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Abstract

Inaccuracy in weather forecasts and the impacts on pre-
dictive control systems are not yet well understood. This
study evaluates weather forecast errors for U.S. Depart-
ment of Energy reference cities and quantifies impacts
on predictive control for dynamic facades. A stochastic
noise algorithm emulated the forecast errors in simula-
tion. Imperfect forecasts increased average electric cost
by 13.3 % and glare index by 41.5 %, indicating that
forecast error significantly decreases performance. How-
ever, bias correction largely mitigated the performance
impacts to 0.0 % for electricity cost and 3.0 % for glare
index. Future work developing practical bias-correction
implementation methods is needed.

Introduction

Predictive control systems take weather forecasts into
consideration when computing optimal control setpoints.
These systems have the potential to (a) substantially re-
duce building energy consumption, (b) increase occu-
pant comfort, and (c) support grid balancing goals (Kil-
lian and Kozek 2016). However, since they depend
on weather forecasts they are sensitive to inaccuracies.
Therefore, understanding the performance impact when
provided with realistic, imperfect weather forecasts is
critical.

Model Predictive Control (MPC) is a type of predictive
controller that utilizes weather forecasts, mathematical
system models, and an optimization algorithm to com-
pute optimal setpoints for building devices. The pre-
diction horizon is typically set between 1 to 24 hours,
depending on the application. The setpoints are re-
evaluated periodically as new building states and weather
forecasts become available. One example of MPC is
controlling dynamic facades to reduce building operat-
ing costs and associated emissions. The MPC must bal-
ance those energy goals with glare minimization, which
is critical for occupant satisfaction. Prior research has
shown that this approach can reduce building HVAC and
lighting costs by 18.2 to 34.1 (median 27.1) % relative to
standard windows with static interior shades (Gehbauer
et al. 2020). Historical weather data is commonly used

when developing MPCs, but there can be large errors
in real weather forecasts. This leads to the problem of
developing a controller that performs well in the ideal-
ized case of using perfect weather forecasts, but may not
perform as well in practical applications with imperfect
weather forecasts.

The most advanced weather forecasting model available
in the continental United States is the National Oceanic
and Atmospheric Administration’s (NOAA’s) High Res-
olution Rapid Refresh (HRRR) model. It utilizes a 3
km? resolution, is updated hourly, and provides up to 48
hour forecasts (Weygandt 2009). HRRR forecasts still
are not perfect. Griffin et al. found that HRRR tends
to underpredict cloud cover early in the forecast horizon,
and to have seasonal variations in prediction accuracy
(Griffin et al. 2017). Lee et al. found that HRRR fore-
casts for Belle Mina and Cullman, Alabama were very
accurate for surface air temperature (R2<0.95), but not
as accurate for solar radiation (R2220.7) (Lee et al. 2019).
Rogers et al. compared HRRR solar irradiation forecasts
to U.S. Surface Radiation Network (SURFRAD) data
and found a relationship between irradiation forecast er-
ror and periods of maximum cloud variability (Rogers
etal. 2012) (SURFRAD 2022). (Werth and Garret 2011)
and (Hagedorn, Hamill, and Whitaker 2008) showed that
most weather forecast error stems from the first hour of
the forecast implying that bias correction, removing the
error at the first hour from all hours in the forecast, can
increase weather forecast accuracy.

Prior studies have demonstrated the potential for MPC
to reduce building energy consumption. Siroky et al.
demonstrated the potential for MPC by saving between
15 and 18 % on HVAC energy in a building on Czech
Technical University Campus in Prague (Siroky et al.
2011) while assuming perfect weather forecasts. Dong
and Lam developed and tested a nonlinear MPC in the
Solar House at University of Texas which assumed per-
fect forecasts and demonstrated 30.1 % heating and 17.8
% cooling energy savings. Some prior efforts have
explored the impacts of forecast error. Petersen and
Bundgaard compared the performance of a simulated
MPC with perfect weather forecasts to the same sim-



ulated MPC with real weather forecasts in Denmark,
and found that MPC performance with imperfect fore-
casts was sensitive to thermal mass in the building (Pe-
tersen and Bundgaard 2014). Oldewurtel et al. devel-
oped a stochastic MPC designed to overcome the limi-
tations of imperfect weather forecasts using chance con-
straints and affine disturbance feedback in the European
context (Oldewurtel et al. 2012). Hedegaard et al. de-
veloped a method of estimating site weather data, en-
abling bias-correction of weather forecasts, using a com-
bination of several nearby weather stations (Hedegaard
et al. 2018). While Oldewurtel and Hedegaard present
a valuable path forward, neither of them evaluated the
uncertainty in weather forecasts from the HRRR model
in the U. S. context, evaluated the impact of that uncer-
tainty on MPC controlling dynamic facades, or quanti-
fied the improvements caused by bias-correction. Fur-
ther, Hedegaard’s solutions assumes that the weather
measurements at nearby stations will be similar to on-
site weather conditions, which may not be true for solar
irradiation in areas with strong micro-climate effects or
on partly cloudy days.

