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ABSTRACT OF THE DISSERTATION

Security Testing Tools for Complex Cyber-Physical Systems

by

Sam Crow

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California San Diego, 2022

Professor Aaron Schulman, Chair

The modern world depends on the safe operation of infrastructure and vehicles for trans-

port, communication, and power distribution. All these systems are increasingly computerized

and interconnected. Connecting devices together into large systems creates new security vulnera-

bilities that conventional tests on single devices cannot find. To help find these vulnerabilities,

we developed new tools to make testing complex systems easier. First, the Triton testbed pro-

vides a flexible way to test many interconnected devices that can include physical devices on

real hardware, emulated devices running real software, and simulated devices that replicate the

expected behavior of a physical device. Second, a Bus Driver device can modify messages on a

wired communication bus to see how devices respond to modified messages. Finally, for part of

x



the HyperScanner project, we adapted a low-cost software-defined radio to scan for Bluetooth

devices more quickly by sending and receiving on many channels at the same time. The same

approach could also be used to monitor wireless communication on many different protocols to

detect problems with wireless security. These tools will enable more effective security testing to

make complex cyber-physical systems safer and more reliable.
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Chapter 1

Introduction

The modern world depends on the safe operation of infrastructure and vehicles for trans-

port, communication, and power distribution. All these systems are increasingly computerized

and interconnected using many different forms of wired and wireless communication. This can

make them more efficient and safer, but also exposes them to new kinds of attacks that can have

disastrous real-world consequences.

The first widely known example of an electronic attack with physical impacts was the

Stuxnet worm, which infected industrial control systems and damaged Uranium enrichment cen-

trifuges [12]. A smaller-scale attack derailed trams by wirelessly controlling track switches [17].

One researcher claimed to have accessed an airplane’s onboard computers through its in-flight

entertainment system and changed its flight path [13]. Although there is no evidence that this

attack actually succeeded, the design of modern airplane systems makes a similar attack possible.

Multiple groups have found remotely exploitable vulnerabilities in cars that let attackers control

all their onboard control units [18, 58].

To protect these cyber-physical systems from attacks, we need to design effective security

features, implement the features correctly, and test to confirm that they work. The easiest form

of security testing looks at a single device. This is partially effective and can find some security
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problems. However, new problems can appear when combining devices into larger systems.

Testing a complete system with many interconnected computers and many different forms of

communication is challenging and sometimes impractical with conventional methods.

Simulation is a cost-effective way to test a complete system, but most simulations gloss

over some behavior that can be important for security. Sometimes a simulated device has the

same functionality as a real device but is not running exactly the same software. If the real device

software has a buffer overflow or similar vulnerability, the simulated device may not have the

same problem. The solution is to emulate every device using the same software that real devices

use. This makes the simulation more accurate, but it still does not account for hardware details.

The processors that the software runs on might have hardware bugs or side channels that make

specific hardware vulnerable. Also, the communication interfaces on some devices could have

electrical properties that make it possible to interfere with communication in unexpected ways.

Overall, because attacks take advantage of behavior that the system designers could not foresee,

most simulations make systems look more secure than they really are. We need to test on real

hardware to find more vulnerabilities.

1.1 Testing challenges

This dissertation focuses on three specific testing challenges:

System testing An organization developing a system usually builds a test setup to check

that the complete system works correctly. The details of how these test setups work are not public,

and outside researchers rarely get to run their own tests. This makes it difficult to independently

find system-level security problems.

Message modification testing An attacker with physical access to part of a system

can interfere with wired communication between devices. For a security testing program to be

2



comprehensive, it should be able to check how devices respond to this kind of attack.

Wireless monitoring and scanning Some systems use wireless communication, which

can involve several different protocols and a wide range of frequencies. A comprehensive security

testing setup needs to monitor all relevant frequencies all the time to find unexpected or incorrect

messages. This requires either a separate radio dedicated to each frequency, or a wideband

software-defined radio and a powerful computer to decode the received signals. Both of these

conventional options are expensive and inconvenient.

1.2 Thesis statement

In this dissertation, I demonstrate that new tools can effectively test the security of commu-

nication within cyber-physical systems, without needing a complete system of real hardware and

without knowing exactly how every device should behave. With easier testing, anyone developing

cyber-physical systems will be able to improve the security of those systems, making them safer

and more reliable.

1.3 Dissertation organization

The main chapters of this dissertation cover three testing tools for different aspects of

cyber-physical systems.

Chapter 3: Flexible Avionics Testing. This chapter describes a test setup for avionics

that can connect real hardware to emulated or simulated parts. This is important for testing an

entire system of devices to find security problems that single-device tests cannot find. A complete

system of avionics usually includes several computers, screens, radios, sensors, and actuators that

work together. If it is not practical to assemble a complete test setup with all real hardware, this

test setup can still perform useful tests with some devices emulated or simulated.
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Chapter 4: Bus Driver: No-cut Message Modification on Aviation Data Buses. This

chapter describes how to connect to a wired communication bus and block or modify messages

that other devices send. Although I demonstrate a device that performs an attack, the same

approach can help test devices to see how they respond to modified messages. The conventional

approach requires disconnecting the bus wires and installing test devices that receive messages

on one part of the bus and send modified messages to another part. This new approach allows

a single test device to modify messages from any other connected device without being moved

around or rewired.

Chapter 5: Implementing High-Speed Scanning for Wireless Devices. This chapter

describes a contribution to a larger project to make a low-cost, high-speed Bluetooth scanner.

Because the project uses a software-defined radio, it is not limited to Bluetooth and could support

many other wireless protocols. The scanner’s ability to monitor all messages across many channels

will help with testing devices under development to check that all their wireless communication

works correctly. For security testing of existing systems, it can be used to detect malicious devices

and devices that are legitimate but configured incorrectly.

4



Chapter 2

Background

2.1 System example

As an example of a cyber-physical system that uses many forms of wired and wireless

communication, consider a Boeing 787 airliner. Most of the computing is concentrated in two

Common Computing Resource (CCR) cabinets, which run several independent applications on

the same hardware [50, 60]. The CCR cabinets communicate with the sensors and actuators

mainly using Avionics Full-Duplex Switched Ethernet (ARINC 664). There are also 21 Remote

Data Concentrators (RDCs) that bridge between the main Ethernet network and other devices that

use ARINC 429 or CAN bus. Some important functionality uses wireless communcation. For

example, the cabin emergency lights use a Bluetooth mesh network to send control signals [52, 51].

The core computer systems also connect to the in-flight entertainment system to send details

about the plane’s location and altitude. The plane communicates wirelessly with ground stations

using Aircraft Communications Addressing and Reporting System (ACARS) and Gatelink (over

Wi-Fi). That system covers just one vehicle, but from publicly available information it includes at

least 23 boxes of avionics hardware using at least three different wired communication buses and

three wireless protocols.
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2.2 Unit and system testing

The simplest form of security testing looks at one device at a time. It is reasonably easy

to test all the inputs and outputs of one device for a few different operating modes so we can

convince ourselves that it is secure in isolation. This usually requires making some assumptions,

such as that an attacker will not be able to send signals to the device because some other part of

the system protects it.

In a complete system, however, some of those assumptions turn out to be wrong. The

isolation boundaries between different parts of the system might not be perfectly reliable. With

multiple applications running on the same hardware, side channels might leak important infor-

mation. If legitimate messages get redirected to a different device that was not expecting them,

they could cause unexpected behavior. Several proposed attacks on the Boeing 787 start by

compromising an external communication interface to get access to the onboard network, and

then move on to other devices that were supposed to be protected from outside attackers [50].

The functional testing of the 787 avionics used one stage of testing each function in isolation, and

a second stage to check that all the functions work correctly when combined [60]. By the same

logic, comprehensive security testing needs to involve more than one isolated device.

Some security vulnerabilities can be definitively demonstrated or disproven only by testing

the complete system. Boeing can replicate the electronics of a Boeing 787 with all the sensors

and actuators in a lab and do basic testing. For independent security researchers, who are likely

to spend more time looking for vulnerabilities, the cost of buying all the parts is prohibitive.

2.3 Wireless monitoring

A separate problem is monitoring wireless communication on multiple protocols and

multiple channels. The 787 uses both Wi-Fi and Bluetooth [50], which share 100 MHz of

spectrum in the 2.4 GHz industrial, scientific, and medical band. Different Wi-Fi networks can

6



use any of about 11 different channels [34], and a conventional radio can monitor only one

channel at a time. Bluetooth uses frequency hopping, so a pair of connected devices uses a

different channel for each message [16]. A conventional Bluetooth radio can monitor only one

channel at a time, so it can monitor messages between one pair of devices only.

To monitor everything that all nearby devices are sending, we need to receive on every

channel all the time. One way to do this is to run a separate conventional radio for every channel

and collect the messages that they decode. With 79 Bluetooth channels and about 11 Wi-Fi

channels, this requires a lot of hardware.

A common alternative uses a wideband Software-Defined Radio (SDR) that can monitor

all channels at the same time. The SDR captures radio signals and converts them into digital

samples. To convert the samples into useful information, software decoders need to process all

the samples, separate them into channels, and extract the content of each message. The decoding

process becomes very processor-intensive with many channels because every decoder needs to

run all the time, even when there are no useful signals. An SDR and a computer powerful enough

to decode all the signals cost thousands of dollars each. Chapter 5 describes a way to monitor

many channels using lower-cost hardware.
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Chapter 3

Flexible Avionics Testing

3.1 Introduction

Factories, chemical plants, automobiles, and aircraft have come to be described today

as cyber-physical systems of systems—distinct systems connected to form a larger and more

complex system. For many such systems, correct operation is critical to safety, making their

security of paramount importance. Unfortunately, the defining characteristics of these systems,

namely their heterogeneity and special purpose, make them hard to analyze. Today’s security

analysis tools are tailored to the analysis of server, desktop, and mobile software; analyzing

systems of systems requires tools and techniques that can handle multiple heterogeneous systems

working together to form a larger whole.

This chapter is concerned with enabling the security analysis of a particular class of

cyber-physical systems of systems, namely those of commercial transport1 aircraft exemplified by

the Boeing 737. Aircraft of that design era consist of a large number of discrete electronic systems

interconnected by digital communication links. Hence, a security analysis requires determining

whether an attacker who gains control over some number of constituent systems would be able

1We focus on commercial airliners used to transport people and cargo.
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to adversely affect flight safety. It should be noted that aircraft such as the Boeing 737, at least

until the recent MAX series, allowed the pilot to completely override all electronic control of

the aircraft, so that even in the worst case of complete compromise of all electronic systems, a

skilled pilot could continue to fly the plane. However, a security analysis is distinct from a failure

analysis in that a sophisticated adversary can present the appearance that everything is working

correctly, leading the pilot to leave control of the aircraft to electronic systems.

For the results of a security analysis to be believed, the analysis must necessarily be

carried out on the genuine article—an aircraft. Unfortunately, a Boeing 737 aircraft costs several

million dollars and requires a ground crew to keep operational. However, because our analysis is

only really concerned with the electronic systems, having an actual airframe—fuselage, engines,

and all—adds little to the fidelity of a security analysis. Indeed, at a minimum only the specific

systems under analysis are required, provided that the rest of the aircraft electronic environment

can be adequately simulated.

This chapter describes Triton, an avionics testbed that allows one or more aircraft elec-

tronic systems to be studied in an electronic environment resembling a field deployment. Triton

is a cross-mode testbed, meaning that it enables physical, simulated, and emulated components

to interact to orchestrate a specific experiment or scenario. For a example, a physical Flight

Management Computer can communicate with a Communication Management Unit running in

an emulator, interacting with a simulated VHF data radio.

To motivate the design of our testbed, we focus on two security analysis tasks: determining

whether an adversarially crafted spoofed ACARS message could interfere with correct operation

of aircraft systems that could affect the safety of flight, and evaluating the security of the software

update process for aircraft electronic systems. While we designed the Triton testbed to support

these two tasks, the testbed can be equally well support other kinds of analysis tasks. Furthermore,

we expect that both the design, and our experiences building the testbed, will be of interest to

other security researchers working with complex systems of systems.
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The rest of this chapter is organized as follows. Section 3.2 presents technical background,

including specifics of aircraft systems, necessary for the rest of the chapter. Section 3.3 describes

the two analysis tasks in more detail. Section 3.4 then described the design of the Triton testbed.

Section 3.5 briefly describes several experiments enabled by the testbed. Section 3.6 discusses

our experience with our testbed. Section 3.8 concludes the chapter.

3.2 Background

Electronic systems used in aircraft—termed avionics—span a wide range of function-

ality and design assurance. Avionics used on transport aircraft have evolved from independent

electronic systems on the earliest aircraft, to separate interconnected systems, to fully integrated

systems today. Separate interconnected avionics systems are called federated avionics, while the

fully integrated systems are termed integrated modular avionics.2 The most common transport

aircraft in the skies today, including the Boeing 737 and Airbus 320 series, are of the federated

avionics type. This important class of avionics is the target of our study.

