
UCLA
UCLA Electronic Theses and Dissertations

Title
Graphene-Based Surface Plasmon-Polaritons for Terahertz Applications

Permalink
https://escholarship.org/uc/item/51r9m1zc

Author
Gu, Xuefeng

Publication Date
2013
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/51r9m1zc
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA 

Los Angeles 

 

 

Graphene-Based Surface Plasmon-Polaritons  

for Terahertz Applications 

 
 

 

 

A thesis submitted in partial satisfaction 

of the requirement of the degree 

Master of Science in Electrical Engineering 

 

 

by 

 

Xuefeng Gu 

 

 

 
 
 
 

2013



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 ii 

ABSTRACT OF THE THESIS 
 
 

Graphene-Based Surface Plasmon-Polaritons for Terahertz Applications 
 
 
 

by 
 
 
 

Xuefeng Gu 

Master of Science in Electrical Engineering 

University of California, Los Angeles, 2013 

Professor Jia-Ming Liu, Chair 
 

 In this thesis, we focus on graphene-based surface plasmon-polaritons at terahertz 

frequencies and their possible applications. The primary motivation is to efficiently 

couple free-space terahertz radiation into an ultra-compact and low-loss waveguide. 

Characteristics of surface plasmon-polaritons on monolayer and double-layer 

graphene are first re-derived and reviewed. Then we propose two novel waveguide 

structures: graphene-metal structure and graphene-wrapped fibers. Possible modes 

that can be supported by the structures are analyzed and how to excite them is 

addressed. Also, promising applications are briefly described. Our work reveals that 

graphene-metal structure is a good starting point for exploration of both new physics 

and innovative devices, and that graphene-wrapped fibers can also be of substantial 

interest as the quality of graphene is improved. 



 iii 

 The thesis of Xuefeng Gu is approved. 
 

 

Tatsuo Itoh 

Benjamin Williams 

Jia-Ming Liu, Committee Chair 

 

University of California, Los Angeles 

2013 



 iv 

Table of Contents 

List of Figures................................................................................................................v 

Acknowledgement......................................................................................................viii 

Chapter 1 Introduction...............................................................................................1 

Chapter 2 Surface Plasmon-Polaritons (SPPs) in Monolayer and Double-Layer  

      Graphene...................................................................................................6 

 2.1 SPPs in Monolayer Graphene..........................................................................6 

 2.2 SPPs in Double-Layer Graphene.....................................................................9 

Chapter 3   SPPs in Graphene-Metal Structures........................................................13 

 3.1 SPP Modes in the Structure............................................................................13 

 3.2 Excitation of the SPP Mode by Narrow Periodic Slits...................................17 

 3.3 Structural Dispersion of the Periodic Structure..............................................23 

 3.4 Applications of the Graphene-Metal SPPs.....................................................28 

Chapter 4 Graphene-Wrapped Fibers......................................................................30 

 4.1 Modes in the Structure...................................................................................30 

 4.2 Conversion from Fiber Modes to SPP Modes................................................35 

Chapter 5 Conclusion and Outlook..........................................................................38 

References....................................................................................................................40 

 



 v 

List of Figures 

Figure 1.1 Intraband conductivity of graphene at THz frequencies........................................4 

Figure 2.1 The monolayer graphene structure which can support SPP modes.......................6 

Figure 2.2 Dispersion of the monolayer graphene SPP mode. (a) Dispersion curve. (b) 

Effective mode index.............................................................................................8 

Figure 2.3 A 2D Luneburg lens realized by biasing the concentric circles at designed 

chemical potentials through an external voltage. f = 30 THz, D = 1.5 μm, w = 75 

nm, and L = 1.6 μm. With permission from Ref [33]............................................9 

Figure 2.4 The double-layer graphene structure which can support SPP modes..................10 

Figure 2.5 Dispersion of even and odd SPP modes on double-layer graphene structure. μ = 

0.2 eV and f = 6 THz............................................................................................12 

Figure 3.1 Schematic illustration of the graphene-metal SPP waveguide. Graphene (top) 

and metal (bottom) are separated by a dielectric spacer. The red curve represents 

a typical Ez distribution as a function of x...........................................................13 

Figure 3.2 Dispersion of the graphene-metal SPP mode. (a) and (b): Real and imaginary 

parts of the mode index at a fixed chemical potential of μ = 0.2 eV (carrier 

density 12 22.9 10 / cmn   ) for different graphene-metal spacing: d = 8 nm 

(red), 50 nm (black), 200 μm (blue), 1 μm (green), and 5 μm (purple). (c) and (d): 

Real and imaginary parts of the mode index at a fixed graphene-metal spacing of 

d = 50 nm for different chemical potentials.........................................................16 

Figure 3.3 Illustration of the metallic grating structure that is used to excite the 

graphene-metal SPP mode. Only two periods are shown here. The periodicity of 



 vi 

the metallic grating is Λ and the duty factor is ξ.................................................19 

Figure 3.4 Absorption coefficient as a function of the periodicity when the duty factor is 

fixed at ξ = 0.98...................................................................................................20 

Figure 3.5 Normalized electric field distribution |E/E0| for (a) Λ/λP = 1 and (b) Λ/λP =1.5.  

 ...........................................................................................................................20 

Figure 3.6 Absorption coefficient as a function of the duty factor ξ for the first-order 

coupling. Two peaks at ξ = 0.62 and 0.99 can be observed................................21 

Figure 3.7 Simulated electric field enhancement at x = 0– beneath the graphene layer for 

graphene-metal spacing d = 8 nm, graphene chemical potential μ = 94 meV, and 

THz radiation frequency f = 8 THz....................................................................23 

Figure 3.8 Structure for the analysis of structural dispersion introduced by the periodicity. 

   ..........................................................................................................................24 

Figure 3.9 Minimum phase mismatch normalized to k0 for the first-order coupling. f = 6 

THz, d = 50 nm, and μ = 0.2 eV.........................................................................27 

Figure 3.10 Minimum phase mismatch normalized to k0 for a fixed duty factor of ξ = 0.98. f 

= 6 THz, d = 50 nm, and μ = 0.2 eV...................................................................27 

Figure 3.11 Tunable transmission through variation of the chemical potential for μ = 0.2 eV 

(black), 0.25 eV (blue), and 0.3 eV (red)...........................................................29 

Figure 4.1 Evolution of the structure from monolayer graphene to graphene-wrapped fibers. 

