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trust to the abstract deductive...
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into the arms of Peano,

Leibniz,
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L’Hôpital.
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Fractional Brownian Motion

by

Patrick R. Driscoll

Doctor of Philosophy in Mathematics

University of California, San Diego, 2011

Professor Bruce K. Driver, Chair

The fractional Brownian motions are a family of stochastic processes which

resemble Brownian motion in many key ways, yet lack the quality of independence

of increments. This dissertation focuses on proving smoothness of densities for

solutions to differential equations driven by fractional Brownian motion, provided

the vector fields satisfy a particular stratification condition. This result is acheived

using the methods of Malliavin calculus. Examples of such solutions include the

area process for any two-dimensional projection of the fractional Brownian motion.
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Chapter 1

Introduction

1.1 Background

We begin the discussion by recalling a definition from the theory of differ-

ential equations. Suppose L be a differential operator on some open U ⊂ Rn; then

L is called hypoelliptic if, for every distribution ϕ supported on some open V ⊂ U ,

Lϕ ∈ C∞(V ) implies ϕ ∈ C∞(V ). It is easy to check that every elliptic operator

is also hypoelliptic. A celebrated theorem of Hörmander (see [Hör67]) gives us one

method of constructing a hypoellptic operator, as follows: suppose that {Xi}mi=0 is

a collection of vector fields on U with the bracket-generating property :

sp{Xi, [Xi, Xj], [Xi, [Xj, Xk]], . . . : i = 1, . . . ,m} = Rn (1.1.1)

where [·, ·] is the standard Lie bracket operator on vector fields. Then the operator

given by

L := X0 +
m∑
i=1

X2
i (1.1.2)

is hypoelliptic.

One of the pleasant properties of hypoelliptic operators is that they ad-

mit an associated smooth kernel. More specifically, there exists a one-parameter

1
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semigroup of functions {Pt}t≥0 for which, given the Cauchy problem
ut(t, x) = Lu

lim
t↓0

u(t, x) = f(x)
(1.1.3)

with bounded and continuous initial data f , one has the solution

u(t, x) =

∫
Pt(x, y)f(y)dy.

There is a well-known connection between the above deterministic problem

and the theory of stochastic differential equations. Let B = {B1, . . . , Bm} be m-

dimensional Brownian motion and {Xi} be a collection of bracket-generating vector

fields on Rn as above.Suppose we are given the following stochastic differential

equation: 
dYt = X0(Ys)dt+

m∑
i=1

Xi(Ys)dB
i
s

Y0 = x (x ∈ Rd)

(1.1.4)

where the expression “dBi
s” indicates stochastic integration in the manner of

Stratonovich. One can verify that the infinitesimal generator associated to Y x
t ,

whose action on a bounded and twice differentiable function f is given as

lim
t→0

1

t
(E[f(Y x

t )]− f(x))

is in fact the differential operator L as defined in (1.1.2). If one defines the function

u(t, x) := E[f(Y x
t )], it can be confirmed that u is the solution to (1.1.3). From this,

it follows that if our vector fields satisfy the bracket-generating condition, we may

conclude that each Y x
t has a density Pt with respect to Lebesgue measure which is

smooth. Further details regarding this connection may be found in [Øks03], among

numerous others.

The purpose of this work is to extend these sorts of results to the case when

our driving signal is replaced by a more general class of processes known as frac-

tional Brownian motions. The fractional Brownian motions are a one-parameter

family of Gaussian processes {BH
t }, with H ∈ [0, 1]. These processes were first

suggested by Kolmogorov in [Kol40] and investigated in earnest by Mandelbrot
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and Van Ness in [MVN68]. Recall that the standard Brownian motion {Bt} is

characterized by the following properties:

1. for each s < t, the increment Bt−Bs is normally distributed with mean zero

and variance |t− s|2H ;

2. increments are independent; that is to say, for each t1 < t2 < . . . < tn <∞,

the set

{Bt1 , Bt2 −Bt1 , . . . , Btn −Btn−1}

is a collection of independent random variables.

The fractional Brownian motions, in essence, are processes for which the second

property does not necessarily hold; that is to say, these processes have some mea-

sure of correlation between increments The degree to which the process increments

Figure 1.1: Sample Paths for Fractional Brownian Motion

are correlated (and hence, as Gaussians, dependent) is a function of the value of

the parameter H, known as the Hurst parameter. For 1
2
< H ≤ 1, increments are

positively correlated, and for 0 ≤ H < 1
2
, increments are negatively correlated.

When H = 1
2
, one recovers the standard Brownian motion. Heuristically, one may

consider the Hurst parameter H as a measurement of the “roughness” of the sam-

ple paths of BH
t , with smaller values of H corresponding to greater amounts of

roughness; this notion is best understood visually, as one can see from Figure 1,
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but we will make it more precise in the sequel. From a practical standpoint, dif-

ferential equations driven by fractional Brownian motion are interesting objects of

study as the increment correlation property makes the process a suitable model for

many phenomena. Examples include the analysis of global temperature anomaly

[RR10], river water runoff [Hur51], electricity markets [Sim03], foreign exchange

markets [GBP+96], and logarithmic returns on stocks and volatilities [Shi99].

One fact of great importance for this discussion is that for H 6= 1
2
, the

fractional Brownian motion process is not a semimartingale. As a result, the

application of usual stochastic integration techniques a la Itô are not available

for use, and alternate methods are required in order to define equations of the

form (1.1.4). When H > 1
2
, the positive correlation of increments of sample paths

allows for the solution to be defined pathwise through Riemann-Stieltjies integrals;

under such a regime, existence of a density to a solution of (1.1.4) is proven in

[NS09], and smoothness is proven in [BH07]. In the case that H < 1
2
, a different

approach known as rough path theory may be used to make sense of (1.1.4). In

essence, we may consider solutions as the limits of solutions to (1.1.4) driven by

signals which approximate our process under a particular topology. For any path

f : [0, T ] → Rd of bounded variation, one may construct the step-N signature f

with domain ∆ := {(s, t) : 0 ≤ s ≤ t ≤ T}:

fs,t :=

(∫ t

s

df(τ),

∫ t

s

∫ τ2

s

df(τ2)⊗ df(τ1), . . . ,

∫
s<τ1<...<τN−1<t

df(τN)⊗ . . .⊗ df(τ1)

)
.

For any such f and suitable vector fields X one has the existence of a unique

solution to the equation

dy = X(y) df

Now suppose we have some sequence {fn} of smooth functions for which the as-

sociated step-N signatures are appropriately uniformly bounded and converge in

particular variational spaces to some map f on ∆. Then one may show that the
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associated sequence of solutions {yn} to the differential equation above driven by

{fn} converge to a limit y, which we will refer to the as the solution to the rough

differential equation dy = X(y)df .

While the above treatment of rough path theory is admittedly vague, it is

mentioned here for two main reasons. The first is to motivate the construction

of solutions to differential equations driven by fractional Brownian motions as

limiting processes of solutions to the same equations when driven by processes

which adequately approximate the fractional Brownian motion. The second reason

is to highlight the fact that the step-2 signature (s, t) of a smooth path f may be

expressed in terms of the path increments f(t)−f(s) enhanced with the signed area

contained within two-dimensional projections of the path and the chord connecting

f(t) with f(s). As we will see, the solutions that will be the focus of this discussion

include such enhanced signatures of the fractional Brownian motion.

Progress regarding densities of solutions for H < 1
2

has been more limited.

Existence has been shown for 1
4
< H < 1

2
in the case when the vector fields are

elliptic by Cass, Friz, and Victoir in [CFV09]; the result was extended to the

hypoelliptic case under the same Hurst parameter condition by Cass and Friz in

[CF10].

1.2 Statement of Results

Suppose that ◦ : Rn × Rn → Rn is a multilinear form on Rn such that

G := (Rn, ◦) is a Lie group with associated Lie algebra g. We say that such a

group is (step-r) stratified if there exists a decomposition

g = V1 ⊕ V2 ⊕ . . .⊕ Vr

such that [V1, Vi−1] = Vi for i ∈ {2, . . . , r} and [V1, Vr] = 0. We will be fo-

cusing on the case when G is step-2 stratified; that is, when g = V1 ⊕ V2 with

V2 = [V1, V1]. Clearly, the Lie algebra for a step-2 stratified group satisfies the

Hörmander bracket-generating condition (1.1.1).
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Example 1. The Heisenberg group.

Let ∧ : R2 × R2 → R denote the standard wedge product or “signed area”

operator; i.e., (x1, x2)∧ (y1, y2) = x1y2−x2y1. We define the Lie group G = R2×R
with multiplication operation ◦ : G×G→ G given by:

(v, x) ◦ (w, y) =

(
v + w, x+ y +

1

2
(v ∧w)

)
.

(We write R2×R rather than R3 in this case in order to simplify notation through-

out.) This group is known as the Heisenberg group, and is often denoted H1. The

associated Lie algebra for the group is denoted by h ∼= T0H1 ∼= H1. To explicitly

define the Lie algebra structure, we will perform the usual operations of calculting

the left-invariant vector fields for G. Fix ξ = (v, x) ∈ h. For each g = (w, y) ∈ G,

let Lg : G → G be multiplication on the left by g; i.e., Lg(v) = g ◦ v. Then the

(left-invariant) vector field ξ̃ defined by

ξ̃g = (Lg)∗ξ

has action given on each f ∈ C∞(G) by

ξ̃gf =
d

dt

∣∣∣∣
t=0

(f ◦ (g · σ(t)))

where σ(t) is any smooth curve in G with σ(0) = 0 and σ′(0) = ξ (for example,

σ(t) := tξ). More explicitly, we have that

ξ̃gf =
d

dt

∣∣∣∣
t=0

f

(
w + tv, y + tx+

1

2
(w ∧ tv)

)
= f ′(g)(v, x+

1

2
(w ∧ v)).

and if η = (v′, x′) ∈ h,

η̃g ξ̃gf = η̃gf
′(g)(v, x+

1

2
(w ∧ v))

= f ′′(g)(v, x′ +
1

2
(w′ ∧ v))(v, x+

1

2
(w ∧ v))

+ f ′(g)
d

dt

∣∣∣∣
t=0

(v, x+
1

2
((w + tv′) ∧ v))

= f ′′(g)(v, x′ +
1

2
(w′ ∧ v))(v, x+

1

2
(w ∧ v)) + f ′(g)(0,

1

2
(v′ ∧ v)).
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Hence, the Lie bracket on h is given by

[ξ, η] = [̃ξ, η]0 = [ξ̃, η̃]0 = (0,v′ ∧ v) .

Given the standard Euclidean basis {e1, e2, e3} for R3, there are associated Jacobian

vector fields Xi := (̃ei, 0), with

(X1)(w,y) =

(
e1,

1

2
(w, e1)

)
=

(
1, 0,−1

2
(w)2

)
.

(X2)(w,y) =

(
e2,

1

2
(w, e2)

)
=

(
0, 1,

1

2
(w)1

)
.

(X3)(w,y) = (0, 1) .

From these calculations, we may conclude that

(i) At each point in g ∈ H1, the vectors {(Xi)g} span the tangent space;

(ii) [X1, X2] = X3, [X1, X3] = [X2, X3] = 0.

This is the simplest (non-trivial) case of a step-2 stratified Lie group on a Euclidean

space.

Now, we suppose that B = (B1, B2) is a 2-dimensional fractional Brownian

motion on [0, T ] with Hurst parameter 1
3
< H < 1

2
. One would like to give meaning

to the differential equation

dYT = X1(YT )dB1
T +X2(YT )dB2

T

where X1 and X2 are the Heisenberg vector fields defined in the example above.

Working heuristically, one has that

dY 1
T = dB1

T , dY 2
T = dB2

T , dY 3
T =

1

2

(
Y 1
T dB

2
T − Y 2

T dB
1
T

)
.

The solution to this equation is given as

YT =

(
BT ,

1

2

∫ T

0

B1
t dB

2
t −B2

t dB
1
t

)
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In the case of standard Brownian motion, the expression AT :=
∫ T

0
B1
t dB2

t −
B2
t dB

1
t is the well-known Lévy area process. In our current situation, we will need

to use a bit of care in order to atttain a rigorous definition for Y . Let

(Bm)T :=
(
(B1

m)T , (B
2
m)T

)
denote the m-th dyadic approximation of B (as defined below in Section 2.3).

Define the area processes

(Am)T :=
1

2

[∫ T

0

(B1
m)td(B2

m)t − (B2
m)td(B1

m)t

]
. (1.2.1)

where the integral may be understood pathwise as Riemann-Stietjies integration.

It is easy to see that Ym := (Bm, Am) is a solution to the differential equationd(Ym)T = X1 ((Ym)T ) d(B1
m)T +X2 ((Ym)T ) d(B2

m)T ,

(Ym)0 = 0.

As a result of Theorem 2 of [CQ02], there exists a process A given by

AT := lim
m→∞

(Am)T

where the convergence is almost sure with regards to the law of B.

Theorem 1.2.1. Define the random process {Y }0≤t≤T , taking values in R3, by

Y0 = 0,

Yt = (Bt, At). (t ∈ (0, T ])

Then for all t ∈ [0, T ], the density of Yt with respect to Lebesgue measure is C∞.

The above theorem is a special case of the following result.

Theorem 1.2.2. Let G be a step-2 stratified group on RN with stratification g =

V1 ⊕ V2. Suppose that {X1, . . . Xn} are Jacobian generators for V1. Let Y denote

the almost sure limit of solutions Ym to the differential equation

d(Ym)t =
n∑
i=1

Xi((Ym)t)d(Bi
m)t,

where the driving processes Bi
m are dyadic approximators of a fractional Brownian

motion. Then YT has a smooth density with respect to Lebesgue measure for each

t ∈ (0, T ].
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We will begin by devoting Chapter 2 to laying the groundwork for proving

the above results. In particular, we will discuss the notion of solutions to stochastic

differential equations driven by fractional Brownian motion and develop the tools

used in the proofs, including a suitable characterization of the abstract Wiener

space associated to the process B. Chapter 3 will focus on the proof of Theo-

rem 1.2.1, using Malliavin calculus techniques. Finally, in Chapter 4 we will prove

Theorem 1.2.2. This proof, while similar in spirit to that of the previous chapter,

will require the proof of an analogue of Norris’ Lemma.



Chapter 2

Background

2.1 Fractional Brownian Motion

We begin by defining the primary object of interest in this body of work.

Recall that a stochastic process is called Gaussian if any finite linear combination of

time samples of the process is a normally distributed random variable. A Gaussian

process {BH
t }t∈[0,T ] is called a fractional Brownian motion with Hurst parameter

H ∈ [0, 1] if

• the samples paths t 7→ BH
t are continuous,

• the process is centered; i.e., E[BH
t ] = 0 for all t ∈ [0, T ],

• the process has its covariance given by

E[BH
s B

H
t ] = RH(s, t) :=

1

2

(
s2H + t2H − |t− s|2H

)
. (2.1.1)

General information regarding this process may be found in [BHØZ08] or [MVN68].

We will generally be working with fractional Brownian motions of some fixed Hurst

parameter at any given point in the sequel; hence, we will drop the parameter from

our notation whenever it is possible to do so without causing confusion.

An n-dimensional fractional Brownian motion is a stochastic process {Bt =

(B1
t , . . . , B

n
t ); t ∈ [0, T ]} is a continuous-time process comprised of n independent

10
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copies of one-dimensional fractional Brownian motion, each having the same Hurst

parameter H.

It is easy to see from the definition of R(s, t) that B has homogeneous

increments: for 0 < s < t ≤ T ,

(Bt −Bs)
d
= Bt−s.

Also, since

E[B2
αt] = (αt)2H = α2HE[B2

t ],

we have that fractional Brownian motion is self-similar with exponent H; i.e.,

Bαt
d
= αHBt.

One additional property of the fractional Brownian motion that will be of

great use to us in the sequel is presented below without proof.

Lemma 2.1.1 (Theorem 1.6.1 of [BHØZ08]). The sample paths t 7→ Bt are almost

surely Hölder continuous of order α for all α < H.

We mention at this point one of the most fundamental features of the

fractional Brownian motion: the correlation of process increments. We will only

present the case most pertinent to us; the proof for the regime of H > 1
2

follows

similarly.

Lemma 2.1.2. Let 0 < H < 1
2
, and suppose B is a fractional Brownian motion of

Hurst exponent H. Suppose 0 ≤ s < t < u < v ≤ T . Then the process increments

Bv −Bu and Bt −Bs are negatively correlated.

Proof. We begin by noting that the following relations hold:

1. (v − s) + (u− t) = (v − t) + (u− s).

2. (v − s) > [(v − t) ∨ (u− s)] := max [(v − t), (u− s)].

3. (u− t) < [(v − t) ∧ (u− s)] := min [(v − t), (u− s)].

