
j , hence, kn

j ∈ PAI i
j.

From Eq. 3 we have, di
jn = Min{rdi

mn|m ∈ PAI i
j} = rdn

kn
j
. The last equality is

derived from lemma 2, Eq. 2, and the fact (kn
j ∈ PAI i

j ∧ kn
j ∈ PAIn

j). Therefore,

45

di
jn = dn

j .

Theorem 6. No routing-table loops can be formed if all routers in the network

uses LSCR to calculate routes to prefixes.

Proof. If the prefix is advertised by just one anchor, based on theorem 4 no loops

can be formed. If more than one anchor advertise prefix j,using lemma 5 and an

argument similar to the proof of theorem 4, we can conclude the statement.

3.3 Naming

Naming schema depends on the ICN architecture that LSCR is implementing.

A hierarchical naming schema such as the one introduced for NLSR can be used

for both routers and signaling messages. According this schema, each router is

named in the following format: / < network > / < site > / < router > /, where

network and site are assigned based on the network and specific site the router

belongs to and router is a unique name in that network and site.

LSA messages uses the naming schema like this: /<network>/<site>/<router>/

LSCR/LSA/TypeID/<sequence num>. The first part is the name of router ini-

tiating the LSA, typeID field distinguishes between RouterLSA and AnchorLSA

and sequencenum is the sequence number assigned by the router for that LSA.

3.4 Routing Complexity

In this section the communication complexity (i.e. number of messages needed

for all routers to have the required information to calculate correct distances), time

complexity (maximum time a router needs to receive the information) and storage

complexity of LSCR, NLSR, and for shortest-path calculation are investigated. In

46

the following argument, N and E denote the number of routers and links in the

network respectively. The number of distinct anchors available in the network is

denoted by D, the average number of instances of the same destination is denoted

by R, the average number of neighbors per router is l, and the network diameter

is d. C is the number of distinct prefixes in the network.

The number of messages that must be transmitted that a routing algorithm can

compete correct routing table for all the destinations is called the communication

complexity of the routing algorithm. The storage complexity is the amount of

information that should be stored at each router. The time complexity of a

routing algorithm is the maximum time needed for all routers to have correct

routing information for all destinations.

3.4.1 Traditional Link-State Routing (LSR)

In LSR both network topology and prefix information are broadcasted to entire

network. A router that runs LSR, sends adjacency LSA and prefix LSAs, one per

each local prefix, and each LSA must be sent to all the other routers in the network,

resulting in communication complexity of O(ERC + lEN). Every router stores

the complete topology information as well as all instances of all prefixes in the

network, therefore, the storage complexity of LSR is O(RC + E). The maximum

distance between a source and a destination is d hop, hence the time complexities

of LSR is O(d).

3.4.2 Loop-free Distance-Vector Routing (LDVR)

Because of looping problem of traditional distance-vector routing algorithms,

the traditional distance-vector routing algorithms can not be used for routing in

ICNs with multi-instantiated prefixes. Therefore a loop-free version of distance-

47

vector routing algorithms should be used. In this approach, each router sends

a message for each prefix that locally is available as well as each anchor that

prefixes are attached. Hence the communication complexity is O(RDE + NE).

The storage complexity of an LDVR is O(RC + N), since each router stores all

anchors of all prefixes and destination nodes in the network. The time complexity

of the LDVR is same as traditional distance-vector algorithm, which is O(N).

3.4.3 Link-State Content Routing (LSCR)

The information required for LSCR to find correct shortest path to nearest an-

chor is the complete topology and the prefix information from the nearest anchor

including anchor name and sequence number created by that anchor. Therefore,

LSCR communication and storage complexity is independent of the number of an-

chors advertising each prefix. The storage complexity of the algorithm is O(C+E).

The increase in the number of replicas will result in distance decrease to nearest

anchor. The number of messages exchanged to create the complete topology is

O(EN). Each router need to know its nearest anchor and based on the diffusion

mechanism, LSCR only propagate specific valid AnchorLSAs, the communication

complexity is O(C), whoever the communication complexity of AnchorLSAs for

deletion of a prefix is (CER), where R is number of replicas for a given name

prefix. We are working on a diffusion propagation mechanism for propagating the

deletion AnchorLSA to reduce the communication complexity. Every router needs

the complete topology information. The time for receiving such information is the

time that a message traverses across the longest shortest path between any two

router in the network, d. Therefor, time complexity is O(d).

48

3.5 Simulation

The LSCR and a routing algorithm similar to NLSR are implemented using

SCoNET-Sim, an NS-3 based simulator for content centric networks [54]. In

the simulation, NLSR propagates the messages using flooding mechanism. The

AT&T core network topology [42], consists of 154 nodes, is used to run simulation

experiments. In the following simulation scenarios, we measured the number of

messages, number of events, number of operations, and average number of replica

per prefix stored in each router. We compared the results for LSCR and NLSR to

evaluate the algorithm performance. The quantities are measured for initialization

process, link failure and recovery, and attached and detached of a prefix to an

anchor.

0 1 2 3 4 5 6
1.5

1.75

2

2.25

2.5

2.75

3
x 10

4

(a)

Prefix Instances

N
u

m
b

e
r

o
f

P
re

fi
x
 L

S
A

s

0 1 2 3 4 5 6
0.5

0.75

1

1.25

1.5

1.75

2

(c)

Prefix Instances

A
n

c
h

o
rs

 P
e

r
P

re
fi
x

0 1 2 3 4 5 6
0.85

0.9

0.95

1

1.05

1.1

1.15
x 10

5

(b)

Prefix Instances

N
u

m
b

e
r

o
f

O
p

e
ra

ti
o

n
s

NLSR

LSCR
NLSR

LSCR
Discovered

Participated

Figure 3.4: LSCR Performance: (a) average number of LSAs packets sent, (b)
average number of operations, (c) average number of discovered anchor and num-
ber of anchors selected for routing per prefix per node

In the scenarios, we use a total of 210 content objects and 30 anchors. The

quantities are also measured as a parameter of the number of replicas for each

name prefix or prefix instances. Number of prefix instance indicates the average

number of nodes advertise same prefix. For instance prefix instance of 2 means on

average two anchors advertise each unique prefix. Different nodes may advertise

common prefixes but the whole prefix list of local prefixes of one anchor is different

to the list of the other anchor. LSCR performance has been evaluated in five

49

scenarios. In the first one, each prefix is advertised by only one anchor. In second

scenario, for every prefixes, two anchors in the network advertise that anchor.

Number of replicas increases in each scenario. In the last one, the average number

of replica per prefix is five. Figure 3.4 shows the result of simulation for these

five scenarios. Number of operations is the total number of operations performed

by each algorithm and is incremented whenever an event occurs, and whenever

the statements within a for or while loop are executed. Both LSCR and NLSR

run Dijkstra’s algorithm to find shortest path to destination, and both run it |n|

times for each node, where |n| is the number of neighbors that node has. Therefore

Dijkstra just shift the number of operations.

0 1 2 3 4 5 6
0

50

100

150

200

250

a

Prefix Instances

N
u
m

b
e
r

o
f
P

re
fi
x
 L

S
A

s

0 1 2 3 4 5 6
0

200

400

600

800

1000

Prefix Instances

N
u
m

b
e
r

o
f
O

p
e
ra

ti
o
n
s

b

LSCR

NLSR

LSCR

NLSR

Figure 3.5: Impact of adding a new prefix: (a) average number of LSAs packets
sent, (b) average number of operations

Figure 3.4-c illustrates the average number of anchors that LSCR stores for

50

each prefix and average number of anchors that are participated in routing per

prefix per node. As the number of replicas increases the number of replicas stored

in the node also increases but even in a network that 5 anchors advertise a prefix,

LSCR stores less than two anchor in average, while NLSR stores information of

all 5 anchors.

0 1 2 3 4 5 6
3.5

4

4.5

5

5.5

6
x 10

4

Number of Instances

N
u

m
b

e
r

o
f

O
p

e
ra

ti
o

n
s

(b)

0 1 2 3 4 5 6
3.5

4

4.5

5

5.5

6
x 10

4

Number of Instances

N
u

m
b

e
r

o
f

O
p

e
ra

ti
o

n
s

(c)

0 1 2 3 4 5 6
0

200

400

600

800

1000

Number of Instances

N
u

m
b

e
r

o
f

O
p

e
ra

ti
o

n
s

(a)

NLSR

LSCR
NLSR

LSCR

NLSR

LSCR

Figure 3.6: Computation overhead of LSCR: (a) after prefix deletion, (b) link
failure, (c) link recovery

Figure 3.5 shows the number of LSAs propagated and the number of operations

execrated after a new anchor advertises a prefix. The new anchor can be a new

node that starts advertising a new content or an intermediate node that temporary

caches and advertises that content. As the number of replicas increases, number

of LSAs needed to propagate the new anchor information decreases. The number

of propagated LSAs in LSCR is almost half the number of LSAs in NLSR when

the number prefix instances is two. The computation overhead also decreases

as the number of replica for the prefix increases. For instance, the computation

overhead of LSCR is half the computation overhead of NLSR when the number

prefix instances is 4.

Figure 3.6 illustrate the computation overhead of LSCR compare to NLSR

in the case of prefix deletion, link failure and in recovery. In these cases, the

performance are almost the same, however, LSCR has better performance in the

case that the number of replicas are more than three.

51

3.6 Summary

The Link State Content Routing (LSCR) protocol is proposed for name-based

routing in an ICN architecture. LSCR provides multiple paths to nearest repli-

cas of an NDO or name prefix, and it creates a directed acyclic graph to reach

nearest anchors. LSCR relies on full topology information and partial information

about prefix replicas; therefore, communication and storage complexity are smaller

compared to traditional name-based link state routing algorithms like NLSR and

OSPFN.

Routers exchange two types of information: Topology information and anchor

information. Each router builds a complete network topology based on topology

information. A shortest-path routing algorithm is used to calculate the distance

to a given destination through each neighbor of a router. Then neighbors are

ranked lexicographically based on their distances. Routers that run LSCR do not

receive or store the routing information for all the replicas of the same content. In

LSCR routers forward the anchor information selectively based on a distributed

computation of preferred publishers. We showed that routes to prefixes are loop-

free, even when the prefixes have multiple replicas.

52

Chapter 4

Diffusion based Content Routing

Clearly, an efficient name-based content routing protocol must be used for

any ICN architecture to succeed using name-based forwarding of Interests and

requested content. This paper focuses on an approach that avoids the need for

periodic messaging by means of diffusing computations [68]. In this chapter we

present DNRP (Diffusive Name-based Routing Protocol), a name-based content

routing protocol for ICNs. DNRP provides multiple loop-free routes to the nearest

instances of a named prefix or to all instances of a named prefix using only distance

information and without requiring periodic updates, knowledge of the network

topology, or the exchange of path information. DNRP routing table lists the

shortest distances to the nearest anchors of NDOs or name prefixes through one

or multiple neighbors. DNRP selects a set of neighbors as valid next hops in such

a way that routes to every prefix would be loop-free in every instance.

4.1 DNRP operation

DNRP finds the shortest path(s) to the nearest replica(s) of name prefixes.

To ensure that loop-free routes to named prefixes are maintained at every instant

53

independently of the state of the network or prefixes, DNRP establishes a lexico-

graphic ordering among the routes to prefixes reported and maintained by routers.

The lexicographic ordering of routes is based on two sufficient conditions for loop

freedom with respect to a given prefix that allow for multiple next hops to prefixes

along loop-free routes. DNRP diffuses the computation of new loop-free routes

when the loop-free conditions are not satisfied.

Every piece of data in the network is a Named-Data Object (NDO), repre-

sented by a name that belongs to a name prefix or simply a prefix advertised by

one or more producer(s). Name prefixes can be simple and human-readable or

more complicated and self certifying, or may even be a cryptographic hash of the

content. Content names can be flat or hierarchical.

A router attached to a producer of content that advertises a name prefix is

called an anchor of that prefix. At each router, DNRP calculates routes to the

nearest anchor(s) of known name prefixes, if there is any, and selects a subset of

the neighbors of the router as valid next hops to reach name prefixes, such that

no routing-table loop is created at any router for any name prefix. Caching sites

are not considered content producers and hence routes to cached content are not

advertised in DNRP. Our description assumes that routers process, store, and

transfer information correctly and that they process routing messages one at a

time within a finite time. Every router has a unique identifier or a name that can

be flat or hierarchical.

4.1.1 Messages and Data Structures

Each router i stores the list of all active neighbor routers (N i), and the cost of

the link from the router to each such neighbor. The cost of the link from router

i to its neighbor n is denoted by li
n. Link costs can vary in time but are always

54

positive.

The routing information reported by each of the neighbors of router i is stored

in its neighbor table (NT i). The entry of NT i regarding neighbor n for prefix p

is denoted by NT i
pn and consists of the name prefix (p), the distance to prefix p

reported by neighbor n (di
pn), and the anchor of that prefix reported by neighbor

n (ai
pn). If router i is the anchor of prefix p itself, then di

pi = 0.

Router i stores routing information for each known prefix in its routing table

(RT i). The entry in RT i for prefix p (RT i
p) specifies: the name of the prefix (p);

the distance to the nearest instance of that prefix (di
p); the feasible distance to

the prefix (fdi
p); the neighbor that offers the shortest distance to the prefix (si

p),

which we call the successor of the prefix; the closest anchor to the prefix (ai
p); the

state mode (mf i
p) regarding prefix p, which can be PASSIVE or ACTIVE; the

origin state (oi
p) indicating whether router i or a neighbor is the origin of query

in which the router is active; the update flag list (FLi
p); and the list of all valid

next hops (V i
p).

FLi
p consists of four flags for each neighbor n. An update flag (uf i

pn) denotes

whether or not the routing message should be sent to that neighbor. A type flag

(tf i
pn) indicates the type of routing message the router has to send to neighbor

n regarding prefix p (i.e., whether it is an UPDATE, QUERY, or REPLY). A

pending-reply flag (rf i
pn) denotes whether the router has sent a QUERY to that

neighbor and is waiting for REPLY. A pending-query flag (qf i
pn) is set if the router

received a QUERY from its neighbor n and has not responded to that QUERY

yet.

Router i sends a routing message to each of its neighbors containing updates

made to RT i since the time it sent its last update message. A routing message

from router i to neighbor n consists of one or more updates, each of which carries

55

information regarding one prefix that needs updating. The update information

for prefix p is denoted by U i
p and states: (a) the name of the prefix (p); (b) the

message type (uti
p) that indicates if the message is an UPDATE, QUERY, or

REPLY; (c) the distance to p; and (d) the name of the closest anchor.

The routing update received by router i from neighbor n is denoted by U i
n.

The update information of U i
n for prefix p, ui

pn, specifies the prefix name (p), the

distance from n to that prefix (udi
pn), the name of the anchor of that prefix (uai

pn),

and a message type (uti
pn).

4.1.2 Sufficient Conditions for Loop Freedom

The conditions for loop-free routing in DNRP are based on the feasible distance

maintained at each router and the distances reported by its neighbors for a name

prefix. One condition is used to determine the new shortest distance through a

loop-free path to a name prefix. The other is used to select a subset of neighbors

as next hops to a name prefix.

Source Router Condition (SRC): Router i can select neighbor n ∈ N i as

a new successor si
p for prefix p if:

(di
pn <∞) ∧ (di

pn < fdi
p ∨ [di

pn = fdi
p ∧ |n| < |i|]) ∧

(di
pn + li

n = Min{di
pv + li

v|v ∈ N i}). �

SRC simply states that router i can select neighbor n as its successor to prefix

p if n reports a finite distance to that prefix, offers the smallest distance to prefix

p among all neighbors, and either its distance to prefix p is less than the feasible

distance of router i or its distance is equal to the feasible distance of i but |n| < |i|.

If two or more neighbors satisfy SRC, the neighbor that satisfies SRC and has the

smallest identifier is selected. If none of the neighbors satisfies SRC the router

56

keeps the current successor, if it has any. The distance of router i to prefix, di
p, is

defined by the distance of the path through the selected successor.

A router that has a finite feasible distance (fdi
p < ∞) selects a subset of

neighbors as valid next hops at time t if they have a finite distance to destination

and are closer to destination. The following condition is used for this purpose.

Next-hop Selection Condition (NSC): Router i with fdi
p <∞ adds neigh-

bor n ∈ N i to the set of valid next hops if:

(di
pn <∞) ∧ (di

pn < fdi
p ∨ [di

pn = fdi
p ∧ |n| < |i|]).�

NSC states that router i can select neighbor n as a next hop to prefix p if

either the distance from n to prefix p is smaller than the feasible distance of i or

its distance is equal to the feasible distance and |n| < |i|. NSC orders next hops

lexicographically based on their distance to a prefix and their names. It is shown

that no routing-table loops can be formed if NSC is used to select the next hops

to prefixes at each router. Note that the successor is also a valid next hop. The

successor to a prefix is a valid next hop that offers the smallest cost.

SRC and NSC are sufficient conditions that, as we show subsequently, ensure

loop-freedom at every instance but do not guarantee shortest paths to destina-

tions. DNRP integrates these sufficient conditions with inter-nodal synchroniza-

tion signaling to achieve both loop freedom at every instant and shortest paths

for each destination.

4.1.3 DNRP Operation

A change in the network, such as a link-cost change, the addition or failure of a

link, the addition or failure of a router, the addition or deletion of a prefix, or the

57

addition or deletion of a replica of a prefix can cause one or more computations

at each router for one or more prefixes. A computation can be either a local

computation or a diffusing computation. In a local computation a router updates

its successor, distance, next hops, and feasible distance independently of other

routers in the network. On the other hand, in a diffusing computation a router

originating the computation must coordinate with other routers before making

any changes in its routing-table entry for a given prefix. DNRP allows a router

to participate in at most one diffusing computation per prefix at any given time.

A router can be in PASSIVE or ACTIVE mode with respect to a given prefix

independently of other prefixes. A router is PASSIVE with respect to prefix p

if it is not engaged in any diffusing computation regarding that prefix. A router

initializes itself in PASSIVE mode and with a zero distance to all the prefixes for

which the router itself serves as an anchor. An infinite distance is assumed to any

non-local (and hence unknown) name prefix.

