
UC San Diego
Technical Reports

Title
A Multi-Round Algorithm for Scheduling Divisible Workload Applications:
Analysis and Experimental Evaluation

Permalink
https://escholarship.org/uc/item/51n5w0bw

Authors
Yang, Yang
Casanova, Henri

Publication Date
2002-09-26

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/51n5w0bw
https://escholarship.org
http://www.cdlib.org/

A Multi-Round Algorithm for Scheduling

Divisible Workload Applications: Analysis

and Experimental Evaluation

Yang Yang1 Henri Casanova 1;2

1 Department of Computer Science and Engineering
2 San Diego Supercomputer Center

University of California at San Diego

Abstract

In this paper we present UMR, an algorithm for scheduling parallel ap-

plications that consist of a divisible workload. Our algorithm uses multiple

rounds to overlap communication and computation between a master and

a number of workers. Multi-round scheduling has been used for divisible

workloads in previous work and our contributions in this paper are as fol-

lows. UMR uses “uniform” rounds, i.e. a fixed amount of work is sent out

to all workers at each round. This restriction makes it possible to compute

an approximatively optimal number of rounds, which was not possible for

previously proposed algorithms. In addition, we use more realistic platform

models than those used in previous works. We provide an analysis of our

algorithm both for homogeneous and heterogeneous platforms and present

simulation results to quantify the benefits of our approach.

1

1 Introduction

Applications that consist of many independent computational tasks arise in many

fields of science and engineering [1, 2, 3, 4, 5, 6]. These applications often require

large amounts of compute resources as scientists wish to tackle increasingly com-

plex problems. Fortunately, advances in commodity technology (CPU, network,

RAM) have made clusters of PCs cost-effective parallel computing platforms. In

this paper we address the problem of scheduling the aforementioned applications

on such platforms with the goal of reducing the execution time, or makespan. This

problem has been studied for two different application models: fixed-sized tasks

and divisible workload (sometimes referred to as “partitionable”). In the first sce-

nario, the application’s workload consists of a number of tasks whose size are

pre-determined. In this case, the scheduling problem is a variation of bin-packing

and a number of scheduling heuristics have been developed [7, 8, 9, 10, 11]. In the

divisible workload scenario, the scheduler can partition the workload in arbitrary

tasks, or “chunks”. The usual assumption is that the workload is continuous. In

practical situations, this often means that the execution time of a base computa-

tional unit is orders of magnitudes smaller than the execution time of the entire

workload and that all base computational units are the same size. In this paper we

focus on the divisible workload scenario, which has been extensively studied [12].

The divisible workload scheduling problem is challenging due to the overhead

involved when starting tasks. Overhead is due to: (i) the time to transfer ap-

plication input/output data to/from a compute resource; (ii) the latency involved

in starting a computation. In [12], the divisible workload scheduling problem is

identified as: Given an arbitrarily divisible workload without precedence relations

and a multiprocessor/multicomputer system subject to communication delays, in

what proportion should the processing workload be partitioned and distributed

among the processors so that the entire workload is processed in the shortest pos-

sible time? The trade-off for achieving a good schedule is as follows. On the one

hand, dividing the workload into large chunks generally reduces the overhead,

and thereby the execution time of the application. On the other hand, dividing

the workload into small chunks makes it possible to overlap overhead with useful

work more efficiently. In all that follows we consider a traditional master/worker

paradigm.

Our contributions in this paper are on several fronts. We propose and analyze

a new scheduling algorithm: UMR (Uniform Multi-Round). Similarly to previ-

ously proposed algorithms, UMR dispatches work to compute resources in mul-

tiple rounds. However, we add the restriction that rounds must be “uniform”, i.e.

2

within each round the master dispatches identical chunks to all workers. Due to

this restriction, we are able to derive an approximately optimal number of rounds,

both for homogeneous and heterogeneous platforms. We evaluate our algorithm

with models that are more realistic than those used in previous work. We compare

our algorithm with a previously proposed multi-round algorithm and a one-round

algorithm. Our simulation results demonstrate the benefits of our approach for

wide ranges of scenarios. We also analyze the impact of various system parame-

ters on the behavior and effectiveness of UMR.

This paper is organized as follows. In Section 2 we discuss relevant related

work in detail. Section 3 describes our models for the application and the comput-

ing platform. Section 4 presents our scheduling algorithm for both homogeneous

and heterogeneous platforms. Section 6 gives simulations results and discusses

the benefits of our approach. Section 7 concludes the paper and discusses future

work.

2 Related Work

There is a large literature on the problem of scheduling fixed-size independent

tasks onto a set of processors. A number of heuristics have been proposed and

studied for several application and platform models [7, 8, 9, 10, 11]. In this work

we focus solely on divisible workloads.

The works in [13, 14, 15, 5, 16] study scenarios in which the workload is

divided in as many chunks as processors. Therefore, the entire application is

performed in a single round of work allocation. By contrast, our algorithm uses

multiple rounds. During each round a portion of the entire workload is parti-

tioned among the available processors. Therefore, our work is most related to the

”multi-installment” algorithm presented in [17]. In both our work and the work

in [17] it is assumed that the amount of data to be sent for a chunk is propor-

tional to the chunk size. The key idea is that using many small chunks allows for

overlapping of communication and computation. The chunk size can then be grad-

ually increased throughout the application run in order to reduce communication

overhead. Our approach differs from [17] in the following way. Whereas [17] al-

locates decreasing chunks of the workload to processors within a round, we keep

the chunk size fixed within a round. This has one major benefit: our algorithm

is amenable to analysis, which allows us to compute a near-optimal number of

rounds, both for homogeneous and heterogeneous platforms. Furthermore, this

analysis is possible even though our platform model is more realistic and generic

3

than the one used in [17]. We provide quantitative comparison between our work

and [17] in Section 6.1. Other works, such as [6], use multiple rounds to schedule

divisible workloads. However, they focus on steady-state application performance

rather than makespan. Therefore they use identical rounds.

Scheduling divisible workload in multiple rounds has also been studied in [18,

19]. Instead of increasing chunk size throughout application execution, the al-

gorithms in [18, 19] start with large chunks and decrease chunk size throughout

application execution. Assuming uncertainties on task execution times, reducing

the chunk size ensures that the last chunk to complete will not be large, and there-

fore will not have large (absolute) uncertainty. Therefore, reducing chunk size

and using a greedy scheduling algorithm allows for good time-balancing of the

execution (i.e. all processors finish computing approximatively at the same time).

The work in [18, 19] assumes a fixed network overhead to dispatch chunks of any

sizes. In this work, as in [17], we assume that the amount of data to be sent for a

chunk is proportional to the chunk size, which is more realistic for most applica-

tions. With this assumption, starting by sending a large chunk to the first worker

would cause all the remaining workers to be idle during this potentially long ini-

tial data transfer. Furthermore, in this paper we do not consider task execution

time uncertainties. Consequently, we do not provide a quantitative comparison

between our algorithm and the ones in [18, 19].

The work in [15] assumes a network that allows some pipelining of commu-

nications in order to model real TCP connections. A number of works model

network latencies by adding a fixed overhead to each chunk transfers. Rather than

choosing one of those proposed models, we us a generic network model that al-

lows communication pipelining and models several latencies. This model can be

instantiated to conform to a variety of network models, including the ones used

in [13, 14, 15, 7, 18, 19, 17, 6, 5, 16].

3 Models

3.1 Workload

We consider applications that consist of a workload, W
total

, that is continuously

divisible: the scheduler can decide how big a portion, or “chunk”, of the work-

load to give out to a processor. We assume that the amount of application data

needed for processing a chunk is proportional to the amount of computation for

that chunk. As done in most previous work, we only consider transfer of applica-

4

tion input data. The works in [15, 16] takes into account output data transfers but

uses a single round of work allocation. Similarly, the work in [6] models output

but considers only steady-state performance.

