
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Essays on Classification, Variable Selection and Statistical Inference

Permalink
https://escholarship.org/uc/item/51k6z19j

Author
Chu, Jianghao

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/51k6z19j
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Essays on Classification, Variable Selection and Statistical Inference

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Economics

by

Jianghao Chu

June 2019

Dissertation Committee:

Professor Aman Ullah, Co-Chairperson
Professor Tae-Hwy Lee, Co-Chairperson
Professor Gloria Gonzalez-Rivera

Copyright by
Jianghao Chu

2019

The Dissertation of Jianghao Chu is approved:

Committee Co-Chairperson

Committee Co-Chairperson

University of California, Riverside

Acknowledgments

I would like to express my deepest gratitude to my advisors, without whose help, I

would not have been here. In particular, I appreciate Professor Aman Ullah’s wise

guidance, patience, motivation and immense knowledge leading me on the track. The

research skills I have learned from him will definitely be my lifetime asset. I enjoy

every efficient meeting with Professor Tae-Hwy Lee, as his insightful comments are

inspiring and save me a great amount of time. I cannot thank them enough as they

have always been supporting my decisions and providing me their advice without

any reservation. They have shown me, by their endless passion for research and

selfless devotion to students, what a scholar should be. I am also greatly indebted to

Professor Gonzalez-Rivera for her helpful advice and feedback. I would never be able

to finish my dissertation without the support and encouragement of all my committee

members.

I would like to thank the entire economics department for providing me with an

ideal research environment. I am blessed to have become a member of the economics

department at the University of California, Riverside. I am equipped with a sharper

and broader vision in research by talking to and receiving feedback from our professors

such as Professor Urmee Khan and Professor Ruoyao Shi. I would like to give

special thanks to Professor Steven Helfand for his support to the Graduate Student

Association and Gary Kuzas for his help in dealing with university regulations which

have saved me countless times from breaking down.

I would like to thank my friend and roommate, Yun Luo, for helping me with

numerous issues big and small to get used to the life in the United States. I would

like to thank my friend Hanbyul Ryu and his family for inviting me for dinner and

spending time with me when I am down. I would also like to thank my friends, Hao

iv

Xu, Mingyuan Jia, Seolah Kim, and Ran Wang for their help in every stage of my

academic journey.

Last but not least, I would like to thank my parents, Houxu Chu and Yiqin

Jiang, who have supported all my decisions unconditionally and are always there for

me through good and bad times.

v

To my parents for all the support.

vi

ABSTRACT OF THE DISSERTATION

Essays on Classification, Variable Selection and Statistical Inference

by

Jianghao Chu

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, June 2019

Professor Aman Ullah, Co-Chairperson
Professor Tae-Hwy Lee, Co-Chairperson

This dissertation covers topics in classification with high-dimensional data, variable

selection in sparse semiparametric single-index models and statistical inference under

heteroskedasticity. In particular, Chapter 1 provides the motivation and background

of the dissertation.

Chapter 2 provides a summary of boosting methods for classification, namely

Discreet AdaBoost, Real AdaBoost, P-AdaBoost, Gentle AdaBoost and LogitBoost.

We compare these methods with alternative machine learning classification tools such

as Deep Neural Network and demonstrate the empirical applications in economics,

such as prediction of business cycle turning points and directional prediction of stock

price indexes.

Chapter 3 generalizes the Discreet AdaBoost shown in Chapter 2 for binary

classification problem with state-dependent loss functions. We introduce Asymmetric

AdaBoost that solves the asymmetric maximum score problem with high-dimensional

data. Asymmetric AdaBoost produces a nonparametric classifier via minimizing the

“asymmetric exponential risk” which is a convex surrogate of the traditional non-

convex score risk or 0-1 risk. The convex risk function gives huge computation

vii

advantage over non-convex risk functions, e.g. Maximum Score (Manski, 1975, 1985),

especially when the data is high-dimensional.

Chapter 4 considers the “Regularization of Derivative Expectation Operator”

(RODEO) of Lafferty and Wasserman (2008) and propose a modified RODEO algorithm

for sparse semiparametric single-index models which we call the SIM-RODEO. The

SIM-RODEO method is able to distinguish relevant explanatory variables from irrelevant

variables and gives a competitive estimator for the model. In addition, the algorithm

finishes in a reasonable period of time.

Chapter 5 investigates the methods for statistical inference under the presence of

heteroskedasticity of unknown form in the disturbances of linear regression models.

We propose a F -type (t2-type) test statistic for testing regression parameters under

the heteroskedasticity of unknown form. The accuracies of the test statistic are

confirmed by extensive Monte Carlo experiments. And Chapter 6 concludes.

viii

Contents

List of Figures xi

List of Tables xii

1 Introduction 1

2 Boosting Algorithms for High-dimensional Binary Classification and
Class Probability Prediction 7
2.1 Introduction . 7
2.2 AdaBoost . 10
2.3 Extensions to AdaBoost Algorithms 17

2.3.1 Real AdaBoost . 18
2.3.2 LogitBoost . 19
2.3.3 Gentle AdaBoost . 20

2.4 Alternative Classification Methods 21
2.4.1 Deep Neural Network . 21
2.4.2 Logistic Regression with LASSO 24
2.4.3 Semiparametric Single-Index Model 26

2.5 Monte Carlo . 30
2.6 Applications . 35
2.7 Conclusions . 36

3 Asymmetric AdaBoost for High-dimensional Maximum Score Regression 39
3.1 Introduction . 39
3.2 Binary Choice Model and Maximum Score 42
3.3 Decision Theory for Binary Prediction/Classification 44
3.4 Asymmetric Exponential Loss . 47

3.4.1 Convex Surrogate . 47
3.4.2 Asymmetric AdaBoost . 49

3.5 Monte Carlo . 52
3.5.1 DGPs . 52

ix

3.5.2 Alternative Method: Asymmetric Logistic Regression 56
3.5.3 Results . 57

3.6 Application . 59
3.7 Conclusions . 60

4 Variable Selection in Sparse Semiparametric Single-index Models 67
4.1 Introduction . 67
4.2 RODEO . 70

4.2.1 Algorithm . 70
4.2.2 A Numerical Example . 73

4.3 RODEO for Single Index Model (SIM-RODEO) 75
4.3.1 SIM-Model . 75
4.3.2 SIM-RODEO . 77
4.3.3 Asymptotic Properties of SIM-RODEO 82

4.4 Monte Carlo . 83
4.4.1 Simulation Designs . 83
4.4.2 SIM-LASSO . 85
4.4.3 Results . 85

4.5 Conclusions . 87

5 Statistical Inference under Heteroskedasticity of Unknown Form 97
5.1 Introduction . 97
5.2 Performance of Heteroskedasticity-consistent Variance Estimators Under

Homoskedasticity . 100
5.2.1 Biases and Variances of Heteroskedasticity-consistent Variance

Estimators . 100
5.2.2 Distribution of t-statistics using Heteroskedasticity-consistent

Variance Estimators . 110
5.3 Model and Test Statistic under Heteroskedasticity 117
5.4 Exact Distribution of F -statistic using HC Estimators 119
5.5 Empirical Size and Power . 121
5.6 Conclusions . 124

6 Conclusions 130

A Proofs for Chapter 3 139
A.1 Proof of Theorem 1 . 139
A.2 Proof of Theorem 2 . 140
A.3 Proof of Theorem 3 . 144

B Proofs for Chapter 4 147

x

List of Figures

2.1 Diagram of Deep Neural Network . 22

3.1 (Asymmetric) Exponential Loss and Score Loss 62
3.2 Conditional Probability of the Circle Model 63

4.1 y with x1 . 92
4.2 y with x2 . 93
4.3 Shrink bandwidth of x1 from h0 to h1 94
4.4 Shrinking bandwidth of x2 from h0 to h1 95
4.5 Designs . 96

5.1 t-statistics using Hinkley (1977, HC1) 111
5.2 Tails and Center Behavior . 112
5.3 t-statistics using MacKinnon and White (1985a, HC2) 113
5.4 Tails and Center Behavior . 114
5.5 t-statistics using MacKinnon and White (1985a, HC3) 115
5.6 Tails and Center Behavior . 116

xi

List of Tables

2.1 Error Rate of Low Dimension Circle Model 33
2.2 Error Rate of High Dimension (Sparse) Circle Model 33
2.3 Error Rate of Low Dimension Logistic Model 33
2.4 Error Rate of High Dimension (Sparse) Logistic Model 34
2.5 Error Rate of Application . 36

3.1 Linear Logit Model (DGP1) . 64
3.2 Balanced Quadratic Logit Model (DGP2) 64
3.3 Unbalanced Quadratic Logit Model (DGP3) 65
3.4 Circle Model (DGP4) . 65
3.5 Loss for Predicting Recessions . 66

4.1 Design 1 (k = 5) . 89
4.2 Design 2 (k = 5) . 89
4.3 Design 1 (k = 20) . 90
4.4 Design 2 (k = 20) . 91

5.1 n = 50 . 115
5.2 n = 100 . 115
5.3 Rejection Rate using Imhof (1961) with True Ω 122
5.4 Size of Test . 125
5.5 Power of Test . 126
5.6 Power of Test . 127
5.7 Power of Test . 128
5.8 Power of Test . 129

xii

Chapter 1

Introduction

Many important variables in economics, as well as other disciplines, are binary.

For example, whether the economy is going into an expansion or a recession, whether

the stock market is going up or going down, whether the Federal Reserve Bank of

the United States of America should increase the interest rate, whether a mortgage

applicant will default in the future, and etc.

Let

π (x) ≡ P (y = 1|x)

and y takes value 1 with probability π (x) and −1 with probability 1 − π (x). The

studies on making the best forecast on y can be classified into two classes: point

prediction and probability prediction (Lahiri and Yang, 2012). Probability prediction

is focusing on estimating the right probability model π̂ (x) such as the Logit and Probit

models (Gaddum, 1933; Bliss, 1934a,b), then making the forecast with π̂ (x) > 0.5

using the estimated probability model. Point prediction is determined to get the

optimal forecast rule π̂ (x) > 0.5 without having to (correctly) model the probability

of the events such as the maximum score approach (Manski, 1975, 1985).

1

Given the availability of high-dimensional data, both methods have been improved

to incorporate a large number of independent variables (x). Friedman et al. (2010a)

introduce regularized logistic regression which adds an L1 penalty on the coefficients

of independent covariates and solve the problem of excessive independent covariates

by shrinking the coefficients of unimportant covariates to zero. Freund and Schapire

(1996) introduce the AdaBoost algorithm which uses a functional descent procedure

and selects the independent variables sequentially instead of all at once.

Both methods are widely used and perform well in practice. However, both

methods take 0.5 as the cutoff. The focus of forecasting in statistics and computer

science is often on having a larger probability of forecasting y correctly. That goal

requires the usage of a symmetric loss function. In other words, wrong predictions

are given the same penalty regardless of whether it is a false positive (type I error)

or false negative (type II error) prediction. Economists, on the other hand, have long

been relating the forecasting problem with decision theory which aims at maximizing

the utility of the economic agent. They find that people prefer to making more

costless mistakes than making a costly one. For example, people are more willingly

to arrive at the airport early than late (Granger, 1999). People are more willingly to

overestimate the peak water of a dam than to underestimate it (Zellner, 1986). Thus,

the optimal decision rule for an economic agent should not be the one that gives the

most correct forecasts but the one that helps to prevent making costly mistakes.

Such incentives promote the use of an asymmetric loss function in the estimation

process of the optimal forecast which is related to the economic agent’s utility function

and gives a higher penalty on costly mistakes and lower penalty on costless mistakes.

Lee and Yang (2006); Elliott and Lieli (2013); Lahiri and Yang (2012) study the

classification problems under asymmetric loss functions. Elliott and Lieli (2013)

propose a utility based classifier called maximum utility estimator by using the

2

maximum score approach of Manski (1985) but include utilities that result in an

asymmetric loss function.

This dissertation studies both point prediction methods and probability prediction

methods for binary classification in the era of big data. The goal of this dissertation

is to propose methods for binary classification that are both analytically consistent

and numerically feasible with big data. In addition, I investigate both kinds of

methods under the setting of high-dimensionality and/or sparsity which are common

setups for big data. However, it is worth to note that the methods proposed in

this dissertation would also work under traditional settings where these conditions

are ignored. Moreover, this dissertation also investigates the methods for statistical

inference under the occurrence of heteroskedasticity which is inevitable when the

dependent variable is binary. The rest of the dissertation is organized as follows.

Chapter 2 (joint work with Professor Tae-Hwy Lee and Professor Aman Ullah)

compares the performance of different Boosting algorithms, namely Discreet AdaBoost,

Real AdaBoost, P-AdaBoost, Gentle AdaBoost and LogitBoost, as well as other

machine learning methods, such as the Deep Neural Network, for binary classification

with high-dimensional data, i.e. the number of variables in the data exceeds the

number of observations. We summarize the above Boosting algorithms in terms of

their choices of loss functions, step sizes, and weak learners. Different choices in those

specifications lead to different empirical convergence rates and different rates of over-

fitting. We compare the Boosting algorithms together with the Deep Neural Network,

which is extremely popular and powerful in industrial applications, by simulations to

investigate their properties in terms of algorithmic convergence and over-fitting. We

also provide comparisons with empirical applications in economics, such as prediction

of business cycle turning points and directional prediction of stock price indexes.

Chapter 3 (joint work with Professor Tae-Hwy Lee and Professor Aman Ullah)

3

focuses on binary classifications with high-dimensional data under state-dependent

loss functions. More specifically, we generalize the Discreet AdaBoost shown in

Chapter 2 for binary classification problems with state-dependent loss functions.

We introduce a convex surrogate loss function of the traditional non-convex loss

function used in the maximum score approach Manski (1975, 1985) which we call the

“asymmetric exponential risk”. We show that minimizing the convex surrogate loss

function would give us a classifier that also minimizes the traditional non-convex loss

functions. Thus, minimizing the convex surrogate loss function solves the maximum

score problem. We also propose a numerical algorithm that minimizes the “asymmetric

exponential loss” by building a tree-based nonparametric classifier. The algorithm

does not require any parametric assumption and is able to work with high-dimensional

data. The resulting nonparametric classifier is more robust than parametric classifiers

whose performance depend on the correct specification of the model. In addition, the

use of the convex “asymmetric exponential loss” gives huge computation advantage

over non-convex risk functions, e.g. Maximum Score (Manski, 1975, 1985). Hence, the

proposed algorithm is numerically much more efficient, especially with big data. We

show that the risk of the classifier that Asymmetric AdaBoost produces approaches

the Bayes risk which is the infimum risk can be achieved by all classifiers. Monte Carlo

experiments show that Asymmetric AdaBoost performs better than the commonly

used LASSO-regularized logistic regression when the parametric assumption is violated

and the sample size is large.

Chapter 4 (joint work with Professor Tae-Hwy Lee and Professor Aman Ullah)

considers the problem of probability prediction of binary variables. We extend the

“Regularization of Derivative Expectation Operator” (RODEO) of Lafferty and Wasserman

(2008a) and propose a modified RODEO algorithm for semiparametric single-index

models with many regressors, some of which may be irrelevant to the variable of

4

interest. We start with the semiparametric single-index model of Ichimura (1993).

The semiparametric method is known to be vulnerable to the curse of dimensionality.

Hence, it is unable to provide the estimates in a reasonable amount of time with a

large number of variables, even if many of them are known to be irrelevant. We take

advantage of the sparse nature of the data and select only the relevant variables to

reduce the dimensionality of the data and reduce the curse of dimensionality. The

algorithm uses a greedy procedure to estimate the semiparametric single-index model

(SIM) of Ichimura (1993), all coefficients of the regressors are initially set to start

from near zero, then we test iteratively if the derivative of the regression function

estimator with respect to each coefficient is significantly different from zero. The

basic idea of the modified RODEO algorithm for SIM (to be called SIM-RODEO) is to

view the local bandwidth selection as a variable selection scheme which amplifies the

coefficients for relevant variables while keeping the coefficients of irrelevant variables

relatively small or at the initial starting values near zero. For sparse semiparametric

single-index models, the SIM-RODEO algorithm is shown to attain both the consistency

in variable selection and the consistency in the estimation of the regression function.

In addition, the algorithm is fast to finish the greedy steps. We compare SIM-RODEO

with SIM-LASSO method in Zeng et al. (2012). We show that the proposed SIM-

RODEO method is consistent for the variable selection and our simulation results

show that it has smaller integrated mean squared errors than SIM-LASSO.

Chapter 5 (joint work with Professor Tae-Hwy Lee and Professor Aman Ullah)

studies the effect of heteroskedasticity which inevitably appears in problems with

limited dependent variables. In particular, we investigate the methods of statistical

inference under the presence of heteroskedasticity of unknown form in the disturbances

of a linear regression model. Under heteroskedasticity, the ordinary least squares

(OLS) estimators of the regression parameters are well known to be consistent.

5

However, the usual estimators for the covariance matrix of the regression parameters

are inconsistent and/or biased. We study the performance of the t-statistic and

the F -statistic when a sandwich like heteroskedasticity consistent (HC) variance

estimator, e.g. the “White variance estimator”, is used. We show that the t-

statistic and the F -statistic are ill-behaved in terms of the size of the tests when

the heteroskedasticity consistent variance estimators are used. Hence, they tend to

over-reject and lead to false discoveries. Recent studies have also pointed out that

the over-rejection problem remains problematic in considerably large samples when

the data are leveraged/unbalanced. We propose a F -type (t2-type) test statistic for

testing regression parameters under the heteroskedasticity of unknown form. This test

statistic is valid for a single linear restriction on the regression parameter including

the test for the zero restriction on each coefficient. It is shown that the proposed

F -type test statistic can be expressed as a ratio of quadratic forms, and therefore its

exact cumulative distribution under the null hypothesis can be easily written, and

straightforwardly implemented from the result of Imhof (1961) on the distribution of

quadratic form. We also generalize our proposed method as well as other methods

for exact inference under heteroskedasticity to deal with both heteroskedasticity

and auto-correlation. In addition, we also consider the case of the cross-sectional

correlation between individuals in panel models. A numerical calculation of the

proposed test statistic, using Imhof (1961), is carried out to present the critical

values and probability of rejections under various covariance estimators of regression

estimators. The accuracies are confirmed from their corresponding simulation-based

results. Chapter 6 is the conclusions.

6

Chapter 2

Boosting Algorithms for

High-dimensional Binary

Classification and Class Probability

Prediction

2.1 Introduction

A large number of important variables in economics are binary. Let

π (x) ≡ P (y = 1|x)

and y takes value 1 with probability π (x) and −1 with probability 1 − π (x). The

studies on making the best forecast on y can be classified into two classes (Lahiri and

Yang, 2012). One is focusing on getting the right probability model π̂ (x), e.g., Logit

and Probit models (Bliss, 1934a; Cox, 1958; Walker and Duncan, 1967), then making

7

the forecast on y with π̂ (x) > 0.5 using the estimated probability model. The other

is to get the optimal forecast rule on y directly, e.g., the maximum score approach

(Manski, 1975, 1985; Elliott and Lieli, 2013), without having to (correctly) model the

probability π̂ (x).

Given the availability of high-dimensional data, the binary classification or binary

probability prediction problems can be improved by incorporating a large number of

covariates (x). A number of new methods are proposed to take advantage of the great

number of covariates. Freund and Schapire (1997) introduce machine learning method

called Discrete AdaBoost algorithm, which takes a functional descent procedure and

selects the covariates (or predictors) sequentially. Friedman et al. (2000a) show that

AdaBoost can be understood as a regularized Logistic Regression, which selects the

covariates one-at-a-time. The influential paper also discusses several extensions to

the original idea of Discrete AdaBoost and proposes new Boosting methods, namely

Real AdaBoost, LogitBoost and Gentle Boost, which uses the exponential loss or

Bernoulli log-likelihood as fitting criteria. Later on, Friedman (2001) generalize the

idea to any fitting criteria and proposes the Gradient Boosting Machine. Bühlmann

and Yu (2003) and Bühlmann (2006) propose the L2 Boost and prove its consistency

for regression and classification. Mease et al. (2007) use the logistic function to

convert the class label output of boosting algorithms into probability and/or quantile

predictions. Chu et al. (2018a) show the linkage between the Discrete AdaBoost and

the maximum score approach and propose Asymmetric AdaBoost for utility based

high-dimensional binary classification.

On the other hand, efforts are made to incorporate traditional binary classification

and probability prediction methods into the high-dimensional sparse matrix set-up.

The key feature of high-dimensional data is the redundancy of covariates in the data.

Hence, methods are proposed to select useful covariates while/before estimation of the

8

models. Tibshirani (1996) proposes the LASSO that is to add L1 penalty to including

more covariates in the model. Zou (2006) drives a necessary condition for consistency

of the LASSO variable selection and proposes the Adaptive LASSO which is showed

to enjoy oracle property. LASSO type methods are often used with parametric models

such as linear model or logistic model. To relax the parametric assumptions, Lafferty

and Wasserman (2008a) propose the Regularization of the Derivative Expectation

Operator (RODEO) for variable selection in kernel regression. Chu et al. (2018b)

proposes SIM-RODEO for variable selection in semiparametric single-index model.

See Su and Zhang (2014) for a thorough review of variable selection in nonparametric

and semiparametric models.

This chapter gives an overview of recently developed machine learning methods,

namely AdaBoost in the role of binary prediction. The AdaBoost algorithm focuses

on making the optimal forecast directly without modeling the conditional probability

of the events. The AdaBoost gets an additive model by iteratively minimizing

an exponential loss function. In each iteration, AdaBoost puts more weights on

the observations that cannot be predicted correctly using the previous predictors.

Moreover, the AdaBoost algorithm is able to solve the classification problem with

high-dimensional data which is an advantage to traditional classification methods.

The rest of the chapter is organized as follow. In Section 2.2, we provide a

brief introduction of AdaBoost from minimizing the ‘exponential loss’. In Section

2.3, we show popular variants of AdaBoost. Section 2.5 gives numerical examples of

the boosting algorithms. Section 3.6 compares the mentioned boosting algorithms

with Deep Neural Network (DNN) and Logistic Regression with LASSO. Section 2.7

concludes.

9

2.2 AdaBoost

The algorithm of AdaBoost is as shown in Algorithm 1. Let y be the binary

class taking a value in {−1, 1} that we wish to predict. Let fm (x) be the weak

learner (weak classifier) for the binary target y that we fit to predict using the high-

dimensional covariates x in the mth iteration. Let errm denote the error rate of

the weak learner fm (x), and Ew (·) denote the weighted expectation (to be defined

below) of the variable in the parenthesis with weight w. Note that the error rate

Ew
[
1(y 6=fm(x))

]
is estimated by errm =

∑n
i=1wi1(yi 6=fm(xi)) with the weight wi given

by step 2(c) from the previous iteration. n is the number of observations. The symbol

1(·) is the indicator function which takes the value 1 if a logical condition inside the

parenthesis is satisfied and takes the value 0 otherwise. The symbol sign(z) = 1 if

z > 0, sign(z) = −1 if z < 0, and hence sign(z) = 1(z>0) − 1(z<0).

Algorithm 1 Discrete AdaBoost (DAB, Freund and Schapire, 1997)

1. Start with weights wi = 1
n
, i = 1, . . . , n.

2. For m = 1 to M

(a) For j = 1 to k (for each variable)

i. Fit the classifier fmj(xij) ∈ {−1, 1} using weights wi on the training
data.

ii. Compute errmj =
∑n

i=1wi1(yi 6=fmj(xji)).

(b) Find ĵm = arg minj errmj

(c) Compute cm = log
(

1−errm,ĵm
errm,ĵm

)
.

(d) Set wi ← wi exp[cm1(yi 6=fm,ĵm (xĵm,i))
], i = 1, . . . , n, and normalize so that∑n

i=1wi = 1.

3. Output the binary classifier sign[FM (x)] and the class probability prediction

π̂(x) = eFM (x)

eFM (x)+e−FM (x) where FM (x) =
∑M

m=1 cmfm,ĵm(xĵm).

10

Remark 1. Note that the presented version of Discrete AdaBoost as well as Real

AdaBoost (RAB), LogitBoost (LB) and Gentle AdaBoost (GAB) which will be introduced

later in the paper are different from their original version when they are first introduced.

The original version of these algorithms only output the class label. In this chapter,

we follow the idea of Mease et al. (2007) and modified the algorithms to output both

the class label and probability prediction. The probability prediction is attained using

π̂(x) =
eFM (x)

eFM (x) + e−FM (x)
, (2.1)

where FM(x) is the sum of the weak learners in the algorithm.

The most widely used weak learner is the classification tree. The simplest

classification tree, the stump, takes the following functional form

f (xj, a) =


1 xj > a

−1 xj < a,

where the parameter a is found by minimizing the error rate

min
a

n∑
i=1

wi1 (yi 6= f (xji, a)) . (2.2)

In addition to the commonly used classification tree weak learners in machine

learning literature described above, Discrete AdaBoost, in principle, can take any

classifier and boost its performance through the weighted voting scheme. For example,

we can also use a one-variable Logistic Regression as a weak learner which we will

call the logistic weak learner. Simulation results of Chu et al. (2018a) show that the

logistic weak learner generally has better performance than the stump in traditional

11

econometric models. In the logistic weak learner, we assume the probability

π (xj) ≡ P (y = 1|xj) =
exjβ

1 + exjβ
.

Let Y = y+1
2
∈ {0, 1}. We estimate the parameter β by maximizing the weighted

logistic log-likelihood function

max
β

logL = log
n∏
i=1

[(
exjiβ

1 + exjiβ

)Yi (1

1 + exjiβ

)1−Yi
]wi

= log
n∏
i=1

(
eYixjiβ

1 + exjiβ

)wi
(2.3)

=
n∑
i=1

log

(
eYixjiβ

1 + exjiβ

)wi
=

n∑
i=1

wi
[
Yixjiβ − log

(
1 + exjiβ

)]
. (2.4)

Then the resulting logistic weak learner will be

f (xj, β, τ) =


1 π (xj, β) > 0.5

−1 π (xj, β) < 0.5.

Friedman et al. (2000a) show that AdaBoost builds an additive logistic regression

model

FM (x) =
M∑
m=1

cmfm (x) (2.5)

via Newton-like updates for minimizing the exponential loss

J (F) = E
(
e−yF (x)|x

)
. (2.6)

We use greedy method to minimize the exponential loss function iteratively. After

12

m iterations, the current classifier is denoted as Fm (x) =
∑m

s=1 csfs (x). In the next

iteration, we are seeking an update cm+1fm+1 (x) for the function fitted from previous

iterations Fm (x). The updated classifier would take the form

Fm+1 (x) = Fm (x) + cm+1fm+1 (x) .

The loss for Fm+1 (x) will be

J (Fm+1 (x)) = J (Fm (x) + cm+1fm+1 (x))

= E
[
e−y(Fm(x)+cm+1fm+1(x))

]
. (2.7)

Expand w.r.t. fm+1 (x)

J (Fm+1 (x)) ≈ E

[
e−yFm(x)

[
1− ycm+1fm+1 (x) +

y2c2m+1f
2
m+1 (x)

2

]]
= E

[
e−yFm(x)

(
1− ycm+1fm+1 (x) +

c2m+1

2

)]
.