Initially, no router is engaged in a diffusing computation (oi
p = 0). When a

PASSIVE router detects a change in a link or receives a QUERY or UPDATE

from its neighbor that does not affect the current successor or can find a feasible

successor, it remains in PASSIVE mode. On the other hand, if the router cannot

find a feasible successor then it enters the ACTIVE mode and keeps the current

successor, updates its distance, and sends QUERY to all its neighbors. Table 4.1

shows the transit from one state to another. Neighbor k is a neighbor other than

the successor s.
Algorithm 5 shows the processing of messages by a router in PASSIVE mode.

Algorithm 6 shows the steps taken in ACTIVE mode. Algorithm 7 shows the

steps taken to process a routing update.

Handling A Single Diffusing Computation: Routers are initialized in

PASSIVE mode. Each router continuously monitors its links and processes the

58

Table 4.1: State transit in DNRP

Mode State Event
Next
State

Passive 0
Events from a neighbor k, SRC satisfied 0
Events from a neighbor k, SRC not satisfied 1
QUERY from the Successor 3

Active

1
Receives last REPLY 0
Change in distance to Successor 2
QUERY from the Successor 4

2
Receives last REPLY, SRC satisfied 0
Receives last REPLY, SRC not satisfied 1
QUERY from the Successor 4

3 Receives last REPLY 0
Change in distance to the Successor 4

4 Receives last REPLY, SRC satisfied 0
Receives last REPLY, SRC not satisfied 3

routing messages received from its neighbors. When router i detects a change in

the cost or state of a link, or a change in its neighbor table that causes a change

in its distance to prefix p (di
p), it first tries to select a new successor that satisfies

SRC. If such a successor exists, the router carries out a local computation, updates

its distance, successor, and closest anchor, and exits the computation. In a local

computation, router i computes the minimum cost to reach the destination and

updates di
p = min{di

pn + li
n|n ∈ N i}. If its distance changes, router i sends a

routing message with uti
p = UPDATE . Router i also updates its feasible distance

to equal the smaller of its value and the new distance value, i.e., fdi
p(new) =

min{fdi
p(old), di

p}.

An UPDATE message from a neighbor is processed using the same approach

stated above. If a router receives a QUERY from its neighbor other than its

successor while it is in PASSIVE mode, it updates the neighbor table, checks

for a feasible successor according to SRC and replies with di
p, if it succeeds. If

router i cannot find a neighbor that satisfies SRC after a change in a link or

neighbor-table entry, then it starts out a diffusing computation by setting the

new distance as the distance through its current successor, enters the ACTIVE

mode (mf i
j = ACTIVE) and sets the corresponding flag (rf i

pn) for each neighbor

59

n. After entering the ACTIVE mode, router i sets the new distance as the cost

of the path through the current successor (di
p = di

psi
p

+ li
si

p
) and sends a routing

message with uti
p = QUERY. Router i uses the pending reply flag (rf i

pn) to keep

track of the neighbors from which a REPLY has not been received. When a router

becomes ACTIVE it sets the update flag (uf i
pn = 1), and also sets the type flags

(tf i
pn = QUERY |∀n ∈ N i) and sends the routing messages to all its neighbors.

Algorithm 5 Processing routing messages in PASSIVE mode
INPUT: RT i, NT i, lin, ui

pn;
[o] verify ui

pn;
di

pn = udi
pn; dmin =∞;

for each k ∈ N i − {i} do
if (di

pk + lik < dmin) ∨ (di
pk + lik = dmin ∧ |k| < |snew|) then

snew = k; dmin = di
pk + lik;

end if
end for
if (di

psnew
< fdi

p ∨ [di
psnew

= fdi
p ∧ |snew| < |i|]) then

if si
p 6= snew then si

p = snew; ai
p = ai

psnew

if di
p 6= dmin then
di

p = dmin; fdi
p = min{fdi

p, d
i
p};V i

p = φ;
for each k ∈ N i − {i} do

uf i
pk = 1; tf i

pk =UPDATE;
if (di

kp < fdi
p ∨ [di

pk = fdi
p ∧ |k| < |i|]) then

V i
p = V i

p ∪ k;
end if

end for
if utipn = QUERY then tf i

pn =REPLY;
end if

else
mf i

p = ACTIVE; di
p = di

psi
p

+ li
si

p
;

if (n = si
p ∧ utipn = QUERY) then oi

p = 3; else oi
p = 1;

for each k ∈ N i − {i} do uf i
pn = 1; tf i

pn =QUERY;
end if

When a router is in ACTIVE mode, it cannot change its successor or fdi
p

until it receives the replies to its QUERY from all its neighbors. After receiving

all replies (i.e. rf i
pn = 0|∀n ∈ N i), router i becomes PASSIVE by resetting its

feasible distance. The router then selects the new successor and sends UPDATE

messages to its neighbors. More specifically, router i sets fdi
p =∞ which insures

that the router can find a new successor that satisfies SRC and then sets fdi
p =

di
p = min{di

pn + li
n|n ∈ N i} and becomes PASSIVE.

60

Algorithm 6 Processing routing messages in ACTIVE mode
INPUT: RT i, NT i, ui

pn;
[o] verify ui

pn;
di

pn = udi
pn;

if utipn = REPLY then
rf i

pn = 0; lastReply = true;
for each k ∈ N i − {i} do

if rf i
pk = 0 then lastReply = false;

end for
if lastReply = true then

if oi
p = 1 ∨ oi

p = 3 then fdi
p =∞

Execute Algorithm 7
end if

else if utipn = QUERY then
if (oi

p = 1 ∨ oi
p = 2) then

if n 6= si
p then uf i

pn = 1; tf i
pn =REPLY; else oi

p = 4;
end if
if (oi

p = 3 ∨ oi
p = 4) then uf i

pn = 1; tf i
pn =REPLY;

end if

If router i receives a QUERY from a neighbor other than its successor while

it is ACTIVE, it simply replies to its neighbor with a REPLY message stating

the current distance to the destination. The case of a router receiving a QUERY

from its successor while it is ACTIVE is described subsequently in the context of

multiple diffusing computations. UPDATE messages are processed and neighbor

tables are updated, but the successor or distance is not changed until the router

receives all the replies it needs to transition to the PASSIVE mode. While a router

is in ACTIVE mode, neither a QUERY nor an UPDATE can be sent.

Handling Multiple Diffusing Computations: Given that a router exe-

cutes each local computation to completion, it handles multiple local computations

for the same prefix one at a time. Similarly, a router handles multiple diffusing

computation for the same prefix by processing one computation at a time. An

ACTIVE router i can be in one of the following four states: (1) router i originated

a diffusing computation (oi
p = 1), (2) metric increase detected during ACTIVE

mode (oi
p = 2), (3) diffusing computation is relayed (oi

p = 3), or (4) successor

61

Algorithm 7 Update RT i
p

INPUT: RT i, NT i, lin, ui
pn;

dmin =∞;
for each k ∈ N i − {i} do

if (di
pk + lik < dmin) ∨ (di

pk + lik = dmin ∧ |k| < |snew|) then
snew = k; dmin = di

pk + lik;
end if

end for
if (di

psnew
< fdi

p ∨ [di
psnew

= fdi
p ∧ |snew| < |i|]) then

oi
p = 0;mf i

p = PASSIV E;
if si

p 6= snew then si
p = snew;

if di
p 6= dmin then
di

p = dmin; fdi
p = min{fdi

p, d
i
p};V i

p = φ;
for each k ∈ N i − {i} do

uf i
pk = 1; tf i

pk =UPDATE;
if (di

pk < fdi
p ∨ [di

pk = fdi
p ∧ |k| < |i|]) then

V i
p = V i

p ∪ k;
end if

end for
if qf i

psi
p
(old) = 1 then tf i

pn =REPLY;
end if

else
if oi

p = 2 then oi
p = 1 else oi

p = 3;
for each k ∈ N i − {i} do uf i

pn = 1; tf i
pn =QUERY;

end if

metric changed during ACTIVE mode (oi
p = 4). If the router is in PASSIVE

mode then its state is 0 (i.e., oi
p = 0).

Consider the case that a router i is ACTIVE and in State 1 (oi
p = 1). If the

router receives the last REPLY to its query, then it resets its feasible distance

to infinity, checks SRC to find the new successor, and sends an UPDATE to all

its neighbors. On the other hand, if router i detects a change in the link to its

successor then it updates its neighbor table and sets oi
p = 2.

If router i is in State 2, receives the last REPLY, and can find a feasible

successor using SRC with the current feasible distance, then it becomes PASSIVE

and sends an UPDATE to all its neighbors(oi
p = 0). Otherwise, it sends a QUERY

with the current distance and sets oi
p = 1.

Router i uses the pending query flag (qf i
pn) to keep track of the replies that

62

Figure 4.1: DNRP Operation Example

have been received for its QUERY regarding prefix p. If router i is in either State

1 or 2 and receives a QUERY from its current successor to the prefix, then it sets

qf i
psi

p=1 and transitions to State 4 (i.e., it sets oi
p = 4).

If a router in PASSIVE mode receives a QUERY from its successor, it searches

for a new successor that satisfies SRC. If it cannot find such a successor then it

keeps the current successor, updates its distance, and becomes ACTIVE. Then,

the router sends QUERY to all of its neighbors and sets oi
p = 3.

When router i in state 3 receives REPLY from all of its neighbors, it resets

its feasible distance, fdi
p =∞, selects a new successor, updates the V i

p and sends

UPDATE to its neighbors and REPLY to its the previous successor. If the router

detects a link failure or a cost increase in the link to its current successor, the

router sets oi
p = 4 to indicate that a topology change occurred while the router

is in ACTIVE mode. A router handles the case of the failure of the link with its

successor as if it had received a REPLY from its successor with di
psi

p
=∞.

If router i is in State 4, (oi
p = 4) and it receives replies from all its neighbors,

then it tries to find a feasible successor that satisfies SRC with the current value

of fdi
p. If such a successor exists, the router updates its successor, distance, and

next hops for prefix p, and sends an UPDATE message to its neighbors as well as

REPLY to the previous successor. Otherwise, it sets oi
p = 3 and sends a QUERY

63

with the new distance.

While router i is in ACTIVE mode regarding a prefix, if a QUERY is received

for the prefix from a neighbor other than the current successor, the router updates

the neighbor table and sends a REPLY to that neighbor. If a router in PASSIVE

mode receives a QUERY from a neighbor other than the current successor, the

router updates its neighbor table. If the feasibility condition is not satisfied any-

more, the router sends a REPLY to the neighbor that provides the current value

di
p before it starts its own computation.

4.1.4 Example of DNRP Operation

Figure 4.1 illustrates the operation of DNRP with a simple example. The

figure shows the routing information used for a single prefix when routers a and

z advertise that prefix and each link has unit cost. The tuple next to each router

states the distance and the feasible distance of the router for that prefix. The red,

blue, and green arrows represent the QUERY, REPLY, and UPDATE messages

respectively and the number next to the arrow shows the time sequence in which

that message is sent. Figure 4.1 (a) shows the change in the cost of link (r, a).

Router r detects this change and becomes ACTIVE and sends QUERY to its

neighbors.

Router q receives the QUERY from its successor and cannot find a feasible

successor (Figure 4.1(b)). Therefore, it becomes ACTIVE and sends a QUERY

to its neighbors. Router r receives REPLY from a and t, and a QUERY from q.

Given that q is not a successor for router r, r sends REPLY to q. After receiving

REPLY from routers r, s and t, router q becomes PASSIVE again and sends its

REPLY to its previous successor, r. In turn, this means that r receives all the

replies it needs, becomes PASSIVE, and resets its feasible distance. The operation

64

of DNRP is such that only a portion of the routers are affected by the topology

change.

4.1.5 Routing to all instances of a prefix

DNRP enables routers to maintain multiple loop-free routes to the nearest

anchor of a name prefix. In some ICN architectures, such as NDN and CCNx,

an anchor of a name-prefix may have some but not necessarily all the content

corresponding to a given prefix. Therefore, simply routing to nearest replica may

cause some data to be unreachable, and the ability to contact all anchors of a

prefix is needed. To address this case, a multi-instantiated destination spanning

tree (MIDST) can be used alongside DNRP to support routing to all anchors of

the same prefix. A MIDST is established in a distributed manner. Routers that

are aware of multiple anchors for the same prefix exchange routing updates to

establish the spanning tree between all anchors of a prefix. Once the MIDST is

formed for a given prefix, the first router in the MIDST that receives a packet

forwards it over the MIDST to all of the anchors. The details of how a MIDST

can be established in DNRP are omitted for brevity; however, the approach is

very much the same as that described in [35].

4.2 Correctness of DNRP

The following theorems prove that DNRP is loop-free at every instant and

considers each computation individually and in the proper sequence. From these

results, the proof that DNRP converges to shortest paths to prefixes is similar to

the proof presented in [30] and due to space limitation is omitted. We assume that

each router receives and processes all routing messages correctly. This implies that

65

each router processes messages from each of its neighbors in the correct order.

Theorem 7. No routing-table loops can form in a network in which routers use

NSC to select their next hops to prefixes.

Proof. Assume for the sake of contradiction that all routing tables are loop-free

before time tl but a routing-table loop is formed for prefix p at time tl when router

q adds its neighbor n1 to its valid next-hop set V q
p . Because the successor is also a

valid next hop, router q must either choose a new successor or add a new neighbor

other than its current successor to its valid next-hop set at time tl. We must show

that the existence of a routing-table loop is a contradiction in either case.

Let Lp be the routing-table loop consisting of h hops starting at router q,

(Lp = {q = n0,new, n1,new, n2,new, . . . , nh,new}) where nh,new = q, ni+1,new ∈ V ni
p for

0 ≤ i ≤ h.

The time router ni updates its valid next-hop set to include ni+1,new is denoted

by ti
new. Assume that the last time router ni sent an UPDATE that was processed

by its neighbor ni−1, is ti
old. Router ni revisits valid next hops after any changes

in its successor, distance, or feasible distance; therefore, ti
old ≤ ti

new ≤ tl and

dni
pni+1

(tl) = dni
pni+1

(told). Also, by definition, at any time ti, fdi
p(ti) ≤ di

p(ti), and

fdi
p(t2) ≤ fdi

p(t1) if t1 < t2. Therefore,

fdi
p(t2) ≤ di

p(t1) such that t1 < t2 (4.1)

If router ni selects a new successor at time ti
new then:

dni−1
pni

(tl) = dni
p (told) ≥ fdni

p (told) ≥ fdni
p (tnew) (4.2)

66

Using NSC ensures that

(fdni
p (tnew) > dni

pni+1
(tl))

∨(fdni
p (tnew) = dni

pni+1
(tl) ∧ |ni| > |ni+1|)

(4.3)

From Eqs. (4.2) and (4.3) we have:

(dni−1
pni

(tl) > dni
pni+1

(tl))

∨(dni−1
pni

(tl) = dni
pni+1

(tl) ∧ |ni| > |ni+1|)
(4.4)

Therefore, for 0 ≤ k ≤ h in Lp it is true that:

(dn0
pn1(tl) > dnk

pnk+1
(tl))

∨(dn0
pn1(tl) = dnk

pnk+1
(tl) ∧ |n0| > |nk|)

(4.5)

If dni−1
pni

(tl) > dni
pni+1

(tl) in at least one hop in Lp then it must be true that, for

any given k ∈ {1, 2, . . . , h}, dnk
pnk+1

(tl) > dnk
pnk+1

(tl), which is a contradiction. If at

any hop in the Lp it is true that dni−1
pni

(tl) = dni
pni+1

(tl), then |k| > |k|, which is also

a contradiction. Therefore, no routing-table loop can be formed when routers use

NSC to select their next hops to prefix p.

Lemma 8. A router that is not the origin of a diffusing computation sends a

REPLY to its successor when it becomes PASSIVE.

Proof. A router that runs DNRP can be in either PASSIVE or ACTIVEmode for a

prefix p when it receives a QUERY from its successor regarding the prefix. Assume

that router i is in PASSIVE mode when it receives a QUERY from its successor.

If router i finds a neighbor that satisfies SRC, then it sets its new successor and

sends a REPLY to its old successor. Otherwise, it becomes ACTIVE, sets oi
p = 3,

67

and sends a QUERY to all its neighbors. Router i cannot receive a subsequent

QUERY from its successor regarding the same prefix, until it sends a REPLY back

to its successor. If the distance does not increase while router i is ACTIVE then

oi
p remains the same (i.e. oi

p = 3). Otherwise, router i must set oi
p = 4. In both

cases router i must send a REPLY when it becomes PASSIVE.

Assume that router i is in ACTIVE mode when it receives a QUERY from its

successor s. Router s cannot send another QUERY until it receives a REPLY from

all its neighbors to its query, including router i. Hence, router i must be the origin

of the diffusing computation for which it is ACTIVE when it receives the QUERY

from s, which means that oi
p = 1 or oi

p = 2. In both cases router i sets oi
p = 4 when

it receives a QUERY form its successor s and s must send a REPLY in response

to the QUERY from i because, i is not the successor for s. After receiving the

last REPLY from its neighbors, either router i finds a feasible successor and sends

a REPLY to s (oi
p = 0) or it propagates the diffusing computation forwarded by

s by sending a QUERY to its neighbors and setting oi
p = 3. Router i then must

send a REPLY to s when it receives the last REPLY for the QUERY it forwarded

from s.

Hence, independently of its current mode, router i must send a REPLY to a

QUERY it receives from its successor when it becomes PASSIVE.

Lemma 9. Consider a network that is loop free before an arbitrary time t and

in which a single diffusing computation takes place. If node ni is PASSIVE for

prefix p at that time, then it must be true that (dni−1
pni

(t) > dni
pni+1

(t)) ∨ (dni−1
pni

(t) =

dni
pni+1

(t)∧ |ni| > |ni+1|) independently of the state of other routers in the chain of

valid next hops {ni−1, ni, ni+1} for prefix p.

Proof. Assume that router ni is PASSIVE and selects router ni+1 as a valid next

68

hop. According to NSC it must be true that:

(dni
pni+1

(t) < fdni
p (t) ≤ dni

p (t))∨

(dni
pni+1

(t) = fdni
p (t) ≤ dni

p (t) ∧ |ni+1| < |ni|)
(4.6)

Assume that ni did not reset fdni
p the last time tnew < t when ni became PASSIVE

and selected its successor snew and updated its distance dni
p (tnew) = dni

p (t). If

router ni−1 processed the message that router ni sent after updating its distance,

then: dni−1
pni

(t) = dni
p (tnew). Substituting this equation in 4.6 renders the result of

this lemma.