3.2 Computing Platform

We assume a master/worker model with N worker processes running on N pro-

cessors. The master sends out chunks to workers over a network. We assume that

the master uses its network connection in an sequential fashion: it does not send

chunks to workers simultaneously, even though some pipelining of communica-

tion can occur [15]. This is a common assumption and is justified either by the

master’s implementation, or by the properties of the network links (e.g. a LAN).

In some cases, for instance on a WAN, it would be beneficial for the master to

send data to workers simultaneously in order to achieve better throughput. Sec-

tion 6.4 presents preliminary results for that scenario. Note that we do not require

that the speeds of network communications to each worker be identical. There-

fore, the platform topology consists of network links with various characteristics

to clusters of heterogeneous processors, as depicted in Figure 1. Finally, we as-

sume that workers can receive data from the network and perform computation

simultaneously (as for the ”with front-end” model in [12]).

Link

Master

Worker

Network

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 1: Computing platform model.

Let us formalize our model. Consider a portion of the total workload, hunk �

W

total

, which is to be processed on worker i; 1 � i � N . We model the time re-

5

quired for worker i to perform the computation, Tomp

i

, as

Tomp

i

= Lat

i

+

hunk

i

S

i

; (1)

where Lat
i

is a fixed overhead, in seconds, for starting a computation (e.g. for

starting a remote process), and S
i

is the computational speed of the worker in units

of workload performed per seconds. Computation, including the Lat
i

overhead,

can be overlapped with communication.

We model the time spent for the master to send hunk units of workload to

worker i, Tomm

i

, as:

Tomm

i

= nLat

i

+

hunk

i

B

i

+ tLat

i

; (2)

where nLat
i

is the overhead, in seconds, incurred by the master to initiate a data

transfer to worker i (e.g. pre-process application input data and/or initiate a TCP

connection); B
i

is the data transfer rate to worker i, in units of workload per

second; tLat
i

is the time interval between when the master finishes pushing data

on the network to worker i and the time when worker i receives the last byte

of data. We assume that the nLat

i

+ hunk=B

i

portion of the transfer is not

overlappable with other data transfer. However, tLat
i

is overlappable (to model

pipelined networking as in [15]). This model is depicted on Figure 2 for data

transfers from the master to 3 workers.

nLatency1

tLatency
2

Worker #3

Worker #2

Worker #1

tLatency

chunk / B3

Figure 2: Illustration of the network communication model for 3 identical chunks

sent to 3 workers with different values of nLat
i

, B
i

, and tLat
i

.

This model is flexible enough that it can be instantiated to model several types

of network connections. For instance, setting the nLat values to 0 models a

pipelined network such as the one used in [15]. In that case, the tLat values

represent the network latency between the master and the workers. On Figure 2

6

we show a large tLat value to worker 2, indicating a long-distance network, and

a short transfer time, indicating a large available bandwidth. The model can also

be instantiated with non-zero nLat values and zero tLat values as in [9]. This is

representative of distinct connections being established for each individual trans-

fer, with no pipelining. Zero nLat and zero tLat corresponds to the work in [17].

To the best of our knowledge, no other work models computation latency, Lat.

Based on our experience with actual software [20], we deem Lat to be funda-

mental for realistic modeling. We provide an analysis of our scheduling algorithm

using this generic platform model, and thereby validate our approach for various

platforms.

4 The UMR Algorithm

4.1 Basic Principle

Similar to the algorithm presented in [17], the UMR algorithm dispatches chunks

of the workload in rounds. The chunk size is increased between rounds in order to

reduce the overhead of starting computation (Lat) and communication (nLat).

Unlike [17], we keep rounds the chunk size is fixed within each round. We are

able to compute near-optimal number of rounds, and a near-optimal chunk size

at each round, as demonstrated in the following analysis. In all that follows, M

denotes the number of rounds used by UMR.

4.2 Analysis

4.2.1 Homogeneous Platform

We first describe and analyze the UMR algorithm for a platform that consists of

N identical workers accessible via a network link. Therefore we set:

8i = 1; ::; N S

i

= S;

nLat

i

= nLat;

tLat

i

= tLat;

B

i

= B:

(3)

7

Induction relation for chunk sizes – Let hunk
j

, for j = 0; ::;M � 1, be the

chunk size at each round. We illustrate the operation of UMR in Figure 3. At

time T
A

, the master starts dispatching chunks of size hunk
j+1

for round (j + 1).

The workers perform computations of sizes hunk
j

for round j concurrently. To

maximize bandwidth utilization, the master must finish sending work for round

(j+1) to all workers before worker N finished its computation for round j, which

is shown at time T
B

. Therefore, perfect bandwidth utilization is achieved when:

Figure 3: UMR dispatches the workload in rounds, where the chunk size if fixed

within a round, and increases between rounds.

tLat + Lat +

hunk

j

S

= N(

hunk

j+1

B

+ nLat) + tLat: (4)

8

The left term is the time workerN spends receiving the last bytes of data, initiating

a computation, and computing a chunk during round j. The right term is the time

it takes for the master to send data to all N workers during round j + 1. Eq. 4

defines a simple induction for hunk
j

, and one can then compute:

8j hunk

j+1

� � =

B

NS

(hunk

j

� �)

) 8j hunk

j

= (

B

NS

)

j

(hunk

0

� �) + �;

(5)

where

� =

BS

B �NS

(N � nLat� Lat): (6)

We have thus obtained a geometric series of chunk sizes, where hunk

0

is an

unknown.

Necessary conditions for full platform utilization – Let us determine the con-

ditions under which all N workers can be utilized. To utilize all workers, the

master must be able to send out all work for round j and work for round j + 1 to

worker 1 before this work becomes idle. This can be written formally as:

8j

h

N(nLat +

hunk

j

B

) + nLat

i

+

h

hunk

j+1

B

+ tLat

i

�

h

nLat +

hunk

j

B

+ tLat

i

+

h

Lat +

hunk

j

S

i

; (7)

where the left side is the time needed by the master to send all data for round j

and data to worker 1 for round j+1, and the right side is the time worker 1 spends

receiving data and computing for round j. Replacing hunk

j+1

by its expression

given in Eq. 5, we obtain:

8j (NS �B)hunk

j

� (NS �B)�;

which, using Eq. 4, is equivalent to:

(NS �B)hunk

0

� (NS �B)�: (8)

If this constraint it not met, then at least one worker can not be used and N should

be reduced. We will see in what follows how hunk

0

is computed by our algo-

rithm. We give here two necessary conditions for Eq. 8, which are analogous to

the “m� � 1” constraint in [17].

9

1. If NS � B > 0, then Eq. 8 reduces to hunk

0

< �. Since hunk
0

must be

positive, a necessary condition for Eq. 8 is:

� > 0: (9)

2. If NB � B < 0, then Eq. 8 reduces to hunk

0

> �. For all workers to

be used, hunk
0

must be smaller than W

total

=N . Therefore, a necessary

condition is for Eq. 8 is:

� < W

total

=N: (10)

Constrained minimization problem – The objective of our algorithm is to

minimize Ex(M; hunk

0

), the makespan of the application:

Ex(M; hunk

0

) =

W

total

N

+M � Lat +

1

2

�N(nLat +

hunk

0

B

) + tLat:

The first term is the time for worker N to perform its computation. The second

term is the overhead incurred at each round to initiate a computation. The third

term correspond to the time for the master to send all the data for round 0. The 1

2

factor is due to an optimization that is described in detail in Section 5. Finally, the

fourth term, tLat, can be seen on Figure 3 just after time T
A

for worker N .