Let f(α, β) = α2H + β2H . One may check that

E[(Bv −Bu)(Bt −Bs)] = f(v − s, u− t)− f(v − t, u− s).
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For any positive constant C, the function f attains its maximum on the region

{(α, β) : α ≥ 0, β ≥ 0, α+β = C} at (C
2
, C

2
). Thus, f(v−s, u− t) < f(v− t, u−s),

and the claim is proven.

2.2 p-variation and Young’s integration

2.2.1 One-dimensional case

For any T > 0, we will denote by P [0, T ] the collection of finite partitions

of [0, T ]; i.e., sets of the form {0 = t0 < t1 < . . . < tn = T}. Suppose we are given

a path f ∈ C([0, T ],Rd); then for each 1 ≤ p < ∞ and Π = {0 = t1 < t2 < . . . <

tN = T} ∈ P [0, T ], one may define the quantities

∆if := f(ti)− f(ti−1),

Vp(f : Π) :=

(
N∑
i=1

|∆if |p
) 1

p

,

‖f‖p := sup
Π∈P[0,T ]

Vp(f : Π).

We shall define the space Cp([0, T ],Rd) := {f ∈ C([0, T ],Rd); ‖f‖p <∞}. We will

repeatedly refer to this space simply as Cp when the domain and image spaces are

both clear from context. The somewhat leading notation of ‖ ·‖p above is justified,

as we see from the following result.

Proposition 2.2.1. For each 1 ≤ p < ∞, the function f → ‖f‖p is a seminorm

on Cp.

Proof. It is immediate that for each λ ∈ R,

‖λf‖p = sup
Π∈P[0,T ]

Vp(λf : Π) = |λ|

(
sup

Π∈P[0,T ]

Vp(f : Π)

)
= |λ|‖f‖p.
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Also, Minkowski’s Inequality gives that for each Π ∈ P [0, T ],

Vp(f + g : Π) =

(
N∑
i=1

|∆i(f + g)|p
) 1

p

≤

(
N∑
i=1

(|∆if |+ |∆ig|)p
) 1

p

≤

(
N∑
i=1

|∆if |p
) 1

p

+

(
N∑
i=1

|∆ig|p
) 1

p

= Vp(f : Π) + Vp(g : Π).

Taking the supremum over all such partitions on each side gives that

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Remark 2.2.2. Note that for each f ∈ Cp and Lipschitz mapping ϕ : Rd → Rd,

the composition ϕ ◦ f ∈ Cp. In particular, ‖ϕ ◦ f‖p ≤ K‖f‖p, where K denotes the

Lipschitz constant of ϕ.

One may also define the normalized space of p-variation paths:

C0,p([0, T ],Rd) := {f ∈ Cp([0, T ],Rd) : f(0) = 0}.

As in the non-normalized case, we will refer to this simply as C0,p when convenient.

Lemma 2.2.3. ‖ · ‖p is a norm on C0,p.

Proof. As a result of Propsition 2.2.1, one only needs to know that ‖f‖p = 0 for

f ∈ C0,p iff f ≡ 0. But one may readily verify that the only continuous functions

for which ‖f‖p = 0 are those which are constant; from this, the claim follows

immediately from the definition of the normalized variational space.

In fact, the space C0,p is complete under this norm, and so one has the

following proposition which is presented without proof.

Proposition 2.2.4 (Theorem 5.25 of [FV10]). The vector space (C0,p, ‖ · ‖p) is a

non-separable Banach space.
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The non-separability of C0,p is mentioned above as it will become a minor

issue later on when attempting to decide on a path-space upon which the fractional

Brownian motion should reside – this will be discussed further in Section 2.4. One

may easily verify that a function f ∈ Cp(Rd) (resp. f ∈ C0,p(Rd)) if and only if

each of the coordinate functions f i := f · ei is in Cp(R) (resp. C0,p(R)). It is also

easy to check that for given α and p such that α < 1
p
, any α-Hölder continuous

function is in Cp; thus, we may deduce the following:

Lemma 2.2.5. The sample paths of B are almost surely of p variation for any

p > 1
H

.

Proof. This result follows immediately from the above remark and Lemma 2.1.1.

The following lemmas allow one to see how the various variational spaces

are related to one another and to the larger space of uniformly continuous functions

in which they all reside.

Lemma 2.2.6. The identity map is a contraction from C0,p into C.

Proof. Note that for f ∈ C0,p

|f(t)|p = |f(t)− f(0)|p ≤ |f(t)− f(0)|p + |f(T )− f(t)|p ≤ ‖f‖pp.

By raising each side of this inequality to the 1
p
-th power and take the supremum

over t ∈ [0, T ], we see that

‖f‖u ≤ ‖f‖p

where ‖ · ‖u denotes the standard uniform norm.

Lemma 2.2.7. For each 1 ≤ p < q, C0,p ⊂ C0,q; in particular, if f ∈ C0,p, one has

the bound

‖f‖q ≤ (2‖f‖u)1− p
q ‖f‖

p
q
p ,

where ‖ · ‖u denotes the uniform norm on C([0, T ]).
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Proof. Pick f ∈ C0,p, and let q > p. Then it is immediately clear that for each

s, t ∈ [0, T ],

|f(t)− f(s)| ≤ 2‖f‖u.

The claim then follows from noting that for each Π ∈ P [0, T ],

(Vq(f : Π))q =
N∑
i=1

|∆if |q =
N∑
i=1

|∆if |p |∆if |q−p

≤ sup
Π
|∆if |q−p

N∑
i=1

|∆if |p ≤ (2‖f‖u)q−p (Vp(f : Π))p .

As usual, we take the supremum over partitions to complete the proof.

Given f ∈ Cp, g ∈ Cq, where p and q are such that 1
p

+ 1
q
> 1, one may

use the variational properties to develop a notion of integration of f against g.

We record some of the basics regarding the existence of and estimates for such an

integral below. To begin, we make the following definition for ease of notation:

given f, g as above, and Π := {t0, t1, . . . , tN} ∈ P [s, t] for 0 ≤ s < t ≤ T , let

S(f, g,Π) denote an expression of the form

S(f, g,Π) :=
N∑
i=1

f(ci)∆ig

where ci ∈ [ti−1, ti].

Theorem 2.2.8 (Theorem 3.3.1 of [LQ02]). Suppose p, q are positive numbers with

1
p

+ 1
q
> 1, and let f ∈ Cp, g ∈ Cq. Then the expression∫ t

s

f dg := lim
n→∞

S(f, g,Πn)

exists for each collection {Πn := {t(n)
i }} ⊂ P [s, t] and {c(n)

i } with c
(n)
i ∈ [t

(n)
i−1, t

(n)
i ],

such that the mesh size |Πn| := max
t
(n)
i ∈Πn

|t(n)
i − t

(n)
i−1| tends to 0 as n → ∞; this

expression is independent of the choice of {Πn} and {c(n)
i }. Furthermore, the

mapping t 7→
∫ t

0
f dg is contained in C0,p, and the mapping on C0,p ⊕ C0,q given

by (f, g) 7→
∫ ·

0
f dg is continuous in each term and its image is contained in C0,p.
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The element
∫ t
s
f dg is referred to as the Young’s integral of f against g. This

expression was originally formulated in [You36]. We have the following estimate

on the value of this expression (see Formula 10.9 of [You36])∣∣∣∣ ∫ t

s

f dg − [f(t) (g(t)− g(s))]

∣∣∣∣ (2.2.1)

≤
[
1 + ζ

(
1

p
+

1

q

)]
‖f
∣∣
[s,t]
‖p‖g

∣∣
[s,t]
‖q;

here ζ denotes the Riemann zeta function. We will use the following integration

by parts formula repeatedly in the sequel.

Proposition 2.2.9. Suppose f ∈ Cp, g ∈ Cq with θ := 1
p

+ 1
q
> 1. Then for each

0 ≤ s < t ≤ T , the following identity holds:∫ t

s

f dg = f(t)g(t)− f(s)g(s)−
∫ t

s

g df.

Proof. First note that f(t)g(t)− f(s)g(s) =
∑
Π

∆i(fg) for each Π ∈ P [s, t]. Given

some collection {Πn}} ⊂ P [s, t] with |Πn|
n→∞→ 0, we may use this identity to write

f(t)g(t)− f(s)g(s)−
∫ t

s

g df −
∫ t

s

f dg

= lim
n→∞

∑
Πn

∆i(fg)− g(ti−1)∆if − f(ti−1)∆ig

= lim
n→∞

∑
Πn

(∆if)(∆ig).

To prove the claim, it suffices to show that the last sum tends to zero. Let ε = θ−1

and let p′ be the Hölder conjugate of q; then it follows that

1

p′
= 1− 1

q
= 1− θ +

1

p
=

1

p
− ε.

We note that p′θ > p′ > p, and so Lemma 2.2.7 implies f ∈ Cp′θ. Hölder’s
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inequality gives us that∣∣∣∣∣∑
Πn

(∆if)(∆ig)

∣∣∣∣∣ ≤ sup
Πn

|∆if |ε
∑
Πn

|∆if |θ|∆ig|.

≤ sup
Πn

|∆if |ε
(∑

Πn

|∆if |p
′θ

) 1
p′
(∑

Πn

|∆ig|q
) 1

q

≤ sup
Πn

|∆if |ε (Vp′θ (f))θ (Vq (g)) .

This expression will tend to zero as n tends to infinity.

We will also make use of a version fundamental theorem of calculus, pre-

sented below without proof. The statement is a particular application of Theorem

5.3.1 in [LQ02].

Theorem 2.2.10. Suppose f ∈ Cp for some p > 2 and ϕ ∈ C1(Rd) with Lipschitz

continuous derivative ϕ̇. Then for each 0 ≤ s < t ≤ T ,

[ϕ(f)] (t)− [ϕ(f)] (s) =

∫ t

s

ϕ̇(f) df.

2.2.2 Two-Dimensional Case

In a similar spirit to the previous section, one may construct a Young’s

integration theory for functions of two variables. Given some f ∈ C([0, T ]2,Rd),

and partitions Π1 = {si},Π2 = {tj} ∈ P [0, T ], we may define

∆ijf := f(si, tj)− f(si, tj−1)− f(si−1, tj) + f(si−1, tj−1),

Vp(f : Π1,Π2) :=

#(Π1)∑
i=1

#(Π2)∑
j=1

|∆ijf |p
 1

p

,

‖f‖(2D)
p := sup

Π1,Π2∈P[0,T ]

Vp(f : Π1,Π2).

As in the (one-dimensional) case above, we shall define the spaces

C(2D)
p ([0, T ]2,Rd) := {f ∈ C([0, T ]2,Rd); ‖f‖(2D)

p <∞};

C(2D)
0,p ([0, T ]2,Rd) := {f ∈ C(2D)

p ([0, T ]2,Rd) : f(0, ·) = f(·, 0) = 0}.
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Just as before, references to domains and image spaces will be suppressed when

mentioning these objects unless necessary. The following lemma connects the one-

and two-dimensional normalized variational spaces.

Lemma 2.2.11.

(i) If f ∈ C(2D)
0,p , then for each s ∈ [0, T ], the function fs := (s, ·) ∈ C0,p and

‖f(s, ·)‖p ≤ ‖f‖(2D)
p .

(ii) If f, g ∈ C0,p(Rd), then the function f ⊗ g defined by

[(f ⊗ g) (s, t)]i := f i(s)gi(t) (i = 1, . . . , d)

is in C(2D)
0,p (Rd) and ‖f ⊗ g‖(2D)

p ≤ ‖f‖p ‖g‖p.

Proof. (i) Fix s ∈ [0, T ]. Then for each Π ∈ P [0, T ],

(Vp(fs : Π))p =

#(Π)∑
i=1

|∆if(s, ·)|p =

#(Π)∑
i=1

|∆if(s, ·)−∆if(0, ·)|p

≤
#(Π)∑
i=1

(
|∆if(s, ·)−∆if(0, ·)|p

+ |∆if(T, ·)−∆if(s, ·)|p
)

≤
(
‖f‖(2D)

p

)p
.

Taking supremums over all partitions of [0, T ] completes the proof.

(ii) Since having finite p-variation over Rd is equivalent to each coordinate func-

tion having finite p-variation, we may without loss of generality assume d = 1.

If Π1,Π2 ∈ P [0, T ], then

(Vp(f ⊗ g : Π1,Π2)) =

#(Π1)∑
i=1

#(Π2)∑
j=1

‖∆ij(f ⊗ g)‖p

=

#(Π1)∑
i=1

∑
j=1

‖∆if‖p‖∆jg‖p

= (Vp(f : Π1))p (Vp(g : Π2))p .
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As before, by taking pth roots and supremums on each side, we acheive the

desired result.

We also record here the following embedding result; the proof, which is

nearly identical to that of the corresponding one-dimensional result, is omitted.

Lemma 2.2.12. For each 1 ≤ p < q, C(2D)
0,p ⊂ C(2D)

0,q ; in particular, if f ∈ C(2D)
0,p ,

one has the bound

‖f‖(2D)
q ≤ (4‖f‖u)1− p

q
(
‖f‖(2D)

p

) p
q .

Analogously to the one-dimensional case, if we are given partitions Ψ =

{s0, s1, . . . , sM} and Π = {t0, t1, . . . , tN} ∈ P [0, t] with t ≤ T and f ∈ C(2D)
p and

g ∈ C(2D)
q for p and q are such that 1

p
+ 1

q
> 1, we may define

S(f, g,Ψ,Π) :=
M∑
i=1

N∑
j=1

f(ci, dj)∆ijg

with ci ∈ [si−1, si], dj ∈ [tj−1, tj].

Theorem 2.2.13 (Theorem 1.2 of [Tow02]). Suppose p, q are positive numbers

with 1
p

+ 1
q
> 1, and let f ∈ C(2D)

p , g ∈ C(2D)
q .

(i) The integral ∫
[0,t]2

f dg := lim
n→∞

S(f, g,Ψn,Πn)

exists for each collection {Ψn := {s(n)
i }}

⋃
{Πn := {t(n)

j }} ⊂ P [0, t] and values

{c(n)
i }, {d

(n)
j } with c

(n)
i ∈ [s

(n)
i−1, s

(n)
i ], d

(n)
j ∈ [t

(n)
j−1, t

(n)
j ] such that the maximum

mesh size |Πn| ∨ |Ψn| tends to 0 as n→∞; this expression is independent of

the choice of {Πn}, {Ψn}, {c(n)
i }, or {d(n)

j }.

(ii) For each f, g as above,∣∣∣∣∫
[0,t]2

f dg

∣∣∣∣ ≤ C‖g|[0,t]2‖(2D)
q

×
(
‖f |[0,t]2‖(2D)

p + ‖f |[0,t](0, ·)‖p + ‖f |[0,t](·, 0)‖p + |f(0, 0)|
)
,

where C is a positive constant depending only on p and q.
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2.3 Dyadic Approximation

For each m ∈ N, we will let Dm denote the dyadic partitioning of [0, T ];

i.e.,

Dm := {k2−mT ; k = 0, 1, . . . , 2m}.

We define the m-th dyadic approximator πm : C([0, T ],Rd) −→ C([0, T ],Rd) as the

unique projection operator such that, for any given f ∈ C([0, T ],Rd),

πmf(t) = f(t), (t ∈ Dm)

d2

dt2
πmf(t) = 0. (t /∈ Dm)

In words, πmf is nothing more than the piecewise linear path agreeing with f

on the set Dm. We will regularly use the shorthand notation fm := πmf where

convenient. It will be helpful to record here a pair of results relating the variation

of paths with their linear approximations.

Theorem 2.3.1 (Propositions 5.20 and 5.60 of [FV10]).

(i) Suppose x ∈ Cp, and let xm := πmx be the dyadic approximation to x as

defined above. Then one has that

‖xm‖p ≤ 3p−1‖x‖p.

(ii) Suppose x ∈ C(2D)
p , and let xm := πmx be the dyadic approximation to x as

defined above. Then one has that

‖xm‖(2D)
p ≤ 9p−1‖x‖(2D)

p .

Lemmas 2.2.7 and 2.2.12 also imply that for any x ∈ C0,p (resp. C(2D)
0,p ), the

dyadic approximations xm converge to x in C0,q (resp. C(2D)
0,q ) for any q > p.

We will also make use of dyadic approximations for the driving stochastic

process. Specifically, we will define the m-th dyadic approximation of fractional

Brownian motion Bm := πm(B) in the following manner:

(Bm)t := Bt− + (t− t−)2m[Bt+ −Bt− ], (0 ≤ t ≤ T )
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where t− is the largest member of Dm such that t− ≤ t and t+ is the smallest

member of Dm such that t ≤ t+. Each dyadic approximation is again a centered

Gaussian process, with covariance

E [(Bm)s(Bm)t] = R(s−, t−) + 2m(t− t−) [R(s−, t+)−R(s−, t−)]

+ 2m(s− s−) [R(s+, t−)−R(s−, t−)]

+ 22m(t− t−)(s− s−)×

[R(s+, t+)−R(s−, t+)− (s+, t−) +R(s−, t−)] .