On the other hand, If router ni−1 did not process the message that router ni

sent after updating its distance and before t, then dni−1
pni

(t) = dni
p (told). Based on

the facts that router ni did not reset its feasible distance and Eq. 4.1 holds for

this case. Therefore:

dni−1
pni

(t) = dni−1
pni

(told) > fdni
p (t) (4.7)

Now consider the case that ni becomes PASSIVE at time tnew and changes

its successor from sold to snew by reseting its feasible distance. The case that

ni−1 processed the message that router ni sent after becoming PASSIVE is the

same as before. Assume that ni−1 did not process the message that ni sent at

time tnew. Furthermore, assume that router ni becomes ACTIVE at time told,

with a distance dni
p (told) = dni

psold
+ lni

sold
. Router ni cannot change its successor or

experience any increment in its distance through sold; hence, dni
p (tnew) ≤ dni

p (told).

On the other hand, the distance through the new successor must be the shortest

and so dni
p (tnew) = dni

psnew
+ lni

snew
≤ dni

p (told). Router ni becomes PASSIVE if it

receives a REPLY from each of its neighbors including ni−1. Therefore, ni−1 must

69

be notified about dni
p (told) . Therefore:

dni−1
pni

(t) = dni
p (told) ≥ dni

p (tnew) = dni
p (t). (4.8)

Substituting this equation in 4.6 renders the result of this lemma. Therefore, the

lemma is true in all cases.

Lemma 10. Consider a network that is loop free before an arbitrary time t and

in which a single diffusing computation takes place. Let two network nodes ni and

ni+1 be such that ni+1 ∈ V ni
p . Independently of the state of these two nodes, it

must be true that:

(fdni
p (t) > fdni+1

p (t))∨

(fdni
p (t) = fdni+1

p (t) ∧ |ni| > |ni+1|)
(4.9)

Proof. Consider the case that router ni is PASSIVE, then from Lemma 9 and the

fact that routers select their next hops based on NSC, it must be true that:

(fdni
p > dni

pni+1
(t))∨

(fdni
p = dni

pni+1
(t) ∧ |ni| > |ni+1|)

(4.10)

Consider the case that router ni+1 is ACTIVE. Router ni+1 cannot change its

successor or increase its feasible distance. If router ni processed the last message

that router ni+1 sent before time t, then: dni
pni+1

(t) = fdni+1
p (t) and the lemma

is true. Assume router ni did not process the last message that router ni+1 sent

before time t. Router ni must send a REPLY to ni+1 the last time that router

ni+1 became PASSIVE at time tp reporting a distance dni+1
p (told) = dni+1

psold
+ lni+1

sold
.

If router ni+1 did not reset its feasible distance since the last time it became

70

passive, fdni+1 , then, dni+1
p (told) ≥ fdni+1

p (t). Consider the case that router ni+1

resets fdni+1 the last time before t that it becomes PASSIVE. Router ni+1 cannot

change its successor or experience any increment in its distance through its old

successor, sold. Hence, dni+1
p (tnew) ≤ dni+1

p (told). On the other hand, the distance

through the new successor must be the smallest among all neighbors including

the old successor and so dni+1
p (tnew) = (dni+1

psnew
+ lni+1

snew
) ≤ dni+1

p (told). Router ni+1

becomes PASSIVE if it receives a REPLY from each of its neighbors, including

ni. Therefore, ni must be notified about dni+1
p (told) . Therefore,

dni
pni+1

(t) = dni+1
p (told) ≥ dni+1

p (tnew) ≥ fdni+1
p (tnew) (4.11)

The feasible distance fdni+1
p (tnew) with tnew < t cannot increase until router ni+1

becomes PASSIVE again; therefore,fdni+1
p (tnew) ≥ fdni

p (t). The result of the

lemma follows in this case by substituting this result in Eqs. (4.11) and Eq.

(4.10).

Now consider the case that router ni+1 is PASSIVE. If router ni processed

the last message that router ni+1 sent before time t, then dni
pni+1

(t) = dni+1
p (t) ≥

fdni+1
p (t) and the lemma is true. Now consider the case that router ni did not

process the last message router ni+1 sent before time t. If router ni+1 did not

reset fdni+1 then dni+1
p (told) ≥ fdni+1

p (t). On the other hand, if router ni+1 resets

fdni+1 then we can conclude that fdni+1
p (tnew) ≥ fdni

p (t) and |ni| > |ni+1| using

an argument similar to one we used for the ACTIVE mode. Hence, the lemma is

true for all cases.

NSC and SRC guarantees loop-freedom at every time instant. If we consider

the link form router i to its valid next hop with respect to a specific prefix as

a directed edge, then the graph containing all this directed links is a directed

71

1 2 3 4

num. of replicas
(a)

0

500

1000

1500

n
u

m
.

m
e

s
s
a

g
e

s

Add Prefix

DNRP
LS

1 2 3 4

num. of replicas
(e)

10
0

10
1

10
2

10
3

10
4

n
u

m
.

o
p

e
ra

ti
o

n
s

Add Prefix

DNRP
LS

1 2 3 4

num. of replicas
(b)

0

200

400

600

800

1000

1200

n
u

m
.

m
e

s
s
a

g
e

s

Delete Prefix

DNRP
LS

1 2 3 4

num. of replicas
(f)

10
0

10
1

10
2

10
3

10
4

n
u

m
.

o
p

e
ra

ti
o

n
s

Delete Prefix

DNRP
LS

1 2 3 4

num. of replicas
(c)

0

200

400

600

800

1000

1200

n
u

m
.

m
e

s
s
a

g
e

s

Link Failure

DNRP
LS

1 2 3 4

num. of replicas
(g)

10
0

10
5

n
u

m
.

o
p

e
ra

ti
o

n
s

Link Failure

DNRP
LS

1 2 3 4

num. of replicas
(d)

0

200

400

600

800

1000

1200

n
u

m
.

m
e

s
s
a

g
e

s

Link Recovery

DNRP
LS

1 2 3 4

num. of replicas
(h)

10
0

10
5

n
u

m
.

o
p

e
ra

ti
o

n
s

Link Recovery

DNRP
LS

Figure 4.2: Simulation results showing average number of messages and average
number of operations vs number of replicas

acyclic graph (DAG) with respect to that specific prefix. The DAG representing

the relationship of valid next hops regarding prefix p is denoted by Dp.

Lemma 11. If routers are involved in a single diffusing computation then Dp is

loop-free at every instant.

Proof. Assume for the sake of contradiction that Dp is loop-free before an arbitrary

time t and a loop Lp consisting of h hops is created at time tl > t when router q

updates V q
p after processing an input event. Assume that Lp = {n1, n2, . . . , nh }

is the loop created, where ni+1 ∈ V ni
p for 1 ≤ i ≤ h and n1 ∈ V nh

p . If router n1

changes its next hop as a result of changing its successor, it must be in PASSIVE

mode at time tl because an ACTIVE router cannot change its successor or update

its next-hop set.

If all routers in Lp are PASSIVE at time tl, either all of them have always been

PASSIVE at every instant before tl, or at least one of them was ACTIVE for a

while and became PASSIVE before tl. If no router was ever ACTIVE before time

tl, it follows from Theorem 7 that updating V n
p cannot create loop. Therefore, for

router n1 to create a loop, at least one of the routers must have been ACTIVE

72

before time t.

If all routers are in PASSIVE mode at time t, traversing Lp and applying

Theorem 4.10 leads to the erroneous conclusion that either dn1
p > dn1

p or |n1| > |n1|.

Therefore updating V n1
p cannot create a loop if all routers in the Lp are PASSIVE

at time t.

Assume that only one diffusing computation is taking place at time tl. Based

on Lemma 10 traversing loop Lp leads to the conclusion that either fdni > fdni or

|ni| > |ni|, which is a contradiction. Therefore, if only a single diffusing computa-

tion takes place, then Lp cannot be formed when routers use SRC and NSC along

with difusing computations to select next hops to reach the destination prefix.

At steady state, the graph containing the successors and connected links be-

tween them, must create a tree. The tree containing successors that are ACTIVE

regarding prefix p and participating in a diffusion computation started form router

i at time t are called diffusing tree (Tpi(t)).

Theorem 12. DNRP considers each computation individually and in the proper

sequence.

Proof. Assume router i is the only router that has started a diffusing computa-

tion up to time t. If router i generates a single diffusion computation, the proof

is immediate. Consider the case that router i generates multiple diffusing com-

putations. Any router that is already participating in the current diffusing com-

putation (routers in the Tpi, including the router i) cannot send a new QUERY

until it receives all the replies to the QUERY of the current computation and

becomes PASSIVE. Note that each router processes each event in order. Also,

when a router becomes PASSIVE, it must send a REPLY to its successor, if it

has any. Therefore, all the routers in Tpi must process each diffusing computation

individually and in the proper sequence.

73

Consider the case that multiple sources of diffusing computations exist regard-

ing prefix p in the network. Assume router i is ACTIVE at time t. Then either

router i is the originator of the diffusing computation (oi
p = 1 or 2), or received a

QUERY from its successor (oi
p = 3 or 4). If oi

p = 1 or 3, the router must become

PASSIVE before it can send another QUERY. If the router is the originator of

the computation (oi
p = 1 or 2) and receives a QUERY form its successor, it holds

that QUERY and sets oi
p =4. Therefore, all the routers in the Tpi remain in the

same computation. Router i can forward the new QUERY and become the part

of the larger Tps only after it receives a REPLY form each of its neighbors for

the current diffusing computation. If router a is ACTIVE and receives a QUERY

from its neighbor k 6= sa
p, then it sends a REPLY to its neighbor before creating

a diffusing computation, which means that Tpa is not part of the ACTIVE Tp to

which k belongs. Therefore, any two ACTIVE Tpi and Tpj have an empty inter-

section at any given time, it thus follows from the previous case that the Theorem

is true.

4.3 Performance Analysis

We compare DNRP with a link-state routing protocol given that NLSR [51]

is based on link states and is the routing protocol advocated in NDN, one of the

leading ICN architectures. We implemented DNRP and an idealized version of

NLSR, which we simply call ILS (for ideal link-state), in ns-3 using the needed

extensions to support content-centric networking [54]. In the simulations, ILS

propagates update messages using the intelligent flooding mechanism. There are

two types of Link State Advertisements (LSA): An adjacency LSA carries in-

formation regarding a router, its neighbors, and connected links; and a prefix

LSA advertises name prefixes, as specified in [51]. For convenience, DNRP sends

74

HELLO messages between neighbors to detect changes in the sate of nodes and

links. However, HELLO’s can be omitted in a real implementation and detecting

node adjacencies can be done my monitoring packet forwarding success in the

data plane.

The AT&T topology [42] is used because it is a realistic topology for simula-

tions that mimic part of the Internet topology. It has 154 nodes and 184 links. A

node has 2.4 neighbors on average. In the simulations, the cost of a link is set to

one unit, and 30 nodes are selected as anchors that advertise 1200 unique name

prefixes. We generated test cases consisting of single link failure and recovery, and

a single prefix addition and deletion.

To compare the computation and communication overhead of DNRP and ILS,

we measured the number of routing messages transmitted over the network and

the number of operations executed by each routing protocol. The number of

messages for ILS includes the number of HELLO messages, Adjacency LSAs, and

Prefix LSAs. For DNRP, this measurement indicates the total number of all the

routing messages transmitted as a result of any changes. The operation count is

incremented whenever an event occurs, and statements within a loop are executed.

The simulation results comparing DNRP with ILS are depicted in Figure 4.2.

In each graph, the horizontal axes is the average number of anchors per prefix,

i.e., the number of anchors that advertise the same prefix to the network. We

considered four scenarios: adding a new prefix to the network; deleting one prefix

from one of the replicas; a single link failure; and a single link recovery. Figures

(4.2a - 4.2d) show the number of messages transmitted in the whole network while

Figures (4.2e - 4.2h) show the number of operations each protocol executed after

the change. The number of operations in the figure is in logarithmic scale.

ILS advertises prefixes from each of the replicas to the whole network. As

75

the number of replicas increases, the number of messages increases, because each

replica advertises its own Prefix LSA. In DNRP, adding a new prefix affects nodes

in small regions and hence the number of messages and operations are fewer than

in ILS. Deleting a prefix from one of the replicas results in several diffusing com-

putations in DNRP, which results in more signaling. However, the number of

messages decreases as the number of replicas increases, because the event affect

fewer routers. In ILS one Prefix LSA will be advertised for each deletion. The

computation of prefix deletion is comparable; however, DNRP imposes less com-

putation overhead when the number of replicas reach 4.

DNRP has less communication overhead compared to ILS after a link recovery

or a link failure. The need to execute Dijkstra’s shortest-path first for each neigh-

bor results in ILS requiring more computations than DNRP. DNRP outperforms

NLSR for topology changes as well as adding a new prefix.

4.4 Summary

We introduced the first name-based content routing protocol based on diffusing

computations (DNRP) and proved that it provides loop-free multi-path routes to

multi-homed name prefixes at every instant. Routers that run DNRP do not

require to have knowledge about the network topology, use complete paths to

content replicas, know about all the sites storing replicas of named content, or use

periodic updates. DNRP has better performance compared to link-state routing

protocols when topology changes occur or new prefixes are introduced to the

network. A real implementation of DNRP would not require the use of HELLO’s

used in our simulations, and hence its overhead is far less than routing protocols

that rely on LSA’s validated by sequence numbers, which require periodic updates

to work correctly.

76

Chapter 5

Ordered Distance Vector Routing

Protocol

In this cahpter, we introduce ODVR (Ordered Distance Vector Routing), the

first routing protocol that provides loop-free routes at every instant based solely

on distances to destinations maintained by nodes and reference distances included

in route requests. A reference distance states the distance to a destination that

a node responding to a route request is allowed to have. The motivation for the

new approach to on-demand routing introduced in ODVR is twofold: (a) The four

types of mechanisms mentioned above that are currently used to avoid or detect

routing-table loops in MANETs can incur excessive overhead; and (b) destination-

based sequence numbers have not been proven to work correctly when signaling

is unreliable and nodes may lose routing state for any reason.

The design rationale for ODVR is based on the following three simple premises:

(a) Ordering of nodes with respect to a destination should be based on local rather

than global constraints. (b) Establishing ordering among nodes for a given desti-

nation must work correctly independently of network conditions, how long indi-

vidual nodes maintain state for a given destination, or the reliability with which

77

signaling messages are sent. (c) A signaling message may contain multiple route

requests, updates or replies to requests in order to reduce bandwidth consumption.

5.1 ODVR Operation

ODVR operates by establishing a total ordering of nodes with respect to in-

dividual destinations using distance values only. Its design centers around the

simple premise that failsafe loop-free routing can be attained if nodes: (a) select

as next hops to destinations only among those neighbors that are closer to desti-

nations, and (b) accept replies to route requests only if they are created by the

intended destinations or nodes that are closer to the destinations than the nodes

requesting the routes.

To establish total ordering among nodes for a given destination, each route

request and reply to a request states a reference distance to the destination. A

node must forward a route request with a smaller reference distance than its cur-

rent distance or reference distance and adopt that new value as its own reference

distance. A node trusts only replies stating the reference distance it requires.

To enforce loop-freedom even when signaling is unreliable and nodes may lose

routing state, a node that sends a route request regarding a destination for which

it has no routing state must use a reference distance of 0 to force the destination

to answer the request. To limit signaling overhead in this important case, a

relay node with a valid routing-table entry for a destination that receives a route

request with a reference distance of 0 indicates in its forwarded request the specific

neighbor that should process the route request.

To forward only the first instance of a route request originated by a source

and to prevent routing information for a given destination to percolate to the

entire network when only a few nodes require routing-state for that destination,

78

a pending request table (PRT) is introduced and each route request states the

previous hop traversed by the request. PRTs are used by nodes to process route

requests and to add or update routing-table entries. A node adds a routing-table

entry for a destination only when the node answers a route request or receives a

reply to a pending route request. A node can update an existing routing-table

entry when it receives a a reply regarding that entry. A node forwards replies

to pending requests only if it has neighbors that forwarded requests stating prior

hops for their requests that are different than the node itself.

To avoid deadlocks in the presence of signaling messages being lost, a node

forwards all retransmissions of requests received from its neighbors, provided that

they state previous hops traversed by the requests other than the node itself. It

is up to the origins of request to moderate the rate of request retransmissions.

ODVR allows a signaling message to contain multiple route requests and replies

to route requests, and signaling messages can be sent periodically or on an event-

driven basis. ODVR provides multiple loop-free routes to a destination, and

different approaches can be used for load balancing and congestion control. For

simplicity, however, we describe ODVR in the rest of this section assuming that

a node considers a neighbor a next hop (called successor) to a destination only

if the distance to the destination through that neighbor is the shortest distance

available to the node.

5.1.1 Information Exchanged

ODVR relies on the exchange of signaling messages transmitted in broadcast

mode among neighboring nodes. A signaling message sent by node i at time t is

denoted by SM i(t) and contains the identifier of the node (i) and one or multi-

ple update entries. Two types of update entries can be contained in a signaling

79

message, namely a request for a route (REQ) or a reply to a request (REP).

REQi
d[Q, d, o, RDi

d, Di
o, pi

d, f i
d] denotes a route request sent by node i for

destination d originated by node o. In this tuple, Q states that the entry is a

request, d is the destination identifier, o is the identifier of the origin of the request,

RDi
d is a reference distance to d used to prevent routing loops, Di

o is the distance

attained by node i to the origin of the request, pi
d denotes the request predecessor

(i.e., the neighbor from which node i received the request before forwarding it),

and f i
d states the neighbor(s) of node i that must process the request. If f i

d = 0,

the request should be processed by every node that receives the request.

REP i
d[R, d, o, RDi

d, Di
d, Di

o] denotes a reply sent by node i for destination

d. The value R states that the entry is a reply, d is the destination identifier, o is

the origin of the request, RDi
d is the reference distance of the node that originated

the reply, Di
d is the distance attained by node i to destination d, and Di

o is the

distance attained by node i to the origin of the request o.