(a) A highly confined TM plasmon mode is supported by the 2D 

dielectric-graphene-dielectric structure. (b) By wrapping the structure with z 

being the axis, the structure in (a) becomes a “graphene-wrapped fiber”, a real 



 vii 

3D structure.......................................................................................................30 

Figure 4.2 Dispersion of the first-three-order modes in graphene-wrapped fibers (black) and 

fibers without graphene (red curves). They are almost identical for the same 

mode order. At f = 6 THz, T = 300 K, and μ = 0.2 eV.........................................33 

Figure 4.3 Ez field distribution at a radius of a = 30 μm.......................................................33 

Figure 4.4 Dispersion of the SPP mode when f = 6 THz, T = 300 K, and μ = 0.2 eV. The 

mode has not cutoff. As the fiber radius increases (or equivalently, V increases) 

the mode index approaches that of the SPP mode supported by the 

dielectric-graphene-dielectric structure...............................................................35 

Figure 4.5 Electric field distributions for (a) a = 0.3 μm and (b) a = 5 μm. At f = 6 THz, T = 

300 K, and μ = 0.2 eV..........................................................................................35 



 viii 

Acknowledgement 

 I would like to first pay tribute to my advisor, Professor Jia-Ming Liu, who 

guided me throughout my research with incisive advices. Thanks to my committee 

members, Professor Itoh and Professor Williams for their helpful comments. Also, 

thanks to my friends in the Photonics Research Laboratory, with whom I have spent 

good time working together. Special thanks to I-Tan Lin for his helpful discussion and 

cooperation in my research that leads to certain parts of this thesis. 

 My deepest gratitude finally goes to my family for their encouragement and 

constant support.



 1 

 CHAPTER 1 
Introduction 

Terahertz (THz) radiation has attracted tremendously increasing research interest 

during the past few decades. High-power sources, efficient detectors, and low-loss 

waveguides for THz applications are being developed extensively [16]. Among those 

interesting but challenging research topics, how to efficiently couple THz radiation 

into a compact and low-loss waveguide, especially in THz integrated devices, is an 

active area. 

Due to the limit of diffraction, a moderate confinement of the THz wave can be 

achieved only when the size of the waveguide is comparable to the THz wavelength 

[7, 8]. This results in incredibly large device dimensions (~ 0.3 mm for 1 THz), 

making integration very difficult. At optical frequencies, this problem is resolved with 

the aid of surface plasmon-polaritons (SPPs) – the strong coupling between 

electromagnetic waves and plasma oscillations at the metal surface, to confine the 

light in a subwavelength scale [912]. But in the THz regime, metal behaves as a 

perfect electric conductor and only a small portion of the electromagnetic energy can 

reside in the metal, leading to a very loosely confined surface wave [13]. Researchers 

have suggested that metamaterials, artificially engineered electromagnetic materials, 

be exploited to manipulate microwave or even THz radiation in the subwavelength 

scale. Structures reported to date that can support SPP-like modes include periodically 

perforated metallic plates [14], hollow square-ended brass tubes [15], Sievenpiper 

mushrooms [16], and periodic patches [17]. However, most of these structures are 
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bulky and operate at microwave frequencies [1416]. In the THz regime, the 

fabrication and active tuning of the SPP behavior become much more difficult. 

Instead of metamaterials, we will focus on the use of graphene, a truly 

two-dimensional (2D) material consisting of honeycomb carbon atoms, to realize THz 

SPPs. Since its first discovery in 2004 by Geim and co-workers [18], graphene has 

attracted enormous attention for its extraordinary properties. Electrons close to the 

Dirac point traveling through the graphene carbon lattice exhibit a linear dispersion 

between its energy and momentum, and behave as massless Fermions [1921]. This 

fact gives rise to many intriguing characteristics to graphene, such as quantum Hall 

effect [22, 23], unique conductivity [24], and extremely high mobility [25, 26]. 

Interesting electronic and photonic devices such as high-mobility field-effect 

transistors [27, 28], saturable absorbers [29], and ultrafast photodetectors [30] have 

been developed. Despite the rich electronic properties that have been widely 

investigated in recent years, we are primarily interested in the photonic properties of 

this novel 2D material. 

Most photonic characteristics of graphene can be derived from its optical 

conductivity, defined as J/E, where J is the current density (in A/m for 2D materials) 

and E is the electric field. In general, the overall conductivity is contributed by two 

parts, the intraband conductivity and the interband one, and can be modeled, using 

relaxation time approximation, as [24, 31]: 

 
 
 

intra inter

12 2
2

2 1 1
1 2

2
2 ln 1 ln

4 2
Bk TB
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 (1.1) 
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Here, e is the electron charge, ħ is the reduced Plank constant, kB is the Boltzmann 

constant, T is the temperature,  is the optical frequency, μ is the chemical potential, 

and 1 and 2 are the relaxation times of intraband and interband scatterings, 

respectively. Note that the interband part is valid only when  , Bk T  , which is 

generally the case at room temperature at visible and infrared frequencies. At visible 

and infrared frequencies, the interband conductivity dominates, and graphene exhibits 

a constant conductivity of e2/(4ħ). This means that a single sheet of graphene can 

absorb 2.3 % of the incident light across a large frequency band. Experiments have 

verified this theoretical prediction and also shown that the absorption increases 

linearly with the number of layers of graphene for less than ~ 5 layers [32]. In the 

THz region (0.1–10 THz), on the other hand, the optical conductivity is dominated by 

the intraband contribution, and is tunable via variation of the chemical potential. It is 

important to note that, the phenomenological intraband scattering time, 1, in Eq. (1.1) 

has accounted for all scattering mechanisms including carrier-carrier scattering, 

impurity scattering, and phonon scattering, etc. In reality, 1 depends in a nontrivial 

way on many parameters such as temperature, carrier density, impurity density, and 

the substrate on which the graphene sheet is placed. However, we shall not consider 

the complicated dependence of 1 on these parameters. Instead, unless otherwise 

stated, we take 1 = 0.6 ps, which corresponds to a mobility of 30,000 cm2V–1s–1 for μ 

= 0.2 eV (carrier density 12 22.9 10 / cm ). This scattering time is realizable under 

current experimental conditions [24], and much longer scattering time has been used 

to theoretically investigate the SPP behavior of graphene [31, 33]. A typical plot of the 



 4 

intraband conductivity versus frequency for μ = 0.2 eV, 1 = 0.6 ps , and T = 300 K is 

shown in Fig. 1.1. One feature that needs to be remarked is that for a certain 

frequency range, graphene conductivity has a positive imaginary part and a much 

smaller real part, which corresponds to a negative effective permittivity with small 

loss. As we shall see later, negative permittivity is essential for the support of SPP 

waves. 

 
Figure 1.1 Intraband conductivity of graphene at THz frequencies. 

 So what are the advantages of graphene for THz SPP applications? First, the 

ultimately thin material can support highly confined THz waves, promising 

ultracompact THz integrated devices. Second, the loss of graphene-based SPP 

waveguide, characterized by the intraband scattering rate, is only limited by the 

quality of graphene, which is continuously being improved with the development of 

fabrication technology. Third, as aforementioned, the THz behavior of graphene can 

be actively tuned through variation of its chemical potential, and the switching speed 

is expected to be very fast as a result of its monolayer thickness and unique band 

structure. It is therefore easy to understand the exponentially increasing number of 

papers that are published on graphene-based THz plasmonics [34]. For example, 

plasmonic modes on both monolayer and double-layer graphene have been 
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investigated by several authors [3538]. Also, many experiments have been reported 

to verify the existence of such modes. Ju. et al. provided the first experimental 

observation of plasmon response in graphene microstructures [39]. Fei et al. reported 

the first observation of plasmons at the interface between graphene and silicon 

dioxide (SiO2) [40]. Chen and coworkers recorded a real-time imaging of the 

plasmonic modes in tapered graphene nanostructures using near-field scattering 

microscopy [41]. These pioneering works have conclusively verified the existence of 

graphene-based plasmons, paving the way for various practical applications. 