3.2.1 Federated avionics architecture

In a federated avionics architecture, system functionality is implemented in discrete Line-

Replaceable Units (LRUs). Figure 3.1 shows part of a simple federated avionics configuration

that is responsible for air-ground communication using the Aircraft Communications Addressing

and Reporting System (ACARS) on a Boeing 737 aircraft. ACARS, which allows aircraft to

communicate with airline ground-based systems using 220-byte messages, is described in more

detail in Section 3.2.3. Each box in the figure is a physically separate LRU connected to other

units via serial communication links known by their standard number, ARINC 429; Section 3.2.2

2For transport aircraft, the transition from federated to integrated avionics occurred with the Boeing 777, which
entered commercial service in 1995. All new Boeing and Airbus designs after the Boeing 777—namely the
Boeing 787, the Airbus A380, and the Airbus A350 currently in development—use integrated avionics.
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describes these in more detail.

We briefly describe the high-level functionality of each LRU in Figure 3.1.

VHF Data Radio (VDR) The physical and link layer of ACARS is handled by the VHF Data

Radio (VDR), which includes both the VHF transceiver and modem [6].

Communication Management Unit (CMU) In a federated avionics aircraft, the higher layers

of ACARS communication are handled by the Communication Management Unit (CMU), a

general-purpose communication gateway between aircraft systems and the outside world [9]. The

CMU receives an incoming message from the VDR and either processes the message itself or

relays it to another aircraft system, depending on the type of message.

Flight Management Computer (FMC) The FMC provides a variety of flight planning and

execution tools. In particular, the FMC includes a navigation database, and can control the

autoflight (autopilot and autothrust) system directly to fly a pre-programmed route.

Multi-Function Control and Display Unit (MCDU) The MCDU consists of a small display

and keyboard located in the cockpit. It serves as the pilot interface to the CMU and FMC. In

the case of former, for example, it displays ACARS messages to the pilot and allows the pilot

to request certain types of information, such as destination airport weather reports, via ACARS.

When interacting with the FMC, the MCDU displays the flight plan, and allows the pilot to

automatically load a flight plan sent via ACARS from the airline’s dispatcher.

Airborne Data Loader (ADL) The ADL is responsible for uploading software updates and

navigation databases to various LRUs as well as downloading aircraft monitoring and flight data.

The ADL consists of two parts: an in-cockpit control panel which selects which LRU to upload to

or download from and a portable maintenance unit which performs the actual data transfer. Data
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Figure 3.1: Fragment of Boeing 737 avionics interconnection centered at the Communication
Management Unit (CMU).

transfer occurs via the ARINC 615 standard [4] which specifies the low-level network encoding

and framing of data. Higher-level protocols like “upload firmware” or “download flight data” are

not standardized. Instead, maintenance units are required to implement the data loading protocol

for each LRU.

3.2.2 ARINC 429 bus

Federated systems found on large transport aircraft are interconnected using the AR-

INC 429 bus, a unidirectional, multi-receiver bus [5]. Two-way communication between systems

requires a pair of 429 buses, one in each direction, as shown in Figure 3.1.

ARINC 429 was originally designed to transmit simple status messages (as described

below) and thus only supports sending a single 32-bit word at a time. Bits are sent as dif-

ferential, bipolar, return-to-zero pulses at either 12.5 or 100 kbps. Eight of the 32 bits are

reserved for the message label which identifies either the type of message or the destination

LRU.
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General word messages General word messages are simple status messages broadcast by

LRUs and identified by label. They may contain binary or binary-coded decimal values, as well

as fields with discrete values. The most-significant bit is a parity bit, followed by two sign/status

matrix bits, which indicate either the sign of the value encoded, or some other status (e.g., no

computed data, failure warning, or a functional test result). A numeric value, padding, and

discrete value fields may follow.

Character-Oriented Protocol (COP) ARINC 619 [8] defines a character-oriented protocol for

sending character streams across a 429 bus. Originally intended for ACARS (see Section 3.2.3)

applications (e.g., uploading a text message to the cockpit printer), it is also used to communicate

with the MCDU. The COP can send up to three 7-bit characters at a time. A simple RTS/CTS,

STX/ETX, and ACK/NAK scheme are used to ensure reliable delivery, with a single control char-

acter in the most-significant bits, followed by character-dependent control data. The destination

is encoded in the message label.

Bit-Oriented Protocols (BOP) A limitation of the COP is that it only supports 7-bit characters.

To transfer binary data, a byte stream had to be converted to a hexadecimal ASCII string first.

The new bit-oriented protocols address this issue.

Version 1 of the BOP [8] is similar to the COP and transmits data words that can contain

between 1 and 5 nibbles. A protocol word is used for flow control and protocol version negotiation.

A solo word can transmit up to 16 bits without protocol overhead. The start-of-transmission word

contains transmission metadata and the end-of-transmission word contains a 16-bit CRC.

3.2.3 ACARS

The Aircraft Communications Addressing and Reporting System (ACARS), defined in

ARINC specification 618 [7], provides digital communication between an aircraft and ground
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systems using 220-byte messages. ACARS is used by airlines to track aircraft in flight and on

the ground, by airline dispatcher to send flight plans to the cockpit, and by pilots to request

and receiver weather reports, among other uses. Some ACARS downlink (aircraft-to-ground)

messages are automatically generated by equipment on board, and some uplink (ground-to-

aircraft) messages may be automatically acted on by systems on board. The original ACARS

protocol used audio-frequency modulation sent using the AM-modulated VHF voice radio at a

data rate of 2.4 kbps. While ACARS-over-AM continues to be used to this day, ACARS messages

can also be carried over a newer 31.5-kbps data link called VHF Data Link Mode 2 (VDL2), HF

Data Link, and satellite links. Neither the original ACARS protocol nor the data links commonly

used to carry ACARS messages provides authentication, making it possible for an attacker to

spoof both uplink and downlink messages. This raises some security concerns, as discussed below

in Section 3.3.1.

3.3 Targeted analysis tasks

In designing the Triton testbed, our goal was to support a set of security analysis tasks,

two of which we describe below.

3.3.1 ACARS attack vector

An important problem in an aircraft communication security is to ensure that untrusted

input from the VHF radio cannot influence the operation of systems responsible for flight controls.

Unfortunately, the ACARS protocol does not itself provide any authentication, and proposals for

adding authentication at the application layer [46] have not been adopted in practice. Without a

means to authenticate an ACARS message, and thus ensure that it comes from a trusted ground

system, ACARS messages should be treated as untrusted by aircraft systems acting on these

messages. Indeed, several recent presentations at computer security conferences have raised
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concerns about the potential for abusing any misplaced trust in ACARS [56, 44, 53]. One of the

analysis tasks envisioned for the Triton testbed is to evaluate the practical possibility of such

attacks.

In the federated avionics models, evaluating whether an aircraft is vulnerable to ACARS-

based attacks means determining whether there is a control path from the over-the-air ACARS

input to a critical system, such as the FMC. Because these systems are not physically isolated,

we cannot automatically rule out the possibility that such a path exists: for example, a malicious

ACARS message might cause the CMU to send a message to the FMC that would cause it to

issue commands to the autopilot without the pilots’ knowledge. If such an attack is possible, we

should be able to reproduce it in our testbed. On the other hand, if such an attack is impossible,

we would like to show that this is the case through an analysis of the software running on these

components. Even if it is impossible to completely rule out such an attack, being able to rule out

certain classes of attacks would give us more confidence in the security of the aircraft system as a

whole. Figure 3.1 shows that there are several potential paths for such an attack:

◦ Direct: VDR→ CMU→ FMC,

◦ Via MCDU: VDR→ CMU→MCDU→ FMC, or

◦ Via ADL: VDR→ CMU→ ADL→ FMC.

A real Boeing 737 aircraft has additional LRUs that could act as an intermediate hop between

CMU and FMC. We chose the set of LRUs illustrated in Figure 3.1 because these systems are

connected by bidirectional ARINC 429 links that exchange multi-word messages using some

variant of the bit-oriented protocol designed for messages larger than would fit in a 32-bit ARINC

429 word.

It should be noted that each attack path may involve real-time message forwarding along

the path, or may require compromising intermediate systems to enable them to send arbitrary

messages. For example, the CMU is usually configured to relay certain ACARS messages to the

FMC, such as flight plans generated by the airlines dispatcher. In normal use, such flight plans
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must be explicitly accepted by a pilot before the FMC acts on it. We would like to rule out the

possibility that an adversarially crafted message causes the FMC to act on a flight plan without

pilot input. We would also like to consider the possibility that the CMU is compromised by a

adversarially crafted message, allowing the attacker to then send arbitrary ARINC 429 messages

to the FMC (rather than ARINC 429 messages encapsulating ACARS messages). In this case, we

would like to determine whether such a compromise of the CMU is possible, and, if so, whether

the FMC could be co-opted to command the autopilot system without pilot approval by an attacker

with the ability to send arbitrary messages from the CMU to the FMC.

3.3.2 Data loader attack vector

Virtually all LRUs with significant computing capability are built to be field-upgradable,

or in the vernacular of the aviation industry, to accommodate Loadable Software Parts (LSPs) [3].

LSPs can include both the core software installed on the LRU, databases used by the LRU

(e.g., the navigation database used by the FMC) or configuration data (e.g., reflecting per carrier

customization via well-defined interfaces). ARINC defines a series of standards governing this

process, with the 665 series [3] defining the file formats and the 615 series [4] defining the transfer

protocol (the most common 615 protocol is a point-to-point protocol based on ARINC 429, while

the more recent 615A protocols are IP-based and use TFTP for data transfer). Note that these

protocols only define how to transfer data to an LRU and thus a great deal of semantic detail

(e.g., how an LRU is directed to start running new code) is vendor specific. Lastly, the path by

which ADLs interface with an LRU can vary as well. While many LRUs provide a standard

53-pin ARINC 615 connector for updating, it is also common for such LRUs to be directly wired

into a physical selector switch that allows a maintenance technician to use a single such port to

multiplex update access across LRUs. One common approach is for technicians to preload the

necessary LSPs on a portable data loader such as the PMAT-2000 [55] (which is a ruggedized PC

with an appropriate interface and cable) and physically connect to each LRU they need to update.

16



In some modern aircraft, a library of LSPs may instead be staged on an onboard mass storage

ADL, which is periodically refreshed via USB or wireless protocols (e.g., such as Teledyne’s

GroundLink).

Because Airborne Data Loaders can directly update both LRU software and support data,

their security is critical to the overall security of an aircraft. This situation is exacerbated because

digital signatures for LSPs are a relatively modern innovation (the key standards, ARINC 835 [10]

and 842 [11] were only published in 2011 and 2012) and thus many LRUs are unable to detect if

an update has been tampered with. We have configured our testbed to explore several aspects

of this threat vector, including reverse engineering which LRUs are vulnerable to rogue updates,

vulnerabilities in popular ADLs and threats associated with LSP staging outside the aircraft

(historically, LSPs were shipped via floppy disk, but today most are delivered via Internet-based

services).

3.4 Architecture

With the analysis tasks above in mind, we set out to design and build the Triton avionics

testbed. Figure 3.2 shows the architecture of the testbed, described in more detail next.

3.4.1 Design philosophy

Software-defined bus wiring At the outset, we knew that we would be dealing with physical

LRUs that we would want to connect to each other and to software-simulated components, and

that we would want to reconfigure these arrangements for each experiment. To make this possible,

we chose to virtualize the ARINC 429 bus, connecting the hardware LRUs to the virtual bus via

adapters, rather than connecting simulated components to a physical ARINC 429 bus.

We modeled each physical bus as a broadcast medium for 32-bit ARINC 429 words. Both

emulated LRUs and hardware LRUs (via an ARINC 429 adapter) could be connected to the same
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Figure 3.2: Portion of the Triton testbed.
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virtualized bus that, from the hardware LRUs point of view, would be logically indistinguishable

from a physical interconnect. In Section 3.4.2, we describe our virtualized ARINC 429 bus and the

underlying software components. When it came time to design the ACARS VHF communication

medium to model the interception and injection of ACARS messages, the design philosophy of

virtualizing physical media led to a similar design, where we modeled the ACARS data link as a

broadcast medium to which software components could be connected as needed.

Unix philosophy In designing the Triton testbed, we followed the Unix philosophy of creating

simple programs that do one thing well and whose power lies in their composition. Applying this

philosophy, we built each component of the testbed as a separate program that would communicate

with others using TCP sockets and Unix pipes. Making Unix processes the basic unit of the

system meant that components could be developed using any programming environment and

language (e.g., C, Python) that supported TCP sockets. We discuss potential alternatives in

Section 3.6.4.

The process-oriented model also made it easier to make the system hot-pluggable. While

this was never an explicit requirement, the practical benefit was that it was easier to debug a

specific component while the rest of the system continued to operate.

3.4.2 ARINC 429 interconnect

Recall that the physical ARINC 429 bus connects a single transmitter to multiple receivers,

allowing one device to transmit 32-bit ARINC 429 words to multiple listeners at once. A natural

way to model this in software is using a publish-subscribe pattern, where each transmitter is a

publisher and each receiver on the transmitter’s bus a subscriber. The r429d daemon is a message

broker that accepts TCP connections from other processes and routes ARINC 429 words between

them. The r429d daemon multiplexes multiple virtual ARINC 429 busses over a single TCP

connection; a connected process may be both a publisher and subscriber.
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The R429 protocol We call the protocol spoken by the r429d daemon R429. Each R429

messages encapsulates a single 32-bit ARINC 429 word. Each virtual ARINC 429 bus is

identified by an integer included in the R429 message, allowing the r429d daemon to route the

ARINC 429 word to the correct set of receivers (subscribers). ARINC 429 adapters connect to

r429d as publishers for their physical receiver channels and as subscribers for their physical

transmit channels. Simulated devices (such as the VDR) connect to r429d as publishers for the

ARINC 429 buses on which the LRU would normally be the transmitter, and as subscribers for

the ARINC 429 buses on which the LRU would normally be the receiver.