2.4 Gaussian Measure Spaces

Let (W , ‖·‖W) denote a separable Banach space. We will say that a measure

P on W is Gaussian if there exists a symmetric bilinear form q :W∗ ×W∗ −→ R
such that for all ϕ ∈ W∗,∫

W
exp (iϕ(ω)) dP(ω) = exp

(
−1

2
q(ϕ, ϕ)

)
.

By setting ϕ as the zero functional ofW above, one can see that P is a probability

measure on W .

Let B refer to the Borel σ-algebra on W ; we will call the triple (W ,B,P) a

Gaussian space. One of the most useful estimates on a Gaussian space was proven

by V. Fernique; the theorem that provides this estimate, which we provide below

without proof, bears his name.

Theorem 2.4.1 (see, for example, Theorem 2.6 of [DPZ92]). Suppose that P is a

Gaussian measure on (W , ‖·‖W). Then there exists α > 0 such that∫
W

exp
(
α‖ω‖2

W
)
dP(ω) <∞.

Remark 2.4.2. Note that a consequence of Fernique’s Theorem is that the map

ω 7→ ‖ω‖pW is integrable for all p ≥ 1.

We will denote by η : L2(P) → W the continuous mapping with action

given by

ηf :=

∫
W
ωf(ω) dP(ω)
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where the above expression is a Bochner integral, which is guaranteed to exist as∫
W
‖ωf(ω)‖dP ≤ ‖f‖2

(∫
W
‖ω‖2dP

) 1
2

<∞.

Define H as the image of η restricted to the space W∗L
2(P)

; this space may be

equipped with inner product given by

〈ηf, ηg〉H = 〈f, g〉L2(P) .

We will refer to H as the Cameron-Martin space associated to the Gaussian space

(W ,B,P).

The best-known example of a Gaussian measure space is the classical d-

dimensional Wiener space. In this case, our underlying Banach space is given

by

W := {ω ∈ C([0, T ],R) : ω(0) = 0}

equipped with the uniform norm; then a Gaussian measure P may be constructed

on W such that the coordinate process {Bt}0≤t≤T defined by

Bt(ω) = ω(t) (ω ∈ W)

is a Brownian motion. Details of the construction of this measure may be found

in [Wie23], [Wie24], [Kuo75], and [Str93], among others.

In this case, the Cameron-Martin space is given by

H :=

{
h ∈ W : h(s) =

∫ s

0

φ(u) du;φ ∈ L2([0, T ],Rd)

}
with inner product given by

〈h, k〉H :=

∫ T

0

h′(s)k′(s) ds.

A second example of a Gaussian measure space, which is pertinent to our

discussion, is described in detail in [DÜ99] and is given as follows: fix 0 < H < 1
2

and let W be as above. Then, just as in the classical case, one may define P as

the unique Gaussian measure on W such that the coordinate process {Bt}0≤t≤T

defined by

Bt(ω) = ω(t) (ω ∈ W)
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is a fractional Brownian motion with Hurst parameter H and P = Law(B). By

following Proposition 2.1.2 of [BHØZ08], we have that the Cameron-Martin space

H consists of functions of the form

h(t) =

∫ t

0

KH(t, s)ĥ(s) ds,

where ĥ ∈ L2[0, T ] and

KH(t, s) := bH

[(
t

s

)H− 1
2

(t− s)H−
1
2

−
(
H − 1

2

)
s

1
2
−H
∫ t

s

(u− s)H−
1
2uH−

3
2 du

]
,

where bH is some suitable normalization constant. The inner product of this space

is given by

〈h, k〉H := 〈ĥ, k̂〉L2[0,T ].

As a vector space, H is equal to the fractional integral space I
H+ 1

2
0+ (L2[0, T ]); that

is to say, each h ∈ H is given by

h(t) =
1

Γ(H + 1
2
)

∫ t

0

(t− s)H−
1
2ϕ(s) ds

for some ϕ ∈ L2[0, T ] (see Theorems 2.1 and 3.3 of [DÜ99]).

For each fixed t ∈ [0, T ], the function R(t, ·) = E[BtB·] ∈ H is the repro-

ducing kernel for the space; that is to say, for any h ∈ H, we have the following:

〈h,R(t, ·)〉H = h(t).

We will repeatedly make use of the following basic lemma without reference.

Lemma 2.4.3. Suppose H is a Hilbert space with reproducing kernel R. Then for

any orthonormal set of basis vectors {kn}; one has the identity

∞∑
n=1

kn(s)kn(t) = R(s, t).
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Proof. This follows from straightforward calculation, as

∞∑
n=1

kn(s)kn(t) =
∞∑
n=1

〈kn, R(s, ·)〉 〈kn, R(t, ·)〉

= 〈R(s, ·), R(t, ·)〉 = R(s, t).

To suit our purposes later on, it will be worthwhile to restrict our sample

path spaceWd to a variational space, as we will be using the variational properties

to define (almost everywhere) pathwise integrals against our process B. While it

might be tempting to replace Wd by C0,p(Rd), we recall that the latter space is

non-separable; hence, this is not a suitable choice. We will instead use as our

ambient path-space a slightly smaller variational space, outlined below.

Fix

p ∈
(

1

H
,

1

1− 2H

)
, (2.4.1)

and define (following Section 5.3.3 of [FV10]) the spaces

Wp := C∞ ([0, T ] ,R) ∩W
‖·‖p ;

Wd
p :=

d⊕
i=1

Wp
∼= C∞ ([0, T ] ,Rd) ∩Wd

‖·‖p .

Proposition 2.4.4 (Corollary 5.33 and Proposition 5.36 of [FV10]).

(i) For p > 1, one has the following set inclusions:⋃
1≤q<p

C0,q(Rd) ⊂ Wd
p ⊂ C0,p(Rd).

(ii) For each p > 1, the space (Wd
p , ‖·‖p) is a separable Banach space.

Corollary 2.4.5. Let B be a d-dimensional fractional Brownian motion of Hurst

parameter H. Then the sample paths t 7→ Bt are almost surely contained in Wd
p

for p := 1
H

.
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Proof. This follows from part (i) of the above proposition, along with Lemma 2.2.5.

This corollary implies that in our above construction of the Gaussian mea-

sure space associated to the fractional Brownian motion, our measure P is fully

supported on Wp. Hence, from here on out we will consider our process {Bt}
to be restricted to the probability space (Wd

p ,BWd
p
,P|Wd

p
); the details of this re-

striction are included in the Appendix. Most importantly, the Cameron-Martin

space Hd associated to the restriction of our measure is the same as in the original

construction. The variational properties of Hd are of particular interest to us; in

preparation, we state the following lemma.

Proposition 2.4.6. Fix 0 < H < 1
2
, and let r := 1

2H
. Then the covariance

kernel R(s, t) for fractional Brownian motion of Hurst parameter H as defined in

Equation (2.1.1) has finite two-dimensional r-variation.

The proof for the above proposition is given in Appendix A - see Proposi-

tion A.0.8 for details. Using this fact, we are in a position to show the following:

Proposition 2.4.7 (see [CFV09] or [FV10]). Let r := 1
2H

. Then the Cameron-

Martin space Hd may be embedded in the space Cr; for each h ∈ Hd,

‖h‖r ≤
[
‖R‖(2D)

r

] 1
2 ‖h‖Hd .

Proof. We may assume d = 1, since the same result holds for higher dimensions

by working componentwise. Fix h ∈ H. For each Π = {t0, t1, . . . , tN} ∈ P [0, T ]

and B := {bi}Ni=1 ⊂ R, one has the identity

N∑
i=1

bi∆ih =
N∑
i=1

bi 〈h,∆iR(t, ·)〉H

=

〈
h,

N∑
i=1

bi∆iR(t, ·)

〉
H

.

The Cauchy-Schwarz inequality implies that∣∣∣∣∣
N∑
i=1

bi∆ih

∣∣∣∣∣ ≤ ‖h‖H
∥∥∥∥∥

N∑
i=1

bi∆iR(t, ·)

∥∥∥∥∥
H

.



26

The reproducing kernel property, along with Hölder’s inequality, gives us that∥∥∥∥∥
N∑
i=1

bi∆iR(t, ·)

∥∥∥∥∥
2

H

=
N∑

i,j=1

bibj 〈∆iR(t, ·),∆jR(t, ·)〉H

=
N∑

i,j=1

bibj∆ijR

≤

(
N∑

i,j=1

|bibj|r
′

) 1
r′
(

N∑
i,j=1

|∆ijR|r
) 1

r

≤ ‖R‖(2D)
r ‖B‖2

`r
′ .

where r′ = 1
1−2H

is the Hölder conjugate of r. Combining inequalities, we see that∣∣∣∣∣
N∑
i=1

bi∆ih

∣∣∣∣∣ ≤ ‖h‖H(‖R‖(2D)
r )

1
2‖B‖`r′

By the converse of Hölder’s inequality (Theorem 6.14 of [Fol99], for example), it

follows that

Vr(h : Π) =

(
N∑
i=1

|∆ih|r
) 1

r

≤ ‖h‖(‖R‖(2D)
r )

1
2

Taking the supremum over all partitions of [0, T ] completes the proof.

We conclude the section with some results which illustrate how relatively

“nice” functions also reside within our Cameron-Martin space.

Lemma 2.4.8. Suppose 0 < H < 1
2
, and Hd is the Cameron-Martin space associ-

ated with fractional Brownian motion of Hurst parameter H as constructed above.

If f : [0, T ]→ Rd piecewise linear with f(0) = 0, then f ∈ Hd.

Proof. Without loss of generality, we may assume that d = 1. By [SKM93], in

order to prove f ∈ H it suffices to show that D
H+ 1

2
0+ f ∈ L2[0, T ], where

D
H+ 1

2
0+ f(x) :=

1

Γ(1
2
−H)

∫ x

0

f(t)(x− t)−(H+ 1
2

) dt.

Let {si}N+1
i=0 ∈ P [0, T ] be the collection of breakpoints of f and {mi}Ni=0 ⊂ R be

the piecewise slopes of f ; that is, {si} and {mi} are the sets of numbers such that
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we may write

f(t) =
N∑
i=0

(f(si) +mi (t− si)) 1[si,si+1)(t).

Let M := max
i
|mi|. For x ∈ [0, T ]\{si}, let I denote the largest integer such that

si < x for all i ≤ I. Then for each such x we find that

D
H+ 1

2
0+ f(x) =

1

Γ(1
2
−H)

d

dx

N∑
i=0

∫ x

0

(f(si) +mi (t− si)) 1[si,si+1)(t)(x− t)−(H+ 1
2

) dt

=
1

Γ(1
2
−H)

d

dx

( I−1∑
i=0

∫ si+1

si

(f(si) +mi (t− si)) (x− t)−(H+ 1
2

) dt

+

∫ x

sI

(f(sI) +mI (t− sI)) (x− t)−(H+ 1
2

) dt

)
.

For i = 0, . . . , I − 1, we have that

d

dx

∫ si+1

si

(f(si) +mi (t− si)) (x− t)−(H+ 1
2

) dt

=
−1

1
2
−H

d

dx

[
(f(si) +mi(t− si)) (x− t)

1
2
−H
∣∣∣∣si+1

si

−mi

∫ si+1

si

(x− t)
1
2
−H dt

]
= f(si)(x− si)−(H+ 1

2
) − f(si+1)(x− si+1)−(H+ 1

2
)

+mi

∫ si+1

si

(x− t)−(H+ 1
2

) dt.
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Similarly,

d

dx

∫ x

sI

(f(sI) +mI (t− sI)) (x− t)−(H+ 1
2

) dt

=
−1

1
2
−H

d

dx

[
(f(sI) +mI (t− sI)) (x− t)

1
2
−H
∣∣∣∣x
sI

−mI

∫ x

sI

(x− t)
1
2
−H dt

]

=
1

1
2
−H

(
f(sI)(x− sI)

1
2
−H +mI

d

dx

∫ x

sI

(x− t)
1
2
−H dt

)
= f(sI)(x− sI)−(H+ 1

2
) +mI

∫ x

sI

(x− t)−(H+ 1
2

) dt.

Hence, by telescoping sums and that fact that f(s0) = 0, we have that

D
H+ 1

2
0+ f(x) =

1

Γ(1
2
−H)

(
I−1∑
i=0

mi

∫ si+1

si

(x− t)−(H+ 1
2

) dt+mI

∫ x

sI

(x− t)−(H+ 1
2

) dt

)

and hence |DH+ 1
2

0+ f(x)| ≤ M
Γ( 1

2
−H)

∫ x
0

(x − t)−(H+ 1
2

) dt = M
1
2
−Hx

1
2
−H . Therefore

D
H+ 1

2
0+ f(x) ∈ L∞[0, T ] ⊂ L2[0, T ].

The next lemma is proven in a similar fashion, and so we will omit the

details.

Lemma 2.4.9 (Lemma 31 of [FV06]). If H and Hd are as above, then each f ∈
C1[0, T ] with f(0) = 0 is contained in Hd.

2.4.1 Calculus on Wiener spaces

Suppose (W ,P) is some Gaussian measure space with Cameron-Martin

space H. Let S refer to the space of cylinder functionals on W ; that is to say,

functionals on W of the form

F (ω) = f(φ1(ω), . . . , φn(ω)),

where f ∈ C∞(Rn) with all partial derivatives having at most polynomial growth,

and {φ1, . . . , φn} ⊂ W∗. On S, we will let ∂h denote the Frechet derivative in the

direction of h ∈ H:

∂hF :=
d

dε

∣∣∣∣
ε=0

F (ω + εh).
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Let D : S → S ⊗H∗ be the operator defined by the action by

DF (ω)k :=
d

dt
|t=0F (ω + tk)

=
n∑
i=1

∂if(φ1(ω), . . . , φn(ω))φi(k) (k ∈ H) .

For 1 ≤ q <∞, we will let D1,q denote the closure of S with respect to the norm

‖F‖1,q := (E[|F |q] + E[‖DF‖qH∗ ])

One can naturally define an iterated derivate operator Dk taking values in H⊗k;
from this we can define the seminorm

‖F‖k,q :=

(
E[|F |q] +

k∑
j=1

E[‖DjF‖qH⊗k ]

)
and we will denote by Dk,q the closure of S with respect to ‖ · ‖k,q. Also, let

D∞ :=
⋂
k∈N

⋂
q≥1

Dk,q.

Given some F ∈ D1,q, we may define the Malliavin covariance matrix γ by

γ := DF (DF )∗.

The proofs of our main results will hinge upon the following theorem.

Theorem 2.4.10 (Theorem III.5.1 of [Mal97], for example). Suppose F is a ran-

dom vector satisfying the following conditions:

1. F ∈ D1,p for all p ≥ 1;

2. The Malliavin covariance matrix γ = DF (DF )∗ is almost surely invertible.

Then F admits a density with respect to Lebesgue measure. If, in addition, one

has that

1. F ∈ D∞;

2. (det γ)−1 ∈ L∞−;

then this density is C∞.



Chapter 3

The Heisenberg Case

This chapter will be devoted to the proof of Theorem 1.2.1.

3.1 Moments of the Area Process and Its Ap-

proximations

We begin by recording some basic results for the area-like process AT and

its approximations (Am)T . Recall that Am is defined as

(Am)T :=
1

2

[∫ T

0

(B1
m)t d(B2

m)t −
∫ T

0

(B2
m)t d(B1

m)t

]
=
∑
ti∈Dm

(
B1
ti

+B1
ti−1

2

)
∆iB

2 −

(
B2
ti

+B2
ti−1

2

)
∆iB

1.

It is immediate that for each m ∈ N, (Am)T is a centered Gaussian random

variable.

Fix m ∈ N. To simplify notation, we will define ti := i
2m
T ; to that same

30
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end, we will let

γ(i, j) := E
[
(B1

ti
+B1

ti−1
)(B2

tj
+B2

tj−1
)
]
E
[
∆iB

1∆jB
2
]

= (R(ti, tj) +R(ti−1, tj) +R(ti, tj−1) +R(ti−1, tj−1))

× (R(ti, tj)−R(ti−1, tj)−R(ti, tj−1) +R(ti−1, tj−1))

= (R(ti, tj) +R(ti−1, tj) +R(ti, tj−1) +R(ti−1, tj−1)) ∆ijR.

σ(i, j) := E
[
(B1

ti
+B1

ti−1
)∆iB

1
]
E
[
(B2

tj
+B2

tj−1
)∆jB

2
]
,

= (R(ti, ti)−R(ti−1, ti−1)) (R(tj, tj)−R(tj−1, tj−1))

= (t2Hi − t2Hi−1)(t2Hj − t2Hj−1).



