
UC Irvine
UC Irvine Previously Published Works

Title
Multigenic resistance to Xylella fastidiosa in wild grapes (Vitis sps.) and its implications 
within a changing climate.

Permalink
https://escholarship.org/uc/item/51j0r3pn

Journal
Communications biology, 6(1)

ISSN
2399-3642

Authors
Morales-Cruz, Abraham
Aguirre-Liguori, Jonas
Massonnet, Mélanie
et al.

Publication Date
2023-05-01

DOI
10.1038/s42003-023-04938-4

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/51j0r3pn
https://escholarship.org/uc/item/51j0r3pn#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


ARTICLE

Multigenic resistance to Xylella fastidiosa in wild
grapes (Vitis sps.) and its implications within a
changing climate
Abraham Morales-Cruz 1,9, Jonas Aguirre-Liguori 2,9, Mélanie Massonnet3, Andrea Minio3,

Mirella Zaccheo3, Noe Cochetel 3, Andrew Walker3, Summaira Riaz 4, Yongfeng Zhou 5,6✉,

Dario Cantu 3,7✉ & Brandon S. Gaut 2,8✉

Xylella fastidiosa is a bacterium that infects crops like grapevines, coffee, almonds, citrus and

olives. There is little understanding of the genes that contribute to plant resistance, the

genomic architecture of resistance, and the potential role of climate in shaping resistance, in

part because major crops like grapevines (Vitis vinifera) are not resistant to the bacterium.

Here we study a wild grapevine species, V. arizonica, that segregates for resistance. Using

genome-wide association, we identify candidate resistance genes. Resistance-associated

kmers are shared with a sister species of V. arizonica but not with more distant species,

suggesting that resistance evolved more than once. Finally, resistance is climate dependent,

because individuals from low ( < 10 °C) temperature locations in the wettest quarter were

typically susceptible to infection, likely reflecting a lack of pathogen pressure in colder cli-

mates. In fact, climate is as effective a predictor of resistance phenotypes as some genetic

markers. We extend our climate observations to additional crops, predicting that increased

pathogen pressure is more likely for grapevines and almonds than some other susceptible

crops.
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C limate change is impacting crop yields by shifting tem-
peratures, weather extremes, and water availability1,
thereby affecting the distribution of arable lands2. There is,

however, another important effect of climate change, which is the
altered distribution of plant pathogens3,4. One especially promi-
nent pathogen is the bacterium Xylella fastidiosa (Wells). X.
fastidiosa is a generalist that colonizes > 300 plant species5,6, but
it is pathogenic on major crops like citrus, coffee, almonds and
grapevines (Vitis vinifera L. ssp. vinifera). Until recently, X. fas-
tidiosa had been limited to the Americas, but human-mediated
migration has led to its colonization of Europe, where it causes >
~$100M of damage per year to the olive (Olea europaea L.)
industry7. This olive example illustrates that the bacterium is
more than a persistent threat in the Americas; it is also an
emerging and expanding global threat to Europe, the Middle
East8 and beyond9. Accordingly, there are urgent needs to better
understand the genetic mechanisms of plant resistance10, parti-
cularly in the wild where both pathogens and hosts evolve11.

Thus far, studies of X. fastidiosa-mediated diseases have
focused primarily on citrus12,13 and on Pierce’s Disease (PD) in
domesticated grapevines, but also with an increasing emphasis on
olives14,15. In grapevines, PD manifests by colonizing the xylem,
leading to vascular blockages and eventual plant death after
several years. In the course of infection, PD causes other detri-
mental symptoms, including marginal leaf necrosis, berry desic-
cation, irregular maturation of canes and abnormal petiole
abscission16. The bacterium is spread from plant to plant by
xylem-feeding insect vectors, which affect the severity and spread
disease. The distribution of these insect vectors is being affected
by changing climate17 and by anthropomorphic activity. One
pertinent example is the glassy-winged-sharpshooter (GWSS;
Homalodisca vitripennis Germar), which was introduced to
Southern California in the late 1990s. The GWSS has a higher
transmission efficiency compared to native vectors and fueled a
large PD outbreak that has permanently altered viticulture in the
region.

Although all domesticated grapevines are susceptible to PD,
some wild relatives of grapevines segregate for PD resistance,
likely reflecting the evolution of resistance in regions of persistent
X. fastidiosa pressure18. Among wild grapevines, Vitis arizonica
(Engelm.) merits particular interest because it exhibits strong
resistance to PD and because it contains the only characterized
plant locus to segregate for X. fastidiosa resistance, the Pierce’s
disease resistance 1 (PdR1) locus19,20. PdR1 was identified by
genetic mapping of a segregating family, defined by simple-
sequence-repeat (SSR) markers, and backcrossed into susceptible
grapevine cultivars to introduce resistance21. A recent study uti-
lized BAC sequences of the region to identify candidate genes for
resistance22. Two canonical leucine-rich receptor (LRR) loci were
transformed into V. vinifera, but neither conferred resistance22.
Additional candidate resistance genes have been identified
based on comparative transcriptomics and proteomics in
V. vinifera23,24, olives15 and citrus (Citrus reticulata Blanco)25.

