UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

The Emergence of Action-grounded Compositional Communication

Permalink

https://escholarship.org/uc/item/51k7n38d

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 42(0)

Authors

Niklewski, Micha Gwka, Krzysztof Wiszowata, Joanna et al.

Publication Date

2020

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

The Emergence of Action-grounded Compositional Communication

Micha Niklewski

University of Warsaw, Warsaw, Poland

Krzysztof Gwka

University of Warsaw, Warsaw, Poland

Joanna Wiszowata

University of Warsaw, Warsaw, Poland

Vibhesh Kaul

University of Warsaw, Warsaw, Poland

Tomasz Korbak

University of Warsaw, Warsaw, Poland

Joanna Rczaszek-Leonardi

University of Warsaw, Warsaw, Poland

Julian Zubek

University of Warsaw, Warsaw, Poland

Abstract

Classical models of the emergence of compositionality in communication focused on the compositional nature of the environment (Cangelosi, 2001; Cornish et al., 2008). Here we advance a model in which compositional structure emerges from integrating environments properties with agents actions. We take as a starting point Cangelosis (2001) model, where a population of agents searched for edible mushrooms. Given opportunity to communicate, they evolved a system in which combinations of signs were sensorily grounded in combinations of mushroom properties. We modify this model by grounding the communication also in agents' actions. With this, we are able to evolve communication systems containing meaningful compositions of mushroom properties and agent actions. We investigate how such compositions can facilitate a) learning the communication protocol, b) learning the adequate behavior policy. This kind of sensory-motor compositionality seems better suited for coordinating navigation in dynamic environments.