5.1.2 Information Stored

Node i maintains four tables to operate, and a maximum lifetime (LT) is

allowed for any table entry other than self entries, with the lifetime of each entry

decremented from the moment it is created or updated. The set of neighbors of

node i is denoted by N i.

Link-Cost Table (LCT i): This table is needed if link costs can have different

values. If used, the table contains the cost of each link from node i to each known

neighbor. The cost of link (i, k) is denoted by li
k. By definition, (i, k) > 0 for

i 6= k.

Distance Table (DT i): The entry for destination d of DT i is denoted by

DT i(d) and specifies: the identifier of destination d and the distance to d reported

80

by each known neighbor. The distance reported by node k ∈ N i for destination d

maintained by node i is denoted by Di
kd. If a known neighbor q has not reported a

distance for d, then it is assumed that Di
qd =∞. The vector of distances reported

by neighbor k and stored by node i is denoted by DT i
k.

Routing Table (RT i): The entry for destination d of RT i is denoted by

RT i(d) and specifies: the identifier of d, the shortest distance to d (Di
n), the set

of valid successors (Si
d),and a lifetime for the entry (LRi

d).

The valid successor set Si
d is defined by Eq. (6.1) as follows:

Di
min(d) = Min{Di

dn + li
n | n ∈ N i} (5.1)

Si
d = { k ∈ N i | (Di

dk < Di
d) ∧ (Di

dk + li
k = Di

min(d)) }

The node with the smallest identifier in set Si
d is denoted by si

d. By definition,

Dd
d = 0, Sd

d = {d}, rd
d = 0, and LRd

d =∞.

Pending-Request Table (PRT i): This table keeps track of the route re-

quests waiting for replies. The entry for destination d is denoted by PRT i(d)

and states: the identifier of node d, the smallest reference distance received in

a pending request from a neighbor (RDi
d), a request list RLi

d, and a lifetime for

the entry (LP i
d). The list RLi

d contains of one or more tuples, with each tuple

consisting of the identifier of the origin of a route request and a list of identifier-

distance pairs for all neighbors from which the request was received, which we call

pending-request neighbors. The tuple in RLi
d corresponding to origin o is denoted

by RLi
d(o) and its content is [o, PRN i

d(o)]. The pair in PRN i
d(o) correspond-

ing to neighbor k is denoted by PRN i
dk(o) and equals the pair [k, PDi

ok], where

PDi
ok denotes the distance to origin o reported by k in its route request regarding

destination d.

81

When node i receives a signaling message from neighbor k, it processes each

query and reply in the message independently of the others. We describe the

operation of ODVR by focusing on a particular destination d.

5.1.3 Maintaining Routing State On Demand

ODVR maintains routes on demand for each destination d. This involves

originating route requests, processing route requests from other nodes, updat-

ing routing information, and reacting to topology changes or the expiration of

routing-table entries. Each of these activities is carried out while maintaining

total ordering of nodes with respect to destination d by means of sufficient con-

ditions for loop freedom based solely on the values of the distance and reference

distance maintained by each node for destination d.

Originating Route Requests:

A node with data for destination d originates a request equal to REQi
d[Q, d, o =

i, RDi
d, Di

o = 0, pi
d = i, f i

d = 0] when the following condition is satisfied. The

value pi
d = i given that there is no request predecessor for the route request, and

the value f i
d = 0 requests all the neighbors of node i to process the request.

ORC (Originating Request Condition): Node creates REQi
d if

(6 ∃ PRT i(d)) ∧ ([6 ∃ RT i(d)] ∨ [(∃ RT i(d)) ∧ (Si
d = ∅)]). �

ORC states that a node originates a route request if it is not already waiting

for a reply regarding destination d and either it has no routing state for d or has

routing state but has no valid successor for destination d.

Node i creates PRT i(d) with the identifier of node d, a value for RDi
d that de-

pends on the routing state for d, a lifetime LP i
d = LT , and RLi

d(i) = [i, PRN i
d(i)].

82

The list PRN i
d(i) consists of the tuple [i, PDi

ii = 0].

Node sets RDi
d = 0 if there is no entry RT i(d) to force destination d to respond

to its request. On the other hand, if RT i(d) exists but Si
d = ∅ then node i sets

RDi
d = Di

d to allow a node with a distance smaller than Di
d to respond. Node i

adds the request REQi
d to its signaling message after updating PRT i

d.

Processing Route Requests:

When node i receives a signaling message from neighbor k containing the request

REQk
d = [Q, d, o, RDk

d , Dk
o , pk

d, fk
d] it updates DT i with Di

ok = Dk
o to remember

the distance to the origin of the request reported by k, and determines whether

to forward, answer, ignore, or remember the request using one of the following

sufficient conditions that prevent routing-table loops by ordering nodes based on

their distances to destination d.

FRC (Forwarding Request Condition): Node i forwards REQi
d to all its neigh-

bors if

[(6 ∃ PRT i(d)) ∧ (0 < RDk
d < Di

d)] ∨

[(∃ PRT i(d)) ∧ ([0 < RDk
d < RDi

d] ∨ [∃ PRN i
dk(o)])]. �

According to FRC node i forwards a route request received from a neighbor

in two cases. One case is when node i is not expecting a reply to a prior request

for the same destination d and the request states a non-zero reference distance

smaller than the current distance from node i to d. The other case is when node i

is waiting for a reply and either the reference distance in the new request is smaller

than the reference distance currently assumed by node i or the new request is a

retransmission of a prior request. A request retransmission is recognized because

k is listed as having sent a request regarding d from origin o.

We observe that FRC cannot be satisfied when pk
d = i because RDi

d ≤ RDk
d

83

in that case. Hence, node i can only forward requests that are not the result of a

prior request from i itself.

If FRC is satisfied, node i must create or update PRT i(d). Accordingly, node i

sets RDi
d = Min{RDi

d, RDk
d}, sets LP i

d = LT , and updates RLi
d(o) by adding k to

the list of neighbors requiring a reply, which means that PRN i
dk(o) = PRN i

dk(o)∪

{[k, PDi
ok = Dk

o]}.

Once PRT i is updated, node i computes Di
o = Dk

o + li
k and adds the request

REQi
d [Q, d, o, RDi

d, Di
o, pi

d = k, f i
d = 0] to its signaling message.

RFC (Reset Forwarding Condition): Node i forwards REQi
d only to si

d ∈

Si
d − {k} if

(6 ∃ PRT i(d)) ∧ (RDk
d = 0) ∧ (Si

d − {k} 6= ∅).�

RFC states that a node with a valid routing-table entry for destination d that

receives a “reset request" (a request with a zero reference distance) forwards

the request directly to the neighbor other than k that has the smallest identifier

among the nodes in its valid successor set.

If RFC is satisfied, node i eliminates k as a next hop to d by updating RT i(d)

with Si
d = Si

d − {k}. Node i then creates PRT i(d) with the identifier of node

d, RDi
d = RDk

d = 0, LP i
d = LT , and RLi

d consisting of the tuple RLi
d(o) =

[o, PRN i
d(o)] with PRN i

d(o) = {[k, PDi
ok = Dk

o]}. Node i computes Di
o = Dk

o + li
k

and adds the request REQi
d[Q, d, o, RDi

d = 0, Di
o, pi

d = k, f i
d = si

d] to its signaling

message.

IRC (Ignore Request Condition): Node i ignores REQk
d if

[(fk
d 6= 0) ∧ (fk

d 6= i)] ∨ [(fk
d = 0) ∧ (pk

d = i)].�

IRC states that node i simply ignores a route request explicitly intended for

84

a different node or a request forwarded by a neighbor as a result of processing a

request from node i itself.

SRC (Store Request Condition): Node i stores information from REQk
d with

no other action if

(fk
d = 0) ∧ (pk

d 6= i) ∧ (RDk
d ≥ RDi

d) ∧ (∃ PRN i
d(o)) ∧ (6 ∃ PRN i

dk(o)). �

SRC states that node i can simply add neighbor k as a node that needs a route

for destination d if node i has already forwarded a route request for destination

d from the same origin stated by k and k is not already listed as a neighbor from

which a request from origin o and with a previous hop other than i has been

received.

If SRC is satisfied node i updates PRT i
d. It sets LP i

d = LT and updates

RLi
d(o) with PRN i

d(o) = PRN i
d(o) ∪ {[k, PDi

ok = Dk
o]}.

RRC (Reply Request Condition): Node i sends a reply to REQk
d if

[d = i] ∨ [(RDk
d > Di

d) ∧ (6 ∃ PRT i(d))] ∨ [(fk
d = i) ∧ (Si

n = ∅)]. �

According to RRC node i can answer a request in three cases. Node i can reply

independently of the reference distance stated in the request if it is the intended

destination. Node i can also reply if it is not waiting for a reply for a route to

d and it is closer to d than the reference distance stated in the request. Node i

also replies if the request is explicitly directed to itself (i.e., fk
d = i) and node i

does not have a valid successor to destination d (i.e., Si
d = ∅), in which case node

i informs k that Di
d =∞.

If RRC is satisfied node i can update its routing table regarding origin o. To

do so node i uses Eq. (6.1) to compute Di
min(o) and Si

o and updates Di
o = Di

min(o).

85

Node i then includes the reply REP i
d [R, d, o, RDi

d = Di
d, Di

d, Di
o] in its signaling

message.

Processing Replies:

Nodes process replies opportunistically, given that all signaling messages are sent

in broadcast mode. Nodes are allowed to add new routing-table entries only after

receiving replies that answer requests they have originated or forwarded. Nodes

can update existing routing-table entries after receiving subsequent replies.

When node i receives the reply REP k
d [R, d, o, RDk

d , Dk
d , Dk

o] from neighbor

k, node i first updates DT i by setting Di
dk = Dk

d and Di
ok = Dk

o . Node i then uses

the following condition to determine if it can use the reply from k to answer its

own request or improve its distances to d or o if they are already instantiated in

RT i.

ARC (Accept Reply Condition): Node i accepts REP k
d if

[(6 ∃ PRT i(d)) ∧ (Dk
d < Di

d)]∨

[(∃ PRT i(d)) ∧ (RDk
d < RDi

d)]. �

ARC states that node i can consider using neighbor k as a successor for desti-

nation d if either node i is not waiting for replies to a route request and node k is

closer to d than node i is, or the reference distance reported by k is smaller than

the reference distance that node i must satisfy in its own route request.

Node i does nothing else if ARC is not satisfied, because loop freedom cannot

be ensured by neighbor k. There are two cases to consider when ARC is satisfied.

Case 1: ARC is satisfied and PRT i(d) does not exist.

Node i does nothing else in this case if RT i(d) and RT i(o) do not exist. Alter-

natively, node i uses Eq. (6.1) to compute Di
min(d) and Si

d if RT i(d) exists and to

86

compute Di
min(o) and Si

o if RT i(o) exists. If Di
min(d) 6= Di

d or Di
min(o) 6= Di

o node

i updates Di
d = Di

min(d) and Di
o = Di

min(o) as needed. Node i adds the gratu-

itous reply REP i
d [R, d, i, RDi

d = Di
d, Di

d, Di
i] to its signaling message if RT i(d)

is updated, and adds the gratuitous reply REP i
o [R, o, i, RDi

o = Di
o, Di

o, Di
i] to

its signaling message if RT i(o) is updated.

Case 2: ARC is satisfied and PRT i(d) exists.

Node i uses REP k
d as an answer to its own request in this case. If Dk

d < ∞,

node i updates RT i with Di
d = Di

jk + li
k and Si

d = {k}, else Dk
d = ∞ and hence

node i updates RT i with Di
d =∞ and Si

d = ∅.

Node i updates or creates RT i(o) by computing Di
min(o) and Si

o using Eq. (6.1)

and sets Di
o = Di

min(o). Furthermore, for each origin p for which there is an entry

RLi
d(p) in in PRT i, node i updates or creates RT i(p) by computing Di

min(p) and

Si
p using Eq. (6.1) and sets Di

p = Di
min(p).

Node i adds the reply REP i
d[R, d, o, RDi

d = RDk
d , Di

d, Di
o] to its signaling

message if either PRN i
dq(o) exists for q ∈ N i or node i updated Di

d or Di
o. Node

i then deletes PRT i(d).

Handling Link Changes and Unreliable Transmissions:

To expedite neighbor discovery and make ODVR resilient in the presence of un-

reliable transmissions, each node transmits a signaling message periodically con-

taining a gratuitous route reply REP i
i [R, i, o = i, RDi

o, Di
i, Di

o] for itself with

RDi
i = Di

i = Di
o = 0.

To address the fact that signaling messages may be lost, node i also adds a

gratuitous route reply REP i
d[R, d, o, RDi

d, Di
d, Di

o] with o = i, RDi
d = Di

d and

Di
o = 0 for each destination d in RT i. To reduce the size of signaling messages,

node i can simply include a hash value of the content of RT i if it makes no changes

to RT i from the time it sent its previous signaling message.

87

Link additions are detected through the successful reception of signaling mes-

sages. Link failures are detected either through the link layer or as a result of a

node not receiving any data packets or signaling messages from a neighbor for a

period of time corresponding to the time needed to transmit two or three consec-

utive signaling messages periodically (e.g., gratuitous replies).

If node i detects a change in the cost of link (i, k), it computes Di
min(d) and

Si
d for each destination d for which an entry RT I(d) exists using Eq. (6.1). In

addition, for each destination d for which there is an entry RT I(d) such that

Si
d 6= ∅ and Di

min(d) 6= Di
d node i updates Di

d = Di
min(d) and adds a gratuitous

reply REP i
d[R, d, o = i, RDi

d = Di
d, Di

d, Di
o = 0] to its signaling message.

If node i detects that the link (i, k) to neighbor k has failed, it sets li
k = ∞

in LCT i and treats the link failure as a link-cot change. The entry Di
kd for each

destination d is deleted after its lifetime expires.

Handling Soft-State and Node Reboots:

ODVR is a soft-state protocol. Each entry in DT i, RT i, and PRT i has a finite

lifetime to allow router i to delete entries that become obsolete as a result of

topology changes (e.g., the network is partitioned or a node fails) or lack of data

traffic.

Noe i renews the lifetime of RT i(d) with every data packet it processes for

destination d and deletes the entry if no data traffic is received for d during the

lifetime of the entry. If entry RT i(d) is deleted, node i also deletes entry DT i(d).

If LP i
d reaches 0 the entry PRT i(d) expires and node i deletes the entry and sets

Si
d = ∅ if RT i(d) exists. If node i is a source of data for destination d, node i can

schedule the transmission of a new route request for d according to ORC.

If node i is asked to forward a data packet to destination d and RT i(d) does not

exist or Si
d = ∅, node i adds the gratuitous route reply REP i

d[R, d, o, RDi
d, Di

d, Di
o]

88

with o = i, RDi
d = Di

d =∞ and Di
o = 0 to its signaling message.

If node i initializes or reboots, it only has routing state for itself. It is assumed

that Si
d = ∅ and Di

d = ∞ for any destination for which node i has no routing

state.

5.2 Examples of ODVR Operation

Consider the first example discussed in Section 3 and illustrated with Fig. 2.7.

The importance of using local constraints is that nodes can adapt to topology

changes while incurring far less signaling overhead. If ODVR is used in the same

example, nodes a and b satisfy ADC at node s and hence node s simply updates

Ss
d = {a, b} without incurring any signaling overhead.

The second example we discussed in Section 3 illustrates the importance of

the total ordering of distances to destinations used in ODVR. Fig. 5.1 shows the

same example of Fig. 2.8 when ODVR is used. The routing state at each node is

its distance and successor set to destination d, with the distance shown next to

each node.

According to the operation of ODVR the loss of its routing state for d (and

any other destination) at time t2 dictates that the route request it originates at

time t3 must use a zero reference distance as shown in Fig. 5.1(c). As we assumed

for the case of AODV, the request from c is not received by b but is received by a.

Fig. 5.1(d) shows that, when node a processes the request from c stating

RDc
d = 0, it applies RFC and forwards the request explicitly to node b because

it is its current best next hop to destination d. By the same token, as Fig. 5.1(e)

shows, node b forwards the request explicitly to node c, which is its best next hop

to destination d.

As Fig. 5.1(f) shows, at time t6 node c applies RRC when it process the

89

Figure 5.1: No routing-table loop occurs with ODVR even when nodes lose
routing state and messages are unreliable

request from node b and states Dc
d =∞. When node b processes that reply, ARC

is satisfied and as Fig. 5.1(g) shows node b must send a reply to node a’s query at

time t7 with Db
d =∞. By the same token, as Fig. 5.1(h) shows node a must send

a gratuitous REP stating Da
d = ∞ to all its neighbors. Different outcomes from

the one in Fig. 5.1 would result if more messages were lost or different topology

changes took place. However, the end result with any outcome is that no routing-

table loops can be created given that nodes without routing state for a destination

implicitly assume an infinite distance to the destination and are required to ask

the destination itself to answer their route requests.

third example of the operation of ODVR illustrates the performance improve-

ments derived from the aggregation of route requests. Fig. 5.2 shows a MANET

in which ODVR is used and four different sources request routes for the same

90

destination d. Independently of the timing of route requests, each node forwards

only a single route request for d , because either nodes attain valid routes to

destination d or aggregate route requests.

Figure 5.2: Nodes receive fewer requests when request aggregation is used

Even if routes are not established by the time subsequent requests for d are

received, a node receives a number of signaling messages with route requests for

d equal to its number of neighbors. By contrast, with AODV other on-demand

routing protocols, unless routing state is instantiated at a node each node forwards

a number of requests equal to the number of sources of requests.

5.3 Correctness of ODVR

The following theorems prove that nodes using ODVR maintain loop-free rout-

ing tables at every instant and any node with data for a destination obtains a route

to the destinations in a finite time, provided that there is a physical path available.

We assume the same notation introduced in Section 5. The values of Di
d, Di

dn and

Si
d at a specific time t are denoted by Di

d(t), Di
dn(t) and Si

d(t) , respectively.

Theorem 13. No routing-table loops can exist for destination d if Di
d = ∞ or

Di
dsi

d
< Di

d <∞ for any network node i other than d at every instant of time.