32

Using Wick’s theorem and the fact that B1 and B2 are i.i.d., we find that

E
[
|(Am)T |2

]
=

2n∑
i,j=1

E

[(
B1
ti

+B1
ti−1

2
∆iB

2 −
B2
ti

+B2
ti−1

2
∆iB

1

)

×

(
B1
tj

+B1
tj−1

2
∆jB

2 −
B2
tj

+B2
tj−1

2
∆jB

1

)]

=
1

4

2n∑
i,j=1

E
[
(B1

ti
+B1

ti−1
)∆iB

2(B1
tj

+B1
tj−1

)∆jB
2

− (B2
ti

+B2
ti−1

)∆iB
1(B1

tj
+B1

tj−1
)∆jB

2

− (B1
ti

+B1
ti−1

)∆iB
2(B2

tj
+B2

tj−1
)∆jB

1

+ (B2
ti

+B2
ti−1

)∆iB
1(B2

tj
+B2

tj−1
)∆jB

1

]
=

1

4

2n∑
i,j=1

(
E[(B1

ti
+B1

ti−1
)(B1

tj
+B1

tj−1
)]E[∆iB

2∆jB
2]

− E[(B2
ti

+B2
ti−1

)∆jB
2]E[∆iB

1(B1
tj

+B1
tj−1

)]

− E[(B1
ti

+B1
ti−1

)∆jB
1]E[∆iB

2(B2
tj

+B2
tj−1

)]

+ E[(B2
ti

+B2
ti−1

)(B2
tj

+B2
tj−1

)]E[∆iB
1∆jB

1]

)

=
1

2

2n∑
i,j=1

(γ(i, j)− σ(i, j)) .

One may check via telescoping sums that

2n∑
i,j=1

σ(i, j) = T 4H ,

and hence once has the formula

E
[
|(Am)T |2

]
=

1

2

(
2m∑
i,j=1

γ(i, j)

)
− T 4H

2
.

From this, we may conclude the following:
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Proposition 3.1.1. For each m ∈ N, one has the bound

E
[
|(Am)T |2

]
≤ 2

(
‖R‖u‖R‖(2D)

r

)
− T 4H

2
.

Since R is of finite two-dimensional r-variation with r = 1
2H

, it follows from

Theorem 2.2.13 that
2n∑
i,j=1

γ(i, j) is bounded so long as H > 1
4
.

Proposition 3.1.2. Let AT be the area-process associated to fractional Brownian

motion with 1
4
< H < 1

2
; then

E[A2
T ] = 2

∫
[0,T ]2

R(s, t) dR(s, t)− T 4H

2
.

Proof. Since(Am)T → AT in L2, the statement above is equivalent to the conver-

gence

lim
m→∞

2m∑
i,j=1

γ(i, j) = 4

∫
[0,T ]2

R(s, t) dR(s, t).

From the definition of the two-dimensional Young’s integral, it will suffice to show

that

lim
n→∞

∣∣∣∣∣
2m∑
i,j=1

γ(i, j)− 4R(ti−1, tj−1)∆ijR

∣∣∣∣∣ = 0

To that end, we will make use of Hölder’s inequality. Let r′ := r
r−1

be the conjugate

exponent of r, and define

δm := max
|t−t′|≤2−m,|s−s′|≤2−m

|R(s, t)−R(s′, t′)|.
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Note that δm converges to zero as m tends to infinity. It follows that∣∣∣∣ 2m∑
i,j=1

γ(i, j)− 4R(ti−1, tj−1)∆ijR

∣∣∣∣
=

∣∣∣∣∣
2m∑
i,j=1

(R(ti, tj) +R(ti−1, tj) +R(ti, tj−1)− 3R(ti−1, tj−1)) ∆ijR

∣∣∣∣∣
≤

2m∑
i,j=1

|R(ti, tj) +R(ti−1, tj) +R(ti, tj−1)− 3R(ti−1, tj−1)| |∆ijR|

≤

(
2m∑
i,j=1

|R(ti, tj) +R(ti−1, tj) +R(ti, tj−1)− 3R(ti−1, tj−1)|r
′

) 1
r′

×

(
2m∑
i,j=1

|∆ijR|r
) 1

r

≤ ‖R‖(2D)r

(
2m∑
i,j=1

|R(ti, tj) +R(ti−1, tj) +R(ti, tj−1)− 3R(ti−1, tj−1)|r
′

) 1
r′

≤ Cδm‖R‖(2D)
r

(
2m∑
i,j=1

|R(ti, tj)−R(ti−1, tj−1)|r + |R(ti−1, tj)−R(ti−1, tj−1)|r

+ |R(ti, tj−1)−R(ti−1, tj−1)|r
) 1

r′

≤ Cδm
(
‖R‖(2D)

r

)1+ r
r′ −→ 0.

Remark 3.1.3. This result gives one some understanding as to why the construc-

tion of the area process fails for fractional Brownian motion for H < 1
4
; one can see

from the above calculations that the second moments of the approximating processes

become unbounded under such a regime.

Let us record a corollary, which is an immediate consequence of the posi-

tivity of the expectation operator.

Corollary 3.1.4. For each fixed 1
4
< H < 1

2
, one has the bound∫

[0,T ]2
R(u, v) dR(u, v) ≥ T 4H

4
.
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3.2 Operator Realization

In order to prove the conditions required for a regular density, we will recast

the process Y of Theorem 1.2.1 in terms of a linear operator on the path-space

W2
p .

Suppose {e1, e2} is the Euclidean basis on R2. Given some ω := ω1e1 +

ω2e2 ∈ W2
p , we will let ω̃ be the element of W2

p defined by

ω̃ := ω2e1 − ω1e2 = Jω,

where J :=

[
0 1

−1 0

]
is clockwise rotation by π/2.

We begin by constructing an operator on the Cameron-Martin space H2

which can be seen as a polarization of the area process. Recall that H2 is contained

in Cr for r := 1
2H

. Let q : H2 × H2 → R denote the symmetric quadratic form

given by

q(h, k) =
1

2

(∫ T

0

h(t) · dk̃(t) +

∫ T

0

k(t) · dh̃(t)

)
(3.2.1)

The integrals given in the definition of q are to be considered as Young’s integrals;

by our previous assumption that 1
3
< H < 1

2
, we have that 2

r
= 4H > 1, and so q

is well-defined. We may also use integration by parts to write

q(h, k) =

∫ T

0

h(t) · dk̃(t) +
1

2

(
k(T ) · h̃(T )

)
; (3.2.2)

we will frequently and freely change between these equivalent expressions without

further remark.

Lemma 3.2.1. The operator q defined above is continuous in each variable.

Proof. This is an immediate result of the estimate in Equation (2.2.1) along with

Proposition 2.4.7, as

|q(h, k)| ≤ C‖h‖r‖k‖r ≤ C‖h‖H‖k‖H. (3.2.3)
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As a result of Lemma 2.4.8, we may now rewrite our approximate solutions

Ym in the following form:

Ym =

(
(Bm)T ,

1

2
q(Bm, Bm)

)
.

As a consequence of the Riesz Representation Theorem, we have the existence of

a linear operator Q : H2 → H2 such that 〈Qh, k〉H2 = q(h, k).

Before finding an explicit form for Q, we require the following key proposi-

tion which is a presentation of mappings from [0, T ] to Young’s integrals against

the reproducing kernel of H.

Proposition 3.2.2. Fix α ∈ Wp; for each partition Π = {ti}Ni=0 ∈ P [0, T ], define

the vector SΠ ∈ H in the following manner:

SΠ(·) :=
N∑
i=1

α(ci) [R(ti, ·)−R(ti−1, ·)] ,

where ci ∈ (ti−1, ti). Then H− lim
k→∞

SΠk exists, where {Πk}∞k=1 ⊂ P [0, T ] with |Πk|
converging to zero as k −→∞; furthermore, this limit is independent of the family

of partitions. We will denote this limit by∫ T

0

α(t)R(dt, ·).

This limit satisfies the following properties:

1.
∥∥∥∫ T0 α(t)R(dt, ·)

∥∥∥2

H
=
∫

[0,T ]2
α ⊗ α dR; hence, there exists a constant C > 0

such that ∥∥∥∥∫ T

0

α(t)R(dt, ·)
∥∥∥∥2

H
≤ C‖α‖2

p‖R‖(2D)
r .

2. For each h ∈ H,
〈∫ T

0
α(t)R(dt, ·), h

〉
H

=
∫ T

0
α(t)dh(t).

3.
(∫ T

0
α(t)R(dt, ·)

)
(s) =

∫ T
0
α(t)R(dt, s).

Proof. First note that 1
p

+ 1
r
> (1− 2H) + 2H = 1, which implies that

1. the Young’s integral of α against R(·, s) for any s ∈ [0, T ] is well-defined,

since R(·, s) ∈ H;
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2. the 2D-Young’s integral of α⊗ α against R is well-defined.

Then for each k,

‖SΠk‖2
H =

#(Πk)∑
i=1

#(Πk)∑
j=1

α(ci)α(cj) 〈∆iR(ti, ·),∆jR(tj, ·)〉H (3.2.4)

=

#(Πk)∑
i=1

#(Πk)∑
j=1

α(ci)α(cj)∆ijR

≤ C‖α‖2
p‖R‖(2D)

r ,

where the inequality follows from Theorem 2.1 of [Tow02] and with C being a

constant depending only on p and r.

Given any two partitions Πn = {si},Πm = {tk} in the family, for ci ∈
[si−1, si] and dk ∈ [tk−1, tk],

‖SΠn − SΠm‖2
H = ‖SΠn‖2

H + ‖SΠm‖2
H − 2〈SΠn , SΠm〉H

=

#(Πn)∑
i=1

#(Πn)∑
j=1

α(ci)α(cj) [∆ijR(si, sj)]

+

#(Πm)∑
k=1

#(Πm)∑
l=1

α(dk)α(dl) [∆klR(tk, tl)]

− 2

#(Πn)∑
i=1

#(Πm)∑
k=1

α(ci)α(dk) [∆ikR(si, tk)]

n,m→∞−→
∫

[0,T ]2
(α⊗ α)(s, t) dR(s, t)

+

∫
[0,T ]2

(α⊗ α)(s, t) dR(s, t)

− 2

∫
[0,T ]2

(α⊗ α)(s, t) dR(s, t) = 0.

Hence, the completeness of H implies the existence of lim
n→∞

SΠn =
∫ T

0
α(t)R(dt, ·).

Since the 2D-Young’s integral is independent of choice of partitions, one may also

see from the calculation above that the limit of SΠk is also independent of choice

of partition, as claimed. Letting k tend to infinity in (3.2.4) proves property (1).
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For an arbitrary h ∈ H, we note that〈∫ T

0

α(t) R(dt, ·), h
〉
H

= lim
|Π|→0
〈SΠ, h〉H

= lim
|Π|→0

#(Π)∑
i=1

α(ci)
〈
R(ti+1, ·)−R(ti, ·), h

〉
H

= lim
|Π|→0

#(Π)∑
i=1

α(ci) [h(ti+1)− h(ti)]

=

∫ T

0

α(t) dh(t),

and so (2) holds. In particular, by setting h = R(s, ·), (3) is a consequence of

(2).

Proposition 3.2.3. Let Q : H2 → H2 be the bounded operator defined by

q(h, k) = 〈Qh, k〉H2 ,

where q is as in Equations (3.2.1) or (3.2.2). Then the action of Q on elements

of H2 is given by

Qh :=
1

2
R (T, ·) h̃ (T )−

∫ T

0

h̃ (t)R (dt, ·) . (3.2.5)

Proof. Pick an arbitrary k ∈ H2. The inner product of k against each of the terms

on the right hand side of (3.2.5) is given as〈
R (T, ·) h̃ (T ) , k

〉
H2

= h̃1(T )
〈
R (T, ·) , k1

〉
H + h̃2(T )

〈
R (T, ·) , k2

〉
H

= h̃1(T )k1(T ) + h̃2(T )k2(T ) = h̃(T ) · k(T ),
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and, as a result of Proposition 3.2.2,〈∫ T

0

h̃ (t)R (dt, ·) , k
〉
H2

=

〈∫ T

0

h̃1 (t)R (dt, ·) , k1

〉
H

+

〈∫ T

0

h̃2 (t)R (dt, ·) , k2

〉
H

=

∫ T

0

h̃1 (t) dk1(t) +

∫ T

0

h̃2 (t) dk2(t)

=

∫ T

0

h̃ (t) · dk(t) = −
∫ T

0

h (t) · dk̃(t).

By combining these terms and comparing to (??), we see that the claim is proven.

Proposition 3.2.4. Let Q : H2 −→ H2 be the operator defined above.

1. Q may be extended to an operator fromW2
p intoH2, which will also be denoted

by Q; for any ω ∈ W2
p ,

Qω :=
1

2
R(T, ·)ω̃(T )−

∫ T

0

ω̃(t) R(dt, ·).

2. Q is a bounded operator on W2
p .

Proof. 1. That Q is well-defined as an operator on W2
p follows from Propo-

sition 3.2.2; it is then of immediate consequence that Qω ∈ H2 for any

ω = (ω1, ω2) ∈ W2
p .

2. For a fixed ω ∈ W2
p ,
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‖Qω‖2
H2 =

2∑
i=1

∥∥∥∥1

2
R(T, ·)ω̃i(T )−

∫ T

0

ω̃i(t) R(dt, ·)
∥∥∥∥2

H

=
2∑
i=1

1

4

∥∥∥∥R(T, ·)ω̃i(T )

∥∥∥∥2

H
+

∥∥∥∥∫ T

0

ω̃i(t) R(dt, ·)
∥∥∥∥2

H

−
〈
R(T, ·)ω̃i(T ),

∫ T

0

ω̃i(t) R(dt, ·)
〉
H

=
2∑
i=1

T 2H |ω̃i(T )|2

4
+

∥∥∥∥∫ T

0

ω̃i(t) R(dt, ·)
∥∥∥∥2

H

− ω̃i(T )

∫ T

0

ω̃i(t) R(dt, T )

≤
2∑
i=1

T 2H |ω̃i(T )|2

4
+

∣∣∣∣∫
[0,T ]2

(
ω̃i ⊗ ω̃i

)
(s, t) dR(s, t)

∣∣∣∣
+

∣∣∣∣∫ T

0

ω̃i(T )ω̃i(t) R(dt, T )

∣∣∣∣ .

The first term is the sum is bounded above by T 2H

4
‖ω̃i‖2

p by Lemma 2.2.6.

The second term is bounded above by a positive multiple of ‖ω̃i‖2
p‖R‖

(2D)
r

through the application of Theorem 2.2.13 and Lemma 2.2.11. Finally, the

third term may be bounded above by some multiple of ‖ω̃i‖2
p‖R(T, ·)‖r as a

result of Lemma 2.2.6 and Equation 2.2.1. Putting these bounds together,

we may conclude that

‖Qω‖2
H2 ≤ C

(
‖ω̃1‖2

p + ‖ω̃2‖2
p

)
≤ Ĉ‖ω‖2

p

for suitable constants C and Ĉ. This expression is finite by Proposition 2.4.7.

Let us denote by QB the random variable taking values in H2:

QB :=
1

2
R(T, ·)B̃T −

∫ T

0

B̃t R(dt, ·),

where B̃ := (B2,−B1).
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3.3 Malliavin Derivative

We are now in a position to calculate the derivative of the process YT . Let

us begin by recording the following helpful convergence theorem, which will be of

great use in the section.

Theorem 3.3.1 (Theorem 15.72 of [Jan97]). Let 1 ≤ p ≤ ∞, k ≥ 1. Suppose

for some sequence {Xn}∞n=1 ⊂ Dk,p, there exists X ∈ Lp and Yj ∈ Lp(H⊗j) for

j = 1, . . . , k such that Xn → X in Lp and DjXn → Yj in Lp(H⊗j) as n → ∞.

Then X ∈ Dk,p, DjX = Yj, and Xn → X in Dk,p.

For i ∈ {1, 2} let us denote by Ri
t the linear operator on H2 with action

given by

Ri
th = 〈R(t, ·)ei, h〉ei = hi(t)ei,

where {e1, e2} is the standard basis of R2. The fact that DB = R1
T + R2

T is

immediately clear from the definition of the Malliavin derivative.

Proposition 3.3.2. The process YT has a derivative, DYT , taking values in the

space of linear operators from H2 into R3 , with action given by

DYTh =
(
R1
Th,R

2
Th, 〈QB, h〉H2

)
a.s.