The last equality holds since y ∈ {−1, 1} , fm+1 (x) ∈ {−1, 1}, and y2 = f 2
m+1 (x) = 1.

fm+1 (x) only appears in the second term in the parenthesis, so minimizing the loss

function (2.7) w.r.t. fm+1 (x) is equivalent to maximizing the second term in the

parenthesis which results in the following conditional expectation

max
f

E
[
e−yFm(x)ycm+1fm+1 (x) |x

]
.

For any c > 0 (we will prove this later), we can omit cm+1 in the above objective

function

max
f

E
[
e−yFm(x)yfm+1 (x) |x

]
.

13

To compare it with the Discrete AdaBoost algorithm, here we define weight w =

w (y, x) = e−yFm(x). Later we will see that this weight w is equivalent to that

shown in the Discrete AdaBoost algorithm. So the above optimization can be seen

as maximizing a weighted conditional expectation

max
f

Ew [yfm+1 (x) |x] (2.8)

where Ew (y|x) := E(wy|x)
E(w|x) refers to a weighted conditional expectation. Note that

(2.8)

Ew [yfm+1 (x) |x]

= Pw (y = 1|x) fm+1 (x)− Pw (y = −1|x) fm+1 (x)

= [Pw (y = 1|x)− Pw (y = −1|x)] fm+1 (x)

= Ew (y|x) fm+1 (x) .

where Pw (y|x) = E(w|y,x)P (y|x)
E(w|x) . Solve the maximization problem (2.8). Since fm+1 (x)

only takes 1 or -1, it should be positive whenever Ew (y|x) is positive and -1 whenever

Ew (y|x) is negative. The solution for fm+1 (x) is

fm+1 (x) =


1 Ew (y|x) > 0

−1 otherwise.

14

Next, minimize the loss function (2.7) w.r.t. cm+1

cm+1 = arg min
cm+1

Ew
(
e−cm+1yfm+1(x)

)
Ew
(
e−cm+1yfm+1(x)

)
= Pw (y = fm+1 (x)) e−cm+1 + Pw (y 6= fm+1 (x)) ecm+1

∂Ew
(
e−cyfm+1(x)

)
∂c

= −Pw (y = fm+1 (x)) cm+1e
−cm+1 + Pw (y 6= fm+1 (x)) cm+1e

cm+1

Let

∂Ew
(
e−cm+1yfm+1(x)

)
∂cm+1

= 0,

and we have

Pw (y = fm+1 (x)) cm+1e
−cm+1 = Pw (y 6= fm+1 (x)) cm+1e

cm+1 ,

Solve for cm+1, we obtain

cm+1 =
1

2
log

Pw (y = fm+1 (x))

Pw (y 6= fm+1 (x))
=

1

2
log

(
1− errm+1

errm+1

)
,

where errm+1 = Pw (y 6= fm+1 (x)) is the error rate of fm+1 (x). Note that cm+1 > 0

as long as the error rate is smaller than 50%. Our assumption cm+1 > 0 holds for any

learner that is better than random guessing.

Now we have finished the steps of one iteration and can get our updated classifier

by

Fm+1 (x)← Fm (x) +

(
1

2
log

(
1− errm+1

errm+1

))
fm+1 (x) .

Note that in the next iteration, the weight we defined wm+1 will be

wm+1 = e−yFm+1(x) = e−y(Fm(x)+cm+1fm+1(x)) = wm × e−cm+1fm+1(x)y.

15

Since −yfm+1 (x) = 2× 1{y 6=fm+1(x)} − 1, the update is equivalent to

wm+1 = wm × e
(
log
(

1−errm+1
errm+1

)
1[y 6=fm+1(x)]

)
= wm ×

(
1− errm+1

errm+1

)1[y 6=fm+1(x)]

.

Thus the function and weights update are of an identical form to those used in

AdaBoost. AdaBoost could do better than any single weak classifier since it iteratively

minimizes the loss function via a Newton-like procedure. Interestingly, the function

F (x) from minimizing the exponential loss is the same as maximizing a logistic log-

likelihood. Let

J (F (x)) = E
[
E
(
e−yF (x)|x

)]
= E

[
P (y = 1|x) e−F (x) + P (y = −1|x) eF (x)

]
.

Taking derivative w.r.t. F (x) and making it equal to zero, we obtain

∂E
(
e−yF (x)|x

)
∂F (x)

= −P (y = 1|x) e−F (x) + P (y = −1|x) eF (x) = 0

F ∗ (x) =
1

2
log

[
P (y = 1|x)

P (y = −1|x)

]
.

Moreover, if the true probability

P (y = 1|x) =
e2F (x)

1 + e2F (x)
,

for Y = y+1
2

, the log-likelihood is

E (logL|x) = E
[
2Y F (x)− log

(
1 + e2F (x)

)
|x
]
.

The solution F ∗ (x) that maximize the log-likelihood must equals the F (x) in the

16

true model P (y = 1|x) = e2F (x)

1+e2F (x) . Hence,

e2F
∗(x) = P (y = 1|x)

(
1 + e2F

∗(x)
)

e2F
∗(x) =

P (y = 1|x)

1− P (y = 1|x)

F ∗ (x) =
1

2
log

[
P (y = 1|x)

P (y = −1|x)

]
. (2.9)

AdaBoost that minimizes the exponential loss yield the same solution as Logistic

Regression that maximizes the logistic log-likelihood.

2.3 Extensions to AdaBoost Algorithms

In this section, we introduce extensions of Discrete AdaBoost, namely Real

AdaBoost (RAB), LogitBoost (LB) and Gentle AdaBoost (GAB), and discuss how

some aspects of the DAB may be modified to yield RAB, LB, and GAB. In the

last section, we learned that Discrete AdaBoost minimizes an exponential loss via

iteratively adding a binary weaker learner to the pool of weak learners. The addition

of a new weak learner can be seen as taking a step on the direction that loss function

descents in the Newton method. There are two major ways to extend the idea of

Discrete AdaBoost. One focuses on making the minimization method more efficient

by adding a more flexible weak learner. The other is to use different loss functions

that may lead to better results. Next, we give an introduction to several extensions

of Discrete AdaBoost.

17

2.3.1 Real AdaBoost

Algorithm 2 Real AdaBoost (RAB, Friedman et al. 2000)

1. Start with weights wi = 1
n
, i = 1, . . . , n.

2. For m = 1 to M

(a) For j = 1 to k (for each variable)

i. Fit the classifier to obtain a class probability estimate pm(xj) =

P̂w(y = 1|xj) ∈ [0, 1] using weights wi on the training data.

ii. Let fmj(xj) = 1
2

log
pm(xj)

1−pm(xj)
.

iii. Compute errmj =
∑n

i=1wi1(yi 6=sign(fmj(xji))).

(b) Find ĵm = arg minj errmj.

(c) Set wi ← wi exp [−yifm,ĵm(xĵm,i)], i = 1, . . . , n, and normalize so that∑n
i=1wi = 1.

3. Output the classifier sign[FM (x)] and the class probability prediction π̂(x) =
eFM (x)

eFM (x)+e−FM (x) where FM (x) =
∑M

m=1 fm(x).

Real AdaBoost focuses solely on improving the minimization procedure of Discrete

AdaBoost. In Real AdaBoost, the weak learners are continuous comparing to Discrete

AdaBoost where the weak learners are binary (discrete). Real AdaBoost is minimizing

the exponential loss with continuous updates where Discrete AdaBoost minimizes the

exponential loss with discrete updates. Hence, Real AdaBoost is more flexible with

the step size and direction of the minimization and minimizes the exponential loss

faster and more accurately. However, Real AdaBoost also imposes the restriction

that the classifier must produce a probability prediction which reduces the flexibility

of the model. As we shall see in the numerical examples, Real AdaBoost may achieve

a larger in-sample training error due to the flexibility of its model. On the other

hand, this also reduces the chances of fitting and would, in the end, achieve a smaller

out-of-sample test error.

18

2.3.2 LogitBoost

Friedman et al. (2000a) propose LogitBoost by minimizing the Bernoulli log-

likelihood via an adaptive Newton algorithm for fitting an additive logistic model.

LogitBoost extends Discrete AdaBoost in two ways. First, it uses the Bernoulli log-

likelihood instead of the exponential function as the loss function. Furthermore, it

updates the classifier by adding a linear model instead of a binary weak learner.

Algorithm 3 LogitBoost (LB, Friedman et al., 2000a)

1. Start with weights wi = 1
n
, i = 1, . . . , n, F (x) = 0 and probability estimates

p(xi) = 1
2
.

2. For m = 1 to M

(a) Compute the working response and weights

zi =
y∗i − p(xi)

p(xi)(1− p(xi))
(2.10)

wi = p(xi)(1− p(xi)) (2.11)

(b) For j = 1 to k (for each variable)

i. Fit the function fmj(xji) by a weighted least-squares regression of zi
to xji using weights wi on the training data.

ii. Compute errmj = 1−R2 from the weighted least-squares regression.

(c) Find ĵm = arg minj errmj

(d) Update F (x)← F (x) + 1
2
fm,ĵ(xĵ) and p(x)← eF (x)

eF (x)+e−F (x) , i = 1, . . . , n.

3. Output the classifier sign[FM (x)] and the class probability prediction π̂(x) =
eFM (x)

eFM (x)+e−FM (x) where FM (x) =
∑M

m=1 fm,ĵm(xĵm).

In LogitBoost, continuous weak learners are used similar to Real AdaBoost.

However, LogitBoost specified the use of linear weak learner while Real AdaBoost

allows any weak learner that returns a probability between zero and one. A bigger and

more fundamental difference here is that LogitBoost uses the Bernoulli log-likelihood

19

as loss function instead of the exponential loss. Hence, LogitBoost is more similar

to Logistic Regression than Discrete AdaBoost and Real AdaBoost. As we will see

in the simulation result, LogitBoost has the smallest in-sample training error but

the largest out-of-sample test error. This implies that while LogitBoost is the most

flexible of the four, it suffers the most from over-fitting.

2.3.3 Gentle AdaBoost

Algorithm 4 Gentle AdaBoost (GAB, Friedman et al., 2000a)

1. Start with weights wi = 1
n
, i = 1, . . . , n.

2. For m = 1 to M

(a) For j = 1 to k (for each variable)

i. Fit the regression function fmj(xij) by weighted least-squares of yi on
xi using weights wi on the training data.

ii. Compute errmj = 1−R2 from the weighted least-squares regression.

(b) Find ĵm = arg minj errmj

(c) Set wi ← wi exp[−yifm,ĵm(xĵm,i)], i = 1, . . . , n, and normalize so that∑n
i=1wi = 1.

3. Output the classifier sign[FM (x)] and the class probability prediction π̂(x) =
eFM (x)

eFM (x)+e−FM (x) where FM (x) =
∑M

m=1 fm,ĵm(xĵm).

Gentle AdaBoost extends Discrete AdaBoost in the sense that it allows each weak

learner to be a linear model. This is similar to LogitBoost and more flexible than

Discrete AdaBoost and Real AdaBoost. However, it is closer to Discrete AdaBoost

and Real AdaBoost than LogitBoost in the sense that Gentle AdaBoost, Discrete

AdaBoost, and Real AdaBoost all minimize the exponential loss while LogitBoost

minimizes the Bernoulli log-likelihood. Another point that Gentle AdaBoost is more

similar to Real AdaBoost than Discrete AdaBoost is that since the weak learners are

20

continuous, there is no need to find an optimal step size for each iteration because the

weak learner is already optimal. As we will see in the simulation results, Gentle Boost

often lies between Real AdaBoost and LogitBoost in terms of in-sample training error

and out-of-sample test error.

Note that manually transforming the sum of all weak learners F (x) into probability

prediction using equation 2.9 would lead to the same result as directly output the

probability prediction from the package as in the second line.

2.4 Alternative Classification Methods

Apart from Boosting algorithms, we also consider Deep Neural Network, Logistic

Regression and semiparametric single-index model as alternative methods to obtain

a predictor of y. Deep Neural Network is able to deal with high-dimensional data.

For Logistic Regression, we have to select useful information from noises. Hence, a

shrinkage parameter is used with the logistic log-likelihood which we call LASSO.

Semiparametric single-index model is an extension to the parametric single-index

model such as Logistic Regression. It relaxes the parametric assumptions and uses

the kernel function to fit the data locally. For high-dimensional problem, we use

SIM-RODEO to select useful explanation variables for semiparametric single-index

models.

2.4.1 Deep Neural Network

Deep Neural Network is undoubtedly one of the most state-of-the-art classification

methods. The model is similar to a multi-stage regression or classification model. The

idea is to build a flexible nonlinear statistical model consisted of several layers and

21

X1

X2

X3

Xk

Z11

Z12

Z13

Z1q1

Zp1

Zp2

Zp3

Zpqp

Y

Z21

Z22

Z23

Z2q2

Figure 2.1: Diagram of Deep Neural Network

each layer consists of neurons as in Figure 2.1.

For binary classification, there is only one output Y that is the class probability

or class label. Since the transformation from class probability to class label is straight-

forward, we focus on the case where the output is the class probability. The layer

labeled X is the input layer which contains all the explanatory variables in the data

set. Note that the number of explanatory variables k is allowed to be extremely large

(larger than the number of observations) as in high-dimensional settings. The layers

labeled Z are the hidden layers. The number of hidden layers p can be arbitrarily set

by the user and each hidden layer can contain arbitrarily many neurons denoted by

qt where t stands for the tth hidden layer.

The output zts of the sth neuron in the tth hidden layer is normally a single-

index function g(αts + β′tsZt−1) where α is a scalar, β is a vector of same length qt−1

as the number of neurons in the (t − 1)th hidden layer or the input layer if t = 1

and Zt−1 = (zt−1,1, zt−1,2, . . . , zt−1,qt−1) is a vector of outputs from all neurons of the

(t − 1)th hidden layer or the input layer if t = 1. Similarly, the output layer of the

model is also chosen to be a single-index function of the outputs of the last hidden

22

layer. Hence,

z1s = g(w01s + w′1sX) (2.12)

zts = g(w0ts + w′tsZt−1) (2.13)

Y = π̂(x) = f(w0 + w′Zt). (2.14)

The function g(v) is called the activation function. It is often chosen to be a

sigmoid. Popular choices are the Rectified Linear Unit (ReLU)

g(v) = max(0, v)

and the logistic function

g(v) =
1

1 + e−v
.

The function f(v) in the output layer can also be a sigmoid. In addition to the ReLU

and logistic function, the identity function can also be used as the output function.

Since the activation function, output function, and the number of hidden layers

and neurons are all chosen by the user prior to fitting the model, the only parameters

to be determined by the data are the weights α’s and β’s. We choose the best values

for α’s and β’s to minimize a given loss function. For binary classification, the squared

error loss

L(w) =
∑
i

(yi − π̂(xi))
2

and the cross-entropy

L(w) = −
∑
i

yi log π̂(xi)

are often used. The minimization procedure of Deep Neural Network is often time-

consuming. Moreover, convergence and optimality cannot be guaranteed. Hence,

23

multiple attempts need to be made for a single problem. Two techniques, the

stochastic gradient descent and the back-propagation, are often used for minimization

of Deep Neural Network. Fortunately, we do not have to worry about the implementation

of the minimization procedure since packages are available in R.

Remark 2. Note that the class probability can be converted to class label easily by

the rule Ŷ = 1
(

ˆπ(x) > 0.5
)

where 1(·) is the indicator function.

2.4.2 Logistic Regression with LASSO

In traditional econometrics, the most used classification and probability prediction

method should be the Logistic Regression. The Logistic Regression assumes that the

probability that the output variable Y = y+1
2
∈ {0, 1} takes value 1 follows a logistic

function of x. That is

π (x) ≡ P (Y = 1|x) =
1

1 + e−xβ
.

Given a sample data of y and x, the likelihood of the sample can be rewritten as

L (β) =
∏
i

(
1

1 + e−xiβ

)Yi (1

1 + exiβ

)1−Yi
. (2.15)

24

Taking the log transformation, the log-likelihood is

logL (β) = log

(∏
i

(
1

1 + e−xiβ

)Yi (1

1 + exiβ

)1−Yi
)

(2.16)

=
∑
i

log

((
1

1 + e−xiβ

)Yi (1

1 + exiβ

)1−Yi
)

(2.17)

=
∑
i

log

(
1

1 + e−xiβ

)Yi
+ log

(
1

1 + exiβ

)1−Yi
(2.18)

=
∑
i

Yixiβ − log
(
1 + e−xiβ

)
. (2.19)

Because of the high-dimensional feature of our problem, we have to control the number

of explanatory variables included in the model. Hence, an L1 penalty a.k.a LASSO

penalty is added to the log-likelihood as a penalty to including more explanatory

variables in the model. Logistic Regression with LASSO minimizes the negative

logistic log-likelihood (2.4) with a Lasso penalty as below

min−
N∑
t=1

[
Yixiβ − log

(
1 + exiβ

)]
+ λ |β|1 . (2.20)

A well-known package called glmnet package provided by Hastie and Qian uses a

quadratic approximation to the log-likelihood, and then coordinate descent on the

resulting penalized weighted least-squares problem. And it is so far the most trust-

worthy package in R for Logistic Regression with LASSO. For binary classification,

we use the estimated β to construct a logistic probability model for y. Then, get

our prediction from the model. If π̂ (x) > 0.5, the predicted class will be 1. And if

π̂ (x) < 0.5, the predicted class will be 0.

25

2.4.3 Semiparametric Single-Index Model

Chu et al. (2018b) consider a standard single index model,

y = m (x′β) + u, (2.21)

where β = (β1, . . . , βk) is a vector of coefficients. Under the sparsity condition, we

assume that βj 6= 0 for j ≤ r and βj = 0 for j > r. We also assume that the random

errors u are independent. However, we allow the presence of heteroskedasticity to

encompass a large category of models for binary prediction, e.g. Logit and Probit

models. The kernel estimator (Ichimura, 1993) we use is as shown below

m̂ (x′β;h) =

∑n
i=1 yiK

(
X′iβ−x′β

h

)
∑n

i=1K
(
X′iβ−x′β

h

) , (2.22)

where K (·) is a kernel function. The semiparametric kernel regression looks for the

best β and h to minimize a weighted squared error loss. However, exact identification

is not available. If one blows up β and θ simultaneously by multiplying the same

constant, the kernel estimator would yield identical estimates and losses. The standard

identification approach is to set the first element of β to be 1 (Ichimura, 1993).

In terms of variable selection and prediction, we only need to focus on finding

the best θ ≡ β
h
. Hence, we can simplify the estimator to

m̂ (x′θ) =

∑n
i=1 yiK (X ′iθ − x′θ)∑n
i=1K (X ′iθ − x′θ)

. (2.23)

The basic idea of the SIM-RODEO is to view the local bandwidth selection as

a variable selection in sparse semiparametric single index model. The SIM-RODEO

algorithm amplifies the inverse of the bandwidths for relevant variables while keeping

26

the inverse of the bandwidths of irrelevant variables relatively small. The SIM-

RODEO algorithm is greedy as it solves for the locally optimal path choice at each

iteration. It can also be shown to attain the consistency in mean square error when

it is applied for sparse semiparametric single index models. SIM-RODEO is able to

distinguish truly relevant explanatory variables from noisy irrelevant variables and

gives a consistent estimator of the regression function. In addition, the algorithm is

fast to finish the greedy steps.

Now we derive the RODEO for Single Index Models. First we introduce some

notation. Let

Wx =


K (X ′1θ − x′θ) · · · 0

...
. . .

...

0 · · · K (X ′nθ − x′θ)

 (2.24)

where K (·) is the Gaussian kernel. The standard Ichimura (1993) estimator takes

the form

m̂ (x′θ) =

∑n
i=1 yiK (X ′iθ − x′θ)∑n
i=1K (X ′iθ − x′θ)

= (ι′Wxι)
−1
ι′Wxy. (2.25)

The derivative of the estimator Zj with respect to θj is

Zj ≡
∂m̂ (x′θ)

∂θj
(2.26)

= (ι′Wxι)
−1
ι′
∂Wx

∂θj
y − (ι′Wxι)

−1
ι′
∂Wx

∂θj
ι (ι′Wxι)

−1
ι′Wxy

= (ι′Wxι)
−1
ι′
∂Wx

∂θj
(y − ιm̂ (x′θ)) . (2.27)

27

For the ease of computation, let

Lj =


∂ logK(X′1θ−x′θ)

∂θj
· · · 0

...
. . .

...

0 · · · ∂ logK(X′nθ−x′θ)
∂θj

 . (2.28)

Note that

∂Wx

∂θj
= WxLj, (2.29)

which appears in equation (4.16). With the Gaussian kernel, K (t) = e−
t2

2 , then Lj

becomes

Lj =


−1

2

∂(X′1θ−x′θ)
2

∂θj
· · · 0

...
. . .

...

0 · · · −1
2
∂(X′nθ−x′θ)

2

∂θj



=


− (X ′1θ − x′θ) (X1j − xj) · · · 0

...
. . .

...

0 · · · − (X ′nθ − x′θ) (Xnj − xj)

 ,

where X1j and Xnj are the jth elements of vectors X1 and Xn. And xj is the jth

element of vector x. To simplify the notation, let Bx = (ι′Wxι)
−1 ι′Wx. Then, the

derivative Zj becomes

Zj = (ι′Wxι)
−1
ι′
∂Wx

∂θj
(y − ιm̂ (x′θ))

= BxLj (I − ιBx) y

≡ Gj (x, θ) y. (2.30)

28

Next, we give the conditional expectation and variance of Zj.

Zj = Gj (x, θ) y = Gj (x, θ) (m (x′β) + u) , (2.31)

E (Zj|X) = E (Gj (x, θ) (m (x′β) + u) |X) = Gj (x, θ)m (x′β) , (2.32)

Var (Zj|X) = Var (Gj (x, θ) (m (x′β) + u) |X) = σ′Gj (x, θ)′Gj (x, θ)σ,(2.33)

where σ = (σ (u1) , . . . , σ (un))′ is the vector of standard deviations of u. In the

algorithm, it is necessary to insert an estimate of σ. Since we allow the errors to be

heteroskedastic as in Logit and Probit models and estimate σ(ui) using the estimator

σ̂(ui) = m(x′iθ̂)(1−m(x′iθ̂)).

SIM-RODEO is described in Algorithm 5, which is a modified algorithm of

RODEO (Lafferty and Wasserman, 2008b).

29

Algorithm 5 SIM-RODEO (Chu et al., 2018b)

1. Select a constant 0 < α < 1 and the initial value

θ0 = c0 log log n

where c0 is sufficiently small. Compute Zj with θj = θ0 for all j.

2. Initialize the coefficients θ, and activate all covariates:

(a) θj =

{
θ0 Zj > 0
−θ0 otherwise,

j = 1, . . . , k.

(b) A = {1, . . . , k}.

3. While A 6= ∅ is nonempty, do for each j ∈ A:

(a) Compute Zj and sj =
√

Var (Zj|X) using (4.19) and (4.22) respectively.

(b) Compute the threshold λj = sj
√

2 log n.

(c) If |Zj| > λj, then set θj ← θj
α

; Otherwise, remove j from A (i.e., A ←
A− {j}).

4. Obtain θ̂ = (θ1, . . . , θk). Output the class probability prediction π̂(x) = m̂
(
x′θ̂
)

and the classifier F (x) = 1(π̂(x)>0.5).

We start by setting θj = θ0 that is close to zero. Hence, (X ′iθ − x′θ) are close to

zero and K (X ′iθ − x′θ) are close to K (0). This means our estimator starts with the

simple average of all observations, ȳ. If the derivative of θj is statistically different

from zero. We amplify θj. If xj is indeed a relevant explanatory variable, then the

weights K (X ′iθ − x′θ) change according to xj. The estimator will give higher weights

to observations close to x′θ and lower weights to observations away from x′θ.

2.5 Monte Carlo

In this section, we demonstrate the above DAB, RAD, LB, and GB via Monte

Carlo simulation designs. We construct the two DGPs to check the finite sample

30

properties of the Boosting algorithms. DGP1 is a binary logistic model where y

follows a Bernoulli distribution with probability

π (x) ≡ 1

1 + e−xβ

to be 1 and 1− π (x) to be −1 where

x
n×k
∼ N

(
0,

Σ

β′Σβ

)
, Σij = ρ|i−j|,

n = 100, k = {2, 20} and ρ ∈ {0} .

We have two settings for the β. In the low-dimension case (k = 2) , we let

β = (1, 1).

In the high-dimension case (k = 20), we let β = (β1, . . . , βk) where

βi = 0.9i. (2.34)

that decrease exponentially. Hence, most of the β’s are very close 0.

DGP2 is the circle model. Here we have two settings for the circle model. In

the low dimension case, only the two relevant x’s are used to train the models as

shown in the toy demo in previous sections. In the high dimension (sparse) case,

three irrelevant x’s are added in addition to the two relevant ones. Table 2.1 and

Table 2.2 show the in-sample training error and the out-of-sample test error in the

two cases for different methods.

To construct the training and testing samples, we randomly generate x using the

above distribution and calculate π (x). To generate the random variable y based on

31

x, we first generate a random variable ε that follows uniform distribution between

[0, 1]. Next, we compare ε with π (x). There is a probability of π (x) that ε is smaller

than π (x) and a probability 1− π (x) otherwise. Hence, we set

y =


1 ε < π (x)

−1 ε > π (x) .

Given a set of observations {(x, y)}, we compare the average loss (classification

error) achieved by using different methods. The formula for the average loss is as

below.

ErrorRate =
1

n

∑
1 (yi 6= sign (FM (xi))) , (2.35)

where n is the number of observations in the set.

To evaluate the algorithms, first we train our predictors with the training data

of size n = 100. Then, we use a testing data set that contains 100 new observations

of (x, y) to compute the average loss (2.35) achieved by the Boosting algorithms,

Deep Neural Network, Logistic Regression and semiparametric Single-Index Model

for out-of-sample evaluations. The boosting algorithms are component-wise versions

of the four methods as shown before. The alternative methods we have, Deep Neural

Network, Logistic Regression with LASSO penalty and semiparametric single-index

model with SIM-RODEO considers all variables at the same time. The number of

Monte Carlo repetition for each DGP is 1000.

The results are shown below.