We also have the constraint that the amount of work sent out by the master

during the execution sums up to the entire workload:

G(M; hunk

0

) =

M�1

X

j=0

N � hunk

j

�W

total

= 0:

This constrained minimization problem, with M and hunk

0

as unknowns,

can be solved by using the Lagrange Multiplier method [21]. The multiplier,

L(hunk

0

;M; �), is defined as:

L(hunk

0

;M; �) = Ex(M; hunk

0

) + ��G(M; hunk

0

);

and we must solve:
8

>

>

>

>

<

>

>

>

>

:

�L

��

= G = 0

�L

�M

=

�Ex

�M

+ ��

�G

�M

= 0

�L

�hunk

0

=

�Ex

�hunk

0

+ ��

�G

�hunk

0

= 0:

(11)

10

This system reduces to the following equation for M :

N��

W

total

�NM�

1� (

B

NS

)

M

(

B

NS

)

M

ln(

B

NS

)� 2Lat�B

1� (

B

NS

)

M

1�

B

NS

= 0 (12)

This equation can be solved numerically by bisection. The solve is fast (on the or-

der of 0.07 seconds on a 400MHz PIII) and can thus be implemented in a runtime

scheduler with negligible overhead.

Once we have computed M�, the solution to the equation above, hunk
0

, fol-

lows as:

hunk

0

=

(1�

B

NS

)(W

total

�NM

�

�)

N � (1� (

B

NS

)

M

�

)

+ �; (13)

and hunk

j

(j > 0) can be computed with Eq. 5. Complete details on these

derivations are provided in Appendix A.

4.2.2 Heterogeneous Platform

In this section, we remove the simplifying assumptions in Eq. 3. Let hunk
ji

be

the chunk sent to worker i in round j. In the homogeneous case, we fixed the size

of chunks for an round. Here, we fix the time it takes for each worker to perform

computation during a round. For round j, we define that time as onst
j

and we

have:

Lat

i

+

hunk

ji

S

i

= onst

j

: (14)

In addition, we denote by round

j

the fraction of the workload dispatched during

round j, so that:
N

X

i=1

hunk

ji

= round

j

:

By combining these last two equations, one easily obtains:

hunk

ji

= �

i

� round

j

+ �

i

;

(15)

where

�

i

=

S

i

P

N

k=1

S

k

;

�

i

=

S

i

P

N

k=1

S

k

N

X

k=1

(S

k

� Lat

k

)� S

i

� Lat

i

:

11

Induction relation for chunk sizes – Similarly to Eq. 4 for the homogeneous

case, one can write:

N

X

i=1

(

hunk

j+1;i

B

i

+ nLat

i

) + tLat

N

= tLat

N

+ onst

j

:

The left side is the time worker N spends computing during round

j

. The right

side is the time it takes for the master to send data to all N workers during round

(j+1). Replacing onst
j

by its expression, and using Eq. 15, we can compute an

induction relation on round
j

:

round

j+1

=

round

j

P

N

i=1

S

i

B

i

+

P

N

i=1

(S

i

�Lat

i

)

P

N

i=1

S

i

�

P

N

i=1

(

�

i

B

i

+ nLat

i

)

P

N

i=1

�

i

B

i

;

which can be reduced to:

round

j

= �

j

� (round

0

� �) + �; (16)

where

� =

N

X

i=1

S

i

B

i

!

�1

;

� =

P

N

i=1

(S

i

� Lat

i

)�

P

N

i=1

S

i

�

P

N

i=1

(

�

i

B

i

+ nLat

i

)

P

N

i=1

S

i

B

i

� 1

:

Necessary conditions for full platform utilization – As in the homogeneous

case, it is possible to derive necessary conditions for all workers to be utilized. All

details are presented in Appendix B. We just summarize the two constraint here:

1. If > 1, then a necessary condition for full platform utilization is � > 0,

2. If < 1, then a necessary condition for full platform utilization is � <

W

total

,

where is defined in Appendix B. An important difference with the homogeneous

case is that a resource selection procedure is required to reduce the number of

workers (when the platform is homogeneous, one can just reduce the value of N).

We address this issue with a simple and effective resource selection scheme which

is presented in Section 6.3.

12

Constrained minimization problem – Similarly to the homogeneous case, we

define a constrained optimization problem that can be solved with the Lagrange

Multiplier method. The corresponding Ex and G functions are as follows:

Ex(M; round

0

) =

M�1

X

j=0

onst

j

+

1

2

�

N

X

i=1

�

hunk

0i

B

i

+ nLat

i

�

+ tLat

N

; (17)

G(M; round

0

) = M � � +

round

0

� �

1� �

� (1� �

M

)�W

total

:

The unknowns are M and round
0

, and the solution is derived in Appendix C.

5 Practical Implementation of UMR

Before presenting experimental results, we give here a few details about our im-

plementation of the UMR algorithm.

Bounding M� values for bisection – We need a minimum and maximum value

for M� when using bisection to solve Eq. 12 or Eq. 22. Eq. 23 in Appendix C

shows that the maximum value of M� is W

total

�

in order to have an increasing

sequence of rounds. This is for the most general, heterogeneous case and the

definition of � is given in Section 4.2.2. This upper bound is very large (resp.

infinite) when (Lat+nLat) is small (resp. zero). Although this is rare in practical

situations, we introduce an artificial bound to handle these cases. In cases where

(Lat + nLat) is small or zero, there is little relative makespan improvement

to be gained by using extremely large number of rounds and we limit M� to 50.

Therefore, we constrain M� to be between 1 and min(50;

W

total

�

) for the bisection.

Rounding M

� to an integer – The Lagrange method produces a real value for

M

�. Say we were to use this value to calculate the series of chunk sizes. We

would then have dM�

e rounds. The last round would consist in dispatching a

potentially small amount of work equal to hunk

dM

�

e

, while still incurring a full

Lat overhead. Instead, we use the value bM�

+

1

2

 as the number of rounds. This

value is no more guaranteed to lead to an optimal schedule than dM�

e. However,

based on our experiments, it works very well in practice.

13

Last round optimization – The work in [17] shows that, in an optimal divisible

workload schedule, all workers finish computing at the same time. In the UMR

algorithm, as it described in Section 4, the finishing time of all N workers has

the same “slope” as the starting of the compute times in the first round (as seen

in Figure 3). When communications are relatively slow, i.e. when B=S is low,

worker 1 finishes computation much earlier than worker N , leading to idle time.

To alleviate this limitation, we modify the implementation of UMR for the last

round. The main idea is to give a decreasing amount of work to workers during

the last round in order to have them all finish at the same time (note that this is

similar to what is done in [17] and is different from the uniform round approach

we use for all other rounds). The straightforward computation of the modified

chunk sizes for the last round is presented in Appendix D.

The three technical modifications described above do not change the main prin-

ciples of the UMR algorithm, are easy to implement, and improve performance in

practice. All the results presented hereafter use the modified version of UMR.

6 Simulation Results

In order to evaluate our approach, we developed a simulator with the Simgrid [22,

23] toolkit. We used the simulator for three sets of experiments. First, we com-

pared UMR to previously proposed algorithms: the multi-round algorithm in [17]

and the one-round algorithm in [15]. Second, we study the impact of system

parameters (S, B, Lat, and nLat) on UMR’s choice for the optimal number

of rounds. Third, we evaluate UMR’s robustness to heterogeneity. Fourth, we

present a preliminary study of the effects of bandwidth sharing on UMR.