Proof. We have that YT is continuously H2-differentiable by Proposition 3 of

[CFV07], and Corollaries 16 and 20 of [CQ02] imply that E |(Ym)T − YT |2 → 0

as m → ∞. We claim that DATh = 〈QB, h〉; in order to prove this, it suffices by

Theorem 3.3.1 to show that

E
∥∥∥〈QB, ·〉 −D(1

2
q(Bm, Bm)

)∥∥∥2

(H2)∗

m→∞−→ 0. (3.3.1)

Recall that the process Bm was defined as the dyadic linear approximator to our

fractional Brownian motion B; similarly, we will denote by Rm(u, v) the m-th

dyadic approximation of the kernel R(·, v) ∈ H in the first variable; i.e.,

Rm(u, v) := πm(R(·, v)
)
(u).
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Recall that B̃ = JB. Since B(T ) · B̃(T ) = 0, it follows that

q(Bm, Bm) =

∫ T

0

(Bm)t · d(B̃m)t

=
1

2

2m∑
k=0

(
Bti +Bti−1

)
·
(
B̃ti − B̃ti−1

)
.

Using the definition of the Malliavin derivative, one has that

Dq(Bm, Bm)h =
1

2

2m∑
k=0

[(
h(ti) + h(ti−1)

)
·
(
B̃ti − B̃ti−1

)
+
(
Bti +Bti−1

)
·
(
h̃(ti)− h̃(ti−1)

)]
=

∫ T

0

hm(t) · d(B̃m)t +

∫ T

0

(Bm)t · dh̃m(t)

= h(T ) · B̃T − 2

∫ T

0

(B̃m)t · dhm(t).

=

〈
R(T, ·)B̃T − 2

∫ T

0

(B̃m)t Rm(dt, ·), h
〉
H2

and so Dq(Bm, Bm) = R(T, ·)B̃T − 2
∫ T

0
(B̃m)t Rm(dt, ·). Since ‖〈h, ·〉‖H∗ = ‖h‖H

for any Hilbert space H, we can use the above calculations to rewrite the left side

of (3.3.1) as

E
∥∥∥∥QB − (1

2
R(T, ·)B̃T −

∫ T

0

(B̃m)t Rm(dt, ·)
)∥∥∥∥2

H2

= E
∥∥∥∥∫ T

0

B̃t R(dt, ·)−
∫ T

0

(B̃m)t Rm(dt, ·)
∥∥∥∥2

H2

.

Hence, to prove the claim is it required for us to show that

E
∥∥∥∥∫ t

0

Bi(s)R(ds, ·)−
∫ t

0

Bi
m(s)Rm(ds, ·)

∥∥∥∥2

H

m→∞−→ 0.
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Let us begin by noting that∥∥∥∥∫ T

0

Bi(s) R(ds, ·)−
∫ T

0

Bi
m(s) Rm(ds, ·)

∥∥∥∥2

H

≤

(∥∥∥∥∫ T

0

Bi(s) (R−Rm)(ds, ·)
∥∥∥∥2

H

+

∥∥∥∥∫ T

0

(Bi −Bi
m)(s)Rm(ds, ·)

∥∥∥∥2

H

)
.

In order to prove convergence of the above expression, it will be helpful to introduce

the following notation:

Ψm(u, v) := 〈(R−Rm)(u, ·), (R−Rm)(v, ·)〉H
= R(u, v)−Rm(u, v)−Rm(v, u) + 〈Rm(u, ·), Rm(v, ·)〉H
= R(u, v)−Rm(u, v)−Rm(v, u) + πm [Rm(u, ·)] (v).

Note that Ψm converges uniformly to zero as m tends to infinity. As a linear

combination of R and Rm, Ψm has finite two-dimensional r-variation for r = 1
2H

.

Let r′ be a number such that r′ > r and 1
r′

+ 1
r
> 1; then it follows that Ψm has

finite two-dimensional r′-variation; furthermore, Lemma 2.2.12 implies that

lim
m→∞

‖Ψm‖(2D)
r′ = 0.

Using the continuity of the inner product, we find that∥∥∥∥∫ t

0

Bi(s) (R−Rm)(ds, ·)
∥∥∥∥2

H

= lim
|Π|→0

∑
uj ,vk∈Π

Bi(cj)B
i(dk)〈∆i(R−Rm)(uj, ·),∆j(R−Rm)(vk, ·)〉H

= lim
|Π|→0

∑
uj ,vk∈Π

(
Bi(cj)B

i(dk)
)

∆ijΨm(uj, vk) =

∫
[0,T ]2

Bi ⊗Bi dΨm

≤ C‖Ψm‖(2D)
r′ ‖B

i‖2
p,



44

with the inequality resulting from Lemma 2.2.11 and Theorem 2.2.13. Hence,

E
∣∣∣∣∫

[0,T ]2
Bi ⊗Bi dΨm

∣∣∣∣ ≤ C‖Ψm‖(2D)
r′ E‖Bi‖2

p;

Fernique’s Theorem guarantees that this expression is finite; from our above re-

marks, we have that its value tends to zero as m → ∞. We may then conclude

that

E
∥∥∥∥∫ T

0

Bi(s) (R−Rm(ds, ·))
∥∥∥∥2

H
→ 0.

We can approach the convergence of the second term in a similar manner. Choose

p′ such that p′ > p and 1
p′

+ 1
r
> 1; then the sample paths of Bi − Bi

m has finite

r-variation and Lemma 2.2.7 tells us that ‖Bi−Bi
m‖p′ tends to zero as m tends to

infinity. Therefore, it follows that

E
∥∥∥∥∫ T

0

(Bi −Bi
m)(s)Rm(ds, ·)

∥∥∥∥2

H
= E

∫
[0,T ]2

(Bi −Bi
m)⊗ (Bi −Bi

m) dRm

≤ E
[
‖Bi −Bi

m‖2
p′

]
‖R‖(2D)

r → 0

Remark 3.3.3. In fact, we have shown something slightly stronger in the above

proof. By changing the exponent on the left-hand side of (3.3.1), we may conclude

that ‖D(Ym)T −DYT‖(H2)∗, converges to zero in all Lj, j ≥ 1. By applying the

triangle inequality, we also find that ‖DYT‖(H2)∗ ∈ L∞−.

Proposition 3.3.4. The random variable YT is in D∞.

Proof. Corollaries 16 and 20 of [CQ02] implies that E[|AT |2] <∞, and that AT =

L2 − lim
m→∞

(Am)T . Hence, AT is in the second-order Itô chaos; it follows from

hypercontractivity (pp. 61-63 of [Nua06], for example), that E[|AT |j] < ∞ for all

1 ≤ j <∞. Combining this with the above remark, we find that

‖YT‖j1,j = E[|YT |j] + E
[
‖DYT‖j(H2)∗

]
≤ E[|BT |j] + E[|AT |j] + E

[
‖DYT‖j(H2)∗

]
<∞.
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In fact, this is sufficient to prove the claim, as one may perform calculations similar

to those in Proposition 3.3.2 to show that

D2YT = (0, 0, QR(T, ·)) ,

which is clearly deterministic and thus has finite moments of all orders. From

this, we also know that DkYT ≡ 0 for all k ≥ 3, and so it must be the case that

‖YT‖k,j <∞ for all k and j.

3.4 Integrability of the Malliavian Covariance

Determinant

We begin by recording some more general results, which will be useful in

proving integrability of (det γ)−j.

Lemma 3.4.1. Suppose that X is a non-negative random variable such that, for

each j ≥ 1, there exists a constant Cj > 0 for which

E
[
e−sX

]
≤ Cjs

−j ∀ s ≥ 1.

Then X−1 ∈ L∞−.

Proof. Fix j ≥ 1. We note that for any k ≥ 0,∫ ∞
0

sj−1e−ks ds = k−jΓ(j),

where Γ denotes the standard Gamma function. By letting k = X, we find that

E[X−j] =
1

Γ(j)
E
[∫ ∞

0

sj−1e−sX ds

]
=

1

Γ(j)

∫ ∞
0

sj−1E
[
e−sX

]
ds.

It is sufficient for completion of the proof to note that, under the assumption given,

the right-hand expression is finite:∫ 1

0

sj−1E
[
e−sX

]
ds ≤

∫ 1

0

sj−1ds =
1

j
;∫ ∞

1

sj−1E
[
e−sX

]
ds ≤

∫ ∞
1

sj−1(Cj+1s
−(j+1)) ds = Cj+1.
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Theorem 3.4.2 (see Melcher [Mel04, pp.26-27]). Let (W ,B,P) be a Gaussian

measure space with associated Cameron-Martin space H, and suppose

Φ : W ×W → R is a bounded non-negative quadratic form. Then the operator

Φ̂ : H → H given by

Φ(h, k) = 〈Φ̂h, k〉H

is trace-class. In addition, if Φ̂ is not a finite rank operator, then

Φ−1 ∈ L∞−(W ,P).

Proof. By Theorem 5.3.32 of [Str93], we have that there exists a set of independent,

identically distributed standard normal random variables {ξn}∞n=1 such that the

series BN :=
∑N

n=1 ξnhn converges in W to B P-a.s. and in all Lj, j ≥ 1 as

N →∞, and

Law

(
∞∑
n=1

ξnhn

)
= P.

In particular, the fact that E‖BN −B‖2
W → 0 implies that Φ(BN , BN)→ Φ(B,B)

in L1. Thus, Fernique’s Theorem allows us to conclude that

∞∑
n=1

〈
Φ̂hn, hn

〉
H

= lim
N→∞

N∑
n=1

Φ(hn, hn)

= lim
N→∞

E
[
Φ(BN , BN)

]
= E[Φ(B)] ≤ CE[‖B‖2

W ] <∞.

Thus, Φ̂ is trace-class.

Suppose that Φ̂ is not finite rank. Since Φ̂ is compact, there exists an

orthonormal basis {hn}∞n=1 ⊂ H for which Φ̂hn = λnhn; our assumption guarantees

that #{n : λn > 0} =∞. Using this, it is easy to check that

Φ(BN , BN) =
〈

Φ̂BN , BN
〉
H

=
N∑
n=1

λnξ
2
n

and so

Φ(B,B) = L1 − lim
N→∞

N∑
n=1

λnξ
2
n.
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We will let KN := #{1 ≤ n ≤ N : λn > 0}; it is clear that {KN} is an non-

decreasing sequence with KN
N→∞−→ ∞. Therefore, for each fixed N and positive

s,

E [exp (−sΦ (B,B))] = E

[
exp

(
−s lim

N→∞

N∑
n=1

λnξ
2
n

)]

≤ E

[
exp

(
−s

N∑
n=1

λnξ
2
n

)]

=
N∏
n=1

(
1

2λns+ 1

) 1
2

≤ CNs
−KN

2 .

Applying Lemma 3.4.1 finishes the proof.

In order to apply Theorem 3.4.2, we will explicitly calculate a formula for

the determinant of the Malliavin covariance matrix associated to Y .

Lemma 3.4.3. Given any a 6= 0, C ∈Mm,n(R), and D ∈Mn(R), one has that

det

[
aIm C

Ctr D

]
= am

(
det(D − a−1CtrC)

)
,

where Ctr is the transpose of C.

Proof. This claim follows immediately when one writes[
aIm C

Ctr D

]
=

[
aIm 0

Ctr In

][
Im a−1C

0 D − a−1CtrC

]
.

Proposition 3.4.4. Define the map γ :W2
p →M3(R) in the following manner:

γ(ω) :=

[
T 2HI2 (Qω) (T )

[(Qω(T ))]tr ‖Qω‖2
H2

]

Also, define the quadratic form Φ on W2
p as follows:

Φ(ω) = T 4H‖Qω‖2
H2 − T 2H |Qω(T )|2.

Then
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1. DYT (DYT )∗ = γ a.s.

2. Φ = det γ.

Proof. 1. We begin by calculating the adjoint operator (DY )∗.

Recall that Ri
th = hi(t)ei. For a fixed λ = (λ1, λ2) ∈ R2, h ∈ H2, and i = 1, 2,〈

(Ri
T )∗λ, h

〉
H2 = λ · hi(T )ei

= λihi(T ) =
〈
λiR(T, ·)ei, h

〉
H2 .

Thus, one has that

Ri
T (Rj

T )∗λ = Ri
Tλ

jR(T, ·)ej = δijT
2Hλj.

Suppose x ∈ R3.

〈(DYT )∗x, k〉 = x ·DYTk

= x · (k(T ), 〈QB, k〉)

= (x1, x2) · k(T ) + x3(〈QB, k〉)

= 〈(R1
T )∗(x1, x2) + (R2

T )∗(x1, x2) + x3QB, k〉

= 〈x1R(T, ·)e1 + x2R(T, ·)e2 + x3QB, k〉.

Using this, we may now verify the claim:

DYT (DYT )∗x = DYT
(
x1R(T, ·)e1 + x2R(T, ·)e2 + x3QB

)
= DYT (x1R(T, ·)e1) +DYT (x2R(T, ·)e2) +DYT (x3QB)

= (T 2Hx1, 0, 〈QB, x1R(T, ·)e1〉)

+ (0, T 2Hx2, 〈QB, x2R(T, ·)e2〉)

+ (x3QB1(T ), x3QB2(T ), 〈QB, x3QB〉)

=

[
T 2HI2 QB(T )

(QB(T ))tr ‖QB‖2
H2

]
x.

2. This follows from Lemma 3.4.3.
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Lemma 3.4.5. The quadratic form Φ is positive semidefinite and has a trivial

nullspace.

Proof. The Cauchy-Schwarz inequality allows us to see that

|(Qω)i(T )|2 = |〈R(T, ·), (Qω)i〉H|2 ≤ ‖R(T, ·)‖2
H‖(Qω)i‖2

H = T 2H‖(Qω)i‖2
H.

Hence, Φ is non-negative and Φ = 0 if and only if Qω = cR(T, ·) for some constant

vector c ∈ R2. Suppose, then, that ω satisfies this condition; then by the definition

of Q, it would follow that

0 = cR(T, ·)− ω̃(T )R(T, ·)
2

+

∫ T

0

ω̃(t) R(dt, ·) =

∫ T

0

(
ω̃(t)− ω̃(T )

2
+ c

)
R(dt, ·)

which implies by Proposition 3.2.2 that for all h ∈ H2,

0 =

∫ T

0

(
ω̃(t)− ω̃(T )

2
+ c

)
· dh(t).

As a result of Lemma 2.4.9, one has that C∞c (0, T ) ⊂ H; then for each ϕ ∈ C∞c (0, T ),

integration by parts allows us to conclude that

0 =

∫ T

0

ϕ(t) · d
(
ω̃(t)− ω̃(T )

2
+ c

)
=

∫ T

0

ϕ(t) · dω̃(t),

which implies that ω̃(t) is a constant function. Thus ω(t) = ω(0) = 0 for all

t ∈ [0, T ].

Corollary 3.4.6. (Φ)−1 ∈ L∞−(W2
p ,P).

Proof. Combining Lemma 3.4.5 and Theorem 3.4.2 gives us the desired result.

Portions of Chapters 3 are adapted from material submitted for publication

as Driscoll, Patrick, “Smoothness of Density for the Area Process of Fractional

Brownian Motion.” The dissertation author was the sole author of this paper.



Chapter 4

General Case

This chapter is devoted to the proof of Theorem 1.2.2. Many of the objects

of study and proof techniques are directly analogous to those used in the previous

chapter.

4.1 Step-2 Nilpotent Fields

As before, we fix 1
3
< H < 1

2
; let B := {B1, . . . , Bn} denote n-dimensional

fractional Brownian motion with Hurst parameter H.

Let k ∈ {1, . . . , n(n−1)
2
}, and suppose that {α1, . . . , αk} is a collection of

maps from Rn × Rn to R with the following properties:

(I) Each αl is a skew-symmetric bilinear form;

(II) The set {αl} is a linearly independent set; i.e., the bilinear form
∑
l

clαl is

the zero map if and only if cl = 0 for all l.

Define α : Rn × Rn → Rk by α := (α1, . . . , αk); this map induces a function from

Wn ×Wn into Wk, which we will also refer to as α; its action is given by

[α (ω, τ)] (t) := α(ω(t), τ(t)).

Just as in the case of the Heisenberg group, we may use the skew-symmetric form

α to define a Lie group (G, ◦), where G := Rn × Rk and ◦ : G × G → G is the

50
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multiplication operation defined by

(v,x) ◦ (w,y) =

(
v + w,x + y +

1

2
α(v,w)

)
.

Additionally, for any ξ = (w,y) ∈ g ' TeG, one may readily calculate the the

left-invariant vector field ξ̃;

ξ̃(v,x) =

(
w,y +

1

2
α (v,w)

)
.

The Jacobian vector fields {Xi := (̃ei, 0)}ni=1 for g are given by

(Xi)(v,x) =

(
ei,

1

2
α (v, ei)

)
.

Similar to the Heisenberg case, we have that

[Xi, Xj] = (0, α(ei, ej)) .

The following theorem ensures us that any step-2 stratified group on Rn+k may be

generated in such a way.

Theorem 4.1.1 (Theorem 3.2.1 of [BLU07]). Each homogeneous Carnot group of

step two on Rn+k is characterized by an operator α satifisying Properties I and II

above.