Proof. Consider a set of nodes {v1, v2, ..., vh, v1} different than destination d. As-

sume that this set of nodes create a routing-table loop L of h hops by setting

91

svi
d = vi+1 for 1 ≤ i ≤ h − 1 and svh

d = v1. For the sake of contradiction, further

assume that each node in loop L satisfies the ordering constraint Dvi
d = ∞ or

Dvi
dvi+1

< Dvi
d <∞ for 1 ≤ i ≤ h− 1 and Dvh

d =∞ or Dvh
dv1 < Dvh

d <∞.

Loop L cannot exist if Dvi
d =∞ for any i with 1 ≤ i ≤ h− 1 because then vi

has no next hop to d. It thus follows that Dvi
dvi+1

< Dvi
d < ∞ for 1 ≤ i ≤ h − 1

and Dvh
dv1 < Dvh

d < ∞. This, however, is a contradiction, because it implies that

Dvi
d > Dvi

d for 1 ≤ i ≤ h− 1 and Dvh
d > Dvh

d . Therefore, the theorem is true.

Theorem 21 states that any routing protocol that satisfies the stated ordering

constraint at every instant ensures loop-free routing. The proof of the follow-

ing theorem demonstrates that ODVR enforces this ordering constraint at every

instant.

Theorem 14. ODVR ensures that Di
d =∞ or Di

dsi
d

< Di
d <∞ for any network

node i other than destination d at every instant.

Proof. The ordering constraint O of the theorem can be expressed as:

O ≡ [Di
d =∞] ∨ [Di

dsi
d

< Di
d <∞]

≡ [Di
d =∞] ∨ [(Di

dsi
d

< Di
d) ∧ (Di

d <∞)]
(5.2)

Given that no distance can be larger than infinity, we have:

O ≡ [Di
d =∞] ∨ [(Di

dsi
d

< Di
d) ∧ ¬(Di

d =∞)]

≡ ([Di
d =∞] ∨ [Di

dsi
d

< Di
d]) ∧ ([Di

d =∞] ∨ [¬(Di
d =∞)])

≡ [Di
d =∞] ∨ [Di

dsi
d

< Di
d]

(5.3)

Assume for the sake of contradiction that every node executes ODVR correctly

and O is not satisfied at some instant of time t. Then there must be at least one

node i that executes ODVR correctly and such that ¬O is true at time t. From

92

Eq. (5.3) and DeMorgan’s law our assumption means that node i updates its

routing state for destination d at time t such that

¬O ≡ [Di
d(t) <∞] ∧ [Di

dsi
d
(t) ≥ Di

d(t)] (5.4)

From the operation of ODVR, if node i has no routing state for destination d

at time t then Di
d(t) = ∞. Hence, it must be true that node i has routing state

for d at time t so that Di
d(t) <∞ and ¬O in Eq. (5.4) can be satisfied.

Let Di
d(t) < ∞. According to the correct operation of ODVR, node i can

select a successor for destination d at time t only if ARC is satisfied when a reply

is processed. However, node i must use Eq. (6.1) to select a valid successor to

destination d in this case, and this requires that Di
dsi

d
(t) < Di

d(t). This implies

that the correct operation of ODVR is a contradiction to ¬O stated in Eq. (5.4).

Therefore, the theorem is true.

Theorem 15. ODVR provides loop-free routing at every instant.

Proof. The proof follows from Theorems 21 and 14.

A routing protocol can be free of routing-table loops without providing routes

to destinations even if physical paths exist. The proof of the following theorem

shows that ODVR provides valid routes to destinations within a finite time if

physical connectivity exists. To address the ability of ODVR to provide sources

with loop-free routes to their intended destinations within a finite time, we assume

that no messages are lost and no topology changes or failures occur after time t0.

From that instant messages are sent reliably, the topology is static and no nodes

fail or restart.

Theorem 16. A finite time after all topology changes and message errors subside

in a connected network in which ODVR is used, then every source node with data

93

for a destination d must establish a valid route to d within a finite time.

Proof. Assume that ODVR is used in a network in which all topology changes

and message errors subside by time t0 and consider a connected component C of

the network that includes destination d and a node i with data for d after time

t0.

Because no topology changes, link-cost changes, or message errors occur after

time t0, every node in C knows all its active neighbors and the finite cost of each

adjacent link to a neighbor by some finite time t1 with t0 ≤ t1 <∞. Assume for

the sake of contradiction that at a node i has data for destination d but cannot

establish a valid route to it at any arbitrary time after time t1.

If node i does not have routing state for d at time t2 ≥ t1, it must issue a

route request with RDi
d = 0 and f i

d = 0 that only d can answer. According to

FRC and RFC, the request from i must traverse at least one simple path Pid to

d because each node receiving the request must either forward the request to all

its neighbors or to a next hop along a simple path towards d given that ODVR

can only establish loop-free routes (Theorem 22). Therefore, destination d must

receive the request from i and sends a reply that traverses the loop-free reverse

path Pdi back to node i within a finite time because all messages are sent correctly

after time t0.

If RT i
d(t2) exists and Si

d(t2) = ∅, node i must issue a request with RDi
d = Di

d(t2)

and f i
d = 0 that any node p ∈ C other than node i with Dp

d ≤ RDi
d = Di

d(t2) can

answer. This must occur because Dd
d = 0 < RDi

d.

Given that ODVR can only establish loop-free routes (Theorem 22), if entry

RT i
d(t2) exists and Si

d(t2) 6= ∅ but no neighbor of node i in Si
d(t2) is part of a valid

route, any implicit route resulting from a neighbor in Si
d(t2) must terminate at a

node with an empty successor set for d. According to the operation of ODVR,

94

each node k ∈ C sends a gratuitous reply periodically for destination d if RT k(d)

exists, sends a gratuitous reply if it is asked to forward a data packet for d and

RT k(d) does not exist or Skd = ∅, and deletes RT k(d) if its lifetime expires after

not receiving data traffic for d. Accordingly, within a finite time after time t2

node i must have deleted RT i(d) before it becomes a source of data for d again,

or it sends data packets towards d and receives gratuitous replies for d from all

its neighbors in Si
d(t2) stating infinite distances to d. In either case, node i must

issue a route request for d after time t2 stating either RDi
d = Di

d(t2) or RDi
d =∞,

and it follows from the argument above that node i must receive a reply.

5.3.1 Protocol Complexity

To compare the complexity of ODVR with other MANET routing approaches,

we focus on their time and communication complexities. We assume that each

transmission is reliable and reaches all neighbors of a node. The communication

complexity (CC) of a routing protocol is the number of messages that must be

transmitted successfully for each node to have correct routing information about

all the destinations of interest after a single link failure. The time complexity (TC)

of a routing protocol is the maximum time needed for all nodes to have correct

routing information for all destinations of interest after a single link failure.

We assume that all nodes have a stable topology state and a stable routing

state for a destination of interest. For the case of AODV this means that all nodes

with active routes to the destination of interest hold the same sequence-number

value. Furthermore, we only consider the complexity of the protocols after a single

link failure that does not partition the network. This allows us to discuss the

worst-case signaling for on-demand routing and the inherent signaling overhead

of the approaches without having to worry about the possibility of routing-table

95

loops in AODV due to the loss of routing state. The number of nodes in the

network is N and the network diameter after the link failure is h. A node n is the

head of the failed link (n, d) and is also a source of data for destination d whose

route is broken because of the failed link. In addition, there may be S − 1 > 0

other sources of data for the same destination of interest whose routes are broken

because of the link failure. For simplicity, we assume S to be smaller than the

maximum degree of a network node. Fig. 5.3 illustrates the scenario with S = 3.

All the physical paths indicated in the world necessarily have lengths smaller than

or equal to the network diameter after the link failure.

Figure 5.3: Nodes n, a and b are sources of data for d

OLSR: A link-state update (LSU) stating the loss of a link must be sent all

the nodes in the network. Each LSU is disseminated using intelligent flooding in

which the LSU takes the fastest path from the origin of the LSU to every other

node in the network and each node transmits the LSU regarding the failed link

once. Accordingly, the time and communication complexities of OLSR are:

TCOLSR = O(h); CCOLSR = O(N) (5.5)

AODV: Because node n is assumed to have data for destination d, the node

is required to issue a route request with a higher sequence number. The request

by node n cannot be satisfied by any node other than the destination of interest

96

and hence the request is disseminated to each network node, and only the nodes

along a path from the destination of interest and source n need to forward the

reply and such a path cannot be larger than h hops. The path between node n

and the farthest source from n in the group of other sources cannot be longer

than the network diameter h. Therefore, in the worst case, the route request from

n may traverse no more than h hops to reach all other sources and each request

generated by the other S − 1 sources is received by at most N − 1 other nodes,

traverses at most h hops to the destination of interest and the reply traverses no

more than h hops back to the source requesting the route. Accordingly, the time

and communication complexities of AODV when S > 1 sources are affected by a

link failure are:

TCAODV = O(3h); CCAODV = O(S(N + h)) (5.6)

ODVR: In the worst case of the scenario we assume, none of the sources with

routes affected by the link failure find a neighbor that satisfies Eq. (6.1). The time

and communication complexities for ODVR are the same as in AODV, because

each of the other S − 1 sources can be up to h hops away from n and their own

distances to d may be up to h hops. We therefore have:

TCODV R = O(3h); CCODV R = O(S(N + d)) (5.7)

As Eqs. (5.5) and (5.7) show, ODVR and AODV may incur more signaling

overhead than OLSR in the worst-case scenario we have presented. However, the

upper bound for the complexity of ODVR is very loose, because a link failure may

incur time and communication complexities equal to Ω(1). That lower bound on

the complexity of ODVR would occur when n has neighbors with distances to d

97

that are smaller than or equal to RDn
d or paths of length Ω(1) to d in which replies

can be sent that satisfy RDn
d , which causes the request and replies to traverse only

a few hops, rather than being disseminated throughout the entire network as it

must occur in AODV because only the destination can increase its own sequence

number.

5.4 Performance Comparison

The performance of ODVR is compared against two other MANET routing

protocols: AODV and OLSR. We implemented the ODVR protocol in the network

simulator (ns3.24) and used the ns3 implementations of AODV and OLSR without

modifications.

OLSR uses HELLO messages to discover and check neighbor connectivity and

Topology Control (TC) messages to disseminate link-state information throughout

the network. To reduce signaling overhead, OLSR takes advantage of connected

dominating sets. Some nodes are elected as multipoint relays (MPRs) and only

MPRs forward TC messages, and only link-state information needed to connect

MPRs is advertised in the network.

In this study we considered three metrics to analyze the performance of rout-

ing protocols:Data Packet Delivery Ratio (DPDR), Signaling Overhead (overhead

for short), and End-to-End Delay. DPDR indicates the number of packets re-

ceived by destination routers divided by number of packets sent by the source

routers. The Overhead is the total number of routing message (in bytes) for the

duration of simulation. The signaling overhead in AODV includes its five types of

packets: requests, replies error messages, ACKs to replies, and HELLO messages.

In OLSR, the signaling overhead includes, Topology Control (TC) and HELLO

messages. The signaling overhead of ODVR includes all the REQUEST and RE-

98

PLY messages it broadcasts. Average delay is the duration of transmitting a data

packet till it reaches the destination, including all delays enforced by buffering

during route discovery phase, queuing at the output queue, propagation delay

and transfer times.

5.4.1 Simulation Results

The simulated network consisted of 50 nodes spread uniformly and randomly

in a 300 × 1500m area at the beginning of the simulation. all nodes started the

experiment at a random location within the simulation area and moved as defined

by the random waypoint model [87]. In this model, each node selected a random

destination within the working area and moved linearly to that location at a

predefined speed. After reaching its destination, it paused for a specified period

(pause time) and then selected a new random location and continue the process

again.

Figure 5.4: Simulation parameters

The scenarios include 25 data flows from 25 different source routers to different

destinations that are chosen randoomly. Traffic sources are on-off applications

with on and off time of 1 second, which generate packets of size 512 bytes and

99

Figure 5.5: Performance comparison as a function of Node Speed.

Figure 5.6: Performance comparison as a function of Pause Time.

rate of 15 packets per second. Figure 5.4 shows the summary of simulation-

environment settings for the routing protocols.

We have simulated three different scenarios to study the behavior of routing

protocols with respect to Mobility and number of Data Flows. These scenarios

were chosen to stress all three protocols, rather than to attain good performance

for either on-demand or proactive routing.

5.4.2 Effect of Mobility

We study the effect of mobility on the performance of routing algorithms by

changing the pause time and speed of nodes. The longer pause time means the

network is more steady and less topology changes. Speed of nodes is another

parameter in mobility, and higher speed means more change in the network.

The results of measurements as a function of node speed are shown in figure

6.1. The packet delivery rate decreases as the router speed increases due to more

topology changes. Routes break due to fast movement of nodes and packets drop

100

till the routing protocol finds a new route.

The OLSR will detect the link failure after failure in reception of HELLO

messages and sends TC messages to inform all routers of the topology so that

new routes can be established. Given that TC messages contains all changes

take place between periodic updates, the signaling overhead increases to address

topology changes in the network.

Link failures in AODV and ODVR are detected by the absence of a num-

ber of consecutive Hello messages, and a route discovery process is performed

to establish new route between source and destinations. Because of the delays

incurred in detecting link failures and in establishing new routes after that, as

router speed increases more and more data packets traversing failed routes end

up being dropped.

The ODVR has less overhead compare to AODV and OLSR, because it only

sends changes in active routes, has smaller data to send (compare to AODV

that sends sequence number of both source and destination), and route requests

satisfies by middle nodes rather than destination itself. In OLSR, TC messages

must be disseminated by MPRs throughout the network and in AODV, each

RREQ is flooded throughout the network. By contrast, a Request in ODVR will

be propagated in a small part of the network because the only criteria is the node

satisfies the request be closer to the destination than the node originated the

request. This characteristic of ODVR also causes shorter search time and results

in smaller end to end delay compare to other routing algorithms.

In next scenario, we studied the affect of pause time on performance of routing

protocol. Figure 6.2 shows the packet deliver, delay, and overhead as a function of

node pause time. Pause times vary from 0 seconds (high mobility) to 200 seconds

(low mobility), and speed of individual nodes is chosen randomly from 0 to 20

101

Figure 5.7: Performance comparison as a function Number of Sources.

m/s. The other parameters remain the same.

The packet delivery ratio of OLSR and ODVR are very close and are higher

than AODV protocol. ODVR imposes shorter delay, compare to other two al-

gorithms which means it converges faster and forwards packets faster than the

other two protocols. Similar to the variable speed scenario, ODVR introduces

less overhead compare to AODV and OLSR due to smaller messages and smaller

number of nodes that forward the REQUESTs.

5.4.3 Effect of Number of Flows

In this scenario, the affect of data traffic and number of connections on perfor-

mance is studies and results are reposter in figure 6.3. Sources and destinations are

selected randomly and number source/destination pair varies between 20 (average

data flow) to 40 (high data flow).

The delivery rate decreases and the average end-to-end delays increase for all

three protools as the number of sources increases. More traffic will cause more

more congestion in the network. Also, a link failure will affect more transmissions

when the number of data flows increases. The ODVR has better performance

when number of connections are more than 30 and offers better delay, compare

to AODV and OLSR. The signaling in OLSR is independent of the number of

connections in the network, hence the total signaling overhead remains the same.

AODV and ODVR signaling increases as the number of connections increase,

102

because they have to recover more path due to topology change in the netwrok.

5.5 Summary

We introduced ODVR, the first on-demand routing protocol that eliminates

routing-table loops by ordering nodes based solely on the distances they maintain

and advertise to destinations, as well as reference distances they state in route

requests. Routing state is established on demand by means of route requests

stating the reference distance that a responder must satisfy to be allowed to reply.

Intended destinations or nodes that meet the reference distances respond with

replies, and nodes also send distance updates regarding the sources of requests

and active destinations.

We proved that ODVR maintains loop-free routing tables at every instant

and can converge to valid routes within a finite time. The correct behavior of

ODVR does not depend on how long routing state is maintained for a destina-

tion or the reliability of signaling messages. We compared the performance of

ODVR withAODV and OLSR, which are well-known examples of on-demand and

proactive routing, taking into account the effect of mobility, number of flows, and

network size on the performance of the protocols. The simulation results show

that ODVR attains much better performance than the two other protocols.

103

Chapter 6

Adaptive Approach to Routing in

Ad-Hoc Networks

An efficient routing protocol for MANETs, is the one that takes advantage

of the strengths of both reactive and proactive routing algorithms and to adapts

its behavior at the appropriate time and for the appropriate scope of the net-

work. This motivates the study of hybrid MANET routing protocols. The main

contribution of this work is to propose a hybrid routing protocol.

This chapter introduces ADRP (Adaptive Distance-Vector Routing Protocol),

a hybrid routing algorithm for mobile ad-hoc networks that calculates loop-free

routes at every node based on the distances to destination and reference distances

maintained by nodes.

We describe the ADRP in details and illustrate the signaling, operation, and

decision making of ADRP. We prove that ADRP is loop-free at every instant inde-

pendently of the state of the topology, the amount of time a node stores routing

state, or the reliability or timing with which signaling messages are exchanged

among nodes.

104

6.1 ADRP Operation

ADRP is a node-centric hybrid routing that combines on-demand and proac-

tive routing and calculates shortest path to destination solely based on the distance

information each node maintains. ADRP adapts between reactive and proactive

routing by varying the amount of routing information shared. It does so, by defin-

ing a proactive node, a hot-spot node called pop-node. Paths between pop-nodes

and all other nodes are maintained proactively. The protocol uses the reactive

approach to establish routes to normal-nodes.

ADRP amortizes the cost of maintaining routes to a popular destination among

all the sources that communicate with that destination node. Hence, it is well

suited for applications that exhibit spatial locality in their network communica-

tions. In IoT applications for example, selected nodes performing data aggregation

act as hot destinations for data generated by nearby nodes, or some gateway nodes

are connected to Internet and responsible for data flow from nodes in that net-

work to a destination in the cloud. In these type of applications, the popularity of

nodes follows a Zipf-distribution, making some nodes more popular than others.