 The outline of this thesis is as follows. In Chapter 2, we briefly derive and review 

the THz SPP modes supported by monolayer and double-layer graphene to lay the 

foundation of the rest of the thesis. In Chapter 3, a novel graphene-based THz SPP 

waveguide, namely graphene-metal plasmonic waveguide, is presented. The mode 

characteristics, including dispersion, confinement, and loss are first discussed. The 

most exciting feature of our waveguide is that the mode can be easily and efficiently 

excited with a normally incident beam if narrow periodic slits with an appropriate 

periodicity are created in the metal layer. Important factors that affect the excitation 

such as the slits periodicity and the duty factor are examined in details. Possible 

applications are also described. We suggest in Chapter 4 that, a graphene-wrapped 

fiber can support both fiber modes and SPP modes, and these two modes can be 

converted from one to another using properly designed fiber gratings. Finally, the 

conclusion and outlook are addressed in Chapter 5.  
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CHAPTER 2 

Surface Plasmon-Polaritons in Monolayer and Double-Layer 

Graphene 

 We shall in this chapter briefly re-derive and review the basic properties of the 

SPP modes on monolayer and double-layer graphene to get an insight into our own 

structures presented in Chapter 3 and Chapter 4. For all the calculations below, we 

neglect the interband conductivity since all devices are operating at THz frequency 

and the loss due to interband transitions is small. 

2.1 SPPs in Monolayer Graphene 

 We consider the structure depicted in Fig. 2.1, where a monolayer graphene is 

sandwiched between two half spaces filled with dielectric materials. The fields of the 

mode propagate along the z direction, exponentially decay along the + x and –x 

directions, and are homogeneous along the y direction (/y = 0). Both transverse 

electric (TE) and transverse magnetic (TM) modes can be supported by the structure, 

but as we shall see later, TE modes are loosely confined, and only TM modes are of 

interest for high-confinement applications. 

 

Figure 2.1 The monolayer graphene structure which can support SPP modes. 

For simplicity and without losing generality, we assume that the materials filling 
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the two half spaces are air. For the TM mode, with a propagation constant β, the fields 

are written as 

x i z
yH Ae e          (2.1) 

0

x i z
x

AE e e 


        (2.2) 

0

x i z
z

i AE e e 


         (2.3) 

for x > 0, and 

x i z
yH Be e          (2.4) 

0

x i z
x

BE e e 


         (2.5) 

0

x i z
z

i BE e e 


         (2.6) 

for x < 0, where  is the THz radiation frequency, ε0 is the electric permittivity of the 

air, 2 2
0k    is the attenuation constant, k0 is the free-space wave number, and 

A and B are undetermined coefficients. The boundary conditions are given by the 

continuity of Ez at x = 0 and Ampere’s law: 

0 0z zx xE E  
         (2.7) 

00 0y y z xx xH H E   
        (2.8) 

The dispersion relation of the mode is thus obtained: 

2

0
0

21k
Z



 

  
 

       (2.9) 

where Z0 = 120 π Ω is the free-space wave impedance. Similar to the SPP mode at the 

interface between a metal and a dielectric, the real part n  of the effective mode 

index, 0/n k n in       , is a measure of the mode confinement; the larger n  is, 
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the higher the confinement. By examining Eq. (2.9), we see that the resultant TM SPP 

mode has a propagation constant much larger than k0 if the conductivity of graphene 

is purely imaginary with a positive imaginary part. Furthermore, the loss of the mode 

is introduced by the real part of the conductivity. As technology advances, the loss of 

the mode is expected to be substantially decreased. As justified in Chapter 1, unless 

otherwise stated, in all calculations below, we assume an intraband relaxation time of 

0.6 ps, which is a reasonable assumption for practical devices. We plot in Fig. 2.2 the 

dispersion relation according to Eq. (2.9) when T = 300 K and μ = 0.2 eV, in the 

frequency band of 0 – 10 THz. A parabolic dependence of the propagation constant on 

the frequency is observed in Fig. 2.2 (a). It is seen in Fig. 2.2 (b) that the real part of 

the effective mode index can be up to 14.2, which leads to a deep-subwavelength 

mode confinement. The loss is considerably high here, but as mentioned above it can 

be reduced if the quality of graphene is improved. 

 
Figure 2.2 Dispersion of the monolayer graphene SPP mode. (a) Dispersion curve. (b) 
Effective mode index. 

 A similar analysis can be carried out for the TE mode, and the dispersion relation 

is given by: 
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2
0

0 1
2
Zk 

    
 

       (2.10) 

Unlike the TM SPP mode, the TE mode has a propagation constant close to k0, which 

corresponds to a loosely confined mode. The fact that TE mode is much more loosely 

confined than the TM one is a general feature for all graphene-based SPP modes. 

From now on, we shall focus on the more interesting TM case in terms of high mode 

confinement. 

 There are many applications of the monolayer graphene SPP mode. Vakil et al. in 

2011 proposed that one can exploit the ultra-compact profiles of TM SPP modes for 

flatland THz transformation optics devices [33]. One example is shown in Fig. 2.3, 

where a Luneburg lens is formed by biasing the regions marked by concentric circles 

at different voltages. Similar devices such as reflectors have also been reported [42, 

43]. 

 
Figure 2.3 A 2D Luneburg lens realized by biasing the concentric circles at designed chemical 
potentials through an external voltage. f = 30 THz, D = 1.5 μm, w = 75 nm, and L = 1.6 μm. 
With permission from Ref [33]. 

2.2 SPPs in Double Layer Graphene 
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 Besides the SPP mode supported by monolayer graphene, the mode supported by 

a pair of graphene sheets has also been discussed in the literature [37, 38]. 

 The structure is illustrated in Fig. 2.4, where two graphene sheets are separated 

by a distance 2d. Again, to avoid unnecessary complexity, we assume that all the 

dielectric materials are air, and two sheets of graphene have identical conductivities.  

 

Figure 2.4 The double-layer graphene structure which can support SPP modes. 

