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Abstract of the Dissertation 

 
Quantifying the relative importance of multiple indices when 

predicting fire severity in the Western US. 
 

by 
 

Alisa Renae Keyser 
 

Doctor of Philosophy, Environmental Systems 
University of California Merced, 2016 
Dr. Anthony LeRoy Westerling, Chair 

 
 
A long history of fire suppression by federal land management agencies has interrupted 
fire regimes in much of the western United States. Many forest types that historically 
burned frequently have undergone significant changes in species composition and have 
heavy accumulations of surface and canopy fuels. Fuel quantity and flammability are 
important local predictors of fire severity. The climate system operates at both broad and 
fine spatial and temporal scales to favor conditions that increase fuel loading through 
biomass accumulation and accelerate drying of fuels; and maintain active fires under 
favorable concurrent atmospheric conditions. Observed increases in large fire 
occurrence and area burned in recent decades are explained by warmer, drier, and 
longer growing season conditions in the West. There has not yet been a large-scale 
study that examines patterns and controls of high severity fire in the western US. We 
use a 30 year record of fire severity to identify the controls of high severity fire across the 
western US, develop statistical probability models for high severity fire occurrence and 
area burned, and examine the impacts of climate change on high severity fire risk. In 
examining topography, vegetation and fire-year climate as predictors we found that 
inclusion of both vegetation and fire-year climate predictors was critical for identifying 
fires with high fractional fire severity and capturing inter-annual variation in high severity 
fire occurrence. While a single, west-wide model was able to predict high severity fire 
occurrence with some accuracy, it was necessary to develop regional models to 
accurately predict high severity area burned for forests in extreme fire years. A simple 
generalized Pareto distribution model with maximum temperature the month of fire, 
annual normalized moisture deficit and location explains forest high  severity area 
burned in a west-wide model, with the exception of years with especially large areas 
burned with high severity fire: 1988, 2002. With respect to mitigation or management of 
high severity fire, understanding what drives extreme fire years is critical. For the 
Northern Rocky Mountains, Sierra Nevada Mountains, and Southwest forests, 
topography, spring temperature and snowpack condition, and vegetation condition class 
variables improved our prediction of high severity burned area in extreme fire years. We 
used the models developed for the Northern Rocky Mountains to examine how fractional 
area of high severity fire will change with climate. Application of output from global 
circulation models to large fire occurrence and size models in the Greater Yellowstone 
Ecosystem indicates that climate conditions by mid-century will result in an increase in 
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the frequency of large fire events and area burned. We applied GCM output to a set of 
probabilistic models for high severity fire occurrence and burned area for the Greater 
Yellowstone Ecosystem. We found that fraction of high severity burned area increases to 
levels by mid-century that are three times greater than a 1961-1990 reference period. 
These potential changes in high severity area burned and frequency of occurrence may 
result in changes to species composition in these high elevation forests. If a goal of 
management is to mitigate extreme fire events in terms of fire severity, we would 
conclude that knowledge of fire year climate is essential. All of the models we developed 
predict high severity fire occurrence and area burned with reasonable accuracy in all 
years when fire year climate and vegetation predictors are included. The inclusion of fire-
year climate variables allows these models to forecast inter-annual variability in areas at 
future risk of high severity fire, beyond what slower-changing fuel conditions alone can 
accomplish. This allows for more targeted land management, including resource 
allocation for fuels reduction treatments to decrease the risk of high severity fire. Models 
like this will be important tools for assessing interactions between changing climate and 
fuel profiles under a diverse menu of future climate and management scenarios. 
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1 Introduction 
 
Fire Severity: Degree to which a site has been altered or disrupted by fire; loosely, a product of 
fire intensity and residence time (http://www.nwcg.gov glossary of fire terms) 

 
Uncharacteristic Fire: ‘fire processes occurring outside their biophysical baseline conditions’ 
(Hardy 2005). 
 
A long history of fire suppression by federal land management agencies has interrupted 
fire regimes in much of the western United States (US). Many forest types that 
historically burned frequently have undergone significant changes in species 
composition and have heavy accumulations of surface and canopy fuels, putting them at 
risk for severe fires (Agee et al. 1977, Agee and Skinner 2005, McKelvey et al. 1996, 
Keane et al. 2002). In testimony to the Natural Disasters Roundtable, Cleaves (2001) 
testified that of ~415 million acres of fire adapted ecosystems in the coterminous US, 
more than 71 million are considered to be a high risk to human and ecosystem values 
due to an accumulation of fuels and risk of high severity fire, and more than 141 million 
are considered a moderate risk.  
 
The year 2000 was a landmark fire year in terms of number, size, and cost of wildfires; 
since 2000, most years have seen wildfires of increasing size and severity in the western 
US, many termed ‘catastrophic’ for their costs to ecosystems and economies. As one 
example, suppression costs for the Hayman fire in Colorado (2002) were $38 million; 
real property losses were $24 million; projected rehabilitation costs are greater than $74 
million (Graham, 2003). These are just some of the total economic costs. In August 
2000, the National Fire Plan was implemented as a response to the 2000 fire season to 
respond to the increasing threat of severe wildfires with one of five key goals being 
hazardous fuels reduction; the Healthy Forests Initiative was enacted in 2002 to reduce 
the risk of severe wildfire (http://www.forestsandrangelands.gov/). Most land 
management agencies now manage wildlands with the specific goal of reducing the risk 
of severe fires through fuel reduction treatments (Agee and Skinner 2005, Stephens and 
Ruth 2005, Reinhardt et al. 2008). However, it is unknown whether fuel reduction 
treatments alone can mitigate the risk of severe fires.  
 
In order to determine whether fire effects are uncharacteristic requires knowledge of the 
ecosystem in question, its natural fire regime, and the fuel character and condition. 
Ecosystem fire regimes are defined by fire frequency and fire severity, with five classes 
defined for the United States, Table 1.3.1. A low severity fire can have small patches of 
mixed or high severity fire effects, but the majority of the fire area will exhibit low 
severity. This type of fire regime is best exemplified by understory or ground fires that 
predominately reduce surface fuels. A high severity fire is exemplified by a stand 
replacing fire where most surface and crown fuels are burned and most over-story 
vegetation is killed. Between these two extremes is a mixed severity fire that results in a 
heterogeneous landscape mosaic of fire effects (Figure 1.4.1, Agee 1998). Fire regimes 
also have a time component. Most stand replacing fires occur at longer time intervals; 
most low or mixed severity fire regimes are characterized by shorter fire return intervals 
(Table 1.3.1). The ecosystem type plays an important role in determining the fire regime. 
Generally, higher elevation sites in the WUS support cool moist forests with dense 
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vegetation and fuels (exemplified by fire regime groups IV or V), whereas lower elevation 
sites support relatively less productive dry forests (exemplified by fire regime group I) 
(Table 1.3.1; Agee 1993, Stephenson 1998, Steel et al. 2015, Schoennagel et al. 2005).  
 
Fire and ecosystems are subject to both top-down (climate) and bottom-up controls.  
Climate primarily exerts control over fire occurrence and behavior through top-down 
mechanisms. The climate system operates at both broad and fine spatial and temporal 
scales to favor conditions that increase fuel loading through biomass accumulation and 
accelerate drying of fuels (broad-scale phenomena); and maintain active fires under 
favorable concurrent atmospheric conditions, i.e. hot dry weather (fine-scale). Broad-
scale drought conditions have been linked to large fires occurring synchronously at 
regional scales. Recent decades have seen warmer, drier, and longer growing season 
conditions that explain much of the observed increase in large fire occurrence and area 
burned in the West (Gedalof et al. 2005, Heyerdahl et al. 2008, Morgan et al. 2008, 
Swetnam and Anderson 2008, Westerling et al. 2006); these increases are predicted to 
continue with climate change in the western US (Westerling et al. 2011, Westerling 
2016). Total area burned has been correlated to area burned in high severity fire in 
some regions, with high severity area burned increasing concomitantly with fire size 
(Cansler and Mckenzie 2014, Dillon et al. 2011, Miller et al 2009, Miller and Safford 
2012).  
 
Bottom-up controls of fire occurrence and severity include topography and 
vegetation/fuels. Together with climate, soils and topography interact to create 
biophysical settings that determine vegetation composition and productivity. Topographic 
variables such as slope, aspect, and elevation affect the energy and water available for 
biomass production and decomposition, and in turn fuel accumulation. Higher elevation 
sites in the western US support productive, cool moist forests with dense vegetation and 
fuels; lower elevation sites support relatively less productive dry forests (Agee 1998, 
Stephenson 1998, Schoennagel et al. 2005). The microclimate created by topography 
also controls the drying of fuels available to burn. The importance of both bottom-up and 
top-down controls on fire severity has been quantified at many scales—individual fires, 
landscapes, and small regions. 
 
In the Sierra Nevada, CA/NV, Miller et al. (2009) found that fire size (mean and 
maximum) and total area burned increased in the period 1984-2006, and are now above 
pre-suppression era levels. They also found that the proportion of high severity, stand-
replacing fires increased (Miller et. al 2009). The proportional increase in high severity 
fires was not uniform, but was concentrated in low to mid-elevation forest types where 
25-40% of total burned area was classed as high severity. High severity fires are not 
characteristic of these forest types, indicating that the current fire regime in these 
ecosystems is outside of historical natural conditions (Agee et. al 1977, Agee 1998, 
Collins et. al 2009, Moody et al. 2006, Parsons and DeBenedetti 1979).  
 
Whether a fire is uncharacteristic in its effects is dependent on an ecosystem’s historic 
fire regime and the quantity and condition of fuels present on the ground. Large stand 
replacing fires are characteristic of many forest types in the West, but when fire size and 
severity are outside the natural range of variability of an ecosystem’s fire regime, 
ecosystem function is put at risk and a fire is considered uncharacteristic. The ability to 
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predict potential fire severity would allow identification of landscapes where severe fires 
are probable, and thus provide insight and guidance for mitigation and management.  
 
Prior analyses of fire severity in California forests showed that time since last fire and fire 
weather conditions predicted fire severity very well, while a larger regional analysis 
showed that topography and climate were important predictors of high severity fire 
(Collins et al. 2009, Dillon et al. 2011). There has not yet been a large-scale study that 
incorporates topography, vegetation and fire-year climate to determine regional scale 
patterns and controls of high severity fire. In this study, I use a 30 year record of fire 
severity from the Monitoring Trends in Burn Severity database (www.mtbs.gov) to 
identify the determinants of high severity fire across the western US, develop prediction 
models for high severity fire occurrence and area burned, and examine the impacts of 
climate change on high severity fire risk.  
 
1.1 Organization of the Dissertation 
 
The objectives of this dissertation are presented in three self-contained chapters (2-4) 
that are written in manuscript format. In Chapter 2, “Climate drives inter-annual variability 
in probability of high severity fire occurrence in the western United States,” my objective 
was to examine topography, vegetation, and climate in terms of their utility for predicting 
high severity fire occurrence across eleven western states and to determine how they 
act separately to influence fire severity and what is their relative importance as co-
determinants. Chapter 3, “Using extreme value theory to predict forest area burned in 
high severity for three regions of the western United States,” seeks to answer the 
question of what determines high severity area burned in forest fires in the western US 
and in three smaller regions: the Northern Rocky Mountains, the Sierra Nevada 
Mountains, and Southwest forests. In Chapter 4, “How will climate change impact high 
severity burned area in the Greater Yellowstone Ecosystem?”  I explore the impact of 
climate change on high severity fire risk for the Greater Yellowstone Ecosystem. All 
chapters were written using the pronoun ‘we’ to refer to myself and co-authors of each 
manuscript. 
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1.3 Tables 
 
Table 1.3.1. Standard fire regime groups for the western United States. 
(www.landfire.gov) 
 
Fire Regime Group I ≤ 35 Year Fire Return Interval, Low to 

Mixed Severity 
Fire Regime Group II ≤ 35 Year Fire Return Interval, 

Replacement Severity 
Fire Regime Group III 35-200 Year Fire Return Interval, Low to 

Mixed Severity 
Fire Regime Group IV 35-200 Year Fire Return Interval, 

Replacement Severity 
Fire Regime Group V > 200 Year Fire Return Interval, Any 

Severity 
 
 
 
 
1.4 Figures 

 
 

 
Figure	1.4.1	The	spatial	patterns	of	fire	effects	that	result	from	different	fire	

regimes.	Low	severity	fires	can	have	small	patches	of	mixed	or	high	severity	fire.	
Moderate	(mixed)	severity	fires	exhibit	a	mosaic	of	low,	mixed	and	high	severity	fire	
patches.	High	severity	fires	are	dominated	by	high	severity	patches	reflecting	stand	

replacing	fire.	(Taken	from	Agee,	J.K.	1998)	
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2							Climate	drives	inter-annual	variability	in	probability	of	high	
severity	fire	occurrence	in	the	western	United	States	
  
2.1 Abstract  
 
A long history of fire suppression in the western United States has significantly changed 
forest structure and ecological function, leading to increasingly uncharacteristic fires in 
terms of size and severity. Fuel quantity and flammability are important local predictors 
of fire severity. Prior analyses of fire severity in California forests showed that time since 
last fire and fire weather conditions predicted fire severity very well, while a larger 
regional analysis showed that topography and climate were important predictors of high 
severity fire. There has not yet been a large-scale study that incorporates topography, 
vegetation and fire-year climate to determine regional scale occurrence of high severity 
fire. In this study, we create a model to predict the probability of occurrence of high 
severity fire for the western US. We find it is possible to predict high severity fire 
occurrence with some accuracy, and identify the relative importance of predictor classes 
in determining the probability of high severity fire.  The inclusion of both vegetation and 
fire-year climate predictors was critical for model skill in identifying fires with high 
fractional fire severity. The inclusion of fire-year climate variables allows this model to 
forecast interannual variability in areas at future risk of high severity fire, beyond what 
slower-changing fuel conditions alone can accomplish. This allows for more targeted 
land management, including resource allocation for fuels reduction treatments to 
decrease the risk of high severity fire. Models like this will be important tools for 
assessing interactions between changing climate and fuel profiles under a diverse menu 
of future climate and management scenarios. 
 
2.2 Introduction 
  
More than 70 years of fire suppression has significantly changed forest structure and 
ecological function in much of the western United States (WUS), leading to increasingly 
uncharacteristic fires in terms of size and severity. Many claim this partially due to the 
build up of fuels due to missed fire cycles in formerly open canopy forests with 
predominately surface fire regimes (Keane et al. 2002, Miller et al. 2009). The number 
and size of large wildfires have been steadily increasing in the Western US in recent 
decades, with a resulting increase in annual average area burned on public lands 
(Stephens 2005, Westerling et al. 2006, Dennison et al. 2014, Westerling 2016). These 
changes have resulted in a rapid increase in firefighting costs; for example, federal 
appropriations for fighting fires averaged $2.9 billion for the period 2001-2007, up from a 
period average of $1.2 billion for 1996-2000 (GAO-07-922T). Not yet fully quantified is 
the impact of this history on patterns of fire severity and high severity fire occurrence in 
the WUS.  
 

Recent research has shown that climate is a strong predictor of large fire occurrence 
(Preisler and Westerling 2007, Swetnam and Anderson 2008, Westerling et al. 2006, 
Westerling and Bryant 2008), and that future, warmer conditions may result in continued 
increases in total area burned (Westerling and Bryant 2008, Westerling et. al 2009, 
Westerling et al. 2011). Climate primarily exerts control over fire occurrence and severity 
through top-down mechanisms. The climate system operates at both broad and fine 
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spatial and temporal scales to favor conditions that increase fuel loading through 
biomass accumulation and accelerate drying of fuels (broad-scale phenomena) and to 
maintain active fires under favorable concurrent atmospheric conditions, i.e. hot dry 
weather (fine-scale). Broad-scale drought conditions have been linked to large fires 
occurring synchronously at regional scales and recent decades have seen warmer, drier, 
and longer growing season conditions that explain much of the large fire occurrence in 
the West (Gedalof et al. 2005, Westerling et al. 2006, Heyerdahl et al. 2008, Morgan et 
al. 2008, Swetnam and Anderson 2008, Westerling 2016).  
 