4.2 Stochastic Differential Equation Solutions

Suppose B = (B1, . . . , Bn) is an n-dimensional fractional Brownian motion

with Hurst parameter 1
4
< H < 1

2
. Given a step-2 homogeneous Carnot group G

with Jacobian basis {Xi}ni=1 as in the previous section, one may make sense of the

differential equation

dY =
∑
i

Xi(Y )dBi (4.2.1)

as in Chapter 2; that is, we consider the solution Y as the limiting process of

solutions of (4.2.1) driven by dyadic approximation processes Bm = πmB. Suppose
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α is the skew-symmetric operator on Rn × Rn as defined in Section 1; then the

stochastic differential equation in the dyadic approximation case is of the form

dYm =
∑
i

Xi(Ym)dBi
m =

∑
i

(
ei,

1

2
α(y, ei)

)
dBi

m

=

(
dB1

m, . . . , dB
n
m,

1

2

∑
i

α(y, ei)dB
i
m

)
.

It is easy to check that the solution is given as Ym := (ym, ŷm), where

(ym)T = (Bm)T ,

(ŷm)T =
1

2

∫ T

0

α((Bm)t, d(Bm)t) :=
1

2

∑
i

∫ T

0

α((Bm)t, ei)d(Bi
m)t,

with the integrals above interpreted as Riemann-Stieltjies integrals since the piece-

wise linearity of Bm implies that α(Bm, ei) is piecewise linear as well for each i.

Theorem 2 of [CQ02] and Theorem 4.1.1 of [Lyo98] imply that the limiting

process Y := lim
m→∞

Ym exists a.s. We will suggestively write this process heuristi-

cally as

YT =

(
BT ,

1

2

∫ T

0

α(Bt, dBt)

)
.

We record here a pair of simple lemmas which allow for some control of the process

Y .

Lemma 4.2.1. Suppose α is a continuous bilinear form on Rn. Then for each

fixed v ∈ Rn, the mapping

f 7→ α(f, v)

is a map from Cp([0, T ],Rn) into Cp([0, T ],R) for all p ≥ 1; more explicitly, one

has the bound

‖α(f, v)‖p ≤ ‖α‖L(Rn×Rn,R)|v|‖f‖p.
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Proof. Fix f ∈ Cp([0, T ],Rn); and let Π = {ti}Ni=0 ∈ P [0, T ]. Then one has that

N∑
i=1

|α(f(ti+1), v)− α(f(ti), v)|p =
N∑
i=1

|α(f(ti+1)− f(ti), v)|p

≤
N∑
i=1

‖α‖p(Rn×Rn,R)‖v‖
p
U |f(ti+1)− f(ti)|p .

Taking the supremum over all such partitions of [0, T ] will then complete the

proof.

Lemma 4.2.2. Let α be a continuous bilinear map on Rn, and suppose v ∈ Rn.

If p, q be constants such that 1
p

+ 1
q
> 1, then for any f ∈ Cp([0, T ],Rn), g ∈

Cq([0, T ],R), the Young’s integral∫ t

s

α(f(τ), v)dg(τ)

is well defined for all 0 ≤ s < t ≤ T , and satisfies the bounds∣∣∣∣∫ t

s

α(f(τ), v)dg(τ)− α(f(s), v) (g(t)− g(s))

∣∣∣∣ ≤ C‖f |[s,t]‖p‖g|[s,t]‖q,

where C is a constant depending on p, q, α, and v.

Proof. This immediately follows from Lemma 4.2.1, along with Theorem 2.2.8 and

the bound given in (2.2.1).

4.3 Operator Realization

Recall that we have restricted the value of the Hurst parameter to 1
3
< H <

1
2
.

For j = 1, . . . , k, define a quadratic form qj on Hn ×Hn as follows:

qj(h, k) :=
1

2

[∫ T

0

αj(h(s), dk(s)) +

∫ T

0

αj(k(s), dh(s))

]
(4.3.1)

=

∫ T

0

αj(h(s), dk(s))− αj(h(T ), k(T ))

2
.
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Note that the above integrals are to be intepreted in the manner of Young, and

are well defined as by Lemma 4.2.2, along with the fact that the Cameron-Martin

space may be embedded into Cr with r := 1
2H

. Since piecewise linear continuous

functions are contained in H, we may write our approximating process Ym as:

(Ym)T =

(
(Bm)T ,

1

2
q1(Bm, Bm), . . . ,

1

2
qk(Bm, Bm)

)
.

Define the linear mapping a :Wp → H by

aω :=
1

2
ω(T )R(T, ·)−

∫ T

0

ω(t)R(dt, ·).

The above integral is to be interpreted in the manner of Young, and the mapping

above is well-defined as a result of Proposition 3.2.2.

Lemma 4.3.1. The operator a is bounded on Wp.

Proof. This proof is almost identical to the second part of the proof for Proposi-

tion 3.2.4. For any ω ∈ Wp, one may readily verify using Proposition 3.2.2 that

‖aω‖2
H =

1

4
T 2H |ω(T )|2 − ω(T )

∫ T

0

ω(t)R(dt, T ) +

∫
[0,T ]2

ω(s)ω(t)dR(s, t).

We may now bound the absolute value of each term on the right-hand side; the

first term by using the p-variational embedding of C as given in Lemma 2.2.6, the

second term by Lemma 2.2.6 and the Young’s integral bounds in Theorem 2.2.8,

and the third term using the two-dimensional Young’s integral bounds given in

Theorem 2.2.13.

Given a skew-symmetric bilinear form ξ on Rn, we define Jξ as the linear

map on Rn with action given by

Jξx =
∑
i

ξ(ei, x)ei.

We will regularly refer to Jl := Jαl for the operators {αl} defined in Section 4.1.

Using this notation, one has the identity

ql(Bm, Bm) =

∫ T

0

(Bm)t dJl(Bm)t.
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One may take the tensor product of these two operators to form an operator

on H⊗ Rn ∼= Hn:

(a⊗ Jξ)h =
1

2
R(T, ·)⊗ Jξh(T )−

∫ T

0

R(dt, ·)⊗ Jξh(t)

=
1

2

[∫ T

0

R(t·)⊗ dJξh(t)−
∫ T

0

R(dt, ·)⊗ Jξh(t)

]
.

Example 2. If n = 2, all skew-symmetric forms are scalar multiples of ξ, where

ξ(x, y) = (y,−x). Then in this case, one has that

(a⊗ Jξ)h =
1

2
R(T ·)⊗ ξh(T )−

∫ T

0

R(dt, ·)⊗ ξh(t)

which is equivalent to the operator Q as defined in Proposition 3.2.3.

Lemma 4.3.2. Suppose α is a continuous skew-symmetric bilinear form on Rn.

Then for any h ∈ Hn and for each partition Π = {tj}Nj=0 ∈ P [0, T ], define the

vector SΠ ∈ H in the following manner:

SΠ(·) :=
N∑
j=1

α(h(cj), [R(tj, ·)−R(tj−1, ·)] ei)

where cj ∈ (tj−1, tj). Then H− lim
k→∞

SΠk exists, where {Πk}∞k=1 ⊂ P [0, T ] with |Πk|
converging to zero as k −→∞; furthermore, this limit is independent of the family

of partitions. We will denote this limit by∫ T

0

α(h(t), R(dt, ·)ei).

This limit satisfies the following properties:

1.
∥∥∥∫ T0 α(h(t), R(dt, ·)ei)

∥∥∥2

H
=
∫

[0,T ]2
α(h(s), ei)α(h(t), ei) dR(s, t); hence, there

exists a constant C > 0 such that∥∥∥∥∫ T

0

α(h(t), R(dt, ·)ei)
∥∥∥∥2

H
≤ C‖α(h, ei)‖2

p‖R‖(2D)
r .

2. For each k ∈ H,
〈∫ T

0
α(h(t), R(dt, ·)ei), k

〉
H

=
∫ T

0
α(h(t), ei) dk(t).
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3.
(∫ T

0
α(h(t), R(dt, ·)ei)

)
(s) =

∫ T
0
α(h(t), R(dt, s)ei).

Proof. This is an application of Proposition 3.2.2 along with Lemma 4.2.1.

Proposition 4.3.3. For each symmetric form ql, as defined in Equation (4.3.1)

with l = 1, . . . , k , one has the identity

ql(h, h̃) =
〈

(a⊗ Jl)h, h̃
〉
H⊗Rn

.

Proof. This result follows from computing the right-hand inner product, using part

2 of Lemma 4.3.2.

Proposition 4.3.4. For each skew-symmetric bilinear form ξ on Rn, the map

a ⊗ Jξ may be extended to a bounded mapping from Wp ⊗ Rn to H ⊗ Rn; we will

also denote this extension by a⊗ Jξ. Its action is given by

(a⊗ Jξ)ω =
1

2

[∫ T

0

R(t, ·)⊗ dJξω(t)−
∫ T

0

R(dt, ·)⊗ Jξω(t)

]
.

Proof. This proof follows in the same manner as the analogous result detailed in

Proposition 3.2.4; we will only record here an explicit upper bound on the operator

norm of a⊗ Jξ. To that end, given an ω ∈ Wp ⊗ Rn, we have

‖(a⊗ Jξ)ω‖2
H⊗Rn =

n∑
i=1

(∥∥∥∥ξ(ω(T ), ei)R(t, ·)
2

∥∥∥∥2

+

∥∥∥∥∫ T

0

ξ(ei, omega(t))R(dt, ·)
∥∥∥∥2

−
〈
ξ(ω(T ), ei)R(T, ·),

∫ T

0

ξ(ei, ω(t))R(dt, ·)
〉)

=
n∑
i=1

(
(ξ(ω(T ), ei))

2T
2H

4
+

∫
[0,T ]2

ξ(ei, ω(s))ξ(ei, ω(t))dR(s, t)

+ ξ(ω(T ), ei)

∫ T

0

ξ(ei, ω(t))R(dt, T )

)

≤
n∑
i=1

(
‖ξ‖2

(
|ω(T )|2T

2H

4
+ ‖ω‖2

p‖R‖(2D)
r

+ |ω(T )|‖ω‖p‖R‖r
))

≤ n‖ξ‖2

(
T 2H

4
+ ‖R‖(2D)

r + ‖R‖r
)
‖ω‖2

p.
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We may thus define random processes (a ⊗ Jl)B for each l = 1, . . . , k by

the formula

(a⊗ Jl)B =
1

2

[∫ T

0

R(t, ·)⊗ dJlBt −
∫ T

0

R(dt, ·)⊗ JlBt)

]
. (a.s.)

4.4 Malliavin Derivative

Let Rj
T : H ⊗ Rn → R be the evaluation operator on the j-th coordinate;

i.e.,

Rj
Th := hj(T ) = 〈R(T, ·)⊗ ej, h〉H⊗Rn .

Proposition 4.4.1. The process YT has derivative DYT taking values in L(H ⊗
Rn,Rn+k), with action given by

DYTh =
(
R1
Th, . . . , R

n
Th, 〈(a⊗ J1)B, h〉H⊗Rn , . . . , 〈(a⊗ Jk)B, h〉H⊗Rn

)
(a.s.)

Proof. We begin by computing the derivative of ql(Bm, Bm) for l = 1, . . . , k in the

direction of some h ∈ H ⊗ Rn. Again, we let Tj = j
2m
T .

Dql(Bm, Bm)h = D

[
2m∑
j=1

BTj +BTj−1

2

(
JlBTj − JlBTj−1

)]
h

=
1

2

2m∑
j=1

(h(Tj) + h(Tj−1))
(
JlBTj − JlBTj−1

)
+
(
BTj +BTj−1

)
(Jlh(Tj)− Jlh(Tj−1))

=
1

2

2m∑
j=1

(h(Tj) + h(Tj−1))
(
JlBTj − JlBTj−1

)
−
(
JlBTj + JlBTj−1

)
(h(Tj)− h(Tj−1))

=
1

2

[∫ T

0

hm(t)d(JlBm)t −
∫ T

0

(JlBm)tdhm(t)

]
= 〈(a⊗ Jl)Bm, h〉H⊗Rn .

Thus, in order to prove the claim, it suffices to show that for each l =



58

1, . . . , k,

E ‖〈(a⊗ Jl)B, ·〉 − 〈(a⊗ Jl)Bm, h〉‖2
(H⊗Rn)∗

= E
∥∥∥∥∫ T

0

R(dt, ·)⊗ (JlB)t −
∫ T

0

Rm(dt, ·)⊗ (JlBm)t

∥∥∥∥2

H⊗Rn

tends to zero as m→∞. Yet one can dominate each term by

ClE
∥∥∥∥∫ T

0

R(dt, ·)⊗Bt −
∫ T

0

Rm(dt, ·)⊗ (Bm)t

∥∥∥∥2

H⊗Rn

for some suitable constant Cl depending only on αl. This term vanishes in the

limit by the same argument as is used in the proof of Proposition 3.3.2.

4.5 Integrability of the Malliavin Covariance De-

terminant

Recall that the Malliavin covariance matrix is defined as the operator

DYT (DYT )∗. We begin the chapter by defining two matrix-valued operations

on our path-space that will be the higher-dimensional analogues of the expres-

sions Qω(T ) and ‖Qω‖2 which appeared in the Malliavin covariance matrix for

the Heisenberg case.

We will indicate by Ψ the Gram matrix on our operators {a ⊗ Jl}; more

precisely, Ψ will be the function from Wp ⊗ Rn to Mk(R) defined by

[Ψ(ω)]ij = 〈(a⊗ Ji)ω, (a⊗ Jj)ω〉H⊗Rn .

We will let Θ indicate the linear mapping from Wp ⊗ Rn into the space

Mn,k(R) of n× k matrices with real-valued entries given by

[Θω]ij := [(a⊗ Jj)ω] (T ) · ei.

Each of these matrices may be extended to matrix-valued random variables Ψ(B)

and ΘB in the usual manner.
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Proposition 4.5.1. Suppose γ :Wp ⊗ Rn →Mn+k(R) is given by

γ(ω) :=

[
T 2HIn Θω

(Θω)tr Ψ(ω)

]
.

then DYT (DYT )∗ = γ(B) almost surely.

Proof. Given x ∈ Rn+k and h ∈ H ⊗ Rn,

〈(DYT )∗x, h〉 = x ·
(
R1
Th, . . . , R

n
Th, 〈(a⊗ J1)B, h〉H⊗Rn , . . . , 〈(a⊗ Jk)B, h〉H⊗Rn

)
=

〈
n∑
i=1

xiR(T, ·)⊗ ei +
k∑
j=1

xn+j(a⊗ Jj)B, h

〉
H⊗Rn

.

Direct calculations reveal the following identities:

Rl
T (R(T, ·)⊗ ei) = δilT

2H ;

〈(a⊗ Jl)B,R(T, ·)⊗ ei〉H⊗Rn = Rl
T ((a⊗ Jl)B) = [(a⊗ Jl)B]T · ei.

By linearity, it follows that

DYT (DYT )∗x =
n∑
i=1

xiDYT [R(T, ·)⊗ ei] +
k∑
j=1

xn+jDYT [(a⊗ Jj)B]

=
n∑
i=1

xi
(
T 2Hei, [(a⊗ J1)B]T · ei, . . . , [(a⊗ Jk)B]T · ei

)
+

k∑
j=1

xn+j
(

[(a⊗ Jj)B]T · e1, . . . , [(a⊗ Jj)B]T · en,

〈(a⊗ J1)B, (a⊗ Jj)B〉, . . . , 〈(a⊗ Jk)B, (a⊗ Jj)B〉
)
.

One may readily verify that this is almost surely equivalent to [γ(B)]x.

Recall that proving smoothness of the density of Y with respect to Lebesgue

measure requires showing that

(det γ(B))−1 ∈ L∞−. (4.5.1)
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As an application of Lemma 3.4.3, we have that

det γ(B) = T 2Hn det
(
Ψ(B)− T−2H(ΘB)trΘB

)
.

For each y ∈ Sk−1, define the linear operator Φy by

Φy(ω) :=
(
Ψ(ω)− T−2H(Θω)trΘω

)
y · y (4.5.2)

This operator is continuous both in ω and y. Once again, we may almost surely

identify this operator with a random variable Φy(B). We note that

(det γ(B))−1 ≤ T−2Hn

(
min

y∈Sk−1
Φy(B)

)−(n+k)

;

hence our desired integrability condition will be implied by showing that(
min

y∈Sk−1
Φy(B)

)−1

∈ L∞−.

For each y ∈ Sk−1 we will let y · α :=
k∑
i=1

yiαi. It is easy to check that

(Ψ(B))y · y = ‖(a⊗ Jy·α)B‖2
H⊗Rn ,

(
(ΘB)trΘB

)
y · y = |([a⊗ Jy·α)B](T )|2 .