The magnetic fields are written as 

x i z
yH Ae e          (2.11) 

for x > d,  

 x x i z
yH Be Ce e           (2.12) 

for – d < x < d, and 

x i z
yH De e          (2.13) 

For x < – d. Here,    2  k0
2  is the attenuation constant and A, B, C and D are 

undetermined coefficients. The x- and z-components of the electric field can be 

obtained with equations similar to Eqs. (2.2) – (2.3) and Eqs. (2.5) – (2.6). By 

applying boundary conditions similar to those expressed in Eqs. (2.7) and (2.8), one 

can obtain the dispersion relations of the double-layer graphene SPP mode: 
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 
0

1 1 tanhi d



 

   
 

       (2.14) 

for the even mode, and 

 
0

1 1 cothi d



 

   
 

       (2.15) 

for the odd mode. These two equations cannot be solved analytically. And since the 

characteristics of SPP modes supported by double-layer graphene are not the main 

concern of this thesis, we next look into the dispersion relations, assuming that 

graphene is lossless (  , T = 10 K), to get a basic idea about the mode. The 

dispersion relations of both even and odd modes at a given frequency of 6 THz are 

plotted as a function of d in Fig. 2.5 for μ = 0.2 eV. It is clear that the even mode has a 

larger propagation constant than the odd one, and it reaches an anomalously high 

value when the graphene-graphene spacing is extremely small. However, we should 

note that this will never happen since graphene cannot be lossless in reality and the 

properties of graphene will be altered if two sheets of graphene are placed too close to 

each other. It is also seen that the two curves for even and odd modes merge at large 

graphene-graphene spacings. This is expected because as the spacing increases, each 

sheet of graphene cannot see the effect of the other, and the SPP modes become the 

monolayer graphene SPP mode that has been discussed in Section 2.1. Coupled-mode 

theory can be employed to further understand this behavior. When the distance 

between the two graphene sheets is not too small, the coupled-mode theory provides a 

good estimate of the coupling behavior of the two modes, and this was utilized to 

couple SPP mode from one sheet of graphene to the other. 
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Figure 2.5 Dispersion of even and odd SPP modes on double-layer graphene structure. μ = 0.2 
eV and f = 6 THz. 

 We have so far discussed the SPP modes in monolayer and double-layer graphene 

structures. The physics of SPPs is described and the tools to analyze the mode are also 

developed. However, the SPP modes discussed above are difficult to excite in 

experiments. In Chapter 3, SPPs based on graphene-metal hybrid structure is 

proposed and an easy way to excite the mode is suggested. 
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CHAPTER 3 

SPPs in Graphene-Metal Structures 

 In this chapter, we propose a novel graphene-metal hybrid structure which can 

support highly confined SPP modes. 

3.1 SPP Modes in the Structure 

 The structure of the graphene-metal hybrid waveguide is schematically illustrated 

in Fig. 3.1, where graphene and metal are separated by a thin dielectric spacer with a 

permittivity of ε. The fields of the mode propagate along the + z direction and 

exponentially decay away from the graphene into the air along the + x direction. Both 

TE and TM SPP modes can be supported, but the TE mode is almost not confined, 

and only the TM one is highly confined with a much larger propagation constant than 

in free space. We shall in the following restrict our discussion on the TM SPP mode. 

 
Figure 3.1 Schematic illustration of the graphene-metal SPP waveguide. Graphene (top) and 
metal (bottom) are separated by a dielectric spacer. The red curve represents a typical Ez 

distribution as a function of x. 

 The fields of the SPP are written as: 

1x i z
yH Ae e          (3.1) 
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1

0

x i z
x

AE e e 


        (3.2) 

11

0

x i z
z

i AE e e 


         (3.3) 

for x > 0, and 

 2 2x x i z
yH Be Ce e           (3.4) 

 2 2x x i z
xE Be Ce e  


        (3.5) 

 2 22 x x i z
z

iE Be Ce e  


        (3.6) 

for –d < x < 0. Here, 

2 2
1 0k           (3.7) 

and 

2 2
2 0

0

k
 


         (3.8) 

are the attenuation constants in the air and in the dielectric, respectively. The 

boundary conditions at x = 0 are similar to those discussed in Chapter 2: 

0 0z zx xE E  
         (3.9) 

00 0y y z xx xH H E   
        (3.10) 

but another boundary condition has to be enforced to account for the metal at x = – d. 

A good choice is to model the metal, typically gold or silver, as a perfect electric 

conductor (PEC). This is approximately the case for THz frequencies, and it is exactly 

why metal cannot support highly confined THz SPP modes. Then we have another 

boundary condition: 

0z x dE            (3.11) 

Combining Eqs. (3.9) through (3.11), we can obtain the dispersion relation of the 



 15 

graphene-metal SPP mode: 


1
20

 1
i1

0









 tanh 2d        (3.12) 

which, together with Eqs. (3.7) and (3.8) can be solved to obtain the mode 

characteristics such as effective index, loss, field distribution, and energy distribution. 

 Let us first make several interesting observations on Eq. (3.12). First, we note 

that when ε = ε0, it reduces to the dispersion of the even double-layer graphene SPP 

mode, as expressed in Eq. (2.14). This can be understood from the image theorem of 

electromagnetics. We can imagine that if a PEC is inserted into the middle of the 

double-layer graphene waveguide (i.e., the y-z plane in Fig. 2.4), the field distribution 

of the even mode is not going to be changed. Though our structure can be intuitively 

understood in this way, the introduction of metal indeed has its advantages; for 

example it makes the excitation much easier and more efficient than the double-layer 

case. Second, one may note that when the graphene-metal spacing d is very large, 

such that tanh(γ2d) ≈ 1, Eq. (3.12) reduces to the dispersion relation ε2/γ2 + ε0/γ1 + iσ/ω 

= 0, which is the dispersion relation of the SPP mode supported by a monolayer 

graphene alone. Finally, we should note that the real part of graphene conductivity has 

to be positive for the mode to exist. Otherwise, the real parts of two sides of Eq. (3.12) 

would have different signs. 

 Assuming that the dielectric is silicon dioxide (SiO2, ε = 3.9 ε0), we give in Figs. 

3.2(a) and (b) a typical plot of the dispersion relation of the graphene-metal SPP mode, 

for different values of graphene-metal separation d. Other relevant parameters are as 

follows: μ = 0.2 eV, T = 300 K, and 1 = 0.6 ps. As expected, at frequencies higher 
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than 6 THz, the curves for d = 1 μm and d = 5 μm merge. This is a direct consequence 

of the high confinement of the mode at f > 6 THz, when the plasmon mode supported 

by the monolayer graphene is highly confined so that it cannot “see” the effect of the 

metal at a distance larger than 1 μm. For a given separation between graphene and 

metal, as the frequency increases the real and imaginary parts of the effective index 

each initially exhibits a monotonically decreasing behavior and then increases 

monotonically after reaching a minimum. (For separations of 8 nm and 50 nm, the 

minimum of n  is reached at frequencies higher than 10 THz, which is not shown in 

Fig. 3.2(b).) There is a frequency range between the two minima where the loss 

decreases while the confinement increases, a characteristic not observed in traditional 

SPP modes at a metal-dielectric interface. 

 
Figure 3.2  Dispersion of the graphene-metal SPP mode. (a) and (b): Real and imaginary 
parts of the mode index at a fixed chemical potential of μ = 0.2 eV (carrier density 

12 22.9 10 / cmn   ) for different graphene-metal spacing: d = 8 nm (red), 50 nm (black), 

200 μm (blue), 1 μm (green), and 5 μm (purple). (c) and (d): Real and imaginary parts of the 
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mode index at a fixed graphene-metal spacing of d = 50 nm for different chemical potentials. 