6.1 Comparison with Previous Algorithms

Using our simulator, we compared UMR with the multi-installment algorithm pro-

posed in [17], heretofore referred to as MI. Since a closed form solution for MI

is not available on heterogeneous platforms, we only present results for homoge-

neous platforms in this section. Furthermore, unlike UMR, the MI algorithm does

no compute an optimal number of rounds. In fact, since the work in [17] does

not model latencies, it would seem that the best scheduling strategy is to use as

many rounds as possible. Of course, the authors state that in a practical scenario

14

Parameter Values

Number of processors N = 10; 15; 20; : : : ; 50

Workload (unit) W

total

= 1000

Compute rate (unit/s) S = 1

Transfer rate (unit/s) B = 1:1�N; 1:1�N + 1; : : : ; 5:0�N

Computation latency (s) Lat = 0:00; 0:03; : : : ; 0:99

Communication latency (s) nLat = 0:00; 0:03; : : : ; 0:99

Table 1: Parameter values for the experiments presented in Section 6.1.

it would not be beneficial to use large numbers of rounds (due to latencies). Con-

sequently, we present results for the MI algorithm with 1 to 8 installments. We

denote each version my MI-x with x = 1; : : : ; 8. We also compare UMR against

a simplified version of the one-round algorithm in [15], which we denote as One-

Batch. We model only transfer of input data to the workers. However, our version

of One-Batch takes into account all the latencies in our model.

We performed experiments for wide ranges of values for parameters defining

the platform and the application. We first present aggregate results averaged over

large numbers of experiments. We then present results for sub-sets of the results

to illuminate the behaviors of the different scheduling algorithms.

6.1.1 Aggregate Results

We evaluated UMR, MI-x, and One-Batch for the parameter values in Table 6.1.1.

Note that we chose S = 1 to limit the number of parameters. In these conditions,

the computation/communication ratio for all workers is exactly equal to the nu-

merical value of B. Since the effect of tLat is just to shift the running time by

tLat, we use tLat = 0 in these experiments. Finally, note that we choose values

of B that make it possible to use all workers given the constraints developed in

Section 4.2.1.

For each instantiation of these parameters we did the following. We simu-

lated all 10 scheduling algorithms, and computed three metrics for each algorithm:

(i) its makespan normalized to that achieved by UMR in this experiment; (ii) its

rank which goes from 0 (best) to 10 (worst); (iii) its degradation from best which

measures the percent relative difference between the makespan achieved by this

algorithm and the makespan achieved by the best algorithm for this experiment.

These three metrics are commonly used in the literature for comparing scheduling

15

Alg. norm. rank deg. Percentage Wins

makespan from best MI-1 MI-2 MI-3 MI-4 MI-5 MI-6 MI-7 MI-8 One-Batch

UMR 1.00 0.09 0.09 100.0 97.6 97.1 98.4 99.1 99.4 99.6 99.7 100.0

MI-1 1.21 2.75 21.50 77.2 84.8 88.7 91.1 92.7 93.9 94.7 1.6

MI-2 1.48 2.73 48.33 94.8 96.7 97.6 98.2 98.5 98.8 17.3

MI-3 1.84 3.68 84.48 98.5 99.0 99.2 99.4 99.5 12.9

MI-4 2.22 4.74 122.09 99.4 99.5 99.6 99.7 10.0

MI-5 2.60 5.79 160.04 99.7 99.7 99.8 8.1

MI-6 2.98 6.83 198.11 99.8 99.8 6.7

MI-7 3.36 7.85 236.22 99.9 5.7

MI-8 3.74 8.87 274.35 4.9

One-Batch 1.04 1.67 4.11

Table 2: Aggregate comparison of MI-x, One-Batch, and UMR. Parameters val-

ues from Table 6.1.1. For a total of 1,229,984 experiments.

Alg. norm. rank deg. Percentage Wins

makespan from best MI-1 MI-2 MI-3 MI-4 MI-5 MI-6 MI-7 MI-8 One-Batch

UMR 1.00 0.58 0.29 99.9 86.9 80.0 88.8 94.0 96.4 97.6 98.3 99.9

MI-1 1.16 5.76 15.95 11.9 27.8 39.9 48.9 55.6 60.9 65.3 13.7

MI-2 1.06 2.25 6.58 67.5 77.8 83.4 86.8 89.2 90.8 77.5

MI-3 1.09 2.42 9.61 89.6 92.7 94.3 95.4 96.1 65.4

MI-4 1.14 3.53 14.62 95.6 96.5 97.2 97.6 55.8

MI-5 1.20 4.72 20.08 97.6 98.0 98.3 48.5

MI-6 1.25 5.87 25.70 98.5 98.8 42.6

MI-7 1.31 7.00 31.38 99.1 37.5

MI-8 1.37 8.11 37.09 33.6

One-Batch 1.13 4.75 13.52

Table 3: Aggregate comparison of MI-xx, One-Batch, and UMR. Parameters val-

ues for a subset of the values in Table 6.1.1: Lat < 0:1, nLat < 0:1. For a total

of 144,704 experiments.

algorithms. We present averages of these 3 metrics for each algorithm over all

parameter configurations in Table 2.

We also compute a metric for pair-wise comparisons: percentage wins. For

each pair of algorithms we compute the fraction of the experiments for which one

algorithm outperforms the other (i.e. leads to a shorter makespan). This is shown

on the right-hand side of Table 2: The numbers are the percentage of the exper-

iments for which the algorithm in the rows outperforms the one in the columns.

For instance, in Table 2, MI-2 outperforms MI-5 for 97.6% of the experiments

over the entire parameter space. The main observation from Table 2 is that UMR

outperforms competing algorithms in most cases. We also see that the One-Batch

strategy outperforms the MI-x algorithm in the majority of the cases. On average

it leads to schedules 4% longer than UMR.

Over all instantiations of system parameters UMR is not the best algorithm

16

0 50 100 150 200 250
0.9

1

1.1

1.2

1.3

1.4

1.5

A
v
e
ra

g
e
 M

a
k
e
s
p
a
n
 N

o
rm

a
liz

e
d
 t
o
 U

M
R

Computation/Communication ratio

zero nLat

MI−1
MI−2
MI−3
MI−4
One−Batch−strategy

Figure 4: Average makespan of MI-x and One-Batch relative to UMR vs. compu-

tation/communication ratio, W
total

= 1000 nLat = 0.

in only 4.46% of the cases. When UMR is outperformed, it is on average within

2.04% of competing algorithms with a standard deviation of 0.035.

MI-x does not take into account latencies, which explains why its performance

is rather poor in our experiments. Consequently, we show results for a subset of

the parameter space in Table 3 (which is similar to Table 2). In this table we limit

nLat and Lat to be below 0.1 seconds. We see that MI-2 and MI-3 perform

better on average, but UMR still leads to better performance in 80% of the time.

Note that the One-Batch algorithm performs relatively worse because it cannot

overlap communication and computation, which is more critical when latencies

are low.

17

6.1.2 Specific Case Studies

In order to provide more insight, we project the results for the parameter space on

the B axis. More specifically, for each value of B we compute the makespan of

MI-x and One-Batch normalized to that achieved by UMR, for specific and ex-

treme values of Lat and nLat. Note thatB is really the computation/communication

ration of the system, which is key to determining a good schedule. Finally, we

plot MI-x results only for MI-1, MI-2, MI-3, and MI-4 as trends are identical for

x � 3.

No network latency – Figure 4 plots average normalized makespans versus the

computation/communication ratio for nLat = 0. We can see that when the com-

munication rate is slow (left end of the x-axis), using multiple rounds with MI-x is

beneficial as it leads to better overlap. At the other extreme, using smaller values

of x is better as the computation latency become predominant. The One-Batch

strategy improves with faster communications as overlap of communication and

computation becomes less critical. We see that UMR is very close to the best MI-

x across the board. This is an important result because it means that our algorithm

performs well and consistently for wide ranges of communication/computation

ratios.

No computation latency – Figure 5 is similar to Figure 4 but is for Lat = 0.

As expected, the performance of MI-x degrades because the algorithm does not

take network latency into account. This latency becomes more significant when

the computation/communication ratio increases. Also, the performance degrada-

tion increases with x as more rounds mean more overhead. The One-Batch strat-

egy performs almost as well as UMR in this case because it uses takes into account

the network latency to compute chunk sizes. The “step” effects in Figure 5 are due

to the rounding of M� to an integer value (see Section 5).

