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Abstract

Insights into Quantum Gravity: from Quantum Optics to Black Holes

by

Johnathon James Thompson

Doctor of Philosophy in Physics

University of California, Merced

Professor Lin Tian, Chair

Although this dissertation has several themes, the central question being asked is,

what insights can we gain into quantum gravity without fully quantizing gravity, and

whether any experiments can be done to probe the interface between quantum me-

chanics and general relativity. During the process of asking this question we explored

quantum optics, optomechanics, gravitational waves, and black holes. We found that

the dynamical Casimir effect in our superconducting radio frequency cavities will have

a threshold too high for the observation of squeezed vacuum. This is true whether

we assume the vacuum is composed of gravitons or photons. We found that gravita-

tional waves do interact with quantum macroscopic states differently than for normal

matter, but this does not at present lead to any observable effect. We found that in

general, the unphysical anomalies in classical spacetimes are removed when quantum

mechanics is applied. We showed that Cauchy horizons which lead to mass inflation,

and naked singularities which lead to issues with causality, are removed if the prob-

lems are treated correctly. By correctly, we mean applying quantum mechanics when

it is non negligible, and applying the quantum mechanical idea of intrinsic mass to

gravitating matter.

ix
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Chapter 1

Introduction

This dissertation is a combination of work done in both quantum optomechanics and

general relativity. One of my main interests is how principles in general relativity can

be applicable in the context of quantum mechanics, and how principles of quantum

mechanics are applicable in the context of general relativity. While the complete

merger of the two fields is not the topic of this dissertation, we do seek to gain

insights into quantum gravity.

One of the most compelling thought experiments that explains why gravity must

be quantized is actually based in quantum optomechanics. This was a thought ex-

periment proposed by both Eppley and Hannah [1] and Page and Geilker [2] and

goes as follows. Imagine a mechanical oscillator, for example a membrane, has been

prepared in a state with minimum uncertainty in momentum. The uncertainty prin-

ciple, ∆p∆x ≥ 1
2
~, tells us that the uncertainty in the position x must therefore be

large. Now imagine that we use a superposition of very high frequency classical grav-

itational waves to measure the position of the membrane. Using a classical GR wave

instead of a laser allows for an arbitrarily precise measurement of position, because

classically the gravitational wave frequency can be arbitrarily high without adding

momentum to the wave. When the position is measured with an arbitrarily large

degree of accuracy, this leads to an instantaneous change in the uncertainty of the

momentum, violating momentum conservation. Conservation of momentum in this

case seems to suggest that gravitational waves must be quantized.

1



CHAPTER 1. INTRODUCTION 2

Additionally, there is another good example of quantum mechanics and gravity

interacting in an interesting way. General relativity says that all energy gravitates. A

quantum physicist might ask, “But there are particles such as a photon with energy

and no mass, do these have a gravitational interaction?” The answer to that is yes.

But whether two beams of photons attract, repel, or neither depends on their orien-

tation [3], [4]. The answer is very nonintuitive, two beams of photons going in the

same direction will not repel or attract, but two beams of photons going in opposite

directions will have an attraction that is four times the attraction that is expected

from equating their energies to gravitating mass naively. This is because the whole

stress energy momentum tensor T µν matters in Einstein’s equations, Gµν = κT µν .

These types of questions that are on the border of quantum mechanics and gravity

was what interested me in the Chiao-Sharping group at the University of California.

The two original central problems that we were trying to solve were, “What in-

teraction, if any, does a gravitational wave have with a superconductor?” and “If

superconductors serve as mirrors to gravitational waves, can we parametrically am-

plify gravitons via the dynamical Casimir effect (DCE) in a superconducting radio

frequency cavity by modulating one of the walls of the cavity?” Although I spent

hundreds of hours working on these questions, this was primarily the work of a fellow

graduate student, Nathan Inan [5], who undoubtedly spent thousands of hours work-

ing on this question. Chapter 3 is a brief summary of the main conclusions from this

work.

If we were to perform a graviton dynamical Casimir effect, then surely we should

be able to first perform a photon dynamical Casimir effect. Most of my independent

work was on calculating thresholds for parametric processes in a cylindrical cavity

system with a membrane as one end. This is the topic of Chapter 2. The dynamical

Casimir effect is the creation of particles out of vacuum due to the motion of a mirror

which serves as a boundary condition for the specific particles fields [6]. You will

get a creation of particles whenever the mirror moves so fast that the field cannot

adiabatically adapt to the motion of the mirror, creating a mismatch in the modes.

Because this work yielded very high thresholds for the DCE of photons, it is expected

that the graviton DCE will not be possible.



CHAPTER 1. INTRODUCTION 3

Since the calculated thresholds were high, our lab began to look at other ways of

doing an experiment with gravitational waves. Professor Ray Chiao started playing

with the idea of using superconducting junctions to measure and generate gravita-

tional waves [7]. I am not so involved in his new work on this, but one of these

discussions with him got me thinking about the role of quantum mechanics in general

relativity. Specifically the questions of instantaneity, what is mass, and the ideas of

proper time and local time. These are all inconsistencies between the two fields of

study. I zeroed in on the interpretation of mass. Specifically, because in GR the

effective mass of a black hole is allowed to become negative in the interior of the

black hole which leads to interesting problems that will be discussed in Chapter 4.

Quantum mechanics says that there is intrinsic mass, so you have some minimum

energy that cannot be extracted. I saw this interpretation as a way to possibly solve

one of the problems with black holes. This train of thought led to two papers where

we solved two major problems facing black hole physics, namely, the Cauchy problem

and the naked singularity problem. Both of these are discussed in detail in Chapter

4.



Chapter 2

Quantum Optomechanics

2.1 Materials & Methods

Most of the planned experiments in our lab utilize high Q superconducting radio

frequency cavities [8], [9]. We can use both double (degenerate) and triple (non-

degenerate) cavities, see Figures 2.1 and 2.2. The double cavity is used to generate

the dynamical Casimir effect, and below threshold vacuum squeezing. The triple

cavity is used to generate stimulated Raman and to investigate possible graviton

production.

Figure 2.1: Double cavity scheme for producing degenerate signal and idler photons

4
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Signal/Idler 
RF OUT

Pump
cavity

Membrane

IrisPump
RF IN

Figure 2.2: Triple cavity scheme for producing non-degenerate signal and idler pho-
tons

Figure 2.1 is shown in more detail than Figure 2.2 in order to show how we tune

the frequency of the cavities. Tuning is accomplished by using PZTs (in green) to

move the end wall of the cavity. To Lock frequencies, we use a PID control loop in

LabView.

To decrease thermal noise and to increase the quality factors of our cavities, we

put the cavities at the bottom stage of our dilution refrigerator which has a steady

state cooling power of 250µW at 30 mK. The design of our dilution refrigerator’s

homodyne and heterodyne detection schemes to measure the amount of squeezing in

our cavities is shown in Figure 2.3.

Figure 2.3: Detection scheme for observing squeezed RF output.
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Ṗ = !mg�a†a � !mQ � �mP + ⇠
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ȧ = �i (!a � !l � !mg�Q) a + "� a +
p

2ain
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This equation comes from the Hemholtz free energy density with stresses and strains
present (dF = �SdT + T ijdhij), where S is the entropy density.
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i

h̄
[H, A] a2 a†2  " =

r
2Pin

h̄!l

!l �m g

(68)

Q̇ = !mP
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ȧ† = i (!a � !l � !mg�Q) a† + "� a† +
p

2a†
in

h(�A)2)ih(�B)2i � 1

4
|h[A, B]i|2 (69)

h(�x)2)ih(�Px)
2i � 1

4
h̄2 (70)

15

Figure 2.4: Simplified diagram of our system as a single cavity with a membrane for
one end

2.2 Optomechanical Hamiltonian

The easiest way to study our system is to begin with the Hamiltonian. If we only

concern ourselves with a single cavity with a membrane on one end, our Hamiltonian

looks like,

H = ~ωca†a+ ~ωmb†b−
1

2
~g
(
2a†a− a2 − a†2

) (
b+ b†

)
+ i~ε(a†e−iwlt− aeiwlt), (2.1)

where b† and b are the creation and annihilation operators for the membrane, a† and a

are the creation and annihilation operators for the cavity, ωc is the cavity resonance,

ωm is the membrane resonance, ωl is the frequency of the laser input, g is the coupling

between the membrane and the cavity, and ε =
√

2κPin

~ωl
where Pin is the power of the

laser and κ is the decay rate of the cavity. The first two terms are the bare energy

of the cavity photons and membrane phonons. The third term is the phonon-photon

interaction, and the last term is the power input into the cavity [10].



CHAPTER 2. QUANTUM OPTOMECHANICS 7

The coupling constant g = g0

√
~

2mωm
≡ g0xxpf is related to the frequency change

due to moving an element that is coupled to the cavity. For example, we can define

the cavity frequency as,

ωc (x) = ω0 − g0x. (2.2)

g0 tells you how much the frequency changes when you change a boundary of the

system. For a simple Fabry-Perot system, where the membrane changes the length

L of the cavity, ω(x) = nπc
L+x
≈ nπc

L

(
1− x

L

)
. So in the case of a Fabry-Perot system,

g0 = ω0

L
. To find the dynamics of the system we use the Heisenberg equation of

motion. For an operator A,
dA

dt
=
i

~
[H,A]. (2.3)

Energy loss in the membrane and cavity (γm, κ) as well as the associated noise

operators (ain, ξ) are added to the right hand side of the equation of motion.

dA

dt
=
i

~
[H,A]− κA+

√
2κAin (2.4)

When κ is introduced like this, it represents the losses of the field and not the energy,

so κ = ω
2Q

2.3 Dynamical Casimir Effect

The surprising thing about quantum mechanics is the prediction that the pure vacuum

has energy 1
2
~ω due to virtual particles coming into and out of existence. These

virtual particles give rise to many interesting effects such as the dynamical Casimir

effect. The dynamical Casimir effect is a dynamic version of the static Casimir effect.

The static Casimir effect is a force generated by the presence of vacuum fluctuations

acting on two parallel mirrors. The effect can be explained in the following intuitive

manner. Vacuum fluctuations exist on the inside and outside of the mirrors. The

boundary conditions of the mirrors have to be satisfied by the vacuum fluctuations

and this limits the modes that exist on the inside of the mirrors. All modes of vacuum
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fluctuations can exist on the outside. This difference in mode density leads to pressure

on the plates.

The dynamical Casimir effect is the production of real observable photons by

amplifying the vacuum fluctuations by accelerating one of the mirrors [6]. This can

also be achieved by rapidly changing the effective geometry of the cavity. The DCE

was first detected in 2011 using this method in a superconducting circuit [11].

We seek to achieve DCE in our cavities by parametrically amplifying the vacuum

with an oscillating membrane. In our system, power is input into the pump cavity

which causes the membrane to oscillate. This oscillation changes the length of the

signal and idler cavity. If the oscillation is above threshold, this will create signal

and idler photons. The threshold power is important, because we are limited by the

250µW cooling power of the dilution refrigerator.

2.3.1 Single Cavity DCE

The simplest dynamical Casimir effect is the amplification of a single cavity mode.

For our system we will consider the signal/idler cavity. As a first step, in order

to compare with accepted results in the literature [12], [13], [14], [15], we treat the

membrane as a non-dynamical variable and ignore losses. We prescribe the membrane

motion to be,

x(t) =
ε

2i

(
eiωdt − e−iωdt

)
, (2.5)

where ωd is the driving frequency of the membrane and ε is the amplitude of oscillation

of the membrane 1. Using this prescribed motion, we can write the Hamiltonian of

the system as,

H = ~ωca†a−
1

2
~g0

(
2a†a− a2 − a†2

) ε
2i

(
eiωdt − e−iωdt

)
. (2.6)

Now we go to a frame rotating at half the frequency of the drive R = ei
ωd
2
a†at. Since

our optomechanical coupling is weak compared to the resonances of the cavity and

1We use ε as the amplitude of oscillation. In the literature ε is a dimensionless amplitude that
has been scaled by the length of the cavity. The conversion is ε′ → εLz where unprimed denotes the
notation used in the literature.
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membrane, g << ωc, ωm, we may ignore non-resonant terms. We may ignore these

terms because they represent only a small correction to the energy. The Hamiltonian

after rotation and dropping oscillating terms becomes,

H = ~
(
ωc −

ωd
2

)
a†a+

1

4i
~g0ε

(
a2 − a†2

)
. (2.7)

The equations of motion for a and a† are,

da

dt
= −i

(
ωc −

ωd
2

)
a+

ε

2
g0a
†, (2.8)

and
da†

dt
= i
(
ωc −

ωd
2

)
a† +

ε

2
g0a. (2.9)

If we assume that the membrane is driven at twice the cavity resonance, ωd = 2ωc,

then the solution to the equations of motion are,

a(t) = cosh

(
εg0t

2

)
a0 + sinh

(
εg0t

2

)
a†0, (2.10)

and

a†(t) = sinh

(
εg0t

2

)
a0 + cosh

(
εg0t

2

)
a†0. (2.11)

Since 〈N(t)〉 =
〈
0|a†(t)a(t)|0

〉
, then

N(t) = sinh2

(
εg0t

2

)
. (2.12)

To find the coupling constant g0 for the cylindrical cavity we may employ the same

method as we did in the Fabry-Perot case. We will be using the transverse electric

(TE) modes of the cavity which have a resonant frequency defined by,

ωmnp =
cχ
′
mn

R

√
1 +

(
pπR

χ′mnL

)2

, (2.13)
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where R is the radius of the cavity, L is the length of the cavity, p is the longitudinal

mode number, and χ
′
mn is the nth zero of the derivative of the mth modified Bessel

function J ′m(x). We replace L with x+ L and expand to first order in x.

ωmnp(x) = ω0 −
p2c2π2

ω0L3
x (2.14)

For the cylindrical cavities TE modes, driven by changing the length L, the coupling

constant is,

g0 =
p2c2π2

ω0L3
. (2.15)

These results agree with the calculation by Martin Crocce and others [12], [13], [14],

[15], who found the dynamical Casimir effect using a different method. They do not

define a coupling constant and do not include losses, and arrive at,

N(t) = sinh2

(
p2c2π2ε

2ωL3
z

t

)
. (2.16)

To solve for the threshold condition for the onset of amplification, we must include

losses in the equations of motion.

da

dt
= −i

(
ωc −

ωd
2

)
a+

ε

2
g0a
† − κa (2.17)

da†

dt
= i
(
ωc −

ωd
2

)
a† +

ε

2
g0a− κa† (2.18)

Again, we assume we are driving on resonance (ωd = 2ωc), then,

a(t) = e−κt
(

cosh

(
εg0t

2

)
a0 + sinh

(
εg0t

2

)
a†0

)
, (2.19)

a†(t) = e−κt
(

sinh

(
εg0t

2

)
a0 + cosh

(
εg0t

2

)
a†0

)
, (2.20)

and

N(t) = e−2κt sinh2

(
p2c2π2ε

2ωL3
z

t

)
= −1

2
e−2κt +

1

4
e(εg0−2κ)t +

1

4
e−(εg0+2κ)t. (2.21)
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In order to get an increase in photons it is clear that we must demand that εg0 > 2κ

or,

Qεg0 > ωc → ε >
ωc
Qcg0

. (2.22)

This condition is important, because it is general and applies to any cavity system

where we implement a dynamic element that oscillates at twice the resonant frequency

and changes the resonant frequency. In principle, g0 can be measured by experiment.

This condition is powerful because for some cavity systems no analytic solution for

the resonance exists. If you want to figure out if a cavity/membrane system is a

good candidate to observe the DCE, you just need to measure g0, ωc, and Qc for

your system. For a Fabry-Perot system where g0 = ωc/L and ωc = nπc/L we get the

following threshold condition.

Qcωdε = Qcvm > 2πnc (2.23)

If we use the results from a cylindrical cavity, we arrive at the following threshold

condition for the amplitude of the oscillating membrane.

Qcωdε >
2πc

p2

(
Lz
Leff

)3

& c (2.24)

where Leff = πc
ω

. These amplitude thresholds compare nicely with [16], if you replace

the amplitude here with the driving force required to obtain that amplitude. See

Section 2.3.3 for the force required for specific membrane motion. The threshold

written just in terms of the amplitude is,

ε >
ω2
cL

3
z

Qcp2π2c2
. (2.25)

For our cavity values, ωc = 2π × 10 GHz, Qc = 109, L = 2.7 cm we will need ε >

8.75× 10−11 m.
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Off Resonant Excitation

Here we will look at off resonant motion exciting the cavity mode. Instead of looking

at the process of one phonon becoming two photons, ωm = 2ωc, we will look at the

process of k phonons becoming two photons, kωm = 2ωc [17]. This will allow us to

drive the system at a lower frequency. This is important because finding a material

with a natural resonance at 20 GHz is difficult. Our membranes have a resonant

frequency around 6 kHz, so this process would have to involve k ∼ 106. This off

resonant driving can be studied with Equations 2.19 and 2.20. Here we will solve for

N(t) generally without using the condition ωm = 2ωc.