 Figures 3.2(c) and (d) show how the mode index evolves with the variation in 

the chemical potential for a given d = 50 nm. It is clear that the mode confinement as 

well as the loss decreases monotonically with increasing chemical potential, as is 

typically the case for single- and double-layer graphene plasmon waveguides. We can 

see from these results that a highly confined low-loss propagating plasmon mode is 

possible when the frequency is high and the separation between graphene and metal is 

relatively large, at a low chemical potential. If the intraband electron relaxation time is 

increased to 100 ps for a significantly low scattering rate, achievable in very pure 

graphene or at very low temperatures [44], the plasmon mode at 10 THz can be 

confined within 0 100 , where λ0 is the free-space terahertz wavelength, with a loss 

of only 00.6 dB   when the graphene-metal separation is 8 nm and the chemical 

potential is 0.2 eV. Due to the tight confinement by the deep-subwavelength mode 

cross-sectional area, the fields will be extremely strong even with a moderate power. 

3.2 Excitation of the SPP Mode by Narrow Periodic Slits 

 Because the propagation constant of graphene-metal SPP mode is much larger 

than the free-space wavenumber, and the field distribution is so different from 

free-space modes, it is not possible to efficiently excite the mode either through direct 

THz illumination or end-fire coupling configuration. Even worse, the well established 

Otto and Kretschmann coupling techniques at optical frequencies cannot be employed 

because one cannot find a THz prism with such high refractive index. Therefore, it is 

extremely difficult to excite graphene-based SPP modes. This is the reason why there 
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have not yet been many experimental reports on graphene-based SPPs so far. The only 

experimental works we can find to date are Refs. [40, 41, 45]. Using nanoscopy, Fei et 

al. were able to observe the SPP mode excited at the interface between graphene and 

SiO2 [45]. However, the system is complicated and the excitation efficiency is not 

estimated. An easier and more controllable way to excite the graphene-based SPP 

modes remains absent. 

 We address in this section the most notable feature of our graphene-metal SPP 

waveguide: the mode can be easily and efficiently excited with normally incident THz 

beam if narrow periodic slits of an appropriate periodicity are created in the metal 

layer. The configuration that will be examined below is depicted in Fig. 3.3, where a 

sheet of graphene covers, at a distance d filled with a dielectric material, a periodic 

metallic grating with a periodicity of Λ and a duty factor of ξ. The idea stems from the 

fact that if a TM wave is incident upon a metal with narrow slits, wave vectors much 

larger than the free-space wavenumber will be generated in the vicinity of the slits. 

We therefore anticipate that if the periodicity of the slits is properly chosen, such that 

2πq/Λ, where q is an integer, matches the propagation constant of the SPP mode, the 

energy of the incident beam would be resonantly coupled to the SPP mode. Our 

prediction is verified by full-wave simulation using COMSOL Multiphysics, a 

commercial software based on the finite element method (FEM). We try to obtain the 

field distribution in the x-z plane, assuming that fields are homogeneous along the y 

direction. Two cases are considered: d = 50 nm and d = 8 nm. The thickness of the 

substrate is assumed to be 1 μm. In practice, the substrate is much thicker than 1 μm, 
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but the wave characteristics can be easily derived from the transfer matrix method. 

30-nm thick gold is used for the metal. Floquet boundary condition is enforced to 

mimic the periodicity in the z direction. 

 
Figure 3.3 Illustration of the metallic grating structure that is used to excite the 
graphene-metal SPP mode. Only two periods are shown here. The periodicity of the metallic 
grating is Λ and the duty factor is ξ. 

 The absorption,  1A T R   , where T and R respectively are the reflectance 

and transmittance of the structure, is a measure of the coupling efficiency. Let us first 

examine a typical example at 6 THz for a graphene chemical potential of μ = 0.2 eV 

and graphene-metal spacing of d = 50 nm, where the plasmon mode wavelength is 

found to be λP = 0.915 μm. The absorption as a function of the grating period Λ when 

the duty factor is fixed at ξ = 0.98 is plotted in Fig. 3.4, where periodic resonance 

peaks close to Λ/λP = 1, 2, 3, 4, and 5 can be identified, corresponding to the first five 

orders of coupling between the incident wave and the plasmon mode. The positions of 

those peaks deviate from multiple times of λP, especially for higher-order couplings. 

We shall show in Section 3.3 that this is a result of structural dispersion introduced by 

the periodic structure. We show in Fig. 3.5(a) the electric field distribution in the x-z 

plane for the first-order coupling. Note that a standing wave pattern is formed because 

two contra-propagating SPP modes are excited. The simulated field decay rate into the 



 20 

air, γ1 = 6.87 μm–1, is in excellent agreement with the theoretically calculated value. 

Also, notice from Fig. 3.4 that the coupling becomes inefficient when the grating 

period deviates slightly from the absorption peaks, and the resonance linewidth is the 

smallest for the first-order coupling. As a comparison, the electric field distribution 

for Λ/λP = 1.5 is given in Fig. 3.5(b). It is clearly seen that the mode field is not as 

strong as that in Fig. 3.5(a) where the plasmon mode is efficiently excited. 

 
Figure 3.4 Absorption coefficient as a function of the periodicity when the duty factor is fixed 
at ξ = 0.98. 

 

Figure 3.5 Normalized electric field distribution |E/E0| for (a) Λ/λP = 1 and (b) Λ/λP =1.5. 
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 Other factors such as the duty factor ξ of the metallic grating and the thickness 

of gold also affect the coupling efficiency. Basically, we tend to figure out their effects 

via numerical simulation because it is very difficult, if not impossible, to solve the 

problem analytically. As an example, Fig. 3.6 shows the coupling efficiency versus ξ 

for the first-order coupling, where two peaks at ξ = 0.62 and 0.99 are observed. The 

peak at ξ = 0.99 can be intuitively understood: on one hand, a high duty factor is 

necessary because the narrow slits are essential to excite the SPP mode; on the other 

hand, if the duty factor is too large (> 0.99 in the current case), the slits are too small 

for the incident beam to "see" them. But why is there an absorption peak at ξ = 0.62? 

The answer is the same as that of the question that why the absorption peaks in Fig. 

3.4 deviate from multiple times of the SPP wavelength: the structural dispersion 

introduced by the periodic structure. This issue is discussed in details in the next 

section. 