Small latencies – Figure 6 is for values of nLat and Lat that are lower than

0:1. For larger values we have seen in Table 2 that the MI-x algorithm is heavily

outperformed by UMR and One-Batch. The One-Batch strategy gets relatively

good performance only for large values of the computation/communication ratio

(because in this case overlap of computation and communication with multiple

rounds is not critical). MI-1 has a similar behavior, but is not as good as One-

Batch because it does not take latencies into account. We can see that no MI-x

algorithm is effective across the board relatively to UMR.

18

0 50 100 150 200 250
0.5

1

1.5

2

2.5

3

3.5

Computation/Communication ratio

A
v
e
ra

g
e
 M

a
k
e
s
p
a
n
 N

o
rm

a
liz

e
d
 t
o
 U

M
R

zero cLat

MI−1
MI−2
MI−3
MI−4
One−Batch−strategy

Figure 5: Makespan of MI-x and One-Batch relative to UMR, vs. Computa-

tion/Communication ratio,W
total

= 1000 Lat = 0.

No latencies – Figure 7 shows the Average Makespan for nLat = 0 and Lat =

0. In such cases the more rounds the better, and M

� should be infinite. Instead,

UMR uses an upper limit of 50 rounds (see Section 5). Therefore, UMR out-

performs than MI-x since we limit x to be lower than 8. For a more meaningful

comparison, we arbitrarily force UMR to use the same number of rounds as MI-

x. The results are plotted in in Figure 8. As expected, MI-x outperforms UMR

because it is not restricted to using uniform rounds and can therefore achieve bet-

ter overlap between computation and communication. We note that, on average,

UMR is only within 2.1% of MI-x. In these experiments, One-Batch is identical

to MI-1.

19

0 50 100 150 200 250
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Computation/Communication ratio

A
v
e
ra

g
e
 M

a
k
e
s
p
a
n
 N

o
rm

a
liz

e
d
 t
o
 U

M
R

small cLat and nLat

MI−1
MI−2
MI−3
MI−4
One−Batch−strategy

Figure 6: Average makespan of MI-x and One-Batch relative to UMR vs. the

computation/communication ratio,W
total

= 1000 nLat < 0:1, Lat < 0:1.

6.1.3 Summary

The conclusions from our result are:

1. UMR leads to better schedules than MI-x and One-Batch in an overwhelm-

ing majority of the cases (>95%),

2. Even when UMR is outperformed, it is close to the competing algorithms

(on average within 2.04% with a standard deviation of 0.035) .

3. Neither MI-x nor One-Batch ever outperform UMR “across the board” (i.e.

for a wide range of computation/communication ratios),

UMR is able to achieve such improvement over previous work in spite of the

“uniform” round restriction, an precisely because this restriction makes it possible

20

0 50 100 150 200 250
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Computation/Communication ratio

A
v
e
ra

g
e
 M

a
k
e
s
p
a
n
 N

o
rm

a
liz

e
d
 t
o
 U

M
R

zero cLat and nLat

MI−1
MI−2
MI−3
MI−4
One−Batch−strategy

Figure 7: Average makespan of MI-x and One-Batch relative to UMR vs. the

computation/communication ratio,W
total

= 1000 nLat = Lat = 0.

to compute an optimal number of rounds. In the next section we study how the

choice of this number, M�, varies with system parameters.

6.2 Impact of System Parameters onM�

In this section, we present experimental results that demonstrate how characteris-

tics of the platform and the application impact the behavior of UMR.

6.2.1 Impact of Latencies on M

�

Figure 9 plots the M

� value chosen by UMR versus both Lat and nLat when

they vary between 0 and 0:2. The other parameters are fixed and set to N = 10,

W

total

= 1000, and B = 17. The computing platform is homogeneous. These

21

0 50 100 150 200 250
0.9743

0.9794

0.9845

0.9896

0.9948

0.9999

1.005

Computation/Communication Ratio

A
v
e
ra

g
e
 M

a
k
e
s
p
a
n
 N

o
rm

a
liz

e
d
 t
o
 U

M
R

Comparison of UMR and MI−x at zero latencies

MI−1
MI−2
MI−3
MI−4

Figure 8: Average makespan of MI-x and One-Batch normalized to that of UMR

vs. the computation/communication ratio,we force UMR use x round as MI-x.

W

total

= 1000 nLat = 0, Lat = 0.

results are representative of what we observed for other values of these last three

parameters. For these experiments the makespan increases with both latencies

and varies from 100:5 seconds to 104:5 seconds. Figure 9 demonstrates that UMR

chooses different values of M� for different scenarios, in this case between 7 and

13 rounds. M

� decreases when either latency increases, which is expected as

fewer rounds lead to less overhead.

An interesting phenomenon is that Lat has a bigger impact on M� than nLat.

In other words, UMR reacts more significantly to increases in Lat by decreasing

the number of rounds aggressively. This is due to a fundamental difference in

the two latencies, as seen in Figure 3. The effect of the network latency, nLat,

is to modify the “slope” of the initial round, that is the respective times at which

workers start computing. After the first round, the network latency is hidden as

it is overlapped with computation. By contrast, the computation latency, Lat, is

22

actual M* chosen by NM
 N=10 r=17 Total=1000

M* value

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
clatency

0
0.02

0.04
0.06

0.08
0.1

0.12
0.14

0.16
0.18

0.2

nlatency

7

8

9

10

11

12

13

M*

Figure 9: M� versus nLat and Lat.

never hidden and is experienced at each round. In summary, large nLat leads to

more idle time in the first round, and large Lat leads to longer compute times at

each round.

The effect of Lat on M� is then clear and Figure 9 shows that UMR reduces

M

� to reduce the overall Lat cost. However, one may wonder why UMR also

reduces M� when nLat increases. After all, its effect is only on the idle time

experienced in the first round (and also in the last round if the “last round opti-

mization” described in Section 5 is not used). The reason is that UMR reduced the

number of rounds not to reduce overhead, but to allow overlap of computation and

communication. As nLat increases, larger chunks need to be sent during the first

round so that the first worker finishes computing after the communication to the

last worker has completed. This is seen more formally in Eq. 8 since � increases

with nLat. Therefore, since hunk
0

is large, and the series of chunk sizes is in-

creasing, fewer numbers of rounds are necessary to dispatch the entire workload.

Hence the moderate decrease in M� when nLat increases.

23

10 20 30 40 50
0

5

10

15

20

25

30

Computation/Communication Ratio

M
*

c
h
o
s
e
n
 b

y
 N

M

1

10 20 30 40 50
2

2.5

3

3.5

4

4.5

5

5.5

6

Computation/Communication Ratio

M
*

c
h
o
s
e
n
 b

y
 N

M

2

10 20 30 40 50
3

4

5

6

7

8

Computation/Communication Ratio

M
*

c
h
o
s
e
n
 b

y
 N

M

3

10 20 30 40 50
1

1.5

2

2.5

3

3.5

4

Computation/Communication Ratio

M
*

c
h
o
s
e
n
 b

y
 N

M

4

Figure 10: Effect of the computation/communication ratio (B) on M

�. W
total

=

1000, N = 10. For subplots #1, #2, #3, and #4, (Lat; nLat) are respectively:

(0:00; 0:30), (0:49; 0:49), (0:97; 0:01), (0:97; 0:97).

6.2.2 Impact of the Computation/Communication Ratio on M

�

Figure 10 plots the effect of the computation/communication ratio (equal to B

in our experiments) on M�, given different 4 different values of (Lat; nLat).

Intuitively, two different mechanisms are are play here and are seen on Subplots

#3 and #1:

1. Subplot #3: When Lat is significant, UMR tries to use as few rounds as

possible, while not spending too much time for the transfer in the first round.

As B increases, the penalty for the first round transfer drops, and UMR can

use bigger chunks and fewer rounds. This explains the decrease in M�.