Methodology

This paper evaluates the impact of HRRR weather fore-
cast error across 15 of the 16 U.S. Department of En-
ergy (DOE) climate zones on the performance of an
MPC controlling electrochromic windows. Fairbanks,
Alaska was excluded because it is not currently avail-
able in pvlib’s HRRR forecast tool (Holmgren, Hansen,
and Mikofski 2018). Details describing the 15 studied
climate zones are presented in Table 1. Cities are consid-
ered coastal or mountainous if they are within 50 miles of
oceans or mountains. Due to the size of the Great Lakes
and the fact that the HRRR model is still being enhanced
in this region, cities at the Great Lakes are considered
coastal for this paper.

The analysis consisted of the following three steps. First,
the HRRR forecasts for each climate zone were com-
pared to measured data, enabling quantification of the
typical error in the HRRR forecasts. Second, a novel
stochastic noise algorithm generating synthetic forecasts
from historic weather data which are statistically equiv-
alent to HRRR forecasts was created. Third, simula-
tions using MPC were performed for the 15 climate
zones using (a) perfect forecasts, i.e., no noise ap-
plied to simulated forecasts, (b) stochastic forecasts, i.e.,
synthetic noise algorithm applied to forecasts, and (c)
bias-corrected forecasts, i.e., applied bias correction to
stochastic forecasts. The three steps are described in the
following subsections.

Table 1: Details of the 15 Studied DOE Climate Zones.

Climate | Reference Time Geography
Zone City Zone
1A Miami Eastern Coastal
2A Houston Central Neither
2B Phoenix Mountain | Neither
3A Atlanta Eastern Neither
3B-C Los Angeles | Pacific Coastal
3B Las Vegas Pacific Neither
3C San
Francisco Pacific Coastal
4A Baltimore Eastern Coastal
4B Albuquerque | Mountain| Mountainous
4C Seattle Pacific Coastal
S5A Chicago Central Coastal
5B Boulder Mountain | Mountainous
6A Minneapolis | Central Neither
St. Paul
6B Helena Mountain | Mountainous
7 Duluth Central Coastal

Forecast Accuracy Evaluation

Predictive control systems for dynamic facades are pri-
marily sensitive to the outdoor air temperature (OAT),
global horizontal irradiation (GHI), and direct normal ir-
radiation (DNI). To evaluate typical HRRR forecast er-
ror, the forecasts were retrieved using pvlib’s HRRR in-
terface and compared to measured weather data for each
site. The HRRR forecasts were recorded at each hour
for each of the reference cities from May 19, 2021 to
March 31, 2022. Those dates cover the time period from
the start of the study to the submission of this paper.
NOAA’s HRRR model provides OAT and cloud cover
data. pvlib was used to convert cloud cover to irradi-
ance by assuming a linear relationship between cloud
cover and GHI ranging from the clear sky GHI to a min-
imum GHI threshold as described in (Larson 2016). The
pvlib module then uses the DISC model to calculate DNI
(Maxwell 1987). The measured weather data was ob-
tained through DarkSky (DarkSky 2021). Weather data
from DarkSky also returns OAT and cloud cover which
was converted to irradiance using pvlib’s cloud cover to
irradiance algorithm.

To quantify the error in the forecasts, the relative error
for OAT, GHI, and diffuse horizontal irradiation (DHI)
were calculated for each hour of the 16 hours in the fore-
cast, and all forecasts in the data set. The relative error
was calculated using Equation 1 where X is the weather
parameter of interest in each calculation. This calcula-



tion was performed for each hour in the available fore-
casts. Calculations around sunrise or sunset, when the
forecast solar irradiance is very low, can result in ex-
treme relative errors. To avoid this issue the data was
filtered to times when both forecast and observed GHI
were above 10 W/m? for all irradiance calculations. Sim-
ilarly, the relative error in OAT was calculated using de-
grees Kelvin to avoid high relative errors when OAT is
close to zero degrees Celsius. The relative error identi-
fied during each hour of the forecast was then added to
a dataset tracking the error metrics for that hour of each
forecast. For example, a dataset tracking the error in the
third hour of HRRR forecasts contained the error in fore-
casted weather at 15:00 from forecasts released at noon.
These datasets were used to obtain the bias and standard
deviation in forecast error for each weather parameter at
each hour of the forecast, e.g., error at the first hour in the
forecast, second hour in the forecast, and so on. A sep-
arate dataset was created for each climate zone. These
metrics are referred to as non-temporal error in this pa-

per.