N(t) =
ε2g2

0

ε2g2
0 − (ωd − 2ωc)2

e−2κtsinh2

(
1

2

√
ε2g2

0 − (ωd − 2ωc)2t

)
(2.26)

This leads to a threshold condition for the amplitude in general of,

Qcεg0 ≥ ωc

√
1 +Q2

c

(
ωd
ωc
− 2

)2

, (2.27)

and for our cylindrical cavity,

ε ≥ ω2
cL

3

Qcπ2c2

√
1 +Q2

c

(
ωd
ωc
− 2

)2

. (2.28)

If we plug in the values for the cavities in our lab, and we assume that we are driving

at the 6 kHz resonance of our membrane, then this amplitude threshold expression

tells us that we need the membrane to move with an amplitude of 17.5 cm. Even if we

can find a material with a 10 GHz resonance, the amplitude needed would be 8.75 cm.

Both of these amplitudes are larger than the length of the cavity Lz. According to

the amplitude threshold expression you need your resonance to be within a line width

of 2ωc in order to have a reasonable threshold.
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2.3.2 Double Cavity DCE

In this section we look at parametric amplification of vacuum fluctuations in a double

cavity. Our setup is shown in Figure 2.2. The two cavities on the right side of

Figure 2.2 are coupled together by an iris that allows the fields of each cavity to

interact. The part of the Hamiltonian which describes this interaction looks like

HI = ~j0(a†1a2 + a1a
†
2), where a1 and a2 represent the 2 different cavity annihilation

operators. j0 is the coupling between the two cavities. j0 can be found experimentally

by measuring the avoided crossing of the two cavity modes. This can be done by

changing the resonance of one of the cavities. The minimum splitting in the avoided

crossing will be twice the coupling constant, ∆ωmin = 2j0. If we neglect the effect

of the membrane on the system, the observed resonant frequencies can be written in

terms of the bare resonance and the cavity-cavity coupling [18].

ω± =
ω1 + ω2 ±

√
(ω1 + ω2)2 − 4 (ω1ω2 − j2

0)

2
(2.29)

In Figure 2.5, we plot Equation 2.29 as we change the bare resonance ω2 to show the

avoided crossing. The complete Hamiltonian for this system is,

H = ~
(
ω1 −

ωd
2

)
a†1a1 + ~

(
ω2 −

ωd
2

)
a†2a2 +

1

4i
~g0ε0

(
a2

1 − a†21

)
+ ~j0(a†1a2 + a1a

†
2).

(2.30)

Here we have prescribed the motion to the membrane, and we have already moved

to a frame rotating at the drive frequency. In general the equations of motion are,

da1

dt
= −i

(
ω1 −

ωd
2

)
a1 +

ε0
2
g0a
†
1 − κa1 − ij0a2, (2.31)

da†1
dt

= i
(
ω1 −

ωd
2

)
a†1 +

ε0
2
g0a1 − κa†1 + ij0a

†
2, (2.32)

da2

dt
= −i

(
ω2 −

ωd
2

)
a2 − κa2 − ij0a1, (2.33)

and
da†2
dt

= i
(
ω2 −

ωd
2

)
a†2 − κa†2 + ij0a

†
1. (2.34)
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Figure 2.5: The cavity frequencies f± vs. the detuning f2 − f1. f1 = 10 Hz and
j0 = 2π × 10−1 Hz.

The double cavity setup gives us several ways to amplify vacuum fluctuations. The

first and most obvious is to pump at the addition frequency of the modes, ωd = ω1+ω2.

In this case, one phonon becomes two coupled cavity photons, one for each cavity.

For this case we substitute, ω2 → ωd − ω1, and in this case, the equations of motion

are,
da1

dt
= −i

(
ω1 −

ωd
2

)
a1 +

ε0
2
g0a
†
1 − κa1 − ij0a2, (2.35)

da†1
dt

= i
(
ω1 −

ωd
2

)
a†1 +

ε0
2
g0a1 − κa†1 + ij0a

†
2, (2.36)

da2

dt
= −i

(
ωd − ω1 −

ωd
2

)
a2 − κa2 − ij0a1, (2.37)

and
da†2
dt

= i
(
ωd − ω1 −

ωd
2

)
a†2 − κa†2 + ij0a

†
1. (2.38)

The solution to this set of coupled equations takes up several lines, so we will not

show it here. But they lead to the following amplitude threshold for amplification of
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the fields a1 and a2.

ε ≥ 4j2
0 + 4κ2 + (ωd − 2ω1)2

g0

√
4κ2 + (ωd − 2ω1)2

(2.39)

If the cavity-cavity coupling, j0 → 0, then we recover the amplitude threshold

from the single cavity case. This tells us that the best threshold in this specific

double cavity case will be when the coupling between the cavities is very small. This

will put the two cavity resonances very close together. This case is not feasible

experimentally because it will require ωd = ωm ∼ 20 GHz. The amplitude needed for

amplification given in Equation 2.39, using our cavity values of ω1 = 2π × 10 GHz,

Qc = 109, L = 2.7 cm, and j0 = 2π × 1 kHz is 3.5× 10−8 m. For any given j0, the

threshold amplitude is minimized when ωd = 2ω1 + 2j0. In principle, the coupling is

determined by the iris size and there is no reason why we could not have a coupling

of j0 = 2π × 100 Hz. This would lead to a threshold amplitude of 2 nm.

The second way that we can excite the field in the cavity is to drive the cavity at

the difference frequency of the cavities, ωd = ω2 − ω1. This case is a little different

than your typical DCE, but it is the generation of two photons from one phonon.

Figure 2.6 illustrates better what is going on. Two processes are occurring in the

cavity. In the first process, the photons in cavity 2 turn into a membrane phonon and

a cavity 1 photon. In the second process, a membrane phonon adds to the cavity 1

photon to produce a cavity 2 photon. Initially only the phonon state is occupied and

the photons are in the vacuum state. For this case, ω2 → ωd + ω1. In this case, the

equations of motion are simplified to,

da1

dt
= −i

(
ω1 −

ωd
2

)
a1 +

ε0
2
g0a
†
1 − κa1 − ij0a2, (2.40)

da†1
dt

= i
(
ω1 −

ωd
2

)
a†1 +

ε0
2
g0a1 − κa†1 + ij0a

†
2, (2.41)

da2

dt
= −i

(
ωd + ω1 −

ωd
2

)
a2 − κa2 − ij0a1, (2.42)

and
da†2
dt

= i
(
ωd + ω1 −

ωd
2

)
a†2 − κa†2 + ij0a

†
1. (2.43)
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Figure 2.6: Energy level diagrams for the double cavity in the case ωd = ω2 − ω1.

Again, here the solution to this set of coupled equations takes up several lines and is

not shown. But they lead to the following amplitude threshold for amplification of

the fields a1 and a2.

ε2 ≥ 16j4
0 + 16κ4 + 8j2

0(4κ2 − 4ω2
1 + 8ω1ωd − 3ω2

d) + (4ω2
1 − 8ω1ωd + 3ω2

d)
2

g2
0 (4κ2 + (ωd − 2ω1)2)

+
8κ2(4ω2

1 − 8ω1ωd + 5ω2
d)

g2
0 (4κ2 + (ωd − 2ω1)2)

(2.44)

If we plug in our cavity values into this equation, with j0 = 2π × 3 kHz, we get a

threshold amplitude of 17.5 cm. This will never work for a cavity that is only 2.7 cm

long.

We could excite the cavity modes while at the avoided crossing. The first case we

will look at is the case in which we excite the cavity at the difference frequency of

the cavities, ωd = ω+ − ω−. For this case, ωd = 2j0 and ω1 = ω2. In this case the
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equations of motion are,

da1

dt
= −i (ω1 − j0) a1 +

ε0
2
g0a
†
1 − κa1 − ij0a2, (2.45)

da†1
dt

= i (ω1 − j0) a†1 +
ε0
2
g0a1 − κa†1 + ij0a

†
2, (2.46)

da2

dt
= −i (ω1 − j0) a2 − κa2 − ij0a1, (2.47)

and
da†2
dt

= i (ω1 − j0) a†2 − κa†2 + ij0a
†
1. (2.48)

Again, here the solution to this set of coupled equations takes up several lines and is

not shown. But they lead to the following amplitude threshold for amplification of

the fields a1 and a2.

ε >
2
√
κ2 + ω2

1

√
κ2 + (ω1 − 2j0)2

g0

√
κ2 + (ω1 − j0)2

(2.49)

If we use our cavity values with ωd = 2j0 = 2π× 6 kHz, then the amplitude threshold

is 17.5 cm. This is not an achievable amplitude.

Another way we could excite the modes of the cavity is to drive the system at the

addition frequency, ωd = ω+ + ω−. We replace 2ω1 = 2ω2 = ωd. The equations of

motion are,
da1

dt
=
ε0
2
g0a
†
1 − κa1 − ij0a2, (2.50)

da†1
dt

=
ε0
2
g0a1 − κa†1 + ij0a

†
2, (2.51)

da2

dt
= −κa2 − ij0a1, (2.52)

and
da†2
dt

= −κa†2 + ij0a
†
1. (2.53)

The amplitude threshold for these equations of motion is,

ε >
2j2

0

g0κ
+

2κ

g0

. (2.54)
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Notice here, if we let j0 → 0, we recover the single cavity threshold. This means

that we need the cavities to be weakly coupled. If we plug in our cavity values with

j0 = 2π × 3 kHz, we get an amplitude threshold of 3.1× 10−5 m.

In general if you are at the avoided crossing, ω1 = ω2, then the threshold condition

is,

ε >

√
16j4

0 + 8j2
0 (4κ2 − (ωd − 2ω1)2) + (4κ2 + (ωd − 2ω1)2)2

g0

√
(4κ2 + (ωd − 2ω1)2)

. (2.55)

In this Section, we showed that while the double cavity does give us more avenues

to excite the modes, none of the small frequency driving cases had a small enough

amplitude threshold to be feasible.

A Raman-Like Process

The Raman effect is the inelastic scattering of photons due to an element or material

that can vibrate. In the Raman effect, usually a higher energy photon inelastically

turns into a phonon in the material and a lower energy photon [19]. See Figure 2.7

for the energy level diagram of this process. A similar type of process to the Raman

ωp=ω2 

ωm 

ωs=ω1 

Input Fields 

Output Fields 

E
ne

rg
y 

Frequency 

Figure 2.7: Energy level diagrams for Raman effect.
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effect has already been seen in these types of cavities [20], [21]. The schematic of

Reece’s double cavity experiment is shown in Figure 2.8, and his main result is shown

in Figure 2.9. In Reece’s work, he was able to create gain in the lower resonance of

this cavity setup by modulating the end wall at the splitting frequency of the cavity.

The purpose of this cavity was to detect gravitational waves. In the absence of an

external modulation of the end wall, gravitational waves can serve as the source of

end wall modulation. The detection of a gravitational wave can be seen through the

amplification of the lower resonance in this type of cavity. This result is important,

because reciprocity demands that any device that can detect gravitational waves can

also generate a coherent beam of gravitational radiation [22]. This is also true for

LIGO, any interferometer that can extract power from a gravitational wave can also

impart power into the gravitational wave, as shown in [23] and [24].

46  

Tuning  
Endwall  

.. . ." 
f ", •••• 

.. ".. " . . . '" . .. . . 

Vibrating 
Endwell 

Figure 4.2 The Coupled Cavity System Figure 2.8: Schematic of Reece’s double cavity experiment. [21]

Reece’s work is a little different from what we want to do, but it is good to know

that something similar can be observed in these types of cavities. What we would like

to see is gain in the lower resonance by just inserting a pump at the upper frequency.
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Figure 5. J Observation of Parametric Conversion Figure 2.9: Results from Reece’s double cavity experiment. Observation of Parametric
Conversion. [21]

The Hamiltonian we will use to look at this process is,

H = ~ (ω1 − ωin) a†1a1 + ~ (ω2 − ωin) a†2a2 + ~ωmb†b+ ~g0a
†
1a
(
b† + b

)
+

+~j0(a†1a2 + a1a
†
2) + ~

(
Ω∗1a1 + Ω1a

†
1

)
+ ~

(
Ω∗2a2 + Ω2a

†
2

)
.

(2.56)

This is different from the previous Hamiltonians that we have written down. In

this case, we do not prescribe the motion of the membrane. Instead, we allow the

membrane motion to be a dynamic variable with b and b† the creation and annihilation

operators for the membrane. We also introduce pump power terms Ω1 and Ω2, which

are related to the power being input into each cavity and are defined as,

Ω1,2 =

√
2P1,2κex1,2
~ωin

, (2.57)

where P1 and P2 are the powers being pumped into cavity 1 and 2. Notice that we

have already rotated to a frame rotating with input frequency ωin. The equations of

motion are,

da1

dt
= (i (ωin − ω1)− κ1) a1 − ig0a1

(
b† + b

)
− ij0a2 − iΩ1, (2.58)
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da2

dt
= (i (ωin − ω2)− κ2) a2 − ij0a1 − iΩ2, (2.59)

and
db

dt
=
(
−iωm −

γ

2

)
b− ig0a

†
1a. (2.60)

where we have introduced the membrane decay rate, γ = ωm/Qm. In the Raman

effect we will set Ω2 = 0 and ωin = ω2 = ω1 + ωm. This simplifies our equations of

motion to,

da1

dt
= (iωm − κ1) a1 − ig0a1

(
b† + b

)
− ij0a2 − iΩ1, (2.61)

da2

dt
= −κ2a2 − ij0a1, (2.62)

and
db

dt
=
(
−iωm −

γ

2

)
b− ig0a

†
1a. (2.63)

The steady state values for a1, a2, and b are,

a1s =
i (j0a2s + Ω1)

i
(
ωm − g0

(
b†s + bs

))
− κ1

, (2.64)

a2s =
−ij0a1s

κ2

, (2.65)

and

bs =
−ig0a

†
1sa1s

iωm + γ
2

. (2.66)

These nonlinear coupled equations can be examined graphically. Figures 2.10, 2.11,

and 2.12 are the total number of photons or phonons in the cavity modes and mem-

brane, given our cavity values.

Figure 2.11 is not surprising because we are inserting photons at that cavity

frequency, ω2. Figure 2.12 is interesting because even at 250µW, we have 7× 1012

phonons in the membrane which is larger than the number of thermal phonons, nth =
1

e
~ωm
kBT −1

, at 50 mK, which is 105. Figure 2.10 shows that we can excite the cavity

resonance ω1 at reasonable input power. As a simple estimation, the total number of
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Figure 2.10: Number of photons with ω1 in the cavity vs. input power.
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Figure 2.11: Number of photons with ω2 in the cavity vs. input power.

photons leaving the cavity per second is N1out = 2κ1 |a1|2 which is shown in Figure

2.13. Figure 2.13 shows that at 250µW, we can expect 15 photons per second. Since

the thermal noise associated with the cavity photons at 50 mK is very low, < 1

photon every 100 s, we must look at the other noise and loss contributions to the

output signal. The cables coming from the cavity and into the HEMPT amplifier will

have 6 dB of loss. This corresponds to about a 75% loss in the number of photons

per second. We have installed NbTi superconducting SMA cables in the line to the

HEMPT amplifier. This installation was done in order to measure vacuum squeezing.
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Figure 2.12: Number of phonons with ωm in the membrane vs. input power.
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Figure 2.13: Number of photons with ω1 leaving the cavity per second vs. input
power.

This will reduce the losses to 0.5 dB. This will correspond to about a 10% loss in

the number of photons per second. So in principle, we should be able to measure the

photon flux coming out of the cavity.
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2.3.3 Power Thresholds

According to the amplitude threshold calculations, our best case scenario, would be

to look at the dynamical Casimir effect in the single cavity system. In this section,

we calculate the amount of power we will need to get the membrane to move with

the threshold amplitude.

The Preliminary Power Threshold from our Proposals

To solve for the full N(t) with losses and power input driving the membrane, we

should allow ε to be time dependent since the energy in the pump cavity which drives

the motion of the membrane is not a constant. However for a calculation of the

threshold power, we only need to assume that ε has reached saturation. The value

that we get for the power threshold, the minimum power input into the pump cavity

that we need for the onset of DCE, will depend on what assumptions we make about

the pump cavity and the membrane.