Bottom-up controls of fire occurrence and severity include topography and 
vegetation/fuels. Together with climate, soils and topography interact to create 
biophysical settings that determine vegetation composition and productivity. Topographic 
variables such as slope, aspect, and elevation affect the energy and water available for 
biomass production and decomposition, and in turn fuel accumulation. Generally, higher 
elevation sites in the WUS support cool moist forests with dense vegetation and fuels, 
whereas lower elevation sites support relatively less productive dry forests (Agee 1998, 
Stephenson 1998, Schoennagel et al. 2005, Steel et al. 2015). The microclimate created 
by topography also controls the drying of fuels available to burn. The importance of both 
bottom-up and top-down controls on fire severity has been quantified at many scales—
individual fires, landscapes, and small regions. 
 
Findings in the Colorado Front Range and forests in the Southwest indicate that high 
severity fire occurrence is a function of extreme weather conditions (top-down) rather 
than cover type or woody fuel quantity (Holden et al. 2007, Sheriff et al. 2014). Collins et 
al. (2007, 2009) found that fire severity occurrence was controlled by top down and 
bottom up predictors in the Sierra Nevada. Both climate at the time of fire and time since 
last fire were important for predicting patterns of fire severity. The time since last fire 
determines the amount of biomass and fuel buildup on a site. The importance of top-
down controls on high severity fire in these regions contrasts with findings in the 
Northwest. 
 
In the North Cascade Range, Washington, bottom-up controls appeared to mediate burn 
severity in areas with historical low to moderate severity fire regimes, and top-down 
controls were most evident in areas where they determine the historical fire regime—
high elevation, cool moist forests (Cansler and McKenzie 2014). In an examination of 42 
forest fires in central Idaho and western Montana, Birch et al. (2015) also found that 
bottom up controls, specifically topography and existing vegetation, best predicted daily 
burn severity values over daily weather and fuel moisture.   
 
There is no consistent picture that emerges of controls on fire severity occurrence 
among these small-scale studies (individual fires to small regions). Dillon et al. (2011) 
performed the broadest spatial analysis to date and modeled high severity fire 
occurrence for ecoregions in the northwestern and southwestern US. They found that 
both bottom-up and top-down controls were important for predicting high severity fire 
occurrence, but concluded that topographic controls were relatively more important than 
climate variables, with the relative importance of variable classes unique to each region 
(Dillon et al. 2011).     
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While existing studies have informed our understanding of high severity fire occurrence 
at small scales, there has not yet been a large-scale study that incorporates topography, 
vegetation, and fire year climate to determine regional scale occurrence of high severity 
fire. In this study we develop a model of high severity fire occurrence for the western US 
that can be applied to predict future risk of occurrence. Our objectives are to: 
 
1. examine topography, vegetation, and climate in terms of their utility for predicting 

the occurrence of high severity fire across the WUS. 
2. determine how these factors act separately to influence fire severity and their 

relative importance as co-determinants of fire severity.  
 
2.3 Methods 
 
2.3.1 Spatial and Temporal Domain of Analysis 
 
The spatial domain of our analysis is a 1/8th degree latitude / longitude grid (~12km 
resolution) west of –120.0625 longitude encompassing eleven western states: WA, OR, 
CA, ID, UT, NV, MT, WY, CO, NM, AZ. The spatial resolution of the data used in this 
study varies from 30m (e.g. observed high severity burned area, vegetation 
characteristics) to ~12km (e.g. climate, topography, simulated severity). To maintain the 
information in the finer scale data, we calculated the fractional area of each variable 
within each 1/8th degree modeling pixel for all data with higher resolution. 
 
The temporal domain of analysis was determined by the burn severity data, which is 
produced using Landsat images. Our burn severity database begins in 1984 and ends in 
2007; this was the most recent year of complete burn severity mapping for all eleven 
western states at the start of the project. Because our hydroclimate predictor variables 
and fire ignition (discovery) events were monthly, we modeled probability of occurrence 
of high severity fire over the Western US at a monthly time step. While individual fire 
records contain the date of discovery, which in many cases is proximate to the date of 
ignition, it may often be the case that the fires were ignited earlier and smoldered 
undetected for some time before being discovered. The month of discovery is useful 
because it is likely indicative of the onset of conditions conducive to rapid fire spread 
(Westerling et al. 2006). Likewise, many larger fires likely continue to burn in subsequent 
months, but the fire history data queried here do not describe fire progression. 
Consequently, our climate variables keyed to the month of discovery may miss important 
climatic variability driving fire severity to the extent that conditions observed during the 
month of discovery may not represent the conditions that actually pertain during the 
period of high severity burn.  
 
2.3.2 Burn Severity Data 
 
We acquired burn severity data from the Monitoring Trends in Burn Severity database 
(MTBS, http://www.mtbs.gov; accessed December 2008).  We downloaded data for all 
fires in the Western US for the period1984-2007, resulting in a dataset with a total of 
4493 fires. We chose the thematic burn severity images for this study so that our data 
would be comparable across space and time. We used ESRI Arc Macro Language 
(ESRI, 1999) to intersect the burn severity data with our 1/8th degree reference grid to 
assign each fire to the grid cell in which the majority of the fire area occurred. After 
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assigning each fire to a modeling grid cell, we calculated the fractional area of each 
severity class in each voxel (latitude, longitude, year, month) for analysis: unburned to 
low severity, low severity, moderate severity, high severity, increased greenness, 
unclassified (Eidenshink et al. 2007). In addition to severity, each MTBS fire record also 
contains the date of fire discovery (month, year). Many burn severity records also have 
information on the area burned in different vegetation types using the National Land 
Cover Database class levels one and two, i.e. herbaceous, shrubland, forest, wetlands, 
water, developed, barren, and cultivated (Homer et al. 2007).  
 
2.3.3. Landscape Data 
 
Our predictors included topographic and ecosystem data. Topographic data (minimum, 
mean, maximum and standard deviation of elevation; slope; aspect) are 1/8th degree 
products derived from the GTOPO30 global 30 Arc Second (1km) Elevation Data Set 
accessed online from the North American Land Data Assimilation System (LDAS) 
(http://ldas.gsfc.nasa.gov, Mitchell et al. 2004).  	
 
We aggregated ecosystem information relevant to fire severity developed by the Landfire 
project to the 1/8th degree grid used for this analysis: existing vegetation type and fire 
regime condition class (FRCC) (Keane et al. 2007, www.landfire.gov).  We used a 
reclassified version of LANDFIRE existing vegetation data from another study, 
specifically extracting the fractional area of forests with stand replacing fire regimes 
(Westerling et al. 2011).  	
	
Fire regime condition class (FRCC) is a metric widely used by land managers to 
prioritize fuel treatments and is a characterization of how much ecosystem condition has 
departed from the historical natural range of conditions (Hann 2004, Laverty and 
Williams 2000). Historical conditions are estimated with a landscape succession model 
(LANDSUM) that simulates succession under historic fire regimes (Keane et al. 2006, 
Pratt et al. 2006). A continuous departure value is calculated by subtracting the similarity 
of current vegetation condition from the simulated median reference condition (Holsinger 
et al. 2006). The Landfire departure metric refers only to vegetation composition and 
does not incorporate changes in fire regime. Departure is categorized into three 
classes—FRCC1 (departure <33%), FRCC2 (≥33% departure <66%), FRCC3 
(departure ≥67%) (Holsinger et al. 2006, Keane et al. 2007). We calculated the fractional 
area of fire regime condition classes 1, 2, and 3 in each modeling pixel and normalized 
the fractions with a log function.	
 
2.3.4 Climate and Hydrologic Data	
	
We obtained hydrologic variables produced from the Variable Infiltration Capacity (VIC) 
model and the gridded climate data used to force VIC (Liang et al. 1994). The VIC model 
calculates surface water and energy balance for large-scale applications. It is unique in 
that it incorporates sub-grid scale vegetation characteristics by calculating evaporation 
from the vegetation canopy, bare soil surface, and transpiration at a daily time step for 
each vegetation class in the modeling grid cell. We used the 1km University of Maryland 
vegetation map developed for the North American Land Data Assimilation System 
(LDAS) (http://ldas.gsfc.nasa.gov, Mitchell et al. 2004) and gridded daily climate data 
(Mauer et al. 2002) as inputs to parameterize VIC at 1/8th degree. 	
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Output from VIC includes temperature extrema and average (Tmax, Tmin, Tave), 
precipitation (PPT), moisture deficit (MD), antecedent moisture deficit derivatives (e.g. 6 
month prior moisture deficit), relative humidity (Rh), soil moisture, and snow water 
equivalent (SWQ) on a monthly time step from 1915-present (Westerling et al. 2009).  	
	
We calculated 30yr means and standard deviations for 1961-1990 Tave, PPT, 
cumulative moisture deficit (MD), and AET. We also created a thin plate spline of 1961-
1990 MD and AET. The spline creates a surface of the interaction between these two 
variables; this interaction is an indicator of biophysical site conditions for plant growth. 
Stephenson (1998) showed that MD and AET are biologically meaningful drivers of the 
spatial distribution of vegetation types over a broad range of spatial scales. We used 
these variables as a proxy for spatial variability in ecosystem and disturbance regime 
sensitivity to climate.	
	
The hydroclimatic datasets were initially developed for a project completed for the 
California Climate Change Center; a full description can also be found in Westerling et 
al. (2009). The dataset has been updated to the year 2015.	
 
2.3.5 Occurrence Modeling	
	
We employed a multi-step process in modeling the presence of high severity fire. 
Previous research using parts of this dataset and similar questions have used both 
logistic regression and classification and regression tree (CART) methods, individually 
and together (Collins et al. 2007, Collins et al. 2009, Dillon et al. 2011, Preisler and 
Westerling 2007, Westerling et al. 2008, Westerling et al. 2009). The total number of 
independent predictor variables available for this analysis was 85. In order to limit the 
number of variables that we would use in building a predictive model, we first used a 
CART (Random Forest package in R; Liaw and Wiener 2002) model to identify the most 
important variables in predicting fractional high severity. The 10-20 most important 
variables were selected from the Random Forest output as the initial predictor set for two 
conditional logistic regression models. 	
 
2.3.6 Logisitic Regression	
	
We developed two conditional logistic regression models to predict high severity fire 
occurrence. It is important to note that because the MTBS data contains only fires >=400 
ha, there exists an implicit condition to our models. Each model is first conditional on the 
occurrence of a 400 ha fire. Within this, we first need to determine the presence of high 
severity fire pixels; we set this condition equal to the median value of high severity 
fraction, 0.042. Then, given occurrence of high severity fire pixels, we set a threshold for 
high severity fire fraction equal to the upper quartile cutoff, 0.1732. We define any fire 
with high severity fraction above this upper threshold as a high severity fire. These 
definitions result in two binary dependent variables. 	
 
To model the probability of high severity fire presence, we use the logged odds, or logit: 	
	

Model Pa :  Logit ( P | f > 0.042 ) = ln(Ppai / (1-Ppai)) = ∑(b0 + bjXij)	
 



	

	 	

12	

Where Xj is the set of independent predictor variables best fit to the model, Ppai is the 
probability of high severity fire presence, defined as the fraction f of high severity fire 
greater than 0.042 for a given month and grid cell indexed by i.	
Similarly, the model for occurrence of high severity fraction greater than 0.1732 is:	

 
Model Hi : Logit ( P | f > 0.1732 | f > 0.042) = ln(Phii / (1-Phii)) = ∑(b0 + bjXik)	

 
Where Xk is the set of predictors best fit to Logit Hi.  The probability of high severity fire 
occurrence for any given month and location is then the product of these two model 
probabilities:  Ppai * Phii .	
 
We are interested in predicting the probability of high severity fire occurrence on the 
landscape. Even with the perception that fires are becoming more severe, these fires 
remain relatively rare. The determination of thresholds to declare presence of high 
severity fire is necessarily arbitrary. Our goal was to be as objective as possible, while 
defining thresholds that were meaningful. We examined the distribution of high severity 
fire area in our dataset and used that as our guide. Our models specifically address the 
question: 	

Given that a fire burns to at least a thousand acres, and given that high severity 
fire is present, what is the probability that this fire is a high severity fire (i.e. in the upper 
quartile of high severity burned area)?	
 
We use the Aikake Information Criterion (AIC) to evaluate model performance (Aikake, 
1974, 1981).	

	
AIC=	-2(ln(likelihood))	+	2N	

	
where likelihood is the probability of the data given a model and N is the number of 
parameters in the model (predictors and intercept). The best model is a model that 
balances model fit to the data with number of parameters. The AIC essentially penalizes 
models for excess predictive parameters. The AICs are evaluated as the difference 
between individual model AIC and the minimum AIC from all models. There is no test to 
compare AICs, but a general rule of thumb is that for a change in AIC < 2, the models 
are not significantly different in their skill; delta AIC > 10 is a significant difference in 
model skill (Burnham and Anderson 2004, Hare and McGarigal 2010). Once we chose 
the model with the lowest AIC vs. number of parameters, we performed a leave one out 
cross-validation assess predictive skill and the stability of model parameter estimates.	
	
2.3.7 Mapping probability of high severity fire occurrence	
 
For each month and year in the dataset, we applied the two conditional logistic 
regression models to all pixels in the western US. We then calculated an annual 
probability of high severity fire occurrence for each pixel by taking the average of the 
twelve monthly values.  We also calculated the coefficient of variation (CoV) in the 
probability values for each pixel for the period 1984-2007. To calculate the CoV, we first 
summed the twelve monthly probability values for each year for each pixel. The equation 
for calculating CoV of these annual sums is: 	
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€ 

CoV = var( Pr∑ ) /mean( Pr∑ ) 	
 
where ΣPr is the annual sum of monthly probabilities and var is the variance. The 
coefficient of variation provides a measure of how sensitive the model probabilities are to 
interannual variation; for our models, this will quantify the sensitivity to the fire-year 
climate variables. 	
 
2.4 Results	
	
2.4.1 Trends in high severity fire occurrence	
	
We did not find a significant trend in high severity fire occurrence in the period 1984-
2007. We evaluated potential trend for the entire region, for each state, and for each 
month. While the some studies have shown an increase in fire season length, we saw no 
increase in high severity fire occurrence in the months May through October (Figure 
2.9.2). We found no correlation between the fraction of high severity fire and total fire 
size, meaning that an increase in fire size or occurrence does not necessarily result in 
an increase in the fractional area of high severity fire. 	
	
As we would expect, high severity fire occurrence peaks at the peak of the fire season in 
the Western US (Figure 2.9.2). The distribution of high severity fires is quite variable. 
California and Idaho consistently experience the largest number of large fires and high 
severity fire occurrence, but many fires have no presence of high severity fire as we 
have defined it. Both Montana and Wyoming experience fewer large fires with no high 
severity fire present than the other western states (Figure 2.9.3).	
	
2.4.2 Occurrence Modelling	
 	
The suite of predictor variables that produced the best predictive models for presence of 
high severity fire is dominated by biophysical factors that include topography, climate 
normals and vegetation variables (Table 2.8.1).  The mean and maximum elevations 
within the modeling pixel are the only topographic variables in the final model. Climate 
normals include the standard deviation of 1961-1990 cumulative annual water year 
precipitation and moisture deficits and a thin plate spline of moisture deficit and 
evapotranspiration. The standard deviation predictors indicate the degree of variability in 
annual precipitation and moisture deficits in each pixel; for instance, a higher standard 
deviation indicates a location with a highly dynamic precipitation regime. The thin plate 
spline creates a surface of the interaction between two variables. In this instance we are 
using the 30 yr average moisture deficit and 30 yr average actual evapotranspiration; 
this interaction is an indicator of biophysical site conditions for plant growth. Different 
forest types fall along the gradient of moisture deficit and evapotranspiration 
(Stephenson et al. 1998). 	
 	