Despite the enormous economic impact of X. fastidiosa
infection, the genomic architecture of resistance has not yet been
investigated in any species, and the genomic basis of resistance
remains unclear. Here we address this shortcoming by perform-
ing genome-wide association (GWA) analyses for X. fastidiosa
resistance in V. arizonica. In addition to identifying several novel
candidate genes for resistance in PdR1 and in other genomic
regions, our work begins to fill another surprising gap. Although
GWA and similar approaches are commonly used to study dis-
ease resistance in crops, surprisingly few studies have focused on
the wild relatives of crops11. [One notable exception is the wild
relative of soybean, Glycine soja (Siebold & Zucc.)26,27.] This
dearth of studies is surprising both because crop wild relatives are

a proven and valuable source of resistance genes for crop
improvement28 and because studying resistance in wild samples
may provide insights into the evolution of resistance and the
ecological and climatic factors that shape resistance11.

In this study, we generate landscape genomic data from a
sample of V. arizonica from throughout its native range and
perform GWA based on a resistance phenotype - i.e., bacterial
load after experimental inoculation. In doing so, we identify
several genomic regions, including the PdR1 region, that are
associated with resistance, and we identify candidate genes in
these regions based on an improved V. arizonica reference gen-
ome. We combine GWA with several types of evidence –
including population genetic analyses, gene expression assays,
comparisons among wild Vitis species, data from V. vinifera
cultivars bred for PD resistance and bioclimatic modeling - to
address three sets of questions. First, which and how many genic
regions contribute to resistance, and what are some of the likely
candidate resistance genes within these regions? Second, are these
regions implicated in resistance across Vitis species and also in
cultivars that were specifically bred for PD resistance? What do
these inter-species analyses imply about the origin of resistance?
Finally, does plant resistance correlate with climate? If so, what
might this correlation imply about the potential effects of climate
change? Overall, our work provides information about the
genetics, evolution and ecology of PD resistance, all of which will
help inform strategies to manage an economically damaging and
expanding pathogen29.

Results
Genome-wide associations for resistance to Pierce’s Disease.
We studied the genetics of PD resistance in V. arizonica by
combining three sources of information: an updated reference
genome (accession b40-14, which is homozygous for PD
resistance)30, whole-genome resequencing data from 167 acces-
sions sampled across the species’ native range (Supplementary
Fig. S1), and previously published PD resistance data measured in
a common greenhouse environment on the same set of 167
accessions30,31. We used PD resistance as a quantitative variable -
i.e., the log-transformed number of colony forming units (CFUs/
mL) 12-14 weeks after experimental X. fastidiosa ssp. fastidiosa
(Wells) inoculations (Supplementary Data S1). However, fol-
lowing precedence31, we also characterized individual accessions
as resistant if they had X. fastidiosa concentrations below 13.0
CFUs/ml. Based on this threshold, our sample contained 135
resistant and 32 susceptible individuals, with the susceptible
individuals more common in the northern region of the geo-
graphic distribution (Fig. 1).

We first performed genome-wide association (GWA) analyses
based on SNP variants. To do so, we mapped resequencing data
to the reference haplotype of the phased diploid genome and
then tested for associations between high-quality SNPs and PD
resistance using LFMM232 and EMMAX33, both of which
correct for genetic structure (see Methods). On the reference
haplotype (hap 1), we identified 74 and 40 associated SNPs
(Bonferroni p < 0.05) with the two methods, of which 25 were
significant with both methods. We used these 25 SNPs to
conservatively define eight peaks across five chromosomes
(Fig. 2, Supplementary Figs. S2-S4, Supplementary Data S2).
The most evident peaks were on chromosomes 14 and 15, with
one of the former located between the SSR markers that define
the PdR1 locus. We also called SNPs independently to the second
haplotype (hap2) and identified 11 significant SNPs in five peaks
(Supplementary Figs. S5-S7, Supplementary Dataset 2). One of
these peaks was also on chromosome 14 between the PdR1
flanking markers.
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Previous studies have suggested that PdR1 alleles differ in size
among V. arizonica accessions34, potentially implicating struc-
tural variants in resistance. We therefore investigated associations
using copy number variants (CNVs), identifying 14,294 CNVs
throughout the genome, of which 60 were in the 8 PD-significant
peaks (Supplementary Data S3). The 60 CNVs included 19
deletions and 41 duplications, with means of 1.3 and 3.3 copies.
We also performed GWA on the complete CNV set, finding four
that were significantly (Bonferroni p < 0.05) associated with
bacterial load (Fig. 2, Supplementary Figs. S8-S9). Two of these
four CNVs mapped to two SNP-defined peaks: CNV10605 within
PdR1 (mean copy Number= 0.88, size= 6 kb, R=−0.36,
p= 1.77e-06) and CNV10806 within peak 7 of chromosome 15
(mean copy number = 2.83, size = 17 kb, R=−0.38, p= 3.61e-
07)(Fig. 2). The negative correlations for both CNVs indicated
that a higher number of copies had lower bacterial loads and
higher PD resistance. However, both CNVs had homology to
long-terminal repeat transposable elements and so provided few
insights into the functional basis of resistance. To further account
for potential structural variation among accessions, we also