The R429 protocol also includes provisions for timestamps on received ARINC 429

words and for scheduling ARINC 429 words for transmission at a precise time. This feature is

intended for use with ARINC 429 adapters that support timestamps and fine-grained control over

transmission time.

The A429 protocol In addition to the R429, which carries multiplexed ARINC 429 words,

we also created A429, a simpler stream-oriented protocol that carries raw 32-bit ARINC 429

words without any encapsulation. The A429 protocol is intended to further simplify development

of virtual ARINC 429 devices. In our current implementation, R429 is de-multiplexed into

unidirectional A429 channels implemented as named Unix pipes. We can then connect a process

to the virtual ARINC 429 bus by passing it the names of the named pipes on the command line.

For example, the virtual MCDU command-line usage is

$ a429 mcdu MAL out in

where out and in are the names of the input and output files (pipes), and MAL is the MCDU

Address Label (an ARINC 429 protocol identifier used to distinguish multiple MCDUs).

Programs that use A429, such as a429 mcdu above, need an adapter to communicate using

R429. This is implemented by r429 piped daemon (labeled a429 mux in Figure 3.2), which

connects to the r429d daemon and demultiplexes the single R429 TCP connection into one or
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more unidirectional A429 named pipes. The r429 piped daemon handles processes repeatedly

opening and closing the pipes as the client process is restarted.

Limitations Triton replaces the physical ARINC 429 bus with message channels built on TCP

and Unix pipes. Although this affords great flexibility, it does not reproduce the ARINC 429

medium perfectly. In particular, our virtualized ARINC 429 bus does not capture the electrical

and timing characteristics of the signal, and thus Triton is not appropriate for experiments that

require precise control of these properties. None of the experiments we consider require such fine

control over timing and all of our devices are able to communicate correctly.

3.4.3 ACARS medium

The ACARS communication medium is simulated by the R618 protocol and the r618d

daemon. Similar to R429, the R618 is a TCP-based protocol that encapsulates and multiplexes

ACARS communication channels, with r618d serving as the message broker. Devices that want

to communicate using ACARS connect to the r618d daemon and monitor messages tagged with

a specific frequency. There are two R618 domains, one simulating the air–ground link, and

the other simulating the ground segment. The two are joined by an ACARS ground station,

which takes care of downlinked message acknowledgement and uplinked message block number

sequencing. ACARS messages injected into the air–ground R618 domain are received by the

VDR as sent, while messages injected into the ground R618 domain are processed by the ground

station and correctly numbered before being uplinked. Injecting messages into the air–ground

domain models an attacker who can communicate directly with the aircraft without involving a

real ground station. Injecting messages into the ground domain models an attacker who must deal

with ground station contention.
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3.4.4 Physical components

Our research tasks (Section 3.3) involve analyzing the behavior of real avionics and so

we connect several LRUs to our testbed, as shown at the top of Figure 3.2. Since our initial

focus is on the Communication Management Unit (CMU) and the Flight Management Computer

(FMC), these are the first physical LRUs we use. In particular, our testbed has several Rockwell–

Collins CMU-900s, Honeywell Mark III CMUs, and Smiths FMCs from Boeing 737 aircraft. We

purchased these LRUs on eBay or from aircraft parts dealers in “as removed” condition traceable

to specific aircraft.

3.4.5 Simulated components

In addition to the physical LRUs, our testbed includes several LRUs simulated in software.

Each simulated LRU communicates using the A429 protocol described above.

Multi-Function Control and Display Unit (MCDU) The virtual MCDU communicates with

a CMU using a protocol defined in ARINC characteristic 739 [2]. It simulates a 24 column by 14

row MCDU display and keyboard, allowing us to interact with a CMU using a computer terminal

rather than a physical MCDU.

VHF Data Radio (VDR) The simulated VDR communicates with a CMU using the ARINC

429 Bit-Oriented Protocol. The RF medium is simulated using the R618 protocol and the r618d

daemon (Section 3.4.3), which route ACARS messages to each device (virtually) tuned to a

given frequency. Other devices, described below, can inject ACARS messages into this medium,

modeling an attacker who can transmit ACARS messages in the appropriate VHF frequency. Our

virtual VDR simulates messages received over both the original ACARS-over-AM and the newer

ACARS over VHF Data Link Model 2.
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Printer The virtual printer communicates with a CMU using a protocol defined in ARINC

characteristic 740 [1]. It supports printing ACARS messages received by the CMU. In particular,

the ACARS protocol allows ACARS messages to be forwarded directly to the printer (without

pilot interaction). This allows us to test whether the CMU provides any filtering of such ACARS

messages or whether it forwards all such messages to the printer indiscriminately.

Flight Management Computer (FMC) In addition to a real FMC (Section 3.4.4), our testbed

also has an implementation of a virtual FMC, which can communicate with a CMU as defined in

ARINC characteristic 758 [9]. Our simulated FMC does not support all the features of a real FMC,

such as a navigation database, but it can receive and acknowledge ACARS messages forwarded

from a CMU. As with the printer, this allows us to test whether the CMU provides any filtering of

such ACARS messages or whether it forwards all such messages to the FMC indiscriminately.

3.4.6 Emulated components

Both the Honeywell and Rockwell–Collins CMU use an x86 main processor. We have

extracted the firmware of both CMUs, allowing us to run the firmware in an x86 emulator such

as QEMU. We have two modes of emulation, pure emulation and hybrid emulation. In the pure

emulation mode, we emulate firmware using QEMU using custom QEMU machines and devices.

In the hybrid emulation mode, the firmware is run in QEMU with I/O redirected to the real

hardware using an approach similar to Surrogates [38].

The Rockwell–Collins CMU-900 uses an AMD AM486 processor as its main CPU. This

feature-poor processor lacks the necessary debugging hardware for hybrid emulation. Instead, we

reverse-engineered enough of its peripherals, including its ARINC 429 controller to implement

our own versions as QEMU devices. The 429 connections are exposed as TCP sockets. Our

current implementation is sufficient to support the firmware’s data loading protocol which is

handled by the main CPU. Other uses of 429 are handled by a dedicated I/O processor, an Intel
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386EX; support for emulating the I/O processor is in progress.

We plan to support emulation of the Smiths FMC in future work.

3.5 Experiment examples

The Triton testbed supports several kinds of experiments. Here, we describe two such

experiments based on the analysis tasks outlined in Section 3.3.

3.5.1 ACARS experiments

Our testbed allows us to inject arbitrary messages for processing by the CMU and FMC.

In particular, sending an ACARS message over the virtual air-ground medium takes only a few

lines of code. The message is then processed by the simulated VDR and delivered to the CMU,

which may be the physical CMU or the CMU code running in QEMU. The latter allows us to

snapshot and examine the state of memory as the message is processed, as well as to add more

sophisticated analysis tasks such as taint-tracking the message data. Delivering the message

to hardware provides the highest degree of execution fidelity and is useful to confirm whether

behaviors observed in emulation are an artifact of emulation or not. During message processing,

we can interact with the CMU using the virtual MCDU to observe how it responds to various

messages and to test whether certain messages trigger a notification or not.

The CMU may also be connected to an FMC, which may be simulated or physical. With

a simulated FMC, we can test which ACARS messages are forwarded by the CMU to the FMC.

To observe how an FMC would react to these messages, we can connect the physical FMC to the

virtual bus and forward ARINC 429 traffic from physical CMU to physical FMC over the virtual

ARINC 429 links.

The most complex testbed configuration realized in the lab so far consisted of the Honey-

well Mark III CMU code running in QEMU (as described in Section 3.4.6) using the physical
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ARINC 429 interfaces of the CMU to communicate with a simulated MCDU, VDR, and cockpit

printer. The VDR is also connected to a simulated ACARS ground station, allowing us to send

ACARS messages to the CMU and observe its behavior in QEMU.

3.5.2 Data loader experiments

We implemented the low-level, generic ARINC 615 [4] data loading protocol as a Python

module which we can use to upload data to LRUs. Using this capability as a building block,

it is easy to implement the higher-level, LRU-specific protocols. We reverse engineered and

implemented the high-level data loading protocol for one of our CMUs, the Rockwell–Collins

CMU-900. In the lab, we can configure our testbed to connect our simulated data loader to either

an emulated or physical CMU and upload data.

We are expanding this capability to other LRUs and investigating both the ACARS attack

vector which leverages the ADL (Section 3.3.1) and the data loader attack vector (Section 3.3.2).

3.6 Discussion

We believe that the Triton testbed meets the explicit and implicit requirements for which

it was designed. In this section, we start by describing some of the challenges associated with

working with avionics in the lab. Next we discuss two lessons learned from our early testbed

design. We end with a discussion of alternative designs.

3.6.1 Challenges working with avionics

Integrating physical avionics components with simulated and emulated components as

described in Section 3.4 is complicated by several factors, including boutique power requirements,

ARINC 429 networking, and unusual system design choices made by the avionics manufacturers.
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Many avionics, including our CMUs and FMCs, are powered by a 115 V, 400 Hz

alternating-current power supply. While some avionics also support the standard US residential

120 V, 60 Hz AC for ground-based testing, others do not.3 This choice of frequency complicates

running the LRUs on a lab bench by requiring either an expensive power supply or hardware

modifications to allow 60 Hz power. We chose the former approach.

In contrast to other common vehicular networks like the automotive CAN bus, which

connects multiple electronic control units (the automotive equivalent of an LRU) together using a

single shared bus which is frequently exposed via the standard OBD-II port, ARINC 429 requires

bi-directional links between communicating LRUs. For example, a CMU that follows ARINC

758 has forty-eight 429 inputs and twelve 429 outputs [9, Attachment 1–6]. Wiring just the

desired 429 connections to the appropriate pins in the 300-pin connector is a delicate task.

The design of our Rockwell-Collins CMU-900 complicates its analysis. The CMU-900

is itself a system-of-systems with three heterogeneous processors: The main processor is an

AMD Am486 and its I/O processor is an Intel 386ex. The firmware for both make extensive

use of x86’s protected mode segments which are not well-supported by most debugging tools.

Other, less problematic, but similarly custom design choices include using RS-232 serial ports in

nonstandard configurations.

3.6.2 Lessons learned: two early lessons

Following the Unix philosophy (Section 3.4.1), we designed the Triton testbed around the

concept of a process as the basic component of the system. ARINC 429 adapter drivers, simulated

components, and tools are all processes that communicate via a shared medium simulated by the

r429d and r618d daemons. As noted, this process-oriented design keeps the system program-

language agnostic, allowing components to be developed using any language or programming

3The authors received a first-hand lesson in what happens when a too-low frequency AC current is applied to
avionics of the second type, to wit a fried transformer.
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environment that supports TCP sockets.

One early failure to adhere to this philosophy was the decision to make the ARINC 429

adapter part of the r429d daemon. On startup, the r429d daemon read a configuration file that

specified which adapter driver to use and how ARINC 429 channels identified by the driver would

map to ARINC 429 channels presented by r429d. The r429d daemon would load the adapter

driver, actually a child process that would communicate with r429d using pipes, at startup. At the

time we made this decision, we imagined that most of the debugging and troubleshooting would

be in the simulated components; this proved not to be the case. We built the first-generation

ARINC 429 adapter ourselves, which involved considerable debugging of both the driver and

the firmware. We never managed to make it completely reliable, necessitating frequent adapter

power cycling and driver restarts. To restart the driver, we needed to restart the r429d process,

which tore down the virtual 429 bus between physical and simulated components. Each time we

restarted the r429d, we needed to re-attach the R429 monitoring tool, virtual MCDU, and virtual

VDR to the bus.

We eventually changed the model to one where the adapter driver is a separate process

that attaches to the r429d daemon independently of other components. This greatly simplifies

the r429d daemon, which no longer needs a configuration or the ability to spawn a driver process.

It also simplifies adapter-driver testing and debugging, because it does not require restarting the

r429d daemon.

We also eventually abandoned our own ARINC 429 adapter hardware completely and

opted for a commercial product, which proved to be much more reliable in practice. While the

process of building our own ARINC 429 adapter was educational, that decision cost us many

hours that could have been better spent on security analysis.
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3.6.3 Two virtual ARINC 429 protocols

Recall that our testbed has two protocols used to virtualize ARINC 429 buses: R429 and

A429. The R429 protocol carries multiplexed ARINC 429 words between devices attached to a

virtual ARINC 429 bus and the message broker daemon, r429d, which implements the ARINC

429 one-transmitter, multiple-receivers topology as a publish-subscribe scheme. To simplify

application interfaces, we also created the A429 protocol, which carries raw 32-bit ARINC 429

words. This requires running at least one (often more than one) instance of the r429 piped

daemon to bridge between R429 and A429.