From the simulation results, we can see that the four boosting methods work well

in both the circle model and the logistic model. LogitBoost has the smallest training

32

Table 2.1: Error Rate of Low Dimension Circle Model

Train Error Test Error
Discrete AdaBoost 0.0820 0.2053
Real AdaBoost 0.0853 0.2038
LogitBoost 0.0602 0.2090
Gentle AdaBoost 0.0718 0.2062
Deep Neural Network 0.2601 0.3533
Logistic Regression 0.3586 0.3573
SIM-RODEO 0.2986 0.3421

Table 2.2: Error Rate of High Dimension (Sparse) Circle Model

Train Error Test Error
Discrete AdaBoost 0.0202 0.2203
Real AdaBoost 0.0295 0.2165
LogitBoost 0.0081 0.2232
Gentle AdaBoost 0.0133 0.2208
Deep Neural Network 0.2838 0.4017
Logistic Regression 0.3569 0.3572
SIM-RODEO 0.3542 0.3541

Table 2.3: Error Rate of Low Dimension Logistic Model

Train Error Test Error
Discrete AdaBoost 0.1431 0.3129
Real AdaBoost 0.1519 0.3120
LogitBoost 0.1302 0.3160
Gentle AdaBoost 0.1339 0.3154
Deep Neural Network 0.2304 0.3090
Logistic Regression 0.2773 0.3083
SIM-RODEO 0.3069 0.3415

33

Table 2.4: Error Rate of High Dimension (Sparse) Logistic Model

Train Error Test Error
Discrete AdaBoost 0.0007 0.3217
Real AdaBoost 0.0015 0.3215
LogitBoost 0.00007 0.3214
Gentle AdaBoost 0.0001 0.3204
Deep Neural Network 0.0523 0.3172
Logistic Regression 0.2328 0.3432
SIM-RODEO 0.3580 0.3971

error among all four boosting algorithms as well as the largest testing error. On

the other hand, Real AdaBoost has the largest training error as well as the smallest

testing error. Similar rules apply to the other two boosting methods. Smaller training

errors implies larger testing errors. This is evidence of overfitting which is related to

the hyper-parameters in the boosting algorithms. If the number of boosting iterations

is small, then we will have a larger training error but less risk of overfitting. On the

other hand, if we have more boosting iterations, then the boosting methods will fit

the training data better but raise higher risk on overfitting. The number of iterations

in the boosting algorithms are fixed by the users. However, cross-validation could be

used to determine the optimal number of iterations.

As for the alternative methods, Deep Neural Network works better in the logistic

model than the circle model. This is a result of the set-up of the Deep Neural Network.

We use the logistic function as the activation function and output function, and the

entropy as the loss function. The set-up will give better results when the logistic model

is the true model. For the circle model, Deep Neural Network gives a comparable

result to the Logistic Regression in the low-dimension case. However, the result is

much worse for the high-dimension case. Again, this could be a result of our set-

up of the Deep Neural Network. We acknowledge that the Deep Neural Network is

highly flexible with lots of hyper-parameters Different set-up of the model may lead

34

to dramatically distinct results. Our setting by no means is the optimal one and Deep

Neural Network could perform better with a different set-up.

For Logistic Regression, it works best in the low-dimension logistic model as all

parametric assumptions are satisfied. However, in the high-dimension case, Logistic

Regression will have a larger bias due to the need to shrink the coefficients of irrelevant

variables to zero. To fix this bias, one may try the De-biased Machine Learning

method (Chernozhukov et al., 2018).

2.6 Applications

In the application, we use the FRED monthly data https://research.stlouisfed.

org/econ/mccracken/fred-databases/ to predict the moving direction of real personal

income in the United States. After removing the observations with missing values,

we obtain 341 effective observations with a sample period starting from September,

1989 to January 2018. We use 125 variables which are all variables in the data except

for the Consumer Sentiment Index that is only available quarterly and New Orders

for Consumer Goods which has too many missing data. We generate the direction of

the real personal income as our dependent variable and take the lag of the dependent

variable as one explanatory variable. Hence, we have in total k = 126 explanatory

variables and (341 − 1 = 340) observations. We use rolling training samples with

window width W = 100 and predict the one month ahead moving direction. We have

(n = 340−W = 240) subsamples and predictions.

The results are very similar to the simulation results for logistic models. The

boosting methods have very small in-sample training errors. However, the out-of-

sample testing error is much larger than the alternatives. This may indicate that the

35

Table 2.5: Error Rate of Application

Train Error Test Error
Discrete AdaBoost 0.0028 0.3125
Real AdaBoost 0.0407 0.3291
LogitBoost 0.0003 0.3041
Gentle AdaBoost 0.0020 0.3083
Deep Neural Network 0.2389 0.2666
Logistic Regression 0.2479 0.2708
SIM-RODEO 0.2257 0.2958

boosting algorithms are overfitting the model.

2.7 Conclusions

This chapter shows recently developed methods for high-dimensional binary

classification and probability prediction. We start by introducing four component-

wise boosting methods, namely component-wise Discrete AdaBoost, component-wise

Real AdaBoost, component-wise LogitBoost and component-wise Gentle AdaBoost.

Discrete AdaBoost, Real AdaBoost, and Gentle AdaBoost minimize the exponential

loss via Newton-like procedures. LogitBoost minimizes the Bernoulli log-likelihood

via adaptive Newton method. These methods are extremely popular since they are

both computationally efficient and easy to implement. Moreover, the component-

wise Boosting algorithms deal with the high dimensional issue by considering the

explanatory one at a time. In each iteration, only the most effective explanatory

variable is chosen to train a weak learner. Hence, these methods allow k � n.

However, hyper-parameters such as the number of boosting iteration normally need

to be determined by the user prior to the estimation procedure. Cross-validation may

also be used to choose the number of iterations.

Next, we give an introduction to alternative methods such as Deep Neural

36

Network, Logistic Regression, and SIM-RODEO. Deep Neural Network is a kind of

nonlinear statistical learning model features a network structure that is similar to the

relationship between the neurons of the human brain. Deep Neural Network may be

explained partly as a kind of basis transformation which leads to extreme flexibilities

of the models. Deep Neural Network and its variants are the most popular prediction

method at this time and are widely used in fields such as image and voice recognition.

Logistic Regression is a traditional method used intensively in economics for

binary classification and probability prediction. Logistic Regression assumes that

the probability that the output label is 1 conditional on x follows a logistic function

of x. Under such assumption, the parameters of the model often have practical

economic meaning, unlike machine learning methods that are often hard to interpret.

However, Logistic Regression relies heavily on its parametric assumptions and is the

least flexible model introduced in this chapter. In addition, to deal with the high-

dimensional problem, we have to use the LASSO to control the number of explanatory

variables chosen in the model.

SIM-RODEO relaxes the parametric assumption of Logistic Regression. As a

result, SIM-RODEO is more flexible but, to some extent, still interpretable as Logistic

Regression. However, the flexibility of SIM-RODEO may lead to a slower convergence

rate and less time efficiency.

We conduct extensive comparisons of the above-mentioned methods through

Monte Carlo experiments. We compare the methods using both traditional binary

classification model (logistic model) and irregular model (circle model). The boosting

methods work well in both the traditional models and irregular models. Logistic

Regression works better in the low dimension logistic model when the parametric

assumptions of Logistic Regression are satisfied. However, in the high-dimensional

case, the LASSO introduces high bias in Logistic Regression and lead to lower classification

37

accuracy. In the irregular models, Logistic Regression performs poorly compared to

the boosting algorithms. The Deep Neural Network performed best in the traditional

methods as a result of our configuration of the Neural Network. We acknowledge that

our configuration of Deep Neural Network is by no means the best and the results here

may improve with different activation function, output function and/or the number

of hidden layers and neurons. SIM-RODEO is an extension to parametric methods

such as Logistic Regression. It performs reasonably well in the models. We also use

these methods for predicting the changing direction of the real personal income in the

United States. The application shows similar results as in the simulation of logistic

models.

This chapter gives a thorough introduction of newly developed methods for

binary classification and probability prediction. Advantages and disadvantages of

each method are discussed and compared. We conclude that no single method

has an absolute advantage in all aspects of the other methods. We believe binary

classification and probability prediction will remain important for business and economics

and look forward to future works on this problem.

38

Chapter 3

Asymmetric AdaBoost for

High-dimensional Maximum Score

Regression

3.1 Introduction

Data with a large number of variables relative to the sample size, namely high-

dimensional data, are becoming more and more prevalent in empirical economics as

well as statistics and computer science. One of the most successful applications of

high-dimensional data in economics as well as other sciences is to construct empirical

models for forecasting of binary outcomes and making binary decisions. Examples in

forecasting include predicting firm solvency, the legitimacy of credit card transactions,

directional forecasts of financial prices, whether a loan is paid off or not, or whether

an introduced foreign plant species will become invasive or not. Such forecasts are

often translated into decisions which are binary in character, e.g. the loan is granted

or it is not, the student is admitted to the school or not, the candidate is hired

39

or not hired, the surgery is undertaken or it is not, importation of a foreign plant

species is allowed or not. Various statistical approaches to binary classification are

available in the literature, from discriminant analysis, logit or probit models to less

parametric estimates of the conditional probability model for the outcome variable

such as semiparametric single-index models (Ichimura, 1993; Klein and Spady, 1993).

Typically, most estimation techniques used for binary classification do not make

use of the loss function implicit in the underlying decision/prediction problem. For

example logit and probit models are estimated to maximize the likelihood of the

model, irrespective of the relative usefulness of true positives or true negatives.

Nonparametric methods seek the best fit for the conditional probability based on

the loss function (typically squared error) rather than the appropriate loss function

for the decision problem. In most applications, the relative costs of making errors,

false negatives and false positives, are rarely balanced in the way that could be used

to motivate these approaches. In detecting credit card fraud, “wasting” resources on

checking that the customer has control over their credit card is perhaps less costly

than failing to do so when their credit card number has been stolen. Elliott and Lieli

(2013) point out that even with local misspecifications that are difficult to detect

using standard specification tests, parametric models of the conditional probability of

a positive outcome can perform arbitrarily poorly when the loss function is ignored at

the estimation stage. They further propose the “maximum utility estimator” which is

a semiparametric method that requires far less information to attain maximal utility,

and through the utilization of the loss function at the estimation stage has useful

properties given any misspecification. The maximum utility estimator builds upon

and extends results of Manski (1985).

This chapter extends the method of Manski (1985) and Elliott and Lieli (2013)

to high-dimensional data and model misspecification in the order of independent

40

variables. We consider the prediction of a binary variable y ∈ {1,−1}, e.g. y = 1 if

the economy is in expansion and y = −1 if the economy is in recession. And let G(x)

be a classifier of y. This chapter investigates the problem of classification/prediction

that minimizes a weighted (asymmetric) misclassification probability

Rτ (G) = E
[
τ(x)× 1(y=−1,G(x)=1) + (1− τ(x))× 1(y=1,G(x)=−1)

]
(3.1)

= Ex[τ(x) Pr(y = −1, G(x) = 1|x) + (1− τ(x)) Pr(y = 1, G(x) = −1|x)],(3.2)

where the first expectation is taken over y and x, and the symbol 1(·) is the indicator

function which takes the value 1 if the logical conditions inside the parenthesis are

satisfied and takes the value 0 otherwise. τ(x) is a utility-based weight function that

assigns different penalties conditioning on the state variable y and characteristics

x as shown in Section 3.3. In addition, we allow the characteristics x to be high-

dimensional, and both the conditional distribution of y given x and the functional

form of the classifier G(x) to be of unknown forms.

We propose a nonparametric method which minimizes an asymmetric exponential

loss via functional gradient descent and builds a strong (optimal) classifier by iteratively

combining weak classifiers. The resulted strong classifier can encamps a large class

of functions even if the weak classifiers are restricted to a given parametric form.

Moreover, we use component-wise algorithm and select only one independent variable

at each iteration to overcome the issue of high-dimensionality.

There are some prediction problems that do not fit the framework examined here.

A forecaster providing forecasts that might be used by a number of different users

might not consider the loss function. For example a weather forecaster providing

a forecast of whether or not it might rain might simply report an estimate of the

conditional probability of rain and let different users interpret the information differently.

41

We will also rule out feedback of the prediction to the conditional probability of

the event to be predicted, which means that the methods are not appropriate for

predictions of outcomes where there is this type of feedback. Such feedback occurs

for example in predicting success of job training programs, where entry to the program

affects the chance of getting a job. However a myriad of problems are not ruled out,

where the prediction is not important for the distribution of the outcomes and the

econometrician is willing to elicit a loss function.

The rest of the chapter is organized as follows. In Section 3.4, we look into the

problem of prediction with state-dependent losses and introduce a new “asymmetric

exponential risk” function based on the utility functions. We also propose a new

algorithm that minimizes the “asymmetric exponential risk” and builds up a nonparametric

classifier. In Section 3.5, we examine the finite sample properties of Asymmetric

AdaBoost via Monte Carlo simulations. Section 3.6 predicts business cycle turning

points as in Ng (2014a). Section 3.7 concludes. All technical derivations and proofs

are presented in the Appendix.

3.2 Binary Choice Model and Maximum Score

In this chapter, we consider the binary choice model given by

y =


1 if φ(x) ≥ ε

0 otherwise.

(3.3)

where φ(·) is an unknown function, x is a vector of exogenous variables, ε is a random

disturbance. We assume that observations {xi, yi} are independently and identically

distributed. However, we do not require any prior knowledge on the functional form

42

of φ(·) or the distribution of ε.

Manski (1975) proposes to obtain a classifier by

G(x) = arg max
G

E [yG(x)] , (3.4)

which is called the maximum score approach. We maximize (3.4) with respect to

G(x) ∈ {1,−1},

max
G

E [yG(x)|x] = [Pr(y = 1|x)− Pr(y = −1|x)]G(x). (3.5)

Hence, G(x) takes the same sign as Pr(y = 1|x) − Pr(y = −1|x) when (3.4) is

maximized, i.e.

G∗(x) =


1 Pr(y = 1|x) > Pr(y = −1|x)

−1 otherwise,

(3.6)

or equivalently,

G∗(x) =


1 Pr(y = 1|x) > 0.5

−1 otherwise.

(3.7)

Remark 3. We refer to the problem and the risk functions as “symmetric” since the

optimal decision rule is Pr(y = 1|x) > 0.5, i.e. the optimal classifier uses 0.5 as the

threshold. Similarly, we refer to the risk functions in Section 3.4 as “asymmetric”

since the the optimal decision rule is not Pr(y = 1|x) > 0.5, i.e. the optimal classifier

uses a threshold other than 0.5.

Note that the risk function (3.4) is a linear transformation of the misclassification

43

probability (3.1) with τ = 0.5,

E[−yG(x)] = 4× E
[

1

2
× 1(G(x)6=y)

]
− 1 = 4×R0.5(G)− 1. (3.8)

Hence, the maximum score approach is equivalent to minimizing the symmetric

misclassification probability.

From (3.7), the optimal maximum score classifier, also known as the Bayes

classifier, makes classification based on the condition Pr(y = 1|x) > 0.5. The Bayes

classifier achieves the Bayes risk

R∗ = inf
G
R(G) = Emin

{
1

2
Pr (y = 1|x) ,

1

2
Pr (y = −1|x)

}
, (3.9)

where the infimum is taken over all possible (measurable) classifiers.

The maximum score approach yields a classifier that minimizes the misclassifica-

tion probability (3.1) with τ = 0.5. It is superior to many other popular methods,

e.g. probit and logit models, in the sense that it does not have to assume that

y given x follows a given distribution. However, there are some limitations: The

classifier is assumed to take the form G(x) = sign[x′β], i.e. the optimal classifier is

the sign of a linear function; The objective function used is nonconvex which lead to

computation difficulty especially when the sample size is large; The method does not

work if covariates are high-dimensional.

3.3 Decision Theory for Binary Prediction/Classi-

fication

Granger and Pesaran (2000) discuss the idea of using decision theory to evaluate

44

classification/prediction accuracy in a two-state two-action decision problem. Assume

the payoff matrix is

y = 1 y = −1

G (x) = 1 u1,1 (x) u1,−1 (x)

G (x) = −1 u−1,1 (x) u−1,−1 (x)

(3.10)

where ui,j (x) is the state dependent utility of making prediction i when the realized

value is j under circumstances x. Without loss of generality, we assume that u1,1 (x)−

u−1,1 (x) + u−1,−1 (x) − u1,−1 (x) = 1. It is natural to also assume that all utilities

are bounded and taking the correct decision i corresponding to realized state j is

beneficial: τ(x) ≡ u1,1 (x)− u−1,1 (x) > 0 and 1− τ(x) ≡ u−1,−1 (x)− u1,−1 (x) > 0.

The expected utility of G (x) = 1 is

Pr (y = 1|x)u1,1 (x) + Pr (y = −1|x)u1,−1 (x) . (3.11)

The expected utility of G (x) = −1 is

Pr (y = 1|x)u−1,1 (x) + Pr (y = −1|x)u−1,−1 (x) . (3.12)

G (x) = 1 gives a higher utility if

Pr (y = 1|x)u1,1 (x)+Pr (y = −1|x)u1,−1 (x) > Pr (y = 1|x)u−1,1 (x)+Pr (y = −1|x)u−1,−1 (x) .

(3.13)

Hence,

Pr (y = 1|x) > u−1,−1 (x)− u1,−1 (x) = 1− τ (x) , (3.14)

is the sufficient condition for G (x) = 1 to be the optimal choice.

45

The optimal decision rule depends only on τ(x) = u1,1 (x) − u−1,1 (x) and 1 −

τ(x) = u−1,−1 (x) − u1,−1 (x). Hence, without loss of generality, we can construct

a problem with the same optimal classifier with u′1,1 (x) = 0, u′−1,1 (x) = −τ(x),

u′−1,−1 (x) = 0 and u′1,−1 (x) = −(1− τ(x)). Since the loss can be seen as the negative

payoff, the constructed problem have a loss matrix as follows:

y = 1 y = −1

G (x) = 1 0 1− τ(x)

G (x) = −1 τ(x) 0

(3.15)

where the risk can be summarized as (3.16). The state-dependent risk function is a

weighted version of the score risk (Manski, 1985) as follows:

Rτ (sign[F]) = E
(
t (y, x) 1(−y sign[F (x)]>0)

)
, (3.16)

where

t(y, x) =


τ(x) y = 1

1− τ(x) y = −1.

(3.17)

is a non-negative function of outcome variable y and characteristics x. The score

risk (3.16) is the counterpart of (3.1) with argument F ∈ R instead of G ∈ {1,−1}.

Similarly, let

R∗τ = inf
F
Rτ (sign[F]) = E{min[t(1, x) Pr(y = 1|x), t(−1, x) Pr(y = −1|x)]} (3.18)

be the Bayes risk which is the minimal risk can be achieved.

In this general case, the optimal classification rule is no longer Pr(y = 1|x) > 0.5.

46

The optimal classifier (also known as the Bayes classifier)

G∗τ (x) =


1 Pr(y = 1|x) > 1− τ(x)

−1 otherwise.

(3.19)

uses the classification rule (3.14) that is a function of the state-dependent utilities of

the economic agent and achieves the Bayes risk (3.18).1

Remark 4. We refer to the binary classification/prediction problem with state-dependent

losses as asymmetric since the optimal classification rule is Pr(y = 1|x) > 1 − τ(x),

i.e. the threshold is 1− τ(x) instead of 0.5 as in the symmetric case.

3.4 Asymmetric Exponential Loss

In this section, we introduce a new risk function, namely the asymmetric exponential

risk, for solving binary classification/prediction under state-dependent losses. We also

propose a new algorithm, that we call the Asymmetric AdaBoost, which produces

a nonparametric classifier by minimizing the asymmetric exponential risk. Our new

algorithm is computationally efficient and is able to handle binary classification/prediction

problem with high-dimensional covariates.

3.4.1 Convex Surrogate

The score risk (3.16) is nonconvex which lead to high computation cost especially

when the sample size is large and/or covariates are high-dimensional. To solve the

1Manski (1975, 1985) propose the maximum score estimator to solve the above binary
classification problem from minimizing a linear transformation of the score risk

max
G

E (t(y, x)yG (x)) . (3.20)

Elliott and Lieli (2013) also use a similar estimator which they call the maximum utility estimator.

47

problem, we propose to use a new risk function, the asymmetric exponential risk,

Rψ,τ (F) = E
(
t(y, x)e−yF (x)

)
, (3.21)

which is a convex surrogate of the score risk (3.16). Similarly, let us denote the

optimal asymmetric exponential risk as

R∗ψ,τ = inf
F
Rψ,τ (F) . (3.22)

Similar to the previous sections, the asymmetric exponential risk replaces the nonconvex

indicator function in the score risk (3.16) with the convex exponential function. As

shown in Figure 3.1, the asymmetric exponential risk (3.21) is a convex upper bound

of the score risk (3.16).

Note that the optimal classifier from minimizing the asymmetric exponential risk

(3.21) also uses Pr(y = 1|x) > 1 − τ(x) for the classification rule as in (3.19). Take

the derivative of

Rψ,τ (F (x)) = E
[
E
(
t(y, x)e−yF (x)|x

)]
= E

[
τ(x) Pr (y = 1|x) e−F (x) + (1− τ(x)) Pr (y = −1|x) eF (x)

]
.

w.r.t. F (x) and making it equal to zero, we obtain

∂E
(
e−yF (x)|x

)
∂F (x)

= −τ(x) Pr (y = 1|x) e−F (x) + (1− τ(x)) Pr (y = −1|x) eF (x) = 0.

(3.23)

48

Hence,

F ∗τ (x) =
1

2
log

[
τ(x) Pr (y = 1|x)

(1− τ(x)) Pr (y = −1|x)

]
. (3.24)

Moreover, the optimal classifier,

G∗τ (x) = sign[F ∗(x)] =


1 Pr(y = 1|x) > 1− τ(x)

−1 otherwise,

(3.25)

follows the classification rule Pr(y = 1|x) > 1− τ(x).

Theorem 1. For every sequence of measurable functions Fm : x → R and every

probability distribution on x× {±1},

Rψ,τ (Fm)→ R∗ψ,τ implies that Rτ (sign[Fm])→ R∗τ . (3.26)

Proof. See Appendix A.1.

Theorem 1 establishes the relationship between the convex asymmetric exponential

risk and the nonconvex score risk that is widely used in decision theories such as the

two-state two-action decision problem mentioned before. Therefore, we are able to

replace the nonconvex risk function with a convex surrogate which could be minimized

more efficiently and provide enormous improvement with large samples and high-

dimensional data.

3.4.2 Asymmetric AdaBoost

In this section, we introduce our algorithm, which we call the Asymmetric

AdaBoost, for minimizing our asymmetric exponential risk. We use functional gradient

49

descent to produce a nonparametric classifier. In addition, our algorithm can handle

high-dimensional covariates. The algorithm is shown in Algorithm 6.

Algorithm 6 Asymmetric AdaBoost

1. Start with weights wi = t (yi, xi), i = 1, . . . , n, and normalize so that
∑N

i=1wi =
1.

2. For m = 1 to M

(a) For j = 1 to k (for each variable)

i. Fit the classifier fmj(xij) ∈ {−1, 1} using weights wi.

ii. Compute errmj =
∑n

i=1wi1(yi 6=fmj(xij)).

iii. Compute cmj = 1
2

log
(

1−errmj
errmj

)
.

(b) Find ĵm = arg minj
∑
wie

−cmjyifmj(xij).

(c) Set wi ← wi exp[−cmĵyifmĵ
(
xiĵ
)
], i = 1, . . . , n, and normalize so that∑n

i=1wi = 1.

3. Output the classifier, sign
[∑M

m=1 cmfmĵm(xĵm)
]
.

Remark 5. For the selection of the number of iterations M , a widely used method

in the boosting literature is cross-validation. Here we can divide the whole sample

into several sections, then take turns to use one section as test sample to evaluate

the obtained model while using the other sections as training sample. In the end,

we choose the number of iteration that has the least cross-validation loss. Another

choice is to use information criterion, e.g. AICc. The exponential loss can be linked

with log-likelihood of logistic models as in Ng (2014).

The Component-wise Asymmetric AdaBoost algorithm uses one explanatory

variable at a time to fit a weak classifier fmj(xj). In the end, the algorithm produces

a strong classifier FM(x) by combining all the weak classifiers that uses different

explanatory variables. Hence, the Component-wise Asymmetric AdaBoost overcomes

50

the high-dimensional data problem by selecting only one explanatory variable in each

iteration and combining the weak classifiers across iterations. Moreover, the resulted

strong classifier is a weighted sum of weak classifiers which is not required to satisfy

any parametric assumption. To better understand the new algorithm, we follow the

steps of Friedman et al. (2000b) to explain our Asymmetric AdaBoost.

Theorem 2. Algorithm 6 builds an additive regression model FM (x) via Newton-like

updates for minimizing the asymmetric exponential risk (3.21).

Proof. See Appendix A.2.

As in the previous sections, from the use of a convex risk function, Algorithm

2 is computationally more efficient. Moreover, since the convex exponential risk

(??) is differentiable, Algorithm 2 uses functional gradient descent to minimize the

asymmetric exponential risk which will produce a classifier with larger flexibility.

Theorem 3. Let assumption 1 be satisfied. Then the Algorithm 2 stopped at iteration

Mn = n1−ε where ε ∈ (0, 1) returns a sequence of classifiers FMn almost surely

satisfying

Rψ,τ (FMn)→ R∗ψ,τ as n→∞. (3.27)

Proof. See Appendix A.3.

Theorem 3 shows that Algorithm 2 is consistent in the sense that the risk of the

classifier obtained will converge to the optimal asymmetric exponential risk as the

sample size goes to infinity, i.e. the classifier produced by Algorithm 2 will minimize

the exponential risk (??). Moreover, by Theorem 1, the classifier will also achieve the

Bayes risk (3.18).

51

Theorem 4. Given the conditions in Theorem 3, the Algorithm 2 stopped at iteration

Mn = n1−ε where ε ∈ (0, 1) returns a sequence of classifiers FMn almost surely

satisfying

Rτ (sign[FMn])→ R∗τ as n→∞. (3.28)

Proof. Combining Theorems 1 and 3 gives the above result.

Algorithm 1 is a special case of Algorithm 2 when t(y, x) = 1
2
. Hence, Algorithm

2 is able to solve binary classification/prediction problem with state-dependent losses

while maintaining the computation advantage and function form flexibility of Algorithm

1. In addition, Algorithm 2 can deal with high-dimensional x.

3.5 Monte Carlo

In this section, we examine the finite sample properties of the Asymmetric

AdaBoost via Monte Carlo simulations and compare its performance with the Logistic

Regression with LASSO-penalty. We consider the binary decision problem in Section

3.3 with τ(x) = τ .

3.5.1 DGPs

We construct the following high-dimensional DGPs where y follows Bernoulli

distribution and x is high-dimensional. All the DGPs satisfy the sparsity assumption

that most of the x’s are completely irrelevant or have negligible influence on y.

DGP1 (Linear Logistic Models):

Pr (y = 1|x) =
1

1 + e−v
.

52

Let x be a p× 1 vector.

v = β1x1 + β2x2 + β3x3 + · · ·+ βpxp,

where

(x1, x2, . . . , xp)
′ ∼ N (0, Ip) , βj = 0.8j, j = 1, . . . , p

n = {100, 1000} , p = 100.

DGP1 is the classical logistic model where the probability of y being 1 depends only

on a single index v that is linear in x. This is the underlying model of the Logistic

Regression. Hence, we would expect that Logistic Regression would be the best in

DGP1. We construct DGP1 to give the most disadvantages to Asymmetric AdaBoost

when comparing with Logistic Regression.

DGP2 (Quadratic Logistic Models):

Pr (y = 1|x) =
1

1 + e−v
.

Let x be a p× 1 vector.

v = β2(x
2
1 − x22) + β3x3 + · · ·+ βpxp,

where

(x1, x2, . . . , xp)
′ ∼ N (0, Ip) , βj = 0.8j, j = 2, . . . , p

n = {100, 1000} , p = 100.