While the spline indicates relative site conditions for plant growth, we have two direct 
vegetation variables that are included in our final model. The fractional area of forest 
types with a stand replacing fire regime was important for both conditional models. 
Additionally, the fractional area of FRCC class 3 (current vegetation highly departed from 
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what we would expect with historical fire regime, hereafter FRCC3) was important only in 
the presence/absence model (Model Pa). 	

 
Four variables specific to the year that the fire occurred were important: average Spring 
temperature, average temperature for month of fire, normalized moisture deficit for 
month of fire, and moisture deficit for the previous November. 	
 
When we remove within-year climate variables, our model under-predicts the number of 
high severity fire occurrences for most years with a larger number of high severity fire 
events (>60) (Figure 2.9.4). For years with fewer high severity fire events (<60) our 
model tends to over-predict when we remove within year climate (Figure 2.9.4). 
Removing vegetation variables does not significantly alter the predicted vs. observed 
number of high severity fire occurrences. In other words, without fire-year climate, our 
models cannot predict interannual variability in the presence of high severity fire. Site-
specific variables that do not vary with time merely allow us to estimate a constant 
spatial distribution in the probability of high severity fire presence, which is essentially 
equivalent to identifying the location and average recurrence rates for fire regimes where 
high severity fire can occur. While all model iterations perform well with regard to 
prediction vs. observation for locations with fires, the R2 of regressing predicted vs. 
observed number of high severity fire occurrences is higher for the full model (Table 
2.8.2). The difference in model skill becomes evident when we apply the model to all 
pixels in the western US. 	
 
2.4.3 Mapping probability of high severity fire occurrence	
 
To illustrate the effect of removing variable classes, we chose two years with few (1991 
[N = 16] and 2007 [N = 10]) and many (1996 [N = 75] and 2000 [N = 88]) high severity 
fire occurrences.  For both pairs of years, removing within year climate variables 
produces a probability map with a shift to greater probability values (and a decrease in 
spread) for high severity fire occurrence, with distinct regional differences (Figure 2.9.5). 
The probability of occurrence decreases over California when we remove within year 
climate, which is likely where the under-prediction we see in Figure 2.9.4 is occurring. 
This California pattern is opposite of the Northern Rocky Mountain and North Cascade 
regions where probabilities increase when we remove within year climate. Note again 
that our model predictions are conditional on the presence of a large fire occurring. We 
are predicting the presence of high severity fire greater than a specific threshold given 
that a large fire is already occurring. 	
	
In California, much of the Sierra Nevada is classified as a mixed severity fire regime, and 
we interpret our model results to imply that the presence of substantial fractions of high 
severity fire in large Sierra Nevada fires requires more extreme climatic conditions. In 
mixed severity fire regimes, fire-year climate can increase or decrease the fractional 
area expected to experience high severity fire. Conversely, in regions that are dominated 
by forests characterized by high severity fire regimes (such as the North Cascades and 
Northern Rocky mountains), fire-year climate acts more as a control on the occurrence 
of fire through fuel flammability (of any severity). Others found that fire year climate was 
less important than topography and vegetation as a predictor of high severity fire 
occurrence in the North Cascades and Northern Rocky Mountain regions (Cansler and 
McKenzie 2014, Birch et al. 2015, Dillon et al 2011).  Our model results seem to indicate 
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that in these systems with a propensity for high severity fire, fire-year climate still 
modulates high severity fire occurrence.  	
 
Removing the two vegetation variables does not have as strong an effect on predictive 
accuracy. As would be expected, the effect is dependent on year. The changes are most 
pronounced in mountainous areas, as one of the variables is cover of forests with high 
severity fire regimes. We see a general decrease in probability in the Sierra Nevada, 
western Nevada, and the Northern Rocky Mountains. Both the Colorado Rocky 
Mountains and the Northern Cascades in Washington generally show a higher 
probability of high severity fire occurrence when we remove the vegetation. Recall, 
however, that without within-year climate variables, this model produces constant 
predictions of high severity fire presence conditional on the occurrence of a large fire, i.e. 
probabilities vary only in space, not time. Since the number of observed large fires varies 
from year to year, the predictions of high severity presence still vary inter-annually, even 
with the climate variables removed. Essentially, the observed fires are re-sampling fixed 
probabilities of high severity fire presence each year. 	
 
While the spatial probability maps generally predict greater probabilities of high severity 
fire occurrence in the locations that we would expect—in the mountainous regions of the 
western US—the interannual variability is quite pronounced. The inclusion of predictors 
that vary interannually is critical for capturing high probability episodes in areas where 
fire severity is highly variable, especially in California (CoV = 0.224) and the Southwest, 
where the coefficient of variation is high. (Figure 2.9.6) Conversely, in regions that are 
dominated by cool moist forests with high severity fire regimes, the coefficient of 
variation is low—Northern Rocky Mountains (CoV = 0.133) and Pacific Northwest 
forests. 	
 
2.5 Discussion	
	
2.5.1 Trends in high severity fire occurrence 	
 
The lack of trend in our fire severity data is likely due to the short length of the record. 
The data record for fire severity begins more than seventy years after the start of fire 
suppression. Without a record of fire severity that includes fires before and after the 
initiation of the policy of fire suppression, we can’t directly quantify a change in fire 
severity due to suppression. Ecosystems with a short fire return interval (7-10yrs) may 
have missed up to 10 fire cycles by the time our fire severity record begins, while those 
with longer fire return intervals my have missed few or none. This means that even with 
a long record of fire severity data to study, we would still only expect to see changes in 
severity due to fire suppression and fuel buildup on some of the landscape. We hoped 
that the use of FRCC could be a proxy for changes in fire severity due to suppression. If 
it was an important predictor in high severity fire occurrence, it could point us to areas 
that are burning severely that might not under a historical fire regime.  
 
The other factor that can modify fire severity is climate change. Others have shown an 
increase in the length of the fire season and an increase in large fire occurrence due to 
climate change (Dennison et al. 2014, Jolly et al. 2015, Westerling et al. 2006, 
Westerling 2016,). Again, the short length of our record precludes us from quantifying a 
trend in fire severity due to climate change. Our results highlight the importance of 
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interannually varying climate on high severity fire occurrence. For each fire, we 
calculated the anomaly of the within year climate variables from 1961-1990. For the two 
month of fire predictors (average temperature and moisture deficit), most anomalies are 
positive, and the mean anomalies are quite high (Figure 2.9.8). The other with year 
climate variables also had positive anomalies for most years. Conditions under which the 
fires in our record burned were warmer and drier than the 1961-1990 reference period. It 
is possible that the patterns of high severity fire in our record are a result of a changing 
climate and management activities, but without earlier data, we can’t quantify a trend per 
se.   
 
2.5.2 Modeling and mapping high severity fire occurrence. 
	
Our best model included predictors with both bottom-up and top-down influence on fire 
severity. When we examine performance of the model on removal of vegetation and 
within year climate predictors, the impact is subtle. Considering first the removal of 
temporally fixed predictors such as fractional area in FRCC condition class 3 and forest 
types with high severity fire regimes, model performance (in terms of interannual 
variability) is not significantly affected (Figure 2.9.4). When we remove within year 
climate variables, our AIC score goes up significantly (higher AIC values indicate lower 
skill), and we can see that our model generally under-predicts the number of high 
severity occurrences at values over 60 (recall that the model predictions still vary 
interannually because the number of large fires varies according to the observed 
record). However, the overall model fit for these two models could still be considered 
robust (Table 2.8.2). 	
 	
The impact of removing these variables is more evident when we apply the model to the 
entire western US.  We chose two years with few high severity fire occurrences (low 
years) and two with many occurrences (high years) to evaluate the impact of removing 
variable classes. When we remove within year climate variables, the probability of high 
severity fire decreases in California and Nevada, but increases in the Pacific Northwest 
and Northern Rocky Mountain regions. Many of the ecosystems in the Pacific Northwest 
and Northern Rocky Mountains are dominated by cool moist forests with historically 
infrequent stand replacing fire regimes (Agee et al. 1977, Agee 1998, Cansler and 
McKenzie 2014, Schoennagel et al. 2005). These forests have abundant fuels, but are 
rarely hot and dry enough to burn. The increase in probabilities in these regions when 
we remove within year climate reflects the importance of climate in determining whether 
these forests will burn and supports findings that current year climate controls severity 
occurrence in this forest type (Cansler and Mckenzie 2014, Schoennagel et al. 2005).   	
	
For the low fire year 1991, removing within-year climate variables increases the mean 
west-wide probability of high severity fire by approximately 2%, but the maximum 
predicted probability increases from 79% to 90%. For 1996, a high occurrence year, 
removing within-year climate increases the mean probability by 0.7%, but increases the 
maximum from 76% to 90%. When we look at the probability maps, we can see that 
within year climate shifts probability both positively and negatively—it either amplifies or 
moderates the probability of high severity fire. Average spring temperature anomalies, 
while high for most of this time period, are highest for many of the high occurrence fire 
years (Figure 2.9.8).  This is also true for anomalies in MD0, MD2 and Tave. 	
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The MD2 variable is an indicator for moisture stress at the beginning of the water year, 
in November. The anomalies for this variable correspond most closely with high 
occurrence years. Van Mantgem et al. (2013) found that high pre-fire climatic water 
deficit is related to an increase in post-fire tree mortality. While the average temperature 
anomalies are high for the entire fire record, many of the years with high severity fire 
occurrences have unusually high average temperature anomalies for the month the fire 
burned. These variables are capturing interannual weather conditions that increase 
flammability of fuels and create conditions for fire spread, given ignitions.	
 	
While the inclusion of within year climate variables was important for capturing the years 
with a large number of high severity fire occurrences, the vegetation variables used did 
not have a large impact on the model. We expected that the inclusion of FRCC3 would 
be important for predicting high severity fire occurrence. Removing the vegetation 
variables did have an effect on the patterns of predicted probability of high severity fire 
over the western US, but did not change the range of predicted probability as much as 
the removal of within year climate variables did. The probability of high severity fire 
occurrence increases in the Pacific Northwest and Colorado Rocky Mountains when 
FRCC3 is removed from the model, but decreases in the Northern Rocky Mountains and 
California. This indicates that it might be reflecting increased risk in areas where low 
elevation forest structure has been modified due to fire suppression (Agee 1978, Miller 
and Safford 2012, Steel et al. 2015). 	
	
The FRCC variable is limited in its utility as a less productive forest type with a 
historically frequent fire return interval might be highly departed from missing many fire 
cycles but still have less fuel buildup than a more productive forest that missed fewer fire 
cycles and received a less departed classification (Stephens and Ruth, 2005).  The latter 
would likely be at higher risk for high severity fire, which the FRCC metric might not 
capture. Also, the FRCC category reflects more than fire suppression and a category of 
three does not imply increased fire hazard; with the data we have, we can only infer the 
role of FRCC as a predictor. Last, it is also possible that FRCC was not more important 
to our models because of how we employed it. We use the fractional values for the 1/8th 
degree pixel, which tells us the nature of the condition class distribution in the pixel that 
our fire is located in, but not necessarily the distribution within the fire perimeter. 	
	
It is important to note that the model probabilities used to create the predictive maps are 
conditional on a large (>400 hectare) fire occurring. While the predictive maps for years 
like 1991 and 1996 look very similar in terms of conditional probability of high severity 
fire occurrence, the actual fire record is quite different. The number of fires in the MTBS 
record for 1991 was 75 total (16 high severity) vs. 272 total (75 high severity) fires for 
1996. While the number of ignitions that results in a large fire occurring were small, the 
probability map shows us that had conditions that control ignition or fire size been 
conducive to a large fire occurring, high severity fire would have been likely in 1991. 	
 
Our results are similar to Dillon et al. (2011) with respect to the importance of 
topography, but are quite different with respect to the importance of within year climate 
variables. This is likely due to both methodological approach and data availability. In our 
study, we determined the actual fraction of each fire that burned as high severity, using 
every large fire in the MTBS database. For each fire, we had hydroclimate variables for 
the voxel that the majority of the fire area occurred in. Dillon et al. (2011) selected a 
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random subset of individual fire pixels classified to high severity, 0/1. There is a 
fundamental difference in the dependent variable used for analysis between our study 
and the Dillon et al. study (2011). Our definition of high severity fire occurrence is 
dependent on high severity fractional area for each fire, so that each fire is classified as 
a high severity fire, 0/1. This means that Dillon et al. (2011) could have two pixels from a 
single fire with different classification, because their pixel selection process was random.	
 
The independent climate/weather variables that Dillon et al. (2011) used are also very 
different from those we used, which could lead to the different conclusions on 
importance in each model.  For each fire, we had hydroclimate variables for the 1/8th 
degree voxel that the majority of the fire area occurred in. Dillon et al. (2011) interpolated 
monthly temperature and precipitation for the central latitude and longitude and mean 
elevation for each fire from a climatic spline model.  The soil moisture data they used are 
from the VIC model, as are our hydroclimate variables, but at a coarser scale. The fire 
weather variables are from the North American Regional Reanalysis dataset. While our 
weather and climate variables are much coarser in scale than the fire severity data, the 
scale is, for some, finer than the Dillon variables. We also have a larger set of 
hydroclimate variables, many of which integrate climate effects on vegetation. 	
 
2.6 Conclusions	
	
Opportunities with this model	
 	
Because our models include within year climate, we can use them to predict year-to-year 
changes in the probability of high severity fire occurrence. While the risk of high severity 
fire occurrence is partially determined by biophysical setting and existing vegetation and 
fuels, our model demonstrates that fire year weather is an important component that 
amplifies or moderates risk of high severity fire occurrence given ignition and growth to 
at least 1000 acres.	We see distinct differences in probability maps between years, 
showing the influence of the within year climate. These models could be used in tandem 
with models that predict large fire occurrence to plan for resource allocation or mitigation 
efforts.  We can also use these models to look at how the probability of high severity fire 
occurrence might change in a changing climate. 	
	
Limitations of the model	
	
The scale of the hydroclimate data we used is quite coarse at 1/8th degree. The 
importance of these variables, especially fire year climate, suggests that improvements 
could be made with finer scale data. This would be especially true in mountainous terrain 
where climate varies greatly with topography. The hydroclimate variables are also 
modeled with a static vegetation layer for all years. Sensitivity analysis to evaluate the 
impact of including a dynamic vegetation layer in VIC did not result in significant 
changes in MD or AET (unpublished, A.L. Westerling personal communication). 
Additionally, FRCC that more closely represents individual fires or that could be 
combined with fuel availability might improve its performance as a predictor. 	
	
Because these probabilities are conditional on a large fire occurring, they would need to 
be coupled with the probability of a large fire occurring in order to be utilized for any 
forecasting effort. As with all models, ours has limitations, but its performance is robust. 
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This is the first study to use every large fire in the MTBS database to examine patterns 
in high severity fire, identify the importance of within year climate, and predict high 
severity fire occurrence. 	
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2.8 Tables 	

Table 2.8.1. List of final predictors for two conditional logistic regression models. 	

 

Variable Description Model PA Model HI

Elevation

maximum ✓

minimum

mean ✓

standard deviation

1961-1990:
Average temperature: mean and 

standard deviaiton ✓

Cumulative annual moisture 
deficit: standard deviaiton ✓

Cumulative water year 
precipitation deficit: standard 

deviation ✓ ✓

Previous November moisture 
deficit ✓ ✓

Normalized moisture deficit 
month of fire (41 yr) ✓

Spring average temperature 
(March, April, May) ✓ ✓

April snow water equivalent

Fractional cover of vegetation 
with stand replacing fire regime ✓ ✓

Fraction of FRCC 3 ✓

Thin plate spline of 30yr 
average moisture deficit and 
evapotranspiration ✓ ✓
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Table 2.8.2. Performance statistics for logistic regression models. The ΔAIC value is the difference between the full model and 
models with variables removed. 