ADRP maintaining total ordering of nodes with respect to a destination by

means of sufficient conditions for loop freedom based solely on the values of the

distance maintained by each node for each destination. Similar to ODVR (Section

5) , ADRP finds failsafe loop-free routes to destination where each node in the

network (a) selects a neighbor as next hop if and only if it is closer to destination,

(b) accept reply to route requests only if they are created by the destination itself

or and intermediate node that is closer to the destination than the node requesting

the routes. On top of these two assumptions, ADRP implies that each node, (c)

process only those gratuitous replies that are generated by the destination itself

or a node that is closer to the destination than the node itself.

105

To establish total ordering among nodes, request and reply messages state a

reference distance to the destination. A node processes and forwards gratuitous reply

messages with a smaller reference distance than its current distance and updates

its routing state based on the result of processing those messages. A node trusts

only those messages stating the distance smaller than its current reference distance

and trust replies stating the reference distance it requires.

ADRP treats routes to pop-nodes different than regular nodes. If a node loses

the routing state regarding a pop-node, it will try to find a valid route to that

destination even it does not have any traffic for it. In this case if the node can

not find a route, will wait if it receives a reply originated by a node closer to

destination. If it does not receive such a message it will generate request. To

limit signaling overhead in ADRP , any node with a valid routing-table entry for

that destination will generate gratuitous reply whenever it detects a change in

distance to that destination.

To distinguish between receiving a retransmission of a reply message by a given

source from receiving multiple copies of the same message we suggest to forward

only the first instance of the message originated by any source or those that cases

a change in routing state. We introduce the Reply history table (RHT). RHT

is used by a node to process reply message and to add or update routing-table

entries. A node adds a routing-table entry for a destination only when the node

receives a reply to a pending route request regarding either a normal- or pop-node

or receives a gratuitous reply regarding a pop-destination. A node can update an

existing routing-table entry when it receives a valid a reply regarding that entry.

To avoid deadlocks in the presence of signaling messages being lost, a pop-node

transmits gratuitous reply messages periodically. Note that, Ad-hoc networks are

dynamic and each node will send an update if it detects a change in routing table

106

entry for a pop-node and has a valid rout to destination or originate a route

request if it can not find a valid route to any active destination. Therefore the

time interval between periodic messages can be large to reduce the signaling.

6.1.1 Information Exchanged

All signalings in ADRP are in broadcast mode among neighboring nodes. A

signaling message sent by node i at time t is denoted by SM i(t) and contains the

identifier of the node (i) and one or multiple signaling entries. A signaling entry in

a message transmitted by node i regarding destination d consists of a tuple (type,

payload), where the type and payload of the entry varies depending on the type

of entry. Similar to ODVR, ADRP uses (REQ) and the reply (REP) messages:

REQi
d[Q, d, o, RDi

do, Di
o, pi

d, f i
d] denotes a route request sent by node i

for destination d originated by node o. In this tuple, Q states that the entry is a

request, d is the destination identifier, o is the identifier of the origin of the request,

RDi
d is a reference distance to d used to prevent routing loops, Di

o is the distance

attained by node i to the origin of the request, pi
d denotes the request predecessor

(i.e., the neighbor from which node i received the request before forwarding it),

and f i
d states the neighbor(s) of node i that must process the request. If f i

d = 0,

the request should be processed by every node that receives the request.

REP i
d[R, d, o, RDi

do, Di
d, Di

o, f i
d] denotes a reply sent by node i for destina-

tion d. The value R states that the entry is a reply, d is the destination identifier,

o is the origin of the request, RDi
d is the reference distance of the node that orig-

inated the reply, Di
d is the distance attained by node i to destination d, Di

o is the

distance attained by node i to the origin of the request o, and f i
d is the join flag

states the status of the status of the destination node. If f i
d = 0, the destination

is no longer a pop-node and every node that receives this update should change

107

the state of that node to a normal node.

6.1.2 Information Stored

Node i maintains five tables to operate, each maintain multiple entries. A

maximum lifetime (LT) is associated with each entry, resetting after creation or

an update to that entry.

Link-Cost Table (LCT i): This table is needed if link costs can have different

values. If used, each entry li
k states the cost of each link from node i to neighbor

node k. For simplicity, we use the hop count as the routing metric so all link costs

are the same and equal to one.

Distance Table (DT i): Is the table that stores information reported by each

neighbor. The entry for destination d of DT i is denoted by DT i(d) and specifies:

the identifier of destination d and the distance to d reported by each known

neighbor. The distance reported by node k ∈ N i for destination d maintained by

node i is denoted by Di
kd. If a known neighbor q has not reported a distance for

d, then it is assumed that Di
qd =∞. The vector of distances reported by neighbor

k and stored by node i is denoted by DT i
k.

Routing Table (RT i): The entry for destination d of RT i is denoted by

RT i(d)[d, Di
d, RDi

d, Si
d, LRi

d, sf i
d, uf i

d] and specifies: the identifier of d, the shortest

distance to d (Di
d), the reference distance to destination which is the smallest

value of Di
d up to time t, the set of valid successors (Si

d), a lifetime for the entry

(LRi
d), a state flag sf i

d, and a change flag uf i
d, indicating whether the entry should

be send in the next signaling message or not. The state flag represents whether

the destination is pop-node or not. There is an entry for node itself in the routing

table: RT d(d)[d, 0, {d}, LRd
d, 1, 0]. The lifetime (LRd

d), represents the periodic

update timer and the node d will send an update once this timer is expired.

108

The valid successor set Si
d is defined as follows:

Di
min(d) = Min{Di

dn + li
n | n ∈ N i} (6.1)

Si
d = { k ∈ N i | (Di

dk < RDi
d) ∧ (Di

dk + li
k = Di

min(d)) }

The node with the smallest identifier in set Si
d is denoted by si

d. By definition,

Dd
d = 0, Sd

d = {d}, rd
d = 0, and LRd

d =∞.

Pending-Request Table (PRT i): This table keeps track of the route re-

quests waiting for replies. The entry for destination d is denoted by PRT i(d)

and states: the identifier of node d, the smallest reference distance received in a

pending request from a neighbor (PRDi
d), a request list RLi

d, and a lifetime for

the entry (LP i
d). The list RLi

d contains of one or more tuples, with each tuple

consisting of the identifier of the origin of a route request and a list of identifier-

distance pairs for all neighbors from which the request was received, which we call

pending-request neighbors. The tuple in RLi
d corresponding to origin o is denoted

by RLi
d(o) and its content is [o, PRN i

d(o)]. The pair in PRN i
d(o) correspond-

ing to neighbor k is denoted by PRN i
dk(o) and equals the pair [k, PDi

ok], where

PDi
ok denotes the distance to origin o reported by k in its route request regarding

destination d.

Reply-History Table (RHT i): plays plays a major role in ADRP by keep

tracking of received Replies. The content of RHT i is simply the identifiers of

destinations whose the node received update messages from and the set of neighbor

nodes that forwarded that update. An entry for destination d is denoted by RHT i
d

and states d the destination, o the origin of the update, d the destination, the list

of identifies for all neighbors for which the update was received, which we call it

forward update neighbors (FUN i
d(o)), and LT i

do the lifetime associated with this

109

entry.

6.1.3 Maintaining Routing State

When node i receives a signaling message from neighbor k, it processes each

entry in the message independently of the others. We describe the operation of

ADRP by focusing on a particular destination d. In the following, it is assumed

that a node processes all signaling messages in the same order it receives and all

entries in the same order as they are in the message.

ADRP maintains routes either on demand or proactive for each destination

d based on the type of the destination. By default all nodes are normal node,

therefore the routes are calculated on demand. A destination can force other nodes

to calculate the route proactively by sending gratuitous reply messages and sets

the flag to one. Route maintenance for on-demand destinations are the same as

ODVR we mentioned in 5.1.3. In the rest of this section, we discuss the operation

of ADRP to maintain routes to proactive destinations (i.e. pop-destination).

ADRP relies on REQ and REP messages, to obtain and maintain valid routes

to a pop-destination. This involves originating route updates as well route re-

quests, processing route requests from other nodes, update routing information,

and reacting to topology changes or the expiration of routing-table entries. Each

of these activities is carried out while maintaining total ordering of nodes with

respect to destination d by means of sufficient conditions for loop-freedom based

solely on the values of the distance and reference distance maintained by each

node for destination d.

Originating Gratuitous Reply:

Once a node becomes a pop-node it sends an Gratuitous Reply set the state

flag to 1, then it sends the Gratuitous Reply periodically. Intermediate nodes,

110

also can initiate sending update message regarding destination d when it detects

a change in its routing entry for d. A node with an update for destination d

originates an update equal to REP i
d[R, d, o = i, RDi

d, Di
d, Di

od, sf i
d = 1] if the

following condition is satisfied.

OGC (Originating Gratuitous-Reply Condition): Node creates the update

REP i
d if

(sfd
d changed) ∨ ([sf i

d == 1] ∧ [(LRi
d expired) ∨ (uf i

d == 1)]). �

ORC states that a node originates a Gratuitous Reply regarding a pop-destination

d if the state of the destination has changed (from normal to pop-node and vice

versa), or the periodic timer has been expired or there is a change in routing entry.

Node d resets its timer after sending the reply. Node i adds the update REP i
d to its

signaling message and broadcast it on its next signaling advertisement. If the des-

tination itself is the originator of then we have: REP i
d[Q, d, o = d, 0, 0, 0, f i

d = 1]

Processing Reply Message:

Nodes process Replies opportunistically, given that all signaling messages are sent

in broadcast mode. Nodes are allowed to add new routing-table entries or update

existing entries after receiving subsequent updates. When node i receives a reply

message from neighbor k, REP k
d , it uses the following conditions to determine if

it can use it to calculate a new route or to improve its distances to d.

ARC (Accept Reply Condition): Node i accepts REP k
d if

[(6 ∃ PRT i(d)) ∧ (Dk
d < Di

d)] ∨ [(∃ PRT i(d)) ∧ (RDk
d < RDi

d)]∨

([6 ∃RT i(d) ∧ d == o]) ∨ (6 ∃ FUN i
d(o)). �

111

ARC states that node i will accept, process, and may forward the reply message if

node k is closer to d than node i is, the reference distance reported by k is smaller

than the reference distance that node i must satisfy in its own route request, or it

is a gratuitous reply for a pop-destination d that is new to the node i, it is from

a new origin, or it is a retransmission of previous reply (periodic update). Node i

will update DT i with Di
d(k) to remember the distance to the destination reported

by k.

Node i does not update routing table if ARC is not satisfied, because loop

freedom cannot be ensured by neighbor k.

Assume the case that ARC is satisfied and RT i(d) does not exist. Node i accept

updates regarding a new destination if the destination itself is the originator of

that update. In this case, node i uses Eq. (6.1) to compute Di
min(d) and Si

d. Node

i updates Di
d = Di

min(d) and set the update flag uf i
d and forwards the update.

If ARC is satisfied and RT i(d) exists, the router checks whether it has received

an update from the same origin before or not. If this is from a new origin then it

will process the update by updating the neighbor table and update routing entry

based on Eq. (6.1). Otherwise, it will check the neighbor forwarded the update.

If it has received an update form that neighbor before then, it accept the update

if either neighbor k is closer to d than node i is, or the reference distance reported

by k is smaller than the reference distance of node i.

After processing the reply message, the node will check its pending table send

reply for every request that it can satisfy. Also deleted the entry the request it

generated itself, if there is any.

FRC (Forwarding Reply Condition): Node i forwards distance update mes-

112

sage REP i
d to all its neighbors if

[(6 ∃ FUN i
d(o)) ∨ (∃ FUN i

d(o) ∧ 6 ∃FUN i
dk(o))]. �

FRC states that node i will propagate the Reply to its neighbors if it is an

update for a new destination, it is an update for a known pop-destination from a

new origin, or a retransmission of a reply (i.e. periodic update).

SRC (Store Reply Condition): Node i stores information from DUP k
d with no

other action if

(sfk
d = 1) ∧ (RDk

d ≥ RDi
d) ∧ (∃ FUN i

d(o)) ∧ (6 ∃ FUN i
dk(o)). �

ADRP keeps track of received updates according to this condition. Node i

stores the information when it is a copy of a previous reply received via a new

neighbor. If SRC is satisfied then the node will update its UHT i
d by simply

adding neighbor k to the list of neighbors forwarded the update RTH i
d(o) =

RTH i
d(o) ∪ RTH i

dk(o). SUC states that node i will add neighbor k as a node

that forwarded an update for destination d originated by o if node i has already

received an update for destination d from the same origin stated by k and k is

not already listed as a neighbor from which an update from origin o and with a

previous hop other than i has been received.

Topology Discovery and Handling Topology Changes:

To expedite neighbor discovery each node transmits a signaling message periodi-

cally containing an update entry REP i
i [U, i, o = i, RDi

o, Di
i, Di

o, sf i
i] for itself

with RDi
i = Di

i = Di
o = 0. sf i

i is set to 1 if the node is pop-node, otherwise 0.

Link additions are detected through the reception of signaling messages. Link

failures are detected either through the link layer or as a result of a node not

113

receiving any data packets or signaling messages from a neighbor for a period

of time corresponding to the time needed to transmit two or three consecutive

signaling messages periodically.

When a node detects a change in link cost or detects link breakage, it tries

to find a valid successor that satisfy the 6.1 for the pop-nodes it already knows.

If it finds such a successor, it will update its routing entry and send update to

its neighbors. On the other hand, if a node can not find a valid successor, it will

generate request with its current reference distance value. So we update the ORC

as follows:

ORC (Originating Request Condition): Node creates REQi
d if

(6 ∃ PRT i(d)) ∧ ([6 ∃ RT i(d)] ∨

[(∃ RT i(d)) ∧ (Si
d = ∅)] ∧ [(sf i

d == 1) ∨ (Si
d = ∅)]). �

ADRP processes such a request based on FRC, RFC, SRC, or RRC.

FRC (Forwarding Request Condition): Node i forwards REQi
d to all its neigh-

bors if

[(6 ∃ PRT i(d)) ∧ (0 < RDk
d < Di

d)] ∨

[(∃ PRT i(d)) ∧ ([0 < RDk
d < RDi

d] ∨ [∃ PRN i
dk(o)])]. �

RFC (Reset Forwarding Condition): Node i forwards REQi
d only to si

d ∈

Si
d − {k} if

(6 ∃ PRT i(d)) ∧ (RDk
d = 0) ∧ (Si

d − {k} 6= ∅).�

SRC (Store Request Condition): Node i stores information from REQk
d with

114

no other action if

(fk
d = 0) ∧ (pk

d 6= i) ∧ (RDk
d ≥ RDi

d) ∧ (∃ PRN i
d(o)) ∧ (6 ∃ PRN i

dk(o)). �

RRC (Reply Request Condition): Node i sends a reply to REQk
d if

[d = i] ∨ [(RDk
d > Di

d) ∧ (6 ∃ PRT i(d))] ∨ [(fk
d = i) ∧ (Si

n = ∅)]. �

The detail descriptions of these conditions can be found in 5.1.3. When a node

accept a reply for a pop-destination, it also resets the reference distance to the

current distance: RDi
d = Di

d.

Dealing with Unreliable Transmissions:

To make ADRP resilient in the presence of unreliable transmissions, each node

transmits a signaling message periodically containing a gratuitous route reply

REP i
i [R, i, o = i, RDi

o, Di
i, Di

o] for itself with RDi
i = Di

i = Di
o = 0.

To address the fact that signaling messages may be lost, node i always sync

its NT i
n with its neighbor. If there is any mismatch between neighbors routing

state stored in neighbor table and the actual values they will exchange message

till the mismatch(s) get fixed.

Handling Soft-State and Node Reboots:

ADRP is a soft-state protocol. There is a timer associated to each entry in in

DT i, RT i, and PRT i to delete entries that become obsolete as a result of topol-

ogy changes. (e.g., the network is partitioned or a node fails). Node i renews

the lifetime of RT i(d) with processing every update as well as data packets for

destination d. Node i will mark pop-destination d as unreachable if if does not

receive update messages for that destination and sets the distances in the vector

are set to ∞, however it keeps the value of the reference distance as the previous

115

distance before updating entry. If node i can not find a valid next hope to a pop-

destination, node i will send a gratuitous reply Replyi
d[R, d, o, RDi

d, Di
d, Di

o] with

o = i, RDi
d = Di

d = ∞ and Di
o = 0 to all its neighbors and waits for a specific

amount of time for an update that satisfy ARC. If it does not receive such an

update it can obtain a route through the on-demand process by sending request

message.

6.2 Loop Freedom in ADRP

The following theorems prove that nodes using ADRP maintain loop-free rout-

ing tables at every instant. The proof that any node obtains a route to the des-

tinations in a finite time, provided that there is a physical path available, can be

derived from this result.

All nodes coordinate using the equation 6.1 and a routing-table loop is created

with respect to a specific destination after processing an update or reply message.

We assume the same notation introduced in Section 6.1. The values of Di
d, Di

dn,

RDi
d, and Si

d at a specific time t are denoted by Di
d(t), Di

dn(t), RDi
d(t) and Si

d(t)

respectively.

Lemma 17. Consider the case that a node has updated its routing at time t[new]

and change its successor from old one k[old] a new successor k[new] or adding

k[new] to its successor set Si
d after processing of a gratuitous reply REP i

dk[new](o).

It must be true that:

RDi
d(tnew) <= RDi

d(told). �

Proof. node i process REP i
dk[new](o) if Di

dk[new] < RDi
d. Hence, neighbor k[new]

passes the first check of Eq. (6.1). The distance after adding the new successor

to the set will be calculated by Di
min[new](d) = Min{Di

min[old](d), Di
dk[new] +

116

li
k[new]} Therefor, Di

min[new](d) <= Di
min[old](d). By definition, the RDi

d(tnew) =

Min{RDi
d(tnew), Di

min[new](d)}, which proof the lemma.

Lemma 17 proofs that the reference distance will be decreasing if a node process

a reply message.

Lemma 18. Consider a set of nodes i, i + 1 such that i + 1 ∈ Si
d. Then, at

anytime t it must be true that RDi
d(t) > RDi+1

d (t).