 
Figure 3.6 Absorption coefficient as a function of the duty factor ξ for the first-order 
coupling. Two peaks at ξ = 0.62 and 0.99 can be observed. 
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 Another feature of the excitation configuration being discussed here is that the 

fields, not only in the vicinity of the periodic slits, but also across the whole graphene 

layer, is significantly enhanced when the SPP mode is efficiently excited. Based on 

the fact that the rate of energy being coupled to the SPP mode is equal to the energy 

dissipation rate in the waveguide structure, one can obtain the following expression 

for the maximum electric field enhancement: 

   0 0/ 2 / ' cothZ d  E E      (3.13) 

where A   is the coupling efficiency for this excitation scheme, Z0 = 120π Ω is the 

wave impedance in free space, and σ' is the real part of the graphene conductivity. We 

show in Fig. 3.7 the simulated field enhancement at 8 THz for a graphene-metal 

separation of 8 nm when μ = 94 meV. Note that the interband conductivity has also 

been included since the chemical potential is now low enough for the interband 

transitions to happen. It is seen that the field has a minimum enhancement of 16  

times and a maximum field enhancement of 60 times, which is consistent with the 

results from our theoretical calculation. Note that this field enhancement is 

comparable to that reported in Ref. [44], but it can be obtained with a much shorter 

scattering time. The fact that such high field enhancement across the whole graphene 

sheet can be obtained merely through direct THz illumination might open up 

numerous nonlinear terahertz applications. 
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Figure 3.7 Simulated electric field enhancement at x = 0– beneath the graphene layer for 
graphene-metal spacing d = 8 nm, graphene chemical potential μ = 94 meV, and THz 
radiation frequency f = 8 THz. 

3.3 Structural Dispersion of the Periodic Structure 

 We have noted two phenomena in the last section in the excitation of 

graphene-metal SPP modes with narrow periodic slits: 1) If the duty factor is fixed at 

ξ = 0.98, the absorption peaks occur when the periodicity Λ is close to but not exactly 

equal to multiple times of the SPP wavelength. 2) If the periodicity of the metallic 

grating is fixed for the first-order coupling, there are two peaks when the duty factor 

is 0.62 and 0.99. We in this section use a mode-matching method to estimate and 

understand these two behaviors. In fact, instead of being coupled to the 

graphene-metal plasmon mode alone, the incident wave is coupled to an effective 

mode supported by the periodic structure. The graphene-metal plasmon mode is 

supported in regions with metal, whereas the monolayer graphene plasmon mode is 

supported in regions without metal. These two modes, combined with the boundary 

conditions between the two regions, determine the possible modes that can exist in the 
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periodic structure, among which the one of a minimum phase mismatch with the 

grating wavenumber is most likely to be excited. The idea is quantified in the 

following. 

 We denote the normalized field distribution Hy and Ex of the graphene-metal 

SPP mode with a propagation constant of β1 as 1Ĥ  and 1Ê , respectively. Similarly, 

the normalized Hy and Ex of the SPP mode of a propagation constant β2 supported by 

a monolayer graphene alone discussed in Section 2.1 are denoted as 2Ĥ  and 2Ê . As 

shown in Fig. 3.8, the fields in Region I are written as: 

2 2
2 2

ˆ ˆi z i z
yH AH e BH e        (3.14) 

2 2
2 2

ˆ ˆi z i z
xE AE e BE e        (3.15) 

The fields in Region II are written as: 

1 1
1 1

ˆ ˆi z i z
yH CH e DH e        (3.16) 

1 1
1 1

ˆ ˆi z i z
yH CE e DE e        (3.17) 

The fields in Region III are written as: 

2 2
2 2

ˆ ˆi z i z
yH MH e NH e        (3.18) 

2 2
2 2

ˆ ˆi z i z
xE ME e NE e        (3.19) 

 
Figure 3.8 Structure for the analysis of structural dispersion introduced by the periodicity. 
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 In fact, radiation modes have to be considered in Eqs. (3.14) through (3.19), but 

we ignore them here for the first-order estimate. For Hy and Ex to be continuous at z = 

– ξΛ, we have: 

2 2 1 1
2 2 1 1

ˆ ˆ ˆ ˆi i i iAH e BH e CH e DH e                  (3.20) 

2 2 1 1
2 2 1 1

ˆ ˆ ˆ ˆi i i iAE e BE e CE e DE e                  (3.21) 

Also, Hy and Ex have to be continuous at z = 0, which gives: 

1 1 2 2
ˆ ˆ ˆ ˆCH DH MH NH        (3.22) 

1 1 2 2
ˆ ˆ ˆ ˆCE DE ME NE        (3.23) 

Another set of boundary conditions is given by the effective propagation mode: 

 2 2i iie Ae Be M N            (3.24) 

 2 2i iie Ae Be M N            (3.25) 

where β is the effective propagation mode. Strictly, Eqs. (3.20) through (3.25) have to 

be satisfied for every point in the cross section, but this is impossible without the 

inclusion of radiation modes. If radiation modes are considered, integration equations 

with infinite number of unknowns have to be solved. Here, to the first order, we 

neglect the effect of radiation modes, and integrate appropriate forms of Eqs. (3.20) 

through (3.25) across the cross section (the x axis) to get a basic idea. As an example, 

multiplying both sides of Eq. (3.20) with  *
1 12 /H  and integrating from x = – d 

to , we obtain: 

2 2
1 11 12 2 0

i i
i ie P e PA B e C e D

   
    

 

  
         (3.26) 

where  *
1 2 / d

d
P H H x x




  . Similar equations can be obtained from Eqs. (3.21) 

through (3.23). These four equations, combined with Eqs. (3.24) and (3.25), provide a 
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system of six equations with six unknowns A, B, C, D, M and N. For a nontrivial 

solution to exist, the determinant has to varnish, giving the following requirement on 

the effective propagation constant β: 

2 2

2 2

2 2
1 1

2 2
1 1

1 1

2 2

1 1

2 2

0 0 1 1
0 0 1 1

2 2 0 0
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  

 
 

 

 

 

 

(3.27) 

which can be solved for possible β. For a given set of periodicity Λ and duty factor ξ, 

Eq. (3.27) either has a solution or does not have a solution. If there are β values which 

can satisfy Eq. (3.27), we denote min {β, 2π/Λ–β} as δ, the minimum phase mismatch. 

The plot of δ as a function of the duty factor for the first-order coupling is given in 

Fig. 3.9, from which two dips at ξ = 0.72 and 0.94 can be identified. Here, the 

frequency is f = 6THz, the graphene-metal spacing is d = 50 nm, and the chemical 

potential of graphene is μ = 0.2 eV, to facilitate comparison with Fig. 3.4. Considering 

that we have neglected the radiation modes, and did not consider the coupling 

coefficient between the incident wave and the effective mode, this agreement between 

semi-analytical results and simulation is reasonably good to provide an insight into 

the complex problem. 
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Figure 3.9 Minimum phase mismatch normalized to k0 for the first-order coupling. f = 6 THz, 
d = 50 nm, and μ = 0.2 eV. 

 The model just developed is employed to explain the deviation of absorption 

peaks from multiple times of λP that is observed in Fig. 3.4. We plot in Fig. 3.10 the 

minimum phase mismatch δ as a function of the periodicity Λ for a given duty factor 

of ξ = 0.98. It is observed that the phase mismatch dips deviate from multiple times of 

the SPP wavelength, in a way similar to what the absorption peaks do in Fig. 3.4. 

 
Figure 3.10   Minimum phase mismatch normalized to k0 for a fixed duty factor of ξ = 0.98. 
f = 6 THz, d = 50 nm, and μ = 0.2 eV. 
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 We have in this section developed a first-order model to understand the 

structural dispersion of the periodic structure. This might be helpful in future device 

designs. 