While the intent was to simplify application design, having two protocols communicating

via the r429 piped daemon acting as a software adapter actually adds additional steps. Attaching

a device such as an MCDU to the virtual ARINC 429 bus should have been a simple process.

Instead, the user first needs to make sure the correct named pipes exist in the file system, and,

if not, create them using the mkfifo command. Next, the user has to run an instance of the

r429 piped daemon, specifying on the command line the named pipes and to which virtual R429

channels they map. Only then can the user run the virtual device, providing it the names of the

pipes on the command line. Combined with the physical ARINC 429 adapter and driver problems

(Section 3.6.2) that required restarting the r429d daemon, this design led to a lot of open terminal

windows and process restarts, needlessly increasing workflow complexity.

In retrospect, A429 was not necessary and adds additional complexity to our workflow.

The intended benefit of A429, namely simplifying the application interface to the virtualized

ARINC 429 bus, could be provided by library functions that connect to r429d using the R429

protocol.
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3.6.4 Alternate designs

It is worth considering alternatives to the architecture of the Triton testbed. For example,

the entire testbed could have been built following the GNU Radio model: a monolithic process

where components such as simulated LRUs are modules connected together by intra-process

queues. A configuration file, or even straight-line initialization code, could assemble an ex-

periment using components defined as C++ classes with inputs and outputs wired together at

initialization. Such close integration of components is arguably necessary for GNU Radio to

achieve the signal processing throughput needed to implement a software-defined radio applica-

tion. However, the bandwidth requirements for ARINC 429 are much more modest—high speed

links signal at 100 kHz—and well within the bandwidth of a loopback TCP link.

The process model also allows components to be hot pluggable: simulated components,

diagnostic tools, and injection tools can be attached and detached from the system as necessary

without stopping the experiment. A monolithic design model would have required considerable

engineering to support such a feature—one we probably would not have implemented. Finally,

the monolithic design would not offer the same flexibility in the choice of programming language

used to develop each component. We find this flexibility to be useful in practice: Although we

wrote the majority of the Triton testbed in C, we implemented our simulated Airborne Data

Loader (ADL) in Python.

3.7 Related work

While little of the work related to empirical aviation cybersecurity is public, there is an

emerging open literature both from the academic and independent security research communities.

Most of this has focused on threats and vulnerabilities associated with particular aviation commu-

nications channels including ACARS [53, 32], ADS-B [30], and Satellite [48, 47, 49] channels.

In general, these efforts have focused on individual protocols or receivers in isolation—exploring
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design and implementation vulnerabilities and the potential for effects through that channel alone.

An exception to this is Hugh Teso’s 2013 Hack In The Box talk which discussed the possibility of

lateral movement from one avionics component to another. While Teso’s claims are controversial

(and widely disputed) his presentation describes a software testbed purporting to run emulated

code from different avionics components [56]. However, a criticism of Teso’s testbed is that

as it is entirely based on software and lacks real avionics components, it has limited fidelity

for describing the behavior of real aircraft. By contrast, the Department of Homeland Security

recently acquired an operational Boeing 757 to explore end-to-end security issues as part of their

Aviation Cybersecurity Initiative (ACI) program [15]. This approach has the benefit of extremely

high fidelity but is expensive to procure, operate, and maintain.4 We are motivated by the same

kinds of system-wide security questions, but the combination of our goals and means has led to

a hybrid testbed that combines both LRUs from real aircraft (physical components), emulated

avionics software, and simulated components.

Outside security, we are aware of multiple industry efforts to create avionics testbeds in

support of development and test for commercial aircraft. Indeed, we believe that such testbeds

have been created internally by a range of airframe and avionics manufacturers. Publicly described

examples of such testbeds include Eurocontrol’s Link 2000+ testbed [23] and the Air Force’s

Reconfigurable Cockpit and Avionics Testbed (RCAT) operated by MITRE [45, 59]. The purpose

of these testbeds is to test the integration of new or modified components in a realistic environment.

Unlike the DHS approach, these involve only a small subset of key components; however, they are

similar in (typically) using only real avionics equipment and no software emulation or simulation.

Finally, there are a broad array of emulation testbeds that have supported security research.

Among the best known are Utah’s Emulab [61] which allow experiments over hundreds of

machines in a contained environment. This architecture was expanded to include complex

topologies and routing combinations of emulated and real network equipment in the DETER

4Note that some of our authors participated in the DHS ACI program, but the work described in this chapter is
entirely separate from that effort.
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testbed [41] and expanded yet more in DARPA’s National Cyber Range program [24]. Our work

is both smaller scale and significantly more bespoke, but borrows from the hybrid nature of these

later testbeds—combining real and emulated components in a single environment as needed.

3.8 Conclusion

While its design continues to evolve as we acquire additional physical components, the

Triton testbed has allowed us to operate a number of critical avionics components, namely the

CMU, FMU and MCDU, for several years in their as-installed configurations without the need

for an actual Boeing 737 airframe. Several of these components will not even boot without

interrogating the ARINC 429 bus for the (apparent) presence of various additional pieces of

equipment that the Triton design allows us to faithfully simulate—or at least stub out with

sufficient fidelity such that the components under test proceed without error.

Our simulated ARINC 429 bus greatly simplifies inspecting and interposing on inter-

component messaging, thereby facilitating security analyses that attempt to expose any potential

stepping-stone attacks. One key challenge that remains to be addressed by our cross-mode design,

however, is systematically identifying and addressing tight timing constraints that components

occasionally place on inter-component messaging. Such constraints are especially challenging

to deal with in emulated components which may not be as performant or deterministic as their

physical counterparts.

Even in its current state, however, Triton enables us to conduct not only the two exemplar

analyses discussed in this chapter, but several additional, ongoing studies that will dramatically

increase our understanding—and the security—of the complex interdependence between the

federated avionics that underpin much of the world’s commercial air transport fleet.

Chapter 3, in full, is a reprint of the material as it appears in Sam Crow, Brown Farinholt,

Brian Johannesmeyer, Karl Koscher, Stephen Checkoway, Stefan Savage, Aaron Schulman,
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Alex C Snoeren, and Kirill Levchenko. Triton: A software-reconfigurable federated avionics

testbed. In 12th USENIX Workshop on Cyber Security Experimentation and Test (CSET 19), 2019.

The dissertation author was the primary investigator and author of this paper.
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Chapter 4

Bus Driver: No-cut Message Modification

on Aviation Data Buses

After building a test setup, the next major challenge is how to use it most efficiently to

find security problems. Although this chapter describes a device that performs an attack, the

same approach can help test devices to see how they respond to modified messages. Compared to

the normal method of disconnecting the bus wires and installing something in the middle, this

approach lets a single test device on a bus can modify messages from any other connected device

without being moved around or rewired.

4.1 Introduction

This chapter investigates a seemingly simple, but practically quite complex, question

about industrial data buses: the extent to which attacker-in-the-middle capabilities require the

attacker to physically interpose on all communications (i.e., cutting the wires and partitioning the

bus), or if such capabilities can be obtained with a no-cut attack (i.e., through signal manipulation)

by attaching a device to an unused port on the bus.
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This question is motivated by the observation that such buses are ubiquitous in a wide array

of safety critical applications (notably in transportation and defense) and typically lack meaningful

cryptographic security that would guarantee message integrity, freshness or authenticity. This

design has been deemed sufficient because such systems (e.g., airplanes, ships, automobiles,

weapons systems, etc.) are typically self-contained and thus, physical access is required to interact

with their internal communications. While physical access is commonly deemed “out of scope”

in many non-consumer threat models, there are practical reasons for reconsidering this issue.

Indeed, the underlying premise has traditionally been that significantly tampering with a system’s

internal communication networks is a complex, time-consuming process that is too operationally

challenging to be attractive for most attackers. To be concrete: we imagine it would be difficult to

obtain hours of unmonitored time to rewire and tamper with systems in a commercial aircraft.1

However, there are reasons to reconsider this risk given both changes in technology and

attacker capabilities. We increasingly see evidence that transitory physical access (i.e., physical

access for a few minutes or less) is sufficient to obtain bus access. For example, recent attacks

on gas station pump card readers (i.e., skimmers) have shown that attackers can reliably install

vampire taps on internal data buses in less than 10 seconds [14]. Similarly, a range of platforms

provide “debug” or “maintenance” ports that provide signal access to key buses even more

quickly, without needing any access to underlying wires (e.g., OBD-II for automotive CAN

buses [37, 25]). Finally, modern commodity board fabrication enables even amateur attackers to

construct highly miniaturized “implants” that incorporate both bus communication drivers and

general-purpose microprocessors, but also wireless communications to allow remote control or

configuration. Thus, in a range of contexts, transient physical access may be sufficient to allow

signal eavesdropping or signal injection. However, such access is not, by itself, sufficient to edit or

replace existing legitimate messages on the bus—an attacker-in-the-middle capability—because

1By contrast, it is understood that, for consumer electronics, it is entirely reasonable to anticipate that a device—
such as a smart phone or game console—may be put on a lab bench for hours or days to gain access to protected
information.
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simply obtaining bus access does not foreclose other parties from transmitting.

In this chapter, we explore this question in some depth in the context of two critical

industrial buses: ARINC 429, the workhorse bus for commercial and transport aviation, and

MIL-STD-1553, an equivalently common bus used in military aircraft and weapons systems.

We explore the extent to which a foreign implant with physical access to a port on such a bus is

able to effectively override or cancel signals from the connected bus devices and substitute the

signals of their choosing, without being detected. We show that direct-coupled buses, such as

ARINC 429, are at risk from such manipulations, ironically because their underlying robustness

provides the freedom to effectively override and replace existing signals. However, we show that

transformer-coupled buses, such as MIL-STD-1553, present significant obstacles to such attacks,

requiring an implant to obtain multiple independent bus connections.

In particular, this chapter makes the following contributions:

• Bus Vulnerability Analysis. We analyze the logical and physical characteristics of ARINC

429 and MIL-STD-1553 to identify the necessary conditions to cancel and replace existing

data signals.

• Empirical assessment. We build implants that carry out such attacks in practice in a

bench-top setting.

• End-to-end case study. We design, implement and demonstrate a prototype implant that

can be easily installed into a maintenance accessible port in the Electronic and Equipment

bay of the Boeing 737. We show that, using a version of the techniques we describe, it is

able to completely mediate communications between the Flight Management Computer

(FMC), which is responsible for flight plan navigation, and the Multi-Purpose Control

Display Unit (MCDU), which provides the user interface for such functions.

Finally, we discuss potential countermeasures or mitigations that would prevent or greatly

complicate such attacks in practice.
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4.2 Threat model

In this section we introduce Bus Driver attacks, a new no-cut interception attack on

industrial data buses. Attackers with brief physical access (∼1 min) can implant a device into

an unused bus port and perform attacker-in-the-middle attacks without intercepting the wiring.

We first provide background on how this threat is different from prior attacker-in-the-middle

scenarios. We then provide background on the electronics of data buses to explain why a no-cut

interception attack is feasible, followed by a description of the technical challenges attackers face

in achieving a transparent no-cut attack.

4.2.1 Constraints and opportunity

In an aviation environment, attackers can only have brief physical access to the electronics

components in a target system. Industrial systems are often in use, so physical access is limited to

brief time periods when the system is idle or being maintained (e.g., a plane at the gate). During

those idle times, an attacker has an opportunity to access the electronic components of the system.

For instance, aviation ground crew can access the Electrical / Equipment compartment (E&E) of

the Boeing 737—where its data bus connectors are located—when it is parked at the gate. This

is routinely done to inspect for equipment errors. Empirical measurements show that a person

on the ground without any special equipment can open (or close) the 737 E&E compartment in

approximately 15 seconds.

Constraints: time and avoiding detection. An attacker needs to quickly find the data bus

wires that they want to intercept (i.e., the one with their target transmitters and receivers), and

intercept them without being detected. Given these constraints, it is not feasible for an attacker

to perform a typical attacker-in-the-middle attack. The first challenge is that industrial systems

often are constructed with many bundles of wires (e.g., a wire loom from a Boeing 737 shown

in Fig. 4.1), each containing dozens of unlabeled wires. This makes it difficult for an attacker
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Figure 4.1: Wire loom from a Boeing 737. It is difficult to find and cut specific wires in an
unlabeled bundle of cables.

to identify and cut a specific set of wires for a specific bus that connects to a target transmitter

and receiver. The second challenge is, they may not be able to cut them because equipment

on industrial data buses tends to perform frequent probing to ensure ensure its components are

operating properly. If it is not, an equipment failure will be recorded (e.g., a BITE error on the

Boeing 737). Some buses have built-in mechanisms that check for errors like invalid message

checksums, unexpected bit patterns in messages, and messages that are too far, or even too close

together in time. To avoid detection, the attacker needs to avoid creating any errors–even transient

ones–that the target system can detect. Finally, if the attacker requires persistence, their device

should be difficult to physically detect and splices into the middle of a wiring loom may be more

challenging to conceal.