	
	
	
	
	

AIC ΔAIC Adjusted R2

Cross validated 

Adjusted  R2

Cross validated r 
Predicted v 
Observed

Full Model Model PA 5353.7 - 0.9241 (p 5.17e-14)
Model Hi 3033.9 - 0.9602 (p < 2.2e-16) 0.9211 (p 7.92e-14) 0.9615

No 
Vegetation Model PA 5409.1 55.4

Model Hi 3036.7 2.8 0.9292 (p 2.39e-14)

No Fire Year 
Climate Model PA 5518.9 165.2 0.8294 (p 3.99e-10)

Model Hi 3069.3 35.4

No Veg/No 
Climate Model PA 5566 212.3 0.8311 (p 3.57e-10)

Model Hi 3075.8 41.9
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Table 2.8.3 Results from trend analysis of mean annual fraction of high severity fire (high 
severity acres / total acres) and annual count of fires with high severity fraction >= 
0.1732 (Count) for the period 1984-2014. * p <0.05.  We looked for trends in all large 
fires in the western US and for trends in fires by state. Standard Error values are in 
parentheses. 
	

								 	

Parameter Slope p

Westwide
Mean Annual Fraction -1.31e-3 (5.52e-4) 0.025*
Count Over Threshold 0.04 (0.53) 0.947

Arizona
Mean Annual Fraction -1.66e-3 (8.21e-4) 0.052
Count Over Threshold -0.04 (0.06) 0.540

California
Mean Annual Fraction -7.39e-4 (8.08e-4) 0.368
Count Over Threshold -0.14 (0.14) 0.340

Colorado
Mean Annual Fraction 3.27e-4 (3.27e-3) 0.921
Count Over Threshold 0.12 (0.04) 0.009*

Idaho
Mean Annual Fraction 7.76e-4 (1.11e-3) 0.490
Count Over Threshold 0.15 (0.12) 0.240

Montana
Mean Annual Fraction -3.02e-3 (2.28e-3) 0.197
Count Over Threshold 0.12 (0.15) 0.432

New Mexico
Mean Annual Fraction -1.71e-4 (0.001) 0.887
Count Over Threshold -4.43e-3 (0.07) 0.948

Nevada
Mean Annual Fraction -4.02e-3 (1.44e-3) 0.009*
Count Over Threshold -4.03e-3 (0.11) 0.971

Oregon
Mean Annual Fraction -1.73e-3 (1.15e-3) 0.142
Count Over Threshold -0.03 (0.07) 0.658

Utah
Mean Annual Fraction -2.06e-3 (2.48e-3) 0.415
Count Over Threshold 0.12 (0.07) 0.079

Washington
Mean Annual Fraction -9.21e-4 (2.20e-3) 0.678
Count Over Threshold 0.03 (0.03) 0.289

Wyoming
Mean Annual Fraction -3.65e-3 (2.66e-3) 0.187
Count Over Threshold 0.13 (0.07) 0.055
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2.9 Figures 	

	
Figure 2.9.1. Locations (grey polygons) of large fire occurrence in the Western US form 
1984-2006. All fires >1000 acres were classified for fire severity by the Monitoring 
Trends in Burn Severity project (www.mtbs.gov). The area highlighted in green is 
classified as forest in the LDAS data.	
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Figure 2.9.2 Frequency of fires by severity class for May-October, 1984-2014. Light gray 
bars are large fires with no presence of high severity fire; medium gray bars are fires that 
met the threshold for presence (high fraction ≥ 0.042); black bars are fires classified as 
high severity with fraction exceeding the high fraction ≥ 0.1732 threshold.  
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Figure 2.9.3. Frequency of fires by severity class for each state for 1984-2014. Light 
gray bars are large fires with no presence of high severity fire; Medium gray are fires that 
met the threshold for presence (high fraction ≥ 0.042); black are fires classified as high 
severity with fraction exceeding the high fraction ≥ 0.1732 threshold.  
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Figure 2.9.4. Predicted versus observed number of fires with high severity fraction>= 
0.1732 for a) full model [AIC 3033.9] b) model with vegetation variables removed [AIC 
3036.7] c) model with within year climate variables removed [AIC 3069.3] d) model with 
within year climate and vegetation variables removed [AIC 3075.8].	

 
 
 
 
 
 
 
 

20 40 60 80 100 120 140

20
40

60
80

10
0

12
0

Predicted Number High Severity Fires without Veg

O
bs

er
ve

d 
N

um
be

r H
ig

h 
S

ev
er

ity
 F

ire
s

20 40 60 80 100 120

20
40

60
80

10
0

12
0

Predicted Number High Severity Fires, no within year climate or vegetaiton

O
bs

er
ve

d 
N

um
be

r H
ig

h 
S

ev
er

ity
 F

ire
s

Predicted(Number(of(High(Severity(Fires(

20 40 60 80 100 120 140

20
40

60
80

10
0

12
0

Predicted Number High Severity Fires

O
bs

er
ve

d 
N

um
be

r o
f H

ig
h 

S
ev

er
ity

 F
ire

s

20 40 60 80 100 120

20
40

60
80

10
0

12
0

Predicted Number High Severity Fires, No w/in Year Climate

O
bs

er
ve

d 
N

um
be

r o
f H

ig
h 

S
ev

er
ity

 F
ire

s
a"

d"c"

b"
O
bs
er
ve
d(
N
um

be
r(
of
(H
ig
h(
Se
ve
ri
ty
(F
ire

s(



	

	

31	

 

 
Figure 2.9.5. Observed number of fires with high severity fraction >= 0.1732 (line) plotted 
against 1000 draws from the cross-validated full variable conditional logistic regression 
probability distribution (boxes show inter-quartile range and whiskers 1.5x inter-quartile 
range) for all voxels with high severity fire. The model was built with data through 2006 
and applied to 2007-2014. The cross-validated Adjusted R2 = 0.82, p < 0.001.	
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Figure 2.9.6. Probability of high severity fire occurrence over the Western US for two low 
fire years (1991, 1997) and two high fire years (1996, 2000) with actual high severity fire 
events shown. Circles are large fires with high severity fraction >0.1732. The left column 
shows the probabilities for the full model. Difference maps for the models with fire year 
climate and vegetation variables removed are shown. Positive difference values indicate 
that the probability increased when the predictor set was removed; negative values 
indicate a decrease in probability. 	
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Figure 2.9.7. The coefficient of variation of annual number of high severity fire 
occurrences (sum of monthly probabilities) for 1984-2007. Higher values show us where 
the probability of high severity fire occurrence is more sensitive to annually varying 
climate.  	
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Figure 2.9.8. Yearly 
number of high 
severity fire 
occurrences and 
mean annual 
anomalies (from 
1961-1990 mean) 
of within year 
climate predictor 
variables. The 
anomalies are 
calculated for each 
voxel (month-year-
location) that 
contained a high 
severity fire 
occurrence and the 
annual mean for all 
fire events is 
presented. Years 
with a large 
number of high 
severity fire events 
are highlighted with 
dotted lines.	
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3     Using extreme value theory to predict forest area burned in 
high severity for three regions of the western United States.  
 
3.1 Abstract 
 
More than 70 years of fire suppression by federal land management agencies has 
interrupted fire regimes in much of the western United States. The result of missed fire 
cycles is a buildup of both surface and canopy fuels in many forest ecosystems, 
increasing the risk of severe fire. The frequency and size of fires has increased in recent 
decades, as has the area burned with high severity in some ecosystems. A number of 
studies have examined the controls of high severity fire occurrence, but none have yet 
determined what controls the extent of high severity fire. We developed statistical 
models predicting high severity area burned for the western United States and three 
sub-regions—the Northern Rocky Mountains, Sierra Nevada Mountains, and Southwest. 
A simple model with maximum temperature the month of fire, annual normalized 
moisture deficit and location explains area burned in high severity fire in our west-wide 
model, with the exception of years with especially large areas burned with high severity 
fire: 1988, 2002. With respect to mitigation or management of high severity fire, 
understanding what drives extreme fire years is critical. For the sub-regional models, 
topography, spring temperature and snowpack condition, and vegetation condition class 
variables improved our prediction of high severity burned area in extreme fire years. Fire 
year climate is critical to predicting area burned in high severity fire, especially in 
extreme fire years. If a goal of management is to mitigate extreme fire events in terms of 
fire severity, then knowledge of fire year climate and its effect on fire severity is 
essential. The models developed here can be used to predict high severity area burned 
in the near term and with a changing climate. 
 
3.2 Introduction 
 
More than 70 years of fire suppression by federal land management agencies has 
interrupted fire regimes in much of the western United States (US). Many forest types 
that historically burned frequently have undergone significant changes in species 
composition and have heavy accumulations of surface and canopy fuels, putting them at 
risk for severe fires (Agee et al. 1978, Agee and Skinner 2005, McKelvey et al. 1996, 
Keane et al. 2002). In testimony to the Natural Disasters Roundtable, Cleaves testified 
that of ~168 million hectares of fire adapted ecosystems in the coterminous US, more 
than 29 million are considered to be a high risk to human and ecosystem values due to 
an accumulation of fuels and risk of high severity fire, and more than 57 million are 
considered a moderate risk (2001).  
 
Both the frequency and size of large wildfires have increased in the past 30 years in the 
western US (Dennison et al. 2014, Littell et al. 2009, Miller et al. 2009, Stephens et al. 
2005, Westerling et al. 2006, Westerling 2016) as has the length of the fire season  
(Jolly et al. 2014, Westerling, 2016). Climate, especially drought severity, exerts strong 
control over area burned through production of biomass and fuels and the drying of 
fuels. Many studies predict continued increases in large fire occurrence with climate 
change in the western US (Westerling et al. 2011a,b, Westerling 2016). 
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Area burned in high severity fire has been correlated to total area burned in some 
regions, and has seen a concomitant increase with increasing fire size (Cansler and 
Mckenzie 2014, Dillon et al. 2011, Miller et al 2009, Miller and Safford 2012). In the 
North Cascade Range, Cansler and McKenzie found that both total high severity area 
and patch size increased with total burned area (2014). Bottom up controls appeared to 
mediate this fire area-burn severity area relationship in some ecosystems with historical 
low-moderate severity fire regimes (Cansler and McKenzie 2014).   
 
In the Sierra Nevada, CA/NV, Miller et al. found that fire size (annual mean and 
maximum) and total area burned increased in the period 1984-2006, and are now above 
pre-suppression levels (2009). They also found that the proportion of high severity, 
stand-replacing fires increased (Miller et. al 2009). The proportional increase in high 
severity fires was not uniform, but was concentrated in low to mid-elevation forest types 
where 25-40% of total burned area was classed as high severity. High severity fires are 
not characteristic of these forest types, indicating that the current fire regime in these 
ecosystems is outside of historical natural conditions (Agee et. al 1977, Agee 1998, 
Collins et. al 2009, Moody et al. 2006, Parsons and DeBenedetti 1979).  
 
Previous work (Chapter 2) indicates that fire year climate is critical to accurately 
predicting severe fire occurrence, especially for very large fires. While many studies 
have now sought to explain what controls the occurrence of high severity fire at the 
individual fire to regional scales, none have looked at what controls the scale at which 
high severity fire occurs. The ability to predict the amount of area that is at risk of 
burning in high severity fire and whether this is changing would improve the 
implementation of management decisions to mitigate fires with severity that is 
uncharacteristic in size or for the ecosystem in which it occurs. In this paper, we seek to 
answer the following questions:  
 

Given that a large fire (> 400 hectares) occurs,  
1. What is the probability that > 200 hectares will burn in high severity? 
2. What are the total hectares burned in high severity? 
3. What variables determine area burned in high severity? 

 
   
3.3 Methods 
 
3.3.1 Spatial and Temporal Domain of Analysis 
	
As with the presence/absence modeling in Chapter 2, our modeling domain is a 12km x 
12km latitude/longitude grid. We developed models for eleven contiguous Western US 
states as a whole and three smaller regions to determine if we could improve model 
performance in years with very large high severity area burned in: the Sierra Nevada 
Mountains (SN), the Northern Rocky Mountains (NR), and mountains in Arizona and 
New Mexico (hereafter Southwest, SW) (Figure 3.9.1).  The data used vary in spatial 
resolution from 30m to 12km; to maintain information content of the higher resolution 
data, we aggregated it to the 12km modeling grid by calculating fractional area of each 
variable.  
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The temporal domain of analysis is determined by the availability of burn severity data, 
which is produced with Landsat imagery. Our models are built on data from 1984-2006, 
the latest year of completed burn severity mapping when we started our project. We 
have since obtained data from 2007-2014; trends in fire severity metrics are calculated 
for 1984-2014. Both our hydroclimate predictor variables and dates within the burn 
severity database are monthly. We modeled the monthly probability of high severity fire 
area over 200 hectares and total high severity burned area in the Western US and 
summed to annual values from 1984-2006. The ignition date of the fire is provided with 
the burn severity data, but there is no data on length of fire activity; we used the ignition 
month to link our hydroclimate predictor variables. Our predictors represent the month 
that the fire started, but may not represent the exact conditions when high severity fire 
occurred as many large fires burn for more than one month. Any climatic variability that 
might drive fire behavior, and thus severity, in a fire burning outside the month of 
discovery will not be captured in our data.  
	
3.3.2 Burn Severity Data 
 
We downloaded fire severity data from the Monitoring Trends in Burn Severity (MTBS) 
project website and used the classified fire severity images to build our models 
(Eidenshink 2007, http://www.mtbs.gov). The classified images threshold the continuous 
differenced normalized burn ratio into five severity classes: unburned to low severity, low 
severity, moderate severity, high severity, increased greenness, For this analysis we 
selected only forest fires, defined as a fire in which at least 10% of the total burned area 
was in forest vegetation, following USFS classification standards (Brohman and Bryant 
2005). We used data included with the MTBS data that intersects fire severity pixels with 
Ecological Systems classifications, based on the National Landcover Data Classification 
(http://www.mtbs.gov/ProjectDocsAndPowerpoints/projectplan.html; 29 January 2016, 
Homer et al. 2007). We calculated the fractional fire area, for all classes, in the following 
broad classifications: barren, developed, forest, herbaceous natural, herbaceous 
planted, shrubland, water, wetlands. We dropped 41 fires from our classified burn 
severity data that did not have a matching record in the ancillary vegetation/severity 
database. Of a total 4591 fire records in the MTBS burn severity and vegetation 
database file, we retained 1871 fires that were a minimum of 400 hectares, had forest 
cover ≥ 10% and had matching records in the classified severity and severity by 
vegetation database files. The burn severity images were intersected with the 12km grid; 
if a fire intersected more than one modeling pixel, we assigned it to the pixel containing 
the majority of the fire area.   
 
We set the presence of high severity fire hectares > 200 as the threshold for this 
analysis. Of the 1871 forest fires, 815 exceeded the 200 hectare high severity threshold. 
The 200 hectare threshold was selected for the generalized Pareto distribution models 
for area exceeding that threshold using graphical analysis to fall within the range where 
the sample mean excess function is a linear function of the threshold value (see Coles 
2001; Holmes, Huggett, and Westerling 2008).   
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3.3.3 Landscape Data 
 
Topographic variables derived from the GTOPO30 global 30 Arc Second (1km) 
Elevation Data Set data were aggregated to our 12km modeling resolution. These were 
accessed online from the North American Land Data Assimilation System (LDAS) 
(http://ldas.gsfc.nasa.gov, Mitchell et al. 2004). The variables include minimum, 
maximum, mean and standard deviation of elevation within each modeling pixel. Mean 
slope and aspect are also included. The standard deviation of elevation reflects the 
topographic complexity within each modeling pixel. We also created a two dimensional 
surface spline of latitude and longitude to use as a smoothed spatial dummy variable for 
site-specific characteristics (as in Preisler and Westerling 2007).  
 