XRelativeError = (XForecast - XObserved>/XForecast (] )

The change in relative error between any two successive
hours was also calculated and added to datasets tracking
the temporal change in error metrics for each forecast.
For example, a dataset tracking the temporal change in
error between the third and fourth hours of the forecast
contained the temporal change in forecast error between
15:00 and 16:00 for the forecast released at noon. These
datasets were used to obtain the standard deviation in
temporal error change for each parameter at each hour
of the forecast. A separate data set was created for each
climate zone. These metrics are referred to as temporal
error in this paper.

The bias and standard deviation metrics were calculated
across the 15 studied DOE reference cities to evaluate the
performance of the HRRR model. Reference cities were
grouped and examined by time zone, proximity to coasts,
and proximity to mountainous regions. Table 1 presents
geographical characteristics of the location of each city.

Stochastic Algorithm Development

A novel stochastic noise algorithm was developed to
synthetically generate weather forecasts with statistically
equivalent properties to real HRRR forecasts using a
weather forecast and city as inputs. It provides the op-
tion to use bias-corrected forecasts which applies an off-
set to the weather forecast equal to the difference be-
tween the current weather measurements and forecast.

Bias-correction is only possible if local weather mea-
surements are available. The algorithm uses the calcu-
lated error metrics to represent the typical error in the
HRRR forecast for each reference city using the follow-
ing five steps.

1. Generate an initial starting point for the error pro-
file. If bias correction is applied then the stochas-
tic noise at the time that the forecast begins (hour
zero) is zero. If bias correction is not applied then
a stochastic noise multiplier for hour zero using the
computed non-temporal bias and standard deviation
at hour zero is used. The bias and standard devia-
tion metrics were identified for each climate zone
in the forecast accuracy evaluation. The algorithm
performs these calculations for OAT, GHI, and DHI.

2. Project the change in forecast error between each
hour of the forecast. The change in error between
hours is generated from a normal distribution repre-
senting the temporal error metrics identified in the
forecast accuracy evaluation. These temporal errors
are then combined to identify the projected error in
each hour of the forecast. This profile is then added
to the error at hour zero. The algorithm performs
these calculations for OAT, GHI, and DHI.

3. Compare the relative errors of the generated fore-
cast to the ones from the observed HRRR data. Any
point where the relative error exceeded three stan-
dard deviations of typical non-temporal error is con-
sidered an outlier, and the whole profile is rejected.
When a profile is rejected the stochastic algorithm
generates a new profile using a different seed for the
same time period, starting at step 1.

4. Apply the generated error profile to the provided
historic weather data to generate the weather fore-
cast with equivalent uncertainty to real HRRR fore-
casts.

5. Calculate the DNI from the stochastic GHI and DHI
using pvlib’s DNI calculation function.

Figure 1 demonstrates steps one to three of creating a
GHI error profile for San Francisco, CA without bias cor-
rection. The top subplot shows the error generation pro-
cess. The error at hour zero is estimated by generating
a random number in a normal distribution defined by the
statistics of the observed HRRR data. This is represented
by the blue dot, and is 16 % in this example. The red
dashed lines show the +3 standard deviations limit for
each hour. The standard deviation in change of relative



error between hours zero and one for GHI in San Fran-
cisco is 22 %. The green area highlights an error change
of £ 66 % (3 standard deviations), indicating the possi-
ble range of forecast error at hour one. The stochastic
algorithm generates the error for hour one by choosing a
random number in the range shown in the green region.
The algorithm repeats this process for all hours in the
forecast to generate the error profile. The green dashed
line in the bottom subplot shows the error profile gener-
ated by the stochastic algorithm. Since none of the points
in the error profile are outside the +3 standard deviation
limits, the stochastic algorithm accepts this profile and
generates the synthetic forecast. If on-site measurements
are available, enabling bias correction, the 16 % relative
error in hour zero is subtracted from each point.
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Figure 1: Example Synthetic Noise for Global Horizon-
tal Irradiance Forecast in San Francisco, CA.