24

2. Subplot #1: When Lat is insignificant, UMR tries to use a as many rounds

as possible. However, this is limited by the constraint in Eq.8: hunk

0

must be higher than �. With these values of (Lat; nLat), it is easy to see

that � is large when B is small (see Eq. 6) and that � decreases with B.

Therefore, as B increases, UMR uses smaller hunk
0

values. This explains

the increase in M�.

Subplots #2 and #4 in Figure 10 show the combination of these two effects with

first increasing and then decreasing number of rounds as the computation/communication

ratio increases.

6.2.3 Summary

The results in this section show that UMR chooses different values of M� in dif-

ferent situations in order to reduce the overall makespan. We have explained in

detail how Lat, nLat, and the computation/communication ratio impact these

choices. The conclusion is that UMR balances communication and computation

overlap with overhead to choose the most effective value for M�.

6.3 Impact of Heterogeneity on Makespan

All the results we have presented so far were for homogeneous platforms. Al-

though the derivation of the UMR algorithm in the heterogeneous case is sub-

stantially more complex, the same general trends apply. Nevertheless, we wish

to demonstrate that UMR adequately handles heterogeneous platforms. Therefore

we present results for the following experiment. We simulated UMR on a platform

consisting of 10 processors with random S

i

, Lat
i

, nLat
i

and B

i

values sampled

from a uniform distributions on the interval ((1� het�1

1+het

)mean; (1+

het�1

1+het

)mean),

where the mean’s are : S = 1, Lat = 1, nlat = 0:1, B = 20. The parameter het

denotes that processor/link characteristics can differ by as much as a factor het.

Figure 11 plots the normalized makespan achieved vs. UMR versus het. The

normalized makespan is computed as the ratio of the makespan versus the “ideal”

makespan which is achieved when all communication costs are zero: W
total

=

P

S

i

.

Every data point in the figure is obtained as an average over 100 samples.

Looking at the normalized makespan, one can see that UMR is robust and

handles heterogeneous platforms well. For extreme cases in which processor or

link performances differ by a factor up to 1000, UMR still managed to achieve a

makespan which is within 20% of the ideal, impossible to achieve, makespan.

25

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

3

3.5

Heterogeneity

N
o
rm

a
liz

e
d
 M

a
k
e
s
p
a
n

Total=1000, clat=1,nlat=0.1,r=20,N=10

Normalized Makespan with resource selection
Normalized Makespan without resource selection

Figure 11: Normalized makespan versus het, with and without resource selection.

In this experiments we had to perform resource selection. Indeed, when gen-

erating random values for the system parameters, the conditions given in sec-

tion 4.2.2 are not satisfied. We must then use fewer resources than available. The

idea is that there may be very slow links connecting the master to very fast proces-

sors. For such a processor, the data transfer to that processor during a round com-

pletes after other processors have finished computing for the same round, which

is detrimental to performance. Our resource selection criteria is inspired by an

approximate version of the constraints given in Section 4.2.2 and derived in Ap-

pendix B. We sort workers according to S

i

B

i

in increasing order. We then select N 0

processors our of the original N such that:

N

0

X

k=0

S

k

B

k

< 1:

By ordering the resources, we are giving priority to faster links rather than to faster

26

nodes. This is very reminiscent of the bandwidth-centric results in [11].

In order to show the benefits of our resource selection method, Figure 11 also

plots the normalize makespan versus het when no resource selection is used. One

can see that without resource selection, UMR is not able to maintain a low nor-

malized makespan for het > 50.

6.4 Effects of Bandwidth-Sharing

We have assumed that the master uses its network connection sequential: it never

dispatches work to two processors simultaneously. This assumption is justified on

a shared LAN where there is little benefit to using multiple concurrent connec-

tions. In fact, it would be detrimental in cases when collisions occur. However, in

other cases such as wide-area links, using multiple connections can lead to higher

throughput. This phenomenon is due to specifics of TCP (e.g. slow-start) and of

Internet backbone links (i.e. many flows going over a single link). Using multiple

TCP connections is a well-known technique that is used by Web browsers and by

bulk data transfer tools [24].

Let B
N

denote the throughput achieved by each connection on a link when

N simultaneous connection share that link. Based on experiments conducted by

other researchers in our group, we use the following model for B
N

:

B

N

=

1

N

�

B

1

; where 0 � � � 1:

The case � = 1 is when there is no benefit to using multiple connections (LAN),

and the case � = 0 is when connections beyond the first one get bandwidth “for

free”. We have observed both behaviors in experiments conducted on real net-

works.

A straightforward scheduling algorithm to take advantage of multiple concur-

rent connections (when � < 1) is to dispatch the entire workload in one single

round, sending work to all processors simultaneously. In this preliminary evalu-

ation, we consider a homogeneous platform with N processors (e.g. a homoge-

neous cluster accessible over a wide-area link). The makespan of the one-round

strategy is then given by:

Makespan = nLat +

W

total

B

N

��1

+ Lat +

W

total

SN

;

assuming that the network latency, nLat, is overlappable among concurrent trans-

fers (which is realistic given the behavior of TCP in practice).

27

Not surprisingly, our experiments show that UMR is outperformed by the one-

round strategy when � is low. Given B, it is easy to calculate the � value above

which UMR outperforms the one-round strategy. We show this value as in Fig-

ure 6.4. We currently have no explanation for the shape of the curve, but the

important point is that � needs to be above the curve for UMR to outperform a

one-strategy. In practice, we have observed � values under 0.80 for many wide-

area networks. This means that UMR would most likely be outperformed by a

one-round strategy if the platform were connected by such links.

50 100 150 200 250

0.85

0.9

0.95

1

re
q
u
ir
e
d
 a

lp
h
a

Computation/Communication Ratio

Figure 12: � value for which UMR is equivalent to a one-round strategy in the

presence of bandwidth-sharing. W
total

= 1000, lat = 0:99, nlat = 0:09, N =

50.

There are many ways in which multiple, concurrent connections could be ex-

ploited by a scheduling algorithm. For instance, data could be sent out simul-

taneously to subsets of the processors in order to achieve higher throughput as

well as overlap of communication and computation. This could be done also in

multiple rounds. In fact, it is conceivable that UMR could be extended to decide

28

on the number of multiple connections that should be used. The goal would be to

achieve an optimal trade-off between throughput and computation/communication

overlap.

7 Conclusion

In this paper we have presented UMR, an algorithm for minimizing the makespan

of divisible workload applications on homogeneous and heterogeneous networks

of clusters. Like previously proposed algorithms, UMR uses a master/worker

paradigm and dispatches work to workers in multiple rounds, which makes it pos-

sible to overlap communication and computation. The main question is: how

many rounds should be used, and how much work is sent to each worker during

each round? The trade-off is that using many rounds to send small amounts of

work to workers allow for good overlapping of communication and computation,

but incurs costly overheads. One of our contributions is that we use “uniform

rounds”: during each round a fixed amount of work is sent to each worker. Our

main result is that this restriction enables us to analytically compute an approx-

imately optimal number of rounds, which was not possible for previously pro-

posed algorithms. We validated our approach in simulation with a realistic plat-

form model and compared it with the multi-round algorithm in [17] and the one-

round algorithm in [15]. We have seen that UMR leads to better schedules than

competing algorithms in the overwhelming majority of the cases (>95%). Nei-

ther competing algorithm outperforms UMR “across the board” (i.e. for a large

range of computation/communication ratios). Even when UMR is outperformed,

it is close to the competing algorithms (within 2.04% with a standard deviation

of 0.035). We presented results to demonstrate and explain how UMR choose the

optimal number of rounds. We showed that thanks to a resource selection strategy,

UMR can tolerate highly heterogeneous platforms. Finally, we have presented a

preliminary study of the effect of bandwidth-sharing among concurrent network

connections on the effectiveness of UMR.