For example, if we assume (as was done in the cavity proposals),

i) that the cavity energy and membrane energy are equivalent, and that they decay

with the cavity’s quality factor Qc,

then we see that,
dE(t)

dt
= Pin −

ωc
Qc

E(t) (2.67)

This assumption relies on the membrane being locked to the fields when being driven

far off resonance, which is the case here (ωm � ωc). Using Equation 2.67, Pin =
wc

Qc
E(t) at threshold. Now we plug in the minimum energy needed in the membrane

found by using the threshold condition 2.24, to arrive at,

Pthresh =
ω

Q

1

2
m

(
2πc

Qp2

(
Lz
Leff

)3
)2

. (2.68)

Notice that the threshold scales as 1/Q3. This leads to a power threshold for our

cavities of around 100µW which is great, but assumption i) is not valid and Equation
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2.67 is not correct. The correct equation should read,

dEc(t)

dt
= Pin −

ωc
Qc

Ec(t)−
ωm
Qm

Em(t)− ~ωc
dN(t)

dt
. (2.69)

Near threshold, you can neglect the term dN(t)
dt

, but Qc 6= Qm and ωc 6= ωm. We

do not end up with Equation 2.67. We could allow the membrane motion to be a

dynamical variable and use the Hamiltonian to calculate the equations of motion, but

instead, we assume that the pump power is large enough that we can effectively view

the pump cavity classically.

Force Required for Membrane Motion

We can effectively model the equation of motion of the membrane as a damped driven

harmonic oscillator.

ẍ+
ωm
Qm

ẋ+ ω2
mx−

Fz
m

sin (2ωct) (2.70)

Here we have distinguished the membrane quality factor and resonant frequency as

Qm and ωm. Qc and ωc represent the cavity. While Equation 2.70 is classical, we get

the same result in the Heisenberg picture because the equation of motion is linear in

x(t). This means that we can carry the classical solutions over formally to quantum,

except for the interpretation of x(t) as an operator and not a number. The solution

to Equation 2.70 is,

x(t) =
Fz

mωm
(
4ω2

cω
2
m +Q2

m (ω2
m − 4ω2

c )
2)×

×
[
Q2
mωm

(
ω2
m − 4ω2

c

)
sin (2ωct)− 2Qmωcω

2
m cos (2ωct)

]
+ ∝ e−t

(2.71)

The first part is the steady state solution that we are concerned with, the additional

piece that is proportional to e−t we may neglect because we are looking for steady

state amplitude. We can take three separate limits of this equation to simplify. First,

for ωc � ωm, and only concerning ourselves with the steady state motion, we see

that,

x(t) =
Fz

4mω2
c

sin (2ωct) . (2.72)



CHAPTER 2. QUANTUM OPTOMECHANICS 26

This shows that the amplitude of oscillation of the membrane is given as,

ε =
Fz

4mω2
c

. (2.73)

Notice that this amplitude does not depend on any other characteristics of the mem-

brane except for the mass. This is because we are driving far above resonance.

If we instead drive at a frequency well below the mechanical resonance, ωm � ωc,

we see that the steady state amplitude is given approximately by,

ε =
Fz
mω2

m

. (2.74)

This amplitude does depend on the membrane resonance, but it does not depend on

the quality factor of the membrane.

If we are on resonance ωm = 2ωc, the steady state solution becomes

x(t) = −FzQm

4mω2
c

cos (2ωct) , (2.75)

with

ε =
FzQm

4mω2
c

. (2.76)

Notice that on resonance, the quality factor of the membrane matters and enhances

the motion.

The force acting on the membrane is given by,

Fz =

ˆ
TzznzdS, (2.77)

where Tzz is the zz component of the Maxwell stress tensor,

Tij =:

[
ε0EiEj +

1

µ0

BiBj −
1

2

(
ε0E

2 +
1

µ0

B2

)
δij

]
: . (2.78)
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The only non zero component of the TE011 mode at the end wall boundary is the

magnetic field component Bρ which is,

Bρ =
B0πR

Lχ
′
01

J
′

0

(
χ
′
01ρ

R

)
cos
(πz
L

)
e−iωct. (2.79)

Bρ will depend on on the input power and Qc. In equilibrium, Pin = Ploss so that the

energy in the cavity is given by U = PinQc

ωc
. U , the total energy, can be calculated

by integrating the energy density, u, or U =
´
udV . For electromagnetism, u =

1
2

(
ε0E

2 + B2

µ0

)
. Within the volume of the cavity, the nonzero components of the

TE011 mode are Eφ, Bz, and Bρ. The energy density is then,

u =
1

2

[
ε0
B2

0ω
2
cR

2

χ
′2
01

J
′2
0

(
χ
′
01ρ

R

)
sin2

(πz
L

)]
+

1

2

[
B2

0

µ0

(
π2R2

L2χ
′2
01

J
′2
0

(
χ
′
01ρ

R

)
cos2

(πz
L

)
+ J2

0

(
χ
′
01ρ

R

)
sin2

(πz
L

))]
. (2.80)

Now we must integrate,

U =

ˆ L

0

ˆ 2π

0

ˆ R

0

uρdρdφdz. (2.81)

After integration and some simplification we get,

U =
1

8
B2

0LR
2J2

0

(
χ
′

01

)[ 1

µ0

(
1 +

π2R2

L2χ
′2
01

)
+
ε0ω

2
cR

2

χ
′2
01

]
. (2.82)

Using U = PinQc

ωc
we can solve for B0.

B2
0 =

PinQc

ωc

8

LR2J2
0

(
χ
′
01

) [
1
µ0

(
1 + π2R2

L2χ
′2
01

)
+ ε0ω2

cR
2

χ
′2
01

] (2.83)

Now Equation 2.77 becomes,

Fz =

ˆ
π

µ0

B2
ρρdρ. (2.84)
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We substitute 2.83 and 2.79 in 2.84 and after integration we have,

Fz =
PinQc

ωc

4π3R2

L3χ
′2
01µ0

[
1
µ0

(
1 + π2R2

L2χ
′2
01

)
+ ε0ω2

cR
2

χ
′2
01

] . (2.85)

This can be simplified to,

Fz =
2π3c2PinQc

ω3
cL

3
, (2.86)

which is the force acting on the membrane.

The Corrected Power Threshold

We may rewrite the threshold condition for parametric amplification as,

ε ≥ L3ω2
c

π2c2Q
. (2.87)

Using Equations 2.87, 2.73, and 2.86 we can solve for the threshold power required

for parametric amplification,
Fz

4mω2
c

≥ L3ω2
c

π2c2Qc

, (2.88)

or

Pin ≥
2mL6ω7

c

Q2
cc

4π5
. (2.89)

Plugging in the following values, ωc = 2π × 10 GHz, Qc = 109, L = 2.7 cm, and

m = 3× 10−6 kg we get a threshold power of,

Pthreshold = 1.4× 106 W (2.90)

This is too much power for the dilution refrigerator. Now if we use the on resonance

situation, ωm = ωd, then,
QmFz
4mω2

c

≥ L3ω2
c

π2c2Qc

, (2.91)

and we arrive at,

Pin ≥
2mL6ω7

c

QmQ2
cc

4π5
(2.92)
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Except for a factor of π, this is exactly Equation 2.68, but one of our Q’s here is the

quality factor of the membrane. Notice though, that this is for the case when the

membrane is resonant with the cavity. Because we are not resonant with the cavity,

we lose a factor of Qm in the threshold. Or, we end up with,

Pin ≥
2mL6ω7

c

Q2
cc

4π5
∝ 1/Q2. (2.93)

We must work below 250µW; if we plug this into Equations 2.86 and 2.73 we see that

the force acting on the membrane will be 4.6× 10−4 N and the amplitude of oscillation

will be ≈10−20 m. This is troublesome because according to Equation 2.87, we need

10−11 m of oscillation. Even more troublesome, zero point fluctuations
√

~
2mωm

are on

the order of 10−17 m for a 6 kHz oscillator. This means that we would need hundreds

of milliwatts just to get above the zero point fluctuations.

Finally, while we did not begin with an assumption of slaved motion, we can show

that the motion is in fact slaved, or locked to the field. By slavery here, we mean

that the quality factor of the driving field determines the measured quality factor

of the membrane. We will refer to this as Q Locking. We assume that the fields

and therefore the force acting on the membrane decays with the quality factor of the

cavity. As depicted in Figure 2.14, the input power is turned off after t = 500 s. If we

put this force profile into Equation 2.70 and plot the resulting motion, we get Figure

2.15. Notice, that the motion of the membrane decays with the Q of the cavity, Qc

and not Qm. So it may be true that you can replace Qm with Qc in some cases, but

this is not the case for us however. Here we are dealing with energy losses, and the

measured quality factor here has no real meaning. Instead the measurement would

just be a bad experimental technique. To accurately measure the quality factor of an

oscillator, you must drive the oscillator with a force that has a lower quality factor

than the membrane or Qd � Qm.

This consideration of Q locking has no effect on the steady state amplitude of the

membrane because, as shown in Equation 2.73, the amplitude does not depend on

Qm in the limit ωm � ωc.
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Figure 2.14: Force acting on the membrane vs. time

Figure 2.15: Oscillation of the membrane vs. time

2.3.4 DCE Conclusion

If we want to achieve the dynamical Casimir effect in our cavity we will need to replace

our membrane with an element with a resonance that is much closer to 2ωc. This

result suggests that we must replace the mechanical motion of the membrane with
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for instance, the electronic motion of cooper pairs in Josephson junctions. This is the

essence of the work done by [11], where they observed the DCE in a superconducting

circuit. Electronic motions can achieve a much higher frequency, so it is an easier

way to meet the resonance conditions of the DCE.

2.4 Quadrature Squeezing

An interesting result of quantum mechanics is that it predicts that the level of un-

certainty in the measurements of an observable are related to the uncertainty in the

measurements of other non commuting observables. For example, in general if you

have two observables A and B, then their uncertainties will be related by,

〈(∆A)2)〉〈(∆B)2〉 ≥ 1

4
|〈[A,B]〉|2. (2.94)

To give an example, we look at the uncertainties in position and momentum mea-

surements. Plugging x and px into Equation 2.94, we get,

〈(∆x)2)〉〈(∆Px)2〉 ≥ 1

4
~2. (2.95)

This shows that the more precise our measurement of x, the more imprecise our

knowledge of px must be. If we replace the ≥ with = then the observed state is said

to be in a minimum uncertainty state.

Squeezing in general is achieved when you decrease the uncertainty in a specific

measurement and increase the uncertainty in its conjugate variable. This allows, for

example a measurement of x to a precision ∆x < 1√
2
~. These types of precision mea-

surements are useful for example in interferometry experiments such as LIGO, where

the uncertainty in position limits your ability to precisely measure the movement

caused by a gravitational wave.

It is well known that the output of a parametric amplifier becomes squeezed when

it is pumped just below threshold. Here, we show the theoretical maximum squeezing

in such a device, and the theoretical maximum we should be able to achieve in our

proposed setup. In this section, we follow the notation of Yurke [25] and Yuen [26].
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We assume that the parametric amplifier transforms the modes according to the

Bogoliubov transformation,

b = µa+ νa†, (2.96)

where a and a† are the annihilation and creation operators of the original state. With

this transformation it is easy to see that the number of photons in the cavity is,

〈N〉 = 〈0|b†b|0〉 = |ν|2. (2.97)

Because the commutation relation, [b, b†] = 1 implies that |µ|2 − |ν|2 = 1, knowing

〈N〉 allows you to specify both µ and ν. The quadratures for which we will measure

squeezing are defined as,

X1 = b+ b†, (2.98)

and

X2 = ib− ib†, (2.99)

and obey the uncertainty relation, ∆X1∆X2 ≥ 1. In the minimum uncertainty co-

herent state, ∆X1 = ∆X2 = 1. Using (∆X)2 = 〈X2〉 − 〈X〉2, we can calculate the

amount of squeezing we can obtain. Since the quadratures are linear in a and a†,

〈X〉 = 0, so we only need to determine 〈X2〉.

〈X2
1 〉 = 〈0|X2

1 |0〉 = 1 + 2|ν|2 + 2|ν|
√
|ν|2 + 1 (2.100)

〈X2
2 〉 = 〈0|X2

2 |0〉 = 1 + 2|ν|2 − 2|ν|
√
|ν|2 + 1 (2.101)

These equations show that squeezing is maximized when ν is large. If we are below

threshold then the maximum value of ν is < 1. This determines our maximum amount

of squeezing that can be obtained from any parametric amplifier system. For ν = 1,

Eq 2.101 gives, (∆X2)2 = 0.17 or equivalently 7.7 dB of squeezing from the coherent

value of 1.

If we can write an input output relationship for the fields of a device in the

form 2.96, then we can immediately determine the squeezing. With no losses, the
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transformation has the form shown in Eq 2.10.

b = cosh(p2c2π2εt/2ωL3
z)a+ sinh(p2c2π2εt/2ωL3

z)a
† (2.102)

Since we are dealing with very small time scales, τ = Q/ω = 8 ms, Eq 2.102 is a very

good approximation. We include losses due to the quality factor Q, by limiting the

amount of time that the input signal interacts with the cavity to τ . Or equivalently,

ν = sinh(p2c2π2ετ/2ωL3
z). (2.103)

Eq 2.103 can be simplified by using the threshold condition in Eq 2.24 to simplify Eq

2.103 to,

ν = sinh(
ωτ

2Q
) = sinh(1/2). (2.104)

Plugging this into Eq 2.101 we find that,

(∆X2)2 = 0.367. (2.105)

This corresponds to a squeezing power of 4.3 dB from the unsqueezed value of 1. This

predicted squeezing power is on par with other experiments of this type. For the best

reported squeezing, see [27].

Because we were not able to achieve reasonable thresholds, we were not able to

perform any squeezing experiments.

2.5 Conclusion

We were able to show that the dynamical Casimir effect is not feasible in either the

single or double cavity at our maximum steady state power limit of 250µW. The

result of the dynamical Casimir effect thresholds are shown in the Tables below.

Because the dynamical Casimir effect was not feasible, the quadrature squeezing near

threshold is also not feasible. We were able to show that Raman like effects are

possible in the double cavity setup even at 250µW.
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There are two ways that the dynamical Casimir effect in our cavities can become

plausible. We can either find a mechanical element that has a mechanical resonance

in the 10 GHz range, or we can look for a cavity structure that has a better optome-

chanical coupling g0. The Tables below will serve as a good guide to select the right

material and cavity structure in future experiments.

Single Cavity

Case Threshold Amplitude

General ε > ωc

Qcg0

√
1 +Q2

c

(
ωd

ωc
− 2
)2

ωd = 2ωc ε > ωc

Qcg0

Table 2.1: Dynamical Casimir Effect Single Cavity Thresholds

Single Cavity

Case Extra Conditions Our Value ε(m)

General ωd = ωm 0.175

ωd = 2ωc none 8.75× 10−11

Table 2.2: Dynamical Casimir Effect Single Cavity, Our Lab Thresholds
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Double Cavity

Case Threshold Amplitude

ωd = ω1 + ω2 ε ≥ 4j20+4κ2+(ωd−2ω1)2

g0
√

4κ2+(ωd−2ω1)2

ωd = ω2 − ω1 ε2 ≥ 16j40+16κ4+8j20(4κ2−4ω2
1+8ω1ωd−3ω2

d)+(4ω2
1−8ω1ωd+3ω2

d)2

g20(4κ2+(ωd−2ω1)2)
+

+
8κ2(4ω2

1−8ω1ωd+5ω2
d)

g20(4κ2+(ωd−2ω1)2)

ωd = ω+ + ω−,

ω1 = ω2,

2ω1 = 2ω2 = ωd

ε >
2j20
g0κ

+ 2κ
g0

ωd = ω+ − ω−,

ω1 = ω2,

ωd = 2j0

ε >
2
√
κ2+ω2

1

√
κ2+(ω1−2j0)2

g0
√
κ2+(ω1−j0)2

ω1 = ω2,

General

ε >

√
16j40+8j20(4κ2−(ωd−2ω1)2)+(4κ2+(ωd−2ω1)2)2

g0
√

(4κ2+(ωd−2ω1)2)

Table 2.3: Dynamical Casimir Effect Double Cavity Thresholds



CHAPTER 2. QUANTUM OPTOMECHANICS 36

Double Cavity

Case Extra Conditions Our Value ε(m)

ωd = ω1 + ω2 ωd = 20 GHz, j0 = 20 0πHz 2× 10−9

ωd = ω2 − ω1 ωd = ωm = 2j0 0.175

ωd = ω+ + ω−,

ω1 = ω2,

2ω1 = 2ω2 = ωd

2j0 = ωm 3× 10−5

ωd = ω+ − ω−,

ω1 = ω2,

ωd = 2j0

2j0 = ωm 0.175

Table 2.4: Dynamical Casimir Effect Double Cavity, Our Lab Thresholds

2.6 Recent Research

In this section, we will look at two recent papers that claim to show feasibility of

detecting the dynamical Casimir effect.