3.4 Applications of the Graphene-Metal SPPs 

 We are now ready to envision some interesting applications from our 

graphene-metal hybrid structure. The most straightforward application is THz filters. 

This can be observed by noting that the coupling efficiency from the incident wave to 

the SPP mode depends sensitively on the matching between the grating period and the 

SPP wavelength, which indicates that the proposed structure can be readily used as a 

terahertz filter. Also, combined with the tunability through variation of the chemical 

potential, the structure can be readily modified to operate as a THz modulator. In 

practical applications, the chemical potential can be tuned using an externally applied 

voltage across the graphene and the metal. Figure 3.11 shows how the structure can be 

used as a transmission-type modulator. The period of the metallic grating is Λ = 0.915 

μm, the duty factor is ξ = 0.98, and the separation between graphene and metal is d = 

50 nm. As expected, there is a 4% transmission dip at 6 THz when the chemical 

potential is 0.2 eV, which is associated with the first-order grating coupling. As the 

chemical potential increases, the dip moves to a higher frequency. For example, for μ 

= 0.25 eV the dip occurs at 6.71 THz while the transmission at 6 THz is 22.7%. The 

modulation depth, defined as the ratio of the difference between high and low levels 

of transmission to the high level, at 6 THz is then 82.4%. Noting the simple relation n 

= (|μ|/ħvf)2/π between the carrier density and the chemical potential for graphene, 
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where vf ≈ 106 m/s is the Fermi velocity, we find that a change of 

12 21.65 10  cmn     in the carrier density is sufficient to achieve such an 

extraordinary modulation performance. Actually, a modulation depth larger than 50% 

can be realized with a small change of only 11 25 10  cmn     in the carrier density. 

Specific design and optimization of the operating frequency and speed are beyond the 

scope of this thesis and will not be discussed further. 

 
Figure 3.11 Tunable transmission through variation of the chemical potential for μ = 0.2 eV 
(black), 0.25 eV (blue), and 0.3 eV (red). 

 In addition to THz filters and modulators, we also believe that the unique 

combination of metal (which can support optical SPPs) and graphene (which can 

support THz SPPs), together with the highly confined fields, are promising for 

optical-THz nonlinear interactions if some techniques to compensate for the loss can 

be developed in the future. 
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CHAPTER 4 

Graphene-Wrapped Fibers 

 Up to this point, graphene-based SPP modes in monolayer graphene, 

double-layer graphene, and graphene-metal hybrid structures have been considered. 

We in this chapter describe a truly 3D structure – graphene-wrapped fibers. Figure 4.1 

helps to understand the idea. 

 It is shown that if a fiber core of a radius a is wrapped with graphene, as 

depicted in Fig. 4.1(b), two different electromagnetic modes can be supported: the 

“fiber mode” and the SPP mode. The “fiber mode” results from the perturbation of the 

graphene wrapping, and has characteristics almost identical to those of fiber modes 

without graphene. On the other hand, the SPP mode takes advantage of the unique 

conductivity of graphene and does not exist in the absence of the graphene wrapping.  

 
Figure 4.1 Evolution of the structure from monolayer graphene to graphene-wrapped fibers. 
(a) A highly confined TM plasmon mode is supported by the 2D dielectric-graphene-dielectric 
structure. (b) By wrapping the structure with z being the axis, the structure in (a) becomes a 
“graphene-wrapped fiber”, a real 3D structure. 

4.1 Modes in the Structure 

 We focus on the TM modes with no angular dependence in the cylindrical 
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coordinate. The wave equation thus takes the form: 

 2 2 z
i r

Ek E i
r

 


 


       (4.1) 

 2 2 z
i i

Ek H i
r 


 


       (4.2) 

 
2

2 2
2

d d1 0
d d

z z
i z

E E k E
r r r

          (4.3) 

in each dielectric region. Here, 2 2
0i ik     and β is the propagation constant. Note 

that Ez is a function of r only. 

Depending on whether 2 2
ik   is positive or negative, the solution to Eq. (4.3) 

takes different forms. We call the modes “fiber modes” when 2 1k k   because 

they are similar to the modes in fibers without graphene; we call the modes “plasmon 

modes” when 1 2,k k   because they are directly the counterparts of the highly 

confined plasmon modes in 2D structures (Fig. 4.1(a)). The meaning of this 

nomenclature will become clearer later. 

Let us first look into the fiber modes when 2 1k k  . Eq. (4.3) is written as  

2
2
12

d d1 0
d d

z z
z

E E E
r r r

          (4.4) 

for r < a, and 

2
2
22

d d1 0
d d

z z
z

E E E
r r r

          (4.5) 

for r > a, where 2 2 2
1 1k    and 2 2 2

2 2k   . 

Thus, Ez can be written as： 

 
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0 1

0 2

,
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AJ r r a
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BK r r a





 


      (4.6) 
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where J0 is the Bessel function of the first kind of order zero and K0 is the modified 

Bessel function of the second kind of order zero.  

Expressing H  and rE  in terms of zE  using Eqs. (4.1) and (4.2), and 

matching the boundary conditions: 

z zr a r aE E  
        (4.7) 

0 0 ,0zx a x xH H E       
       (4.8) 

we can obtain the following dispersion relation of the fiber mode: 

 
 

 
 

1 0 1 2 0 2

1 0 1 2 0 2

J a K a i
J a K a

    
    

 
        (4.9) 

which has almost the same form as that of the modes in fibers without graphene, 

 
 

 
 

1 0 1 2 0 2

1 0 1 2 0 2

0
J a K a
J a K a

   
   

 
  , except for the term /i   on the right-hand side. 

 For a specific example, we use SiO2 (ε1 = 3.9 ε0) as the fiber core and air (ε2 = ε0) 

as the material for dielectric 2. Also, f = 6 THz, T = 300 K, μ = 0.2 eV and lossless 

graphene is assumed for simplicity. Varying the radius of the fiber core, we obtain 

the dispersion relation of the fiber modes in the presence of graphene as a function 

of the V number 2 2
1 2

2 aV n n


  , and the results for the modes of first three 

orders are given in Fig. 4.2 in black curves. Also shown in Fig. 4.2 in red curves are 

the dispersion curves for the corresponding fiber modes without graphene. It is seen 

that the dispersion relations in the presence of graphene are almost identical to those 

of the modes without graphene. This means that graphene only plays a minor role in 

modifying the dispersion of modes in conventional fibers. The electric field 

distribution of the TM01 mode when the fiber radius is 30 μm is shown in Fig. 4.3. 
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Figure 4.2 Dispersion of the first-three-order modes in graphene-wrapped fibers (black) and 
fibers without graphene (red curves). They are almost identical for the same mode order. At 
f = 6 THz, T = 300 K, and μ = 0.2 eV. 

 

Figure 4.3 Ez field distribution at a radius of a = 30 μm. 