Proof. Node i will select node i + 1 as a result of processing a route reply . If it

is processing a gratuitous reply then it must be true that RDi
d(t) > Di+1

d (t). Also

by definition, Di+1
d (t) >= RDi+1

d (t). Hence, RDi
d(t) > RDi+1

d (t). If node i choose

node i + 1 after processing an REP then from the operation of the ADRP we

have: RDi
d = Di

min(d) and from 6.1 we have: Di
d[i+1] + li

i+1 = Di
min(d). Because,

li
i+1 > 0 we have: Di

d[i+1] = Di+1
d < Di

min(d) = RDi
d. Substituting RDi+1

d < Di+1
d

we have: RDi
d(t) > RDi+1

d (t).

Lemma 19. Despite any change in the network, every node will process the reply

to its latest request that reflects the smallest reference number.

Proof. Assume that node i is waiting for replies for its request, REQi
d(RDi

d =

rd1). Assume that node i does not process any update message, hence does

not change its reference distance. According to ARC Node i simply ignores any

reply, REP i
d(Do

d > rd1). Now assume that node i update its routing entry for

destination d as a result of processing of an update message. According to lemma

17 rd2 = RDi
d(tnew) <= RDi

d(told) = rd1. Hence, any request been sent after

that will be sent by REQi
d(RDi

d = rd2 <= rd1) and replies to previous one will

be ignored.

Theorem 20. No routing loop can be created as a result of processing a REP

message.

117

Proof. Consider a set of nodes l = {v1, v2, ..., vh, v1} different than destination d

and let svi
d , Dvi

d and Dvi

ds
vi
d

denote the next hop, distance to d, and distance to

d through the next hop at node vi, respectively, with Dvi

dsi
i

= Dsi
d . Assume that

this set of nodes create a routing-table loop L of h hops by setting svi
d = vi+1 for

1 ≤ i ≤ h− 1 and svh
d = v1.

We consider two cases:

cCase 1: processing a gratuitous reply: For the sake of contradiction, further

assume that each node in loop L satisfies the ordering constraint Dvi
d = ∞ or

Dvi
dvi+1

< Dvi
d < ∞ for 1 ≤ i ≤ h − 1 and Dvh

d = ∞ or Dvh
dv1 < Dvh

d <

∞. Assume that the loop formed at time t when vh process its route reply

UPDvh
v1 and changes its successor to v1. It must be true that before process-

ing the DUP we have : RD
vh−1
d (told) >= RDvh

d (told). Based on 17 we have

RDvh
d (told) > RDvh

d (tnew) and reference distance of node vh−1 remains the same.

So we have: RD
vh−1
d (tnew) = RD

vh−1
d (told) > RDvh

d (told) >= RD
vh−1
d (tnew). Hense,

RD
vh−1
d (tnew) > RD

vh−1
d (tnew). Traversing through the loop l based on lemma 18

we have:

RDv1
d > RDv1

d

which is a contradiction.

case 2: processing a reply to a request: For the sake of contradiction, further

assume that each node in loop L satisfies the ordering constraint Dvi
d = ∞ or

Dvi
dvi+1

< Dvi
d <∞ for 1 ≤ i ≤ h− 1 and Dvh

d =∞ or Dvh
dv1 < Dvh

d <∞. Assume

that the loop formed at time t when vh process its route reply REP vh
v1 and changes

its successor to v1. We argue that the origin of the reply can not be any node in

the loop. By definition, node vh can not be the originator of that reply. Assume

that, node vi ∈ l ∧ vi 6= vh is the origin of the reply. Based on ARC we have:

118

Dvi
d < RDvh

d and also by definition RDvi
d <= Dvi

d . Therefor:

RDvi
d < RDvh

d

Traversing through the loop from node vi to node vh and apply lemma 18 we have:

RDvi
d > RD

vi+1
d > RD

vi+2
d > ... > RDvh

d

Which implies:

RDvi
d > RDvh

d

and this is a contradiction. Therefore, no routing loop can be created as a result

of processing of an REP message.

Theorem 21. No routing-table loops can exist for destination d if Di
d = ∞ or

Di
dsi

d
< Di

d <∞ for any network node i other than d at every instant of time.

Proof. Consider a set of nodes {v1, v2, ..., vh, v1} different than destination d and

let svi
d , Dvi

d and Dvi

dsi
i
denote the next hop, distance to d, and distance to d through

the next hop at node vi, respectively, with Dvi

dsi
i

= Dsi
d . Assume that this set of

nodes create a routing-table loop L of h hops by setting svi
d = vi+1 for 1 ≤ i ≤ h−1

and svh
d = v1. For the sake of contradiction, further assume that each node in loop

L satisfies the ordering constraint Dvi
d =∞ or Dvi

dvi+1
< Dvi

d <∞ for 1 ≤ i ≤ h−1

and Dvh
d =∞ or Dvh

dv1 < Dvh
d <∞.

Loop L cannot exist if Dvi
d =∞ for any i with 1 ≤ i ≤ h− 1 because then vi

has no next hop to d. It thus follows that Dvi
dvi+1

< Dvi
d < ∞ for 1 ≤ i ≤ h − 1

and Dvh
dv1 < Dvh

d < ∞. This, however, is a contradiction, because it implies that

Dvi
d > Dvi

d for 1 ≤ i ≤ h − 1 and Dvh
d > Dvh

d . Therefore, the theorem is true.

�

119

Theorem 21 states that any routing protocol that satisfies the stated ordering

constraint at every instant ensures loop-free routing. The proof of the follow-

ing theorem demonstrates that ADRP enforces this ordering constraint at every

instant.

Theorem 22. ADRP provides loop-free routing at every instant.

Proof: The proof follows from Theorems 20 and 21. �

6.3 Performance Comparison

We compared the performance of ADRP to other MANET routing protocols:

AODV and OLSR implemented in the network simulator (ns3) .

6.3.1 Simulation Results

The simulated network consisted of 50 nodes spread uniformly and randomly

in a 500 × 1500m area at the beginning of the simulation. all nodes started the

experiment at a random location within the simulation area and moved as defined

by the random waypoint model, where each node selected a random destination

within the working area and moved linearly to that location at a predefined speed.

After reaching its destination, it pauses for a specified period (pause time) and

then selects a new random location and continues the process again. A subset

of nodes are selected as popular destination. In this simulation we assumed that

6 nodes are popular and we selected them randomly at the beginning of the

simulation. The scenarios include 25 data flows from 25 different source routers

to different destinations that are chosen randomly. Note that, the number of flows

varies in a scenario that we measured the "Effect of Number of Flows". Traffic

sources are on-off applications with on and off time of 1 second, which generate

120

packets of size 512 bytes and rate of 15 packets per second. The data will flow for

200 seconds and then we will generate new data flows by selecting new sources

and new destinations. New data flows will be generated every 200 seconds after

that.

We have two scenarios with respect to the network traffic pattern: In first

one %50 of the traffic is routed toward the popular destination, and in another

scenario %75 of the flows are targeted to a popular node. In each part we con-

sidered different scenarios to study the behavior of routing protocols with respect

to mobility and number of data flows. The scenarios were chosen to stress all

three protocols, rather than to attain good performance for either on-demand or

proactive routing. The results are demonstrated in figures 6.1 though 6.3.

6.3.2 Effect of Mobility

In order of study of effect of mobility on the on the performance of routing

algorithms, we changed the parameters of our mobility model: Speed and Pause

time. The speed varies from 5 m/s to 30 m/s to mimic the low and high mobility

respectively. The results as functions of node speed are shown in Figure 6.1,

where figures 6.1 (a), (b), and (c) are for the first scenario, and (d), (e), and (f)

demonstrate the results for the second one.

The packet delivery rate decreases as the router speed increases due to more

topology changes. Routes break due to topology change and packets drop till the

routing protocol finds a new route. Link failures ADRP are detected by the ab-

sence of a number of consecutive gratuitous Reply messages, and a route discovery

process is performed to establish new route between source and destinations.

Because of the delays incurred in detecting link failures and in establishing new

routes after that, as router speed increases more and more data packets traversing

121

Figure 6.1: Performance comparison as a function of Node Speed.

failed routes end up being dropped. As the results in Figure 6.1 indicate, ADRP

outperform all other routing algorithms.

In next scenario, we studied the effect of pause time on performance of routing

protocol. Figure 6.2 shows the packet delivery, delay, and signaling overhead as a

function of node pause time. The result of the first scenario is reported in figures

6.2(a), (b), and (c) and the rest show the results for . Pause times vary from 0

seconds (high mobility) to 200 seconds (low mobility), and the speed of individual

nodes is chosen randomly from 0 to 20 m/s. The other parameters remain the

same. In the first The packet delivery ratio of OLSR and ODVR are very close

to the delivery ratio for AODV. ADRP attains shorter delays compared to other

routing algorithms. The traffic is a little more than the ODVR, however it is still

less than the signaling traffic of AODV and OLSR.

122

Figure 6.2: Performance comparison as a function of Pause Time.

6.3.3 Effect of Number of Flows

Figure 6.3 shows the results of the effect that data traffic and number of

connections have on performance. Sources and destinations are selected randomly

and the number of source-destination pairs varies between 20 (average data flow)

to 40 (high data flow). The delivery rate decreases and the average end-to-end

delays increase for all three protools as the number of sources increases. This

is expected, as more traffic causes more congestion in the network, and a link

failure affects more transmissions when the number of data flows increases. ADRP

outperforms other algorithms as the number of of connections increases. The

signaling in OLSR is independent of the number of connections in the network;

hence, the total signaling overhead remains the same. The signaling of the ADRP

is more than the signaling of the ODVR due to signaling for proactive nodes.

6.4 Summary

We introduced ADRP, an adaptive routing protocol for ad-Hoc networks that

eliminates routing-table loops by ordering nodes based solely on the distances

123

Figure 6.3: Performance comparison as a function Number of Sources.

they maintain. ADRP uses a hybrid approach to obtain and maintain routes to

destination: proactive to popular nodes and on-demand to regular nodes. Both

the proactive and on-demand algorithms rely on only on route request and route

replies and the proactive routing can be done with minimum modification to

the on-demand routing. Route requests and reply messages state the reference

distance, the distance to destination reported by the originator of that message,

that defines which nodes can process the message and should reply/change state

based on the information of that message. Every node can respond to the request

message with a reply if it meets the reference distance and can generate a reply

in the absence of request, if it detects a change in a routing state for a popular

destination. Every node that receives such a reply will check the reference distance

and process the information if this distance meets the required reference distance

of a node.

We proved that the ADRP is loop-free at every instance and have better

performance than the pure on-demand routing algorithm such as its predecessor

ODVR. We implemented ADRP in ns3 and compared the performance of it with

both on-demand and proactive routing protocols: AODV and OLSR, considering

124

two different traffic patterns, where 75% and 50% of the traffic are routed to

popular nodes in a network. Taking into account the effect of mobility, number

of flows, and network size on the performance of the protocols. The simulation

results show that with a little extra overhead, ADRP attains better performance

than the other protocols.

125

Chapter 7

Conclusion

The Internet has changed our everyday lives and the people using the Internet

has change the way it is used. The Internet has been designed as a point to point

communication between two host which allowed to share limited and expensive

computational resources. The internet has been evolved from very basic task of

forwarding packets of data among a few number of hosts to hosting and trans-

ferring billions of user-generated contents, to allow users connect everything and

almost anything and share text, image, audio, and video.

Internet of Things is a novel paradigm refers to a dynamic network infrastruc-

ture that enables every "thing" communicate anytime, anywhere, and through

any media. The network design should evolve to address such a huge change

in the Internet usage. Information-centric networking is becoming a promising

candidate for the next generation of the Internet. Many ICN architectures have

been proposed to enable access to content and services by name, independently of

their location, to improve system performance and end-user experience. The core

of all ICN architectures are name resolution and routing of content, and several

approaches have been proposed.

Content routing algorithm is studied and a link-state and defusing computation

126

based routing algorithm for content-centric networks are introduced. The Link-

State Content Routing (LSCR) calculates loop-free paths to the nearest replica

of an NDO or name prefix. Using the full topology information, LSCR creates

a directed acyclic graph for each destination. The anchor information, however,

is propagated selectively and efficiently so we reduced the complexity and com-

munication overhead. The algorithm also ranks neighbors lexicographically based

on their distances and select a valid next hop from neighbors that offer smaller

distance than the router itself.

The Diffusive Name-based Routing Protocol is introduced as the first name-

based content routing protocol based on diffusing computations. DNRP proves

that it provides loop-free multi-path routes to multi-homed name prefixes at ev-

ery instant. Routers that run DNRP do not require to have knowledge about the

network topology, use complete paths to content replicas, know about all the sites

storing replicas of named content, or use periodic updates. DNRP has better per-

formance compared to link-state routing protocols when topology changes occur

or new prefixes are introduced to the network.

In the next step, we tackled the routing problem in Wireless networks. We in-

troduced the first on-demand routing protocol that eliminates routing-table loops

by ordering nodes based solely on the distances they maintain and advertise to

destinations, as well as reference distances they state in route requests. Routing

state is established on demand by means of route requests stating the reference dis-

tance that a responder must satisfy to be allowed to reply. Intended destinations

or nodes that meet the reference distances respond with replies, and nodes also

send distance updates regarding the sources of requests and active destinations.

And Finally, we advanced the routing in MANETs by introducing an adaptive

routing protocol for Ad-Hoc networks that uses a hybrid approach to obtain and

127

maintain routes to destination: proactive to popular nodes and on-demand to

regular nodes, with minimum modification to the on-demand routing protocol.

We introduced several routing algorithms for ICN and wireless network to

make them scalable and more practical. However, more work should be done to

make ICN more practical and make it a perfect candidate for the Future Internet.

Possible approaches for future work include: communicating partial topology in-

formation [107], reducing the frequency with which LSAs have to be sent [108],

and improving the way in which routers update anchor information after resource

failures. The use of content directory for efficient routing can be explored. Also,

the effect of caching on performance of each of the protocol should be investigated.

128

Bibliography

[1] Content centric networking project (CCN).

[2] Content mediator architecture for content-aware networks (COMET) project.

[3] Fp7 PURSUIT project.

[4] Mobility first project.

[5] Named data network project.

[6] Publish subscribe internet technology (PURSUIT) project.

[7] Scalable and adaptive internet solutions (SAIL) project.

[8] Ccnx synchronization protocol, 07 2013.

[9] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman. A
survey of information-centric networking. IEEE Communications Magazine,
50(7):26–36, July 2012.

[10] Mark Ain, Dirk Trossen, Pekka Nikander, Sasu Tarkoma, Kari Visala, Ken
Rimey, Trevor Burbridge, Jarno Rajahalme, Janne Tuononen, Petri Jokela,
Jimmy Kjällman, Jukka Ylitalo, Janne Riihijärvi, Borislava Gajic, George
Xylomenos, Petri Savolainen, and Dmitrij Lagutin. D2.3 architecture defini-
tion, component descriptions, and requirements. In Deliverable, PSIRP 7th
FP EU-funded project,, 2009.

[11] Alexander L. Wolf Antonio Carzaniga, David S. Rosenblum. Content-Based
Addressing and Routing: A General Model and its Application.

[12] Baruch Awerbuch. A new distributed Depth-First-Search algorithm. Infor-
mation Processing Letters, 20(3):147–150, April 1985.

[13] Hitesh Ballani and Paul Francis. Towards a global IP anycast service. ACM
SIGCOMM Computer Communication Review, 35(4):301, October 2005.

129

[14] Tony Ballardie, Paul Francis, and Jon Crowcroft. Core based trees (CBT).
ACM SIGCOMM Computer Communication Review, 23(4):85–95, October
1993.

[15] P. Baran. On Distributed Communications Networks. IEEE Transactions on
Communications, 12(1):1–9, March 1964.

[16] Md. Bari, Shihabur Chowdhury, Reaz Ahmed, Raouf Boutaba, and Bertrand
Mathieu. A survey of naming and routing in information-centric networks.
IEEE Communications Magazine, 50(12):44–53, December 2012.

[17] J. Behrens and J. J. Garcia-Luna-Aceves. Hierarchical routing using link
vectors. In Proceedings. IEEE INFOCOM ’98, the Conference on Computer
Communications. Seventeenth Annual Joint Conference of the IEEE Com-
puter and Communications Societies. Gateway to the 21st Century (Cat.
No.98CH36169), volume 2, pages 702–710. IEEE.

[18] Dimitri Bertsekas and Robert Gallager. Data networks (2nd ed.). January
1992.

[19] A. Carzaniga, M.J. Rutherford, and A.L. Wolf. A routing scheme for content-
based networking. In IEEE INFOCOM 2004, volume 2, pages 918–928. IEEE.

[20] Shigang Chen and Klara Nahrstedt. Distributed qos routing with impre-
cise state information. In Computer Communications and Networks, 1998.
Proceedings. 7th International Conference on, pages 614–621. IEEE, 1998.

[21] C. Cheng, R. Riley, S. P. R. Kumar, and J. J. Garcia-Luna-Aceves. A loop-
free extended Bellman-Ford routing protocol without bouncing effect. ACM
SIGCOMM Computer Communication Review, 19(4):224–236, August 1989.

[22] Jaeyoung Choi, Jinyoung Han, Eunsang Cho, Ted Kwon, and Yanghee Choi.
A Survey on content-oriented networking for efficient content delivery. IEEE
Communications Magazine, 49(3):121–127, March 2011.

[23] R. Coltun. Ospf an internet routing protocol. ConneXions, 3(8):19–25, 1989.

[24] M Scott Corson and Anthony Ephremides. A distributed routing algorithm
for mobile wireless networks. Wireless networks, 1(1):61–81, 1995.

[25] S. Deering, D.L. Estrin, D. Farinacci, and V. Jacobson. The PIM architecture
for wide-area multicast routing. IEEE/ACM Transactions on Networking,
4(2):153–162, April 1996.

[26] Stephen E. Deering and David R. Cheriton. Multicast routing in datagram
internetworks and extended LANs. ACM Transactions on Computer Systems,
8(2):85–110, May 1990.

130

[27] Andrea Detti, Nicola Blefari Melazzi, Stefano Salsano, and Matteo Pom-
posini. CONET. In Proceedings of the ACM SIGCOMM workshop on
Information-centric networking - ICN ’11, page 50, New York, New York,
USA, August 2011. ACM Press.