2.6.1 DCE with Forcing

In May of this year (2019), Butera and Carusotto published a paper where they looked

at the dynamical Casimir effect for a single cavity in the formalism of optomechanics

[16]. In their paper, they treat the membrane motion as a dynamic degree of freedom.
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This is different from our approach in which we prescribed the motion. They add

a generic driving force, F (t) ∼ F0e
−iωdt, that drives the membranes’ motion. If the

driving is strong enough, it is equivalent to prescribing the motion. Their threshold

force was found to be,

F th
0 =

2ωcωm
8QmQcg0xzpf

. (2.106)

If the driving is on resonance with the membrane, then we can show that this threshold

is equivalent to our ωd = ωm = 2ωc DCE case. In Section 2.3.3 we calculated the

force required to move the membrane for different resonance conditions and we can

use this to relate this paper’s findings with ours. Using Equation 2.76 we see that

the relationship between their threshold and ours can be found using,

F0 = ε
4mxzpfω

2
c

2~Qm

. (2.107)

Solving for ε using Equation 2.106 and 2.107 will give ε = ωc/g0Qc which is exactly our

threshold condition. This confirms equivalence between the prescribed motion method

and the forcing method of analysis. They go on to analyze back reaction effects of

the DCE field on the membrane and conclude that these effects will be very small

and most likely not detectable. Their next course of action is very interesting, they

intend to use a similar formalism to look at the back reaction of Hawking radiation

on the horizon of a black hole, specifically during the late stages of evaporation. This

will be very important work that should give us very valuable insights into quantum

gravity.

2.6.2 2 Photon Raman-DCE

In a preprint paper (February 2019) Qin et. al. look at a novel way of approaching the

dynamical Casimir effect [28]. Their approach is different from the typical approach of

just driving a membrane. They drive the membrane with a forcing function, but they

also implement a detuned 2 photon driving of the cavity. The energy level diagram

that is provided in the paper is shown in Figure 2.16.
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FIG. 1. (a) Setup for observing the mechanical DCE. In
this optomechanical system, a �(2) nonlinear crystal driven at
frequency !

L

and amplitude ⌦ is used to squeeze the cavity
mode of frequency !

c

, and the mechanical resonator is driven
by a force of frequency !

d

and amplitude F . The DCE occurs
in the squeezed frame, and a large number of DCE photons,
emitted from the cavity, can be observed in the laboratory
frame. (b) Level diagram of the bare optomechanical system.
The solid (dashed) arrows indicate two-photon hyper Raman
(one-photon Raman) scattering processes induced by the
optomechanical coupling. We assume, for simplicity, that
⌦ ⌧ !

m

, such that the resonance condition is 2!
c

' !
L

+!
m

.
(c) SCM frequency !

s

as a function of the parametric-driving
detuning � and strength ⌦. The dashed curve represents the
!
m

= 2!
s

case. Here, in order for the system to be stable, we
need to have � > ⌦.

in a measurable output-photon flux originating from the
DCE.

As opposed to previous mechanical-DCE proposals,
our approach requires neither an ultra-high mechanical
frequency nor an ultrastrong coupling. In addition,
the model discussed here is a generic optomechanical
setup. Hence, with current technologies our proposal
could be realized in various physical architectures,
e.g., superconducting resonators [36, 37] and optical
cavities [38].

Model.— We consider an optomechanical system, as
schematically depicted in Fig. 1(a). Most experiments in
cavity optomechanics are carried out under a coherent
optical driving of a cavity, so that the cavity field
can be split into an average coherent amplitude and
a fluctuating term [27]. For a red-detuned driving,
the fluctuations of the cavity field and the mechanical
resonator can interchange quanta resonantly [39]. This
process is viewed as one-photon Raman scattering [see
Fig. 1(b)]. The basic idea underlying our proposal is,

instead, to use a detuned two-photon driving, e.g., of
frequency !

L

and amplitude ⌦, to squeeze the cavity
mode. The driving results in parametric down conversion
of mechanical phonons to correlated cavity-photon pairs,
which corresponds to the DCE. Furthermore, the SCM
frequency completely depends on the detuning � =
!
c

� !
L

/2 and the amplitude ⌦. This can be exploited
to tune the parametric phonon-photon coupling into
resonance, determining a strong amplification of the
DCE. When the mechanical mode is driven, e.g., at
frequency !

d

and amplitude F , a strong steady-state
output-photon flux that is induced by the DCE can
be achieved in the laboratory frame. The parametric
energy conversion of the mechanical motion to the
electromagnetic field, which were predicted in the original
DCE proposals, can therefore be observed. The
process can be interpreted, in the laboratory frame,
as two-photon hyper-Raman scattering [see Fig. 1(b)].
Specifically, in the absence of mechanical excitations, the
o↵-resonant two-photon driving produces only a limited
amount of cavity photons, but when mechanical phonons
of proper frequency are present, the driving photons are
scattered into resonant cavity-photon pairs.

We now analyze the mechanical DCE and its
observable signatures in experiments. To begin, we
consider the Hamiltonian

H = HOM +HCD +HMD. (1)

Here, HOM = !
m

b†b � g0a
†a

�
b+ b†

�
describes a

standard optomechanical coupling, HCD = �a†a +
1
2⌦

�
a2 + a†2

�
a detuned two-photon cavity driving,

and HMD = 1
2F

⇥
exp (i!

d

t) b+ exp (�i!
d

t) b†
⇤
a single-

phonon mechanical driving. The bare cavity mode
a, when parametrically driven, is squeezed with a
squeezing parameter r = 1

4 ln [(�+ ⌦) / (�� ⌦)], and
accordingly, is transformed to a squeezed mode a

s

,
via the Bogoliubov transformation a

s

= cosh (r) a +
sinh (r) a† [35]. As a result, HCD is diagonalized to
HCD = !

s

a†
s

a
s

, where !
s

=
p
�2 � ⌦2 is a controllable

SCM frequency. In Fig. 1(c) we plot !
s

as a function
of � and ⌦, and find that the resonance condition
!
m

= 2!
s

, for a parametric coupling between SCM
and mechanical mode (see below), can be achieved with
experimentally modest parameters. The optomechanical-
coupling Hamiltonian is transformed, in terms of
a
s

, to HOM =
⇥
�gOMa†

s

a
s

+ gDCE

�
a2
s

+ a†2
s

�⇤ �
b+ b†

�
,

where gOM = g0 cosh (2r) is an e↵ective single-photon
optomechanical coupling, and gDCE = g0 sinh (2r) /2
is a coupling associated with the DCE. The dynamics
under HOM describes a mechanical modulation of the
boundary condition of the squeezed field [34, 40, 41],
and as !

m

' 2!
s

, the DCE can be demonstrated in the
squeezed frame. Under the rotating-wave approximation,
the coherent dynamics of the system is governed by an

Figure 2.16: Energy level diagram for 2 photon driving DCE [28].

As can be seen from Figure 2.16, the process they are proposing is one where a

photon and a phonon become two photons. The resonance condition is 2ωc = ωl+ωm,

where ωl is the driving frequency. This has all of the characteristics of the dynamical

Casimir effect without (in my opinion) actually being the dynamical Casimir effect.

There is a moving membrane whose phonons get converted into photons. There is

a production of correlated photon pairs. But this is still different from the actual

DCE where 1 phonon become 2 photons. This is really just a 2 photon Raman effect,

they even say this in the paper. They state, “The process can be interpreted, in the

laboratory frame, as two-photon hyper-Raman scattering.” The real reason why this

is not the real DCE is because in the real DCE there is the possibility of creating

other particles from vacuum and not just photons, i.e. gravitons, neutrinos, and

other massless as well as massive particles. That was the premise of our graviton

laser proposal. This two photon Raman DCE has no possibility of creating gravitons.



CHAPTER 2. QUANTUM OPTOMECHANICS 39

2.7 Our Lab Values

Symbol Meaning Definition Value

m Membrane mass 3× 10−6 kg

L Cavity length 27× 10−3 m

ωm/2π Mechanical resonance frequency 6× 103 Hz

ωL Microwave/laser input frequency

ωc/2π Cavity resonance frequency 10× 109 Hz

xzpf Zero-point fluctuations xzpf =
√

~
2meffΩm

2.1× 10−17 m

γm/2π Mechanical decay rate γm = ωM

QM
1 Hz

κ/2π Cavity decay rate κ = ωc

2Qc
5 Hz

Q Quality Factor Qc = 109

g0/2π Frequency-pull parameter g0 = dωc

dL
= p2c2π2

ω0L3 2× 1010 Hz
m

g/2π Optomechanical coupling g = g0xzpf 3.8× 10−7 Hz



Chapter 3

Gravitational Waves

Gravitational waves (GR) are time dependent solutions to the Einstein equations.

Einstein’s equations predict that a gravitational wave will be emitted from a mass

density undergoing quadrupolar motion. Until recently, only indirect evidence for

GR waves, such as the energy loss in the Hulse-Taylor binary star system has been

known [29]. The recent measurement by LIGO of GR waves from a double black hole

collision has provided the first direct evidence of their existence [30]. Our lab worked

on a project that aimed to generate and detect GR waves using a different method.

The project relied on a superconducting triple cavity parametric amplifier, see

Figure 2.2. In order to detect the presence of GR waves, a pump depletion method

is employed. A moving membrane creates gravitons and photons from the vacuum.

Pump depletion while on resonance with the GR wave cavity modes is a direct result

of the production of GR waves.

If superconductors are mirrors for gravitational waves, then we may use our high Q

SRF cavities to produce DCE gravitons in the same manner that we seek to produce

DCE photons. In this section, we show the formalism that can be used to show

whether it is possible for superconductors to reflect gravitational waves.

In particular, we will describe a mechanism which quantifies how gravitational

waves interact with superconductors. In addition, we investigate a “charge separation

effect,” also dubbed the “Heisenberg-Coulomb effect,” which was first proposed in

[31], and later referenced in [32]. This effect is a result of the Cooper pairs being

40
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condensed into a quantum mechanical zero-momentum eigenstate and therefore, by

the Heisenberg uncertainty principle, being non-local. Hence they cannot follow any

classical trajectories in the presence of a gravitational wave.

In contrast to this, each ion in its lattice site can respond locally to the gravita-

tional wave, and thereby the ionic lattice can oscillate in its deformation accordingly.

It is found that the zero-point energy of the phonon modes of the lattice dominates

the response of the lattice to the wave. The difference in motion of the Cooper pairs

(negatively charged), and the lattice ions (positively charged) results in the charge

separation effect. According to [31], this creates an electric field which opposes the

supercurrents induced by the gravitational wave. The resulting Coulomb force acts

as a very strong restoring force that makes the superconductor extremely “stiff” to

gravitational waves. The mass supercurrents produced by this effect will radiate grav-

itationally. Therefore, the incoming gravitational wave will be re-radiated back out,

and the superconductor will act as a mirror to gravitational waves.

Quantum mechanically, the “charge separation effect,” provides a mechanism for

energy transfer from the gravitational wave to the superconductor. This may al-

low us to interpret quantum mechanically an absorption and emittance of gravitons

by the superconductor. Of course, this type of description would require quantized

gravity, which currently has not been formulated. Quantizing gravity is a daunting

undertaking which we do not seek to explore here.

In a paper published last year [33], we showed that using a description of gravity

using the free energy densities of the Cooper pairs and the ionic lattice, one finds that

the ionic lattice and Cooper pairs indeed follow slightly different trajectories in the

presence of a gravitational wave. The following is a short outline of the important

results.

It is well established in General Relativity, that gravitational waves can be de-

scribed by the metric perturbation, hTTij , in the transverse-traceless (TT) gauge. This

gauge eliminates unphysical degrees of freedom from the metric leaving only the

“plus” and “cross” polarization wave fields, h⊕ and h⊗, respectively [34]. However,

the TT gauge can only describe plane-waves in vacuum. It does not provide a de-

scription of gravitational waves in matter.
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Therefore, we begin with a metric which is constructed in accordance with the

Helmholtz decomposition theorem [35]. This formulation is gauge invariant (to linear

order in the metric) and isolates the radiative degrees of freedom which are char-

acterized by the transverse-traceless part of the metric perturbation, hττij . Such a

formulation is well suited for describing the interaction of gravitational waves with

quantum matter such as a superconductor.

We use two constituent equations, one for the material strain T ττij = −suττij , which

describes how a material responds to a stress, where s is the material shear modulus,

and uττij is the dimensionless strain tensor of the material. The other is for the

gravitational strain T ττij = −µGhττij ; it describes the stress produced in a material due

to a gravitational wave and is referred to as the gravitational constituent equation [36].

Combining these two equations allows us to determine how the material responds to

a gravitational wave given a specific gravitational shear modulus µG.

uττij =
µG
s
hττij (3.1)

µG is determined by the gravitational constituent equation where T ij can be found

using the free energy density F , and the following relation,

T ij =

(
∂F
∂hij

)

T

. (3.2)

This equation comes from the Hemholtz free energy density with stresses and strains

present dF = −SdT + T ijdhij, where S is the entropy density.

We may use the Debye Model for the ionic lattice and the Ginsburg-Landau theory

for the Cooper pair density. Using these theories, we find that the gravitational shear

modulus of each is,

µG(CP ) =
e2ns
me

(
Ai
)2

+ αns +
β

2
n2
s (3.3)

and

µG(LI) ≈
3}ωn

2
− π

3}β2vLxLz
. (3.4)
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These Equations and Equation (3.1) allows us to find the relative strain induced by

the gravitational wave (U ττ
ij ≡ uττij(LI)− uττij(CP )). The numeric result was found to be,

U ττ
ij ≈

(
10−2

)
hττij , (3.5)

or the relative strain is approximately 1% of the gravitational wave strain. This result

illustrates that the gravitational wave can impart energy into the superconductor.

Equivalently, we can say that the gravitational wave interacts with the quantum

system in a real way. This analysis does not however, indicate that the GR wave is

reflected from the superconductor.



Chapter 4

Black Holes

This chapter covers black holes, one of the most exciting predictions from general

relativity. The feature that makes a black hole a “black” hole is the spacetime feature

called an event horizon. This horizon is the surface for which nothing can pass from

the interior region and into the outside universe. Not even light can escape from

the region interior to this horizon. Just this year, the first ever picture of the event

horizon of a black hole was published [37]. This is an incredible result considering

that no light can escape from a black hole. The results of this paper are in complete

agreement with classical general relativity. While this is reassuring for anyone who

studies general relativity, it offers no insight into quantized or modified theories of

gravity.

Mathematically, the black hole is characterized by a very simple metric. In the

case of spherical symmetry and time independence the black hole spacetime is char-

acterized by the line element of the form, ds2 = −f(r)dt2 + dr2

f(r)
+r2dΩ2, where f(r) is

a generic function that depends on the radial coordinate r and dΩ2 is the line element

on the unit two-sphere. From this equation you can see that if f(r) = −∞, 0,∞ then

you will have coordinate singularities. Some of these coordinate singularities are also

physical singularities, but calculations of the curvature scalars shows that the event

horizon is not a physical singularity. The solution f(r) = 0 gives you the horizons

of the black hole. As an example, the simplest case, known as the Schwarzschild

black hole, which has mass but no rotation and no charge, has a metric defined by

44
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f(r) = 1− 2M
r

in geometrized units. This tells us that the horizon of the black hole

is located at rH = 2M .

In this chapter, we will look at various open black hole problems and how to solve

them using concepts from quantum mechanics such as the idea of intrinsic mass and

quantum electrodynamics.

4.1 Black Holes and Their Problems

It is well known that many solutions in classical general relativity possess unphysi-

cal spacetime signatures. For example, black hole solutions contain Cauchy horizons

leading to mass inflation instabilities, singularities leading to the famous information

paradox, naked singularities and closed time-like curves [38], [39], [40], [41]. These

issues led to the weak and strong cosmic censorship conjectures [42], [43]. That the

singularity should be hidden behind a horizon and that the fate of an observer be

predictable, is widely accepted. Hawking conjectured in [44] and [45], that closed

timelike curves (CTCs) were unphysical and that the application of quantum me-

chanics would remove the existence of CTCs. The three major problems facing black

hole physics represent a breakdown in the interpretation of the mathematical results

of GR. Allowing the problems to exist means allowing for predictions that don’t obey

accepted theories, which are valid in all other areas of physics.