In future work we will study the impact of performance prediction errors on

the scheduling of divisible workloads. In this paper we have assumed that the

scheduler has perfect knowledge of the performance that can be delivered by net-

works and CPUs. In realistic platforms, this assumption does not hold and one

must develop scheduling algorithms that can tolerate uncertainties in predicted

network transfer times and computation times. Some of our previous work has

made contributions to that issue in the case of fixed-size task applications [25].

29

In the realm on divisible workload applications, the work in [18] addresses un-

certainty by reducing the chunk size at each round. The UMR algorithm on the

other hand increases chunk size at each round for better performance. We will

investigate an approach that initially increases chunk size for better overlapping

of communication and computation, but decreases chunk size towards the end of

the application run in order to reduce uncertainties. We believe that the UMR al-

gorithm is ideally suited to such extensions. We will also investigate how UMR

can exploit the bandwidth-sharing properties discussed in Section 6.4. Our ulti-

mate goal is to implement the resulting scheduling algorithm as part of the APST

software [20, 26], an environment for deploying scientific applications on real

platforms.

References

[1] Tim Davis, Alan Chalmers, and Henrik Wann Jensen. Practical parallel

processing for realistic rendering. ACM SIGGRAPH, July 2000.

[2] MCell Webpage. http://www.mcell.cnl.salk.edu/.

[3] HMMER Webpage. http://hmmer.wustl.edu/hmmer-html/.

[4] BLAST Webpage. http://http://www.ncbi.nlm.nih.gov/

BLAST/.

[5] C. Lee and M. Hamdi. Parallel Image Processing Applications on a Network

of Workstations. Parallel Computing, 21:137–160, 1995.

[6] D. Altilar and Y. Paker. An Optimal Scheduling Algorithm for Parallel Video

Processing. In Proceedings of the IEEE International Conference on Multi-

media Computing and Systems, 1998.

[7] T. Hsu. Task Allocation on a Network of Procesors. IEEE Transactions on

Computers, 49(12):1339–1353, december 2000.

[8] T. Braun, H. Siegel, and N. Beck. A Comparison of Eleven Static Heuris-

tics for Mapping a Class of Independent Tasks onto Heterogeneous Dis-

tributed Computing Systems. Journal of Parallel and Distributed Comput-

ing, 61:810–837, 2001.

30

[9] O. Beaumont, A. Legrand, and Y. Robert. The Master-Slave Paradigm with

Heterogeneous Processors. In Proceedings of Cluster’2001, pages 419–426.

IEEE Press, 2001.

[10] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman. Heuristics

for Scheduling Parameter Sweep Applications in Grid Environments. In

Proceedings of the 9th Heterogeneous Computing Workshop (HCW’2000),

pages 349–363, May 2000.

[11] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert. Bandwidth-

Centric Allocation of Independent Tasks on Heterogeneous Platforms. In

Proceedings of the International Parallel and Distributed Processing Sym-

posium (IPDPS), June 2002.

[12] V. Bharadwaj, D. Ghose, V. Mani, and T. G. Robertazzi. Scheduling Di-

visible Loads in Parallel and Distributed Systems. IEEE Computer Society

Press, 1996.

[13] J. Blazewica, M. Drozdowski, and M. Markiewicz. Divisible Task Schedul-

ing - Concept and Verification. Parallel Computing, 25:87–98, 1999.

[14] M. Drozdowski and P. Wolniewicz. Experiments with Scheduling Divisible

Tasks in Clusters of Workstations. In Proceedings of Europar’2000, pages

311–319, 2000.

[15] A. L. Rosenberg. Sharing Partitionable Workloads in Heterogeneous NOWs:

Greedier Is Not Better. In Proceedings of the 3rd IEEE International Con-

ference on Cluster Computing (Cluster 2001), pages 124–131, 2001.

[16] D. Altilar and Y. Paker. Optimal Scheduling algorithms for Communication

Constrained Parallel Processing. In In Proceedings of Europar’02, pages

197–206, 2002.

[17] V. Bharadwaj, D. Ghose, V. Mani, and T. G. Robertazzi. Scheduling Divisi-

ble Loads in Parallel and Distributed Systems, chapter 10. IEEE Computer

Society Press, 1996.

[18] S. Flynn Hummel. Factoring : a Method for Scheduling Parallel Loops.

Communications of the ACM, 35(8):90–101, August 1992.

31

[19] T. Hagerup. Allocating Independent Tasks to Parallel Processors: An Exper-

imental Study. Journal of Parallel and Distributed Computing, 47:185–197,

1997.

[20] H. Casanova and F. Berman. Parameter Sweeps on the Grid with APST,

chapter 26. Wiley Publisher, Inc., 2002. F. Berman, G. Fox, and T. Hey,

editors.

[21] D. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods.

Athena Scientific, Belmont, Mass., 1996.

[22] Henri Casanova. Simgrid: A Toolkit for the Simulation of Application

Scheduling. In Proceedings of the IEEE/ACM International Symposium on

Cluster Computing and the Grid, May 2001.

[23] Simgrid Webpage. http://grail.sdsc.edu/projects/

simgrid.

[24] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, and

S. Tuecke. GridFTP: Protocol Extension to FTP for the Grid. Grid Forum

Internet-Draft, March 2001.

[25] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman. Heuristics for

Scheduling Parameter Sweep Applications in Grid Environments. In Pro-

ceedings of the 9th Heterogeneous Computing Workshop (HCW’00), pages

349–363, May 2000.

[26] APST Webpage. http://grail.sdsc.edu/projects/apst.

32

A Lagrange Multiplier Method for Homogeneous Plat-

forms

The Lagrange system shown in Eq. 11 can be solved as follows. Using Eq. 5, G

can be rewritten as:

G(M; hunk

0

) =

P

M�1

j=0

�

N(

B

NS

)

j

(hunk

0

� �) +N�

�

�W

total

= NM� +N(hunk

0

� �)

1�(

B

NS

)

M

1�

B

NS

�W

total

:

Therefore,

�L

��

= 0) hunk

0

= � +

1�

B

NS

1� (

B

NS

)

M

�

W

total

�NM�

N

�

;

which proves Eq. 13. One can compute the differentials of the multiplier with

respect to M and hunk
0

as:

�L

�M

= Lat + �

"

N��

W

total

�NM�

1� (

B

NS

)

M

ln(

B

NS

)(

B

NS

)

M

#

; (18)

and

�L

�hunk

0

=

NS

2B

+ �N

1� (

B

NS

)

M

1�

B

NS

:

Therefore,

�L

�hunk

0

= 0) � = �

S

B

1�

B

NS

1� (

B

NS

)

M

:

One can then replace � by its expression in Eq. 18, leading to:

�L

�M

= 0) Lat�

S

2B

1�

B

NS

1� (

B

NS

)

M

"

N��

W

total

�NM�

1� (

B

NS

)

M

ln(

B

NS

)(

B

NS

)

M

#

= 0;

which is equivalent to Eq. 12.