53

DGP2 is a slight deviation from the classical logistic model in the sense that the single

index v in the logistic model is not linear in x1 and x2. We take the difference of x21 and

x22 so that the expectation of the single index v is 0 and the unconditional probability

of y = 1 is 0.5, i.e., the data is balanced. We will examine the performance of the

Asymmetric AdaBoost with unbalanced data in DGP4. Note that in the simulations,

we provide the two methods with x of only the first order. Since the Asymmetric

AdaBoost does not depend on any parametric assumptions, we would like to check the

robustness of the Asymmetric AdaBoost and the sensitivity of the Logistic Regression

when the model is slightly misspecified.

DGP3 (Cubic Logistic Models):

Pr (y = 1|x) =
1

1 + e−v
.

Let x be a p× 1 vector.

v = x31 − 4x1,

where

(x1, x2, . . . , xp)
′ ∼ N (0, Ip) , n = {100, 1000} , p = 100.

In DGP3, we deviate further from the classical logistic model by having the single-

index v to be a third-order polynomial of x1. DGP3 is to test the performance of the

Asymmetric AdaBoost and the Logistic Regression when the parametric assumptions

of the Logistic Regression are invalid.

54

DGP4 (Circle Model, Mease, Wyner, and Buja (2007)):

Pr (y = 1|x) =


1 v < 8

28−v
20

8 ≤ v ≤ 28

0 v > 28

.

Let x be a p× 1 vector.

v =
√
x21 + x22

where

xj ∼ U [−28, 28] , j = 1, . . . , p

n = {100, 1000} , p = 100.

The probability, Pr(y = 1|x), in the DGP4 is shown in Figure 3.2. A major difference

between DGP4 and the other DGPs is that Pr(y = 1) ≈ 0.1 < 0.5 in DGP4. Hence,

the data is unbalanced, i.e. there are more events of y = −1 than y = 1. We have

this setup since in many situations we are more interested in predicting an event that

is less common than its complementary, e.g. recessions over expansions.

To construct the training and testing samples, we randomly generate x using

the above distribution and calculate Pr (y = 1|x). To generate the random variable

y based on x, we first generate a random variable ε that follows uniform distribution

between [0, 1]. Next, we compare ε with Pr (y = 1|x). There is a probability of

Pr (y = 1|x) that ε is smaller than Pr (y = 1|x) and a probability 1 − Pr (y = 1|x)

55

otherwise. Hence, we set

y =


1 Pr (y = 1|x) > ε

−1 Pr (y = 1|x) < ε.

(3.29)

To evaluate the algorithms, first we train our classifier with the training data of size

n = {100, 1000}. Then, we use a testing dataset that contains n′ = 10000 new

observations to test the out-of-sample performance of the methods.

We report the following sample version of the 0-1 risk of the tested methods,

R̂τ,n′ (sign[F]) =
τ

n′

∑
yi=1

1(yi 6=sign[F (xi)]) +
(1− τ)

n′

∑
yi=−1

1(yi 6=sign[F (xi)]). (3.30)

We also report the sample Bayes risk as the benchmark for comparison,

R̂∗τ,n′ =
1

n′

n′∑
i=1

min {τ Pr (y = 1|xi) , (1− τ) Pr (y = −1|xi)} .

The above procedure is repeated for 1000 times and the average over the 1000

repetitions is reported in the tables.

3.5.2 Alternative Method: Asymmetric Logistic Regression

Apart from Asymmetric AdaBoost, we consider the Logistic Regression as an

alternative method to obtain a classifier of y. In the alternative method, we use

Y = y+1
2

for simplification. Because of the high-dimensional construction of our

problem, we minimizes the negative logistic log-likelihood with a LASSO-penalty as

below

β = arg min
β
−

n∑
i=1

[
Yi (xiβ)− log

(
1 + exiβ

)]
+ λ |β|1 . (3.31)

56

In particular, we use the standard glmnet package of Friedman et al. (2010b) for the

Logistic Regression. We use the estimated β to construct a logistic probability model

for y. Then, get the classifications by plugging the estimated logistic probability into

the Bayes classifier (3.19).

3.5.3 Results

The simulation results are reported in Tables 1 to 4. In Table 3.1, the DGP1 is a

linear logistic model. In this case, the Logistic Regression has absolute advantage over

Asymmetric AdaBoost both when n is small and large. This is expected since logistic

regression has the correct parametric assumption in this case which is infeasible in

practice. However, even in this case, we see that the advantage of the Logistic

Regression over the Asymmetric AdaBoost is limited and as the sample size increases,

the loss of the Asymmetric AdaBoost converges to the sample Bayes risk which

suggests that the Asymmetric AdaBoost is consistent.

In Table 2, the DGP2 is still the logit model. Hence, the Logistic Regression still

has inherited advantages over the Asymmetric AdaBoost. However, we introduce a

small deviation from DGP1 by letting the single index, v, in the logistic function be

quadratic in x1 and x2. In this case, the logistic regression is partially biased since it

assumes that the single index is a linear function of the covariates. When n is small, we

see that the results are neck and neck. The Asymmetric AdaBoost works better when

τ is close to 0.5 and the logistic regression works better when τ is away from 0.5. This

is expected as our method is nonparametric and nonparametric methods generally

perform worse in the tails when samples in the area are few. Moreover, Logistic

Regression is also not highly biased. Both methods are far behind the Bayes risk

since the Asymmetric AdaBoost without parametric assumption has larger variance

57

and the logistic regression with wrong parametric assumption is biased.

When the sample size increases, the Asymmetric AdaBoost have smaller variance

and the losses are closer to the sample Bayes risk. The Logistic Regression, on the

other hand, is still biased and has higher losses than the Asymmetric AdaBoost

except in the two far tails. This shows that the Asymmetric AdaBoost that produces

a nonparametric classifier will suffer from higher variance if the sample size is small.

But, as the sample size increases, the Asymmetric AdaBoost will produce an unbiased

classifier and achieve lower losses than logistic regression which is biased even if the

true model only deviates slightly from the parametric assumptions of the Logistic

Regression.

In Table 3, the DGP3 deviates further from the classical logistic model. The

Asymmetric AdaBoost performs strictly better than the Logistic Regression. When

n is small, we see that the Asymmetric AdaBoost outperforms the Logistic Regression

except in the two tails (τ = 0.1 and τ = 0.9) where insufficient samples are available.

This is a general limitation of all nonparametric methods since nonparametric methods.

However, the performance of the Asymmetric AdaBoost surpasses the Logistic Regression

in the tails when the sample size become larger. In practice, when the true DGP is

not the logistic model, the Asymmetric AdaBoost is definitely more reliable.

In Table 4, the DGP4 is unbalanced. The event y = 1 is significantly fewer than

y = −1. We can see that the Asymmetric AdaBoost works better when the minority

of the events is penalized more heavily. The Asymmetric AdaBoost has lower losses

on the right-hand side where y = 1 is penalized more heavily, and higher losses on

the left-hand side where y = −1 is penalized more heavily. In the unbalanced DGP,

the Logistic Regression only focuses on the event that is the majority. However, the

Asymmetric AdaBoost still tries to model both events. Hence, if one is interested

in predicting the less common event, e.g. recession over expansion, the Asymmetric

58

AdaBoost will give lower losses as we will see in the application section. Moreover,

as the sample size increases, we see that the Asymmetric AdaBoost converges to the

Bayes risk on both sides and catches up with logistic regression on the left-hand side.

In summary, the Asymmetric AdaBoost is consistent in the sense that the losses

of the classifier produced converges to the sample Bayes risk as the sample size

increases. Compared with the Logistic Regression, the Asymmetric AdaBoost is

more robust if the true DGP is not the logistic model especially when the sample size

if large. Moreover, the Asymmetric AdaBoost is better than the Logistic Regression

if one is more interested in predicting the less common events, such as recessions over

expansions, when the data is unbalanced.

3.6 Application

In this section, we predict the NBER business cycle turning points using both the

Asymmetric AdaBoost and the Logistic Regression with LASSO-penalty. We use the

132 independent variables from the data of Jurado, Ludvigson, and Ng (2015). After

removing the observations with missing values and taking the one, two and three

lagged values of each independent variable and the dependent variable, the remained

sample period ranges from April 1964 to July 2011 with 568 observations and 399

independent variables. We use a rolling sample scheme and make three-period ahead

predictions of economic recessions as in Ng (2014b). We use rolling sample size (n) of

60, 120 and 240. The average losses from all rolling samples under different degrees

of asymmetry

R̂τ,n (sign[F]) =
τ

n′

∑
yi=1

1(yi 6=sign[F (xi)]) +
(1− τ)

n′

∑
yi=−1

1(yi 6=sign[F (xi)])

59

where n′ is the total number of rolling samples are reported in Table 3.5.

In the application, we see that the Asymmetric AdaBoost has smaller losses than

the Logistic Regression. Both the Asymmetric AdaBoost and the Logistic Regression

are consistent in the sense that the forecasting error decreases as the rolling sample

size increases. Algorithm-wise, we have removed the rolling samples that contain less

than two months of recessions. These samples account for 119, 2, 0 of the total rolling

samples in the cases where the rolling sample sizes are 60, 120 and 240. When the

number of recessions in the rolling sample is less than two, the standard package for

Logistic Regression with LASSO-penalty reports an error and fails to produce the

result(Friedman et al., 2010b). More specifically, if there is no recession contained in

the rolling sample, the maximum likelihood of the Logistic Regression would be 0,

i.e., the coefficients of the Logistic Regression would explode to infinity. In addition,

we can not use cross-validation to choose the penalty term λ for Logistic Regression

since the cross-validation process involves randomly resampling the rolling samples

and frequently results in less than two recessions in the cross-validation samples even

when n = 240. Instead, we tried different values of λ for Logistic Regression and

reported all of them in Table 5. In almost all cases, the Asymmetric AdaBoost

significantly outperforms the Logistic Regression which strongly suggests that the

parametric assumptions of Logistic Regression are invalid in this application.

3.7 Conclusions

In this chapter, we introduce a new Asymmetric AdaBoost algorithm which

produces an additive regression model from maximizing a new risk function, namely

the asymmetric exponential risk function. The new Asymmetric AdaBoost algorithm

is based on the asymmetric exponential risk function, which maps into a binary

60

decision making problem given a utility function. Furthermore, by carefully establishing

the asymmetry in the risk function in accordance to the binary decision making, we

show that our Asymmetric AdaBoost algorithm is closely related to the maximum

score regression (Manski 1975, 1985) and the binary prediction literature in economics

(Granger and Pesaran 2000, Lee and Yang 2006, Lahiri and Yang 2012, and Elliot

and Lieli 2013), all of which however deal with low-dimensional predictor space.

Asymmetric AdaBoost can handle the maximum score and binary prediction when the

predictors are high-dimensional. Theoretical results show that Asymmetric AdaBoost

will converge to Bayes risk as n→∞. Simulation and application results show that

Asymmetric AdaBoost is a competitive approach in binary classification/prediction.

61

Figure 3.1: (Asymmetric) Exponential Loss and Score Loss

62

Figure 3.2: Conditional Probability of the Circle Model

63

Table 3.1: Linear Logit Model (DGP1)

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n = 1000
AdaBoost 0.0544 0.0997 0.1379 0.1602 0.1712 0.1607 0.1372 0.1005 0.0545
LASSO 0.0492 0.0934 0.1266 0.1479 0.1550 0.1482 0.1271 0.0933 0.0493
Bayes Risk 0.0482 0.0885 0.1178 0.1360 0.1419 0.1359 0.1182 0.0886 0.0482

n = 100
AdaBoost 0.0774 0.1263 0.1728 0.2001 0.2085 0.1981 0.1739 0.1300 0.0773
LASSO 0.0509 0.1026 0.1483 0.1814 0.1973 0.1843 0.1482 0.1015 0.0513
Bayes Risk 0.0482 0.0885 0.1180 0.1357 0.1418 0.1358 0.1179 0.0885 0.0483

Note: The average of the losses of the two methods for predicting y are reported in the table.

Bayes Risk is the infeasible optimal risk when the true model is known. τ shows different degrees of

asymmetry. n is the sample size of each training sample.

Table 3.2: Balanced Quadratic Logit Model (DGP2)

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n = 1000
AdaBoost 0.0524 0.0958 0.1330 0.1614 0.1736 0.1570 0.1316 0.0951 0.0516
LASSO 0.0510 0.1021 0.1495 0.1841 0.1949 0.1805 0.1442 0.0977 0.0488
Bayes Risk 0.0469 0.0866 0.1168 0.1358 0.1422 0.1358 0.1170 0.0867 0.0469

n = 100
AdaBoost 0.0765 0.1304 0.1734 0.2017 0.2121 0.2049 0.1769 0.1335 0.0819
LASSO 0.0501 0.1017 0.1552 0.2076 0.2346 0.2063 0.1541 0.1030 0.0514
Bayes Risk 0.0468 0.0866 0.1168 0.1357 0.1422 0.1358 0.1168 0.0866 0.0469

Note: The average of the losses of the two methods for predicting y are reported in the table.

Bayes Risk is the infeasible optimal risk when the true model is known. τ shows different degrees of

asymmetry. n is the sample size of each training sample.

64

Table 3.3: Unbalanced Quadratic Logit Model (DGP3)

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n = 1000
AdaBoost 0.0442 0.0642 0.0770 0.0837 0.0857 0.0837 0.0771 0.0641 0.0443
LASSO 0.0500 0.0999 0.1499 0.1999 0.2499 0.1998 0.1499 0.1000 0.0500
Bayes Risk 0.0402 0.0609 0.0736 0.0807 0.0830 0.0807 0.0736 0.0609 0.0402

n = 100
AdaBoost 0.0539 0.0843 0.1148 0.1393 0.1393 0.1392 0.1162 0.0843 0.0535
LASSO 0.0500 0.0999 0.1500 0.2015 0.2498 0.2023 0.1501 0.0999 0.0500
Bayes Risk 0.0403 0.0609 0.0736 0.0807 0.0830 0.0807 0.0737 0.0609 0.0402

Note: The average of the losses of the two methods for predicting y are reported in the table.

Bayes Risk is the infeasible optimal risk when the true model is known. τ shows different degrees of

asymmetry. n is the sample size of each training sample.

Table 3.4: Circle Model (DGP4)

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n = 1000
AdaBoost 0.0402 0.0719 0.0835 0.0893 0.0981 0.1041 0.1058 0.0794 0.0443
LASSO 0.0358 0.0715 0.1073 0.1430 0.1792 0.2158 0.1937 0.1283 0.0641
Bayes Risk 0.0276 0.0513 0.0700 0.0833 0.0902 0.0897 0.0814 0.0640 0.0372

n = 100
AdaBoost 0.0554 0.0841 0.1090 0.1256 0.1353 0.1387 0.1336 0.1189 0.0807
LASSO 0.0358 0.0718 0.1082 0.1451 0.1848 0.2272 0.2049 0.1344 0.0658
Bayes Risk 0.0276 0.0512 0.0700 0.0834 0.0902 0.0897 0.0812 0.0640 0.0372

Note: The average of the losses of the two methods for predicting y are reported in the table.

Bayes Risk is the infeasible optimal risk when the true model is known. τ shows different degrees of

asymmetry. n is the sample size of each training sample.

65

T
ab

le
3.

5:
L

os
s

fo
r

P
re

d
ic

ti
n
g

R
ec

es
si

on
s

τ
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9

n
=

60
A

d
aB

o
os

t
0.

01
81

0.
02

55
0.

03
18

0.
03

77
0.

03
74

0.
04

05
0.

04
31

0.
03

62
0.

03
48

L
A

S
S
O

(λ
=

0.
05

)
0.

02
29

0.
03

50
0.

04
52

0.
04

99
0.

05
14

0.
04

73
0.

04
22

0.
03

65
0.

02
88

L
A

S
S
O

(λ
=

0.
1)

0.
02

16
0.

03
70

0.
05

22
0.

05
35

0.
04

88
0.

04
73

0.
04

58
0.

04
11

0.
04

40
L

A
S
S
O

(λ
=

1)
0.

02
11

0.
04

22
0.

06
32

0.
08

43
0.

10
54

0.
13

26
0.

17
07

0.
17

69
0.

12
62

L
A

S
S
O

(λ
=

5)
0.

02
11

0.
04

22
0.

06
32

0.
08

43
0.

10
54

0.
13

26
0.

17
07

0.
17

69
0.

12
62

n
=

12
0

A
d
aB

o
os

t
0.

01
54

0.
02

45
0.

02
67

0.
03

16
0.

03
34

0.
03

52
0.

03
48

0.
02

76
0.

02
23

L
A

S
S
O

(λ
=

0.
05

)
0.

01
82

0.
03

14
0.

03
70

0.
03

81
0.

03
81

0.
16

41
0.

12
69

0.
09

19
0.

05
11

L
A

S
S
O

(λ
=

0.
1)

0.
01

68
0.

03
36

0.
04

69
0.

04
44

0.
04

71
0.

04
57

0.
03

65
0.

03
59

0.
03

32
L

A
S
S
O

(λ
=

1)
0.

01
55

0.
03

09
0.

04
64

0.
06

19
0.

07
74

0.
09

28
0.

11
28

0.
14

39
0.

06
59

L
A

S
S
O

(λ
=

5)
0.

01
55

0.
03

09
0.

04
64

0.
06

19
0.

07
74

0.
09

28
0.

11
28

0.
14

39
0.

06
59

n
=

24
0

A
d
aB

o
os

t
0.

01
15

0.
01

58
0.

02
28

0.
02

37
0.

02
89

0.
02

56
0.

02
71

0.
02

31
0.

01
70

L
A

S
S
O

(λ
=

0.
05

)
0.

01
12

0.
02

13
0.

02
95

0.
04

02
0.

04
42

0.
11

21
0.

08
71

0.
06

21
0.

03
78

L
A

S
S
O

(λ
=

0.
1)

0.
01

12
0.

02
25

0.
03

38
0.

04
26

0.
04

72
0.

04
08

0.
02

74
0.

02
74

0.
03

20
L

A
S
S
O

(λ
=

1)
0.

01
12

0.
02

25
0.

03
38

0.
04

51
0.

05
64

0.
06

76
0.

07
89

0.
15

00
0.

08
53

L
A

S
S
O

(λ
=

5)
0.

01
12

0.
02

25
0.

03
38

0.
04

51
0.

05
64

0.
06

76
0.

07
89

0.
15

00
0.

08
53

N
ot

e:
T

h
e

av
er

ag
e

lo
ss

es
of

th
e

th
re

e
p

er
io

d
ah

ea
d

p
re

d
ic

ti
o
n

o
n

re
ce

ss
io

n
s

a
re

re
p

o
rt

ed
in

th
e

ta
b

le
.
τ

sh
ow

s
d

iff
er

en
t

d
eg

re
es

o
f

a
sy

m
m

et
ry

.

66

Chapter 4

Variable Selection in Sparse

Semiparametric Single-index

Models

4.1 Introduction

This chapter proposes a new method of variable selection for sparse semiparametric

single-index models, that would be useful for semiparametric Probit and Logit models

with many regressors. Nadaraya (1964) and Watson (1964) propose the Nadaraya-

Watson local constant kernel regression estimator. Kernel regression has been extremely

popular for it is free of parametric assumptions. On the other hand, it suffers from

computational complexity and the curse of dimensionality. Ichimura (1993) studies

the semiparametric single index model (SIM) to overcome the curse of dimensionality

by assuming that the true model is a function of an index which is a linear combination

of the explanatory variables. Klein and Spady (1993) study a similar semiparametric

single index model for binary outcomes and propose to estimate the model by maximum

67

likelihood. However, these SIM methods gain limited improvements computationally

over the local constant and local linear kernel regression and are still slow to implement.

Recent statistics and econometrics literature has been focusing on big data issues

which are extremely difficult to solve with kernel regressions. To overcome this

problem, under the sparsity assumption, several papers propose regularized SIM

methods with penalty terms. See e.g. Huang et al. (2010). Su and Zhang (2014)

provide a comprehensive review on those literature. However, those penalties may

induce additional complexity in computation and lead to huge bias and variance

when the ratio of information to noise is small. One such method that seems to be a

natural way for SIM is a LASSO-type approach by Zeng et al. (2012) for estimation

and variable selection in SIM, which they termed as “SIM-LASSO”.

Meanwhile, there is a large volume of literature motivated by statistical machine

learning, such as AdaBoost, Boosting, Support Vector Machine, Deep neural net.

In particular, in this chapter, we note that the method of Lafferty and Wasserman

(2008b), called the Regularization of Derivative Expectation Operator (RODEO),

may be modified for SIM. RODEO is a greedy algorithm for variable selection and

estimation of the nonparametric regression function based on testing of marginal

contribution of an additional variable in selecting relevant explanatory variables. A

goal of this chapter is to modify RODEO so that it can be applied to semiparametric

SIMs under sparsity. We will call the modified RODEO for SIM as “SIM-RODEO”.

The SIM-RODEO method is able to distinguish relevant explanatory variables

from irrelevant variables and gives a competitive estimator for the model. In addition,

the algorithm finishes in a reasonable period of time. The method assumes sparsity

under which most of the explanatory variables are irrelevant. We use a greedy

algorithm that starts with a semiparametric SIM estimator (Ichimura, 1993) that

68

sets all coefficients
(
θj =

βj
h

)
as zero which are the ratio of slope coefficients βj to

bandwidth h in the original Ichimura estimator. Then, we iteratively test if the

derivative of the regression estimator with respect to each coefficient θj is zero. The

intuition is for a relevant explanatory variable, changing its coefficient would lead to

a dramatic change in the value of the estimator. However, for an irrelevant variable,

changing its coefficient would lead to ideally no change to the single index estimator.

The impact of changing the coefficient to the attained estimator can be measured with

the derivative of the estimator with respect to the coefficient. If the derivative with

respect to one coefficient is zero, it implies the corresponding explanatory variable

does not have a strong explanatory power on the dependent variable. And it will be

seen as an irrelevant variable and given coefficient zero. However, if the derivative

with respect to one coefficient is significantly different from zero, then we say the

corresponding explanatory variable has a strong explanatory power on the dependent

variable. Hence, it will be seen as a relevant explanatory variable and given coefficient

greater than zero. The proposed procedure attains a solution path similar to the Least

Angle Regression (Efron and Hastie, 2004). The new method is superior to the usual

LASSO type penalty (Zeng et al., 2012) in the sense that it does not introduce bias

into the estimation process, is free of user-specific parameters and computationally

more efficient. Simulation results show that the proposed method is consistent for

variable selection and has smaller integrated mean squared errors (IMSE) than using

LASSO penalty.

The rest of the chapter is organized as follows. Section 4.2 introduces the

intuition and algorithm of the original RODEO of Lafferty and Wasserman (2008b).

Section 4.3 sets up a model for the semiparametric single index model of Ichimura

(1993), introduces the SIM-RODEO, and discusses the asymptotic properties of SIM-

RODEO in variable selection and estimation of the semiparametric single index model.

69

Section 4.4 provides Monte Carlo simulation results for SIM-RODEO in comparison

with SIM-LASSO of Zeng et al. (2012). Section 4.5 concludes.

4.2 RODEO

This section introduces the idea behind the Regularization of Derivative Expectation

Operator (RODEO) proposed by Lafferty and Wasserman (2008b). We first provide

an illustration of the RODEO algorithm, and then, a simple numerical example with

one relevant explanatory variable and one irrelevant noise variable.

4.2.1 Algorithm

Let yi ∈ R be the dependent variable, Xi ∈ Rk be an observation of k variables,

X = (X ′1, . . . , X
′
n)′ be a matrix of n observations and x ∈ Rk be a local estimation

point.

The RODEO algorithm uses the kernel estimator

m̂h(x) =

∑n
i=1 yiK(Xi, x, h)∑n
i=1K(Xi, x, h)

, (4.1)

where h is a vector of length k that is equal to the number of potential explanatory

variable, hj is the jth element of h that is corresponding to variable j and K(Xi, x, h)

is the standard notation of a product kernel that takes the form

K(Xi, x, h) =
k∏
j=1

κ

(
Xij − xj

hj

)
, (4.2)

where κ(·) is usually given as a one-variable density function. Xij is the ith observation

of the jth variable and xj is the jth variable of a local estimation point x. In what

70

follows, we keep the same notation except that in the single index model, our kernel

becomes a one-variable density function instead of a product kernel.

The RODEO algorithm takes the derivative of the kernel estimator (4.1) with

respect to each bandwidth hj. Let

ι =


1

...

1

 , (4.3)

and

Wx =


K (X1, x, h) · · · 0

...
. . .

...

0 · · · K (Xn, x, h)

 . (4.4)

With fairly easy derivation, we can get the closed form of an estimate of the

derivative

Zj ≡
∂m̂h(x)

∂hj

= (ι′Wxι)
−1ι′

∂Wx

∂hj
y − (ι′Wxι)

−1ι′
∂Wx

∂hj
ι(ι′Wxι)

−1ι′Wxy

≡
n∑
i=1

Gj (Xi, x, h) yi, (4.5)

where y = (y1, . . . , yn) is a vector of observations on the dependent variable. The

conditional variance of Zj can be calculated by

s2j ≡ Var(Zj|X)

= σ2

n∑
i=1

G2
j (Xi, x, h) , (4.6)

71

Algorithm 7 RODEO (Lafferty and Wasserman, 2008b)

1. Select constant 0 < α < 1 and initial bandwidth

h0 =
c0

log log n

where c0 > 0 is sufficiently large.

2. Initialize the bandwidths, and activate all covariates:

(a) hj = h0, j = 1, . . . , k.

(b) A = {1, . . . , k} .

3. While A is nonempty, do for each j ∈ A:

(a) Compute the estimated derivative and its conditional variance: Zj and sj
using (4.5) and (4.6).

(b) Compute the threshold λj = sj
√

2 log n.

(c) If |Zj| > λj, then set hj ← αhj; otherwise remove j from A (i.e., A ←
A− {j}).

4. Output bandwidths h∗ = (h1, . . . , hk) and estimator m̂h∗ (x) where m̂h∗(x) is
the kernel estimator with bandwidth h∗.

where the detailed derivation can be found in Section 3 of Lafferty and Wasserman

(2008b). Here we skip the derivation for the kernel regression. However, we provide

a detailed derivation for the single index model (SIM) in Section 4. Now we get all

the ingredients of the RODEO algorithm. The RODEO algorithm is as follows.

The basic idea of the RODEO algorithm by (Lafferty and Wasserman, 2008b) is

to view the local bandwidth selection as variable selection in sparse nonparametric

kernel regression models by shrinking the bandwidths for relevant variables while

keeping the bandwidths of irrelevant variables relatively large. The RODEO algorithm

is greedy as it solves for the locally optimal path choice at each iteration and is

shown to attain the consistency in mean square error when it is applied to sparse

72

nonparametric local linear model (Lafferty and Wasserman, 2008b, Corollary 5.2).1

4.2.2 A Numerical Example

Now we give a numerical illustration of how RODEO works. First we generate

100 data points from the DGP

y =
1

1 + e−x1
+ u, (4.7)

where x1 is a random variable following uniform distribution with range [−3, 3] and

u is a random variable following the normal distribution with mean 0 and standard

deviation 0.02. The generated data of x1 and y are shown in Figure 4.1.