The following are the three problems with some explanation:

• 1) The Information Paradox

The matter falling into a black hole possesses information. This matter gets

compressed into the singularity of the black hole as it infalls. As the black hole

evaporates via Hawking radiation the mass decreases. This process predomi-

nantly emits thermal particles (the dominant emission is photons) in the process

which do not carry any of the information about the matter that fell into the

black hole [46], [47], [48]. Assuming that the black hole completely evaporates,

the black hole vanishes and all of the information that fell into the black hole is

lost to the universe forever. In clearer language, you go from a pure state to a
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mixed state. This clearly violates the laws of entropy. There have been several

attempts to solve this problem, some of which are very promising.

– A) Singularity Removal (Regular Blackholes)

The first real attempt to solve this problem was done by Bardeen [49].

He developed a metric which had no singularity, these are called regular

black holes. If there is no singularity then there is no problem because

the information does not get compressed to a point and there will likely

result a remnant when the blackhole finishes evaporation. This result was

promising, but it had no realistic physical interpretation. The Lagrangian

that you get out from the metric which he postulated is unfamiliar [50].

– B) Blackhole Remnants

Adler in [51] postulated, based on the argument that the heat capacity

reaches zero, that blackholes could not evaporate into nothingness, and

that a remnant containing all of the information of the blackhole would

be left. This work, like that of Bardeen had little physical interpretation.

Basically, they just required that the black hole must posses some property.

Additionally, in the late stages of evolution of the black hole, quantum

gravity must dominate and could change the description of entropy and

heat capacity. For these reasons, this attempt is speculative.

– C) Loop Quantum Gravity

The recent work from Ashtekar, [52], [53] on black hole singularities, in my

opinion, has been the most promising. In their recent work, they extended

Loop Quantum Gravity (LQG) further into the black hole than has ever

been done before, to show that the singularity gets removed by applying

LQG.

• 2) Cauchy Problem-Mass Inflation Instability

Some black hole metrics such as the metric for a charged black hole posses

more than one horizon. In the Reissner Nordström (RN) metric, you get two

horizons [54], [55]. The outer horizon is the event horizon, and the inner horizon
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is known as the Cauchy horizon. Physically at the event horizon, the photons

being emitted from the horizon out to infinity get infinitely redshifted. This is

fine, but at the inner Cauchy horizon, photons being emitted get infinitely blue

shifted. This leads to an instability in the calculated energy and mass.

• 3) Naked Singularities and CTCs

Another Interesting problem is that of the naked singularity. The horizons for

RN have the following form [54], [55],

r± = M ±
√
M2 −Q2. (4.1)

If Q > M , no horizons exist and you get a naked singularity. Naked singularities

are a problem because the spacetime around them allows for Closed Time-Like

Curves (CTCs). What this means is that there are solutions for which a future

event can influence an event in the past. This is not physical. In the early

years of black hole physics, many people tried to model the electron as a black

hole, but after much effort this was abandoned because of these issues [56], [57].

Clearly an electron will have e >> me.

4.1.1 The Cause of the Problems

The reason most of these problems arise is due to the way we define mass in our

equations. To illustrate this, we will work with the spherically symmetric time inde-

pendent metric of Reissner Nordström. Any spherically symmetric time independent

metric has the form [38],

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2, (4.2)

where f(r) is a generic function that depends on the radial coordinate r, and dΩ2

is the line element on unit two-sphere. When we solve for f(r) using Einstein’s

equations, Gµν = κT µν coupled to linear or nonlinear electromagnetic fields, we end
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up with the following equation for G00 = κT 00 [58],

d

dr
(r(1− f(r))) = −κr2

(
e(r)2LF + L

)
, (4.3)

where e(r) is the electric field, F is the field invariant 1
4
F µνFµν , and LF is the par-

tial derivative of the electromagnetic Lagrangian L with respect to the invariant F .

Solving Equation 4.3 for f(r), assuming linear electromagnetic fields (Maxwell), we

arrive at,

f(r) = 1− C1

r
+
Q2

r2
, (4.4)

where Q is the charge of the black hole. The integration constant, C1, is determined

by assuming that we must retrieve newtonian gravity at infinity and must appear in

all effective quantum theories as well. This limit requires us to replace C1 → 2M .

This mass M is the gravitating mass as seen from infinity Mg. While this may appear

reasonable, and is the standard approach, upon closer inspection we see that there is

a problem. We rewrite f(r) as,

f(r) = 1− 2M(r)

r
, (4.5)

where M(r) = Mg − Q2

2r
. This second piece can be viewed as the modification of the

mass due to subtracting away the electric field mass energy from r → ∞. We show

this by writing f(r) as,

f(r) = 1− 2(Mg −ME(r))

r
, (4.6)

where ME(r) is a generic function of r that modifies the mass. Equation 4.3 can now

be rewritten as,

ME
′(r) = −4πr2ρ(r), (4.7)

where −ρ(r) = T 0
0 = L+ 2|F|LF = L+ e(r)2LF or equivalently,

ME(r) = −
ˆ

4πr2ρ(r)dr = +

ˆ ∞
r

4πr2ρ(r)dr = +

ˆ
ρ(r)dV. (4.8)
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Here V is the volume outside the sphere of radius r. Written this way, we see that

Equation 4.8 is an integration to find the total mass energy that exists outside of

the sphere of radius r (Notice the absence of
√
grr). This makes sense physically

because at r, the force due to the mass that exists in the region from r →∞ vanishes

inside the mass shell due to Gauss’ theorem, so you have to subtract it away from

the gravitating mass. Since Mg is calculated at infinity, one must modify the effective

mass as seen at r. We will label the mass in the shell from r →∞ as ME(r) because

in this case, it comes from the E field 1.

This method breaks down when ME(r) becomes greater than Mg. This is what

leads to the CTC problem. It does not make sense for the “modified mass” to become

negative before reaching the event horizon. Think of it in the following way, the

gravitating mass Mg is a combination of all of the mass energies as seen from infinity

which includes some “intrinsic mass” M0 that does not depend on anything, and the

total field energy as seen from infinity, ME(rH), where rH is the outermost event

horizon of the black hole 2. We neglect rotation for now. Mg = M0 + ME(rH),

thus Mg −ME(r) can never be negative before reaching the event horizon. It does

not make sense that we should allow the energy of the fields to exceed the actual

energy of the black hole as seen from infinity. Allowing Mg −ME(r) to be negative,

leads directly to unphysical spacetimes. In general, since linear electromagnetic fields

diverge as r → 0, you will always encounter a region where this becomes negative.

Since quantum mechanics puts a limit on the energy at small scale through shielding,

it is reasonable that one might hope that quantum mechanics will come in and save the

day. We will show in the following sections, that application of quantum mechanics

does save us from Cauchy horizons. It may be true that quantum mechanics could

save us from naked singularities as well, but we will show that effective quantum

theories are not sufficient for this task. Instead, we will show that you can solve the

naked singularity issue without applying quantum mechanics.

1Later, we will identify ME(rH) with the extractable energy of the black hole. We keep the same
subscript as they are equivalent.

2This is an argument that is meant to be intuitive. Interpreted this way, the energy of the fields in
the region rH →∞ should include the Jacobian,

√
grr. However as we show later through entropic

arguments, this
√
grr is not there when we do the calculation formally and not by intuition.
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4.2 QED Blackholes

It is well known that the presence of quantum fields alters many of the classical prop-

erties of black holes. In this section we consider the lowest-order QED corrections to

the location and temperature of the event horizons of charged black holes. We con-

jecture that QED effects protect realistic charged black holes from the phenomenon

of mass inflation.

4.2.1 Introduction

The discovery that black holes possess thermodynamic properties linking relativity,

gravitation, quantum mechanics, and statistical physics has stimulated an enormous

body of work over the last four decades. Remarkably, its central relevance to some of

the most difficult problems in theoretical physics continues unabated to this day. This

paper focuses on an aspect of the relationship between gravitation and quantum fields

that is the flip side of the more commonly studied quantum particle creation effects

due to classical black hole backgrounds, to wit, the question of how the presence

of quantum fields alters the black hole spacetime, a well-posed problem that has an

unambiguous solution provided we accept some reasonable physical restrictions.

Our discussion will be based on the formalism of nonlinear electrodynamics cou-

pled to gravity. Only the necessary portions of this formalism are summarized here;

for more detailed presentations suited to our purposes the reader is referred to [59] (for

general properties of nonlinear electrodynamics, see Boillat [60] and Plebanski [61]).

We assume that the fields giving rise to the black hole geometry may be described

by a Lagrangian density of the form L(F ,G), with 3 F = 1
4
F µνFµν and G = 1

4
F µνF̃µν

the quadratic invariants of the electromagnetic field, Fµν = ∂µAν − ∂νAµ the field

tensor, and F̃µν = 1
2
εµνρσF

ρσ its dual. The demands of relativistic invariance, U(1)

gauge invariance, and slowly varying fields are sufficient to justify this assumption.

If in addition we limit ourselves to weak fields and neglect higher order corrections,

3Greek indices run from 0 to 3 and our metric has signature (-,+,+,+). The solution of the
spherically symmetric problem uses the conventional (t, r, θ, φ) coordinate system.
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the effective Lagrangian must be of the form [62] 4

L = −F + aF2 + bG2 (4.9)

The normalization of the first term is chosen so as to reproduce Maxwell’s theory for

a = b = 0, and the coefficients a and b are determined by the specific theory giving rise

to these corrections. For instance, for QED, a = 8α2/45m4, b = 14α2/45m4 with α

the fine structure constant and m the mass of the electron, whereas for Born-Infeld

a = b = 1/2E2
0 , with E0 a constant with dimension of electric field.

The energy-momentum tensor associated with L(F ,G) is

T µν = −LFF µλF ν
λ + (L − GLG)gµν (4.10)

where LF = ∂L/∂F and LG = ∂L/∂G. Setting up the Einstein equations

Gµν = 8πGT µν (4.11)

is fairly straightforward for a spherically symmetric system with metric

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2 (4.12)

The result is

(
r2f ′

)′
= −16πG r2

(
λ2

+ LF + GLG − L
)

(4.13)

[r(1− f)]′ = −8πG r2
(
λ2
− LF − GLG + L

)
(4.14)

Here primes indicate derivatives with respect to r and the quantities

λ± =

√√
F2 + G2 ±F (4.15)

4For an analysis of when this form of the Lagrangian is valid, see Appendix A
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are proportional to the eigenvalues of the field tensor Fµν . The equations of motion

for the fields may be obtained from the conservation law ∇νT
µν = 0 or from the

Euler-Lagrange equations for L(F ,G). In the region outside the sources we find

∇νD
µν = 0 (4.16)

∇νF̃
µν = 0 (4.17)

with Dµν = LFF µν +LGF̃ µν . In the next section we shall apply Eqs. (4.13, 4.14) and

(4.16, 4.17) to the Lagrangian (4.9).

4.2.2 QED-corrected Schwarzschild metric

As we have already mentioned, the form of the Lagrangian (4.9) is required by sym-

metry considerations and the assumption of weak, slowly varying fields. As such, it

does not depend on a specific theory, although the assignment of numerical values

to a and b must be done within the context of a particular theory or model. The

point here is that if needed, we may borrow the QED values, say, from the results in

Refs. [63–66] (see also the excellent review by Dunne [67]), which are strictly valid for

constant uniform fields, because we know from our arguments above that the generic

form of the Lagrangian must be as in Eq. (4.9) even when the fields are not uniform

(provided, of course, that their variation is not too rapid). This is important for

several reasons. First, it tells us that we may use the weak field limit of the Euler–

Heisenberg Lagrangian without running into a contradiction despite the obvious fact

that in our case the fields are not uniform. Second, it implies that our approximation

can be trusted near the event horizon for large black holes but not over the whole

space-time. Third, it makes it plain that this approximation may be improved by

adding derivative terms and/or higher loop corrections to (4.9).

Consider now the spherically symmetric ansatz for the fields

F01 = E(r) (4.18)

F23 = H(r) sin θ (4.19)
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Then D01 = −ELF − (H/r2)LG, D0ν = 0 for ν 6= 1, and Eq. (4.16) implies

∂1(
√−gD01) = 0 (4.20)

For the metric (B.1),
√−g = r2 sin θ, so that

D01 =
A

r2
(4.21)

with A constant. A similar calculation using Eq. (4.17) shows that H is a constant.

Therefore our F23 is identical to the Reissner–Nordström F23, and we are allowed to

identify H = P/4π, with P the magnetic charge.

Applying the result (4.21) to the effective Lagrangian (4.9) we get

E(1− 2aF)− 2b
H

r2
G =

A

r2
(4.22)

The invariants F and G are easily computed with the ansatz (4.18, 4.19); one finds

F = 1
2
(−E2 + H2/r4) and G = −EH/r2. However, since terms in a, b are small

corrections, we may use the zero-order field E ≈ A/r2 for these invariants in (4.22).

This yields F ≈ (H2 − A2)/2r4, G ≈ −AH/r4, and

E ≈ A

r2
+
A[a(H2 − A2)− 2bH2]

r6
(4.23)

From the asymptotic form of the field we see that A = Q/4π, with Q the electric

charge.

Having determined the fields we may now find the solution for the metric function

f(r). We proceed from Eq. (4.14) and the observation that the exact form of the

invariants for our spherically symmetric system entails λ2
− = E2. To first order in a,

b, Eq. (4.14) becomes

[r(1− f)]′ ≈ 4πG(A2 +H2)

r2
− 8πG

r6

[a
4

(A2 −H2)2 + bA2H2
]

(4.24)
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Integrating once and solving for f gives

f(r) ≈ 1− 2GM

r
+
β

r2
− γ

r6
(4.25)

with

β = 4πG (A2 +H2) =
G

4π
(Q2 + P 2) (4.26)

γ =
2πGa

5
(A2 −H2)2 +

8πGb

5
A2H2 =

G

640π3

[
a(Q2 − P 2)2 + 4bQ2P 2

]
(4.27)

where Q, P are the charges in Heaviside units, or

β = G(q2 + p2) (4.28)

γ =
G

40π

[
a(q2 − p2)2 + 4bq2p2

]
(4.29)

for q, p in Gaussian units.

4.2.3 Horizons

We now examine the horizon structure of the spacetime behind the solution (4.25).

Setting p = 0 for simplicity, we see from (4.29) that in the absence of QED effects

(a = b = 0), γ = 0 and we recover from (4.25) the classical Reissner–Nordström

solution and the associated horizons at r0± = GM ±
√

(GM)2 −Gq2.

Although we are interested mainly in realistic astrophysical scenarios, we shall first

discuss the case of a classically extreme Reissner–Nordström black holes (GM2 = q2)

for completeness. The condition f(r) = 0 with

f(r) ≈
(

1− GM

r

)2

− γ

r6
(4.30)

may be recast in the form

x4(x− 1)2 −
(

4ξ

27

)2

= 0 (4.31)
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where x = r/r0 ≡ r/GM and

ξ =
27

4

√
γ

(GM)3
=

27

4GM

√
a

40πG
(4.32)

For ξ > 1 (M . 1.16× 104M�) there is a single horizon at

r+ =
1

3
GM

[
1 +

(
2ξ + 1 + 2

√
ξ(ξ + 1)

)1/3

+
(

2ξ + 1− 2
√
ξ(ξ + 1)

)1/3
]

(4.33)

Since r+ > GM ≡ r0, this result implies that the horizon of a QED-corrected extreme

Reissner–Nordström black hole of mass M . 1.16× 104M� is larger than the horizon

of its classical counterpart.

For ξ < 1 (M & 1.16× 104M�) there are three horizons. The outermost horizon

is again given by (4.33). The intermediate horizon r− and the innermost horizon rin

are most conveniently stated in terms of the angle φ = cos−1(1− 2ξ), 0 < φ < π, as

r− =
1

3
GM

(
1 + 2 cos

φ

3

)
(4.34)

and

rin =
1

3
GM

(
1− 2 cos

φ+ π

3

)
(4.35)

It is easy to check that 0 < rin < 2GM/3 < r− < GM < r+ . 3.36GM .

For a = 0, QED effects are absent, rin = 0, and we recover the single classical

horizon at r0 = GM . On the other hand, for black holes of mass M � 1.16×104M�,

ξ � 1, and

r± = GM ±
√

a

40πG
(4.36)

rin =
√
GM

(
a

40πG

)1/4

(4.37)

Note that the existence of the innermost horizon is due entirely to QED effects.