We aggregated fire regime condition class (FRCC) data from the LANDFIRE project 
(accessed online at http://www.landfire.gov) as the fractional coverage of each class 
within the 12km modeling pixels; we then normalized the FRCC fractions using the log 
function. Fire regime condition class is a widely used metric to identify the impact of land 
management decisions on ecosystems. It quantifies differences in current vegetation 
composition from the range of variability under historical natural fire regimes; the 
departure value is a continuous value 0-100 (Hann 2004, Laverty and Williams 2000). 
The historical range of variability is determined using the LANDSUM disturbance and 
succession model run with historic fire regimes (Keane et al. 2006, Pratt et al. 2006). 
The LANDFIRE departure metric refers only to vegetation composition and does not 
incorporate changes in fire regime. The departure values are categorized into three 
FRCC classes: FRCC1 is within historical range (departure <33%); FRCC2 is 
moderately departed (33% ≥ departure < 66%); FRCC3 is highly departed, or outside the 
historical range of variability (departure ≥ 67%) (Holsinger et al. 2006, Keane et al. 
2007). We are using the FRCC as a proxy variable to reflect the effects of fire 
suppression.  
	
3.3.4 Climate and Hydrologic Data 
 
We obtained a suite of hydroclimate predictor variables output from the Variable 
Infiltration Capacity model (VIC) and the gridded climate data used to force it (Liang et 
al. 1994). The VIC model calculates surface and energy water balances and is designed 
for large-scale applications; it has a simplified soil-vegetation-atmosphere-transfer 
scheme with a two-layer soil module. A unique feature of VIC is its ability to account for 
sub-grid scale variability in vegetation characteristics; it calculates evapotranspiration 
from the vegetation and evaporation from bare soil surfaces at a daily time step for each 
vegetation class in the modeling grid cell and returns a weighted area sum. Our VIC data 
was produced with gridded daily climate at ~12km (Mauer et al. 2002) and a 1km 
vegetation layer from the North American Land Data Assimilation System produced by 
the University of Maryland (http://ldas.gsfc.nasa.gov, Mitchell et al. 2004).  The 
vegetation layer is composed of coarse plant functional types, e.g. Evergreen needle 
leaf forest, deciduous broadleaf forest.  
 
The VIC output is returned as monthly averages from 1915-present and includes: 
temperature extrema and average (Tmax, Tmin, Tave), precipitation (PPT), relative 
humidity (Rh), snow water equivalent (SWQ), evapotranspiration (ET), moisture deficit 
(MD), and antecedent moisture deficit derivatives, e.g. 0-12 month prior (Westerling et 
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al. 2009). We calculated 30-year means and standard deviations for 1961-1990 for 
Tave, PPT, cumulative MD, and ET. Month of fire and cumulative annual MD variables 
were normalized relative to the 1961-1990 average and standard deviation. 
	
3.3.5 Logistic Regression Modeling  
	
We defined the presence of high severity fire for this analysis as 200 hectares (as 
above). We used the Random Forest package in R to predict both the fraction of high 
severity fire (high severity hectares divided by total fire hectares) and high severity 
burned area (hectares classified as high severity). We used the top 10-20 predictors to 
perform logistic regression analysis on presence of high severity fire >200 hectares. We 
used all combinations of variables to determine the best-fit model. 
 
To model the probability of high severity fire presence, we use the logged odds, or logit:  
 

Logit P200 = ln(P200 / (1-	P200)) = β  × [1 + Xj] 
 

Where P200 is the probability of a fire having >200 hectares classified as high severity; 
note that implicit in this is that a fire of at least 400 hectares burned. The Logit P200 is the 
logarithm of the odds ratio P200 / (1 -	P200)); β is a vector of maximum likelihood estimated 
parameters from the data; Xj is the set of independent predictor variables best fit to the 
model. The threshold of 200 hectares to determine presence was chosen as it is the 
threshold chosen for the generalized Pareto distribution model; to predict area burned 
over our threshold of 200 hectares, we need first to know the probability that this many 
hectares would burn.  
 
We use the Aikake Information Criterion (AIC) to evaluate model performance (Aikake, 
1974, 1981).  
 

 

 
where likelihood is the probability of the data given a model and N is the number of 
parameters in the model (predictors and intercept). The best model is a model that 
balances model fit to the data with number of parameters. The AIC penalizes models for 
excess predictive parameters. The AICs are evaluated as the difference between 
individual model AIC and the minimum AIC from all models. There is no test to compare 
AICs, but a general rule of thumb is that if ΔAIC < 2, the models are not significantly 
different in their skill; ΔAIC > 10 is a significant difference in model skill (Burnham and 
Anderson 2004, Hare and McGarigal 2010). Once we chose the model with the lowest 
AIC vs. number of parameters, we performed a leave one out cross-validation. 
  
3.3.6 Generalized Pareto Distribution Modeling 
	
We estimated generalized Pareto distributions (GPD) for fire severity area burned with a 
threshold value of 200 hectares and used these to model the log of area burned in high 
severity fire. The GPD is a points over threshold model. The choice of threshold was 
made by evaluating a mean residual life (or sample mean excess function) plot. A 
threshold was chosen above which the mean residual life plot was linear, meaning that 

€ 

AIC = −2 ln likelihood( )( ) + 2N
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the GPD is providing a valid approximation of the distribution (Coles, 2001). The GPD 
can be estimated with and without covariates. Generally, if the data vary spatially or 
temporally, the inclusion of covariates is necessary to obtain a good model fit (Coles, 
2001). We estimated GPDs with and without covariates using the ismev function in R, 
initializing with the same set of predictors used in the logistic regression model (R Core 
Team 2015). Model specifications were evaluated with the AIC (Aikake, 1974, 1981).  
   
West-wide Modeling 
 
In our first stage of model estimation, we used all forest fires in the western US. Our 
success in creating models of high severity fire occurrence across the western US led us 
to first estimate GPDs for the entire region (Chapter 2). These models performed well, 
with the exception of years with extremely large areas burned in high severity fire: 1988, 
2002. The utility of our models lies in the ability to understand the conditions that lead to 
exceptional years in terms of high severity area burned. The years where our model 
performed poorly are years that saw regional differences in extreme fire activity, 
indicating that there are unique regional-scale controls on high severity fire area burned 
across western US forests in severe fire years. We hypothesize that these are related to 
vegetation-mediated differences in the climate sensitivity of regional fire regimes that are 
not fully captured by the covariates we used.  We chose the Northern Rocky Mountains, 
Sierra Nevada Mountains, and Southwest forest areas to generate regional GPD models 
of high severity area burned in an attempt to improve model performance in extreme 
years. 
 
Regional Modeling 
 
The Northern Rocky Mountain region experienced very large high severity area burned 
in the years 1988 and 2000; forests of the Southwest experienced the same in 2002, 
while 1987 and 2002 were high in the Sierra Nevada. We defined the Northern Rocky 
Mountains as area in Montana, Idaho, and Wyoming bound by latitudes 
(41.1875,48.9375) and longitudes (-108.675, -104.1875). We defined the Sierra Nevada 
Mountains using latitude (37.0,40.5) and longitude (-122, -117.5) within California. For 
the Southwest, we took all forest fires in Arizona and New Mexico (Figure 3.9.1). 
 
3.4 Results   
 
3.4.1 Trends in high severity burned area 
 
High severity burned area is positively correlated to total burned area in the WUS and in 
individual states; the fraction of high severity burned area has weak to no correlation to 
total burned area (Table 3.8.1, Figure 3.9.2).  We looked for 1984-2014 trends in both 
high severity burned area and in the number of fires with >200 hectares high severity for 
the western US as a whole, for individual states, for our three modeling regions, and for 
months in the fire season. There is no trend in total annual high severity hectares burned 
from 1984-2014 (Table 3.8.2). There was, though, a corresponding trend in the number 
of fires with high severity hectares > 200.  
 
Both the WUS and Wyoming experienced significant trends in the annual number of fires 
with high severity hectares > 200 from 1984-2014 (p < 0.05, Figures 3.9.3 and 3.9.4, 
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Table 3.8.2). This increase is occurring during the summer fire season in June, July, and 
August, all with significant increases in the number of high severity fires (Figure 3.9.5).  
 
For the three regions we modeled, there were not significant trends in high severity 
burned area or number of high severity fires. The Sierra Nevada did have a significant 
increase in the annual minimum fraction of high severity burned area; this means that 
there are now fewer years without any severe fire (Figure 3.9.5).  
 
3.4.2 West-wide Models 
 
Logistic regression of high severity occurrence >200 hectares 
 
There are 815 forest fires that meet the threshold of 200 hectares burned in high 
severity. A combination of vegetation condition class, location, temperature and moisture 
deficit variables best explain presence of high severity fire over our threshold (Table 
3.8.4). The final model fits the observations well, Figure 3.9.7 (r = 0.95, p-value < 0.001), 
and has the form: 
 

Logit(P200) = β × [1 + Tavg.mu + Tavg.sd + Tmax + 
MD10 + MD00n + FRCC3 + X(Lat, Lon)] 

 
where Tavg.mu and Tavg.sd are the 1961-1990 mean and standard deviation, 
respectively of annual average temperature; Tmax is maximum temperature the month 
of fire occurrence, MD10 is July moisture deficit of the year of fire, MD00n is normalized 
cumulative annual moisture deficit in the year of fire; FRCC3 is fractional area in fire 
regime condition class 3; and X() is a matrix describing a west-wide two-dimensional 
basis spline. The surface spline of latitude and longitude was important for predicting 
occurrence of high severity fire for all west-wide and regional models.  
 
Generalized Pareto distribution modeling 
 
The addition of covariates to the stationary generalized Pareto distribution (GPD) model 
significantly improved model fit (Figure 3.9.8a). A fairly simple model with maximum 
temperature the month of fire, cumulative annual moisture deficit and location explains 
area burned in high severity fire in most years (Table 3.8.4).  
 
Our west-wide model performs well with the exception of years with especially large 
areas burned with high severity fire: 1988, 2002. In the Northern Rocky Mountains, 1988 
experienced large and severe fire in the greater Yellowstone region; forests of the 
Southwest and Sierra Nevada experienced large and severe burns in 2002. In these 
years, our model greatly under-predicts the area burned in high severity fire; regional 
GPD models identified location specific covariates that best explained total area burned 
in high severity fire in these extreme years.  
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3.4.3 Regional Models  
 
Logistic regression of high severity occurrence > 200 hectares 
 
Regional models all performed well with highly significant correlations between predicted 
and observed high severity fire occurrence (Figure 3.9.9). The primary difference in 
regional versus west-wide occurrence modeling is the importance of topographic and 
climate variables in the final regional models (Table 3.8.4). In the Northern Rocky 
Mountains (NRM), minimum and mean elevation in the modeling pixel were important  
(r = 0.94, p-value < 0.001); maximum elevation was important for the Southwest (SW,  
r = 0.84, p-value < 0.001), and average slope was important in the Sierra Nevada (SN,  
r = 0.79, p-value < 0.001). The NRM was the only region for which vegetation condition 
class (FRCC) was not important in the best-fit occurrence models.  
 
Generalized Pareto distribution modeling 
 
Our regional models explained extreme years with large areas burned in high severity, 
each with unique covariates. For the NRM, the following covariates were important: 
minimum and mean elevation, average spring temperature, 1961-1990 average 
temperature, maximum temperature in the month of fire occurrence, relative humidity, 
March snow water equivalent, and cumulative annual moisture deficit. When these 
variables are included, we achieve much better predictions of area burned for 1988 and 
2000, the years with largest areas burned in high severity fire in this region (Figure 
3.9.8b, Table 3.8.4).   
 
For Southwest forests, 2002 was an extreme year with respect to area burned in high 
severity fire (224023 hectares vs. a 24 year mean of 19577 hectares; the next highest 
value is 46380 hectares). Our regional model slightly under-predicts 2002, but the value 
falls within the range of 1000 random draws from the GPD (Figure 3.9.8c, Table 3.8.4). 
Maximum elevation, average spring temperature, relative humidity, and moisture deficit 
in the month of fire occurrence were significant covariates for area burned in high 
severity.  
 
The best GPD model for the Sierra Nevada Mountains included climate, topographic, 
and vegetation condition covariates (Figure 3.9.8d, Table 3.8.4). The variability in long 
term moisture deficit and average temperature, slope, and fraction in FRCC1 were 
included. Annual climate variables of maximum temperature the month of fire, annual 
average spring temperature, April snow water equivalent, and cumulative water year 
moisture deficit were also included. The years 1987 and 2002 account for most of the 
area burned in high severity. We were not able to fit a model that captured both years 
well. In 1987, two weeks of dry lightning storms at the end of summer resulted in a 
record number of fire starts and all of the high severity fires in our data started in the first 
three days of this period (http://www.fire.ca.govdownloads/redbooks//1987_BW.pdf). In 
2002, almost all of the hectares burned in high severity (37642 of 47064 total hectares) 
in our dataset are from one fire, the McNally fire, that started as a result of an illegal 
campfire. Without the McNally fire, 2002 would not have been a remarkable year in 
terms of high severity hectares burned, and we were not able to fit any model that 
matched this year well, though our model does fit well to the other two fires that burned 
in 2002 (results not shown). 
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3.5 Discussion 
 
3.5.1 Trends in high severity burned area 
 
Our finding that high severity burned area is positively correlated to total burned area is 
in agreement with other smaller scale studies (Cansler and McKenzie, 2014, Dillon et al. 
2011). While larger fires are associated with more hectares burned in high severity, this 
does not necessarily mean that larger fires are more severe as there is not a 
corresponding association with the proportion of total fire area burned in high severity. 
The increases in large fire occurrence and area burned that have been observed and 
are predicted with a changing climate will likely result in increases in total high severity 
fire area in the future (Littell et al. 2009, Stephens 2005, Westerling et al. 2006, 2009, 
Westerling 2016).  
 
Our record of high severity fire is likely to short to record a significant trend in high 
severity burned hectares. Without a longer record of severity, we can’t with certainty say 
whether the amount of severity has increased significantly. For many ecosystems in the 
WUS, enough fire cycles may have been missed due to fire suppression by the time our 
fire severity record began to impact fuel availability and severity, while others would not 
have missed any. Our only sub-setting of fires was by relatively large sub-regions that 
include many forest types and historical fire regimes. It is possible that individual forest 
types (i.e. those with short fire return intervals) may have experienced an increase in 
high severity area burned, as recorded in California and Southwest forests, but these 
increases are not evident when all forest fires are examined together (Dillon et al. 2011, 
Miller and Safford 2012). While we did not find a significant trend in total high severity 
hectares, there was a significant west-wide trend in number of fires that meet our high 
severity threshold.  
  
The significant trend in the number of fires meeting our severity threshold indicates that 
there is an overall increase in the number of large severe fires since 1984. This is likely 
a result of the aforementioned correlation between area burned and high severity area 
burned and the observed increases in number of large fires in recent decades (Dennison 
et al. 2014, Littell et al. 2009, Westerling et al. 2006, Westerling 2016). While there is 
evidence for an increase in the length of the fire season in the western US (Jolly et al. 
2015, Westerling et al. 2006, Westerling 2016), our increases in high severity fire 
occurrence occur in the middle of the fire season, June-August, indicating that the 
increases are likely due to changes in burning conditions or fuels rather than in the 
lengthening of the fire season (Figure 3.9.5).  
 
3.5.2 Models of high severity burned area 
 
Our west-wide models for both presence of high severity fire and log area burned in high 
severity fire have three classes of explanatory variables—biophysical setting, climate, 
and vegetation condition class. The spline of latitude and longitude used here is 
substituting for the spline of MD/ET that we used in previous work (Chapter 2). The 
MD/ET spline is a proxy for biological site conditions suitable for plant growth 
(Stephenson 1998).  We substituted the latitude and longitude spline as we would like 
these models to be readily usable with GCM model output; it also performed better than 
the MD/ET spline. The importance of the normalized fraction of FRCC in our model 
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indicates that historical management of fire, primarily as fire suppression, has affected 
the probability that high severity fire will occur in the presence of a large fire. Last, the 
maximum temperature and normalized moisture deficit in the month of fire occurrence 
are important, especially for predicting area burned in high severity fire. The importance 
of within-year climate variables for predicting high severity fire area in these models is 
supported by the results from Chapter 2; when we removed within year variables, our 
ability to predict fires with a high fraction of high severity burned area was limited.  
 