Thus, each Φy is non-negative as a result of the Cauchy-Schwarz inequality. In

addition, Φy is a bounded operator as by Lemma 4.3.2; Theorem 3.4.2 implies that

the operator Φ̂y : Hn → Hn defined by〈
Φ̂yh, h

〉
Hn

= Φyh

is trace-class.

Proposition 4.5.2. For each fixed y ∈ Sk−1, the map Φy is contained in L∞−(P).

Proof. Again recalling Theorem 3.4.2, it suffices to show that Φ̂ is not a finite rank

operator. To that aim, we begin by noting that Φ̂yh = 0 implies that Φy(h) = 0.

By Cauchy-Schwarz, this is true if and only if

(a⊗ Jy·α)h = cR(T, ·)
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for some c ∈ Rn. By definition, this is equivalent to the statement that∫ T

0

R(dt, ·)⊗ (Jy·αh(T )− Jy·αh(t)− c) = 0.

By taking the inner product of each side against an arbritrary ϕ ∈ C∞c ⊗ Rn ⊂
H⊗ Rn and applying integration by parts, we obtain the identity

0 =

∫ T

0

ϕ(t)⊗ dJy·αh(t) (∀ϕ ∈ C∞c ⊗ Rn)

which implies Jy·αh ≡ 0; that is, h(t) ∈ Null (Jy·α) for all t ∈ [0, T ]. By the

assumption on our skew-symmetric operators, y · α is not the zero map. Thus, we

may pick some v 6= 0 for which Jy·αv is non-zero; it follows that for each fixed

non-zero k ∈ H, the element k ⊗ Jy·αv(t) 6= 0 for all t ∈ (0, T ] such that k(t) 6= 0.

Thus the set

{k ⊗ v : 0 6= k ∈ H}

is contained in the complement of the kernel of Φ̂; it is clear that the cardinality

of this set is infinite.

Proposition 4.5.3. For all 1 ≤ p < ∞, the expectations E[Φ−py ] are uniformly

bounded in y; i.e.,

sup
y∈Sk−1

E[Φ−py ] <∞.

Proof. We begin by noting that the operator Φ̂y may be written as

Φ̂y = (a⊗ Jy·α)∗(a⊗ Jy·α)− T−2H(a⊗ Jy·α)∗R∗TRT (a⊗ Jy·α)

= (a∗a− T−2Ha∗R∗TRTa)⊗ J∗y·αJy·α,

where RT denotes the evaluation operator at time T . We note that the quadratic

form A on Wp given by

A(ω, τ) = 〈aω, aτ〉H − (aω(T ) · aτ(T ))

is non-negative and bounded by Lemma 4.3.1, and hence Theorem 3.4.2 implies

that (a∗a − T−2Ha∗R∗TRTa) is trace-class and a fortiori compact. Note that for
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each y, the (non-negative) eigenvalues {λyn} of the operator Φ̂y are given by the

products of eigenvalues of (a∗a − T−2Ha∗R∗TRTa) and J∗y·αJy·α. Recall from the

proof of Theorem 3.4.2 that one has the equation

Φy(B) = L1 − lim
N→∞

N∑
n=1

λynξ
2
n

where {ξn} are a set of independent standard normal random variables.

Let {σn} denote the eigenvalues of the operator (a∗a−T−2Ha∗R∗TRTa) and

ρy the spectral radius of J∗y·αJy·α. Define the set Ey as the collection of non-zero

eigenvalues of Φ̂y of the form ρyσn. Since a has a trivial kernel, and Jy·α is not the

zero map, we have that #(Ey) =∞. Without loss of generality, we may order our

eigenvalues such that members of Ey are listed ”first”; i.e., λyn ∈ Ey for any n ∈ N.

For each 1 ≤ p <∞, let N be the first integer for which N > 2p. Then

E[(Φy(B))−p] ≤ E

( N∑
n=1

λynξ
2
n

)−p
≤
(

min
n=1,...,N

λyn

)−p
E

( N∑
n=1

ξ2
n

)−p
=

(
min

n=1,...,N
λyn

)−p ∫ ∞
0

r−2prN−1e
−r2
2 dr

which is certainly a finite expression. In particular, a uniform bound on E[(Φy(B))−p]

will be proven if we can find a constant M for which(
min

n=1,...,N
λyn

)−p
≤M

for all y ∈ Sk−1. We note that

min
n=1,...,N

λyn = ρy min
n=1,...,N

σn ≥ Cρy

where the constant C is dependent only on the value of N . Thus it is only left for

us to prove that

max
y∈Sk−1

ρ−py ≤M ;
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yet this is equivalent to the statement that

min
y∈Sk−1

ρy > 0,

which is true by the compactness of the unit sphere and the non-degeneracy con-

dition imposed upon α.

Lemma 4.5.4 (Lemma 6.6 of [Bel06]). Suppose X is a non-negative random vari-

able such that

P(X < ε) = O(ε∞−) (ε −→ 0).

Then X−1 ∈ L∞−(P).

Proof. Fix some p ≥ 1. Pick some q > p; then by assumption, there exists some

constants K = Kq,M = Mq such that

P (X < ε) ≤ Kεq,

provided ε < 1
M

. Using this, we see that

E[X−p] =

∫ ∞
0

τ p−1P(X−1 > τ) dτ

=

∫ ∞
0

τ p−1P(X < τ−1) dτ

=

∫ M

0

τ p−1P(X < τ−1) dτ +

∫ ∞
M

τ p−1P(X < τ−1) dτ

≤
∫ M

0

τ p−1 dτ +K

∫ ∞
M

τ p−1τ−q dτ

≤ Mp

p
+
Mp−q

q − p
<∞.

We are now in a position to prove our desired result.

Theorem 4.5.5. Let Φy be defined as in Equation (4.5.2). Then(
min

y∈Sk−1
Φy(B)

)−1

∈ L∞−(Wn
p ,P).
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Proof. By Lemma 4.5.4, it suffices to check that for all q,

P
{(

min
y∈Sk−1

Φy(B)

)
< ε

}
≤ Cqε

q

for some suitable constant Cq dependent only on q. Fix ε > 0. We pick a natural

number N(ε) and vectors {yi}N(ε)
i=1 such that

N(ε)⋃
i=1

B(yi; ε
2)

form an open cover of Sk−1. Note that the value of N(ε) is bounded above by

2kε−2k; one may see this by slicing the cube [−1, 1]k into disjoint cubes of size

length ε2.

Define the following sets:

Ai :=

{
inf

z∈B(yi;ε2)
ΦzB < ε : ‖B‖2

p ≤
1

ε

}
;

Bi :=

{
inf

z∈B(yi;ε2)
ΦzB < ε : ‖B‖2

p >
1

ε

}
.

Then one has that

P
{(

min
y∈Sk−1

Φy(B)

)
< ε

}
≤

N∑
i=1

(
P(Ai) + P(Bi)

)
.

Suppose z ∈ B(yi; ε
2). Then on Ai, one has the inequality

|Φyi(B)| ≤ |Φyi(B)− Φz(B)|+ |Φz(B)| < C‖B‖2
pε

2 + ε = (1 + C)ε

for a suitable constant C. Therefore Ai ⊂ {Φyi(B) < (1 + C)ε}. Letting

Mq := sup
y∈Sk−1

E[(Φy(B))−q] (a finite quantity by Proposition 4.5.3) and using

Markov’s inequality, we obtain the bound

P(Ai) ≤ P {Φyi(B) < 2ε} = P
{

(Φyi(B))−q > (2ε)−q
}

≤ ((1 + C)ε)qE[(Φyi(B))−q] ≤ (2qMq)ε
q.
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Another application of Markov’s inequality gives us that

P(Bi) ≤ P
{
‖B‖2

p >
1

ε

}
= P

{
‖B‖2q

p >
1

εq

}
≤ εqE[‖B‖2q

p ],

which is finite as a consequence of Fernique’s Theorem.

We note that each inequality is independent of i, and so, for suitable con-

stant Kq, we obtain the bound

P
{(

min
y∈Sk−1

Φy(B)

)
< ε

}
≤ N(ε)((1 + C)qMq + E[‖B‖2q

p ])εq

≤ Kqε
q−2k.

As such a bound holds for all q ≥ 1, we may conclude that

P
{(

min
y∈Sk−1

Φy(B)

)
< ε

}
= O(ε∞−),

as desired.



Appendix A

r-Variation of the Covariance

Function

Fix 0 < H < 1/2 and T > 0. We will, as usual, denote by R : [0, T ]2 −→ R
the covariance function for fractional Brownian motion with Hurst parameter H

on [0, T ]; that is,

E[BH
s B

H
t ] = R(s, t) :=

1

2

[
s2H + t2H − |t− s|2H

]
.

We may associate a finitely addivite signed measure µR on the algebra gen-

erated by rectangles of the form

{(a, b]× (c, d] ⊂ (0, T ]2} with R in the following way:

µR((a, b]× (c, d]) = R(b, d)−R(a, d)−R(b, c) +R(a, c)

=
1

2

(
|d− a|2H + |c− b|2H − |d− b|2H − |c− a|2H

)
.

It is easy to check the covariance of the process increments BH
b −BH

a and BH
d −BH

c

is given by the µR-measure of the rectangle (a, b]× (c, d], or

E[(BH
d −BH

c )(BH
b −BH

a )] = µR((a, b]× (c, d]).

So, by Lemma 2.1.2, one has that µR ((a, b]× (c, d]) < 0 for all 0 ≤ a < b < c <

d ≤ T . Throughout the sequel, we record the following lemma, which we will use

repeatedly with the coefficient α = 2H.
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Lemma A.0.6. Given some 0 < α < 1, one has that for all x, y ≥ 0,

(x+ y)α − xα ≤ yα;

x
1
α + y

1
α ≤ (x+ y)

1
α .

Proof. These inequalities are a result of the subadditivity of x 7→ xα and the

superadditivity of x 7→ x
1
α ; in the first case, one has that

1

2
(x+ y)α <

1

2α
(x+ y)α =

(
x+ y

2

)α
≤ 1

2
xα +

1

2
yα.

The argument for the second inequality is similar.

Lemma A.0.7. Let µR be the measure defined above. Then for any intervals

(a, b], (c, d] ⊂ [0, T ], one has the bound

|µR((a, b]× (c, d])| ≤ (b− a)2H ∧ (d− c)2H .

Proof. We will need to consider three possible cases:

(1) One interval is nested within the other,

(2) the intervals partially overlap, or

(3) the intervals are disjoint.

Case 1. a ≤ c < d ≤ b.

In this scenario, the claimed upper bound is clearly (d− c)2H . Using this, we have

that

|µR((a, b]× (c, d])| = 1

2

∣∣(d− a)2H + (b− c)2H − (b− d)2H − (c− a)2H
∣∣

≤ 1

2

(
(d− a)2H − (c− a)2H

)
+

1

2

(
(b− c)2H − (b− d)2H

)
≤ (d− c)2H .

Case 2. a < c ≤ b < d.
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In this case, we know that

|µR((a, b]× (c, d])| = 1

2

∣∣(d− a)2H + (b− c)2H − (d− b)2H − (c− a)2H
∣∣

≤ 1

2

(
(d− a)2H − (d− b)2H

)
+

1

2

∣∣(b− c)2H − (c− a)2H
∣∣

≤ 1

2
(b− a)2H +

1

2

(
(b− c)2H ∨ (c− a)2H

)
≤ (b− a)2H .

In a similar manner,

|µR((a, b]× (c, d])| = 1

2

∣∣(d− a)2H + (b− c)2H − (d− b)2H − (c− a)2H
∣∣

≤ 1

2

(
(d− a)2H − (c− a)2H

)
+

1

2

∣∣(b− c)2H − (d− b)2H
∣∣

≤ 1

2
(d− c)2H +

1

2

(
(b− c)2H ∨ (d− b)2H

)
≤ (d− c)2H .

Case 3. a < b ≤ c < d.

Here, we will use the concavity inequality twice to generate the desired

bound. Firstly, we calculate that

|µR((a, b]× (c, d])| = 1

2

∣∣(d− a)2H + (c− b)2H − (d− b)2H − (c− a)2H
∣∣

≤ 1

2

(
(d− a)2H − (c− a)2H

)
+

1

2

(
(d− b)2H − (c− b)2H

)
≤ (d− c)2H .

In much the same manner, we find that

|µR((a, b]× (c, d])| = 1

2

∣∣(d− a)2H + (c− b)2H − (d− b)2H − (c− a)2H
∣∣

≤ 1

2

(
(d− a)2H − (d− b)2H

)
+

1

2

(
(c− a)2H − (c− b)2H

)
≤ (b− a)2H .
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Proposition A.0.8. Let r := 1
2H

> 1. Then the function R has finite two-

dimensional r-variation over [0, T ]2; more specifically,

‖R‖(2D)
r ≤ (5T )2H .

Proof. Let

Π := {s0 := 0 < s1 < . . . < sM := T},

Ψ := {t0 := 0 < t1 < . . . < tN := T}

be two partitions of [0, T ]. Fix a j ∈ {1, . . . , T}. We will let A be the unique

integer such that sA−1 ≤ tj−1 < sA, and L ≥ A will denote the unique integer for

which sL−1 < tj ≤ sL.
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s = t

sA sL
tj−1

tj

Figure A.1: An example partition in s for a fixed strip tj−1 < t ≤ tj.

As usual, we define

∆ijR := µR ((si−1, si]× (tj−1, tj]) .

Then

M∑
i=1

|∆ijR|r ≤
A−1∑
i=1

|∆ijR|r + |∆AjR|r (A.0.1)

+
L−1∑
i=A+1

|∆ijR|r + |∆LjR|r +
M∑

i=L+1

|∆ijR|r .

It follows from Lemma A.0.7 that

|∆AjR|r ≤ (tj − tj−1), |∆LjR|r ≤ (tj − tj−1). (A.0.2)
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Lemma A.0.7 also implies that |∆ijR|r ≤ (si−si−1); hence, we may use telescoping

to bound the third term:

L−1∑
i=A+1

|∆ijR|r ≤
L−1∑
i=A+1

(si − si−1) = (sL−1 − sA) ≤ (tj − tj−1). (A.0.3)

Let us now focus on the first and last terms of Equation (A.0.1). Note that on

each of these sums, Lemma 2.1.2 implies that ∆ijR < 0. We may use this fact

along with Lemma A.0.7 to see that

A−1∑
i=1

|∆ijR|r +
M∑

i=L+1

|∆ijR|r

≤

(
A−1∑
i=1

|∆ijR|

)r

+

(
M∑

i=L+1

|∆ijR|

)r

=

∣∣∣∣∣
A−1∑
i=1

∆ijR

∣∣∣∣∣
r

+

∣∣∣∣∣
M∑

i=L+1

∆ijR

∣∣∣∣∣
r

= |µR ((0, sA−1]× (tj−1, tj])|r

+ |µR ((sL, T ]× (tj−1, tj])|r

≤ 2(tj − tj−1). (A.0.4)

Combining Equations (A.0.1)–(A.0.4) allows us to conclude that

M∑
i=1

|∆ijR|r ≤ 5(tj − tj−1).

Hence,
N∑
j=1

M∑
i=1

|∆ijR|r ≤
N∑
j=1

5(tj − tj−1) = 5T.

This completes the proof, since the two-dimensional r-variation of R is given as

‖R‖(2D)
r =

(
sup

Π,Ψ∈P[0,T ]

∑
Π

∑
Ψ

|∆ijR|r
) 1

r

≤ (5T )2H .
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Restriction of Gaussian Measures

At first blush, it may seem natural to have our process B have the classical

Wiener space W2 := C([0, T ],R2) as its sample space. However, doing so is not

ideal, since many of the operators we will be considering are only defined on smaller

spaces, such as the p-variation spaces.

We begin with a general result regarding σ-algebras.

Lemma B.0.9. Let X be any real separable Banach space and L be any Then ‖·‖X
is σ (L) – measurable if and only if BX = σ (L) .

Proof. It it easy to see that, in any case, σ(L) ⊂ BX . Also, since ‖·‖X is continuous

it is always Borel measurable; therefore, if BX = σ (L) then ‖·‖X is clearly σ (L) –

measurable.

Suppose that ‖·‖X is σ (L) – measurable; then for each x0 ∈ σ (L), ‖· − x0‖X
is also σ (L) – measurable, and x→ x−x0 is σ (L) /σ (L) – measurable. From this

observation, it follows that σ (L) contains all balls in X. Since X is separable, every

open subset of X may be written as a countable union of open balls. It follows,

then, that σ (L) contains all open subsets of X and therefore that BX ⊂ σ(L).