Opportunity: Unused data bus ports. However, many industrial systems expose their data

buses through unused ports. In particular, aircraft and military equipment often have unused

ports directly connected to data buses for troubleshooting and training purposes. For instance, the

Boeing 737 has multiple maintenance and test ports providing access to data buses in the E&E

compartment. An example of one such port is shown on the top of Fig. 4.2, which exposes an
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Figure 4.2: Unused data bus ports on the Boeing 737 present an opportunity for an attacker to
hide an implant inside of the port.

ARINC 429 data bus to load firmware updates into a particular “line replaceable unit” (LRU) on

the Boeing 737.

Data bus ports also present an opportunity to avoid physical detection while simultaneously

providing persistence to the attacker: a malicious device can be hidden inside of the unused

data port. Figure 4.2 shows an example of an entire physical implant that we constructed to

fit inside of the dimensions of a test port on the Boeing 737 (details in Section 4.4). Indeed,

this implant can even be remotely controlled because it includes a built-in WiFi and Bluetooth

wireless interface. For instance, this could allow it to be operated over an aircraft’s in-flight WiFi

network, whose main control is also in the E&E bay. Based on our experience, we believe that

an attacker with access to an open 737 E&E compartment would be able to remove the dust cap

from an existing maintenance port and connect a miniaturized implant device (such as the one we

have constructed) within 30 seconds.

4.2.2 Bus Driver: A no-cut interception attack

In this work we evaluate a new type of industrial data bus attack called a Bus Driver

attack. A Bus Driver can achieve the same interception and overwriting capability as attacker-

in-the-middle, however, instead of splicing a Bus Driver only needs to attach to the bus on an

unused port. Figure 4.3 compares a Bus Driver attack with a traditional attacker-in-the-middle.

Bus Driver attacks are inspired by a class of wireless communication attacks that also achieve
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Figure 4.3: A conventional attacker-in-the-middle attack splits a bus into two parts to intercept
and modify messages. A Bus Driver implant just needs to connect to one point to intercept data
and change it.
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attacker-in-the-middle capability, but using active cancellation, instead of physically separating

the channels between the target device [28, 19].

Essentially, a Bus Driver intercepts messages by simultaneously receiving what the

legitimate transmitter is sending while also cancelling the original signal so that it does not reach

the legitimate receiving device (Fig. 4.3 bottom). Then, it modifies the data and injects a malicious

version of the transmission to be received by the receiving device. Compared to cutting wires, a

Bus Driver requires no physical modification of the bus; therefore, it evades most electronic forms

of detection. It also has the additional benefit that it does not require specific placement on the

bus between the target transmitter receiver, as long as the unused port is on the same bus, it can

perform the attack regardless of where the targets are relative to the malicious device on the bus.

Electrical description. In a wired data bus, a device can send messages to the other device by

changing the voltage between two wires. Nominally, a transmitting device drives a small amount

of current through its connection to the bus to induce a voltage change that the receiving device

can detect. To suppress a message, an implant needs to (effectively) sink this current such that no

perceptible voltage change occurs. To completely override a message, an implant must also drive

sufficient current to induce its desired voltage on the bus. To manipulate a message on the fly, an

implant must be able to monitor what it is cancelling while it is overriding, so that the implant

can know the original data.

4.2.3 Challenges

Although the attack is simple in principle, there are several bus implementation-specific

challenges that may make it infeasible to execute Bus Driver attacks in practice.

CSAFE– Not destroying the legitimate transceivers. Canceling a transmission on a bus requires

driving current opposing the transmission on the bus. Electrically, this will cause the legitimate
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transmitter and receiver to sink that current, likely significantly more than it is designed to handle.

This could lead to the destruction of bus frontends on legitimate devices.

CCANCEL– Fully canceling the legitimate transmission. The simplest way an attacker can

cancel a legitimate transmission is to short-circuit the two bus wires. The transmitting device will

then try to send a message by sending current through the wires. Because of the short circuit,

there will be no voltage difference between the wires. However, this would result in not being

able to inject a malicious data signal because the short circuit blocks all signals. Instead, the

cancellation has to be strong enough to cancel the legitimate signal, but not so strong that it

also cancels the injected signal. This becomes particularly difficult for data buses that are not

directly coupled electrically between the transmitter and receiver. For instance, industrial data

ports can be transformer coupled to the data bus, which means that an attack cannot directly drive

current on the bus wires to cancel a transmission. Instead, it has to deliver that current through a

transformer that was not explicitly designed with enough bandwidth or current delivery capacity

to allow for canceling transmissions on the bus.

CSYNC– Synchronizing timing with a legitimate transmitter. Canceling and overriding trans-

missions on industrial data buses will require tight time synchronization between the legitimate

transmitter and the attacker. The reason is that these data buses have tight timing requirements

for when messages should arrive, and if messages are missing, improperly canceled such that

they introduce bit errors, or arriving at the wrong time, then the system will detect that the device

transmitting or receiving has failed.

4.3 Feasibility of Bus Driver on aviation buses

In this section we evaluate the feasibility of Bus Driver attacks on two different buses

commonly used in commercial (ARINC 429) and military (MIL-STD-1553) aircraft.
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4.3.1 ARINC 429

The first bus we test the Bus Driver attack on is ARINC 429 [5]. ARINC 429 is a uni-

directional serial bus in common use in commercial and transport aircraft (e.g., 737). Each bus

consists of one transmitter connected to one or more receivers. Bidirectional communication be-

tween aircraft computers—called avionics—is achieved using two buses transmitting in opposite

directions between the avionics.

Attackers need to find the specific bus for their target. Aircraft have many separate ARINC

429 buses, each with one transmitter and a small number of receivers. One of the benefits to this

approach is that an attacker attempting to manipulate the traffic on any given bus has to physically

connect to that specific bus. Also, to manipulate messages sent in both directions between devices,

the attacker must connect to both buses. This stands in contrast to other common buses like

CAN where a single bus supports every device in the system, including multiple transmitters and

receivers.

ARINC 429 is a simple and reliable bus. ARINC 429 is an electrically simple, two-wire bus.

The transmitter and each receiver directly connect to the bus and share a common ground [5,

Section 2.2.1]. An ARINC 429 transmitter is directly connected to each bus wire with a 37.5 Ω

resistor [5, Section 2.2.4.1 and Attachment 4]; see Figure 4.4. These two resistors are designed to

provide an output impedance that matches the characteristic impedance of the bus wires. They

also have the effect of limiting the current that can flow into or out of the transmitter. The two

bus wires are normally at zero volts with respect to the shared ground. The transmitter sends

a message by supplying 5 V on one wire and −5 V on the other wire. The receivers measure

the differential voltage between the bus wires. A positive voltage is interpreted as a 1 bit, and a

negative voltage as a 0 bit.
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Figure 4.4: (a) An ARINC 429 bus with an accessible connector, (b) An implant changing the
voltage on the bus. The thick lines represent the current that flows between the implant and
transmitter. The resistors in the transmitter limit the current and protect the transmitter from
overheating.
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ARINC 429’s resistors make it vulnerable. One unintended consequence of the inclusion of

these resistors is that they limit the current from the legitimate transmitter. This makes it possible

for a rogue device connected to an used port on the bus to override the legitimate transmitter and

cancel, allow, or modify a transmission.

4.3.2 Proof-of-concept ARINC 429 implant

Despite the simplicity of the ARINC 429 bus, actually overriding specific messages is

more complicated than connecting a transmitter (without resistors) to the bus and transmitting. In

the next section, we describe our proof-of-concept ARINC 429 implant.

Theory. The resistors limit current from the legitimate transmitter, enabling a rogue device

to fully cancel a legitimate transmission (CCANCEL). While the rogue device is canceling and

modifying a transmission, the legitimate transmitter will be acting as a current sink. However,

the resistors prevent the transmitter from sinking too much current, protecting it from damage

(CSAFE), not destroying the legitimate transceivers. It’s important to note that this is not a quirk of

one particular implementation of the standard. Instead, the standard mandates the inclusion of the

resistors [5] which enable the Bus Driver attack. We also have to synchronize timing with the

legitimate transmitter (CSYNC).

Implant Design Figure 4.5 shows the major components of the ARINC 429 Bus Driver. stan-

dard ARINC 429 transceiver driven by a microcontroller (MCU) is connected to the bus with the

addition of two high-current amplifiers between the transmitter and the output. These amplifiers

drive enough current that the Bus Driver’s ARINC 429 transmissions cancel out and replace the

transmissions on the wire from the legitimate transmitter. In addition to the normal ARINC 429

receiver that allows the implant to receive the legitimate transmissions when it is not overriding,

it includes a current sensor and comparator attached to the bus after the amplifiers that allows the
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Figure 4.5: A simplified block diagram of the 429 implant. When the implant is active, its
output amplifiers drive current through the bus. A current sensor measures that current. If the
implant is blocking a message, the current reveals the content of the blocked message.

Bus Driver to read legitimate transmissions on the bus simultaneously while it is canceling them.

Implementation. We designed and built several versions of a proof-of-concept ARINC 429

Bus Driver which can allow, block, or modify legitimate ARINC 429 transmissions. In addition,

our implant can read the messages that the legitimate transmitter sends and at the same time

prevent any other receiver on the bus from receiving a message. See Section 4.4 for a case study

where an attacker who has brief physical access to a Boeing 737’s Electronic Equipment Bay

can override information sent from the Flight Management Computer (FMC) to a display in the

cockpit.

The first version of the implant used a separate Holt HI-3593 ARINC 429 physical layer

transceiver chip to receive and send messages on the bus with the correct timing (CSYNC). This

limited what the implant could do in a few important ways. First, the MCU did not know that

another device was sending a message until after the entire message had arrived. Second, when

the MCU instructed the HI-3593 to send a message, the HI-3593 added an unpredictable delay of
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tens of microseconds before sending the first bit of the message. That made it impossible for the

implant to detect a specific label in a message and modify other bits within the same message,

or to reliably send a message in between two other messages sent by another device with the

minimum time period (40 µs) between the messages. In essence, the first version of the implant

was not able to overcome CSYNC.

In order to overcome this challenge, we removed the separate ARINC 429 chip and

implemented its functionality in firmware on the microcontroller. This change has two clear

benefits but comes with an additional challenge. First, it enables the implant to react to legitimate

messages during transmission. Second, it saves space on the circuit board. Saving space is not

our primary concern, but it did ease the layout of the final prototype which is space-constrained

since we designed it to fit inside a standard receptacle (Figure 4.2)). The new challenge is that

because the MCU can no longer leverage a separate chip for sending and receiving ARINC 429

words, we needed to carefully structure the firmware to send and receive at 100 kbps.

To receive messages, we use a Holt HI-8591 ARINC 429 physical layer receiver chipset

to convert the bus voltage into two digital signals. We use the MCU’s motor control pulse

width modulation (MCPWM) peripheral to measure the duration of each bit in the message and

trigger an interrupt when one of the signals becomes high. The interrupt handler checks that

each bit has the correct timing and collects the 32 bits of each message into one integer value

for processing. This works reliably as long as the microcontroller is running at its maximum

frequency of 240 MHz. Otherwise, the interrupt handler takes too long to run and misses some

messages.

An alternative approach to waiting for an entire 429 word to be received before acting is

to trigger its overriding functionality after the initial bits of the message—for example the 8-bit

label—has been received. That lets the implant modify the other bits in the message.

To transmit messages, we use bit banging. Because the MCU’s software libraries do

not provide a good way to wait with a resolution of more than 1 µs, and to avoid timing errors
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caused by interrupts, we do not use either of the MCU’s main cores. Instead, we use the ESP32’s

Ultra-Low-Power (ULP) coprocessor. The ULP coprocessor has a very restricted instruction set

that makes it challenging to program, but it can wait for a precise number of clock cycles and

never gets interrupted by any other software. The ULP software controls two digital outputs,

which the output amplifiers convert into positive and negative voltage on the bus.

While blocking or overriding legitimate transmissions, current flows between the legiti-

mate transmitter and the implant through the bus wires. The direction of current depends on the

contents of the legitimate transmission. By connecting a current sensing transformer to the output

of one output amplifier, the microcontroller can measure this current over time and decode the

message, even though the other receivers on the bus will not receive the message.

The ability of the implant to read transmissions while simultaneously hiding them from

other receivers enables attacker-in-the-middle capabilities without needing to physically discon-

nect the bus between the transmitter and receivers.

Evaluation A full case study showing an end-to-end attack where the implant can change

characters on a critical cockpit display of a Boeing 737 using the ARINC 429 Bus Driver is

described in Section 4.4.

Although the implant can succeed to cancel and override ARINC 429 messages, it may

introduce a significantly different waveform onto the bus when it does this that could easily

be detected by improving the bus fault detection logic in ARINC 429 receivers. Figure 4.6

shows the waveform of a legitimate transmission (blue) followed by a canceled and overridden

transmission (red). The Bus Driver cancels entirely, and produces an identical waveform as the

legitimate transmitter. However, the Bus Driver’s waveform does have more noise (likely due

to the high-gain amplifier) and the voltage on the bus is not exactly the same as the legitimate

transmitter. Since they are not identical, it may be possible to create a defense against this attack

by sampling the full analog waveform of the bus and finding incongruities using digital signal
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Figure 4.6: The ARINC 429 bus waveform during a legitimate transmission (blue) is nearly
indistinguishable from the Bus Driver attack (red).

processing. However, as we describe in Section 4.5, this will significantly increase the complexity

and cost of all ARINC 429 receivers in the system.