Even though one would normally expect quantum mechanics to play a negligible role

since we are far away from the Planck scale, Eq. (4.35) shows that general relativity

and quantum mechanics can conspire to produce strong gravitational effects such as
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event horizons before we reach the regime of quantum gravity (rin is approximately

80% of r− for a black hole of mass 1.2×104M�). Quantum effects also split the single

classical horizon, giving rise to a narrow region between r+ and r− where the metric

function f(r) changes sign and r becomes timelike. Between r− and rin f(r) becomes

positive again, but the third horizon at rin gives rise to a new inner region where only

infall is possible. We shall come back to these expressions in the following section on

the Hawking temperature of QED-corrected black holes.

Astrophysical black holes are not expected to form near (classical or quantum)

extremality. Indeed, an upper limit of 10−18 for the ratio σ ≡ q/
√
GM appears

reasonable [68]. It will prove convenient to establish at the outset the limits this

demand places on our conclusions regarding realistic charged black holes. From (4.9)

we see that the weak-field limit breaks down for a|F| ∼ 4π in Gaussian units. Since

|F| = E2/2 for p = 0, we find that our analysis will be valid in regions with radii

greater than

r∗ ∼
(
aq2

8π

)1/4

(4.38)

An immediate consequence of (4.38) is that for classically extreme black holes the

prediction (4.35) of a quantum horizon at rin is on solid ground for masses in the range

1.16 × 104M� . M . 1.26 × 104M�. If the upper limit is exceeded, the prediction

is marginal in the sense that rin becomes slightly smaller than r∗, and higher-order

corrections would be needed to decide with the same level of confidence whether this

horizon exists for larger masses.

For realistic black holes we may replace q by σ
√
GM to obtain (numerical values

for radii are in meters)

r∗ ∼ 9.1× 104

√
σ
M

M�
(4.39)

which has an upper limit of 9.1× 10−5(M/M�)1/2 for σ = 10−18.

Consider now the last two terms in (4.25). Their ratio,

γ

βr4
=

aq2

40πr4
=

1

5

(r∗
r

)4

(4.40)
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shows that the QED correction is always smaller than the classical β/r2 term in f(r)

wherever the weak-field limit holds. But that does not mean that a computation

of the horizons by perturbative methods around r0± is warranted. Indeed, for small

charge-to-mass ratios, r0+ ≈ 2GM , and r0− ≈ σ2GM/2. Hence

r∗
r0+

≈ 31.0

√
σ

M/M�
<

3.1× 10−8

√
M/M�

(4.41)

r∗
r0−

≈ 123.8

σ3/2
√
M/M�

>
1.24× 1029

√
M/M�

(4.42)

In other words, for realistic black holes the effect of QED processes on the outer

horizon may safely be examined using a straightforward approximation. To first

order, we may replace r6 in (4.25) by r2 r4
0+ and then solve a quadratic equation to

obtain [69]

r+ ≈ GM +

√
(GM)2 −Gq2 +

γ

r4
0+

(4.43)

The inner horizon, however, will not yield to the same treatment as it is buried

deep inside the region of radius r∗ where higher-order QED corrections become impor-

tant. This forces us to reconsider the very existence of the inner (Cauchy) horizon.

It is obviously present in a purely classical context as a solution to the quadratic

equation f(r) = 0 for the RN metric function. But incorporating quantum effects

brings the new scale r∗ into the problem, and this scale clearly establishes r0− as

a mathematical artifact, since it lies outside the region where the classical and the

lowest-order quantum analyses are valid. Although a more sophisticated approach is

necessary to give a definitive answer to this question, the conjecture that the inner

horizon may not exist in the full theory deserves serious consideration. We may reach

the same conclusion as follows. According to (4.42), for large-mass black holes r0−

is many orders of magnitude smaller than r∗, and this is, in turn, much smaller than

r0+, so we are naturally led to ask about the exact solutions of f(r) = 0 in (4.25).

Unfortunately, the sextic equation cannot be solved in closed form, but it is possible

to show that for realistic black holes there are four complex roots, one real negative

root near −γ1/5/(2GM)6/5 ≈ −3.1[σ2/(M/M�)]2/5, and one positive real root near
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r0+. Additional positive real roots do not appear unless M & 2×1057M� (in the gen-

eral case, there is either a single horizon, or three horizons, although nothing seems to

forbid the merging of two of the three horizons into one to form a quantum analog of

the classically extreme black hole). It therefore appears that QED effects have done

away with the Cauchy horizon for realistic black holes - only the outer horizon re-

mains. We reiterate that, because the approximations leading to the metric function

f(r) in (4.25) are valid only for r > r∗, this should not be construed as proof that

a Cauchy horizon will be absent in the exact theory. But (4.42) does unequivocally

show that the horizon at r0− is a prediction arising from a classical RN solution that

has been pushed far beyond its limit of validity and must consequently be consid-

ered suspect. Obviously, the absence of an inner horizon is crucial to the stability of

charged black holes: without a Cauchy horizon the phenomenon of mass inflation [70]

cannot arise, and the interior solution becomes stable as a result of quantum field

theory (as opposed to quantum gravity) effects.

4.2.4 Surface gravity and Hawking temperature

The surface gravity for static spacetimes can be calculated by a well-known procedure

[68, 71]. With V =
√
f the redshift factor, the surface gravity is given by κ =√

∇µV∇µV , so that

κ =
GM

r2
+

− β

r3
+

+
3γ

r7
+

(4.44)

and the black hole temperature follows from T = κ/2π. Replacing (4.43) in (4.44)

and expanding to first order in a we get

T ≈ TRN +
γ

4π

(3r0+ − 2GM)

r7
0+(r0+ −GM)

(4.45)

where

TRN =
r0+ −GM

2πr2
0+

(4.46)

is the temperature of the classical Reissner–Nordström black hole.



CHAPTER 4. BLACK HOLES 59

Astrophysical black holes are expected to have p = 0 and large mass-to-charge

ratios, GM2 � q2. In that case (4.45) simplifies to

T ≈ TRN +
aq4

5120π2G6M7
= TRN +

aσ4

5120π2G4M3
(4.47)

Since

TRN ≈
1

8πGM

(
1− q4

16G2M4

)
=

1

8πGM

(
1− σ4

16

)
(4.48)

we see that the presence of charge drives the temperature below the Schwarzschild

value (8πGM)−1, whereas QED (as well as Born-Infeld) effects will increase the tem-

perature. Furthermore, the ratio of these corrections is

aq4

5120π2G6M7
· 128πG3M5

q4
=

a

40πG3M2
=

2.94× 106

(M/M�)2
(4.49)

It is interesting to note that the charge and QED contributions to the temperature

may achieve comparable magnitudes without violating our assumptions of weak fields

(a|F| � 4π) or large mass-to-charge ratio (q2 � GM2). Because these effects become

comparable for masses such that G3M2 ∼ a/40π, or M ∼ 1.7 × 103M�, neglecting

QED corrections to the temperature is not justified unless M � 1.7× 103M�. As we

shall see in the next section, this observation is particularly relevant to the evaporation

of charged black holes.

Extreme Reissner–Nordström black holes have zero temperature in a purely clas-

sical context. When QED corrections are taken into account, however, their temper-

ature is given by

T =
1

πr+

(
1− GM

r+

)(
3

2
− GM

r+

)
(4.50)

where we have used (4.44) and (4.30)–(4.33). For large-mass black holes this becomes

T ≈ 1

4π(GM)2

√
a

10πG
(4.51)
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Although certainly small in absolute terms, this temperature is surprisingly large in

relative terms: for a black hole of mass 106M�, the temperature (4.51) is only a factor

of ∼ 10−2 below the temperature of a Schwarzschild black hole of similar mass.

4.2.5 Black hole Evolution

Charged black holes lose mass and charge due to particle pair creation. Classically,

black holes lose mass via Hawking radiation, but when a black hole is charged, it will

also lose mass and charge due to the Schwinger effect, the production of particles due

to strong electromagnetic fields. Here, we will show that the QED-corrected black

hole’s lifetimes and evolutions differ from their classical counterpart. Hiscock and

Weems [72] thoroughly examined the role that charge and the Schwinger effect play

in the evolution of a classically charged black hole (i.e., a black hole described by the

standard RN metric without quantum corrections). The mass evolution of a charged

black hole is given by
dM

dt
= − π2

15~3
T 4ασ0 +

Q

r+

dQ

dt
(4.52)

The first term in (4.52) is the typical Hawking radiation term coming from the creation

of massless thermal particles, and the second term is the mass loss due to electromag-

netic pair creation. α is the ratio of cross section to geometrical optics cross section

and will not change from what was obtained in [72], which is α = 2.0228, accounting

for 3 massless neutrinos. σ0, the geometrical optics cross section, and r+ will be solved

using numerical methods. dQ/dt can be found using the Schwinger formula [66], and

the result is

dQ

dt
= −Q

2e3

π2~2

[
1

r+

exp

(−r2
+

QQ0

)
−
√

π

QQ0

erfc

(
r+√
QQ0

)]
(4.53)

with Q0 = ~e/πm2 = 1.7× 105M�. Notice that the difference between classical and

QED evolution arises from σ0, r+ and T in (4.52) and (4.53). In Figure 4.1, dQ/dt

and dM/dt as well as their percent differences from the classical results are plotted for

a Q = 10−18M black hole. While there is a significant difference in the evolutions for

small mass values, this difference only occurs for charge Q � e. So, for a real black
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hole with Q = 10−18M , the difference in both dM/dt and dQ/dt from the classical

counterpart is negligible.
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Figure 4.1: Evolution rates and % difference in evolution rates of a Q = 10−18M
black hole
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Although there seems to be no difference in the evolution of a realistic black

hole, we will show that this assumption is incorrect. We obtain M(t) and Q(t) by

numerically integrating equations (4.52) and (4.53). Figure 4.2 shows the charge and

mass evolution with respect to time of an initially 150 × 106M� black hole with a

charge to mass ratio defined by Q2/M2 = 0.1.

0 2 4 6 8
1090 Years

20

40

60

80

100

120

140

106
M

�

QED Mass

Classical Mass

QED Charge

Classical Charge

Figure 4.2: Evolution of a 150× 106M� black hole with Q2/M2 = 0.1.

The difference in lifetime between the QED and classical black hole is a very small

percentage of the overall lifetime and cannot be distinguished from the graph alone.

A numerical calculation shows that it is approximately two millionths of a percent

change, but the effect of the quantum correction decreases the lifetime by 2 × 1083

years. Notice that both the QED and classical black holes spend a significantly long

time near the extremal limit. Indeed, any charged black hole will spend some part of

its lifetime near the extremal limit [72]. Because of this, it is important to examine

the evolution near extremality.

Figure 4.3 shows the percent differences between QED and classical evolution rates

for a near-extremal black hole. Notice that below 1×106M� and above 60×106M� the

difference in dM/dt is very large, and below 105M�, the difference in dQ/dt is large.

Below the lower limits, QED evolution rates are smaller than that of the classical

case. This is because the slightly larger outer horizon lowers the Schwinger rate, and

this difference becomes significant for small radii. Above 60×106M�, dM/dt is larger

because the classical black hole lacks a temperature. In Figure 4.4 we look at the
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extremal case in more detail. We show the evolution of 5 × 103M�, 20 × 106M�,

and 50 × 106M� black holes. The difference in evolution for the 20 × 106M� and

50 × 106M� black hole is a small percentage of the total lifetime as expected from

Figure 4.3. The difference in lifetime for the 5× 103M� QED black hole however, is

50% of the classical lifetime. This shows that QED effects slows the evolution. Again,

this is consistent with Figure 4.3.
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Figure 4.3: % difference in evolution rates of a Q = M black hole.
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Figure 4.4: Evolution of near extremal black holes. Notice, the difference is indistin-
guishable for the 20× 106M� and 50× 106M� black holes.
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4.2.6 Discussion

Our results show that QED effects alter the classical Reissner–Nordström metric.

The main feature is the appearance of a new length scale r∗ below which quantum

effects become dominant. Since r0− � r∗, the Cauchy horizon of classical Reissner–

Nordström black holes lies in a region where the classical solution can no longer be

trusted to give correct predictions, and the very existence of this horizon is cast into

doubt. Although not conclusive, our work lends credence to the conjecture that QED

effects may do away with the Cauchy horizon. Because of its obvious impact on the

phenomenon of mass inflation and the stability of the black hole’s interior, this section

revisits this conjecture from alternative points of view.

1. It may be tempting to argue that our conclusions are voided by the fact that

we are using a weak-field approximation to explore a phenomenon characterized by

an unbounded growth of energy perturbations. Although that argument is ultimately

circular, a simple counterexample based on the analogy with the well-known radiative

instability of classical atomic models may nevertheless help to see where this seemingly

intuitive objection goes wrong.

In the classical atomic model, the natural distance scale is set by the classical

electron radius re = e2/mc2. Since this is on the order of the proton’s size, there

is nothing stopping the accelerated electron from radiating its energy away until

it reaches the nucleus. A semiclassical treatment introduces a new length scale,

a0 = ~2/me2 = re/α
2, with α the fine structure constant. This new scale suggests

that a classical treatment may give reasonable answers for r > a0, as is indeed the

case: radiative lifetimes calculated using the classical model are not far off from the

experimental values even for n = 2 → n = 1 transitions. For r < a0, however,

the semiclassical argument is sufficient to uncover a dramatic change in behavior.

Using the ground state wave function (or almost any reasonable approximation of

it), we may find the charge and current distributions to be used as input to the

calculation of the radiated power from Maxwell’s equations. As these distributions

are stationary, no power is radiated, and the radiative instability is seen to arise

from an unwarranted extension of classical results to the region r < a0. The analogy

to our problem becomes evident with the replacements re → r0−, a0 → r∗, radiative
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instability→mass inflation, and Maxwell’s equations with quantum-corrected sources

→ Einstein’s equations with QED-corrected sources.

2. The above analogy may ease the reader’s worries about a contradiction between

our assumptions and our conclusions, but it certainly does not prove conclusively that

the inner horizon is an unwarranted extrapolation of a classical solution to a region

where it cannot possibly be valid. To that end, let us assume that quantum effects

are negligible, and that the inner horizon does in fact exist. The electric field at the

inner horizon is given by:

E− =
q

r2
0−

=
q

(σ2GM/2)2
=

4

σ3G3/2M
(4.54)

If this field is comparable to the critical field Ecrit = πm2
e/e ≈ 4 × 1018V/m, pair

creation becomes significant and QED effects cannot be neglected. The prediction of

an inner horizon is therefore a reliable classical prediction provided E− � Ecrit, or

M � 4

σ3G3/2Ecrit

(4.55)

For σ = 10−18, this gives the constraint M � 6.7 × 1059M�. Masses satisfying this

condition would have electric fields below the critical field, and a Cauchy horizon

would be present since equations (4.40)-(4.42) guarantee that the weak-field limit

applies all the way to the inner horizon. As a matter of fact, our analysis of the

solutions of f(r) = 0 shows that there are three horizons, just as in the classically

extreme case. As this black hole evaporates and its mass decreases, the eventual

violation of the condition (4.55) will lead back to the realistic scenario we discuss

next. We emphasize that the three-horizon black hole is completely unrealistic: the

masses required exceed the mass of the visible universe by at least 30-35 orders of

magnitude.

Masses below 6.7× 1059M� would have electric fields exceeding the critical field,

and the assumption of negligible quantum effects at the inner horizon would then

lead to a contradiction. For example, a 1-billion solar mass black hole would have an

electric field at the inner horizon that is more than 50 orders of magnitude greater
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than the critical field. It is then clear that, for realistic charged black holes, the

classical Reissner–Nordström solution cannot be used to infer the existence of an

inner Cauchy horizon since this region would be utterly dominated by quantum effects.

Note that this conclusion stands on its own, since it is completely independent of the

assumptions made elsewhere in this work.

3. It is natural to expect that similar effects will lead to the removal of Cauchy

horizons in Kerr-Newman black holes as well. More generally, quantum fields might

conceivably lead to nontrivial alterations of classical geometries in many cases. In fact,

in a paper published recently [73], the authors have demonstrated that a semi-classical

approach to 2+1-dimensional BTZ spacetimes leads to similarly striking conclusions:

naked singularities acquire a covering horizon, and rotating BTZ black holes develop

a curvature singularity at the Cauchy horizon. In a sense, the Cauchy horizon is

still present, but the spacetime cannot be continued beyond it since the divergence

of the Kretschmann scalar shows that the geometry has developed a singularity at

the horizon. Although this differs from our current work (here quantum effects seem

to eliminate the Cauchy horizon, and the geometry is singular only at r = 0), the

main lesson in both cases is that quantum effects can potentially have a profound

effect on spacetime geometries without the need for quantum gravity. Just as in our

analysis, the authors of Ref. [73] are careful to emphasize that the breakdown of the

perturbative approach implies that these results, while highly suggestive, cannot be

taken as definitive.