Theorem B.0.10. Suppose (X,B = BX , µ) is a Gaussian probability space, and

X̃ is a linear subspace of X. Also let ‖ · ‖X̃ is a norm on X̃ such that

1. The space (X̃, ‖ · ‖X̃) is a separable Banach space,

2. The embedding of X̃ into X is continuous,
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3. X̃ ∈ B and µ(X̃) = 1,

4. B̃ := BX̃ = {A ∩ X̃ : A ∈ B}.

Then µ̃ := µ|X̃ is a Gaussian measure and (X̃, B̃, µ̃) is a Gaussian probability

space. Furthermore, (X,µ) and (X̃, µ̃) share the same Cameron-Martin space H.

Proof. Let Rπ/4 : X ×X → X ×X is the rotation map defined by

Rπ/4(x, y) =

(√
2

2
(x− y),

√
2

2
(x+ y)

)
;

then by the rotational invariance of Gaussian measures (see, for example, Theorem

3.1.1 of [Bry95]), proving the statement that µ̃ is Gaussian is equivalent to proving

that ∫
X̃×X̃

f(x, y) dµ̃(x)dµ̃(y) =

∫
X̃×X̃

f ◦Rπ/4(x, y) dµ̃(x)dµ̃(y)

for any bounded B̃ × B̃-measurable function f . Let f be such a function; since

X̃ is of full µ measure, we may extend f to an B × B-measurable function (which

we shall also refer to as f) such that
∫
X̃×X̃ fdµdµ =

∫
X×X fdµdµ (this extension

may be done by setting a function equal to f on X̃ × X̃ and equal to zero on the

complement, for example). Then it follows that∫
X̃×X̃

f(x, y) dµ̃(x)dµ̃(y) =

∫
X̃×X̃

f(x, y) dµ(x)dµ(y)

=

∫
X×X

f(x, y) dµ(x)dµ(y)

=

∫
X×X

f ◦Rπ/4(x, y) dµ(x)dµ(y)

=

∫
X̃×X̃

f ◦Rπ/4(x, y) dµ(x)dµ(y)

=

∫
X̃×X̃

f ◦Rπ/4(x, y) dµ̃(x)dµ̃(y).

This proves the first assertion.

To see the equivalence of Cameron-Martin spaces, we recall that
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J : L2(X,µ)→ X, defined by

ηf :=

∫
X

xf(x) dµ(x),

maps onto H. Again, by virtue of µ being fully supported on X̃, we may extend

any element of L2(X̃, µ̃) to an element of L2(X,µ); thus it is easy to see that

η(L2(X̃, µ̃)) = η(L2(X,µ)) = H, as desired.

Remark B.0.11. An alternate proof of the equivalence of Cameron-Martin spaces

may be found in Proposition 2.8 of [DPZ92].

Let us now focus on restricting the law of fractional Brownian motion with

Hurst parameter 1/3 < H < 1/2 to a variational space. The standard Gaussian

space on which fBm is realized is (W ,B,P), where W = {ω ∈ C([0, T ],R) : ω(0) =

0} and P = Law(BH). Pick 0 < ε << 1 and fix p := 1/H + ε. Let φt, 0 ≤ t ≤ T

denote the evaluation map on W ; i.e., φt(x) = x(t) for any x ∈ W . Since

‖ · ‖W = sup
0≤t≤T

φt,

it follows that ‖ · ‖W is a σ({φt : 0 ≤ t ≤ T})-measurable function, and by

Lemma B.0.9, it then follows that σ({φt : 0 ≤ t ≤ T}) = BW . Recall that we have

defined the p-variation norm on W by

‖x‖p = sup
Π∈P[0,T ]

(#Π)∑
i=1

|∆ix|p
 1

p

.

Recall that we have defined the space

Wp = {x ∈ C∞([0, T ],R) : x(0) = 0}
‖·‖p

.

By Corollary 5.35 and Proposition 5.36 of [FV10], this space is a separable Banach

space under the p-variation norm and contains all q-variation paths starting at

zero for any 1 ≤ q < p. Note that for x ∈ Wp, Hölder’s inequality implies that for
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any t ∈ [0, T ],

|x(t)| = |x(t)− x(0)|

≤ |x(t)− x(0)|+ |x(T )− x(0)|

≤ 2
p−1
p (|x(t)− x(0)|p + |x(T )− x(0)|p)

1
p

≤ 2
p−1
p ‖x‖p,

from which it follows that ‖x‖W ≤ ‖x‖p, and so the embedding of Wp
0 into W is

continuous. Observe that we may rewrite the p-variation norm as

‖ · ‖p = sup
Π∈P[0,T ]

(#Π)∑
i=1

|φti − φti−1
|p
 1

p

.

Thus, ‖ · ‖p is σ({φt|Wp : 0 ≤ t ≤ T})-measurable, which implies that σ(L) = BWp .

Furthermore, by Theorem 5.31 of [FV10], we know that the spaceWp is equivalent

to x ∈ Cp : lim
δ→0

sup
Π∈P[0,T ]:|Π|<δ

#(Π)∑
i=1

|x(ti)− x(ti−1)|p = 0


If we now define

αp(x) := lim
n→∞

sup
Π∈P[0,T ]∩N:|Π|< 1

n

#(Π)∑
i=1

|x(ti)− x(ti−1)|p,

then it follows that αp is a σ({φt|Wp : 0 ≤ t ≤ T})-measurable function, and that

Wp =Wp ∩ {αp = 0} ∈ BW .

Additionally, we may now use Lemma B.0.9 to conclude that

BWp = σ({φt|Wp : 0 ≤ t ≤ T})

= {A ∩Wp : A ∈ σ({φt|W : 0 ≤ t ≤ T})}

= {A ∩Wp : A ∈ BW}.
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Finally, we note that since the paths t 7→ BH
t are a.s. Hölder continuous of order

β := H
(
1 + εH

2

)−1
< H, each such path has finite q-variation for q = 1

β
= 1

H
+ ε

2
.

So by Corollary 5.35 of [FV06], P(Wp) ≥ P(Wq) = 1. Thus, we may appeal to

Theorem B.0.10 to conclude that (Wp,BWp ,P|Wp) is also a Gaussian probability

space, and that the associated Cameron-Martin space H coincides with the usual

Cameron-Martin space corresponding to P on W .



Appendix C

Trace of Φ̂

This section will be devoted to finding a quantitative bound for the trace

of the operator

Φ̂ : H2 → H2

given by the formula
〈

Φ̂h, k
〉
H2

= Φ(h, k), where Φ is the Malliavin covariant

determinant as presented in Proposition 3.4.4.

Lemma C.0.12. Suppose {kn} is an orthonormal set of basis vectors for the

Cameron-Martin space H associated to fractional Brownian motion with Hurst

parameter 1
3
< H < 1

2
. Then one has the following identities:

∞∑
n=1

∫ T

0

kn(s)kn(t)R(dt, u) =

∫ T

0

R(s, t) R(dt, u);

∞∑
n=1

∫
[0,T ]2

kn(s)kn(t) dR(s, t) =

∫
[0,T ]2

R(s, t) dR(s, t);

the expressions on each side are intepreted as one- and two-dimensional Young’s

integrals, respectively.

Proof. We start by defining QN as the projection off of the first N basis vectors

of H; i.e.,

QNh :=
∞∑

n=N+1

〈kn, h〉 kn.

The first identity is relatively straightforward to prove. Standard one-

dimensional Young’s integral bounds along with the embedding of H into Cr for
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r := 1
2H

gives us the following estimate (where the value of the constant C may

change from line to line as necessary):∣∣∣∣∣
∫ T

0

(
R(s, t)−

N∑
n=1

kn(s)kn(t)

)
R(dt, u)

∣∣∣∣∣ ≤ C‖R(u, ·)‖r

× ‖(R(s, ·)−
N∑
n=1

kn(s)kn(·)‖r

≤ C‖R(u, ·)‖r‖QNR(s, ·)‖H,

with the inequality resulting from Proposition 2.4.7. Since ‖QNR(s, ·)‖H tends to

zero as N →∞, we have obtained the desired result.

As for the second identity, we begin by noting that the mapping from [0, T ]

s 7→ R(s, ·) ∈ H is continuous; thus the set {R(s, ·) : 0 ≤ s ≤ T} is compact in

H. For each s, QNR(s, ·) converges to zero as N tends to infinity. Fix δ > 0,

and pick {si}Mi=1 such that the the set of open balls in H of radius δ
2

is an open

covering for {R(s, ·) : 0 ≤ s ≤ T}. Let N be the first natural number for which

max
i=1,...,M

‖QNR(si, ·)‖ < δ
2

and for a given s ∈ [0, T ], denote by I ∈ {1, . . . ,M} the

number for which R(s, ·) ∈ B(R(sI , ·); δ2). Then one has that

‖QNR(s, ·)‖ ≤ ‖QNR(sI , ·)−QNR(s, ·)‖+ ‖QNR(sI , ·)‖ < δ;

and so QNR(s, ·) converges to zero uniformly in s.

Recall that the function R −
(
N−1∑
n=1

kn ⊗ kn
)

is contained in C(2D)
q for each

q ≤ r = 1
2H

; hence, setting q < r such that 1
q

+ 1
r
> 1, one has the Towghi bound∣∣∣∣∣

∫
[0,T ]2

R−

(
N−1∑
n=1

kn ⊗ kn

)
dR

∣∣∣∣∣ ≤ C‖R‖(2D)
r

∥∥∥∥∥R−
(

N∑
i=1

kn ⊗ kn

)∥∥∥∥∥
(2D)

q

for suitable constant C. By Lemma 2.2.12; the right-hand expression is bounded
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above by a positive multiple of ‖R−
(

N∑
n=1

kn ⊗ kn
)
‖u. Now we note that

∥∥∥∥∥R−
(

N∑
n=1

kn ⊗ kn

)∥∥∥∥∥
u

= sup
(s,t)∈[0,T ]2

∣∣∣∣∣R(s, t)−

(
N∑
n=1

kn(s)kn(t)

)∣∣∣∣∣
= sup

(s,t)∈[0,T ]2
|〈R(s, ·), QNR(t, ·)〉|

≤ sup
(s,t)∈[0,T ]2

‖R(s, ·)‖H ‖QNR(t, ·)‖H

≤ TH sup
0≤t≤T

‖QNR(t, ·)‖H ,

which, as we observed, tends to zero as we let N →∞.

Proposition C.0.13. The operator Φ̂ described above is trace-class, and

tr(Φ̂) ≤ 2
[
T 4H‖R‖(2D)

r + T 2H‖R‖2
r

]
‖R‖(2D)

r .

Proof. Recall from the proof of Proposition 3.2.4 that for ω ∈ W2
p ,

‖Qω‖2
H2 =

2∑
i=1

1

4
T 2H |ω̃i(T )|2 +

∥∥∥∥∫ T

0

ω̃i(t) R(dt, ·)
∥∥∥∥2

H

− ω̃i(T )

∫ T

0

ω̃i(t) R(dt, T ).

Similarly, it holds that

|Qω(T )|2 =
2∑
i=1

∣∣∣∣12T 2H ω̃i(T )−
∫ T

0

ω̃i(t) R(dt, T )

∣∣∣∣2
=

2∑
i=1

1

4
T 4H |ω̃i(T )|2 +

∣∣∣∣∫ T

0

ω̃i(t) R(dt, T )

∣∣∣∣2
− T 2H ω̃i(T )

∫ T

0

ω̃i(T ) R(dt, T ).

Combining terms, we obtain the following expression for Φ:

Φ(ω) =
2∑
i=1

(
T 4H

∥∥∥∥∫ T

0

ω̃i(t) R(dt, ·)
∥∥∥∥2

H
− T 2H

∣∣∣∣∫ T

0

ω̃i(t) R(dt, T )

∣∣∣∣2
)
.
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Let {kn}∞n=1 be an orthonormal basis of H; then, as above, we have that

{kne1}
⋃
{kne2} is an orthonormal basis of H2, and it follows that

tr(Φ̂) =
∞∑
n=1

(Φ(kne1) + Φ(kne2))

= 2
∞∑
n=1

[
T 4H

∥∥∥∥∫ T

0

kn(t) R(dt, ·)
∥∥∥∥2

H
− T 2H

∣∣∣∣ ∫ T

0

kn(t) R(dt, T )

∣∣∣∣2].
To simplify the first term, one observes that for a family of partitions

{Πm} ⊂ P [0, T ] with lim
m→∞

|Πm| = 0,

∥∥∥∥∫ T

0

kn(t) R(dt, ·)
∥∥∥∥2

H
= lim

m→∞

∥∥∥∥#(Πm)∑
i=1

kn(ci)[R(·, ti)−R(·, ti−1)]

∥∥∥∥2

H

= lim
m→∞

#(Πm)∑
i,j=1

kn(ci)kn(cj) 〈R(·, ti)−R(·, ti−1), R(·, tj)−R(·, tj−1)〉H

= lim
m→∞

#(Πm)∑
i,j=1

kn(ci)kn(cj)
[
R(ti, tj)−R(ti, tj−1)

−R(ti−1, tj) +R(ti−1, tj−1)
]

=

∫
[0,T ]2

kn(s)kn(t)R(ds, dt)

Hence, it follows from Lemma C.0.12 that

∞∑
n=1

∥∥∥∥∫ T

0

kn(t) R(dt, ·)
∥∥∥∥2

H
=

∫
[0,T ]2

R(s, t) dR(s, t).

The simplification of the second term is slightly more involved. Note that integra-
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tion by parts implies∣∣∣∣∫ T

0

kn(t) R(dt, T )

∣∣∣∣2 =

∣∣∣∣T 2Hkn(T )−
∫ T

0

R(t, T ) dkn(t)

∣∣∣∣2
= T 4H |kn(T )|2 +

∣∣∣∣∫ T

0

R(t, T ) dkn(t)

∣∣∣∣2
− 2T 2Hkn(T )

∫ T

0

R(t, T ) dkn(t)

= T 4H |kn(T )|2 +

∣∣∣∣∫ T

0

R(t, T ) dkn(t)

∣∣∣∣2
− 2T 2Hkn(T )

(
T 2Hkn(T )−

∫ T

0

kn(t) R(dt, T )

)
= 2T 2H

∫ T

0

kn(T )kn(t) R(dt, T )− T 4H |kn(T )|2

+

∣∣∣∣∫ T

0

R(t, T ) dkn(tu)

∣∣∣∣2 .
The Fundamental Theorem of Calculus for Young’s integrals (Theorem 5.4.1 of

[LQ02]), along with Lemma C.0.12, implies that

∞∑
n=1

∫ T

0

kn(T )kn(t)R(dt, T ) =

∫ T

0

R(t, T )R(dt, T )

=
1

2
[(R(T, T ))2 − (R(T, 0))2] =

T 4H

2
.

Combining this with the fact that
∞∑
n=1

|kn(T )|2 = R(T, T ) = T 2H , we have that

∞∑
n=1

∣∣∣∣ ∫ T

0

kn(t) R(dt, T )

∣∣∣∣2 =
∞∑
n=1

∣∣∣∣ ∫ T

0

R(t, T ) dkn(t)

∣∣∣∣2
Let PN : H → H denote the projection map onto the first N terms of our or-

thonormal basis; that is, PNh :=
N∑
n=0

〈h, kn〉kn. Then for any h ∈ H, we may once
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again apply Proposition 3.2.2 to find that∥∥∥∥PN ∫ T

0

h(t) R(dt, ·)
∥∥∥∥2

H

=

〈
PN

∫ T

0

h(s) R(ds, ·), PN
∫ T

0

h(t) R(dt, ·)
〉
H

=
N∑

m,n=0

(∫ T

0

h(s)dkn(s)

)(∫ T

0

h(t)dkm(t)

)
〈kn, km〉H

=
N∑
n=0

(∫ T

0

h(t)dkn(t)

)2

.

Using this fact along with the continuity of the norm , we have

∞∑
n=1

∣∣∣∣ ∫ T

0

R(t, T ) dkn(t)

∣∣∣∣2 = lim
N→∞

N∑
n=1

∣∣∣∣ ∫ T

0

R(t, T ) dkn(t)

∣∣∣∣2
= lim

N→∞

∥∥∥∥PN ∫ T

0

R(t, T ) R(dt, T )

∥∥∥∥2

H

=

∥∥∥∥∫ T

0

R(t, T ) R(dt, T )

∥∥∥∥2

H

=

∫
[0,T ]2

R(s, T )R(t, T ) dR(s, t)

Therefore, we can rewrite the trace of our operator as

tr(Φ̂) = 2

∫
[0,T ]2

[
T 4HR(s, t)− T 2HR(s, T )R(t, T )

]
R(ds, dt)

≤ 2
[
T 4H‖R‖(2D)

r + T 2H‖R‖2
r

]
‖R‖(2D)

r

Where the inequality results from the standard bounds on two-dimensional Young’s

integrals as given in Theorem 2.2.13.

Portions of the Appendix are adapted from material submitted for publica-

tion as Driscoll, Patrick, “Smoothness of Density for the Area Process of Fractional

Brownian Motion.” The dissertation author was the sole author of this paper.
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