 In addition to the “fiber modes”, graphene-wrapped fibers can also support a 

highly confined SPP mode under the condition that 1 2,k k  . Now the electric field 

is written as: 

 
 

0 1

0 2

,

,z

AI r r a
E

BK r r a





 


     (4.10) 
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where I0 is the modified Bessel function of the first kind of order zero, and K0 is the 

modified Bessel function of the second kind of order zero. Here, 2 2 2
1 1k    and 

2 2 2
2 0k   . The boundary conditions are: 

z zr a r aE E  
         (4.11) 

z r ar a r aH H E     
       (4.12) 

Then the dispersion relation of the SPP mode can be solved as: 

 
 

 
 

0 0 2 1 0 1

2 0 2 1 0 1

K a I a i
K a I a

    
    

 
       (4.13) 

Varying the fiber radius, we plot in Fig. 4.4 this dispersion relation at f = 6 THz. All 

other parameters are the same as those used above. Different from the dispersion 

shown in Fig. 4.2, the SPP mode being discussed here has no cutoff, as long as the 

dimension is large enough so that the conductivity model of graphene remains valid. 

It can be seen that as the radius of the fiber increases the dispersion approaches that of 

the mode supported by the 2D structure in Fig. 4.1(a). This behavior is expected 

because the SPP mode supported by the surface cannot “feel” the effect of the center 

of the fiber when the radius is large enough. We show in Fig 4.5 how the mode field 

distribution evolves as the fiber radius changes. 
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Figure 4.4 Dispersion of the SPP mode when f = 6 THz, T = 300 K, and μ = 0.2 eV. The mode 
has not cutoff. As the fiber radius increases (or equivalently, V increases) the mode index 
approaches that of the SPP mode supported by the dielectric-graphene-dielectric structure. 

 
Figure 4.5 Electric field distributions for (a) a = 0.3 μm and (b) a = 5 μm. At f = 6 THz, T = 
300 K, and μ = 0.2 eV.  

4.2 Conversion from Fiber Modes to SPP Modes 

 We have in the last section discussed the possible modes in graphene-wrapped 

fibers: the “fiber modes” and the SPP modes. In this section, the coupling from one 

mode to the other through fiber gratings is considered, assuming that the graphene and 

dielectric material are lossless. This is not the case in practice, at least currently, but 
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the analysis presented here is still helpful because it provides an estimate of how long 

the fiber should be for the energy of the fiber modes to be completely transferred to 

the SPP mode. Then we would know the requirement on the loss of graphene and the 

dielectric materials. 

 We outline below the tedious procedure to find the coupling length for the 

maximum energy transfer to occur between the “fiber modes” and the SPP mode. First, 

to achieve the phase matching condition, a grating periodicity Λ that satisfies 2π/Λ =K 

where K is the phase mismatch between the two modes is chosen for first-order 

coupling. Second, the perturbation permittivity   is decided. Here, it is assumed 

that 00.01    within the fiber core in the first half of the grating and 

00.01     within the fiber core in the second half of the grating. Then the 

normalized fields of the “fiber modes” and the SPP mode are used to find the coupling 

coefficient according to  

   
2 *

0 0
ˆ ˆd d

a

fp f pz z E E r r


           (4.14) 

 
0

1 diKz
fp z e z 

 
       (4.15) 

where the subscripts f and p denote the “fiber modes” and the SPP mode, respectively. 

The coupling length is found by 

2
l 


        (4.16) 

 Now let us consider a specific example in which energy is transferred from 

the fundamental TM mode, TM01 mode, to the SPP mode. When the frequency is 6 

THz, the chemical potential is 0.2 eV, and the fiber radius is 30 μm, the propagation 

constants of the TM01 fiber mode and the SPP mode are 01.714k  and 020.84k , 
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respectively. The phase mismatch is thus 019.126k  and the periodicity of the fiber 

grating is determined to be 2.6142 μm. After normalizing the field distribution of the 

two modes and using Eqs. (4.13) through (4.15) we obtain the coupling length l = 

3.55 cm. Since the plasmon mode has no cutoff, the graphene-wrapped fiber can then 

be tapered to a tip where the terahertz energy is extremely concentrated and the fields 

are significantly enhanced, which can be exploited for many applications such as 

sensing, imaging, etc. 

However, this intriguing example has two major problems:  

1) Loss. The fiber and graphene can never be lossless. Actually the loss of 

large-area graphene fabricated by chemical vapor deposition (CVD) is very high. This 

shortcoming might be circumvented in the future through improvement of the 

fabrication technique or some specific schemes to compensate for the loss. 

2) It is hard to taper the graphene-wrapped fiber in fabrication. Also, the 

graphene conductivity change when it is tapered is not considered. 
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CHAPTER 5 

Conclusion and Outlook 

 We have in this thesis comprehensively studied the highly confined SPP modes 

in various graphene-based structures. The ultimate aim of this investigation is to find 

an efficient way to excite the waveguide modes in a compact and low-loss THz 

waveguide, which is a key challenge in the THz research community. 

 In Chapter 2, a systematic approach to analyzing SPP modes supported by 

graphene-based structures is developed and the SPP modes supported by monolayer 

and double-layer graphene waveguides are briefly discussed. Though straightforward, 

this lays the foundation for further understanding of the two more complicated 

structures that are proposed thereafter. 

 A graphene-metal SPP waveguide is proposed in Chapter 3. The SPP mode 

supported by the structure has basically the same dispersion relation as the even mode 

of the double-layer graphene waveguide does. However, our structure has an 

advantage that cannot be achieved by any other structures reported to date: the mode 

can be easily and efficiently excited with a normally incident beam if narrow periodic 

slits of an appropriate periodicity are created in the metal. The excitation is due to the 

resonant coupling between the incident wave and the mode supported by the periodic 

structure. Furthermore, the structural dispersion introduced by the periodicity is 

examined using a first-order mode matching method, which produces a qualitatively 

good agreement with the full-wave simulation. Also, how the proposed structure can 

be readily used as a THz filter and an ultrafast THz modulator is briefly demonstrated. 
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 Besides the approach to efficiently couple THz radiation to a 

deep-subwavelength waveguide that is described in Chapter 3, we in Chapter 4 

considered another possibility: using graphene-wrapped fibers. Analysis shows that 

both "fiber modes" and SPP modes can exist in the structure, and the energy can be 

coupled from one to the other through properly engineered fiber gratings. A typical 

example reveals that the length of the fiber has to be as long as 3.55 cm for the 

complete energy transfer to happen. This is not practical with current graphene quality, 

and the feasibility thus relies to a large degree on the further advancement in graphene 

fabrication technology. 

 Some of the phenomena and devices presented in this thesis, for example the 

efficient excitation of graphene-metal SPP mode using narrow periodic slits in the 

metal, THz filters, and ultrafast THz modulators, may in the near future be observed 

or realized in experiments. Our future work will focus on practical devices based on 

these fundamental ideas. We believe that, with the advancement of graphene 

fabrication technology, our work in this thesis will pave the way for numerous 

innovative applications such as sensing, imaging, and communications. 
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