Next, we generate an irrelevant variable x2 that follows the same distribution as

x1 but is not included in the model. Thus, x2 and y are independent. The generated

data of x2 and y are shown in Figure 4.2.

In the algorithm, we start by setting bandwidths hj for all j large enough so that

Xij − xj
hj

→ 0 for all i. (4.8)

Hence,

K(Xi, x, h)→
k∏
j=1

κ(0). (4.9)

For simplicity of illustration, we assume the kernel function is an indicator function

κ(Xij, xj, hj) = 1(|Xij − xj| < hj). This makes our estimate a simple average of the

observations that satisfy |Xij − xj| < hj for all j. If for all j, |Xij − xj| is smaller

than the bandwidth hj, then we include observation i in the average. Otherwise, we

1We can also make RODEO for local constant kernel regression models as we will demonstrate
in this chapter later.

73

exclude it. At the beginning, when the bandwidths are large enough, our estimate

is the global mean since all observations are included in the estimate. However, if

we shrink the bandwidth hj, we exclude the observations whose Xij has a distance

greater than hj from xj. Hence, our estimate change from the global mean m̂h (x) = ȳ

to a local mean m̂h (x) as shown in Figure 4.3.

The local mean in general has a smaller bias since taking the Taylor expansion,

we have

m(xi) = m(x) +
∂m(x)

∂x1
(xi1 − x1) + o(xi1 − x1),

which shows that smaller distance between xi1 and x1 implies smaller distance between

m(xi) and m(x) since

∂m(x)

∂x1
6= 0.

Hence, giving more weights to observations that are closer to our local estimate point

in x1 would yield a better estimate than the global mean. However, this holds only

for x1. Shrinking the bandwidth of x2 does not have the same effect. Since x2 is not

included in the true model, it does not appear in the Taylor expansion of m(·) or

equivalently

∂m(x)

∂x2
= 0.

Closer in x2 does not implies closer in m(·). In fact, from Figure 4.4 we can see

that shrinking the bandwidth of x2 does not affect the value of the estimate. This

observation gives us a criteria to distinguish between relevant explanatory variables

and irrelevant variables.

74

4.3 RODEO for Single Index Model (SIM-RODEO)

In this section, we show that RODEO can be modified for the sparse semiparametric

linear single index models by considering the bandwidths as the inverse of the parameters

which form the linear single index.

First, we give a short introduction to the general set up of the SIM model and

the Ichimura (1993) estimator we use for estimation. We also give detailed intuition

and description of our proposed greedy estimation procedure.

4.3.1 SIM-Model

We consider a standard single index model,

y = m (x′β) + u, (4.10)

where β = (β1, . . . , βk) is a vector of coefficients. Under the sparsity condition, we

assume that βj 6= 0 for j ≤ r and βj = 0 for j > r. We also assume that the random

errors u are independent. However, we allow the presence of heteroskedasticity to

encompass a large category of models for binary prediction, e.g. Logit and Probit

models. The kernel estimator (Ichimura, 1993) we use is as shown below

m̂ (x′β;h) =

∑n
i=1 yiK

(
X′iβ−x′β

h

)
∑n

i=1K
(
X′iβ−x′β

h

) , (4.11)

where K (·) is a kernel function. The semiparametric kernel regression looks for the

best β and h to minimize a weighted squared error loss. However, exact identification

is not available. If one blows up β and θ simultaneously by multiplying the same

constant, the kernel estimator would yield identical estimates and losses. The standard

75

identification approach is to set the first element of β to be 1 (Ichimura, 1993).

As recent research pays more attention to high-dimensional data, most literature

makes the sparsity assumption that many, if not most, of the elements of β are zero.

The previous mentioned identification method appears to be unsuitable unless we

have specific information that the true value of the element of β that we set to be

1 is not zero. The most popular regularization method, LASSO (Tibshirani, 1996),

also fails for the same reason. With L1 penalty, the algorithm can always achieve a

lower loss by shrinking β and h while keeping the ratio of β
h

constant. This would

lead to a lower value in the penalty term without changing the value of the squared

error term.

In terms of variable selection and prediction, we only need to focus on finding

the best θ ≡ β
h
. Hence, we can simplify the estimator to

m̂ (x′θ) =

∑n
i=1 yiK (X ′iθ − x′θ)∑n
i=1K (X ′iθ − x′θ)

. (4.12)

Instead of the standard two stage estimation of Ichimura (1993), we introduce

a test-based greedy approach similar to Lafferty and Wasserman (2008b) where it

was used for bandwidth selection in local linear regression. The intuition for the

method is that if xj is a relevant explanatory variable of y, then we would expect

that increasing the magnitude of θj would lead to a significant change in m̂ (x′θ) .

This can be seen as giving higher weights to the observations closer to x′θ and lower

weights to the observations further away from x′θ. On the other hand, if xj is not a

relevant explanatory variable of y, then increasing the magnitude of θj can be seen

as randomly reassigning weights for the observations and will only result in a random

(moderate) change in m̂ (x′θ). The influence of changing the magnitude of θj on

m̂ (x′θ) can be measured as the derivative of ∂m̂(x′θ)
∂θj

. Hence, we can test if xj is a

76

relevant explanatory variable by testing if ∂m̂(x′θ)
∂θj

is statistically different from zero.

4.3.2 SIM-RODEO

The basic idea of the modified RODEO algorithm for SIM (SIM-RODEO) is to

view the local bandwidth selection as a variable selection in sparse semiparametric

single index model. The SIM-RODEO algorithm amplifies the inverse of the bandwidths

for relevant variables while keeping the inverse of the bandwidths of irrelevant variables

relatively small. The SIM-RODEO algorithm is greedy as it solves for the locally

optimal path choice at each iteration. It can also be shown to attain the consistency

in mean square error when it is applied for sparse semiparametric single index models.

SIM-RODEO is able to distinguish truly relevant explanatory variables from noisy

irrelevant variables and gives a consistent estimator of the regression function. In

addition, the algorithm is fast to finish the greedy steps.

Now we derive the RODEO for Single Index Models. First we introduce some

notation. Let

Wx =


K (X ′1θ − x′θ) · · · 0

...
. . .

...

0 · · · K (X ′nθ − x′θ)

 (4.13)

where K (·) is the Gaussian kernel. The standard Ichimura (1993) estimator takes

the form

m̂ (x′θ) =

∑n
i=1 yiK (X ′iθ − x′θ)∑n
i=1K (X ′iθ − x′θ)

= (ι′Wxι)
−1
ι′Wxy. (4.14)

77

The derivative of the estimator Zj with respect to θj is

Zj ≡
∂m̂ (x′θ)

∂θj
(4.15)

= (ι′Wxι)
−1
ι′
∂Wx

∂θj
y − (ι′Wxι)

−1
ι′
∂Wx

∂θj
ι (ι′Wxι)

−1
ι′Wxy

= (ι′Wxι)
−1
ι′
∂Wx

∂θj
(y − ιm̂ (x′θ)) . (4.16)

For the ease of computation, let

Lj =


∂ logK(X′1θ−x′θ)

∂θj
· · · 0

...
. . .

...

0 · · · ∂ logK(X′nθ−x′θ)
∂θj

 . (4.17)

Note that

∂Wx

∂θj
= WxLj, (4.18)

which appears in equation (4.16). With the Gaussian kernel, K (t) = e−
t2

2 , then Lj

becomes

Lj =


−1

2

∂(X′1θ−x′θ)
2

∂θj
· · · 0

...
. . .

...

0 · · · −1
2
∂(X′nθ−x′θ)

2

∂θj



=


− (X ′1θ − x′θ) (X1j − xj) · · · 0

...
. . .

...

0 · · · − (X ′nθ − x′θ) (Xnj − xj)

 ,

where X1j and Xnj are the jth elements of vectors X1 and Xn. And xj is the jth

element of vector x. To simplify the notation, let Bx = (ι′Wxι)
−1 ι′Wx. Then, the

78

derivative Zj becomes

Zj = (ι′Wxι)
−1
ι′
∂Wx

∂θj
(y − ιm̂ (x′θ))

= BxLj (I − ιBx) y

≡ Gj (x, θ) y. (4.19)

Note that now we are using a different notation with Gj(·). In Section 2, Gj(·) is a

three-argument function and Gj(Xi, x, h) is a scalar. However, in this section, Gj(·)

is a two-argument function and Gj(x, θ) is a vector of length n. We are aware that

this change of notation may cause confusion. Nevertheless, Gj(·) in Sections 4.2 and

4.3 play the same role as the weights of y in Zj. So we think sticking with Gj(·) would

be easier for the readers to understand and compare RODEO and SIM-RODEO as

long as the difference is pointed out and noticed by the readers.

Next, we give the conditional expectation and variance of Zj.

Zj = Gj (x, θ) y = Gj (x, θ) (m (x′β) + u) , (4.20)

E (Zj|X) = E (Gj (x, θ) (m (x′β) + u) |X) = Gj (x, θ)m (x′β) , (4.21)

Var (Zj|X) = Var (Gj (x, θ) (m (x′β) + u) |X) = σ′Gj (x, θ)′Gj (x, θ)σ,(4.22)

where σ = (σ (u1) , . . . , σ (un))′ is the vector of standard deviations of u. In the

algorithm, it is necessary to insert an estimate of σ. In Algorithm 7, Lafferty and

Wasserman (2008b) suggest to use a generalized estimator of Rice (1984) under

homoskedasticity. In our Algorithm 8, we allow the errors to be heteroskedastic

as in Logit and Probit models and estimate σ(ui) using the estimator σ̂(ui) =

m(x′iθ̂)(1 −m(x′iθ̂)). SIM-RODEO is described in Algorithm 2, which is a modified

79

Algorithm 8 SIM-RODEO

1. Select a constant 0 < α < 1 and the initial value

θ0 = c0 log log n

where c0 is sufficiently small. Compute Zj with θj = θ0 for all j.

2. Initialize the coefficients θ, and activate all covariates:

(a) θj =

{
θ0 Zj > 0
−θ0 otherwise,

j = 1, . . . , k.

(b) A = {1, . . . , k}.

3. While A 6= ∅ is nonempty, do for each j ∈ A:

(a) Compute Zj and sj =
√

Var (Zj|X) using (4.19) and (4.22) respectively.

(b) Compute the threshold λj = sj
√

2 log n.

(c) If |Zj| > λj, then set θj ← θj
α

; Otherwise, remove j from A (i.e., A ←
A− {j}).

4. Output θ̂ = (θ1, . . . , θk) and estimator m̂
(
x′θ̂
)
.

80

algorithm of RODEO (Lafferty and Wasserman, 2008b).

Notice that in Algorithm 7, when selecting bandwidth for local linear and local

constant regression, the bandwidth is always positive. Hence, we do not have to

worry about the sign of the bandwidth. However, in our single index model, θ is the

ratio of β and the bandwidth. Since β could be either positive or negative, θ could

also take positive or negative values. In Algorithm 8, we propose to use the sign of

the derivative estimate Zj as the sign of θj. Our method is based on the observation

that if θj and θj′ have the same sign, then their respective Z statistic Zj and Zj′

will also have the same sign. Hence, SIM-RODEO will give relatively correct signs to

each θ, i.e. all the positive θ will be given the same sign and all the negative θ will

be given the same sign. A similar method is applied by Ichimura (1993) where the

value positive one is given to the first β to ensure identification. Under the sparsity

assumption, it is problematic to arbitrarily assign a magnitude greater than zero to

any θ since the true value could be zero. However, it is safe to assume the sign of

one of the θ to be positive or negative since positive zero and negative zero will not

affect the relative scale of θ. Once again, due to the the identification issue with

single index model, exact identification of θ is not available. However, signs of θ can

be obtained relatively.

We start by setting θj = θ0 that is close to zero. Hence, (X ′iθ − x′θ) are close to

zero and K (X ′iθ − x′θ) are close to K (0). This means our estimator starts with the

simple average of all observations, ȳ. If the derivative of θj is statistically different

from zero. We amplify θj. If xj is indeed a relevant explanatory variable, then the

weights K (X ′iθ − x′θ) change according to xj. The estimator will give higher weights

to observations close to x′θ and lower weights to observations away from x′θ.

81

4.3.3 Asymptotic Properties of SIM-RODEO

We make the following assumptions.

Theorem 1. (A1) The density f (x) of (x1, . . . , xk) is uniform on the unit cube.

(A2) lim infn→∞min1≤j≤r |mjj (·)| > 0 where mjj(·) is the second derivative of m(·).

(A3) All derivatives of m (·) up to and including fourth order are bounded.

Remarks. Assumption (A1) greatly simplifies the proof of theorem 1. However, it

is not necessary as shown in our Monte Carlo designs where x’s are not uniform

distributed. Assumption (A2) is crucial for SIM-RODEO. As we seen in Lemma 1,

the expectation of Zj for a relevant variable will be zero if the second derivative of

m(·) is zero. As a result, we will not be able to distinguish relevant variables from

irrelevant variables through Zj since in both cases, the expectation of Zj is zero.

In the statement of Theorem 1, we follow the notation of (Lafferty and Wasserman,

2008b) and write Yn = Õ (an) to mean that Yn = O (bnan) where bn is logarithmic

in n. And we write an = Ω (bn) if lim infn

∣∣∣anbn ∣∣∣ > 0 and an = Ω̃ (bn) if an = Ω (bncn)

where cn is logarithmic in n.

Theorem 5. Suppose that Assumptions (A1), (A2) and (A3) hold. In addition,

suppose that

min
j≤r
|mjj (x′θ)| = Ω̃ (1) (4.23)

and

max
j≤r
|mjj (x′θ)| = Õ (1) . (4.24)

Then the SIM-RODEO outputs θ̂ satisfying

Pr (θj = θ0 for all j > r)→ 1 as n→∞ (4.25)

82

and

Pr (θj > θ0 for all j ≤ r)→ 1 as n→∞. (4.26)

Proof. See Appendix.

Theorem 1 shows that under the given assumptions and conditions, the coefficients

θ for relevant variables will always be amplified while the coefficients θ for irrelevant

variables will always stay at the initial value. Hence, we are able to consistently

select the relevant variables by checking whether the coefficients θ is amplified by

SIM-RODEO.

4.4 Monte Carlo

This section examines the performance of SIM-RODEO using Monte Carlo simulation

compared with SIM-LASSO (Zeng et al., 2012) and Maximum Likelihood (Klein and

Spady, 1993). We first descripe the designs of the DGPs. Then a breif introduction

of SIM-LASSO is provided. At the end of this section, we give a comprehensive

discussion on the simulation results.

4.4.1 Simulation Designs

We follow the simulation designs of Klein and Spady (1993) where the data

generating process (DGP) is given by

y∗i = β1xi1 + β2xi2 + β3xi3 + · · ·+ βkxik + ui for i = 1, . . . , n (4.27)

83

where

βj =


1 if j = 1, 2;

0 otherwise.

(4.28)

The observed variable yi is generated by

yi =


1 if y∗i ≥ 0;

0 otherwise.

(4.29)

The x’s are independently and identically distributed. x1 is a chi-squared variate with

3 degrees of freedom truncated at 6 and standardized to have zero mean and unit

variance; x2 is a standard normal variate truncated at ±2 and similarly standardized.

All the other x’s are irrelevant variables and follow uniform distribution between −2

and 2.

We consider two link functions as in Figure 4.5 (Design 1 and Design 2). In

Design 1, the ui’s are standard normal. In Design 2, they are normal with mean

zero and variance 0.25(1 + v2i)
2

where vi ≡ β1xi1 + β2xi2. In both designs, ui’s are

independently distributed.

The probability Pr (y = 1|v) of the two designs are shown in Figure 4.5. Design

1 is the standard probit model. Design 2 is different from Design 1 in the sense that

it is not monotone and is steeper in the tails. Hence, Design 2 has a larger curvature

than Design 1 on average. As a result, SIM-RODEO is expected to preform better

under Design 2 since assumption (A2) and conditions (4.23) and (4.24) requires the

second derivative of the link function to be greater than zero.

84

4.4.2 SIM-LASSO

We show results for SIM-RODEO together with SIM-LASSO (Zeng et al., 2012)

to check the relative efficiency of SIM-RODEO. The SIM-LASSO is introduced as

an application of the LASSO penalty under the framework of Semiparametric Single

Index Models for variable selection and esitmation. Zeng et al. (2012) propose to

solve the following minimization problem

min
a,b,β,‖β‖=1

n∑
j=1

n∑
i=1

[yi − aj − bjβ′ (Xi −Xj)]
2
wij + λ

n∑
j=1

|bj|
k∑
p=1

|βp| (4.30)

where λ is a hyper parameter as in standard LASSO practices and

wij =
K
(
X′iβ−X′jβ

h

)
∑n

q=1K
(
X′qβ−X′jβ

h

) . (4.31)

The authors are generous enough to provide their code in the supplemental materials

of their paper which is available on the website of Journal of Computational and

Graphical Statistics.

4.4.3 Results

We report θ
(
= β

h

)
from SIM-RODEO and SIM-LASSO both for the estimator

of Ichimura (1993). The results of the simulations are presented in Tables 1-4. Notice

that for both algorithms, large values of θ indicate that the associated variables are

relevant explanatory variables while small values of θ indicate that the associated

variable are irrelevant variables. In both designs, only the first two variables are

relevant explanatory variables as in the description of the DGPs. We consider different

values for n ∈ {100, 200} and k ∈ {5, 20} where n is the number of observations in

85

the training sample and k is the total number of relevant explanatory variables and

irrelevant variables for each observation. We also present results using the maximum

likelihood (ML) of Klein and Spady (1993) for the low dimension case (k = 5). We

skip the ML for the high dimension case (k = 20) since maximum likelihood suffers

dramatically from the curse of dimensionality. The maximum likelihood is strictly

dominated by the other methods even in the low dimension case. And theoretically, it

would only get worse when dimension increases. We report the Monte Carlo average

of the value of θ̂ obtained by the methods and the integrated mean squared error

IMSE =

∫ (
m̂(x′θ̂)−m(x′θ)

)2
f(x)dx (4.32)

of the estimate m̂
(
x′θ̂
)

using the θ̂ obtained where f(x) is the probability density

function of x as in assumption (A1).

From the simulation results, we can see that under the sparsity condition, SIM-

RODEO and SIM-LASSO both outperform the traditional maximum likelihood method

of Klein and Spady (1993) which does not take advantage of the sparsity structure in

the DGP. While among the two methods that take into account the sparsity structure,

SIM-RODEO outperforms SIM-LASSO in both variable selection and estimation.

In Design 2, SIM-RODEO dominates SIM-LASSO in small and large samples and

various degrees of sparsity. In addition, SIM-RODEO works better under Design 2

than Design 1. This is consistent with our analytical result since the expectation of

the derivative estimate Zj is depending on the second derivative of m(·). When the

second derivative ofm(·) is close to zero, the expectations of Zj of relevant explanatory

variables are also close to zero which makes the difference between relevant variables

and irrelevant variabls smaller. Moreover, the conditions (4.23) and (4.24) in Theorem

1 states that SIM-RODEO requires a larger value for the second derivative of m(·)

86

when the number of observations n increases. As a result, when n increases from

100 to 200, the already small second derivative in Design 1 becomes even more

problematic. That is why in Table 1, the IMSE of SIM-RODEO for Design 1 does

not benefit from the increase of sample size. In summary, SIM-RODEO and SIM-

LASSO both have excellent performance in terms of variable selection. However,

SIM-RODEO generally has a smaller IMSE than SIM-LASSO. Maximum likelihood

should not be used when sparsity is assumed since both SIM-RODEO and SIM-

LASSO have considerably better performance.

4.5 Conclusions

The basic idea of the RODEO algorithm by Lafferty and Wasserman (2008b) is

to view the local bandwidth selection as variable selection in sparse nonparametric

kernel regression by shrinking the bandwidths for relevant variables while keeping the

bandwidths of irrelevant variables relatively large. The RODEO algorithm is greedy

as it solves the locally optimal path choice at each stage which is shown to attain

the asymptotic optimality in mean square error for sparse nonparametric local linear

or local constant kernel regression models Lafferty and Wasserman (2008b, Corollary

5.2).

In this chapter, we propose a new algorithm, based on the RODEO, for variable

selection and estimation for the sparse semiparametric linear single index models by

viewing the bandwidths as the inverse of the parameters which form the linear single

index. The basic idea of the modified RODEO algorithm for SIM (which we call SIM-

RODEO) is to view the local bandwidth selection as a variable selection in sparse

semiparametric single index model by amplifying the inverse of the bandwidths for

relevant variables while keeping the inverse of the bandwidths of irrelevant variables

87

relatively small. The SIM-RODEO algorithm is greedy as it solves the locally optimal

path choice at each stage which can also be shown to attain the asymptotic optimality

in mean square error for sparse semiparametric single index models. The SIM-

RODEO method is able to distinguish truly relevant explanatory variables from noisy

irrelevant variables and gives a ”competitive” estimator for the model. In addition,

the algorithm is fast to finish the greedy steps.

We compare the SIM-RODEO with a LASSO-type approach by Zeng et al. (2012)

for estimation and variable selection in SIM, which Zeng et al. (2012) call SIM-LASSO.

Our Monte Carlo simulation shows that SIM-RODEO outperforms SIM-LASSO in

variable selection and also in estimation. The new method is superior to the usual

LASSO type penalty in estimation because SIM-RODEO does not introduce bias from

using the additive LASSO penalty and is computationally more efficient. Simulation

results also show that the proposed SIM-RODEO is consistent for variable selection

and has smaller integrated mean squared errors than using SIM-LASSO.

88

Table 4.1: Design 1 (k = 5)

θ1 θ2 θ3 θ4 θ5 IMSE of m (xθ)

n = 100
RODEO 0.5739 0.3422 0.0713 0.0693 0.0724 0.0774
LASSO 0.6032 0.5822 0.0223 0.0228 0.0235 0.1136

ML 15.7902 11.3961 2.2156 2.2339 2.2334 0.3103

n = 200
RODEO 0.8063 0.5095 0.1811 0.1894 0.1904 0.0780
LASSO 0.6572 0.6348 0.0142 0.0141 0.0142 0.0740

ML 13.6022 11.6887 1.5990 1.6322 1.6093 0.2356

Table 4.2: Design 2 (k = 5)

θ1 θ2 θ3 θ4 θ5 IMSE of m (xθ)

n = 100
RODEO 0.2486 0.1452 0.0160 0.0120 0.0057 0.0474
LASSO 0.5241 0.4919 0.0332 0.0334 0.0357 0.1137

ML 10.0696 4.5824 1.5773 1.6003 1.5993 0.1858

n = 200
RODEO 0.5022 0.2803 0.0296 0.0393 0.0426 0.0369
LASSO 0.6547 0.6031 0.0209 0.0192 0.0207 0.0616

ML 7.8625 4.7588 0.8896 0.8920 0.9034 0.1321

89

T
ab

le
4.

3:
D

es
ig

n
1

(k
=

20
)

n
=

10
0

θ 1
θ 2

θ 3
θ 4

θ 5
θ 6

θ 7
θ 8

θ 9
θ 1

0
IM

S
E

R
O

D
E

O
0.

23
49

0.
21

17
0
.0

0
3
2

0
.0

0
4
8

0
.0

0
2
7

0
.0

0
4
9

0
.0

0
1
3

0
.0

0
8
0

0
.0

0
0
9

0
.0

0
2
3

0
.1

4
8
7

θ 1
1

θ 1
2

θ 1
3

θ 1
4

θ 1
5

θ 1
6

θ 1
7

θ 1
8

θ 1
9

θ 2
0

R
O

D
E

O
0.

00
93

0.
00

66
0
.0

0
3
7

0
.0

0
4
5

0
.0

0
2
6

0
.0

0
3
6

0
.0

0
1
6

0
.0

0
3
3

0
.0

0
3
0

0
.0

0
1
6

θ 1
θ 2

θ 3
θ 4

θ 5
θ 6

θ 7
θ 8

θ 9
θ 1

0
IM

S
E

L
A

S
S

O
0.

41
40

0.
39

04
0
.0

0
3
6

0
.0

0
3
6

0
.0

0
4
4

0
.0

0
4
5

0
.0

0
4
6

0
.0

0
4
8

0
.0

0
4
7

0
.0

0
4
7

0
.2

1
0
5

θ 1
1

θ 1
2

θ 1
3

θ 1
4

θ 1
5

θ 1
6

θ 1
7

θ 1
8

θ 1
9

θ 2
0

L
A

S
S

O
0.

00
63

0.
00

41
0
.0

0
5
6

0
.0

0
4
7

0
.0

0
4
8

0
.0

0
5
7

0
.0

0
3
4

0
.0

0
4
7

0
.0

0
4
5

0
.0

0
4
8

n
=

20
0

θ 1
θ 2

θ 3
θ 4

θ 5
θ 6

θ 7
θ 8

θ 9
θ 1

0
IM

S
E

R
O

D
E

O
0.

41
91

0.
34

04
0
.0

0
3
6

0
.0

1
0
4

0
.0

1
8
2

0
.0

1
2
0

0
.0

1
0
9

0
.0

1
1
8

0
.0

1
1
5

0
.0

0
6
0

0
.1

2
3
8

θ 1
1

θ 1
2

θ 1
3

θ 1
4

θ 1
5

θ 1
6

θ 1
7

θ 1
8

θ 1
9

θ 2
0

R
O

D
E

O
0.

00
77

0.
01

23
0
.0

0
8
6

0
.0

0
8
2

0
.0

0
7
4

0
.0

1
4
7

0
.0

1
0
5

0
.0

1
5
6

0
.0

1
0
5

0
.0

0
8
1

θ 1
θ 2

θ 3
θ 4

θ 5
θ 6

θ 7
θ 8

θ 9
θ 1

0
IM

S
E

L
A

S
S

O
0.

43
08

0.
41

20
0
.0

0
2
1

0
.0

0
2
9

0
.0

0
2
6

0
.0

0
2
4

0
.0

0
2
3

0
.0

0
2
3

0
.0

0
1
8

0
.0

0
1
9

0
.1

5
7
2

θ 1
1

θ 1
2

θ 1
3

θ 1
4

θ 1
5

θ 1
6

θ 1
7

θ 1
8

θ 1
9

θ 2
0

L
A

S
S

O
0.

00
21

0.
00

25
0
.0

0
2
6

0
.0

0
2
6

0
.0

0
2
0

0
.0

0
2
7

0
.0

0
2
2

0
.0

0
2
6

0
.0

0
2
5

0
.0

0
2
5

90

T
ab

le
4.

4:
D

es
ig

n
2

(k
=

20
)

n
=

10
0

θ 1
θ 2

θ 3
θ 4

θ 5
θ 6

θ 7
θ 8

θ 9
θ 1

0
IM

S
E

R
O

D
E

O
0.

06
92

0.
04

79
0
.0

0
0
7

0
.0

0
1
1

0
.0

0
0
0

0
.0

0
0
7

0
.0

0
0
0

0
.0

0
0
1

0
.0

0
0
4

0
.0

0
0
1

0
.0

6
1
1

θ 1
1

θ 1
2

θ 1
3

θ 1
4

θ 1
5

θ 1
6

θ 1
7

θ 1
8

θ 1
9

θ 2
0

R
O

D
E

O
0.