4.2.7 Conclusion

We have developed the metric for a first-order quantum-corrected QED black hole.

It was argued that, for realistic black holes, the inner (Cauchy) horizon appears to be

absent from the QED-corrected metric. Indeed, it was shown that the inner horizon

of the classical solution is an unwarranted extension of the classical metric to radii

where quantum effects are no longer negligible. The absence of the inner horizon in

the QED case eliminates the problem of mass inflation and the consequent instability

of RN black holes, since Cauchy horizons are crucial to this process. In addition, we
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have shown that the temperature of the quantum-corrected extremal black hole is

nonzero, which leads to differences between classical and QED evolution.

4.3 Chronology Protecting Black Holes

4.3.1 Introduction

In this section, we show using an irreducible mass approach that naked singularities

are only mathematical and will not and cannot exist in nature. Contrary to previous

studies of charged rotating black holes, we show that these black holes have a real

event horizon for all values of charge and angular momentum. It is impossible to

either over charge or over rotate a black hole. This is both consistent with Hawking’s

suggestion that some mechanism must lead to chronology protection and Penrose’

weak and strong cosmic censorship conjectures. Hawking conjectured in [44] and

[45], that closed time-like curves (CTCs) were unphysical and that the application

of quantum mechanics would remove the existence of CTCs. Here we will take a

different approach by defining an intrinsic mass for the black hole and show that in

general, the problematic areas of the spacetime are fixed and chronology is protected

even before application of quantum mechanics to the gravitational field.

4.3.2 The Gravitating Mass of Coulomb Fields

As we showed in Section 4.1, we encounter the naked singularity issue whenever the

effective mass is allowed to become negative. One way to solve the negative mass

problem is to break up the gravitating mass Mg into its components, M0 and ME.

Mg = M0 +ME(rH) = M0 +

ˆ ∞
rH

ρ(r)dV = M0 +
Q2

2rH
(4.56)

Notice, that ME(rH) as seen from infinity will be due to the integral from the outer

horizon to infinity, so it is important that rH is always the outer horizon. There is

nothing that forbids us from breaking up Mg in this way, Mg was just an integration



CHAPTER 4. BLACK HOLES 70

constant after all. The M(r) that appears in Equation 4.5 becomes

M(r) = M0 +
Q2

2rH
− Q2

2r
. (4.57)

Equation 4.57 can also be written as,

M(r) = M0 +ME(rH)−ME(r). (4.58)

The solution of f(r) = 0 gives horizons at

r± = M0 +
Q2

2rH
±
√
M2

0 −Q2 +
M0Q2

rH
+

Q4

4r2
H

. (4.59)

If we assume that r+ is the outer horizon, rH , for all values of Q, then we will

encounter a problem if Q > 2M0. In this region, r− > r+, which means that the

replacement, r+ → rH , is no longer valid. In order to ensure that rH is always the

outermost horizon, we must break up the analysis into three parts. For Q < 2M0,

r+ = rH and the solution is rH = 2M0. For Q < 2M0, there are 2 horizons. In

our QED paper [58] we showed that the inner horizon of Reissner Nordström is an

artifact of extending a classical result to a region where quantum effects dominate and

is rendered unphysical by QED effects. Application of QED should do that here also.

At Q = 2M0, r+ = r−. For Q > 2M0, we must solve Equation 4.59 with r− = rH .

The solution still gives rH = 2M0. For all values of Q > 2M0, the horizons r± have

merged to one value, r± = 2M0 = rH . This means that the outermost horizon being

located at 2M0 is independent of the charge to mass ratio (Q/M0 = σ).

This is an important result, all charge to mass ratios are valid and do not form

naked singularities. You will always get an event horizon because we have defined an

intrinsic mass, M0, which is the minimum perceived mass that an observer will see.

Most black holes in the universe will have negligible charge, so to fully appreciate this

result, it is important that we incorporate angular momentum J .
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4.3.3 Adding Angular Momentum

We utilize the irreducible mass of Christodoulou [74], and Christodoulou and Ruffini

[75] to incorporate angular momentum. Christodoulou and Ruffini calculated the

amount of energy that could be extracted from a black hole. Their irreducible mass

is the mass that is left over after all extractable energy has been removed. This is

our “intrinsic” mass M0. The formula, with Mirr replaced by M0 is,

M2 = M2
g =

(
M0 +

Q2

2× 2M0

)2

+
J2

(2M0)2
, (4.60)

where we have introduced J , the angular momentum of the black hole. Notice, if

you set J = 0 we get the modified mass from Equation 4.56. We want to borrow

the results of the irreducible mass calculation and put it into the metric to see if any

naked singularities exist. The metric which describes a charged rotating black hole

is the Kerr-Newman metric [76]. In Boyer Lindquist coordinates the metric has the

form [77],

ds2 = −ρ
2∆

Σ
dt2 +

Σ

ρ2
sin2 θ (dφ− ωdt)2 +

ρ2

∆
dr2 + ρ2dθ2, (4.61)

where

ρ2 = r2 + a2 cos2 θ, (4.62)

∆ = r2 − 2Mgr +Q2 + a2, (4.63)

Σ =
(
r2 + a2

)2 − a2∆ sin2 θ, (4.64)

ω = a
(
r2 + a2 −∆

)
/Σ, (4.65)

and a = J/Mg. The metric horizons are defined by,

∆ = 0 = r2 − 2Mgr +Q2 + a2. (4.66)

The solution is

r± = Mg ±
√
M2

g −Q2 − a2. (4.67)
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The mass can be found using the equation of black hole “thermodynamics”,

κ

8π
δA = δM − ΩHδJ − V δQ, (4.68)

with ΩH = a
r2H+a2

defined as the black hole angular speed, V = QrH
r2H+a2

the potential,

A = 4π (r2
H + a2) the area of the black hole, and κ = rH−Mg

r2H+a2
the surface gravity. In

the specific problem we are considering, the variation of the entropy should be zero

which means δA = 0. Integration of Equation 4.68 leads to the relation,

M0 =
1

2

√
r2
H + a2. (4.69)

If we let rH = r+ as Christodoulou and Ruffini did, and then invert Equation 4.69 to

solve for Mg, we arrive at Equation 4.60.

We on the other hand are concerned with the value of rH , so we begin with

Equation 4.69 and plug the solution of this into Equation 4.66, and then solve for rH .

The equation we solve is,

r2 − 2Mgr +Q2 + a2 = r2 − 2

(
J√

4M2
0 − r2

H

)
r +

J2

(
J√

4M2
0−r2H

)2 +Q2 = 0. (4.70)

If we set r = rH in Equation 4.70 and then solve for rH we arrive at,

rH = ± 2M0 (4M2
0 +Q2)√

4J2 + (4M2
0 +Q2)

2
. (4.71)

We are only concerned with the positive value which will give us the event horizon.

Equation 4.71 reduces to rH = 2M0 if we set J = 0, which is identical to our result

from Equation 4.59. If we set Q = 0, we arrive at

rH =
2M2

0√
M2

0 + J2

4M2
0

. (4.72)
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Equation 4.71 is the analytic expression of the outer horizon incorporating both charge

Q and angular momentum J , and is valid for all values of J and Q. Now we must

check that rH ≥ r−. r− can be solved from Equation 4.70, but instead of taking

rH = r, we simply solve for r holding rH constant. This leads to 2 solutions and we

will take the r− solution. The r+ solution has already been calculated, it leads to rH .

r− on the other hand is

r− =
4J2 + (4M2

0 +Q2)2 − |4J2 − 16M4
0 +Q4|

4M0

√
4J2 + (4M2

0 +Q2)2
. (4.73)

If Q4 + 4J2 > 16M4
0 , then rH = r−. If Q4 + 4J2 < 16M4

0 , then the ratio rH
r−

is

rH
r−

=
16M4

0 + 4M2
0Q

2

4J2 +Q4 + 4M2
0Q

2
, (4.74)

which is always more than 1 if Q4 + 4J2 < 16M4
0 is satisfied. Figures 4.5-4.7 are plots

of rH and r− for various Q and J .
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Figure 4.5: Plot of the horizons vs. Q for M0 = 109m and J = 0. The dashed line is
rH and the solid line is r− .
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Figure 4.6: Plot of the horizons vs. J for M0 = 109m and Q = 0. The dashed line is
rH and the solid line is r− .
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Figure 4.7: Plot of the horizons vs. Q for M0 = 109m and J = 1018m2. The dashed
line is rH and the solid line is r− .
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4.3.4 Naked Singularity Criteria

A black hole possessing an event horizon for all Q and J values is not surprising. The

following relation must be true in order to have a “naked” singularity.

(
a

Mg

)2

+

(
Q

Mg

)2

= a∗2 + σ2 > 1 (4.75)

It turns out that Equation (4.75) is never greater than 1. It is only greater than 1 if

you allow Mg to be independent of Q and J . However, Mg(Q, J) does depend on Q

and J as shown in Equation 4.60. Figures 4.8-4.10 are plots of a∗2 + σ2 for various Q

and J .
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Figure 4.8: Plot of a∗2 + σ2 vs. Q for M0 = 109m and J = 0.



CHAPTER 4. BLACK HOLES 76

5.0×1018 1.0×1019 1.5×1019 2.0×1019
J(m2)

0.2

0.4

0.6

0.8

1.0

a*2+σ2

Figure 4.9: Plot of a∗2 + σ2 vs. J for M0 = 109m and Q = 0.
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Figure 4.10: Plot of a∗2 + σ2 vs. J for M0 = 109m and Q = 109m.
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4.3.5 Conclusion

In this section, we showed that naked singularities do not and cannot exist in nature.

Mg depends on Q and J in such a way that the ratio a∗2 + σ2, will never be greater

than 1. So, the criteria for having a naked singularity is never met. The reason why

CTCs develop in other spacetimes such as the Gödel spacetime, is because they allow

their mass as viewed from infinity to be independent of angular momentum J and

charge Q. Allowing their masses to depend on J and Q as we did here, will remove

the possibility of CTCs. There are no CTCs in the spacetime, and chronology is

protected. For any given black hole with intrinsic mass M0, you can add any J or Q

that you want, and it will have a horizon. There is no such thing as over charging

or over rotating a black hole. This does, however, neglect any internal forces such as

Coulomb or centrifugal that may provide a limit, but the spacetime analysis does not

provide a limit.

4.4 Application of QED To Modified Mass

The interesting thing about the result of having rH = 2M0 with our approach of

defining an intrinsic mass, is that it is valid for any ME(r) that we plug into the

system. That means it is valid for any ρ(r) and any Lagrangian L, that we choose.

This means that although we cannot at present go to full quantum mechanics, or go

to any arbitrarily large nth quantum correction, the result is still valid. Even though

we may not know what ρ(r) might look like, we can still calculate the event horizon

size as long as we know M0. In this way, we can be sure that rH = 2M0 is valid in

every range without doing the explicit calculation.

Clearly, the result of 2M0 always being the outer horizon, is going to be inde-

pendent of the form of P (r). This is because at r = rH , f(r) looks exactly like

Schwarzschild. Thus, we are free to plug in any ME(r) we want and we will get the

same result. Quantum corrections are going to change the form of P (r), but not the

answer for the horizon, thus rH = 2M0 is valid to all orders of quantum correction,

which implies that it is valid for full quantum mechanics. (No insight is given here for
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quantized gravity.) We will show that this is true for the ME(r) that we calculated

from QED. The difference for QED will be the absence of an inner horizon for small

values of σ. Granted, it is harder to analyze because ME(r) can only be calculated

numerically. This is sufficient for what we need. We can also show that the develop-

ment of a second horizon is always in a range where the equations, whether they be

from Maxwell or QED, are not valid.

Here, we will show numerically for QED, that you get one real horizon for a black

hole in the range of validity of the Lagrangian. We will use the following equations

and solve for f(r) = 0. See Appendix B for details and the second order treatment

of QED.

f(r) = 1− 2M(r)

r
, (4.76)

with

M(r) = M0 +ME(rH)−ME(r), (4.77)

and
dME(r)

dr
= −4πr2

(
e(r)2

8π
+

3ae(r)4

4
+

5Ae(r)6

8

)
, (4.78)

with

e(r) + 4πae(r)3 + 3πAe(r)5 =
Q

r2
. (4.79)

We find the roots of f(r) using FindRoot[] in Mathematica, doing a search from the

top and bottom. Here are plots of the roots of f(r) vs. (Q/M0).



CHAPTER 4. BLACK HOLES 79

2 4 6 8 10
Q/M0

5.0×106

1.0×107

1.5×107

rH (m), r-(m)

Figure 4.11: Plot of the roots of f(r) in meters vs. Q
M0

for M0 = 2.5× 103M�

To gain better insight, we plot these same roots as a log(r) vs. σ along with

the regions where the Lagrangian used is not valid. Here, σ = Q/M0. We have

included the regions La > LEM , Lg > La, and L′ > La, where La = aF2, L′ =

−b
[
18F µνF α

µν,α + 7F µν,αFµν,α − 2F µν
,νF

,λ
µλ

]
and Lg = −9bRµναβF

µνFαβ, where a =

8α2~3
45(4π)2m4

ecG
= 5.06× 1012 and b = α~2

180(4π)2m2
ec

2 = 3.8× 10−32 [78], [79], [80]. We do not

include Lg or L′ in our analysis and we show the invalid regions to show that we are

justified in neglecting these terms.
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Figure 4.12: Plot of invalid regions as a log(r) vs. σ plot for a M0 = 2.5 × 103M�
blackhole. Here we chose 2.5× 103M� because at only 103M�, rH becomes invalid at
σ > 1. The regions Lg > La and L′ > La are outside of this plot window.

From Figures 4.11 and 4.12, we see that we get a similar result as the Maxwell only

analysis. The key difference here is that for small enough charge to mass ratios, there

is only one horizon. There is a region that has two horizons, much like the Maxwell

analysis, however the specific Lagrangian being used is not valid in this region. We

note here that Maxwell is also not valid in this region. For details on when specific

Lagrangian corrections are valid see Appendix A. If we go to larger black holes in the

106M� range, we see that there is a small range where the inner horizon seems to be

valid. See Figures 4.13, 4.14, and 4.15.
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Figure 4.13: Plot of the roots of f(r) in meters vs. Q
M0

for M0 = 106M�
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Figure 4.14: Zoomed in version of the Plot of invalid regions as a log(r) vs. σ plot
for a M0 = 106M� black hole. Here A = 0. The regions Lg > La and L′ > La are
outside of this plot window.
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Figure 4.15: Zoomed in version of the Plot of invalid regions as a log(r) vs. σ plot
for a M0 = 106M� black hole. The regions Lg > La and L′ > La are outside of this
plot window.
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Figure 4.16: Zoomed in version of the Plot of invalid regions as a log(r) vs. σ plot
for a M0 = 106M� black hole. The regions Lg > La and L′ > La are outside of this
plot window.

The valid region was defined using LA < La, where LA = −AF3, with A =
128α~3
28Gm4

ec
a = 1.4× 1031. This was a loose criterion. What we really need is LA << La.

Even if we use the criteria, LA < .01La, then the entire region where the double root

exists is now well within the invalid region, see Figure 4.16. We have shown here, that

within the region in which our Lagrangian is valid, there are no naked singularities

and there are no Cauchy horizons. Thus, we have shown that applying a modified

mass approach combined with QED removes 2 of the 3 black hole problems.
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The meaning might be deeper than this. We cannot show it directly here, but if we

look at Figures 4.14 and 4.15, which are the same plot one with the second order cor-

rection applied and one without it, we see that the higher order correction makes the

window in which you have an inner horizon smaller. The first order shrinks the win-

dow, and the second order correction shrinks it even further. It seems reasonable to

assume that an n =∞ order correction, or a non-perturbative treatment, will remove

that window entirely. We cannot show that this is true because that would require

an application of full quantum mechanics and not just an effective theory approach.

But this gives us an insight into how quantum mechanics removes problematic areas

of the spacetime.