MPC Performance Impact Simulations

The project team utilized simulations predicting the per-
formance of an MPC controlling a vertically divided
three-zone electrochromic window in a 14 m? south-
facing private office with a 60 % window to wall ra-
tio. The simulation setup was previously introduced in
(Gehbauer et al. 2020). Simulations for the first week of
each month used perfect, stochastic, and bias-corrected
weather forecasts. The MPC used a one hour prediction
horizon and re-optimized every five minutes. The sim-
ulation setup used Typical Meteorological Year (TMY)
historic weather data for both the weather forecast and

actual weather data. To enable simulations with imper-
fect weather forecasts the simulation setup was modified
to pass the TMY data through the developed stochas-
tic forecast algorithm. This process created a forecast
with errors which was then provided to the MPC. Sim-
ulations with and without weather forecast uncertainty
enabled direct comparison of MPC performance. Sim-
ulation results were evaluated to determine the impact
of (a) stochastic forecasts and (b) bias-corrected stochas-
tic forecasts on MPC performance in terms of (a) total
electricity cost using a time-of-use electricity tariff, (b)
typical glare level calculated using RADIANCE, and (c)
daylight ratio from daylight in the room. All evaluations
are expressed in terms of the percent change of the pa-
rameter on a weekly basis using the perfect forecast as
the baseline.

Results

The results of the forecast error evaluation and the effect
of weather forecast inaccuracy on MPC performance are
presented in individual subsections.

Forecast Accuracy Evaluation

Figure 2 presents the non-temporal GHI error for each
climate zone averaged across the entire data set for each
of the 16 hours in the HRRR forecasts. Dashed lines rep-
resent cities in coastal climate zones, dotted lines repre-
sent cities in mountainous climate zones, and solid lines
represent the rest. The error generally increases as the
forecast hour increases. The relative error is higher for
5B (mountainous), 6B (mountainous), 7 (coastal), and
3B-C (coastal) than for the other climate zones. While
most error metrics are in the range of 35 to 59 %, the
metrics for those four climate zones are in the range of
61 to 80 %.

Figure 3 presents the same information for OAT. The
non-temporal error is significantly smaller for OAT than
for GHI. The OAT relative error calculation used de-
grees Kelvin, avoiding points where the denominator ap-
proached zero. To provide context 1 % relative error at
293.15 degrees Kelvin (20 degrees Celsius) is 2.93 de-
grees Kelvin/Celsius. The non-temporal error for OAT
ranges from 0.7 to 1.6 % depending on the forecast hour
and climate zone. There is no discernible pattern indicat-
ing that relative error in OAT increases in either coastal
or mountainous regions.

Figure 4 presents the temporal error in GHI forecasts for
each climate zone. The x-axis values match the hour
at the end of the error change. For example, the data
at hour one indicates the standard deviation in change
of relative error between forecast hour zero and forecast
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Figure 2: Standard Deviation in Global Horizontal Irra-
diation Relative Error for Each Climate Zone.

hour one. The standard deviation typically increases with
each hour in the forecast, though this effect is muted
when compared to the non-temporal data set. The cli-
mate zones with the most variability in forecast error are
6B (mountainous), 5B (mountainous), 7 (coastal), and
1A (coastal). This difference is again muted when com-
pared to the non-temporal data set. 6B, 5B, and 7 were
also among the four climate zones with the highest GHI
forecast error in the non-temporal data set. 1A replaced
3B-C.

Figure 5 presents the same information for OAT. The
standard deviation for each climate zone is typically very
steady until hour nine or ten, depending on the climate
zone. At that time the standard deviations increase dra-
matically. This indicates that the error in HRRR temper-
ature forecasts becomes less predictable after hour nine
or ten. Averaged across the 16 hours, the four climate
zones with the most variation in temporal error are 4B
(mountainous), 2B (neither), 5B (mountainous), and 3B
(neither).

MPC Performance Impact Simulations

Table 2 presents the average and standard deviation (for-
matted: average / standard deviation) percent change in
each error metric. As previously stated the error met-
rics are electric charge, glare index, and daylight ra-
tio. Each metric is evaluated on a weekly basis and
presents the change in predictive controller performance
when using stochastic instead of perfect forecasts. Each
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Figure 3: Standard Deviation in Outdoor Air Tempera-
ture Relative Error for Each Climate Zone.

row provides data for the specified climate zone, except
for ”All” which provides the impacts across all climate
zones. Overall the analysis revealed a 13.3 % increase in
electric charge, 41.5 % increase in glare index, and 119.3
% increase in daylight ratio when using the stochastic
forecasts. The maximum increase in electric cost was
36.9 % in climate zone 6B. The maximum increase in
glare index was 118.5 %, in climate zone 5B.