00
04

0.
00

01
0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
7

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
2

0
.0

0
0
0

θ 1
θ 2

θ 3
θ 4

θ 5
θ 6

θ 7
θ 8

θ 9
θ 1

0
IM

S
E

L
A

S
S

O
0.

34
88

0.
29

33
0
.0

1
0
4

0
.0

1
2
0

0
.0

1
2
1

0
.0

1
1
1

0
.0

1
0
6

0
.0

1
1
7

0
.0

1
0
6

0
.0

0
9
1

0
.2

0
7
8

θ 1
1

θ 1
2

θ 1
3

θ 1
4

θ 1
5

θ 1
6

θ 1
7

θ 1
8

θ 1
9

θ 2
0

L
A

S
S

O
0.

00
94

0.
01

09
0
.0

1
1
3

0
.0

0
9
3

0
.0

1
1
7

0
.0

1
2
0

0
.0

1
2
3

0
.0

1
1
2

0
.0

1
0
7

0
.0

1
0
6

n
=

20
0

θ 1
θ 2

θ 3
θ 4

θ 5
θ 6

θ 7
θ 8

θ 9
θ 1

0
IM

S
E

R
O

D
E

O
0.

19
58

0.
18

22
0
.0

0
1
8

0
.0

0
1
0

0
.0

0
2
4

0
.0

0
1
7

0
.0

0
0
8

0
.0

0
2
6

0
.0

0
2
2

0
.0

0
2
5

0
.0

5
1
7

θ 1
1

θ 1
2

θ 1
3

θ 1
4

θ 1
5

θ 1
6

θ 1
7

θ 1
8

θ 1
9

θ 2
0

R
O

D
E

O
0.

00
14

0.
00

24
0
.0

0
2
4

0
.0

0
0
2

0
.0

0
0
3

0
.0

0
4
1

0
.0

0
0
5

0
.0

0
1
3

0
.0

0
3
6

0
.0

0
2
9

θ 1
θ 2

θ 3
θ 4

θ 5
θ 6

θ 7
θ 8

θ 9
θ 1

0
IM

S
E

L
A

S
S

O
0.

43
24

0.
38

10
0
.0

0
5
8

0
.0

0
6
9

0
.0

0
6
6

0
.0

0
6
4

0
.0

0
5
9

0
.0

0
5
9

0
.0

0
6
3

0
.0

0
5
5

0
.1

7
2
8

θ 1
1

θ 1
2

θ 1
3

θ 1
4

θ 1
5

θ 1
6

θ 1
7

θ 1
8

θ 1
9

θ 2
0

L
A

S
S

O
0.

00
58

0.
00

57
0
.0

0
5
3

0
.0

0
5
4

0
.0

0
6
7

0
.0

0
6
9

0
.0

0
6
3

0
.0

0
7
2

0
.0

0
5
2

0
.0

0
4
9

91

Figure 4.1: y with x1

92

Figure 4.2: y with x2

93

Figure 4.3: Shrink bandwidth of x1 from h0 to h1

94

Figure 4.4: Shrinking bandwidth of x2 from h0 to h1

95

Figure 4.5: Designs

96

Chapter 5

Statistical Inference under

Heteroskedasticity of Unknown

Form

5.1 Introduction

The presence of heteroskedasticity of unknown forms in the disturbances of

linear regression models has been a topic of major concern for inference in economic

models. Under heteroskedasticity, the ordinary least squares (OLS) estimators of the

regression parameters are well known to be consistent. However, the usual estimators

for the covariance matrix of the regression parameters are inconsistent and/or biased.

Numerous work has been done to formulate an unbiased and consistent estimate

for the covariance matrix of the regression parameters. Rao (1970) proposes the

Minimum Norm Quadratic Unbiased Estimation of the heteroskedastic variances.

Other contributions include Eicker (1963), Huber (1967) and Hinkley (1977). White

(1980), in a seminal paper, introduces the well-known “White Standard Errors” which

97

is able to estimate the covariance matrix of the regression parameters consistently

under an unknown form of heteroskedasticity of the disturbances.

Not long after White (1980) established the asymptotic consistency of the heteros-

kedasticity-consistent covariance estimator, it was quickly recognized that inferences

based on the “White Standard Errors” over-reject when the null hypothesis is true and

the sample is not large. MacKinnon and White (1985b) provide simulation evidence

and, linking the problem to the reduction in error variance brought by least squares

fitting, further propose variants of the “White Standard Errors” to achieve better

finite sample properties through adjusting for degrees of freedom and leverages and

by using the jackknife. These corrections, however, are far from satisfactory, as shown

in simulations by Angrist and Pishke (2009), who note that the covariance estimates

are not merely biased but also much more variable than default OLS estimates, which

contributes to their high rejection rates. Extensions on inferences using variants of

the heteroskedasticity-consistent covariance estimators include McCaffrey and Bell

(2002), Cribari-Neto (2004), MacKinnon (2011), Hausman and Palmer (2012) and

Imbens and Kolesár (2016).

Recent studies have pointed out that the over-rejection problem remains problem-

atic in considerably large samples when the data are leveraged/unbalanced. Based

on simulation studies Young (2016) examines the distortion of the t-statistic due

to interactions of the hypothesis and the data. Hansen (2017) derives the exact

distribution of a t-type statistic, and through simulations show that using the “White

Standard Errors” has significant size distortion when the data is highly leveraged. The

basic idea behind both papers is that the nominal sample size may be “misleading”

as the regression results may depend heavily on only a part of the observations rather

than equally on all the data. Hence, the results are more variable and the test statistic

tends to over-reject. Both Young (2016) and Hansen (2017) propose corrections

98

for t-type test statistic under i.i.d. normal disturbances. However, the proposed

methods perform poorly when the disturbances are heteroskedastic. Furthermore,

while the study of Young and others are based on simulations, Hansen derives the

exact distribution of t-type statistic, which is in term of infinite series.

In view of these issues, this chapter compares the performance of the various

heteroskedasticity-consistent variance estimators and proposes a F -type (t2-type) test

statistic for testing regression parameters under the heteroskedasticity of unknown

form. This test statistic is valid for a single linear restriction on the regression

parameter including the test for the zero restriction on each coefficient. It is shown

that this proposed F -type test statistic can be expressed as a ratio of quadratic forms,

and therefore its exact cumulative distribution under the null hypothesis can be easily

written, and straightforwardly implemented from the result of Imhof (1961) on the

distribution of quadratic form. For the applications of Imhof (1961) in a separate

context of studying distributional properties of estimators see Bao et al. (2017), Ullah

(2004), and Nakamura and Nakamura (1998), among others. A numerical calculation

of the proposed test statistic, using Imhof (1961), is carried out to present the critical

values and probability of rejections under various covariance estimators of regression

estimators. The accuracies are confirmed from their corresponding simulation-based

results. It is shown that the exact F -type test statistic based on Cribari-Neto (2004)

estimator of covariance estimator provides the most accurate testing results, and it

is followed by MacKinnon and White (1985b) covariance based test.

The remainder of this chapter is organized as follows. Section 2 studies the biases

and variances of commonly used heteroskedasticity-consistent variance estimators

under homoskedasticity. In Section 3, the heteroskedastic model and test statistic are

presented. In Section 4, we derive the exact distribution for the test statistic under

heteroskedasticity. In Section 5, we investigate the empirical size and power of the

99

test statistics using heteroskedasticity-consistent variance estimators by simulations.

Section 6 concludes.

5.2 Performance of Heteroskedasticity-consistent

Variance Estimators Under Homoskedasticity

In this section, we compare the performance of three heteroskedasticity-consistent

variance estimators under homoskedasticity. First part is a analytical comparison of

bias and variance of each estimator. The second part shows simulation results of the

empirical performance.

5.2.1 Biases and Variances of Heteroskedasticity-consistent

Variance Estimators

The setup of the model is as follows. The model is

y
n×1

= X
n×k

β
k×1

+ u
n×1

where u ∼ N (0, I) are i.i.d. standard normal errors. The OLS estimator for β is

β̂ = (X ′X)
−1
X ′y.

Hence, the variance of the OLS estimator is

V
(
β̂|X

)
= E

(
(X ′X)

−1
X ′uu′X (X ′X)

−1 |X
)

= (X ′X)
−1
X ′ΩX (X ′X)

−1
,

100

where

Ω = E (uu′) .

The estimated residuals are

û = y −Xβ̂ = (I −X (X ′X)
−1
X ′)y = My = Mu

where M = I −X (X ′X)−1X ′ and

ûi = miu

where mi is the ith row of matrix M .

Next, we consider three commonly used estimators for V
(
β̂
)

.

Hinkley (1977, HC1)

In Hinkley (1977), the following estimator for V
(
β̂|X

)
is proposed

V̂HC1

(
β̂|X

)
= c (X ′X)

−1
X ′
{
û2i
}
X (X ′X)

−1

where c = n
n−k is a finite sample correction term and {û2i } is a diagonal matrix of û2i .

The expectation of the estimator V̂HC1

(
β̂|X

)
is

E
(
V̂HC1

(
β̂
)
|X
)

= E
(
c (X ′X)

−1
X ′
{
û2i
}
X (X ′X)

−1 |X
)

= c (X ′X)
−1
X ′E

({
û2i
}
|X
)
X (X ′X)

−1

101

and

E
(
û2i |X

)
= E (m′iuu

′mi|X)

= m′iE (uu′)mi

= m′iσ
2Imi

= σ2m′imi

= σ2mii

where mi denotes the ith column of M = I−X (X ′X)−1X ′ and mii is the ith diagonal

element of M = I −X (X ′X)−1X ′. Note that m′imi = mii since M is symmetric and

idempotent. Hence, under homoskedasticity, the expectation of V̂HC1

(
β̂
)

is

E
(
V̂HC1

(
β̂
)
|X
)

= c (X ′X)
−1
X ′E

({
û2i
}
|X
)
X (X ′X)

−1

= c (X ′X)
−1
X ′
{
σ2mii

}
X (X ′X)

−1

= σ2c (X ′X)
−1
X ′ {mii}X (X ′X)

−1

V̂HC1

(
β̂|X

)
is unbiased if and only if mii = n−k

n
for all i (x is perfectly balanced).

Otherwise, V̂HC1

(
β̂|X

)
is upward or downward biased depending on x. The variance

102

of the estimator V̂HC1

(
β̂|X

)
is positively related to

V
(
cû2i |X

)
= c2V (m′iuu

′mi|X)

= c2V (u′mim
′
iu|X)

= c2σ4 [2tr (mim
′
imim

′
i)]

= c2σ4 [2tr (mimiim
′
i)]

= c2σ4 [2miitr (mim
′
i)]

= c2σ4
[
2m2

ii

]
= 2c2σ4m2

ii,

which is equal to 2σ4 when x is perfectly balanced
(
mii = n

n−k

)
. We will compare

the variance of V̂HC1

(
β̂|X

)
with the variance of the other estimators later in the

summary of this section.

MacKinnon and White (1985a, HC2)

MacKinnon and White (1985a) propose two estimators for the variance of β̂.

The first one is

V̂HC2

(
β̂|X

)
= (X ′X)

−1
X ′
{
û2i
mii

}
X (X ′X)

−1

where mii is the ith diagonal element of M = I −X (X ′X)−1X ′,
{

û2i
mii

}
is a diagonal

matrix of
û2i
mii

. The expectation of the estimator V̂HC2

(
β̂|X

)
is

E
(
V̂HC2

(
β̂
)
|X
)

= E

(
(X ′X)

−1
X ′
{
û2i
mii

}
X (X ′X)

−1 |X
)

= (X ′X)
−1
X ′E

({
û2i
mii

}
|X
)
X (X ′X)

−1

103

and

E

(
û2i
mii

|X
)

= E

(
m′iuu

′mi

mii

|X
)

= m′iE

(
uu′

mii

|X
)
mi

= m′i
σ2I

mii

mi

= σ2m
′
imi

mii

= σ2

where mi denotes the ith column of M = I−X (X ′X)−1X ′ and mii is the ith diagonal

element of M = I −X (X ′X)−1X ′. Note that m′imi = mii since M is symmetric and

idempotent. Hence, the expectation of the estimator

E
(
V̂HC2

(
β̂
)
|X
)

= (X ′X)
−1
X ′E

({
û2i
mii

}
|X
)
X (X ′X)

−1

= (X ′X)
−1
X ′
{
σ2
}
X (X ′X)

−1

= (X ′X)
−1
X ′σ2IX (X ′X)

−1

= σ2 (X ′X)
−1
.

104

Hence, the estimator is unbiased. The variance of the estimator V̂HC2

(
β̂|X

)
is

positively related to

V

(
û2i
mii

|X
)

= V

(
m′iuu

′mi

mii

|X
)

= V

(
u′mim

′
iu

mii

|X
)

= σ4

[
2tr

(
mim

′
imim

′
i

m2
ii

)]
= σ4

[
2tr

(
mimiim

′
i

m2
ii

)]
= σ4

[
2

1

mii

tr (mim
′
i)

]
= σ4

[
2

1

mii

∑
j

m2
ij

]

= σ4

[
2
mii

mii

]
= 2σ4.

We will compare the variance of V̂HC1

(
β̂|X

)
with the variance of the other estimators

later in the summary of this section.

MacKinnon and White (1985a, HC3)

The second estimator for the variance of β̂ proposed by MacKinnon and White

(1985a) is

V̂HC3

(
β̂|X

)
= (X ′X)

−1
X ′
{
û2i
m2
ii

}
X (X ′X)

−1

105

where mii is the ith diagonal element of M = I −X (X ′X)−1X ′,
{

û2i
m2
ii

}
is a diagonal

matrix of
û2i
m2
ii

. The expectation of the estimator is

E
(
V̂HC3

(
β̂
)
|X
)

= E

(
(X ′X)

−1
X ′
{
û2i
mii2

}
X (X ′X)

−1 |X
)

= (X ′X)
−1
X ′E

({
û2i
m2
ii

}
|X
)
X (X ′X)

−1

and

E

(
û2i
m2
ii

|X
)

= E

(
m′iuu

′mi

m2
ii

|X
)

= m′iE

(
uu′

m2
ii

|X
)
mi

= m′i
σ2I

m2
i

mi

= σ2m
′
imi

m2
ii

=
σ2

mii

,

where mi denotes the ith column of M = I − X (X ′X)−1X ′ and mii is the ith

diagonal element of M = I −X (X ′X)−1X ′. m′imi = mii since M is symmetric and

idempotent. Hence, the expectation

E
(
V̂HC3

(
β̂
)
|X
)

= (X ′X)
−1
X ′E

({
û2i
m2
ii

}
|X
)
X (X ′X)

−1

= (X ′X)
−1
X ′
{
σ2

mii

|X
}
X (X ′X)

−1

= σ2 (X ′X)
−1
X ′
{

1

mii

|X
}
X (X ′X)

−1

Since M is symmetric and idempotent, we have that mii =
∑

jm
2
ij = m2

ii+
∑

i 6=jm
2
jj,

mii ≥ m2
ii, 0 ≤ mii ≤ 1, 1 ≤ 1

mii
. Hence, the estimator V̂HC3

(
β̂
)

is upward biased.

106

The variance of the estimator is positively related to

V

(
û2i
m2
ii

|X
)

= V

(
m′iuu

′mi

m2
ii

|X
)

= V

(
u′mim

′
iu

m2
ii

|X
)

= σ4

[
2tr

(
mim

′
imim

′
i

m4
ii

)]
= σ4

[
2tr

(
mimiim

′
i

m4
ii

)]
= σ4

[
2

1

m3
ii

tr (mim
′
i)

]
= σ4

[
2

1

m3
ii

∑
j

m2
ij

]

= σ4

[
2
mii

m3
ii

]
=

2σ4

m2
ii

.

We will compare the variance of V̂HC1

(
β̂|X

)
with the variance of the other estimators

later in the summary of this section.

Summary of biases and variances

In the previous sections, we analytically derived the biases and variances of the

three heteroskedasticity-consistent variance estimators for the β̂. The estimators are

as follows.

V̂HC1

(
β̂|X

)
= c (X ′X)

−1
X ′
{
û2i
}
X (X ′X)

−1

where c = n
n−k ,

V̂HC2

(
β̂|X

)
= (X ′X)

−1
X ′
{
û2i
mii

}
X (X ′X)

−1
,

107

and

V̂HC3

(
β̂|X

)
= (X ′X)

−1
X ′
{
û2i
m2
ii

}
X (X ′X)

−1
.

We analyze the biases and variances of the estimators under homoskedasticity.

V̂HC1

(
β̂|X

)
is unbiased if and only if mii = n−k

n
for all i. Otherwise, V̂HC1

(
β̂|X

)
could be upward or downward biased. V̂HC2

(
β̂|X

)
is unbiased for allmii. V̂HC3

(
β̂|X

)
is always upward biased.

For the variances, since mii =
∑

jm
2
ij = m2

ii +
∑

j 6=im
2
ij, mii ≥ m2

ii, 0 ≤ mii ≤ 1,

1
mii
≥ 1, we have the following relations V

(
û2i
mii
|X
)
< V

(
û2i
m2
ii
|X
)

, V
(
V̂HC2

(
β̂
)
|X
)
<

V
(
V̂HC3

(
β̂
)
|X
)

. V (cû2i |X) = 2c2σ4m2
ii depends on the actual structure of the data.

If mii = n−k
n

, V
(
V̂HC1

(
β̂|X

))
is the same as V

(
V̂HC2

(
β̂|X

))
.

In summary, V̂HC2

(
β̂|X

)
is unbiased and has a smaller variance than V̂HC3

(
β̂|X

)
,

thus V̂HC2

(
β̂
)

is strictly better than V̂3

(
β̂
)

under homoskedasticity. The performance

of V̂HC1

(
β̂
)

depends on the structure of the actual data. If the data is perfectly

balanced, V̂HC1

(
β̂
)

performs exactly the same as V̂2

(
β̂
)

. Hence, the performance of

the estimators depends on the data, and it is impossible to draw the conclusion that

any estimator is strictly better than the other two.

Simulation studies

In this section, we compare the performance of the three heteroskedasticity-

consistent variance estimators under homoskedasticity. The first model is a small

sample setup. The model is y = X
100×10

β + u where u ∼ N (0, I) and X are drawn

from N (0, 10). Simulation has 100 sets of X and 100 sets of u for each set of X.

108

Estimator Bias Variance MSE

chc1 (X ′X)−1X ′ {û2i }X (X ′X)−1 3.0323e-06 7.4030e-09 7.4695e-09

(X ′X)−1X ′
{

û2i
mii

}
X (X ′X) 2.3940e-06 7.9606e-09 7.9716e-09

(X ′X)−1X ′
{

û2i
m2
ii

}
X (X ′X)−1 1.5182e-05 1.0677e-08 1.3061e-08∑

û2i
n

(X ′X)−1 1.1409e-05 2.3220e-09 3.6641e-09

The second model is a large sample setup. The model is y = X
1000×1

β + u where

u ∼ N (0, I) and X are drawn from N (0, 10). Simulation has 100 sets of X and 100

sets of u for each X.

Estimator Bias Variance MSE

chc1 (X ′X)−1X ′ {û2i }X (X ′X)−1 5.8946e-08 3.4458e-12 3.4493e-12

(X ′X)−1X ′
{

û2i
mii

}
X (X ′X) 2.4430e-08 3.4674e-12 3.4680e-12

(X ′X)−1X ′
{

û2i
m2
ii

}
X (X ′X)−1 7.8176e-08 3.4823e-12 3.4884e-12∑

û2i
n

(X ′X)−1 2.1942e-08 1.8388e-12 1.8392e-12

Simulation results show that the default OLS estimator has the smallest bias as

well as variance. This is expected since the true error are homoskedastic. Among

the three heteroskedastic consistent estimators, the first estimator which has a finite

sample correction term is shown to has the smallest mean square error. According

to our analytical result, this should partly result from the well-balanced structure of

our simulated data. In practice, we may expect unbalanced data which would lead

to a larger bias as well as variance for the Hinkley (1977) estimator. The second

estimator which has been proved to be unbiased has the smallest bias. The third

estimator performs worst in small sample. However, when sample size gets larger,

the estimators perform almost equally.

109

5.2.2 Distribution of t-statistics using Heteroskedasticity-consistent

Variance Estimators

In this section, we investigate the performance of t-statistics using the three

heteroskedasticity-consistent variance estimators. We use the same setup as the

previous section. The t-statistics for H0 : r′(β − β0) = 0 is calculated as below.

t =
r′(β̂ − β0)√

r′Σ̂r

where Σ̂ is the variance estimator to be investigated.

The distributions of the t-statistic are shown below. In the graphs, the histogram

is the empirical distribution of the above t-statistics calculated using the respective

variance-covariance estimator. The solid red line is the probability density function

of t-distribution with n−k degrees of freedom. The solid green line is the probability

density function of t-distribution with 1000 degrees of freedom. The solid blue line is

the probability density function of t-distribution with 10 degrees of freedom.

For the t-statistics using the Hinkley (1977) variance-covariance estimators, we

can see that in the center, the red and the green lines is obviously above the histogram,

however, the blue line fits the boundary of the histogram pretty well. In the tails,

the red and the green lines are below the histogram and the blue line again fits

the boundary of the histogram very well. A numerical comparison of the integrated

difference between the PDFs and the empirical distribution is shown at the end of this

section. The results show that the distribution of the t-statistics using the Hinkley

(1977) variance-covariance estimator is likely to be a t-distribution with fewer degrees

of freedom than suggested by theory. In our case, the suggested degrees of freedom

n−k = 50−3 = 47 is much larger than the actual degrees of freedom of the empirical

110

Figure 5.1: t-statistics using Hinkley (1977, HC1)

distribution.

For the t-statistics using the first MacKinnon and White (1985a) variance-covariance

estimators, we can see that in the center, the green line is slightly above the histogram,

however, the blue line is completely contained in the histogram. The red line in this

case fits the boundary of the histogram almost perfectly. In the tails, the behavior

for the green and blue lines are reversed. The green line is below the histogram

and the blue line is above the histogram. Again, the red line fits the boundary of the

histogram the best. The results show that the distribution of the t-statistics using the

first MacKinnon and White (1985a) variance-covariance estimator is a t-distribution

with exactly the same degrees of freedom as suggested by theory.

111

Figure 5.2: Tails and Center Behavior

112

Figure 5.3: t-statistics using MacKinnon and White (1985a, HC2)

For the t-statistics using the second MacKinnon and White (1985a) variance-

covariance estimators, we can see that in the center, all the solid lines are significantly

below the histogram. From the graph, it’s obvious that there is no t-distribution will

fit the empirical distribution since the height of the center is much higher than the

normal distribution. In the tails, the blue line is significantly above the histogram.

The green line, on the other hand, is slightly below the histogram. The red line

seems to be a pretty good fit of the histogram in the tails. The results show that

the distribution of the t-statistics using the second MacKinnon and White (1985a)

variance-covariance estimator is not t-distribution at all.

In the tables below, we provide a numerical comparison of the difference between

the empirical distributions and the three proposed theoretical distributions where the

113

Figure 5.4: Tails and Center Behavior

114

Figure 5.5: t-statistics using MacKinnon and White (1985a, HC3)

number shown in the table is the integrated difference

∫ ∣∣∣f̂ (x)− f (x)
∣∣∣ dx.

Table 5.1: n = 50

degree of freedom 10 n− k 1000

Hinkley (HC1) 0.0062 0.0067 0.0074
MacKinnon and White (HC2) 0.0064 0.0062 0.0067
MacKinnon and White (HC3) 0.0086 0.0066 0.0066

Table 5.2: n = 100

degree of freedom 10 n− k 1000

Hinkley (HC1) 0.0070 0.0061 0.0063
MacKinnon and White (HC2) 0.0072 0.0059 0.0060
MacKinnon and White (HC3) 0.0083 0.0059 0.0059

115

Figure 5.6: Tails and Center Behavior

116

5.3 Model and Test Statistic under Heteroskedasticity

As shown in the previous sections, the distribution of the test statistic is ill-

behaved when heteroskedasticity-consistent variance estimators are used even in the

homoskedastic case. Hence, the results of statistical inferences may be misleading.

Next, we propose a new method for statistical inference under heteroskedasticity. For

the model

yi = β0 +

p∑
k=1

βkXik + ui, ui = σiεi, εi ∼ N(0, 1), (5.1)

with Var(u) ≡ Ω = diag {σ2
i }, the variance of the parameter vector β̂ estimated by

OLS is

Var(β̂) := Σ = (X′X)−1X′ΩX(X′X)−1. (5.2)

We consider the test statistics of the form

F = t2 =

(
r′(β̂ − β0)√

r′Σ̂r

)2

=
u′X(X′X)−1rr′(X′X)−1X′u

r′(X′X)−1X′Ω̂X(X′X)−1r
(5.3)

corresponding to a null hypothesis about a linear combination of the estimated

parameters H0 : r′β = r′β0 = a, where Σ̂ is an asymptotically consistent estimate of

Var(β̂). The following approaches to estimate X′ΩX are proposed in the literature.

• HC0 is the original formulation used in White standard errors. White (1980)

recognizes that X′Ω̂X is a consistent estimator of X′ΩX when using the sample

matrix

Ω̂0 = diag
{
û2i
}
.

where û2i are the fitted residuals from estimating (5.1) via OLS.

• HC1 (Hinkley, 1977) adjusts for degrees of freedom and is the most commonly

117

used robust standard error estimator

Ω̂1 =
n

n− p
diag

{
û2i
}
.

• HC2 (MacKinnon and White, 1985b) adjusts for the leverage values hi where h

is the diagonal of the projection matrix PX = X(X′X)−1X′. It is an unbiased

estimator of X′ΩX under homoskedasticity.

Ω̂2 = diag

{
û2i

1− hi

}
.

• HC3 (Davidson and MacKinnon, 1993) is an approximation to HCj and is a

slight modification of HC2

Ω̂3 = diag

{(
ûi

1− hi

)2
}
.

• HC4 (Cribari-Neto, 2004) adjusts the residuals by a leverage factor that increases

with the leverage.

Ω̂4 = diag

{
û2i

(1− hi)δi

}

where δi = min{4, nhi
p
}.

We consider these approaches in terms of their size in Section 5.5 below. MacKinnon

(2011) show that each of the HC estimators continues to have significant size distort-

ions even when n is of moderate size.

118

5.4 Exact Distribution of F -statistic using HC Estimators

In this section, we find the exact distribution of the above mentioned F-type test

statistic by the numerical method proposed in Imhof (1961). Consider a quadratic

form

Q = u′Nu =
m∑
r=1

λrχ
2
hr (5.4)

where u ∼ N(0,Ω), λr’s are the distinct non-zero characteristic roots of NΩ, the

hr’s their respective orders of multiplicity, and the χ2
hr

are independent χ2-variables

with hr degrees of freedom.