33

B Parameter Constraint for Heterogeneous Platforms

We derive constraints for all workers to be utilized in a heterogeneous setting. We

focus on the chunk sent to worker l in round j. To fully utilize all the nodes, the

master must finish sending round j work to all the workers l to N , and round j+1

work to all workers 1 to l, while worker l is computing for round j. Similarly to

Eq.7 for the homogeneous case, this can be written as:

N

X

i=l

(nLat

i

+

hunk

ji

B

i

) +

l

X

i=1

(nLat

i

+

hunk

j+1;i

B

i

) + tLat

l

� nLat

l

+

hunk

jl

B

l

+ Lat

l

+ tLat

l

+

hunk

jl

S

l

:

Multiplying by S
l

and summing for l from 1 to N , we obtain:

N

X

l=1

S

l

"

N

X

i=l

(nLat

i

+

hunk

ji

B

i

) +

l

X

i=1

(nLat

i

+

hunk

j+1;i

B

i

)

#

�

N

X

l=1

S

l

nLat

l

+

N

X

l=1

S

l

Lat

l

+

N

X

l=1

S

l

hunk

jl

B

l

+ round

j

()

N

X

l=1

S

l

"

N

X

i=l+1

(nLat

i

+

hunk

ji

B

i

) +

l

X

i=1

(nLat

i

+

hunk

j+1;i

B

i

)

#

+

N

X

l=1

S

l

(nLat

l

+

hunk

j;l

B

l

) �

N

X

l=1

S

l

nLat

l

+

N

X

l=1

S

l

Lat

l

+

N

X

l=1

S

l

hunk

jl

B

l

+ round

j

()

N

X

l=1

S

l

"

N

X

i=l+1

(nLat

i

+

�

i

round

j

+ �

i

B

i

) +

l

X

l=1

S

l

(nLat

i

+

�

i

round

j+1

+ �

i

B

i

)

#

�

N

X

l=1

S

l

Lat

l

+ round

j

34

Replacing round
j

and round
j+1

with the expression in Eq. 16 we obtain:

N

X

l=1

S

l

!

N

X

i=1

(nLat

i

+

�

i

B

i

)

!

+ (round

0

� �)

N

X

l=1

l

X

i=1

�

i

B

i

�

j+1

+

N

X

i=l+1

�

i

B

i

�

j

!

+

N

X

l=1

S

l

!

N

X

i=1

�

i

B

i

!

� �

N

X

l=1

S

l

Lat

l

+ �

j

(round

0

� �) + �:

() (round

0

� �)

N

X

l=1

S

l

(

l

X

i=1

�

i

B

i

�

j+1

+

N

X

i=l+1

�

i

B

i

�

j

)� �

j

!

�

N

X

l=1

S

l

Lat

l

�

N

X

l=1

S

l

!

N

X

i=1

(nLat

i

+

�

i

B

i

)

!

�

N

X

l=1

S

l

!

N

X

i=1

�

i

B

i

!

� + �

Let be defined as:

 =

N

X

l=1

S

l

(

l

X

i=1

�

i

B

i

� +

N

X

i=l+1

�

i

B

i

):

Using the definition of � and �, we can rewrite the above equation as:

�

j

(round

0

� �)(� 1) � �(

1

�

� 1)�

�

�

+ �

() (round

0

� �)(� 1) � 0 (19)

If the master can utilize all workers, then Eq. 19 holds. We now have two cases

depending on the sign of (� 1):

1. If > 1, then Eq. 19 reduces to round

0

� �. Since round

0

must be

positive, a necessary condition for Eq. 19 is:

� > 0: (20)

2. If < 1, then Eq. 19 reduces to round

0

� �. Since round
0

must be lower

than W
total

, a necessary condition for Eq. 19 is:

� < W

total

: (21)

35

C Lagrange Multiplier Method for Heterogeneous

Platforms

Using Eq. 14 and Eq. 15, one can rewrite Eq. 17 as:

Ex(M; round

0

) =

(round

0

��)(1��

M

)

(1��)

P

N

i=1

S

i

+

1

2

round

0

P

N

i=1

�

i

B

i

+

M

P

N

i=1

(S

i

�Lat

i

)+�

P

N

i=1

S

i

+

1

2

P

N

i=1

(nLat

i

+

�

i

B

i

) + tLat

N

:

The Lagrange multiplier L(hunk
0

;M; �) is then defined as:

L(round

0

;M; �) = Ex(M; round

0

) + ��G(M; round

0

)

and the Lagrange system is written as:

8

>

>

>

>

<

>

>

>

>

:

�L

��

= G = 0

�L

�M

=

�Ex

�M

+ ��

�G

�M

= 0

�L

�round

0

=

�Ex

�round

0

+ ��

�G

�round

0

= 0

which can be rewritten as:

=)

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�L

��

= G(M; round

0

) =M � � +

round

0

��

1��

� (1� �

M

)�W

total

= 0

�L

�M

= �

round

0

��

(1��)

P

N

i=1

S

i

�

M

ln � +

P

N

i=1

(S

i

�Lat

i

)+�

P

N

i=1

S

i

+ �

�

� �

round

0

��

1��

�

M

ln �

�

= 0

�L

�round

0

=

1��

M

(1��)

P

N

i=1

S

i

+

1

2

P

N

i=1

�

i

B

i

+ �

h

1��

M

1��

i

= 0

Eliminating � and round

0

from the above equations, one obtains the following

equation for M :

(M � � �W

total

)� �

M

ln �

P

N

i=1

�

i

B

i

�(1� �

M

)

+

�

N

X

i=1

�

i

B

i

� 2

1� �

M

1� �

�

P

N

i=1

(S

i

� Lat

i

)

P

N

i=1

S

i

= 0: (22)

36

As in the homogeneous case, this equation can be solved by bisection. Let M� be

the solution. One can then compute round
0

as:

round

0

=

1� �

1� �

M

�

(W

total

�M

�

� �) + �: (23)

Using Eq. 15, one can then compute all the hunk
ji

values.

D Last Round Modification of the UMR Algorithm

The goal is to compute modified values for hunk
M

�

�1;i

, i = 1; : : : ; N , that is

the chunk sizes for the last round. The objective is to have all workers finish

their computation at the same instant For this round, the idea is to give decreasing

amounts of work to the workers, which is different from the “uniform round”

approach used by UMR for all other rounds. We present developments for the

most general, heterogeneous model.

Let �
i+1

denote the time elapsed between the start of computation for worker

and i i + 1 during a round. With the UMR algorithm, this time is the same for all

rounds and can be easily computed from round 0 as:

8i = 1; : : : ; N � 1 �

i+1

=

hunk

0;i+1

B

i+1

+ nLat

i+1

:

When B values are small, these quantities are large, leading to idle time in the last

round. We must ensure that, in the last round, worker i computes for �
i+1

time

units longer than worker i+1. This can be written easily for i = 1; : : : ; N � 1 as:

�

i+1

=

�

hunk

M

�

�1;i

S

i

+ Lat

i

�

�

�

hunk

M

�

�1;i+1

S

i+1

+ Lat

i+1

�

: (24)

We also have the additional constraint:

i=N

X

i=1

hunk

M

�

�1;i

= round

M

�

�1

; (25)

where round
M

�

�1

is computed according to Eq. 4.2.2. Therefore, we have a linear

system of N equations of N unknowns (the hunk
M

�

;i

values), which we solve

below.

By summing Eq. 24 from i to N � 1 we obtain

8i = 0; : : : ; N�1;

hunk

M

�

�1;i

S

i

+Lat

i

�

�

hunk

M

�

�1;N

S

N

+ Lat

N

�

=

N

X

k=i+1

�

k

;

37

which in turn can be summed for all i = 1; : : : ; N � 1 to obtain:

N�1

X

i=1

hunk

M

�

�1;i

+

N�1

X

i=1

S

i

Lat

i

�

�

hunk

M

�

�1;N

S

N

+ Lat

N

�

N�1

X

i=1

S

i

=

N�1

X

i=1

S

i

N�1

X

k=i+1

�

k

:

But

(25))

N�1

X

i=1

hunk

M

�

�1;i

= round

M

�

�1

� hunk

M

�

�1;N

;

which, when replaced in the previous equation, gives us the following expression

for hunk
M

�

�1;N

:

hunk

M

�

�1;N

=

S

N

P

N

i=1

S

i

"

round

M

�

�1

+

N�1

X

i=1

S

i

Lat

i

�

N

X

k=i+1

�

k

!#

�S

N

�Lat

N

:

The remaining values hunk
M

�

�1;i

(1 � i � N � 1) can then be easily calculated

by induction with Eq 24.

38