While the west-wide model did well in most years, and the predictor variables are 
supported by our previous research, the relatively simple model did not explain years 
with very large high severity burned area. With respect to mitigation or management of 
high severity fire, understanding what drives extreme fire years is critical. Many variables 
that were important west-wide were also important in the regional models; in addition to 
the spline variable, topographic position variables were important biophysical setting 
predictors in the regional models. 
  
Topographic position is an important determinant of the overall energy balance of a site, 
impacting vegetation distribution and productivity and, concomitantly, fuel availability. 
High elevation sites, especially those with north aspects, support cool moist forests that 
typically burn infrequently, but with high severity. In contrast, low elevation sites with 
south aspects will support drier open forests that burn more frequently. The importance 
of topographic parameters in our regional models is supported by smaller scale studies. 
Elevation was important in the Southwest and Northern Rocky Mountain regions in both 
logistic regression and GPD models. Previous regional studies from these areas also 
found topographic variables to be important.  Dillon et al. created predictive models for 
the Northern Rocky Mountains and Southwest and found that topographic position was a 
dominant predictor of fire severity occurrence and was more important than climate 
variables (2011). Birch et al. also looked at fire severity in Idaho and Montana (NRM) 
and found that topography and existing vegetation were more important than climate in 
predicting burn severity (2015).  Both of these studies used finer scale and more 
complex topographic variables nearer the scale of the burn severity data, which could 
explain the difference in importance. Including climate variables improved the Dillon et 
al. models, especially in the Southwest (2011). 
 
Fire year climate variables were more important in predicting area burned in high 
severity fire (GPD models) than in occurrence of high severity over a threshold. The 
Northern Rocky Mountains and Sierra Nevada Mountains had more complex models 
than the Southwest. This is likely because these two regions support a broader range of 
ecosystems and historic fire regimes. Models for both regions include seasonal and 
month of fire climate variables. Average spring temperature was important in all regions. 
Warmer springs lead to earlier snowmelt and can lead to an earlier start of the fire 
season, especially in dry years. Snow water equivalent in the spring was also important 
for the NR and SN; snowmelt provides the majority of growing season moisture available 
for plant growth in these regions. Years with earlier snowmelt and/or less snowpack will 
impact fuel quantity and flammability. Less available growing season moisture will result 
in lower production of fine fuel biomass and increased flammability due to fuel drying. In 
addition to temperature and moisture conditions antecedent to the fire season, the 
maximum temperature and relative humidity in the month of fire (NR only) were 
important for predicting area burned in high severity fire. The combination of less 
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seasonal moisture availability and hot, dry conditions at the time of ignition further 
increases flammability and risk for severe fire. 
 
For the Southwest, area burned in high severity is best explained with average spring 
temperature and month of fire relative humidity and normalized moisture deficit. Holden 
et al. found that fire season precipitation patterns influence fire severity in the Gila 
Wilderness, NM (2007).  The climate of this region is monsoonal, with much of the 
precipitation occurring during the growing season. Southwest climate is also strongly 
impacted by the El Nino Southern Oscillation (ENSO); large fire years correspond to 
high phase ENSO (La Nina) and spring drought conditions. The climate conditions that 
produce large fires are also important for creating conditions conducive to severe fires 
via increasing the flammability of vegetation and fuels.  
 
We expected that fire regime condition class would be an important predictor of high 
severity fire. While it was important in the west-wide logistic regression model, it wasn’t 
consistently important in the GPD or regional models. In forested ecosystems, FRCC 
indicates how departed the current vegetation is from what would be expected under a 
historical fire regime. Areas in the highly departed condition class 3 should burn in higher 
severity given a buildup in fuels and changes in species composition due to fire 
suppression. The fraction of FRCC3 was important only in the Southwest forests, for 
both logistic regression and GPD models. The historic fire regime in many Southwest 
forests was one of frequent low severity fires; the importance of FRCC3 in these models 
is likely capturing the impact of suppression (Covington et al. 1997,Swetnam and Baisan 
1996). In the Sierra Nevada, FRCC1 was important for both models, but FRCC3 was not 
important. Substituting FRCC3 and FRCC2+3 into our SNC model resulted in decreased 
model performance as evaluated with AIC and the variable was not significant.  
 
The Sierra Nevada forests are dominated historically by a mixed severity fire regime. 
Studies have shown an increase in fire severity in some mixed conifer forests (fuel 
limited fire regimes) over the period of record studied here; they did not find the same in 
climate limited fire regimes (Miller and Safford 2012, Steel et al. 2015). Fire severity 
increased in areas that experienced increased time since fire due to fire suppression, as 
we would expect, in the fuel limited forests in the Sierra Nevada. Collins et al. also found 
that time since fire was important in predicting fire severity in the Sierra (2007, 2009). 
With quantitative evidence that fire frequency is important in controlling severity in fuel 
limited ecosystems, we would expect that FRCC would be a significant predictor as a 
proxy for fuel buildup due to fire suppression. Perhaps the distribution of FRCC classes 
in this region is such that FRCC1 better captures fire severity here.  
 
A limitation to our use of FRCC is that our modeling pixels are very large and we have 
calculated the fraction of each severity class in these to maintain as much information as 
possible. However, the FRCC fractions don’t necessarily reflect the exact FRCC fraction 
within any given fire perimeter. Instead, they are an indication of fuel conditions 
proximate to the ignition site of a fire.  
 
3.5.3 Climate Change and High Severity Burned Area 
 
Climate change will create warmer conditions over the western US, while precipitation 
changes will be more variable. The Southwest is projected to be both warmer and drier, 
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with increasing drought severity (Cayan et al. 2013). The Sierra Nevada will be very 
sensitive to changes in the timing of snowmelt due to warming temperatures, regardless 
of precipitation changes, and is projected to be drier overall (Cayan et al. 2013). The 
Northern Rockies are likely to be warmer and drier (Westerling et al. 2011a). The 
importance of annual moisture deficit, monthly maximum temperature, spring 
temperature and snow water equivalent in our regional models of high severity area 
burned indicate that there could be more extreme fire years in the future. The 
combination of our predictors being more likely and the increase in large fires will likely 
be and increase in extreme fire years in terms of size and severity.  
 
The length of the fire season (Jolly et al. 2014, Westerling, 2016) and large fire 
occurrence have increased over the past three decades (Dennison et al. 2014, Littell et 
al. 2009, Miller et al. 2009, Stephens and Ruth 2005, Westerling et al. 2006, Westerling 
2016). Our models are conditional on large fires burning, and many studies predict 
continued increases in large fire occurrence with climate change in the western US 
(Westerling et al. 2011a,b, Westerling 2016).  
 
3.6 Conclusion 
 
Based on this and our previous work (Chapter 2), we conclude that fire year climate is 
critical to predicting area burned in high severity fire, especially in extreme fire years. 
Our ability to accurately predict high severity area burned in extreme fire years requires, 
though, creating regional models that are more complex than the west-wide models.  
If a goal of management is to mitigate extreme fire events in terms of fire severity, then 
knowledge of fire year climate and its effect on fire severity is essential. Most of the 
variables that were important in the best fit models are readily available, meaning that 
we can use our models to forecast future fire severity and how high severity area burned 
might change in a changing climate. 
  
3.7 References 
 
Agee, J.K., R.H. Wakimoto, H.H. Biswell. 1977. Fire and fuel dynamics of Sierra Nevada  

conifers. For. Ecol. and Manage. 1:255-265. 
 
Agee, J.K. 1998. The landscape ecology of western forest fires regimes. Northwest  

Science.	72:24-34. 
 

Agee, J.K. and C.N. Skinner. 2005. Basic principles of forest fuel reduction treatments.  
For. Ecol. and Manage. 211:83-96. 
 

Akaike H. 1974. A new look at the statistical model identification. IEEE Trans Automatic  
Control. 19(6): 716-723. 

 
Akaike H. 1981. Likelihood of a model and information criteria. J Econ 16(1):3-14. 

 
Birch D.S., Morgan P., Kolden C.A., Abatzoglou J.T., Dillon G.K., Hudak A.T., Smith  

A.M.S. 2015. Both topography and climate affected forest and woodland burn 
severity in two regions of the western US, 1984 to 2006. Ecosphere 6(1):17. 

 



	

	

47	

Brohman, R., L. Bryant. Eds. 2005. Existing Vegetation Classification and Mapping  
Technical Guide. Gen. Tech. Report WO-67. Washington, D.C., U.S. Department 
of Agriculture Forest Service, Ecosystem Management Coordination Staff. 
305pp.  
 

Burnham, K.P. and Anderson, D.R. 2004. Mutimodel Inference. Sociological Methods &  
Research. 33(2):261-304. 
 

Cansler A.C. and McKenzie D. 2014. Climate, fire size, and biophysical setting control  
fire severity and spatial pattern in the northern cascade range, USA. Ecol. App. 
24(5):1037. 
 

Cayan, D., M. Tyree, K.E. Kunkel, C. Castro, A. Gershunov, J. Barsugli, A.J. Ray, J.  
Overpeck, M. Anderson, J. Russell, B. Rajagopalan, I. Rangwala, and P. Duffy. 
2013. Future climate: projected average. In Assessment of climate change in the 
Southwest United States: A report prepared for the National Climate 
Assessment, edited by G. Garfin, A. Jardine, R. Merideth, M. Black, and S. 
LeRoy. pp. 101-125. A report by the Southwest Climate Alliance. Washington, 
DC: Island Press.  
	

Cleaves, D. 2001. Fires in the wildland urban interface: Dilemmas of duality and the role  
of national science leadership. Presented to: Natural Disasters Roundtable. 
Washington, D.C.  14pp. 

 
Coles, S. 2001 An introduction to statistical modeling of extreme values. Springer  

London. 
 
Collins, B.M., M. Kelly, J.W. van Wagtendonk, S.L. Stephens. 2007. Spatial patterns of  

large natural fires in Sierra Nevada wilderness areas. Landscape Ecol. 22:545-
557. 

 
Colllins, B.M., J.D. Miller, A.E. Thode, M. Kelly, J.W. van Wagtendonk, S.L. Stephens.  

2009. Interactions among wildland fires in a long-established Sierra Nevada 
Natural Fire Area. Ecosystems. 12:114-128. 

 
Covington, W.W., P.Z. Fule, M.M. Moore, S.C. Hart, T.E. Kolb, J.N. Mast, S.S. Sackett,  
 M.R. Wagner. 1997. Restoring Ecosystem Health in Ponderosa Pine Forests of  
 the Southwest. J. of Forestry. 95(4):23-29. 
 
Dennison P.E., Brewer S.C., Arnold J.D., Moritz M.A. 2014. Large wildfire trends in the  

western United States, 1984ΓÇô2011. Geophys Res Lett 41(8):2928-33. 
 
Dillon G.K., Holden Z.A., Morgan P., Crimmins M.A., Heyerdahl E.K., and Luce C.H.  

2011. Both topography and climate affected forest and woodland burn severity in 
two regions of the western US, 1984 to 2006. Ecosphere 2(12):art130. 

 
Eidenshink J, Schwind B, Brewer K, Zhu Z, Quayle B, Howard S. 2007. A project for  

monitoring trends in burn severity. Fire Ecology 3(1):3-21. 
 



	

	

48	

Haire, S.L. and K. McGarigal. 2010. Effects of landscape patterns of fire severity on  
regenerating  ponderosa pine forests (Pinus ponderosa) in New Mexico and 
Arizona, USA. Landscape Ecol. 25:1055:1069. 

 
Hann, W.J., 2004. Mapping fire regime condition class: a method for watershed and  

project scale analysis. In: Engstrom, R.T., Galley, K.E.M., De Groot, W.J. (Eds.), 
Proceedings of the 22nd Tall Timbers Fire Ecology Conference, Fire in Temprate, 
Boreal and Montane Ecosystems. Tall Timbers Research Station, pp. 22–44. 

	
Holden, Z. A., P. Morgan, M. A. Crimmins, R. K. Steinhorst, and A. M. S. Smith. 2007. 	

Fire season precipitation variability influences fire extent and severity in a large 
southwestern wilderness area, United States. Geophysical Res. Lett. 34. L16708.	
	

Holsinger, L., R.E. Keane. B. Steele, M.C. Reeves, S. Pratt. 2006. Using historical  
simulations of vegetation to assess departure of current vegetation conditions 
across large landscapes. In Rollins, M.G., C.K. Frame. Tech eds. 2006. The 
LANDFIRE Prototype Project: nationally consistent and locally relevant 
geospatial data for wildland fire management. Gen. Tech. Rep. RMRS-GTR-175. 
Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain 
Research Station. 

	
Homer, C., Dewitz, J., Fry, J., Coan, M., Hossain, N., Larson, C., Herold, N., McKerrow,  

A., VanDriel, J.N., and Wickham, J. 2007. Completion of the 2001 National Land 
Cover Database for the Conterminous United States. Photogrammetric Eng. and 
Remote Sens. Vol 73(4). pp 347-341. 

 
Holmes, TP, RJ Huggett Jr., AL Westerling. 2008. Statistical analysis of large wildfires.  

In “The Economics of Forest Disturbances: Wildfires, Storms, and Invasive 
Species”. ed. by TP Holmes et al. Springer. pp 59-77.  

 
Jolly WM, MA Cochrane, P.H. Freeborn, Z.A. Holden, T.J. Brown, G.J. Williamson, and  

D.M.J.S. Bowman. 2015. Climate-induced variations in global wildfire danger 
from 1979 to 2013. Nature Comm. 6. 
	

Keane, R.E., K.C. Ryan, T.T. Veblen, et al. 2002. Cascading effects of fire exclusion in  
Rocky Mountain Ecosystems: A literature review. Gen. Tech. Report. RMRS-
GTR-91. Fort Collins, CO: U.S. Dept. of Agr. Forest Service, Rocky Mountain 
Research Station. 24pp.  

 
Keane, R.E., Holsinger, L.M., Pratt,  S.D. 2006. Simulating historical landscape  

dynamics using the landscape fire succession model LANDSUM version 4.0. 
Gen. Tech. Rep. RMRS-GTR-171CD. Fort Collins, CO: U.S. Department of 
Agriculture, Forest Service, Rocky Mountain Research Station.  73 p. 

	
Keane, R.E., M. Rollins, Z. Zhu. 2007. Using simulated historical time series to prioritize  

fuel treatments on landscapes across the United States: The LANDFIRE 
prototype project. Ecol. Modelling. 204:485-502. 

 
Laverty, L. and J. Williams. 2000. Protecting people and sustaining resources in fire- 



	

	

49	

adapted ecosystems—a cohesive strategy. Forest Service Response to GAO 
Report GAO/RCED, 99-65. USDA Forest Service, Washington, D.C. 
 

Liang, X., D.P. Lettenmaier, E.F. Wood, and S.J. Burges. 1994. A simple hydrologically  
based model of land surface water and energy fluxes for general circulation 
models. J. of Geophys. Res. 99(D7): 14,415-14,428.   

	
Littell, J. S., McKenzie, D., Peterson, D. L. and Westerling, A. L. 2009. Climate and  

wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecol. App. 19: 
1003–1021.  
 

Maurer, E., A. Wood, J. Adam, D. Lettenmaier, and B. Nijssen, 2002: A Long-Term 	
Hydrologically Based Dataset of Land Surface Fluxes and States for the 
Conterminous United States. J. Climate, 15, 3237–3251. 

 
McKelvey, K.S., C.N. Skinner, C. Chang, D.C. Et-man, et al. 1996. An overview of fire in  

the Sierra Nevada. In Sierra Nevada Ecosystem Project: Final Report to 
Congress, vol II, Assessments and scientific basis for management options. 
Davis: University of California, Centers for Water and Wildland Resources.  

 
Miller, J.D., H.D. Safford, M. Crimmins, A.E. Thode. 2009. Quantitative evidence for  

increasing forest fire severity in the Sierra Nevada and Southern Cascade 
Mountains, California and Nevada, USA. Ecosystems. 12: 16-32. 

 
Miller, J.D., and H. Safford. 2012. Trends in wildfire severity: 1984 to 2010 in the Sierra  

Nevada, Modoc Plateau, and southern Cascades, California, USA. Fire Ecology 
8(3): 41-57.  