The simplicity of the ARINC 429 bus—specifically that devices directly connect to the

bus—coupled with the transmitter’s output resistors makes the attack easier than it would be on

a more complex bus with isolation between devices. Nevertheless, this direct connection is not

required.

4.3.3 MIL-STD-1553

We have demonstrated that ARINC 429’s design as a resilient industrial bus made it

particularly vulnerable to Bus Driver attacks, but there is another bus standard, MIL-STD-1553,

which is used by the military for aircraft applications [57], and also in weapon systems (e.g., the

Javelin Missile). Here, we evaluate if a Bus Driver attack is feasible on this bus.
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Figure 4.7: A MIL-STD-1553 bus’s transformer-coupled stubs offers protection against a Bus
Driver implant.

Differences between MIL-STD-1553 and ARINC 429. MIL-STD-1553 has an even more

resilient bus design than ARINC 429. In particular, MIL-STD-1553 adds coupling transformers

which isolate devices from the bus wiring. These make it difficult to fully cancel the legitimate

signal on the bus, which potentially makes it infeasible to perform a Bus Driver attack (CCANCEL).

The coupling transformer must be physically near the main bus wiring, while up to 20 ft of

wire are permitted between the transformer at the bus connection and the port where a device

ultimately attaches—a Bus Driver cannot opt to omit nor can it access to remove the coupling

transformer. An additional challenge is that the MIL-STD-1553 standard requires receivers to

tolerate significant attenuation: a Bus Driver attack has to cancel the legitimate signal from up to

13 V down to under 0.6 V [57].

Isolation provides some protection against Bus Drivers. The original intent of transformer

isolation is to improve bus resilience to faults (e.g., a short cannot render the bus inoperable), but

we also find it serves as a mitigation for Bus Driver attacks. These transformers provide galvanic

isolation between the devices and the bus—an air gap that makes it infeasible for current to
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directly flow between the bus and the attached device. With transformer-coupling, the amplifier-

based attack circuit we described for ARINC 429 would not work. The problem is, the amplifier’s

cancellation would only cancel signals on the same side of the transformer that the attacker is on,

the other side of the bus will still have the legitimate transmission on it (Fig. 4.7).

Due to this limitation, it is impossible to perform a Bus Driver attack through a single

port to a transformer-coupled bus. However, we will next demonstrate that connecting to a

MIL-STD-1553 bus through two independent ports may make it feasible to perform a Bus Driver

attack. The presence of isolation still increases the difficulty of the Bus Driver attack as it now

requires two open ports in close proximity on a target system. We note, however, that some

MIL-STD-1553 bus coupling modules include multiple independent connection ports on a single

device [21].

4.3.4 Proof-of-concept MIL-STD-1553 implant

We now describe an implant we built that demonstrates a Bus Driver attack may be

feasible on MIL-STD-1553.

Theory. This attack requires two independent bus connections. Two ports are needed as

this approach must separate sensing the legitimate transmission on the bus from injecting the

cancellation signal onto the bus. This separation is needed because active cancellation is a

feedback loop.

To cancel, the original signal is inverted and amplifyed to create a cancellation signal. If

this cancellation signal is connected directly back to the sampling input (i.e., injected onto the

same bus connection that was used to listen to the bus), the slight imperfections in cancellation2

will also feed back into the cancellation circuit, which will then be further amplified over and over

again [42]. One way to address this problem is to physically separate sensing from cancellation,

2There is necessarily a small phase offset, since it takes time for the input signal to be inverted and amplified.
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which for our application will require attaching two different isolation transformers to the bus

(i.e., connecting to two access ports). To help provide an intuitive understanding here, consider

how noise canceling headphones are designed: the microphone sensing noise is separated from

the speaker that outputs the cancellation signal into the ear such that the cancellation waveform is

not picked up by the microphone.

Implant Design. Figure 4.8 shows the main components of the prototype Bus Driver implant.

The input bus port leads to a differential amplifier, which senses the voltage on the bus. That

voltage goes to two comparators that digitize the voltage as either positive, negative, or near-zero.

A microcontroller (MCU) receives the signals from the comparators to monitor traffic on the bus.

The MCU controls an analog switch that can enable or disable the output on the output bus port.

To inject messages while cancelling, the MCU has two digital outputs connected to

a differential amplifier that can produce positive or negative voltages. Just before the output

amplifier, another circuit adds the desired bus voltage from the MCU to the negative actual bus

voltage. The sum voltage controls a high-current output amplifier that applies a voltage to the

output port on the bus, which moves the actual bus voltage closer to the desired voltage.

Implementation. To evaluate the feasiblity of this attack, we created a prototype of a MIL-STD-

1553 Bus Driver implant, and we evaluated how well it could overwrite a legitimate transmission

on its transformer-coupled bus.

To control the implant and decide how message should be modified, we use an STMi-

croelectronics STM32F446 microcontroller. We hoped that this microcontroller would be able

to receive MIL-STD-1553 messages in software. Although the STM32F446 is not as fast as an

ESP32 (180 MHz compared to 240 MHz), it has less software overhead and gives us more control

by default.

To receive messages, we first tried using an interrupt handler that runs every time the bus

voltage changes. That approach worked for ARINC 429, but we quickly found that it was not
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practical for MIL-STD-1553. MIL-STD-1553 uses a higher data rate (one megabit per second),

so synchronizing with the transmitter is more challenging when performing selective overwriting.

Because the bus voltage can change every 500 ns, the software has fewer than 90 clock cycles to

check the signal timing and record one bit of the message.

To synchronize the Bus Driver with the legitimate signals, we start by detecting the sync

waveform at the beginning of each data message. This waveform has a pulse of low voltage

followed by a pulse of high voltage, both 1.5 µs long. Our software constantly polls the two inputs

that represent the current bus voltage. It ignores any pulses that are too short or too long. When

a message starts with a negative pulse and the beginning of a positive pulse, the software starts

generating signals to modify the rest of the message.

Generating signals to send MIL-STD-1553 messages with the correct timing is easier, but

still will ultimately require bitbanging. Using the quad SPI peripheral to control the two outputs

works well and produces the perfect bit rate. However, there is an unpredictable delay of up to

500 ns between when the software asks to send a message and when the first bit actually appears

on the outputs. A delay of 500 ns between the sync waveform and the rest of the message makes

the entire message invalid.

That unpredictable delay is the same problem that we had using a separate chip to send

ARINC 429 messages. Again here, bit banging provides better timing control. While inefficient,

polling and bit banging lets the implant reliably detect every data message on the bus and send

signals to modify the message content with the correct timing.

Evaluation. We evaluated the feasibility of this attack by observing how well the prototype

Bus Driver can cancel and override transmissions from the transceivers of an industry-standard

Holt HI-6138 MIL-STD-1553 chip.

We discovered that while the prototype can sense the bus voltage and supply the cancella-

tion voltage to block messages, it could not achieve full cancellation. The nominal bus voltage
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Figure 4.9: A legitimate MIL-STD-1553 waveform compared to the Bus Driver’s attempt to
cancel the waveform.

for a legitimate transmission is 9.7 V peak-to-peak. The implant reduces it to only 3.0 V, well

above the standard’s threshold of operation of 0.6 V peak-to-peak. This is not enough to fully

cancel a legitimate transmission, but it shows that the concept of canceling using two ports may

be feasible.

Our prototype setups so far could not achieve full cancellation due to several factors.

Figure 4.9 shows a legitimate MIL-STD-1553 waveform compared to the waveform when the

Bus Driver implant tries to cancel the transmission. Specifically, it does not cancel the beginning

and end of each bit as there is a delay in the cancellation circuit’s inverting amplifier that is

proportional to its bandwidth. However, during the transmission of each bit it does succeed to

decrease the amplitude of the bit substantially, however because the isolation resistors in the port

between the implant’s output and the bus, the amount of current that the output amplifier can

supply is limited.

One possible solution is to use a different output amplifier with a higher maximum output

voltage. Therefore, we tried several different high-gain amplifiers, including amplifiers designed
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specifically for this type of application, namely long-distance telecommunication systems (e.g.,

VDSL). However, we found that the higher the output voltage, the more likely it was that the

cancellation circuit would end up in an oscillation feedback loop. This is due to a classic problem

with feedback loops where higher gain can result in unwanted oscillation.

Summary. Overall, galvanic isolation from transformers significantly mitigates Bus Driver

attacks. It requires an attacker find two unused ports and limits the range of voltages which can

be effectively cancelled.

4.4 Case study

To show that the Bus Driver attack is viable, we will explain in this section how an implant

can attack a Boeing 737 Next Generation airliner. The 737 Next Generation series is one of the

world’s most popular airliners, with over six thousand delivered between 1997 and 2020 [31].

4.4.1 Boeing 737 systems

A Boeing 737 has many onboard computers that communicate using ARINC 429. Two of

these computers, the Flight Management Computer and Multi-Purpose Control Display Unit, are

vulnerable to an implant changing the messages they send to each other.

The Flight Management Computer (FMC) calculates flight plans between airports that

pass through predefined waypoints and follow standard departure and arrival paths. In flight, it

commands the autopilot and authothrottle to follow the planned route. The FMC also calculates

important performance numbers, like the minimum runway length the plane needs to safely take

off and the slowest speed it can fly at without stalling.

The Multi-Purpose Control Display Unit (MCDU), is the interface between the pilots and

the FMC. It has a keypad and screen that the pilots use to enter and view information about the
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flight plan. There are two MCDUs on the flight deck, one for the captain and one for the first

officer.

Each MCDU has one ARINC 429 bus that it uses to send button press events to the FMC,

and another bus where it receives text from the FMC to show on its screen. The two MCDUs

operate independently and can show different information.

MCDU text protocol The FMC uses a simple protocol to split a page of text into 32-bit

messages and send the text to the MCDU. After sending three messages to start the process,

the FMC sends each character in a separate message. When a character repeats, the FMC uses

run-length encoding to compress the text. Instead of sending a message for each consecutive

instance of the character, it sends one message with the number of times the character repeats and

one message with the character to repeat. To control where characters appear on the screen, the

FMC simply sends space characters so the following text will show up in the correct place. The

MCDU does not need to acknowledge any of these messages.

An accessible connector The buses between the FMC and the captain’s MCDU also branch

off to a connector that can be used during FMC maintenance. This connector is an ideal place

for an implant. Anyone on the ground around the plane can reach the connector through a hatch.

As figure 4.2 shows, one of our implant prototypes plugs into the connector and fits almost

completely inside it. The connector supplies power to the implant and lets it access the buses.

The connector is normally covered by a cap like in figure 4.2, which completely hides the implant.

The implant can wait there until it activates.

4.4.2 Test setup

To demonstrate the efficacy of our implant on a real ARINC 429 bus, we assembled a test

bed using real avionics, including a flight management computer (FMC) a multipurpose control
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Figure 4.10: (a) The FMC and MCDU communicate normally. (b) An implant in the connector
can modify or replace the text the FMC sends to show on the MCDU. (c) The implant can also
switch the relay so it can send commands to the FMC.

57



display unit (MCDU), and an integrated flight system accessory unit (IFSAU).

The challenges associated with constructing avionics test beds are described in chapter 3.

One challenge is that avionics are designed to use a 400 Hz AC power supply. A second challenge

is that these systems are designed to operate in conjunction with many other avionics, some of

which we do not own. We addressed the latter challenge by simulating the missing systems which

are required for correct operation.

Our FMC is a GE 2907A4 that previously served on a Southwest Airlines 737. Our

MCDU is a GE 2577F1 from a Batavia Air 737. Although these parts were designed for the

older Classic-series 737s, some Next Generation 737s still fly with these parts today. They are

interchangeable with and closely related to the newer FMC and MCDU models that are more

common in Next Generation 737s.

The relay shown in Fig. 4.10 is part of the IFSAU, Boeing part number 65-52820-2.

Figure 4.11 shows the complete test setup with an implant connected.

4.4.3 Implant capabilities

The implant can use a few different methods to change the text the MCDU shows or

control the FMC.

Complete text replacement The implant can block all messages from the FMC to the MCDU

and send its own messages to control what the MCDU shows to the pilots. This method is simple

because the implant does not need to precisely time its messages, and it provides complete control

over the screen. The main limitation is that the implant has no way to know when a pilot presses

a button on the MCDU. A pilot would immediately suspect a problem if the MCDU screen did

not respond to button presses.
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Figure 4.11: Our test setup with the main components labeled. The implant shown here is larger
than the one in Fig. 4.2 because this version includes additional space between the components
for easier debugging.
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Partial text replacement To change the text on the screen in a way that is more difficult to

detect, the implant can change only some of the messages from the FMC and let the other

messages continue to the MCDU normally. The implant monitors what the FMC is sending and

waits for a pattern of characters. When the pattern appears, the implant activates its outputs and

sends a few messages to change the next few characters. The implant then deactivates its outputs

and lets the FMC send the rest of the screen content normally. For example, the implant can

detect the sequence I, D, E and replace the next character with any other character.