The three climate zones with the largest performance im-
pacts for each parameter are highlighted in bold font. 5B,
6B, and 7 showed the largest impacts in electricity cost.
3B-C, 5B, and 6B showed the highest impacts for glare
index and dayight ratio. Figure 2 showed that the four
climate zones with the highest non-temporal error in GHI
were 3B-C, 5B, 6B, and 7, which likely caused the high
impacts in the most impacted climates.

Table 3 presents the average weekly percent change
between MPC simulation results with bias-corrected
stochastic forecasts and perfect forecasts. The data set
showed average changes of 0 % in total electric charge,
3.0 % in glare index, and 3.4 % in daylight ratio. The
maximum increase in electric cost was 0.4 % in 2B and
the maximum increase in glare index was 4.8 % in 3A.
The three climate zones with the largest performance im-
pacts for each parameter are again highlighted in bold.
The data set with bias correction shows more diversity.
2B, 4B, and 4C show the highest impacts in electric
charge. 1A, 3A, and 4C show the largest average in-
crease in glare index. 6A, 6B, and 7 show the largest
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Figure 4: Standard Deviation in Hourly Change of
Global Horizontal Irradiation Relative Error for Each
Climate Zone.

impacts in daylight ratio.

Discussion

The accuracy of non-temporal GHI forecasts from
NOAA’s HRRR forecast model vary with climate zone.
Forecasts for climate zones 5B, 6B, 7, and 3B-C (two
mountainous, and two coastal) all showed significantly
higher error than the others. The errors for those zones
ranged from 61 to 80 %, compared to 35 to 59 % for all
other climate zones. This work expands Lee et al.’s find-
ings from specifically Alabama to the contiguous United
States, with a focus on the DOE reference cities com-
monly used for building energy simulation studies.

This work presents a novel stochastic noise algorithm
that replicates the error in weather forecasts utilizing the
statistics derived from the weather forecast analysis.
Further work could lead to a more accurate representa-
tion during certain conditions. Currently all valid hours
in all forecasts are lumped into a single group. This could
be improved in the following ways:

e Low irradiation values around sunrise and sunset
lead to small errors returning large relative errors.
Combining all hours into a single dataset averages
this effect across the full day, neglecting the diur-
nal variation. Different datasets for these two time
periods could yield more accurate statistics.
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Figure 5: Standard Deviation in Hourly Change of Out-
door Air Temperature Relative Error for Each Climate
Zone.

* Prior research indicated that HRRR accurately eval-
uates irradiation during either sunny or cloudy con-
ditions but sometimes erroneously predicts clouds,
which drives errors in the irradiation forecasts. Fu-
ture work should evaluate the accuracy of HRRR
on cloudy, partly cloudy, and sunny days then ap-
ply different statistics depending on the predicted
cloudiness level.

* Preliminary data analysis implied that HRRR tends
to overestimate OAT during the day and underesti-
mate OAT at night. Further evaluation of this trend
could determine whether or not it really occurs, cre-
ate different statistics for daytime and nighttime,
and use the different statistical values to more ac-
curately predict daytime/nighttime OAT error.

Inaccuracy in weather forecasts clearly decreases the
performance of MPC for dynamic facades. Simulations
in 15 U.S. climate zones, showed that the stochastic fore-
casts increased the total electric cost by 1.5 to 36.9 % de-
pending on the climate zone. The increase in electricity
cost decreases the cost-effectiveness of MPC. The pre-
dicted average glare index increased by 7.4 to 118.5 %
depending on the climate zone. The increase in glare
would likely be too high for occupant satisfaction and
decrease acceptance of MPC.

Simulations using MPC with bias-corrected forecasts



Table 2: Average and Standard Deviation Change in

MPC Performance with Stochastic Forecasts

Table 3: Average and Standard Deviation Change in

MPC Performance with Bias Corrected Forecasts.