[28] Andrea Detti, Nicola Blefari Melazzi, Stefano Salsano, and Matteo Pom-
posini. CONET. In Proceedings of the ACM SIGCOMM workshop on
Information-centric networking - ICN ’11, page 50, New York, New York,
USA, August 2011. ACM Press.

[29] Edsger W Dijkstra and Carel S. Scholten. Termination detection for diffusing
computations. Information Processing Letters, 11(1):1–4, 1980.

[30] J. J. Garcia-Luna-Aceves. A distributed, loop-free, shortest-path routing al-
gorithm. In INFOCOM ’88. Networks: Evolution or Revolution, Proceedings.
Seventh Annual Joint Conference of the IEEE Computer and Communcations
Societies, IEEE, pages 1125–1137, Mar 1988.

[31] J. J. Garcia-Luna-Aceves. A unified approach to loop-free routing using
distance vectors or link states. ACM SIGCOMM Computer Communication
Review, 19(4):212–223, August 1989.

[32] J. J. Garcia-Luna-Aceves. System and method for discovering information ob-
jects and information object repositories in computer networks, December 27
2001. US Patent App. 09/810,148.

[33] J. J. Garcia-Luna-Aceves. Name-based content routing in information centric
networks using distance information. In ACM Conference on Information-
Centric Networking, pages 24–26, Paris, France, September 2014.

[34] J. J. Garcia-Luna-Aceves. Name-based content routing in information centric
networks using distance information. In Proceedings of the 1st international
conference on Information-centric networking, pages 7–16. ACM, 2014.

[35] J. J. Garcia-Luna-Aceves. Routing to multi-instantiated destinations: Prin-
ciples and applications. In Proc. IEEE ICNP 2014, 2014.

[36] J. J. Garcia-Luna-Aceves. A fault-tolerant forwarding strategy for interest-
based information centric networks. In IFIP Networking Conference (IFIP
Networking), 2015, pages 1–9. IEEE, 2015.

[37] J. J. Garcia-Luna-Aceves and M. Parsa. System and method for informa-
tion object routing in computer networks, March 20 2003. WO Patent App.
PCT/US2002/028,829.

131

[38] J. J. Garcia-Lunes-Aceves. Loop-free routing using diffusing computations.
IEEE/ACM Transactions on Networking (TON), 1(1):130–141, 1993.

[39] Ali Ghodsi, Teemu Koponen, Jarno Rajahalme, Pasi Sarolahti, and Scott
Shenker. Naming in content-oriented architectures. In Proceedings of the
ACM SIGCOMM workshop on Information-centric networking - ICN ’11,
page 1, New York, New York, USA, August 2011. ACM Press.

[40] Ali Ghodsi, Scott Shenker, Teemu Koponen, Ankit Singla, Barath Raghavan,
and James Wilcox. Information-centric networking. In Proceedings of the 10th
ACM Workshop on Hot Topics in Networks - HotNets ’11, pages 1–6, New
York, New York, USA, November 2011. ACM Press.

[41] Mark Gritter and David R. Cheriton. An architecture for content routing
support in the internet. page 4, March 2001.

[42] Oliver Heckmann, Michael Piringer, Jens Schmitt, and Ralf Steinmetz. On
realistic network topologies for simulation. In Proceedings of the ACM SIG-
COMM workshop on Models, methods and tools for reproducible network re-
search - MoMeTools ’03, page 28, New York, New York, USA, August 2003.
ACM Press.

[43] Mahmudul Hoque, Cheng Yi, Adam Alyyan, , and Beichuan Zhang. An ospf
based routing protocol for named data networking. Technical report, NDN
Technical Report NDN, July 2012.

[44] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Di-
rected diffusion: A Scalable and Robust Communication Paradigm for Sen-
sor Networks. In Proceedings of the 6th annual international conference on
Mobile computing and networking - MobiCom ’00, pages 56–67, New York,
New York, USA, August 2000. ACM Press.

[45] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass,
Nicholas H. Briggs, and Rebecca L. Braynard. Networking named content.
In Proceedings of the 5th international conference on Emerging networking
experiments and technologies - CoNEXT ’09, page 1, New York, New York,
USA, December 2009. ACM Press.

[46] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass,
Nicholas H. Briggs, and Rebecca L. Braynard. Networking named content.
In Proceedings of the 5th international conference on Emerging networking
experiments and technologies - CoNEXT ’09, page 1, New York, New York,
USA, December 2009. ACM Press.

132

[47] Konstantinos V. Katsaros, Nikos Fotiou, Xenofon Vasilakos, Christopher N.
Ververidis, Christos Tsilopoulos, George Xylomenos, and George C. Polyzos.
On inter-domain name resolution for information-centric networks, volume
7289 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
Berlin, Heidelberg, May 2012.

[48] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolinskiy,
Kye Hyun Kim, Scott Shenker, and Ion Stoica. A data-oriented (and beyond)
network architecture. ACM SIGCOMM Computer Communication Review,
37(4):181, October 2007.

[49] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolinskiy,
Kye Hyun Kim, Scott Shenker, and Ion Stoica. A data-oriented (and be-
yond) network architecture. In ACM SIGCOMM Computer Communication
Review, volume 37, pages 181–192. ACM, 2007.

[50] Jim Kurose. Information-centric networking: The evolution from circuits to
packets to content. Computer Networks, 66:112–120, June 2014.

[51] Vince Lehman, AKM Mahmudul Hoque, Yingdi Yu, Lan Wang, Beichuan
Zhang, and Lixia Zhang. A secure link state routing protocol for ndn.

[52] A KMMahmudul-Hoque, Syed Obaid Amin, Adam Alyyan, Beichuan Zhang,
Lixia Zhang, and Lan Wang. NLSR: Named-data link state routing protocol.
In Proceedings of the 3rd ACM SIGCOMM workshop on Information-centric
networking - ICN ’13, page 15, New York, New York, USA, August 2013.
ACM Press.

[53] A KMMahmudul-Hoque, Syed Obaid Amin, Adam Alyyan, Beichuan Zhang,
Lixia Zhang, and Lan Wang. NLSR: Named-data link state routing protocol.
In Proceedings of the 3rd ACM SIGCOMM workshop on Information-centric
networking - ICN ’13, page 15, New York, New York, USA, August 2013.
ACM Press.

[54] James Mathewson, Maziar Barijough, Ehsan Hemmati, J. J. Garcia-Luna-
Aceves, and Marc Mosko. Sconet : Simulator content networking. In CCNx-
Con, 2015.

[55] J. Moy. Ospf version 2, rfc 1583, march 1994.

[56] Jeremy Siek. Boost graph library: dijkstra shortest paths (BOOST).

[57] Ignacio Solis and J. J. Garcia-Luna-Aceves. Robust content dissemination
in disrupted environments. In Proceedings of the third ACM workshop on
Challenged networks - CHANTS ’08, page 3, New York, New York, USA,
September 2008. ACM Press.

133

[58] Athanasios V. Vasilakos, Zhe Li, Gwendal Simon, and Wei You. Information
centric network: Research challenges and opportunities. Journal of Network
and Computer Applications, 52:1 – 10, 2015.

[59] Russ White, James Ng, Donald Slice, Steven Moore, et al. Enhanced interior
gateway routing protocol. 2014.

[60] George Xylomenos, Christopher N. Ververidis, Vasilios A. Siris, Nikos Fo-
tiou, Christos Tsilopoulos, Xenofon Vasilakos, Konstantinos V. Katsaros, and
George C. Polyzos. A Survey of Information-Centric Networking Research.
IEEE Communications Surveys & Tutorials, 16(2):1024–1049, 2014.

[61] E.W. Zegura, M.H. Ammar, and S. Bhattacharjee. Application-layer any-
casting: a server selection architecture and use in a replicated Web service.
IEEE/ACM Transactions on Networking, 8(4):455–466, 2000.

[62] K. Bhargavan, D. Obradovic, and C. Gunter, “Formal Verification of Stan-
dards for Distance Vector Routing Protocols," Journal of the ACM, July
2002.

[63] A. Boukersche, Handbook of Algorithms for Wireless and Mobile Computing,
Chapman and Hall, 2006.

[64] T. Clausen and P. Jacquet, “Optimized link state routing protocol (OLSR)"
RFC 3626, 2003.

[65] M.S. Corson and A. Ephremides, “A Distributed Routing Algorithm for Mo-
bile Wireless Networks," Wireless Networks, Jan 1995.

[66] Dannewitz, C., Kutscher, D., Ohlman, B., Farrell, S., Ahlgren, B., and Karl,
H. (2013). Network of information (netinf)âĂŞan information-centric net-
working architecture. Computer Communications, 36(7), 721-735.

[67] T. Clausen, “Comparative Study of Routing Protocols for Mobile Ad-hoc
networks," Research Report RR-5135, INRIA, 2004.

[68] J.J. Garcia-Luna-Aceves, “Loop-Free Routing Using Diffusing Computa-
tions," IEEE/ACM Trans. Networking, 1993.

[69] J.J. Garcia-Luna-Aceves and H. Rangarajan, “A New Framework for Loop-
Free On-Demand Routing Using Destination Sequence Numbers," Proc. IEEE
MASS ‘04, 2004.

[70] J.J. Garcia-Luna-Aceves and S. Roy, “On-Demand Routing in Ad Hoc Net-
works Using Link Vectors,” IEEE JSAC, Vol. 23, No. 3, March 2005.

134

[71] D. B. Johnson and D. A. Maltz, “Dynamic Source Routing in Ad HocWireless
Networks,"Mobile Computing, Chapter 5, Kluwer Academic Publishers, 1996.

[72] Y. Ko and N.Vaidya, “Location-Aided Routing (LAR) in Mobile Ad Hoc
Networks," Wireless Networks, Vol. 6, No. 4, 2000.

[73] M. Marina and S. Das, “Ad Hoc On-Demand Multipath Distance vector
Routing," Wireless Commun. Mob. Comput., 2006.

[74] M. Mirzazad-Barijough and J.J. Garcia-Luna-Aceves, “Making On-Demand
Routing Efficient with Route-Request Aggregation," Proc. ACM MSWiM ’16,
2016.

[75] S. Murthy and J.J. Garcia-Luna-Aceves, “An Efficient Routing Protocol for
Wireless Networks." Mobile Networks and Applications, 1996.

[76] G. Pei et al., "AWireless Hierarchical Routing Protocol with Group Mobility,"
Proc. IEEE WCNC ‘99, 1999.

[77] C. E. Perkins and P. Bhagwat, “Routing over Multihop Wireless Network of
Mobile Computers," Proc. ACM SIGCOMM ‘94, 1994.

[78] C. E. Perkins and E. M. Royer, “Ad-Hoc On-Demand Distance Vector Rout-
ing," Proc. IEEE WMCSA ‘99, 1999.

[79] C. Perkins et al., Ad Hoc Networkiing, Addison-Wesley, 2008.

[80] H. Rangarajan and J.J. Garcia-Luna-Aceves, “On-demand Loop-Free Rout-
ing in Ad hoc Networks Using Source Sequence Numbers,” Proc. IEEE MASS
‘05, Nov. 2005.

[81] J. Raju and J.J. Garcia-Luna-Aceves, “A New Approach to On-Demand
Loop-Free Multipath Routing," Proc. IEEE IC3N ‘99, Oct. 1999.

[82] C. Shiflet, E. M. Belding-Royer, and C.E. Perkins, “Address Aggregation in
Mobile Ad Hoc Networks," Proc. IEEE ICC ‘04, 2004.

[83] R. Van Glabbeek et al., “Sequence Numbers Do Not Guarantee Loop
Freedom–AODV Can Yield Routing Loops," Proc. ACM MSWiM ‘13, Nov.
2013.

[84] J. Wu and H. Li, “On Calculating Connected Dominating Set for Efficient
Routing in Ad Hoc Wireless Networks," Proc. ACM Int’l Workshop on Dis-
crete Algorithms and Methods for Mobile Computing and Communications,
1999.

135

[85] X. Wu et al., “A Unified Analysis of Routing Protocols in MANETs," IEEE
Trans. on Communications, March 2010.

[86] M. Zhou et al., “The Proof of AODV Loop Freedom," Proc. IEEE WCS ‘09,
2009.

[87] T. Camp, J. Boleng, and V. Davies, 2002. A survey of mobility models for ad
hoc network research. Wireless communications and mobile computing, 2(5),
pp.483-502.

[88] A. Boukersche, Handbook of Algorithms for Wireless and Mobile Computing,
Chapman and Hall, 2006.

[89] S. Murthy and J.J. Garcia-Luna-Aceves, “An Efficient Routing Protocol for
Wireless Networks." Mobile Networks and Applications, 1996.

[90] C. E. Perkins and P. Bhagwat, “Routing over Multihop Wireless Network of
Mobile Computers," Proc. ACM SIGCOMM ‘94, 1994.

[91] C. E. Perkins and E. M. Royer, “Ad-Hoc On-Demand Distance Vector Rout-
ing," Proc. IEEE WMCSA ‘99, 1999.

[92] J. Raju and J.J. Garcia-Luna-Aceves, “A New Approach to On-Demand
Loop-Free Multipath Routing," Proc. IEEE IC3N ‘99, Oct. 1999.

[93] S. Roy and J.J. Garcia-Luna-Aceves, “Node-Centric Hybrid Routing for Ad
Hoc Networks," Proc. 10th IEEE/ACM MASCOTS ‘02, 2002.

[94] R. Van Glabbeek et al., “Sequence Numbers Do Not Guarantee Loop
Freedom–AODV Can Yield Routing Loops," Proc. ACM MSWiM ‘13, Nov.
2013.

[95] X. Wu et al., “A Unified Analysis of Routing Protocols in MANETs," IEEE
Trans. on Communications, March 2010.

[96] M. Zhou et al., “The Proof of AODV Loop Freedom," Proc. IEEE WCS ‘09,
2009.

[97] G. Yovanof and G. Hazapis, An architectural framework and enabling wireless
technologies for digital cities and intelligent urban environments, Wireless
Pers. Commun., vol. 49, no. 3, pp. 445-463, May 2009

[98] Hou, Songfan, et al. "Performance Comparison of AODV and DSR in
MANET Test-bed Based on Internet of Things." Vehicular Technology Con-
ference (VTC Fall), 2015 IEEE 82nd. IEEE, 2015.

136

[99] Wang L, Olariu S. A two-zone hybrid routing protocol for mobile ad hoc
networks. IEEE transactions on Parallel and distributed systems. 2004
Dec;15(12):1105-16.

[100] M. Steenstrup, "Cluster-Based Networks," Ad Hoc Networking, C.E.
Perkins, ed., Addison-Wesley, Reading: Mass., pp. 75-138, 2000.

[101] A.B. McDonald and T. Znati, "A Dual-Hybrid Adaptive Routing Strategy
for Wireless Ad Hoc Networks," Proc. IEEE Wireless and Networking Conf.,
pp. 1125-1130, Sept. 2000.

[102] A. Iwata, C. Chiang, G. Pei, M. Gerla, and T. Chen, "Scalable Routing
Strategies for Ad Hoc Wireless Networks," IEEE J. Selected Areas in Comm.,
special issue on ad hoc networks, vol. 17, no. 8, pp. 1369-1379, 1999.

[103] G. Pei, M. Gerla, and X. Hong, "LANMAR: Landmark Routing for Large
Scale Wireless Ad Hoc Networks with Group Mobility," Proc. MOBIHOC
Conf. 2000, pp. 11-18, Nov. 2000

[104] M.R. Pearlman and Z.J. Haas, Determining the Optimal Configuration for
the Zone Routing Protocol, IEEE J. Selected Areas in Comm., special issue
on ad hoc networks, vol. 17, no. 8, pp. 1395- 1414, 1999.

[105] Z.J. Haas and M.R. Pearlman, The Performance of Query Control Schemes
for the Zone Routing Protocol, ACM/IEEE Trans. Networking, vol. 9, no. 4,
pp. 427-438, 2001

[106] V. Ramasubramanian, Z.J. Haas, and E.G. Sirer, "SHARP: A Hybrid Adap-
tive Routing Protocol for Mobile Ad Hoc Networks," Proc. MOBIHOC Conf.
2003, pp. 303-314, June 2003.

[107] J. Behrens, J. J. Garcia-Luna-Aceves, Hierarchical routing using link vec-
tors, in: INFOCOM’98. Seventeenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, Vol. 2, IEEE,
pp. 702–710.

[108] J. J. Garcia-Luna-Aceves, M. Spohn, Scalable link-state internet routing,
in: Network Protocols, 1998. Proceedings. Sixth International Conference
on, IEEE, 1998, pp. 52–61.

[109] Di Caro, Gianni, Frederick Ducatelle, and Luca Maria Gambardella. "An-
tHocNet: an adaptive natural inspired algorithm for routing in mobile ad
hoc networks." European Transactions on Telecommunications 16.5 (2005):
443-455.

137

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Routing in Communication Networks
	Routing in ICN
	Elements of NLSR and DCR Operation
	NLSR
	DCR
	Performance Comparison

	Routing in Mobile Ad-Hoc Networks
	On-Demand Routing
	Hybrid routing

	Link State Content routing
	LSCR Operation
	Messages and Data Structures
	Routing to Nearest Replicas

	correctness
	Naming
	Routing Complexity
	Traditional Link-State Routing (LSR)
	 Loop-free Distance-Vector Routing (LDVR)
	Link-State Content Routing (LSCR)

	Simulation
	Summary

	Diffusion based Content Routing
	DNRP operation
	Messages and Data Structures
	Sufficient Conditions for Loop Freedom
	DNRP Operation
	Example of DNRP Operation
	Routing to all instances of a prefix

	Correctness of DNRP
	Performance Analysis
	Summary

	Ordered Distance Vector Routing Protocol
	ODVR Operation
	Information Exchanged
	Information Stored
	Maintaining Routing State On Demand

	Examples of ODVR Operation
	Correctness of ODVR
	Protocol Complexity

	Performance Comparison
	Simulation Results
	Effect of Mobility
	Effect of Number of Flows

	Summary

	Adaptive Approach to Routing in Ad-Hoc Networks
	ADRP Operation
	Information Exchanged
	Information Stored
	Maintaining Routing State

	Loop Freedom in ADRP
	Performance Comparison
	Simulation Results
	Effect of Mobility
	Effect of Number of Flows

	Summary

	Conclusion
	Bibliography