The replaced text needs to be encoded with the same number of ARINC 429 messages as

the original text. Because the FMC uses run-length encoding to send text, some substitutions are

not possible. For example, the FMC sends the number 10000 using three messages: character ‘1’,

repeat the next character four times, character ‘0’. The replacement text should also have five

characters encoded in three messages. Any sequence with the same character repeated four times

and some other character at the beginning or end would work, like 11114 or 3 (with four space

characters before the digit). Other numbers like 10300 are not suitable because they need more

than three messages.

The FMC sends all the messages that make up a screen update in rapid succession with a

gap of 40 microseconds between messages. When the implant modifies one of those messages, it

needs to send its message within about ten microseconds of the ideal time. If the message is too

early or late, the gap before or after the message will be too short. That makes the MCDU exit to

its menu page, which alerts the pilots that something is wrong.

Responsive complete text replacement The implant can make arbitrary changes to the text on

the screen while still responding to button presses by following these steps.

1. Monitor messages that the FMC sends and store a complete screen of text in memory.

2. Change the text in memory.
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Figure 4.12: The MCDU screen showing a normal page from the FMC (top) and with some
text modified by an implant (bottom). The title has been replaced by a longer title and the dates
of the navigation database have changed. Arbitrary textual modifications are possible.
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3. Encode the modified text into messages and send them to the MCDU.

The implant does not need to send messages with precise timing, and the modified text

can be encoded with a different number of messages from the original text. Fig. 4.12 shows

a simple modification that changes the title and the validity dates of the navigation database.

Arbitrary textual modification—including adding, removing, or modifying letters, numbers, and

symbols—is possible.

Current sensing The basic version of the implant cannot monitor messages from the

FMC without also letting the MCDU receive those messages. The implant and MCDU receive

text from the FMC at the same time, and the MCDU displays it immediately. Although the

implant quickly sends its modified text to the MCDU, the original text briefly flashes on the

screen, revealing that the implant is active.

To solve this problem, the implant needs to find out what the FMC is trying to send

without letting the MCDU receive those messages. When the implant blocks a message by forcing

the bus voltage to zero, current flows between the FMC and the implant’s output amplifiers. The

current is proportional to the voltage that the FMC is trying to apply to the bus and can be up

to about 100 mA. The implant can use a current sensing transformer to measure the current and

decode what the FMC is sending.

Commercially available current sensing transformers are larger than most other parts of

the implant, so they may not be practical in implants that need to fit in small spaces. As an

alternative to a current sensing transformer, an inline resistor with an amplifier might also work.

The amplifier would need to tolerate common-mode voltages of ± 5 V that routinely appear on

the bus.

Controlling the FMC The implant can control a relay that lets it send commands to the FMC,

as shown in figure 4.10 (c). By simulating button presses, the implant can do anything that the
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pilots can do. This is especially powerful when combined with the ability to change the content

on the MCDU screen. The implant could secretly change the flight plan using these steps:

1. Record what the FMC is sending to the MCDU

2. Repeatedly send the same content to the MCDU, and block the FMC from sending anything.

This effectively freezes the MCDU and prevents the pilots from seeing what the implant is

doing.

3. Send button presses to the FMC that change a waypoint in the flight plan, or change the

target altitude

4. Return the FMC to its previous mode so it displays the same content on the MCDU as

before

If the change to the flight plan is subtle and the pilots are not paying close attention, the

plane could end up deviating from its authorized route.

4.5 Defenses

Because there are many systems already in use that depend on ARINC 429, MIL-STD-

1553 and other protocols, it is not practical to add new security features that require updating all

existing hardware. There are still some possible defenses that can detect this attack.

Measuring voltage When an implant is actively driving the bus, the voltage on the bus is

different from what the transmitting device wants. One way to detect this situation is to have an

additional receiver connected to the bus near the transmitter. This receiver would measure the

actual voltage on the bus. If the voltage the receiver senses does not match what the transmitter is

trying to send, there is a problem. Some buses already use this feature. For example, CAN bus

devices stop sending and report an error if the bus voltage is incorrect.
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For ARINC 429, this would be fairly difficult to implement. The devices we have looked

at have either a transmitter or receiver, but not both, connected to each bus. Devices would need

hardware changes to add this capability.

Devices that use MIL-STD-1553 always have transceivers that can sense the bus voltage,

so they may need only software additions or minor hardware changes.

Measuring current As described in section 4.4.3, the 429 implant drives about 100 mA of

current through the bus when it is in conflict with another transmitter. That is significantly more

current than during normal operation. An added device near each transmitter could measure the

current flowing through the bus and detect unusually large amounts of current. This could be

integrated into the transmitter or in a separate unit, as long as it is between the transmitter and the

implant.

This is more practical than the previous defense because it can be added to existing buses

without replacing any existing devices.

Future improvements Our method of changing the bus voltage works because we are dealing

with transmitters that limit the amount of current they can supply. An active implant looks

like a short circuit from the perspective of another transmitter. In response to a short circuit, a

transmitter can limit its output current, heat up and enter thermal shutdown mode, or overheat

and suffer physical damage. None of those options can defeat an implant, and the latter two are

not appropriate for critical systems that need to be highly reliable.

Future systems could make this attack obsolete with features that check that each mes-

sage was sent by an authorized device and has not been modified, maybe using cryptographic

authentication.
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4.6 Related work

Other MIL-STD-1553 attacks. Other researchers have investigated MIL-STD-1553 and pro-

posed some attack methods. One project uses a similar threat model to this work, with a malicious

device that an attacker connects to the bus [22]. The authors prototyped a device that can inject

messages when the bus is idle. The injected messages may take precedence over earlier legitimate

messages and change the behavior of the devices that receive them.

The effects of the injected messages and messages modified by an implant as described in

this work are similar. Our approach is less likely to trigger an intrusion detection system on the

bus because it does not need to inject any unexpected messages.

CAN bus attacks. The CAN bus has attracted plenty of security research because all modern

cars use it, often for safety-critical communication.

In 2008, an overview of CAN security showed that a malicious device on the bus can

change the behavior of motors and lights on a car [33]. After detecting a legitimate command,

the malicious device immediately sends another message with a different command. The device

processing the commands effectively ignores the legitimate command and follows the malicious

command because it arrived later. That is similar to how our 429 implant modifies the text on the

MCDU screen by receiving legitimate messages from the FMC and then immediately sending

malicious messages with different content. The malicious CAN device could be added on to the

bus with physical access to the wires like in this work, or it could be a factory-installed device

infected with malicious firmware.

A later project showed how a device on a CAN bus can cause denial-of-service without

sending any complete messages [43]. The authors prototyped an implant that identifies CAN

messages from a target device and modifies those messages by briefly changing the bus voltage.

The target device detects the voltage change as an error and stops sending the message. Their

implant has several features in common with the two implants we prototyped for this work. All
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three implants use software on a microcontroller to monitor the bus and control the output circuits

that change the bus voltage. This lets them detect the beginning of a target message and modify

later parts of the same message. The authors speculated that an implant could connect to the

OBD-II port in a car to access the CAN bus and a power supply, like our 429 implant uses a

connector to access ARINC 429 buses on a Boeing 737.

Around the same time, a different group of researchers made a similar device intended to

block malicious messages [26]. This device can create a bus error that makes the malicious device

give up on sending a message, like in [43]. The other devices on the bus see this as an error. More

interestingly, in some situations their device can manipulate the bus so that the malicious device

stops sending a message but other devices on the bus receive a normal zero-length message with

no error. Like our implants, this device can sometimes seamlessly block messages.

Prior work uses standard CAN transceivers to drive the bus. The CAN physical layer uses

open-drain circuits, which means that any number of nodes can safely concurrently assert the

dominant state, but the recessive state can only occur when no node is active [36]—i.e., prior

CAN implants can change a ‘1’ bit to ‘0’, but not the reverse. In contrast, Bus Driver implants

use custom amplifier circuits that can make arbitrary changes to messages.

Voltage analysis defenses Many projects, most for CAN [54, 39] though also one for ARINC

429 [27], have proposed measuring the voltage over time on a bus and analyzing the readings to

detect when a device has been added, removed, or substituted. This approach would be able to

detect the type of attack described in this work. Even from casual inspection with an oscilloscope,

a message modified by an implant looks different from an unmodified message.

The main problem with this approach is that it requires an analog-to-digital converter

running at several million samples per second, and non-trivial computing resources to process

the samples and detect anomalies. Practical deployments also must address natural variances,

e.g. on vehicles shifts in temperature or primary battery voltage can cause voltage shifts which
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fingerprinting must account for [20]. Models also need to be re-calibrated to prevent false

positives when a device on the bus is replaced for benign reasons.

Timing defenses Based on a survey of CAN bus intrusion detection systems [40], many

intrusion detection systems monitor the timing of messages and expect that all messages will be

periodic. They generally do not monitor the content of messages, because that would require

detailed knowledge of what each message means.

A similar intrusion detection system for ARINC 429 or MIL-STD-1553 would likely not

be able to detect this attack. If the implant changes the content of messages but does not block or

inject them, the timing of messages stays the same and does not provide any hint of a problem.

A proposed intrusion detection system for MIL-STD-1553 uses timing features, like the

amount of time between messages and the precise delay before a device responds to a command

from the bus controller, to find anomalies [29]. On a physically large bus where the implant is far

away from other devices, and if an intrusion detection system is measuring time very precisely,

the propagation delay through the bus might cause detectable timing differences.

Other buses To attack Trusted Platform Modules (TPMs) in desktop computers, one project

described some ways to connect to an I2C bus and interfere with communication [62]. These

methods require disconnecting at least one bus wire to isolate the TPM.

4.7 Ethics

This chapter investigates the feasibility of attacks that amplify mere bus access into

attacker-in-the-middle capability on industrial data buses (particularly ARINC 429 and MIL-

STD-1553). The potential harms from this work arise from educating attackers interested in such

environments, balanced against the benefits from understanding these risks and mitigating these

threats in the future. In general, this balance favors publication because our work is speculative
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in nature (i.e., we are unaware of any active attackers in the wild who would be enabled by this

work) and any risks will be very much application dependent (i.e., there is no specific threat

enabled by this work in general), but the understanding of the risk is one that has broad benefits.

In the one domain in which investigated a specific attack — overriding the ARINC 429

buses communicating between the GE FMC and MCDU on the Boeing 737 aircraft and doing

so via a particularly accessible socket — we have provided advance disclosure to The Boeing

Company. We first disclosed this information April of 2020 and have since provided multiple

briefs and documentation to the company about the details of the attack and how we tested it

in our lab. We have also chosen to omit certain details not critical to understanding the issue,

but important to mounting the attack in practice (e.g., the name and location of the vulnerable

access port and documentation of the proprietary MCDU protocol that we reverse engineered).

Finally, while our end-to-end attack is significant (effectively allowing the attacker to misconstrue

information to the pilot and the input to the FMC) we note that it does not directly impact the

control surfaces and an able pilot can safely fly the aircraft with both units disabled.

4.8 Conclusion

We have shown how a small implanted device on a wired communication bus can block

and modify messages, achieving attacker-in-the-middle capabilities without needing to physically

disconnect the bus. This flexibility means that an attacker can install an implant in seconds

on any accessible maintenance port and gain complete control over messages on the bus. Our

proof-of-concept implants use high-current output amplifiers that can supply enough current to

control the voltage on the bus and overpower other transmitters. The task of driving the bus is

fairly simple for ARINC 429, where the implant and all other devices are connected directly.

It is more difficult with MIL-STD-1553, because the implant can only access the bus through

transformers. We described and demonstrated in a lab an attack on a Boeing 737 airplane that
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can modify the information shown to the pilots on one MCDU and can secretly send commands

to the FMC. Finally, we suggested some defenses that can detect this type of attack and may be

practical to add on to existing systems without extensive design changes.

Chapter 4, in full, is a reprint of material under submission to USENIX Security 2023: Sam

Crow, Stephen Checkoway, Patrick Mercier, Pat Pannuto, Stefan Savage, and Aaron Schulman.

Bus driver: No-cut attacker-in-the-middle capability on aviation data buses. The dissertation

author was the primary investigator and author of this paper.
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Chapter 5

Implementing High-Speed Scanning for

Wireless Devices

5.1 Introduction

Scanning to find nearby wireless devices is an important tool for security testing and

auditing. The results can reveal legitimate wireless devices that have been configured to be

accessible when they should not be. On deployed systems, scanning can also find hidden

malicious hardware.

Many devices communicate using classic Bluetooth. Conventional Bluetooth scanners

are very slow, taking tens of seconds to find all the devices nearby. This slows down the security

auditing process and makes it easy to miss devices.

We set out to solve this problem by using a low-cost software-defined radio to scan and

find all the Bluetooth devices in range much more quickly than a conventional scanner.
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5.2 Bluetooth scanning

For some protocols, a scanner only needs to listen on a single channel and decode the

received signals. Scanning for devices using classic Bluetooth, however, is more difficult for

two reasons. First, devices do not regularly send messages to announce that they exist. A

scanner needs to send scan request messages first and then wait for responses from other devices.

Second, Bluetooth uses frequency hopping across 79 different channels that span 79 megahertz

of frequency [16]. Of the 79 channels, 32 are used for scanning. Most devices can only send and

receive on one channel at a time, and a scanner can only communicate with another device if they

are lucky enough to be using the same channel at the same time.