Climate Electric Glare Daylight Climate Electric Glare Daylight
Zone Charge [%] | Index [%] Ratio [%] Zone Charge [%] | Index [%] | Ratio [%]
1A 1.5/09 18.5/11.3 22.7/13.1 1A -0.2/04 4.3/3.5 -09/2.6
2A 1.5/1.2 16.8/16.3 27.5/22.6 2A 0.0/0.2 23/63 04721
2B 15.6/11.7 | 42.1/22.6 | 159.2/167.8 2B 04/0.8 23/19 4.2/33
3A 20/2.2 421773 15.8/17.2 3A 0.1/0.4 4.8/4.0 1.6/3.1
3B 10.3/9.9 33.4/21.8 103.9/81.8 3B 0.2/0.6 22/24 27124
3B-C 18.8/13.2 | 96.4/56.0 | 209.9/103.7 3B-C 0.0/0.3 3.1/2.4 1.5/4.0
3C 7.6/10.6 23.0/18.3 44.1/40.9 3C -0.1/0.3 27126 1.0/3.1
4A 55/3.6 25.1/12.3 69.3/74.8 4A 0.0/0.3 34/2.8 0.1/2.8
4B 22.5/21.1 | 56.4/327 | 1643/130.2 4B 0.2/0.9 25/29 44742
4C 4.7/6.3 15.5/11.3 27.1/21.0 4C -0.3/1.5 35/33 1.2/2.8
S5A 35/4.6 7.4177.5 42.4/38.1 5A -02/04 2.8/43 33/6.8
5B 35.3/14.9 | 118.5/52.4 | 331.2/292.5 5B 02/04 32/7.1 3.6/44
6A 9.3/6.9 20.1/14.1 | 92.2/116.8 6A 0.0/0.3 32/35 | 11.4/20.5
6B 36.9/17.9 | 92.9/48.2 | 315.6/270.9 6B -0.1/0.8 241725 59/4.8
7 249/21.1 | 46.2/233 | 164.9/159.6 7 -0.1/0.2 25/3.1 | 10.3/14.3
All 13.3/16.2 | 41.5/433 | 119.3/163.2 All 0.0/0.6 3.0/3.7 347738

showed that bias correction removes most of the perfor-
mance changes caused by the forecast inaccuracy. Elec-
tric charges with bias-corrected stochastic forecasts were
very similar to simulations with perfect forecasts. The
average glare index was only 3.0 % higher with bias-
corrected forecasts, compared to 41.5 % higher with
stochastic forecasts that did not include bias correction.
Since the MPC re-evaluates the control strategy every
five minutes and bias correction removes the error at the
current time, the MPC is able to use forecasts with very
small errors for the current time. For example, with-
out bias correction an inaccurately low GHI forecast for
the current time leads the MPC to under-predict glare,
brighten the windows, and create uncomfortable condi-
tions in the space.

Implementing bias correction for OAT should be man-
ageable as temperature sensors are inexpensive and could
easily be added to an MPC. Many buildings already in-
clude OAT measurements for their HVAC systems. Bias
correction for irradiation is less straightforward. Accu-
rate irradiation sensors are expensive and require regu-
lar cleaning, increasing installation cost and decreasing
MPC performance in cases where the sensors are not ad-
equately maintained. Cloud cover sensors are less expen-
sive and would enable estimating solar irradiation, but
still require regular cleaning. Hedegaard et al. proposed
a method of estimating the local weather conditions us-
ing measurements from several nearby weather stations.

This would provide a no-hardware and no-maintenance
approach which could effectively provide bias correc-
tion. This method may struggle to estimate irradiance on
partly-cloudy days, as the nearby weather stations may
be experiencing different solar conditions from the con-
trolled building. Further research is needed to evaluate
the benefits and costs of these different solutions.

This study focused on the impacts of weather forecast
uncertainty and bias correction on MPC performance
for dynamic facades in small office spaces. Further
research is needed to evaluate the impacts in different
cases. Impending work will perform the analysis on the
same building with the MPC controlling both the dy-
namic facade and the HVAC system. Other valuable re-
search projects will include performing similar analyses
on different buildings, such as large offices or institu-
tional buildings, or buildings with other hardware, such
as thermal energy storage or electric water heaters.

Conclusion

This paper (a) evaluated the accuracy of HRRR weather
forecasts in the contiguous United States, (b) intro-
duced a novel stochastic algorithm adding typical error
to weather forecasts, and (c) evaluated the impact of
weather forecast error and bias correction on the perfor-
mance of model predictive controls for dynamic facades.
The uncertainty in weather forecasts decreased the per-
formance of the control system in terms of both en-



ergy cost and occupant comfort. Bias correction largely
eliminated the error in weather forecasts enabling the
full potential of predictive control systems, but practi-
cal deployment methods are not yet readily available.
While temperature correction can likely be achieved us-
ing readily-available sensors, further research is needed
to develop solutions to correct solar irradiance forecasts.
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