Next, we show that the charge to gravitating mass ratio Q/Mg can become larger

than one when you model the system in QED. The figure of merit we are interested

in is,

σ =
Q

Mg

=
Q

M0 +ME(rH)
. (4.80)

Figures 4.17 - 4.20 are plots of charge to mass ratio for QED. We plot Q
Mg

vs. Q
M0

for

various masses.
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Figure 4.17: Plot of Q
Mg

vs. Q
M0

for M0 = 104M�. a = A = 0 in Red, A = 0 in Blue,

and a,A 6= 0 in Black.
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Figure 4.18: Plot of Q
Mg

vs. Q
M0

for M0 = 2.5 × 103M�. a = A = 0 in Red, A = 0 in

Blue, and a,A 6= 0 in Black.
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Figure 4.19: Plot of Q
Mg

vs. Q
M0

for M0 = 2.5 × 103M�. a = A = 0 in Red, A = 0 in

Blue, and a,A 6= 0 in Black.
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Figure 4.20: Plot of Q
Mg

vs. Q
M0

for M0 = 10−6M�. a = A = 0 in Red, A = 0 in Blue,

and a,A 6= 0 in Black.
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From these graphs and the validity ranges in Figures 4.12 and 4.16, we see that no

black hole will give us a Q
Mg

value greater than 1 in the range in which our Lagrangian

is valid.

In this section, we have shown that QED corrections tend to remove the Cauchy

horizons of black holes. We see that higher order corrections do allow for Q/Mg > 1

and even very large values of σ for small black holes. However, this does not mean

that a naked singularity will develop, since the criteria for having a naked singularity

will change when applying QED. Additionally, we also showed that our approach

of defining an intrinsic mass for the black hole removes the possibility of having

Q/Mg > 1 in a range where the Lagrangian being used is valid. This says nothing

about full quantum mechanics. Full quantum mechanics will be needed to allow us

to do any valid analysis for the smaller black holes that allow for Q/Mg > 1.



Chapter 5

Conclusions and Future Direction

The main conclusions from my dissertation are summarized below:

• Threshold conditions for the single cavity dynamical Casimir effect were calcu-

lated, and it turns out that the threshold is too high for current experiments. A

membrane or other moving boundary condition is needed with higher resonant

frequency.

• Threshold conditions for the double cavity dynamical Casimir effect were cal-

culated, and it turns out that the threshold is too high for the ωd = ω1 + ω2

case for current experiments. In the ωd = ω2 − ω1 case, the threshold was so

large that it was physically impossible to achieve.

• The Raman effect was shown to be a reasonable experiment to study in our lab.

• Gravitational waves were shown to interact with superconductors by imparting

energy to them.

• Black holes formulated using QED were shown to only have a single horizon.

This solved the mass inflation instability problem.

• Black holes formulated using the irreducible mass approach, were shown to

posses a horizon independent of their charge or mass. This solved the naked

singularity problem and protected chronology.
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• Black holes formulated using QED and the irreducible mass approach, within

a valid limit, were shown to never become naked singularities and never posses

an inner Cauchy horizon.

5.1 Future Direction

One of the main goals of the Chiao-Sharping collaboration has been to generate and

detect gravitational waves. Most of the time, the road block to understanding how

to achieve this goal was a lack of knowledge of quantum optomechanics, of general

relativity, or of the interplay between quantum mechanics and general relativity. With

this in mind, it is always important to gain insights into quantum mechanics and

gravity whenever and however we can.

In this chapter, I will discuss future directions that can be taken to explore new

physics.

5.1.1 Double Cavity 2 Photon Raman-DCE

In Section 2.6.2 we discussed the result of a recent paper where they look at a modified

dynamical Casimir effect. I dismissed the idea as a glorified Raman effect. However,

we could do this experiment in the lab. We have good single cavities that we can

couple to membranes. Most of the equipment in the lab has a frequency limit of

12 GHz, so the input signal ωl would need to be at most 12 GHz. Since the equation

for resonance is ωl + ωm = 2ωc, we would need our cavity frequencies to be ∼6 GHz.

This means we would need to make larger cavities. To reach 6 GHz we would need

Lz ∼ R ∼ 4 cm. This cavity would still fit in the dilution refrigerator, the cylindrical

chamber connected to the 50 mK plate has a radius of 8.5 cm and a length of 17 cm.

Even with circulators and cabling there is plenty of space for not one but two, maybe

even three 6 GHz cavities.

For the proposed experiment, you would need two cavities. One to drive the

membrane at the membranes resonance, and one to perform the actual DCE. The

system would be identical to Figure 2.1. You insert an amplitude modulated 6 GHz
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signal into the pump cavity, the amplitude is modulated at the resonant frequency of

the membrane, ωm. A 12 GHz signal is input into the signal/idler cavity. Under the

resonant condition, ωl + ωm = 2ωc, you should see an output of correlated photons

from the cavity with a frequency of 6 GHz.

Another experiment that can be performed in the lab is a double cavity 2 photon

Raman-DCE. This experiment will be similar to the single cavity case, but we will

instead implement the design of Figure 2.2. In this case we have two resonant con-

ditions that we want to satisfy, ωl + ωm = ω1 + ω2 and ω2 − ω1 = ωm. This allows

for a method of easily separating the coupled photon output, which could lead to

interesting insights into the photon correlation. Additionally, we could put another

input at the frequency ω2. It is clear, from the work of Reece [20], that if you input

a signal at the resonance ω2, you will get transduction from sideband generation, a 1

photon Raman like process. What is unclear is whether driving at both ωl and ω2 will

increase or decrease either the 1 photon or 2 photon Raman processes. In principle

you should get both processes occurring.

5.1.2 Noise from Gravitational Wave Signals

One thing we can do that combines gravity and quantum optics is to look at LIGO

data. One interesting thing that is unexplained so far about the LIGO data, is that in

the first two events, as reported in [81], the noise between two different detectors were

correlated. This seems to be a problem because noise in two different detectors should

not be correlated at all, unless the signal that they are detecting is of a quantum

mechanical nature. So what I am proposing is, if gravity is quantized it could explain

the fact that the noise is correlated. If the signal is made up of gravitons then it will

have shot noise which would lead to correlated noise in the motion of the detectors.

Additionally, the magnitude of the noise may be a way that we can place limits

on the value of ~ for gravity. We could make a model that incorporates some generic

type of shot noise with some unspecified constant like ~g, that would explain the

correlations. We could then use the LIGO data to put limits on what ~g could be.
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Recently, Pang has worked on the question of whether you can use LIGO data to

distinguish between the classical and quantum nature of a gravitational wave signal

[82], [24]. Pang has done a very good job providing a framework here. While she does

not address the question of ~, she does formulate the quantum back action of the

gravitational wave on the mirrors of LIGO. In addition to the work by Pang, Bose

and Grishchuk also showed that relic gravitational waves will have squeezing that

can be observed in the laboratory [83]. So if we can develop a method for detecting

relic gravitational waves, these waves will also have a squeezed signature if gravity is

quantized.

5.1.3 A Comment on “Zero” Mass Black Holes

Suppose an object has no “bound, trapped, intrinsic mass” (This may be the case

for elementary particles like the electron. Clearly weak and strong energies will be

bound/trapped energies though.). If in the analysis that we did without rotation, if

there is no intrinsic mass i.e. M0 = 0, then the solution for f(r) = 0 is valid only for

rH → 0. Now, f(r) → 0 as (r → 0 and rH → 0). This is a little different from the

classical case in which f(r) → −∞ as r → 0. We do have a coordinate singularity,

and a calculation of the Kretschmann scalar reveals that we have a true curvature

singularity at r = 0. But are we naked? Yes and No, rH → 0, this is different from

having a regular naked singularity where there is no horizon. In this case our horizon

is at r = 0. This means that at the very least, we do not get CTCs like we would in

regular naked singularities. But, there is an open ended question here, “can a point

singularity be covered by a point shell?”

Right now we sit at an exciting era for general relativity and quantum mechanics.

With the recent discoveries in the last few years, (the measurement of gravitational

waves, and the imaging of a blackhole event horizon, [30], [37]), we have many new

tools at our disposal for experimentally probing the interface between general relativ-

ity and quantum mechanics. Similar to when the laser was discovered, a lot of new

and exciting research into fundamental physics is surely upon us.



Appendix A

Lagrangian Analysis

A.1 Lagrangian Validity Analysis

In the beginning, I thought that the naked singularity problem was a result of using

classical physics too close to the singularity. Indeed, this may be the case, however we

show in Appendix B, that at present we do not have adequate quantum corrections

to deal with this problem. We will discuss this problem in detail in Appendix B.

Basically, no effective Lagrangian approach is valid for Q > Mg. In fact, in this

Appendix I show that the classical result is not valid either. In fact, the classical

result becomes invalid well before the QED effective Lagrangian becomes invalid. So

while the QED result should be taken with some skepticism, we have shown that if

we cannot accept the QED result, then we never should have trusted the classical

result to begin with. Recall that the classical result would put r+ at r = 0. Clearly at

this distance, full quantum effects matter and the classical result cannot be trusted.

So, although the QED result is also not valid in the region of its predicted outer

horizon, it is at least more valid than the classical result. Below we will show detailed

calculations of the various Lagrangian terms that electromagnetism can have.

NOTE: Using the approach used in Section 4.3, both Maxwell and QED become

valid for Q > M0.
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A.1.1 Units

Units are always the hardest thing to deal with. In most of our published work we will

use HSL units which is the standard practice of particle physics, but for calculations

we use geometrized units. To be thorough we will also show SI units. The different

types of Lagrangian terms that can be added to Maxwell can be found in the following

very nice papers, [78], [79] and [80].

HSL

In Heaviside Lorentz units, the electromagnetic Lagrangian density has the simple

form,

LEM = −F , (A.1)

with

F =
1

4
F µνFµν = −1

2
e(r)2, (A.2)

and

e(r)EM =
Q

4πr2
. (A.3)

Here, the subscript EM will always signify classical results. The first order QED

correction is,

La = aF2, (A.4)

with

a =
8α2

45m4
e

. (A.5)

The dominant curvature term goes as [80],

Lg = −9bRµναβF
µνFαβ, (A.6)

with

b =
α

720πm2
e

. (A.7)
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The first order derivative term looks like [78],

L′ = −b
[
18F µνF α

µν,α + 7F µν,αFµν,α − 2F µν
,νF

,λ
µλ

]
. (A.8)

For thoroughness, we will also write down the 2nd order QED correction which is [79],

LA = −AF3, (A.9)

with

A =
128πα

7m4
e

a. (A.10)

SI

The equations in SI units are the following.

LEM =
−F
µ0

(A.11)

F =
1

4
F µνFµν = −1

2

e(r)2

c2
(A.12)

e(r)EM =
Q

4πε0r2
(A.13)

a =
8α2~3ε20
45m4

ec
(A.14)

b =
α~2ε0

720πm2
e

(A.15)

A =
128πα~3ε0

7m4
ec

3
a (A.16)

Geometrized

The equations in Geometrized units are the following.

LEM =
−F
4π

(A.17)
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F =
1

4
F µνFµν = −1

2
e(r)2 (A.18)

e(r)EM =
Q

r2
(A.19)

a =
8α2~3

45(4π)2m4
ecG

= 5.06× 1012 (A.20)

b =
α~2

180(4π)2m2
ec

2
= 3.8× 10−32 (A.21)

A =
128α~3

28Gm4
ec
a = 1.4× 1031 (A.22)

A.1.2 The leading terms in each piece of the Lagrangian

In this section we will compare the Lagrangians. We will stick to Geometrized units.

We will assume that the leading term in e(r) is Q/r2.

LEM =
−F
4π

=
1

8π
e(r)2 =

Q2

8πr4
(A.23)

La = aF2 = a
1

4
e(r)4 =

aQ4

4r8
(A.24)

Lg = −b9RµναβF
µνFαβ = −b9

(
R0101F

01F 01 +R0110F
01F 10 +R1001F

10F 01 +R1010F
10F 10

)

(A.25)

Lg =
72bMgQ

2

r7
(A.26)

L′ = −b
[
18F µνF α

µν,α + 7F µν,αFµν,α − 2F µν
,νF

,λ
µλ

]
(A.27)

The math here will not fit nicely so I will just put the result.

L′ = 256b
Q2

r6
(A.28)

LA = −AF3 =
A

8
e(r)6 =

AQ6

8r12
(A.29)
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A.1.3 The inequalities

We want LEM to be the dominant term, then after that, we want La to dominate.

We will solve for the regions in which this is not satisfied.

A.1.4 L′ << LEM
L′ << LEM is not valid when,

r <
√

2048πb. (A.30)

Notice that this is an absolute limit. If we go below this we are in trouble. It is

independent of charge and mass. Its numeric value is 1.56× 10−14 m.

A.1.5 La << LEM
La << LEM is not valid when,

r <
(
2πaQ2

)1/4
. (A.31)

A.1.6 Lg << La
Lg << La is not valid when,

r >
aQ2

4× 72bMg

. (A.32)

A.1.7 L′ << La
L′ << La is not valid when,

r >

√
aQ2

4× 256b
. (A.33)

These inequalities can be displayed quite nicely as a log plot. The plot of r+ here is

simply log(2M0).
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Figure A.1: Plot of invalid regions as a log(r) vs. σ plot for a M0 = 106M� blackhole.
Here rH = 2M0. The region were our analysis is valid is the unshaded region.

We will come back to this plot when we analyze our solutions.



Appendix B

QED Analysis

B.1 First and Second Order QED

In this Appendix, we analyze the first and second order QED corrections to show

that effective theories are not capable of solving the naked singularity problem alone.

We begin with a spherically symmetric time independent metric of the form,

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2, (B.1)

with

f(r) = 1− 2M

r
+

2P (r)

r
. (B.2)

Einstein’s equations and the constraint equations allow us to write P (r) and e(r), the

modified electric field as,

dP (r)

dr
= −4πr2

(
e(r)2

8π
+

3ae(r)4

4
+

5Ae(r)6

8

)
, (B.3)

with

e(r) + 4πae(r)3 + 3πAe(r)5 =
q

r2
. (B.4)
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Notice again, as before, the righthand side of Equation B.3 is −4πr2ρ(r). Also notice,

if we neglect a and A as they are small, we recover Maxwell. Using Equation B.4 we

may plot e(r). We do this for Maxwell, first order, and second order graphs.

20000 40000 60000 80000 100000 120000
r(m)

5.×10-8

1.×10-7

1.5×10-7

e(r)

Figure B.1: Plot of e(r) vs. r for a = A = 0 in red, A = 0 in blue, and a,A 6= 0 in
black, for Q = 1m.
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Figure B.2: Plot of e(r) vs. r for a = A = 0 in red, A = 0 in blue, and a,A 6= 0 in
black, for Q = 1m.
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Figure B.3: Plot of e(r) vs. r for a = A = 0 in red, A = 0 in blue, and a,A 6= 0 in
black, for Q = 1m.
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Figure B.4: Plot of e(r) vs. r for a,A 6= 0 in black only. For Q = 1m.

Notice, that while the electric field still goes to infinity as r → 0, it diverges

slower and slower for higher quantum corrections. Notice, also, we have only shown

the graphs of e(r) from r∗ and higher, r∗ is found from LEM > La. In this case,

r∗ = 2.3675× 103 m for Q = 1m.

f(r) can only be evaluated numerically. This is fine for our analysis. The plots of

r+ in the following graphs are found using f(r) = 0 and Equations B.2, B.3 and B.4.

To begin, we set A = 0.
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Figure B.5: Plot of invalid regions as a log(r) vs. σ plot for a M = 102M� black
hole. Roots of f(r) solved numerically using QED. The regions L′ > LEM , Lg > La
and L′ > La are outside of this plot window.
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Figure B.6: Plot of invalid regions as a log(r) vs. σ plot for a M = 103M� black
hole. Roots of f(r) solved numerically using QED. The regions L′ > LEM , Lg > La
and L′ > La are outside of this plot window.
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Figure B.7: Plot of invalid regions as a log(r) vs. σ plot for a M = 2.5×103M� black
hole. Roots of f(r) solved numerically using QED. The regions L′ > LEM , Lg > La
and L′ > La are outside of this plot window.
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Figure B.8: Plot of invalid regions as a log(r) vs. σ plot for a M = 104M� black
hole. Roots of f(r) solved numerically using QED. The regions L′ > LEM , Lg > La
and L′ > La are outside of this plot window.

Notice that while solutions for Q/M > 1 exist, they are never in the valid range.

In Figure B.8 we stop at σ = 1 because the root becomes complex after that. Addi-

tionally, the extra root i.e. Cauchy horizon reappears as seen in the following plots.

Notice however, that the extra horizon reappears only in the region where the calcu-

lation cannot be trusted. Below are the roots of f(r) for various masses.
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Figure B.9: Roots of f(r) for a M = 103M� black hole.
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Figure B.10: Roots of f(r) for a M = 106M� black hole.
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Figure B.11: Roots of f(r) for a M = 1010M� black hole.

So, to summarize, we were not able to find a valid solution for the event horizon

of a black hole with Q/M > 1. The classical result, we may recall, is also not valid.

So as it stands, no known (valid) solution exists zero, imaginary, or otherwise. This

led us to reinterpret the mass as we did in Section 4.3.
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