A conventional Bluetooth scanner periodically sends a message on one channel and then

listens for a response on one other channel, and then moves to another pair of channels. The other

devices listen on different channels at different times. Because the scanner and devices are not

synchronized, they do not have any way to quickly end up on the same channel at the same time.

Eventually, the timing works out and the scanner finds a device. This process can go on for tens

of seconds before it finally discovers the last nearby device.

5.2.1 Multi-channel Bluetooth scanning

Our scanning method finds devices more quickly by sending scan messages on many

channels at the same time and then listening for responses on many channels at the same time.

Any device that is listening will respond, regardless of which channel it is listening on. As

figure 5.1 shows, this significantly increases the rate of responses and reduces the time needed to

find all the devices.
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Figure 5.1: The messages sent and received by a conventional scanner and a multi-channel
scanner over the same duration. Each blue X is an ID packet that the scanner sends. Each
orange square is an FHS packet that a device sends in response. The multi-channel scanner
sends packets on many channels at the same time and gets far more responses.

5.3 Hardware limitations

To implement multi-channel scanning, we needed a platform with wide bandwidth to

transmit and receive on a wide range of frequencies. Many off-the-shelf Software-Defined Radio

(SDR) devices would work, but they generally cost thousands of dollars.

To show that this scanning method works even on low-cost hardware, we decided to use

an Analog Devices ADALM-PLUTO (”Pluto”) software-defined radio. The Pluto costs only

$230, compared to thousands of dollars for other common SDRs. It includes analog filters and

analog-to-digital and digital-to-analog converters, as well as a Field-Programmable Gate Array

(FPGA) and an ARM processor. Normally, a separate computer controls the Pluto and does all

the signal processing work. However, the processor on the Pluto runs Linux and can support

custom signal processing software.

The Pluto has 512 megabytes of memory and two processor cores running at 667 mega-

hertz. For comparison, that is half the memory, half the cores, and half the processor speed of a

Raspberry Pi single-board computer. From previous experience processing and decoding radio
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signals on a Raspberry Pi, it was clear that making the entire scanning process run smoothly on

the Pluto would not be trivial.

5.4 Receiving using SparSDR

The normal way to receive a wide range of frequencies using an SDR is to run the analog-

to-digital converter (ADC) at a high sample rate and then use software filters to separate the

samples into different channels. A decoder for each channel detects messages and extracts their

content. The filters and decoders all need to run constantly, even when there are no useful signals.

The Pluto’s maximum sample rate of 61.44 million samples per second is enough to

capture most of the Bluetooth advertising channels at the same time. The problem is that the

built-in processor is too slow to filter and decode the resulting 245 megabytes of samples per

second in real time.

To solve this problem, we took advantage of our previous project, SparSDR [35]. The

first part of the process runs on the FPGA. We compress the samples from the ADC using a Fast

Fourier Transform (FFT). This divides the signals into 1024 bins at different frequencies. The

bins that have active signals above a threshold continue to the next step. On the processor, we use

an inverse FFT to reconstruct the compressed samples back into the time domain. This produces

one stream of samples for each Bluetooth channel that can be decoded normally.

The most important benefit of SparSDR is that the software does not have to do anything

unless there is a received signal above the threshold. When there are more signals received, the

software has to spend more time reconstructing and decoding them.
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5.5 Scanner implementation

We implemented multi-channel Bluetooth scanning by customizing the software and

FPGA on a Pluto software-defined radio. To send scan request messages, our software simply

reads pregenerated samples from a file and sends them to be transmitted. To receive responses, we

use SparSDR compression on the FPGA and then reconstruct and decode the signals in software.

5.5.1 Timing Challenges

The Bluetooth specification requires that messages are aligned to 625-microsecond time

slots [16]. During scanning, the slots alternate between transmit slots, when the scanner sends

messages, and receive slots, when the nearby devices send responses. The scanner can send

messages as often as every 1250 microseconds.

If the scanner received signals all the time, it would receive the same signals it is transmit-

ting and waste time processing them. To avoid this, the software needs to stop receiving while it

is transmitting.

We found experimentally that we can get good scanning performance by transmitting

every 10 milliseconds instead of the maximum rate of once every 1250 microseconds. We decided

to make our scanner transmit for 312.5 microseconds and receive for the next 937.5 microseconds.

The scan messages it transmits do not use up the full 625-microsecond slot. By switching to

receive mode earlier, we are more likely to successfully receive responses if the timing is not

perfect. For the rest of the 10-millisecond period, the software can process the received signals.

Figure 5.2 shows a timeline of this process. This repeats until all the nearby devices have been

found.

The easiest way to transmit samples periodically is to load the samples into memory and

then repeatedly send the samples from memory to the digital-to-analog converter (DAC). If the

software waits the correct amount of time before sending the samples each time, the messages
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Figure 5.2: A timeline of the transmit and receive periods within a 10-millisecond scanning
cycle

should be transmitted with the correct timing. The software can also use this process to stop

receiving while it is transmitting.

Unfortunately, this method is not precise enough for two reasons. First, the functions that

software uses to wait are inconsistent and sometimes wait much longer than desired. Second,

there is a significant and variable delay after the software asks to send samples before the DAC

starts running and the signals are actually transmitted.

I solved the first problem by making the transmit timing independent of the software.

The software creates a buffer with exactly 1250 microseconds of samples and asks the Direct

Memory Access (DMA) hardware to send those samples to the DAC repeatedly. This makes the

scanner send messages exactly once every 1250 microseconds, and the software does not have to

intervene.

That change makes the transmit timing correct, but it also means that the software does not

know anything about the timing, so it has no way to stop receiving while transmitting messages.

To give the software information about the timing, we changed the FPGA configuration

and added a simple timer that counts the number of transmitted samples. Every 312.5 microsec-

onds, the timer sends an interrupt to the processor and the software can respond by enabling or

disabling the transmit and receive modes. With this approach, unlike with a software timer, the

software stays perfectly synchronized with the transmitted samples and never suffers from clock

drift.

Because the interrupts are not aligned with the beginning of the transmitted messages, the

software needs to make some adjustments. As figure 5.3 shows, misalignment can prevent the
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Figure 5.3: A timeline of what can go wrong if the sample interrupts are not correctly aligned.
If the software enables transmit mode before or after the DMA sends sample 0 to the digital-to-
analog converter, the transmitted messages get cut off and no devices respond.

scanner from correctly sending messages. The software periodically reads one of the DMA status

registers to find what part of the sample buffer is being transmitted. It adjusts the offset of the

timer interrupts so that it gets one interrupt exactly at the beginning of each transmit slot (just

before the scan messages are transmitted). This lets the scanner transmit messages at the correct

times and receive signals only when it expects responses from the nearby Bluetooth devices.

Because the software handles the interrupts is running in the user space of a non-real-time

operating system, it sometimes misses interrupts when another process is using the processor.

This makes the timing of a transmit or receive period incorrect, but the software can determine

how many interrupts it missed and keep an accurate understanding of the time. Missed interrupts

happen rarely and do not disrupt the timing of later transmit and receive periods.

5.5.2 Performance Challenges

The Pluto radio was designed to work with a separate host computer generating and

decoding all the samples, so its built-in processor only needs to copy samples. For this project, we

need to receive signals on 32 different channels, reconstruct the compressed samples, and decode

them all using the Pluto’s built-in processor. This all needs to happen in real time. It needs to

handle responses from all the nearby devices, and also interference from non-Bluetooth signals.

A few years earlier, I set up a similar system using a different radio and a Raspberry Pi 3
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B+ single-board computer. The Raspberry Pi had four processor cores running at 1.4 gigahertz

and 1 gigabyte of RAM. With those computing resources, it was able to reconstruct and decode

Bluetooth Low Energy messages on three different channels.

In comparison, the Pluto has only two cores running at 667 megahertz and 512 megabytes

of RAM. With only a fraction of the resources and more channels to monitor, I did not know if it

was possible to process all the signals in real time.

The early tests showed that the amount of available RAM was not a problem. Without any

special optimizations, all the software used about 225 of the 512 megabytes of available RAM.

The performance of the processor, however, quickly turned out to be a significant problem.

I started with a simple setup that kept the full receive chain enabled all the time. The software

spent a long time reconstructing and decoding all the received signals. The receive chain became

backed up within a few seconds and had to discard some of the received signals. We made several

changes to improve the performance and keep the system working even when it gets temporarily

overwhelmed.

The most important change was disabling the receive process during the 9.4-millisecond

period when the scanner does not expect a response. Because the radio only receives signals for

a fraction of the time, this eliminates most of the unwanted non-Bluetooth signals before the

software processes them. The software then only needs to spend time on the actual scan responses

and other signals that are received at the same time.

Later in the testing process, I noticed that the decoding step was usually the bottleneck

that limited the throughput of the system, so I focused my efforts there.

The decoding software was intended to handle a stream of samples covering a wide range

of frequencies. It does extra work to filter individual channels and adjust the rate of incoming

samples. For this project, our reconstruction software produces a separate stream of samples for

each channel with the correct sample rate, so the decoder does not need to do those steps. Another

member of the team made a modified version of the decoder with the extra steps removed, which
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worked more quickly.

We also realized that there might be a way to detect Bluetooth transmissions before the

reconstruction step, to avoid running the reconstruction and decoding software on non-Bluetooth

signals that our system cannot use.

The compressed samples that the FPGA produces have information about which frequency

ranges have active signals. Each 1-megahertz Bluetooth channel is divided into 17 bins, each

representing 20 kilohertz of bandwidth. I started by looking at the number of bins with active

signals. Real Bluetooth signals show up in the middle of the channel and span about 8 bins (500

kilohertz). Narrow-band signals that only activate a few bins are usually noise, and signals that

activate all 17 bins are usually Wi-Fi or something else that with a large bandwidth. I tested some

simple heuristics that checked that the number of active bins was within the expected range. These

methods partially worked, but had many false negatives, discarding signals that were actually

decodable Bluetooth transmissions.

We later developed and tested a more complex method that detects the preamble at the

beginning of each Bluetooth message. This method uses an FFT, making it more processor-

intensive than the simple bin heuristics, but it is more accurate.

5.6 Evaluation

To check that the entire scanning process can run in real time without dropping samples, I

set up a simple experiment. I put the Pluto and eight discoverable Bluetooth devices in a metal

box, isolated from Wi-Fi and other external signals. I first ran the scanning software with all the

Bluetooth devices off, so the software would not have any incoming signals to process. Next,

I progressively turned on the Bluetooth devices to increase the rate of scan responses for the

software to process. At each step, I recorded the total CPU and memory usage averaged over five

minutes.
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Figure 5.4: The total CPU (left) and memory (right) usage of all the scanning software with
different numbers of discoverable devices. The error bars represent one standard deviation.

The total CPU usage increased only marginally with each additional enabled Bluetooth

device. The variation of CPU usage over time was greater than the variation caused by increasing

the number of enabled devices. With all eight devices enabled, the average CPU usage was only

40%.

The total memory usage remained within a range of two megabytes (223 to 225 megabytes)

as the number of enabled devices increased. The maximum memory usage was still less than half

of the 512 megabytes of total available memory. Figure 5.4 shows the detailed CPU and memory

usage results.

5.7 Conclusion

We have developed a low-cost scanner that can find Bluetooth devices more quickly than

conventional single-channel scanners. It transmits and receives on multiple channels at the same

time so it can communicate with more devices sooner. By precisely timing when it transmits and

receives, it follows the Bluetooth protocol and minimizes the performance impact of processing
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non-Bluetooth signals.

This approach could be used with other protocols to make a multi-protocol scanner. By

finding devices more quickly and consistently, our scanner can help make security auditing easier

and more comprehensive.
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Chapter 6

Conclusion and Future Directions

The previous chapters described three projects that help with security testing for complex

cyber-physical systems. Chapter 3, Flexible Avionics Testing, explains how we combined physical,

emulated, and simulated components in a flexible test setup. Chapter 4, Bus Driver: No-cut

Message Modification on Aviation Data Buses, describes an attack that can also be used to test

how devices respond to unexpected or modified messages. Finally, chapter 5, Implementing

High-Speed Scanning for Wireless Devices, explains some challenges involved in multi-channel

scanning for wireless devices using a software-defined radio.

Chapters 3 and 4 describe projects that are mostly complete and usable for testing. The

Bluetooth scanning project in chapter 5, however, does the same job as any Bluetooth device

but more quickly. For a scanner to be more useful than existing off-the-shelf devices, it needs to

support many different wireless protocols beyond Bluetooth, including Wi-Fi and IEEE 802.15.4.

We are continuing our work to enable more protocols. Depending on the number of protocols and

channels, this might require a more capable software-defined radio receiver and a more powerful

processor to decode the signals. Although this would increase the cost, the system would still

cost less and use less power than a conventional software-defined radio approach.

For some tests, it might be useful to use two different testing methods together. For
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example, a test could modify a message on a wired communication bus and monitor several

channels of wireless communication to see how the system responds. If the test setup is large and

involves testing devices spread out over a wide area, the testing devices could be interconnected

and controlled from one place.

The testing methods described in this dissertation can help test the security features of com-

plex cyber-physical systems. More effective security testing contributes to making transportation,

communication, power distribution, and other infrastructure safer and more reliable.
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