	
Mitchell K.E., D. Lohmann, P.R. Houser, E.F. Wood, J.C. Schaake, et al. 2004. The  

multi-institution North American Land Data Assimilation System (NLDAS): 
Utilizing multiple GCIP products and partners in a continental distributed 
hydrological modeling system. J Geophys Res 109:D07S90.  

	
Moody, T.J., J. Fites-Kaufman, S.L. Stephens. 2006. Fire history and climate influences  

from forests in the northern Sierra Nevada, USA. Fire Ecology. 2(1):115-142. 
	
MTBS Data Access: Fire Level Geospatial Data. (2009, November - last revised). MTBS 	

Project (USDA Forest Service/U.S. Geological Survey). Available online: 	
            http://mtbs.gov/dataquery/individualfiredata.html [2009, December 12]. 	

Parsons, D.J. and S.H. DeBenedetti. 1979. Impact of fire suppression on a mixed-conifer  
           forest. For. Ecol. and Manage. 2:21-33. 

Pratt, S., L. Holsinger, R.E. Keane. 2006. Using simulation modeling to assess historical  
reference conditions for vegetation and fire regimes for the LANDFIRE Prototype 
Project.  In Rollins, M.G., C.K. Frame. Tech eds. 2006. The LANDFIRE Prototype 
Project: nationally consistent and locally relevant geospatial data for wildland fire 
management. Gen. Tech. Rep. RMRS-GTR-175. Fort Collins: U.S. Department 
of Agriculture, Forest Service, Rocky Mountain Research Station.  



	

	

50	

 
Preisler, H.K. and A.L. Westerling. 2007. Statistical Model for Forecasting Monthly Large  

Wildfire Events in Western United States. J. of App. Meteo. and Clim. 46:1020-
1030.   

 
R Core Team. 2015. R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. URL 
   http://www.R-project.org/. 
 
Steel, Z. L., H. D. Safford, and J. H. Viers. 2015. The fire frequency-severity relationship 	

and the legacy of fire suppression in California forests. Ecosphere 6(1):8.	
 
Stephens, S.L. 2005 Forest fire causes and extent on United States Forest Service  

lands. Int. J. of Wildland Fire. 14: 213-222. 
 
Stephens, S.L. and L.W. Ruth. 2005. Federal forest-fire policy in the United States.  

Ecological Applications. 15(2): 532-542. 
 
Stephenson, N. 1998. Actual evapotranspiration and deficit: biologically meaningful  

correlates of vegetation distribution across spatial scales. J. of Biogeography, 25: 
855–870.  
 

Swetnam, T.W. and R.S. Anderson. 2008. Fire Climatology in the western United States:  
introduction to special issue. Int. J. of Wildland Fire. 17:1-7.  

 
Swetnam, T. and Baisan, C. 1996. Historical fire regime patterns in the southwestern  

United States since AD 1700. In: CD Allen (ed) Fire Effects in Southwestern 
Forests: Proceedings of the 2nd La Mesa Fire Symposium, pp. 11-32. USDA 
Forest Service, Rocky Mountain Research Station, General Technical Report 
RM-GTR-286. 

 
Westerling, A.L., H.G. Hidalgo, D.R. Cayan, T.W. Swetnam. 2006. Warming and earlier  

spring increase western U.S. forest wildfire activity. Science. 313:940-943. . 
 
Westerling, A.L., B.P. Bryant, H.K. Priesler, H.G. Hidalgo, et al. 2009. Climate change,  

growth, and California wildfire. A Paper From: California Climate Change Center. 
CEC-500-2009-046-D. 28pp. 
 

Westerling, A.L., M.G. Turner, E.H. Smithwick, W.H. Romme, M.G. Ryan 2011a:  
"Continued warming could transform Greater Yellowstone fire regimes by mid-
21st Century" Proceedings of the National Academy of Sciences, 108(32),13165-
13170. 

 
Westerling, A.L., B.P. Bryant, H.K. Preisler, T.P. Holmes, H. Hidalgo, T. Das, and S.  

Shrestha. 2011b. Climate Change and Growth Scenarios for California Wildfire. 
Climatic Change, 109(s1): 445-46 
 

Westerling A.L. 2016: Increasing western US forest wildfire activity: sensitivity to  
changes in the timing of spring. Phil. Trans. R. Soc. B. 371: 20150178. 



	

	

51	

 
3.8 Tables 
 
Table 3.8.1 Pearson’s correlation coefficients for high severity hectares burned and 
fraction of high severity hectares burned to total fire hectares. * p values < 0.05. 
 

                  

Correlation
Parameter r p

Westwide
High Severity Acres 0.84 <0.001*
Proportion High Severity 0.12 <0.001*

Arizona
High Severity Acres 0.81 <0.001*
Proportion High Severity 0.12 0.0169*

California
High Severity Acres 0.83 <0.001*
Proportion High Severity 0.21 <0.001*

Colorado
High Severity Acres 0.93 <0.001*
Proportion High Severity 0.09 0.4343

Idaho
High Severity Acres 0.93 <0.001*
Proportion High Severity 0.14 0.002*

Montana
High Severity Acres 0.80 <0.001*
Proportion High Severity 0.07 0.2021

New Mexico
High Severity Acres 0.84 <0.001*
Proportion High Severity 0.10 0.09242

Nevada
High Severity Acres 0.94 <0.001*
Proportion High Severity -0.03 0.802

Oregon
High Severity Acres 0.93 <0.001*
Proportion High Severity 0.03 0.6609

Utah
High Severity Acres 0.45 <0.001*
Proportion High Severity -0.01 0.9469

Washington
High Severity Acres 0.79 <0.001*
Proportion High Severity 0.12 0.176

Wyoming
High Severity Acres 0.93 <0.001*
Proportion High Severity 0.13 0.1743
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Table 3.8.2. Results from trend analysis of total annual high severity hectares burned 
and annual count of fires with high severity hectares > 200 (Count) for the period 1984-
2014. * p <0.05.  We looked for trends in all forest fires in the western US and for trends 
in forest fires by state. Standard Error values are in parentheses. 
 

                
 
 

Parameter Slope p

Westwide
High Severity Acres 6412 (4586) 0.173
Count Over Threshold 1.11 (0.53) 0.047*

Arizona
High Severity Acres -417.7 (720.5) 0.567
Count Over Threshold 0.05 (0.01) 0.309

California
High Severity Acres 2402 (1352) 0.086
Count Over Threshold 0.12 (0.18) 0.530

Colorado
High Severity Acres 181.1 (357.6) 0.619
Count Over Threshold 0.07 (0.06) 0.259

Idaho
High Severity Acres 2591 (1490) 0.093
Count Over Threshold 0.20 (0.14) 0.162

Montana
High Severity Acres -349.5 (1315.4) 0.793
Count Over Threshold -0.22 (0.19) 0.253

New Mexico
High Severity Acres 471.2 (319.4) 0.152
Count Over Threshold 0.01 (0.06) 0.907

Nevada
High Severity Acres -43.24 (241.76) 0.860
Count Over Threshold 0.02 (0.04) 0.723

Oregon
High Severity Acres -1129.5 (745.6) 0.141
Count Over Threshold -0.03 (0.08) 0.740

Utah
High Severity Acres 412.4 (481.8) 0.403
Count Over Threshold 0.16 (0.14) 0.248

Washington
High Severity Acres 117.7 (412.4) 0.778
Count Over Threshold -0.02 (0.05) 0.743

Wyoming
High Severity Acres -347.7 (4356.7) 0.933
Count Over Threshold 0.24 (0.10) 0.039*
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Table 3.8.3. Results from trend analysis of total annual high severity hectares burned 
and annual count of fires with high severity hectares > 200 (Count) for the period 1984-
2014. *p <0.05.  We looked for trends in all forest fires in the western US and for trends 
in forest fires by modeled sub-region. Standard Error values are in parentheses. 
  

 
 
 
 
 

Slope p 

Westwide
High Severity Acres 6412 (4586) 0.173
Count Over Threshold 1.11 (0.53) 0.047*

Northern Rocky Mountains
High Severity Acres 53.18 (3408.92) 0.988
Count Over Threshold 0.44 (0.30) 0.150

Sierra Nevada Mountains
High Severity Acres 205.3 (411.1) 0.621
Count Over Threshold 0.07 (0.06) 0.280

Southwest 
High Severity Acres -111.0 (930.6) 0.906
Count Over Threshold -0.05 (0.10) 0.649
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Table 3.8.4. The final predictor variables for the logistic regression (presence/absence) and generalized Pareto distribution 
(GPD) models for the western US and three sub-regions. 

Variable Description

Westwide 
logistic 
regression

Westwide 
GPD

NR logistic 
regression NR GPD

SW logistic 
regresssion SW GPD

SN logistic 
regression SN GPD

Elevation

   Minimum ✓ ✓
   Maximum ✓ ✓
   Mean ✓ ✓
Slope ✓ ✓

1961-1990:
   Cumulative water year moisture  
deficit, standard deviaiton ✓
   Cumulative water year 
evapotranspiration, mean ✓
   Average temperature, mean ✓ ✓ ✓
   Average temperature, std.devn. ✓ ✓ ✓

Month of Fire:

   Maximum temperature ✓ ✓ ✓ ✓ ✓
   Average spring temperature ✓ ✓ ✓ ✓
   Average relative humidity ✓ ✓
   March snow water equivalent ✓
   April snow water equivalent ✓
   Moisture deficit June ✓
   Moisture defiict July ✓

Fraction of FRCC1 ✓ ✓
Fraction of FRCC2 ✓
Fraction of FRCC3 ✓ ✓ ✓

Month of fire normalized moisture 
deficit ✓ ✓
Normalized cumulative water year 
moisture defiicit ✓ ✓ ✓ ✓ ✓
Latitude-longitude spline ✓ ✓ ✓ ✓ ✓ ✓
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3.9 Figures 

	
Figure 3.9.1 Fire perimeters of large fires 1984-2006.  Forested areas are green. Three 
model development sub-regions are outlined: the Northern Rocky Mountains (MT, ID, 
WY), the Sierra Nevada Mountains (CA), the Southwest (AZ, NM).   
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Figure	3.9.2	Total	area	burned	vs.	high	severity	area	burned	for	all	fires	in	the	
western	US,	1984-2014.	Blue	line	is	linear	model	fit	to	the	data.		
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Figure 3.9.3. Annual number of fires with high severity area exceeding the 200 hectare 
threshold for 1984-2014 for all fires in the western US.  The blue line is a fit of the 
statistically significant trend in number of high severity fires. 	
 
 
 
 
	

1985 1990 1995 2000 2005 2010 2015

20
40

60
80

10
0

Year

C
ou

nt
 H

ig
h 

S
ev

er
ity

 F
ire

s
p=0.05



	

	

58	

	

	
Figure 3.9.4. Frequency of fires above and below our 200 hectare threshold for each 
state. Green bars are the annual number of large fires with no presence of high severity 
fire; purple bars are the annual number of large fires classified as high severity, i.e. high 
severity hectares exceeding the 200 hectare threshold.  
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Figure 3.9.5 Frequency of fires by severity class for May (5) – October (10). Green bars 
are the annual number of large fires with no presence of high severity fire; purple bars 
are the annual number of fires classified as high severity, with high severity hectares > 
200 hectare threshold. June, July, and August all experienced statistically significant 
increases in number of high severity fires from 1984-2014 (p = 0.015, p=0.043, p=0.057, 
respectively). 
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Figure 3.9.6. Sierra Nevada annual minimum high severity fraction for years 1984-2014 
with trend line in blue.  
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Figure 3.9.7 a) Probability of occurrence of high severity fire >200 hectares vs. observed fraction from logistic regression analysis 
for the Western US. b) Predicted vs. observed annual number of fires meeting threshold of 200 hectares. 
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Figure 3.9.8. Observed high severity hectares burned (line) versus 1000 simulations generated with a generalized Pareto 
Distribution with covariates for a) the Western United States, b) the Northern Rocky Mountains, c) the US Southwest, d) the 
Sierra Nevada Mountains. Developing regional models improved predictions for years with regionally specific high severity fire 
occurrence: 1988 and 2000 for the Northern Rocky Mountains, 2002 for the Southwest, and 1987 for the Sierra Nevada. 
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Figure 3.9.9 From logistic regression, the predicted probability vs. observed fraction of 
high severity fire burned area > 200 hectare for a) Western US b) Northern Rocky 
Mountains c) Southwest d) Sierra Nevada Mountains 
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4     How will climate change impact high severity burned area in 
the Greater Yellowstone Ecosystem? 
 
4.1 Abstract 
 
Fire season length and large fire occurrence and area burned have increased in recent 
decades. These increases are expected to continue with climate change, and are 
concomitant with forests that have a buildup of fuels due to fire suppression. How fire 
size and severity will respond to climate change is uncertain. The western United States 
is expected to get warmer, with the Northern Rocky Mountain region expected to get 
drier as well. Application of output from global circulation models to large fire occurrence 
and size models in the Greater Yellowstone Ecosystem indicates that climate conditions 
by mid-century will result in an increase in the frequency of large fire events and area 
burned. 1988 was an extreme year in terms of historic climate and fire activity in the 
Yellowstone ecosystem, but years like it will be common by mid-century. We applied 
GCM output to a set of probabilistic models for high severity occurrence and burned 
area for the Greater Yellowstone Ecosystem. We found that fraction of high severity 
burned area increases to levels by mid-century that are three times greater than a 1961-
1990 reference period. These potential changes in high severity area burned and 
frequency of occurrence may result in changes to species composition in these high 
elevation forests.  
 
4.2 Introduction 
 
Recent decades have seen an increase in the length of the fire season and occurrence 
and size of large fires in the western United States (US; Dennison et al. 2014, Jolly et al. 
2016, Littell et al. 2009, Westerling et al. 2006, Westerling 2016). Climate change 
models predict rising temperatures and moisture deficit across the region, increasing the 
likelihood of large fire occurrence.  
 
Westerling et al. (2011) applied probabilistic models of large fire occurrence and area 
burned to climate change scenarios for the Greater Yellowstone Ecosystem (GYE). They 
found that fire area burned increased across the region for three different general 
circulation model (GCM) scenarios. 1988 was a unique year in terms of fire area burned 
in the GYE, with no other year in the recent historical or modern record surpassing it 
(Despain et al. 1989, Romme and Despain 1989, Schoennagel et al. 2003, Romme et al. 
2011). The most recent fire equivalent in size occurred in the 1700’s; the fire return 
interval is ~300 years for most of the forests in the GYE. Westerling et al. (2011) found 
that fire season comparable to 1988 conditions will occur more frequently by midcentury.  
 
An important component of how ecosystem fire regimes will be impacted by climate 
change is fire severity. Fire suppression resulted in an increase in fuels in many 
ecosystems of the western US, increasing the risk of high severity fire (Keane et al. 
2002). High severity area has also been found to correlate to fire size in some regions 
(Cansler et al. 2014, Chapter 3). We found that high severity fire occurrence and area 
burned can be predicted with topographic, vegetation and climate variables across the 
western US, with some regional differences in predictor composition (Chapters 2 and 3). 
For years that are extreme in terms of fire size and high severity area burned, fire year 
climate variables were critical to model fit. 
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Here we use the fire size predictions for the GYE in Westerling et al. (2011) to explore 
how climate change might impact high severity area burned in this ecosystem. Because 
our models are conditional on a large fire occurring, we are using existing data that will 
provide us with a statistical probability of large fire occurrence to constrain our model 
predictions to future potential.   
 
4.3 Methods 
 
4.3.1 Study Area 
  
The Greater Yellowstone Ecosystem (GYE), covering approximately 80,000km2, sits at 
the intersection of the northwest corner of Wyoming, Montana and Idaho. It is centered 
on Yellowstone National Park, additionally encompassing Grand Teton National Park 
and multiple national forests (Figure 4.7.1). Much of the GYE is forested, with lodgepole 
pine (Pinus contorta var. latifolia Engelm.), Englemann spruce (Picea engelmanii), 
subalpine fir (Abies lasiocarpa), and whitebark pine (Pinus albicaulis) dominating higher 
elevations and Interior Douglas-fir (Pseudotsuga menziesii) the lower elevations.  
 