Imhof (1961) shows that the cumulative distribution of the quadratic form Q

defined in (5.4) can be obtained quite easily by straightforward numerical integration

of an inversion formula

Pr[Q > c] =
1

2
+

1

π

∫ ∞
0

sin θ(u)

uρ(u)
du, (5.5)

where

θ(u) =
1

2

m∑
r=1

[
hr tan−1(λru) + δ2rλru(1 + λ2ru

2)−1
]
− 1

2
cu, (5.6)

ρ(u) =
m∏
r=1

(
1 + λ2ru

2
) 1

4
hr

exp

{
1

2

m∑
r=1

(δrλru)2

1 + λ2ru
2

}
. (5.7)

For each of theHC estimators mentioned in Section 5.3, we write the test statistic

in (5.3) as a quadratic form of the disturbances u in (5.1). Let

Ω̂j = diag
{
wjiû

2
i

}
(5.8)

119

where j ∈ {1, 2, 3, 4} is an index for the type of estimator HCj and

w0i = 1, (5.9)

w1i =
n

n− p
, (5.10)

w2i =
1

1− hi
, (5.11)

w3i =
1

(1− hi)2
, (5.12)

w4i =
1

(1− hi)δi
, (5.13)

where δi = min{4, nhi
p
}. Hence, the test statistic (5.3) using HCj

Fj =
u′X(X′X)−1rr′(X′X)−1X′u

r′(X′X)−1X′Ω̂jX(X′X)−1r
(5.14)

=
u′X(X′X)−1rr′(X′X)−1X′u

r′(X′X)−1X′ diag{wjiû2i }X(X′X)−1r
(5.15)

=
u′zz′u∑n
i=1wjiz

2
i û

2
i

(5.16)

=
u′zz′u

û′ diag{wjiz2i }û
(5.17)

=
u′zz′u

u′M diag{wjiz2i }Mu
(5.18)

=
u′Au

u′Bju
(5.19)

where z = X(X′X)−1r, M = In −X(X′X)−1X′, A = zz′ and Bj = M diag{wijz2i }M.

Hence,

Pr[Fj > c|X] = Pr

[
u′Au

u′Bju
> c

∣∣∣∣X] (5.20)

= Pr [u′(A− cBj)u > 0|X] . (5.21)

= Pr [u′Nc,ju > 0|X] (5.22)

120

where Nc,j = A − cBj in equation (5.4), the cumulative distribution of the test

statistic (5.3) can be approximated by approximating (5.21) using (5.5). The critical

value of the test statistic at the α significance level, hence, can be obtain by

cj,α = Imhof(α,NjΩ) := argc{Pr [u′Nju > 0|X] = α}. (5.23)

Table 5.3 shows the rejection rate of the test statistics Fj when the critical values

are obtained by (5.23). The rejection rates when the critical values are obtained from

(5.23) are identical (up to some approximation errors) to the nominal rate α. This

is not surprising once we take into account the fact that, in the approximation, we

have used Ω which is the true covariance matrix of the disturbances u. And if Ω is

known, the test statistic in (5.3) using Ω

F ∗ =
u′X(X′X)−1rr′(X′X)−1X′u

r′(X′X)−1X′ΩX(X′X)−1r
=

(
r′(β̂ − β0)√

r′Σr

)2

∼ χ2
1 (5.24)

is known to follow the χ2-distribution with 1 degrees of freedom or, equivalently, the

limiting distribution of the F -distribution with 1 and n− p degrees of freedom when

n→∞.

5.5 Empirical Size and Power

In this section, we present the empirical size and power of the tests using HC

estimators through extensive simulation studies. Many papers that use simulation

to study the properties of HC estimators, beginning with MacKinnon and White

(1985b) and extending at least to Cribari-Neto and Lima (2010), have simply chosen

a fixed or random X matrix for a small sample size – just 10 in the case of Davidson

121

Table 5.3: Rejection Rate using Imhof (1961) with True Ω

n 100 50
α 0.01 0.05 0.10 0.01 0.05 0.10
F0F 0.00855 0.04574 0.10508 0.01411 0.06571 0.13093
F0 0.01015 0.05032 0.09991 0.00967 0.04899 0.09941
F1 0.01015 0.05032 0.09991 0.00967 0.04899 0.10049
F2 0.01002 0.05036 0.09999 0.00954 0.04876 0.10051
F3 0.00998 0.05031 0.10012 0.00958 0.04860 0.09950
F4 0.01005 0.05030 0.09984 0.00942 0.04785 0.09875
F0F is identical to F0 except critical values are obtained from the F -table.

The details of the simulation experiment are given in Section 5.5 DGP1.

and Flachaire (2008) – and formed larger samples by repeating it as many times as

necessary. When X matrices are generated in this way, there will only be as many

distinct values of hi as the number of observations in the original sample. Moreover,

all of those values, and in particular the largest one, must be exactly proportional to

1
n
; see Chesher (1989). This ensures that inference based on heteroskedasticity-robust

methods improves very rapidly as n increases. Since very few real datasets involve X

matrices for which all of the hi are proportional to 1
n
, this sort of experiment almost

certainly paints an excessively optimistic picture.

In contrast, MacKinnon (2011) draws the regressors from a lognormal distribution

so as to make heteroskedasticity-robust inference difficult. Because many samples will

contain a few observations on the X that are quite extreme, and the most extreme

observation in each sample will tend to become more so as the sample size increases.

Therefore, the largest value of hi will tend to be large and to decline very slowly as

n → ∞. In fact, the average value of hmaxi is nearly 0.80 when n = 20 and declines

by a factor of only about 3.5 as the sample size increase to 1280, with the rate of

decline increasing somewhat as n becomes larger. It is likely that few real datasets

have hi which are as badly behaved as the ones in these experiments, so their results

122

certainly paint an excessively pessimistic picture.

We consider a simple linear model similar to the survey paper of MacKinnon

(2011)

yi = β0 + β1xi + ui, ui = σiεi, εi ∼ N(0, 1), (5.25)

and

DGP: σ2
i = exp(x2i), (5.26)

(5.27)

where β = (0, 0) and xi ∼ N(0, 1). The X matrix is drawn from the normal

distribution in order to imitate real datasets with the greatest generality.

The results are reported in Tables 5.4, 5.5, 5.6, 5.7, and 5.8. Table 5.4 shows the

empirical size of the F -statistic using heteroskedasticity-consistent variance estimators.

The rows of Fi shows the empirical size of the test using critical values from the F -

table. The rows of HCi show the empirical sizes of the test using the corrected critical

values obtained through our proposed method. We can see that the test using our

corrected critical values has much better size than the standard method of using F -

table. Table 5.5, 5.6, 5.7, and 5.8 show the power of the test using our corrected

critical values compared with using the critical values from the F -table. We see that

around the null, the test using critical values from the F -table has higher power

which is consistent to the fact that using the critical values from the F -table tends to

significantly over-reject under the null. However, as we deviate away from the null, we

see that the power of the test using the corrected critical values immediately catches

up with the power of the test using the critical values from the F -table. Hence, we

draw the conclusion that our test using the corrected critical values have significantly

123

better size while does not lose too much power. Hence, the corrected critical values

should be an ideal substitute for the standard method.

5.6 Conclusions

In this chapter, the performance of different heteroskedasticity-consistent variance

estimators are studied both under homoskedasticity and heteroskedasticity. We provi-

de the analytical bias and variance of different heteroskedasticity-consistent variance

estimators under homoskedasticity as well as numerical analysis. Under heteroskedast-

icity, we use the Imhof (1961) technique to approximate the distribution of the F -

type test statistic using heteroskedasticity-consistent variance estimators and propose

corrected methods for getting the correct critical values of the test statistic. Monte

Carlo results show that the proposed method has better size and power than standard

methods.

124

T
ab

le
5.

4:
S
iz

e
of

T
es

t

n
15

30
50

10
0

α
0.

10
1.

00
5.

00
10

.0
0

0.
10

1.
00

5.
00

10
.0

0
0.

10
1.

00
5.

00
10

.0
0

F
0:

0.
06

43
8

0.
17

51
6

0.
27

64
7

0.
02

76
6

0.
09

46
6

0.
16

53
2

0.
01

48
0.

07
23

4
0.

13
39

0.
00

85
1

0.
04

99
8

0.
10

37
8

H
C

0:
0.

03
91

8
0.

08
41

7
0.

14
92

6
0.

01
76

2
0.

05
78

3
0.

10
04

9
0.

01
06

2
0.

05
09

9
0.

09
49

8
0.

00
82

7
0.

04
64

2
0.

09
14

6
F

1:
0.

04
77

3
0.

14
38

1
0.

23
75

2
0.

02
32

8
0.

08
30

2
0.

14
7

0.
01

28
6

0.
06

61
6

0.
12

49
9

0.
00

78
5

0.
04

69
8

0.
10

00
4

H
C

1:
0.

03
86

6
0.

08
41

7
0.

14
92

5
0.

01
76

2
0.

05
78

3
0.

10
04

9
0.

01
06

2
0.

05
09

9
0.

09
49

8
0.

00
82

7
0.

04
64

2
0.

09
14

6
F

2:
0.

03
36

1
0.

09
25

6
0.

18
25

1
0.

01
76

5
0.

06
59

2
0.

11
80

2
0.

01
05

5
0.

05
43

9
0.

10
43

5
0.

00
66

9
0.

04
16

4
0.

08
96

8
H

C
2:

0.
03

32
9

0.
07

41
4

0.
12

76
6

0.
01

62
5

0.
05

44
1

0.
09

58
0.

01
01

0.
04

91
8

0.
09

20
4

0.
00

80
2

0.
04

57
4

0.
09

03
2

F
3:

0.
01

82
5

0.
05

48
2

0.
10

62
8

0.
01

11
0.

04
54

6
0.

08
63

6
0.

00
77

0.
04

10
8

0.
08

05
8

0.
00

53
8

0.
03

49
3

0.
07

77
8

H
C

3:
0.

02
95

8
0.

06
67

6
0.

11
94

4
0.

01
50

3
0.

05
18

6
0.

09
24

9
0.

00
96

9
0.

04
75

0.
08

97
9

0.
00

78
2

0.
04

50
4

0.
08

93
3

F
4:

0.
01

63
7

0.
04

60
2

0.
09

36
4

0.
00

90
1

0.
03

67
5

0.
07

20
1

0.
00

61
0.

03
13

1
0.

05
91

3
0.

00
41

3
0.

02
72

4
0.

06
36

1
H

C
4:

0.
02

63
7

0.
05

92
4

0.
11

4
0.

01
31

6
0.

04
78

1
0.

08
88

7
0.

00
89

7
0.

04
44

4
0.

08
59

2
0.

00
72

9
0.

04
37

2
0.

08
74

4
H

om
o:

0.
01

82
7

0.
07

33
9

0.
16

44
4

0.
01

14
9

0.
05

62
0.

11
21

7
0.

00
81

4
0.

04
96

1
0.

10
22

3
0.

00
57

9
0.

04
01

1
0.

08
98

2
A

ll
F

’s
ar

e
th

e
re

je
ct

io
n

ra
te

b
as

ed
on

cr
it

ic
al

va
lu

es
g
iv

en
in

th
e
F

-t
a
b
le

.

125

T
ab

le
5.

5:
P

ow
er

of
T

es
t

n
=

15
k

=
2

R
ep

li
ca

ti
on

=
10

00
×

10
0

α
0.

01
0.

05
0.

10
a

0.
10

1.
00

5.
00

10
.0

0
0.

10
1.

00
5.

00
10

.0
0

0.
10

1.
00

5.
00

10
.0

0
F

0:
0.

05
90

7
0.

18
41

8
0.

81
74

1
0.

90
37

3
0.

17
30

4
0.

36
01

6
0.

85
64

8
0.

93
63

5
0.

28
81

9
0.

46
92

3
0.

90
88

7
0.

95
36

6
H

C
0:

0.
03

49
0

0.
13

12
0

0.
73

19
5

0.
85

65
2

0.
09

11
3

0.
22

48
7

0.
76

95
3

0.
89

39
9

0.
13

75
9

0.
30

04
4

0.
84

77
8

0.
90

32
8

F
1:

0.
04

32
4

0.
15

55
7

0.
79

97
9

0.
89

13
1

0.
14

07
6

0.
31

73
1

0.
84

42
5

0.
93

21
0

0.
24

16
7

0.
42

61
3

0.
90

23
9

0.
95

02
1

H
C

1:
0.

03
46

0
0.

13
01

6
0.

72
53

2
0.

85
09

6
0.

09
09

8
0.

22
47

6
0.

76
95

0.
89

29
5

0.
13

75
9

0.
30

04
4

0.
84

77
8

0.
90

32
8

F
2:

0.
02

89
9

0.
12

70
7

0.
76

12
2

0.
87

04
7

0.
09

97
5

0.
24

92
5

0.
81

49
5

0.
91

77
7

0.
17

15
5

0.
35

02
1

0.
88

37
0.

92
58

4
H

C
2:

0.
03

05
2

0.
11

73
3

0.
70

16
3

0.
83

16
6

0.
08

17
5

0.
21

10
4

0.
75

32
0.

87
95

6
0.

12
62

2
0.

28
14

7
0.

83
64

0.
89

72
4

F
3:

0.
01

63
6

0.
08

44
9

0.
69

78
2

0.
83

54
3

0.
06

05
7

0.
18

35
2

0.
75

59
6

0.
88

38
2

0.
10

57
0

0.
26

24
3

0.
84

11
5

0.
90

05
4

H
C

3:
0.

02
74

2
0.

10
67

2
0.

68
19

7
0.

81
45

8
0.

07
52

2
0.

20
08

2
0.

73
95

9
0.

87
04

7
0.

11
82

8
0.

26
91

1
0.

82
94

2
0.

89
40

7
F

4:
0.

01
57

0
0.

07
82

1
0.

65
68

6
0.

79
01

6
0.

05
47

4
0.

17
45

7
0.

69
48

5
0.

83
89

3
0.

09
24

7
0.

23
67

8
0.

79
93

1
0.

86
54

8
H

C
4:

0.
02

43
1

0.
09

43
2

0.
65

51
0

0.
79

21
6

0.
06

88
0

0.
19

06
3

0.
72

58
4

0.
86

76
3

0.
11

27
2

0.
26

21
5

0.
82

97
8

0.
89

60
5

H
om

o:
0.

01
67

1
0.

09
01

0
0.

73
41

8
0.

85
80

8
0.

08
05

7
0.

21
87

0
0.

80
36

4
0.

91
52

3
0.

15
23

4
0.

33
12

3
0.

88
03

1
0.

92
67

5

126

T
ab

le
5.

6:
P

ow
er

of
T

es
t

n
=

30
k

=
2

R
ep

li
ca

ti
on

=
10

00
×

10
0

α
0.

01
0.

05
0.

10
a

0.
10

1.
00

5.
00

10
.0

0
0.

10
1.

00
5.

00
10

.0
0

0.
10

1.
00

5.
00

10
.0

0
F

0:
0.

02
64

8
0.

15
58

3
0.

77
66

7
0.

91
26

9
0.

09
94

5
0.

30
29

5
0.

85
18

8
0.

94
89

8
0.

18
66

3
0.

38
51

7
0.

88
11

6
0.

95
41

8
H

C
0:

0.
01

70
8

0.
12

18
3

0.
74

24
1

0.
89

46
5

0.
06

04
0

0.
23

73
4

0.
82

26
3

0.
93

44
3

0.
11

52
6

0.
30

13
8

0.
84

18
3

0.
93

80
7

F
1:

0.
02

20
9

0.
14

25
2

0.
76

84
5

0.
90

92
3

0.
08

75
9

0.
28

47
6

0.
84

64
2

0.
94

66
5

0.
16

87
4

0.
36

63
8

0.
87

55
0

0.
95

26
1

H
C

1:
0.

01
70

8
0.

12
18

3
0.

74
24

1
0.

89
46

5
0.

06
04

0
0.

23
73

4
0.

82
26

3
0.

93
44

3
0.

11
52

6
0.

30
13

8
0.

84
18

3
0.

93
80

7
F

2:
0.

01
67

2
0.

12
43

5
0.

74
79

4
0.

89
75

7
0.

06
91

3
0.

25
41

7
0.

83
18

8
0.

93
75

5
0.

13
69

8
0.

32
79

1
0.

85
56

0
0.

94
45

5
H

C
2:

0.
01

55
1

0.
11

62
4

0.
73

52
6

0.
89

00
4

0.
05

67
1

0.
23

03
1

0.
81

88
5

0.
93

18
5

0.
10

95
8

0.
29

40
4

0.
83

84
0

0.
93

67
4

F
3:

0.
01

08
5

0.
09

84
5

0.
71

85
1

0.
87

98
0

0.
04

81
0

0.
21

33
3

0.
80

90
5

0.
92

49
7

0.
10

00
1

0.
27

88
8

0.
83

06
9

0.
93

36
1

H
C

3:
0.

01
45

1
0.

11
11

9
0.

72
83

4
0.

88
57

3
0.

05
40

2
0.

22
43

3
0.

81
53

8
0.

92
98

7
0.

10
49

8
0.

28
80

7
0.

83
62

1
0.

93
57

6
F

4:
0.

00
85

2
0.

08
75

9
0.

68
13

9
0.

85
05

6
0.

03
83

4
0.

18
83

1
0.

77
14

9
0.

89
76

4
0.

07
47

7
0.

23
87

3
0.

79
30

1
0.

91
03

2
H

C
4:

0.
01

29
4

0.
10

33
8

0.
71

16
3

0.
87

46
1

0.
04

97
0

0.
21

46
3

0.
80

87
0

0.
92

71
2

0.
09

92
4

0.
28

09
5

0.
83

45
5

0.
93

51
7

H
om

o:
0.

01
11

2
0.

10
20

7
0.

73
68

1
0.

89
23

7
0.

05
96

7
0.

23
93

1
0.

82
85

1
0.

93
77

2
0.

12
93

8
0.

32
13

0
0.

85
75

5
0.

94
59

1

127

T
ab

le
5.

7:
P

ow
er

of
T

es
t

n
=

50
k

=
2

R
ep

li
ca

ti
on

=
10

00
×

10
0

α
0.

01
0.

05
0.

10
a

0.
10

1.
00

5.
00

10
.0

0
0.

10
1.

00
5.

00
10

.0
0

0.
10

1.
00

5.
00

10
.0

0
F

0:
0.

01
73

1
0.

14
22

8
0.

74
28

5
0.

85
85

6
0.

07
50

3
0.

28
09

8
0.

85
44

4
0.

91
89

8
0.

14
47

3
0.

37
64

9
0.

83
66

5
0.

91
12

2
H

C
0:

0.
01

18
9

0.
12

42
9

0.
73

66
8

0.
85

32
2

0.
05

58
4

0.
24

75
0

0.
84

59
8

0.
91

51
5

0.
10

56
7

0.
33

17
0

0.
81

82
0

0.
90

10
1

F
1:

0.
01

51
1

0.
13

43
3

0.
73

72
1

0.
85

58
1

0.
06

87
0

0.
27

06
6

0.
85

08
7

0.
91

70
2

0.
13

62
7

0.
36

61
2

0.
83

28
6

0.
90

93
7

H
C

1:
0.

01
18

9
0.

12
42

9
0.

73
66

8
0.

85
32

2
0.

05
58

4
0.

24
75

0
0.

84
59

8
0.

91
51

5
0.

10
56

7
0.

33
17

0
0.

81
82

0
0.

90
10

1
F

2:
0.

01
21

1
0.

12
14

3
0.

72
13

0
0.

84
52

9
0.

05
85

3
0.

25
08

3
0.

83
98

2
0.

90
99

7
0.

11
66

2
0.

34
30

8
0.

81
91

4
0.

90
12

7
H

C
2:

0.
01

12
5

0.
12

10
7

0.
73

20
2

0.
85

03
1

0.
05

39
7

0.
24

41
9

0.
84

41
6

0.
91

41
2

0.
10

29
0

0.
32

87
4

0.
81

68
5

0.
90

02
6

F
3:

0.
00

82
9

0.
10

26
8

0.
69

81
3

0.
83

12
3

0.
04

53
5

0.
22

24
7

0.
82

38
5

0.
90

07
6

0.
09

25
9

0.
31

13
6

0.
80

08
7

0.
89

12
2

H
C

3:
0.

01
05

8
0.

11
79

6
0.

72
78

6
0.

84
75

0
0.

05
19

6
0.

24
12

2
0.

84
25

7
0.

91
32

7
0.

10
06

7
0.

32
62

2
0.

81
56

3
0.

89
98

6
F

4:
0.

00
63

2
0.

09
02

3
0.

66
33

6
0.

80
56

2
0.

03
64

9
0.

19
71

3
0.

79
68

8
0.

88
13

8
0.

07
18

1
0.

27
78

8
0.

76
77

9
0.

87
24

0
H

C
4:

0.
00

93
7

0.
11

19
1

0.
71

62
8

0.
83

87
5

0.
04

88
3

0.
23

48
1

0.
83

84
9

0.
91

11
9

0.
09

66
6

0.
32

17
7

0.
81

38
1

0.
89

92
4

H
om

o:
0.

00
88

0
0.

10
71

8
0.

71
27

2
0.

84
21

4
0.

05
36

1
0.

24
21

1
0.

83
89

1
0.

91
04

4
0.

11
39

5
0.

34
09

1
0.

82
04

3
0.

90
27

4

128

T
ab

le
5.

8:
P

ow
er

of
T

es
t

n
=

10
0

k
=

2
R

ep
li

ca
ti

on
=

10
00
×

10
0

α
0.

01
0.

05
0.

10
a

0.
10

1.
00

5.
00

10
.0

0
0.

10
1.

00
5.

00
10

.0
0

0.
10

1.
00

5.
00

10
.0

0
F

0:
0.

00
88

4
0.

15
05

8
0.

75
27

2
0.

89
11

6
0.

05
18

2
0.

26
36

7
0.

83
33

6
0.

93
95

9
0.

11
34

3
0.

34
58

9
0.

84
03

6
0.

91
34

0
H

C
0:

0.
00

88
9

0.
15

63
5

0.
77

78
4

0.
90

35
3

0.
04

87
5

0.
26

40
1

0.
84

47
0

0.
94

46
5

0.
10

06
9

0.
33

61
7

0.
84

45
5

0.
91

78
6

F
1:

0.
00

81
3

0.
14

65
5

0.
74

99
5

0.
88

99
9

0.
04

91
9

0.
25

86
3

0.
83

16
8

0.
93

88
8

0.
10

89
0

0.
34

10
9

0.
83

88
4

0.
91

26
6

H
C

1:
0.

00
88

9
0.

15
63

5
0.

77
78

4
0.

90
35

3
0.

04
87

5
0.

26
40

1
0.

84
47

0
0.

94
46

5
0.

10
06

9
0.

33
61

7
0.

84
45

5
0.

91
78

6
F

2:
0.

00
69

2
0.

13
77

9
0.

74
04

2
0.

88
48

7
0.

04
39

8
0.

24
60

5
0.

82
49

7
0.

93
56

2
0.

09
82

9
0.

32
64

3
0.

83
23

9
0.

90
86

9
H

C
2:

0.
00

85
9

0.
15

46
2

0.
77

57
0

0.
90

25
1

0.
04

78
3

0.
26

25
3

0.
84

39
1

0.
94

44
3

0.
09

93
5

0.
33

49
7

0.
84

41
3

0.
91

76
7

F
3:

0.
00

54
3

0.
12

57
3

0.
72

76
6

0.
87

82
5

0.
03

69
4

0.
23

00
5

0.
81

57
3

0.
93

12
8

0.
08

48
2

0.
30

79
0

0.
82

43
0

0.
90

38
0

H
C

3:
0.

00
83

7
0.

15
29

6
0.

77
33

5
0.

90
17

4
0.

04
71

3
0.

26
10

3
0.

84
32

3
0.

94
42

0
0.

09
83

4
0.

33
37

8
0.

84
38

9
0.

91
75

2
F

4:
0.

00
42

0
0.

11
19

9
0.

70
40

4
0.

86
51

5
0.

03
02

8
0.

20
89

3
0.

79
79

6
0.

92
25

8
0.

06
94

4
0.

28
12

0
0.

80
80

7
0.

89
29

2
H

C
4:

0.
00

78
4

0.
14

82
9

0.
76

72
3

0.
89

94
9

0.
04

56
3

0.
25

69
2

0.
84

18
7

0.
94

37
0

0.
09

62
2

0.
33

12
8

0.
84

32
2

0.
91

72
2

H
om

o:
0.

00
59

2
0.

13
07

3
0.

73
72

6
0.

88
37

8
0.

04
23

0
0.

24
37

5
0.

82
53

2
0.

93
59

2
0.

09
82

2
0.

32
74

8
0.

83
41

6
0.

90
98

2

129

Chapter 6

Conclusions

This dissertation considers the problems of binary classification with high-dimensional

data, variable selection in sparse semiparametric single-index models and statistical

inference under the presence heteroskedasticity.

We first compare the performance of popular existing machine learning methods

for binary classification. We start by introducing four component-wise boosting

methods, namely component-wise Discrete AdaBoost, component-wise Real AdaBoost,

component-wise LogitBoost and component-wise Gentle AdaBoost. These methods

are extremely popular since they are both computationally efficient and easy to

implement. Moreover, the component-wise Boosting algorithms deal with high dimensional

issue by considering the explanatory one at a time. In each iteration, only the most

effective explanatory variable is chosen to train a weak learner. Hence, these methods

allows k � n. However, hyper-parameters such as the number of boosting iteration

normally need to be determined by the user prior to the estimation procedure. Cross-

validation may also be used to choose the number of iterations. We conduct extensive

comparison of the above mentioned methods through Monte Carlo experiments. We

compare the methods using both traditional binary classification model (logistic

130

model) and irregular model (circle model). The boosting methods work well in

both the traditional models and irregular models. We also use these methods for

predicting the changing direction of the real personal income in the United States.

The application show similar results as in the simulation of logistic models.

We next extend our study to the problem of binary classification under state-

dependent loss functions. The state-dependent loss function in binary classification

is often implicitly given in economics problems. We introduce a new Asymmetric

AdaBoost algorithm which produces an additive regression model from maximizing

a new risk function, namely the asymmetric exponential risk function. The new

Asymmetric AdaBoost algorithm is based on the asymmetric exponential risk function,

which maps into a binary decision making problem given a utility function. Furthermore,

by carefully establishing the asymmetry in the risk function in accordance to the

binary decision making, we show that our Asymmetric AdaBoost algorithm is closely

related to the maximum score regression (Manski 1975, 1985) and the binary prediction

literature in economics (Granger and Pesaran 2000, Lee and Yang 2006, Lahiri and

Yang 2012, and Elliot and Lieli 2013), all of which however deal with low-dimensional

predictor space. Asymmetric AdaBoost can handle the maximum score and binary

prediction when the predictors are high-dimensional. Theoretical results show that

Asymmetric AdaBoost will converge to Bayes risk as n→∞. Simulation results show

that Asymmetric AdaBoost is a competitive approach in binary classification/prediction.