4.3.2 Climate and Hydrologic Data 
 
We used the Variable Infiltration Capacity model (VIC) to generate a suite of 
hydroclimate predictor variables, as in Chapters 2 and 3 (Liang et al. 1994). The set of 
predictors includes monthly climate, snow water equivalent, evapotranspiration (ET) and 
moisture deficit (MD) variables. We also created a two dimensional surface spline of 
latitude and longitude to use as a smoothed spatial dummy variable for site-specific 
characteristics (as in Preisler and Westerling 2007, Chapter 3).  
 
We used temperature and precipitation inputs to force the VIC model that were output 
from the Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1 GCM scenario 
downscaled to 1/8th degree from the Intergovernmental Panel on Climate Change Fourth 
Assessment, medium high (SRES A2) emission pathway (IPCC 2007; for fuller 
description see Westerling et al. 2011). We chose the GFDL CM2.1 for this study as it 
was used in Westerling et al. (2011) to generate estimates of area burned. We clamped 
all predictor variables to fall within the range of historical values over the GYE.  
 
4.3.3 Large fire occurrence modeling 
 
Our GCM driven VIC output provides 147 years of monthly data, 1953-2099. Westerling 
et al. (2011) developed probabilistic statistical models of large fire occurrence for the 
GYE in a changing climate. A logistic regression model predicts the probability of large 
(>200ha) fire occurrence for each voxel (latitude, longitude, month, year); a Poisson log-
normal model predicts the number of large fire occurrences conditional on one 
occurrence. Last, the area burned in large fires is predicted using a generalized Pareto 
distribution (GPD) fit to observed historical fires over the 200ha threshold (see 
Westerling et al. 2011). The overall approach for predicting large fire occurrence is: 
 

Expected Area Burned = P(Θ (X)) * Ĉ( Θ| fire>0) * Â(X | fire=1) 
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Where Θ is the estimator of a logistic regression on variables X, and P is the probability 
of fire where 

P = exp(Θ)/(1+exp(Θ)), 
  
Ĉ (Θ| fire>0) is the expected number of fires given one occurrence via a Poisson 
lognormal model on Θ; and Â is the expected burned area per fire estimated by a GPD 
with covariates X, given at least one large fire. For each month in 147 years, one 
thousand draws were made from the binomial (logistic), GPD, and Poisson (count) 
distributions for each GCM output set. These outputs then provided the framework for 
modeling high severity fire occurrence and area burned.  
 
As the severity models developed here are conditional on a large (400 ha/1000 acre) fire 
occurring, we first had to determine the probability of large fire occurrence and predicted 
fire size. From the 1000 simulation output of the Westerling GPD model, we counted 
how many times each month that a fire > 400ha burned; we also summed the total area 
burned in fires > 400ha for each month. This gave us estimates for occurrence of large 
fire and total area burned.  
 
4.3.4 High severity burned area modeling 
 
We first fit a logistic regression model to our Northern Rocky Mountain (NRM) fire 
severity data to determine probability of high severity occurrence within a large fire (see 
Chapter 3). Our criterion for presence of high severity area here is 200ha (500acre), the 
threshold for the GPD modeling. Using the logistic regression model from Chapter 3, we 
estimated the probability of high severity acres exceeding 200ha with a thousand draws 
from the binary distribution for each month, 1953-2099, using future climate predictors.  
 
We then ran 1000 simulations with our NRM GPD model for each month; any output that 
was greater than the largest high severity burned area in the historical record was 
clamped to that historical maximum. The GPD model used in this analysis is modified 
from the model developed for the Northern Rocky Mountains in Chapter 3 by the 
removal of the relative humidity parameter. Removing relative humidity decreases model 
skill in predicting high severity area burned in the two large fire years in the Northern 
Rocky Mountains, 1988 and 2000. We removed this variable due to concerns with how it 
is calculated in the VIC hydrologic model; the relationship used is invalid for use with 
GCM model output due to the radiative properties assumption (personal communication 
Westerling, Pierce et al. In revision). 
 
After we created a set of 1000 simulations from our two models for estimating high 
severity area burned, we combined them with the predicted models for fire area burned 
to predict potential high severity area burned and fractional high severity area burned for 
each month. The overall model framework is: 
 

Estimated High Severity Area Burned (HSBA) = Ph(θ(X)|N>0) * Âh(X’ | N>0), 
 
where Θ is the estimator of the logistic regression on X and Ph is the probability of high 
severity area  > 200ha where 
 



	

	

67	

Ph = exp(Θ)/(1+exp(Θ)), 
 
 N is the count of Estimated Area Burned (EAB) > 400ha; Âh is the estimated high 
severity area burned per fire with covariates X’. We randomly sampled N probability and 
high severity area burned values from our 1000 simulations and estimated high severity 
area burned for each month. We divided our estimates of HSBA by the total area burned 
in N fires > 400ha from the EAB data to derive an estimate of fractional high severity 
burned area for each month.  
 
We calculated averages for the following time periods: 1961-1990, 2005-2034, 2035-
2064, 2070-2099 to look at changes in high severity burned area and fraction through 
time. We calculated 30year mean values for each pixel, and used 1961-1990 as a 
reference period to estimate relative differences.  
 
4.4. Results and Discussion 
 
The distributions of large fire (> 400ha) occurrences and fraction HSBA increased 
consistently for each summary period (Figure 4.5.3). In the 1961-1990 reference period, 
the maximum 30 year average fraction of HSBA was 15% (note that individual voxel 
values were greater, up to 100%) and by the end of the century the maximum 30 year 
average was 54%; the mid century maximum was 33% (Figure 4.5.4). Results past mid-
century cannot be considered realistic as our model does not incorporate changes in 
landscape composition due to time or disturbance; the impacts of both will be evident by 
the mid-21st century. 
 
By mid-century 50% of the GYE could experience a three-fold increase in fractional 
HSBA; this number increases to five-fold by the end of the century (Figure 4.5.5). The 
greatest increase in fractional HSBA occurs the southeast region of the GYE. 
High elevation spruce-fir forests dominate this area. The historical fire regime of most of 
the high elevation forests in the GYE is one of infrequent stand replacing fires (~300yr 
interval), generally controlled by top down factors (Romme and Despain 1989, 
Schoennagel et al. 2003). Fuels are abundant in these systems, but are rarely dry 
enough to burn except under extreme climatic conditions. The large increase in 
fractional HSBA predicted for these regions indicates that climatic conditions which were 
once rare will become much more common.  
 
The 1988 fires had the largest high severity area burned in our historical fire severity 
record, yet the fraction high severity was only 0.45. The scale of the 1988 fires was not 
unprecedented for this region, but the most similar prior event occurred in the 1700’s 
(Romme and Despain 1989). While extreme climate conditions made the scale of the 
1988 fires possible, bottom up controls of topography and fuels mediated burn severity 
resulting in a mosaic of fire severity on the landscape (Christensen et al. 1989, Romme 
and Despain 1989, Romme et al. 2011, Turner et al. 1994).  
 
The models used to predict large fire occurrence indicate a significant decrease in the 
fire return interval and fire rotation by mid-century (Westerling et al. 2011). With the 
return interval of large fires shortening, and the fraction of high severity acres within 
them increasing, there is likely to be a disturbance driven shift in vegetation composition 
on the landscape. 
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Both the time between and severity of fires impact vegetation composition and structure 
and fuel availability. High severity fires result in new stand establishment. If fires return 
before trees become large enough to survive, even a low intensity fire could result in 
repeated stand replacement and/or a shift in vegetation composition. The predicted 
changes in fire rotation by mid-century along with our predicted changes in high severity 
fraction are dependent on fuel availability, which is not represented dynamically in our 
models. Using a forest succession and disturbance model, Henne et al. (2016) found 
that a future with increased fire frequency and area burned resulted in an overall shift to 
younger stands across the GYE, from mean ages of 112-191 years (historical fire 
frequency) to 31-92 years. They also predicted expansion of lodgepole pine (Pinus 
contorta) stand area and contraction of spruce-fir (Picea engelmanii - Abies lasiocarpa) 
stand area.  
 
Disturbance will not be the only driver of future vegetation change; climate change will 
also impact vegetation through modification of site potential. A future that is warmer and 
drier in the GYE will likely result in a shift in species distribution. Habitat suitable for 
current subalpine species, especially whitebark pine (Pinus albicaulis) is likely to shrink 
(Bartlein et al. 1997, Schrag et al. 2007, Chang et al. 2014, Hansen et al. 2016). Lower 
elevation sites could support new tree species and/or expansion of existing ponderosa 
pine (Pinus ponderosa) habitat. It is likely that the combination of warmer drier climate 
combined with increased fire frequency and severity will result in a shift of tree species 
composition in the GYE. Models with disturbance and climate change driven vegetation 
changes both indicate a decrease in habitat suitability for subalpine species and an 
increase in habitat for species suited to warmer and drier climates with more frequent 
fire return. How the two will feedback on one another is unknown. 
 
Parks et al. (2016) developed a statistical model for high severity fire occurrence using 
actual evapotranspiration and climatic water deficit (WD, analogous to our moisture 
deficit variable) and used it to predict changes in fire severity in a changing climate. They 
found that future increases in WD resulted in a decrease in the probability of high 
severity fire occurrence. They interpret increases in WD across the western US to be a 
proxy for changes in vegetation, namely lower vegetation productivity leading to less fuel 
biomass. The findings of Parks et al. (2016) contrast with our prediction of an increase in 
high severity fire area fraction, though both models are primarily constructed with 
climatic predictors. Unlike our results, Parks et al. (2016) estimated probabilities for two 
time periods, historic and end of century, and calculated the difference. Our models are 
generating probabilities through time. In essence Parks et al. (2016) are describing 
where changes in fire severity risk might terminate, but our models are describing how 
severity might change through time. 
 
A limitation of our approach is that we do not account for vegetation changes due to fire 
or climate change. The inputs to the VIC hydrologic model include a static vegetation 
layer. Sensitivity analyses performed on VIC to test the impact of changes in vegetation 
also did not have a significant impact on total moisture deficit output (Westerling, 
personal communication). Our HSBA models for the Northern Rockies have only one 
predictor related to vegetation, normalized cumulative moisture deficit for the 1961-1990 
period. Our models are primarily driven by climate, so changes in vegetation due to 
climate change are not likely to influence our prediction for HSBA.    
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4.6 Conclusions and Future Research 
 
Historical high severity burned area in the Northern Rocky Mountains was predominantly 
controlled by climate. Application of our high severity burned area prediction models 
using the GFDL A2 scenario results in a significant increase in the fraction of high 
severity burned area over the GYE in the 21st century. The GFDL model used produces 
a hotter and drier future for this region than other GCMs, so our results reflect a worse 
case scenario.  
 
We will improve this application by using three GCM models to produce a range of 
possible future scenarios. We will also use the most recent IPCC GCM model outputs 
(AR5). We will be able to refine the scale of analysis as we have these data, and 
resulting VIC model outputs, downscaled to 1/16th degree. Application of our model 
outputs should produce better quality predictions of high severity burned area given the 
importance of within year climate variables in our model.  
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4.5 Figures  

	
Figure 4.5.1. Locations of historical large fires used to create statistical models for the 
Northern Rocky Mountains. Inset map of existing vegetation in the Greater Yellowstone 
Ecosyst
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Figure 4.5.2. Boxplot of 1000 draws from the generalized Pareto distribution for the 
Northern Rocky Mountain generalized Pareto distribution model. (See Chapter 3 for 
details on model development). 
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Figure 4.5.3 Distribution of 30year average fraction high severity area burned for 1961-
1990 reference period (blue), 2005-2034 (green), 2035-2064 (orange), 2070-2099 (red)
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Figure 4.5.4. Change in high severity burned area fraction from the 1961-1990 reference 
period for 2005-2034, 2035-2064, 2070-2099. 
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Figure 4.5.5. Spatial distribution of changes in high severity burned area relative to the 1961-1990 reference period. 
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5     Conclusion 
 
The overall objective of my dissertation was to understand recent patterns of fire severity 
in the western US in order to inform potential management decisions. A long history of 
fire suppression has led to fuel buildup in many ecosystems in the western US, 
increasing risk of severe fire; I therefore focused my objectives on high severity fire 
occurrence and area burned. I first sought to develop predictive models of high severity 
occurrence using topography, vegetation, and climate. A secondary objective was to 
determine relative importance of these three predictor classes. Success in predicting 
occurrence led to predicting area burned in high severity fire. With successful 
probabilistic models of high severity fire occurrence and area burned, I explored the 
impact of climate change on high severity fire risk for the Greater Yellowstone 
Ecosystem.  
 
The only trend I found in high severity metrics was in the number of fires that had more 
than 200ha burned in high severity; high severity area burned is also positively 
correlated with total area burned. I can’t attribute any increase in severe fire due to past 
fire suppression from my data. The record of high severity fire is likely too short to record 
a significant trend in high severity burned area. Without a longer record of severity, we 
can’t with certainty say whether the amount of severity has increased significantly. I also 
included every large fire in the MTBS data in the analysis. For many ecosystems in the 
WUS, enough fire cycles may have been missed due to fire suppression by the time our 
fire severity record began to impact fuel availability and severity, while others would not 
have missed any.  
 
In Chapter 2, I found that it was possible to predict the annual number of high severity 
fire occurrences using logistic regression. High severity fire occurrence is driven by 
large-scale biophysical factors, but the inclusion of fire year climate was crucial for 
capturing years with a large number of high severity fire occurrences and fires with high 
fractional fire severity. The inclusion of inter-annually varying predictors was especially 
important for capturing high probability episodes in areas where severity is highly 
variable—California and the Southwest. While removal of fire year climate variables 
impacted successful prediction of high severity fire occurrence, removal of vegetation 
variables had minimal impact on model skill.  My findings on the importance of fire year 
climate (top down control) are in contrast to smaller scale regional studies that found 
bottom-up factors largely determined high severity fire occurrence.  
  
Success in developing a west-wide model for high severity fire occurrence was not 
matched in Chapter 3. Development of one model for predicting high severity area 
burned in forests was successful for all years except those with very large high severity 
area burned, 1988 and 2002. My ability to accurately predict high severity area burned in 
forests in extreme fire years required creating regional models that are more complex 
than the west-wide model. As with Chapter 2, fire year climate variables were more 
important than vegetation variables in predicting years with large area burned in high 
severity. The fire year climate variables important for predicting high severity area 
burned were regionally specific, but most are readily available. Climate change will likely 
result in climate conditions that will increase potential high severity area burned that was 
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historically infrequent. The availability of climate variables important to our models will 
facilitate forecasting of future risk of high severity forest fire. 
 
Historical high severity burned area in the Northern Rocky Mountains was predominantly 
controlled by climate. When I simulated future potential for high severity fire in the 
Greater Yellowstone Ecosystem (GYE), I found a significant increase in the fraction of 
high severity burned area in the 21st century. The climate in the GYE will be significantly 
warmer and drier than the historical record, and these increases could result in a three-
fold increase in fractional high severity area burned. The increases are largest in high 
elevation spruce fir forests; the combination of disturbance and climate change will likely 
result in changes in species composition in this ecosystem in the future.  
 
The most important finding in my dissertation is the importance of within year climate for 
predicting high severity fire, especially in extreme fire years. I was able to successfully 
model both high severity fire occurrence and high severity burned area for all fires and 
forest fires, respectively, in the western US. The significant trend in the number of fires 
meeting our severity threshold indicates that there is an overall increase in the number 
of large severe fires since 1984. It is likely that warmer, drier future fires seasons will 
continue to see more large severe fires. Most of the variables that were important in the 
best fit models are readily available, meaning that we can use our models to forecast 
future fire severity and how high severity area burned might change in a changing 
climate. If a goal of management is to mitigate extreme fire events in terms of fire 
severity, then knowledge of fire year climate and its effect on fire severity is essential. 
 
 
 
 