We then focus on the probability prediction of binary variables. We propose

a new algorithm, based on the Rodeo, for variable selection and estimation for the

sparse semiparametric linear single-index models by viewing the bandwidths as the

inverse of the parameters which form the linear single index. The basic idea of

the modified Rodeo algorithm for SIM (which we call SIM-Rodeo) is to view the

local bandwidth selection as a variable selection in sparse semiparametric single

131

index model by amplifying the inverse of the bandwidths for relevant variables while

keeping the inverse of the bandwidths of irrelevant variables relatively small. The

SIM-Rodeo algorithm is greedy as it solves the locally optimal path choice at each

stage which can also be shown to attain the asymptotic optimality in mean square

error for sparse semiparametric single index models. The SIM-Rodeo method is able

to distinguish truly relevant explanatory variables from noisy irrelevant variables and

gives a ”competitive” estimator for the model. In addition, the algorithm is fast to

finish the greedy steps. We compare the SIM-Rodeo with a Lasso-type approach by

Zeng et al (2012) for estimation and variable selection in SIM, which Zeng et al (2012)

call SIM-Lasso. Our Monte Carlo simulation shows that SIM-Rodeo outperforms

SIM-Lasso in variable selection and also in estimation. The new method is superior

to the usual Lasso type penalty in estimation because SIM-Rodeo does not introduce

bias from using the additive Lasso penalty and is computationally more efficient.

Simulation results also show that the proposed SIM-Rodeo is consistent for variable

selection and has smaller integrated mean squared errors than using SIM-Lasso.

Last but not least, we investigates the methods of statistical inference under

the presence of heteroskedasticity of unknown form. The performance of different

heteroskedasticity-consistent variance estimators are studied both under homoskedasticity

and heteroskedasticity. We provide the analytical bias and variance of different

heteroskedasticity-consistent variance estimators under homoskedasticity as well as

numerical analysis. Under heteroskedasticity, we use the Imhof (1961) technique to

approximate the distribution of the F -type test statistic using heteroskedasticity-

consistent variance estimators and propose corrected methods for getting the correct

critical values of the test statistic. Monte Carlo results show that the proposed method

has better size and power than standard methods.

132

Bibliography

Allaire, J. J. and F. Chollet (2018). keras: R Interface to ’Keras’.

Angrist, J. and J.-S. Pishke (2009). Mostly harmless econometrics, Volume 53.
Princeton University Press.

Bao, Y., A. Ullah, and Y. Wang (2017, oct). Distribution of the mean reversion
estimator in the Ornstein–Uhlenbeck process. Econometric Reviews 36 (6-9), 1039–
1056.

Bliss, C. I. (1934a, jan). The method of probits. Science 79 (2037), 38–39.

Bliss, C. I. (1934b). The method of probits. Science 79 (2037), 409–410.

Bühlmann, P. (2006, apr). Boosting for high-dimensional linear models. The Annals
of Statistics 34 (2), 559–583.

Bühlmann, P. and B. Yu (2003, jun). Boosting with the $L 2$ loss: Regression and
classification. Journal of the American Statistical Association 98 (462), 324–339.

Chatterjee, S. (2016). fastAdaboost: a Fast Implementation of Adaboost.

Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W. Newey,
and J. Robins (2018, jul). Double/debiased machine learning for treatment and
structural parameters. Econometrics Journal 21 (1), C1–C68.

Chesher, A. (1989, jul). Hajek Inequalities, Measures of Leverage and the Size of
Heteroskedasticity Robust Wald Tests. Econometrica 57 (4), 971.

Chu, J., T.-H. Lee, and A. Ullah (2018a). Asymmetric AdaBoost for High-
Dimensional Maximum Score Regression.

Chu, J., T.-H. Lee, and A. Ullah (2018b). Variable Selection in Sparse Semiparametric
Single Index Model.

Cox, D. R. (1958). The regression analysis of binary sequences. Journal of the Royal
Statistical Society. Series B (Methodological) 20 (2), 215–242.

133

Cribari-Neto, F. (2004, mar). Asymptotic inference under heteroskedasticity of
unknown form. Computational Statistics and Data Analysis 45 (2), 215–233.

Cribari-Neto, F. and M. D. G. A. Lima (2010, dec). Sequences of bias-adjusted
covariance matrix estimators under heteroskedasticity of unknown form. Annals of
the Institute of Statistical Mathematics 62 (6), 1053–1082.

Culp, M., K. Johnson, and G. Michailidis (2016). ada: The R Package Ada for
Stochastic Boosting.

Davidson, R. and E. Flachaire (2008). The wild bootstrap, tamed at last. Journal of
Econometrics 146 (1), 162–169.

Davidson, R. and J. G. MacKinnon (1993). Estimation and inference in econometrics.
Oxford University Press.

Efron, B. and T. Hastie (2004). Least angle regression. The Annals of statistics 32 (2),
407–499.

Eicker, F. (1963, jun). Asymptotic Normality and Consistency of the Least Squares
Estimators for Families of Linear Regressions. The Annals of Mathematical
Statistics 34 (2), 447–456.

Elliott, G. and R. P. Lieli (2013, may). Predicting binary outcomes. Journal of
Econometrics 174 (1), 15–26.

Freund, Y. and R. Schapire (1996). Experiments with a New Boosting Algorithm.
Technical report.

Freund, Y. and R. E. Schapire (1997). A Decision-Theoretic Generalization of On-
Line Learning and an Application to Boosting. Journal of Computer and System
Sciences 55, 119–139.

Friedman, J., T. Hastie, and R. Tibshirani (2000a, apr). Additive logistic regression:
A statistical view of boosting. Annals of Statistics 28 (2), 337–407.

Friedman, J., T. Hastie, and R. Tibshirani (2000b, apr). Additive logistic regression:
A statistical view of boosting. Annals of Statistics 28 (2), 337–407.

Friedman, J., T. Hastie, and R. Tibshirani (2010a, feb). Regularization Paths
for Generalized Linear Models via Coordinate Descent. Journal of Statistical
Software 33 (1), 1–22.

Friedman, J., T. Hastie, and R. Tibshirani (2010b). Regularization Paths for
Generalized Linear Models via Coordinate Descent. Journal of Statistical
Software 33 (1).

134

Friedman, J. H. (2001). Greedy Function Approximation: A Gradient Boosting
Machine. The Annals of Statistics 29 (5), 1189–1232.

Fritsch, S. and F. Guenther (2016). neuralnet: Training of Neural Networks.

Gaddum, J. (1933). Report on Biological Standards III: Methods of Biological Assay
Depending on Quantal Response. Special Report Series of the Medical Research
Council 183 (London: Medical Research Council).

Granger, C. W. (1999). Outline of forecast theory using generalized cost functions.
Spanish Economic Review 1 (2), 161–173.

Granger, C. W. J. and M. H. Pesaran (2000, dec). Economic and statistical measures
of forecast accuracy. Journal of Forecasting 19 (7), 537–560.

Hamermesh, D. S. and J. E. Biddle (1994). Beauty and the Labor Market. The
American Economic Review 84 (5), 1174–1194.

Hansen, B. E. (2017). The Exact Distribution of the t-ratio with Robust and Clustered
Standard Errors.

Hausman, J. and C. Palmer (2012, aug). Heteroskedasticity-robust inference in finite
samples. Economics Letters 116 (2), 232–235.

Hinkley, D. V. (1977, aug). Jackknifing in unbalanced situations.
Technometrics 19 (3), 285–292.

Huang, J., J. L. Horowitz, and F. Wei (2010, aug). Variable selection in nonparametric
additive models. Annals of Statistics 38 (4), 2282–2313.

Huber, P. (1967). The behavior of maximum likelihood estimates under nonstandard
conditions. Proceedings of the Berkeley Symposium on Mathematical Statistics and
Probability 1, 221–233.

Ichimura, H. (1993). Semiparametric {L}east {S}quares and {W}eighted {SLS}
{E}stimation of {S}ingle {I}ndex {M}odels. Journal of Econometrics 58 (1-2),
71–120.

Imbens, G. W. and M. Kolesár (2016, oct). Robust standard errors in small samples:
Some practical advice. Review of Economics and Statistics 98 (4), 701–712.

Imhof, J. P. (1961, dec). Computing the distribution of quadratic forms in normal
variables. Biometrika 48 (3 and 4), 419–426.

Jurado, K., S. C. Ludvigson, and S. Ng (2015). Measuring Uncertainty. American
Economic Review 105 (3), 1177–1216.

135

Klein, R. W. and R. H. Spady (1993, mar). An Efficient Semiparametric Estimator
for Binary Response Models. Econometrica 61 (2), 387.

Lafferty, J. and L. Wasserman (2008a, feb). Rodeo: Sparse, greedy nonparametric
regression. Annals of Statistics 36 (1), 28–63.

Lafferty, J. and L. Wasserman (2008b). Rodeo: Sparse, greedy nonparametric
regression. Annals of Statistics 36 (1), 28–63.

Lahiri, K. and L. Yang (2012, sep). Forecasting binary outcomes. In G. Elliott
and A. Timmermann (Eds.), Handbook of Economic Forecasting, Volume 2, pp.
1025–1106. SSRN.

Lee, T. H. and Y. Yang (2006, nov). Bagging binary and quantile predictors for time
series. Journal of Econometrics 135 (1-2), 465–497.

MacKinnon, J. (2011). Thirty Years of Heteroskedasticity-Robust Inference.

MacKinnon, J. G. and H. White (1985a, sep). Some heteroskedasticity-consistent
covariance matrix estimators with improved finite sample properties. Journal of
Econometrics 29 (3), 305–325.

MacKinnon, J. G. and H. White (1985b, sep). Some heteroskedasticity-consistent
covariance matrix estimators with improved finite sample properties. Journal of
Econometrics 29 (3), 305–325.

Manski, C. F. (1975). Maximum score estimation of the stochastic utility model of
choice. Journal of Econometrics 3 (3), 205–228.

Manski, C. F. (1985). Semiparametric analysis of discrete response. Asymptotic
properties of the maximum score estimator. Journal of Econometrics 27 (3), 313–
333.

McCaffrey, D. F. and R. M. Bell (2002). Bias Reduction in Standard Errors
for Linear and Generalized Linear Models with Multi-Stage Samples. Survey
Methodology 28 (2), 169–181.

Mease, D., A. Wyner, and A. Buja (2007). Cost-weighted boosting with jittering
and over/under-sampling: Jous-boost. Journal of Machine Learning Research 8,
409–439.

Nadaraya, E. A. (1964, jan). On Estimating Regression. Theory of Probability & Its
Applications 9 (1), 141–142.

Nakamura, A. and M. Nakamura (1998, mar). Model specification and endogeneity.
Journal of Econometrics 83 (1-2), 213–237.

136

Ng, S. (2014a, feb). Viewpoint: Boosting recessions. Canadian Journal of
Economics 47 (1), 1–34.

Ng, S. (2014b, feb). Viewpoint: Boosting recessions. Canadian Journal of
Economics 47 (1), 1–34.

Olson, M. (2017). JOUSBoost: Implements Under/Oversampling for Probability
Estimation.

R Core Team (2018). R: A Language and Environment for Statistical Computing.
Vienna, Austria: R Foundation for Statistical Computing.

Rao, C. R. (1970). Estimation of Heteroscedastic Variances in Linear Models. Journal
of the American Statistical Association 65 (329), 161–172.

Rice, J. (1984, dec). Full-Text. The Annals of Statistics 12 (4), 1215–1230.

Ridgeway, G. (2017). gbm: Generalized Boosted Regression Models.

Su, L. and Y. Zhang (2014, jan). Variable Selection in Nonparametric and
Semiparametric Regression Models. In J. S. Racine, L. Su, and A. Ullah (Eds.),
The Oxford Handbook of Applied Nonparametric and Semiparametric Econometrics
and Statistics. Oxford University Press.

Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of
the Royal Statistical Society. Series B (Methodological) 58 (1), 267–288.

Tuszynski, J. (2018). caTools: Tools: moving window statistics, GIF, Base64, ROC
AUC, etc.

Ullah, A. (2004). Finite Sample Econometrics (Chap. 1,2). Oxford University Press.

Walker, S. H. and D. B. Duncan (1967, jun). Estimation of the probability of an
event as a function of several independent variables. Biometrika 54 (1), 167–179.

Watson, G. S. (1964). Smooth regression analysis. The Indian Journal of
Statistics 26 (4), 359–372.

White, H. (1980). A Heteroskedasticity-Consistent Covariance Matrix Estimator and
a Direct Test for Heteroskedasticity. Econometrica 48 (4), 817.

Young, A. (2016). Improved, Nearly Exact, Statistical Inference with Robust and
Clustered Covariance Matrices using Effective Degrees of Freedom Corrections.

Zellner, A. (1986, jun). Bayesian estimation and prediction using asymmetric loss
functions. Journal of the American Statistical Association 81 (394), 446–451.

137

Zeng, P., T. He, and Y. Zhu (2012). A lasso-type approach for estimation and
variable selection in single index models. Journal of Computational and Graphical
Statistics 21 (1), 92–109.

Zou, H. (2006). The Adaptive Lasso and Its Oracle Properties. Journal of the
American Statistical Association 101 (476), 1418–1429.

138

Appendix A

Proofs for Chapter 3

A.1 Proof of Theorem 1

Proof. Let F ∗ = arg minF Rτ (F) be the Bayes classifier. Let P(x, y) be the joint

density function of x and y, and Pw (x, y) = t(y,x)P(x,y)∫
t(y,x)P(x,y)dydx . Then Pw (x, y) defines a

probability distribution of (x, y) on χ× {±1}. By definition,

Rψ,τ (Fi) = E
(
t (y, x) e−yFi

)
=

∫
t (y, x) e−yFiP (x, y) dydx

=

∫
t (y, x)P (x, y) dydx ·

∫
e−yFi

t (y, x)P (x, y)∫
t (y, x)P (x, y) dydx

dydx

=

∫
t (y, x)P (x, y) dydx ·

∫
e−yFiPw (x, y) dydx

= C

∫
e−yFiPw (x, y) dydx,

where C ≡
∫
t (y, x)P (x, y) dydx is positive and bounded. Moreover,

R∗ψ,τ = inf
Fi
Rψ,τ (Fi) .

139

Hence, by Theorem 2,

Rψ,τ → R∗ψ,τ implies that

∫
1(y 6=sign[Fi])Pw (x, y) dydx→

∫
1(y 6=sign[Fi])Pw (x, y) dydx.

Rewrite the expression in terms of P (x, y), we have

1

C

∫
1(y 6=sign[Fi])t (y, x)P (x, y) dydx→ 1

C

∫
1(y 6=sign[F ∗])t (y, x)P (x, y) dydx.

Therefore,

Rτ (sign[Fi]) =

∫
t (y, x) 1(y 6=sign[Fi])P (x, y) dydx→

∫
t (y, x) 1(y 6=sign[F ∗])P (x, y) dydx = R∗τ .

A.2 Proof of Theorem 2

We start with the asymmetric exponential risk function

Rψ,τ (F (x)) = E
(
t (y, x) e−yF (x)

)
. (A.1)

Step 1 is to look for the optimal fm+1(x) for each iteration. Suppose we have

finished m iterations, the current classifier is denoted as Fm (x) =
∑m

s=1 csfs (x). In

the next iteration, we are seeking an update cm+1fm+1 (x) for the function fitted by

previous iterations Fm (x). The updated classifier would be

Fm+1 (x) = Fm (x) + cm+1fm+1 (x) . (A.2)

140

The risk for the updated classifier is

Rψ,τ (Fm (x) + cm+1fm+1 (x)) = E
(
t (y, x) e−y(Fm(x)+cm+1fm+1(x))

)
. (A.3)

Expand it w.r.t. fm+1 (x)

E
(
t (y, x) e−y(Fm(x)+cm+1fm+1(x))

)
(A.4)

≈ E
(
t (y, x) e−yFm(x)

(
1− ycm+1fm+1 (x) +

yc2m+1f
2
m+1 (x)

2

))
(A.5)

= E
(
t (y, x) e−yFm(x)

(
1− ycm+1fm+1 (x) +

c2m+1

2

))
, (A.6)

since y2 = f 2
m+1 (x) = 1 holds for all y and fm+1 (x). Only the second term in the

bracket contains fm+1 (x), so minimizing the above risk function w.r.t. fm+1 (x) is

equivalent to maximizing the following expectation

max
f

E
(
e−yFm(x)t (y, x) yfm+1 (x) |x

)
, (A.7)

for any cm+1 > 0. Let weights be w ≡ e−yFm(x). Then we re-write the above maximization

as

max
f

Ew (t (y, x) yfm+1 (x) |x) . (A.8)

Solve the maximization problem

max
f

Ew (t (y, x) yfm+1 (x) |x) (A.9)

= Pw (y = 1|x) t (1, x) fm+1 (x)− Pw (y = −1|x) t (−1, x) fm+1 (x) (A.10)

= [Pw (y = 1|x) t (1, x)− Pw (y = −1|x) t (−1, x)] fm+1 (x) , (A.11)

fm+1(x) should take the same sign as Pw (y = 1|x) t (1, x)− Pw (y = −1|x) t (−1, x).

141

The solution is

fm+1 (x) =


1, Pw (y = 1|x) t (1, x)− Pw (y = −1|x) t (−1, x) > 0

−1, otherwise.

(A.12)

Step 2 is to look for the optimal cm+1 for each iteration. After solving fm+1 (x),

we minimize the risk function (A.3) w.r.t. cm+1,

cm+1 = arg min
c
Rψ,τ (Fm (x) + cfm+1m+1 (x)) (A.13)

= arg min
c

E
(
t (y, x) e−y(Fm(x)+cm+1fm+1(x))

)
(A.14)

= arg min
c

Ew
(
t (y, x) e−ycm+1fm+1(x)

)
(A.15)

Then

Ew
(
t (y, x) e−ycm+1fm+1(x)

)
(A.16)

= Pw (y = 1, fm+1 (x) = 1) t (1, x) e−cm+1 + Pw (y = −1, fm+1 (x) = −1) t (−1, x) e−cm+1(A.17)

+Pw (y = 1, fm+1 (x) = −1) t (1, x) ecm+1 + Pw (y = −1, fm+1 (x) = 1) t (−1, x) ecm+1(A.18)

The first order condition from taking the derivative w.r.t. cm+1

∂Rψ,τ (cm+1fm+1 (x))

∂cm+1

(A.19)

= −Pw (y = 1, fm+1 (x) = 1) t (1, x) e−cm+1 − Pw (y = −1, fm+1 (x) = −1) t (−1, x) e−cm+1(A.20)

+Pw (y = 1, fm+1 (x) = −1) t (1, x) ecm+1 + Pw (y = −1, fm+1 (x) = 1) t (−1, x) ecm+1(A.21)

142

gives the optimal cm+1 from solving the following

Pw (y = 1, fm+1 (x) = 1) t (1, x) e−cm+1 + Pw (y = −1, fm+1 (x) = −1) t (−1, x) e−cm+1(A.22)

= Pw (y = 1, fm+1 (x) = −1) t (1, x) ecm+1 + Pw (y = −1, fm+1 (x) = 1) t (−1, x) ecm+1 ,(A.23)

where Pw (y = 1, fm+1 (x) = 1) is the rate of true positive (TP), Pw (y = −1, fm+1 (x) = −1)

is the rate of true negative (TN), Pw (y = 1, fm+1 (x) = −1) is the rate of false negative

(FN), Pw (y = −1, fm+1 (x) = 1) is the rate of false positive (FP). Hence, rewriting it

as

[TP× t (1, x) + TN× t (−1, x)] e−cm+1 = [FN× t (1, x) + FP× t (−1, x)] ecm+1 ,

(A.24)

we obtain the optimal cm+1

cm+1 =
1

2
log

(
TP×t (1, x) + TN× t (−1, x)

FN× t (1, x) + FP× t (−1, x)

)
=

1

2
log

(
1− errm+1

errm+1

)
, (A.25)

where errm+1 = Ew
(
t (y, x)× 1(y 6=fm+1(x))

)
.

Step 3 is to update the current strong learner and get ready for the next iteration.

In the next iteration, we have

Fm+1 (x)← Fm (x) + cm+1fm+1 (x) . (A.26)

Hence

wm+1 = e−yFm+1(x) (A.27)

= e−y(Fm(x)+cm+1fm+1(x)) (A.28)

= wm × e−cm+1yfm+1(x), (A.29)

143

is of identical form as in Algorithm 2.

A.3 Proof of Theorem 3

Hereby we provide the proof of Theorem 3 following Bartlett and Traskin (2007)

for our asymmetric exponential risk.

Notation. Let Rψ,τ,n be the sample version of Rψ,τ with sample size n and the set of

k-combinations, k ∈ N, of functions in H

Fk =

{
F |F =

k∑
i=1

λihi, λi ∈ R, hi ∈ H

}
. (A.30)

Define the squashing function πl (·) to be

πl (x) =


l, x > l

x, x ∈ [−l, l]

−l, x < −l.

(A.31)

Then the set of truncated functions is

πl ◦ F =
{
F̃ |F̃ = πl (F) , F ∈ F

}
. (A.32)

The set of classifiers based on a class F is denoted by

G = {G (F) |F ∈ F} . (A.33)

Let

ϕλ = inf
α∈[−λ,λ]

t (y, x) e−α. (A.34)

144

Assumptions 1. Let n be sample size. Let there exist non-negative sequences Mn →

∞, ζn →∞ and a sequence
{
F̄n
}∞
n=1

of reference functions such that

Rψ,τ

(
F̄n
)
→
n→∞

R∗ψ,τ , (A.35)

and suppose that the following conditions are satisfied.

1. Uniform convergence of Mn-combinations.

sup
F∈πζn◦FMn

|Rψ,τ (F)−Rψ,τ,n (F)| a.s.→
n→∞

0. (A.36)

2. Convergence of empirical exponential risks for the sequence
{
F̄n
}∞
n=1

.

max
{

0, Rψ,τ,n

(
F̄n
)
−Rψ,τ

(
F̄n
)} a.s.→

n→∞
0. (A.37)

3. Algorithmic convergence of Mn-combinations.

max
{

0, Rψ,τ,n (FMn)−Rψ,τ,n

(
F̄n
)} a.s.→

n→∞
0. (A.38)

Evidence that Asymmetric AdaBoost and the asymmetric exponential risk satisfies

Assumption 1 can be find in Bartlett and Traskin (2007) where they discuss the same

topic for symmetric AdaBoost.

Proof of Theorem 3. We follow the procedure of Bartlett and Traskin (2007) with our

asymmetric exponential risk function. For almost every outcome ω on the probability

space we can define sequences ε1n (ω)→ 0, ε2n (ω)→ 0,ε3n (ω)→ 0, such that for almost

145

all ω the following inequalities are true.

Rψ,τ (πζn (FMn)) ≤ Rψ,τ,n (πζn (FMn)) + ε1n (ω)→ 0 by (A.36)

≤ Rψ,τ,n (FMn) + ε1n (ω) + ϕζn (A.39)

≤ Rψ,τ,n

(
¯FMn

)
+ ε1n (ω) + ϕζn + ε2n (ω) by (A.38)

≤ Rψ,τ

(
F̄n
)

+ ε1n (ω) + ϕζn + ε2n (ω) + ε3n (ω) by (A.37).(A.40)

Inequality (A.39) follows from the convexity of ϕ (·). By choice of the sequence{
F̄n
}∞
n=1

, we have Rψ,τ

(
F̄n
)
→ R∗ψ,τ and ϕζn → 0. And from (A.40) follows

Rψ,τ (FMn)
a.s.→ R∗ψ,τ . (A.41)

Hence, Asymmetric AdaBoost is consistent if stopped after Mn steps.

146

Appendix B

Proofs for Chapter 4

We follow the notation of Lafferty and Wasserman (2008b) and write Yn =

ÕP (an) to mean that Yn = OP (bnan) where bn is logarithmic in n. And we write

an = Ω (bn) if lim infn

∣∣∣anbn ∣∣∣ > 0 and an = Ω̃ (bn) if an = Ω (bncn) where cn is logarithmic

in n.

Define

µj (θ) =
∂

∂θj
E [m̂θ (x)−m (x) |X1, . . . , Xn] ,

which is the derivative of the conditional bias. The first lemma analyzes µj (θ) and

E (µj (θ)) under the assumption that f is uniform. The second lemma analyzes the

variance. The third lemma bounds the probabilities P (|Zj| ≥ λj) in terms of tail

inequalities for standard normal variables.

In each of these lemmas, we make the following assumptions. We assume that f

is uniform, K is a Gaussian kernel, and α > 1. Moreover, without loss of generality,

we make use of the following set B of coefficients where θ0 > 0

B =

θ = (θ1, . . . , θk) =

αt1θ0, . . . , αtrθ0︸ ︷︷ ︸
r terms

, θ0, . . . , θ0︸ ︷︷ ︸
k−r terms

 : 0 ≤ tj ≤ Tn, j = 1, . . . , r

 ,

147

where Tn ≤ c1 log n. Finally, we assume that

r = O (1) ,

k = O

(
log n

log log n

)
,

θ0 = c0 log log n.

The proofs of the lemmas can be found in Lafferty and Wasserman (2008b).

Lemma 1. For each θ ∈ B,

E (µj (θ)) =


ν2mjj(xθ)

θj
+

gj(xRθR)

θj
, j ≤ r,

0, j > r,

where ν2I =
∫
uuTK (u) du and gj (xRθR) depends only on the relevant variables and

bandwidths, and satisfies

|gj (xRθR)| = O

(∑
l≤r

sup
x

|mjjll (xθ)|
θ2l

)
.

Furthermore, for any δ > 0,

Pr

max
θ∈B

1≤j≤k

|µj (θ)− E (µj (θ))|
sj(θ)

>

√
δ log n

log log n
≤ 1

nδσ2/ (8c0)


where

s2j (θ) =
Cθ2j
n

k∏
l=1

θl,

with

C = σ2

∫
K2 (u) du

f (x)
.

148

Lemma 2. Let νj (θ) = Var (Zj|X1, . . . , Xn). Then

Pr

max
θ∈B

1≤j≤k

∣∣∣∣νj (θ)

s2j (θ)
− 1

∣∣∣∣ > ε

→ 0,

for all ε > 0.

Lemma 3. For any c > 0 and each j > r,

Pr (|Zj (θ0)| > λj (θ0)) = o

(
1

nc

)
.

Uniformly for θ ∈ B, c > 0 and j ≤ r,

Pr (|Zj (θ)| < λj (θ)) ≤ Pr

(
N (0, 1) >

νj |mjj (xθ)|+ zn
sj (θ) θj

)
+ o

(
1

nc

)
,

where zn = O
(
θ−3j
)
.

Proof of Theorem 1. Let At be the active set at step t. Define St to be the event that

At = {1, . . . , r}. We want to show that

Pr (S1)→ 1,

from which the theorem follows.

Fix c > 0. In what follows, we let ξn (c) denote a term that is o (n−c); we will

suppress the dependence on c and simply write ξn.

At Step t = 1, define the event

B1 = {|Zj| > λj for all j ≤ r} ∩ {|Zj| < λj for all j > r} .

149

Thus, A1 = B1. We claim that

Pr (Bc
1) ≤ O

(
1

n

)
+ ξn.

From Lemma 3, when j > r,

Pr

(
max
j>r
|Zj| > λj

)
≤

k∑
j=r+1

Pr (|Zj| > λj) ≤ dξn = ξn.

When j ≤ r,

Pr (|Zj| < λj for some j ≤ r) ≤ O

(
1

n

)
+ ξn.

Hence,

Pr (θj = θ0 for all j > r)→ 1 as n→∞.

and

Pr (θj > θ0 for all j ≤ r)→ 1 as n→∞

150