applied GWA to 31 bp kmers, using a reference-free approach35

(Fig. 2, Supplementary Fig. S10). Of 115 significant kmers
(Bonferroni p < 0.05) (Supplementary Data S4), 79 mapped to the
reference genome (Supplementary Data S5) and 62 mapped
uniquely to either hap1 or hap2. Among the uniquely mapped
kmers, 57 of 62 were located on hap1 near PdR1 and five were in
peak 8 on chromosome 15 (Fig. 2). Altogether, CNV and kmer
analyses corroborated four of the eight SNP-based peaks, added
further evidence of the role of SVs in PD resistance, and
confirmed PdR1 as a candidate locus19,20.

We examined annotated genes under the eight hap1 peaks,
using peak boundaries defined by 100 kb windows, since genome-
wide LD decayed to background levels (r2 < 0.05) within this
distance (Supplementary Fig. S11). The eight peaks included 124
genes, and several had annotations that implied a role in plant
immunity (Supplementary Data S6). For example, peak 4
included a gene inferred to have calmodulin-binding function
(g226310), which is involved in the regulation of plant disease
response through changes in phytohormone biosynthesis36,37.
This peak also had a gene annotated as a “syntaxin of plants 41”
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Fig. 1 Vitis arizonica sampling and phenotypes. A map of the Southwestern United States and Northern Mexico indicates sampling locations of the
n= 167 V. arizonica accessions used in this study. The color of sample locations (circles) are colored according to their resistance phenotype, as measured
by bacterial load (CFU/mL). The histogram of phenotypes (in CFU/mL) is to the right of the map. Map generation relied on information from GADM, a
publicly available database (http:gadm.org).

Fig. 2 A Manhattan plot of the V. arizonica genome showing markers associated with bacterial load. The plot denotes each of the 19 chromosomes for
haplotype 1. Each circle represents a SNP with a corresponding p value, based on EMMAX genome-wide association analysis. The 25 SNPs that were
detected in two separate GWA analyses are circled in red and define the 8 peaks of association, which are numbered as P1, P2, etc., and referred to in the
text. In addition to SNPs, the locations of significantly associated kmers and CNVs are provided when they overlap with a SNP-defined peak. The colored
horizontal lines represent the cut-off p-values (P < 0.05, Bonferroni corrected) for the different marker types. Significant (P < 0.05, Bonferroni corrected)
kmers and CNVs are represented by red and blue triangles, respectively.
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gene (g226360) that is homologous to genes that act in plant
resistance against bacterial pathogens38. At PdR1 (peak 6), we
identified 7 leucine-rich repeat receptor-like protein (LRR-RLP)
genes, one LRR receptor-like protein kinase (RLK) gene, and one
lysin motif (LysM) RLK gene, all gene types that are commonly
involved in pathogen detection and initiate the plant response39.
Peak 7 contained two nucleotide-binding site leucine-rich repeat
proteins (NBS-LRR; g243780, and g243820), genes that typically
detect pathogens and initiate a host response, as well as a gene
annotated as a Phloem protein 2-like (PP2) protein, which have
antimicrobial properties in cucumber40. We also identified eight
genes of interest on chromosome 15 (peak 8). Two of those genes
have functional annotations related to phytohormone interac-
tions (g252710, Ethylene-responsive transcription factor CRF4,
and g252790, Abscisic Acid Insensitive-like 1 or ABIL 1), and
thus could in theory play a role in plant immunity. Another four
genes in peak 8 were annotated as acidic endochitinases, which can
provide defense against fungal pathogens41. Finally, we studied the
potential gene function associated with the 36 significant kmers that
did not map to the reference genome by assembling reads
containing the kmers and then aligning the assemblies to the NCBI
Transcript Reference Sequences (“refseq_rna”). Of the assembled
contigs, 80% had high similarity to three specific Receptor-like
proteins (RLPs) (“ XM_010648495.2”, “XM_034852027.1” and
“XM_019224733.1”). Overall, the set of candidate genes suggest
that multiple diverse functions may contribute to PD resistance, but
with likely involvement of classic disease resistance (R) genes.

We mapped previously used SSR markers to define the PdR1
locus as a 361 kb region on hap1 chromosome 14 (with a
corresponding 360 kb region on hap2), but we further char-
acterized the locus in three ways. First, we evaluated linkage
disequilibrium (LD) across chromosome 14. We observed two
large blocks (~7 Mb in size) in high LD that contained the three
PD-significant peaks of chromosome 14 (peaks 4, 5, and 6), even
though peaks 5 and 6 were located on opposite ends of the
chromosome from peak 4 (Fig. 3a). This striking pattern may

simply reflect properties of our sample, but it also suggests that
PD-related alleles co-segregate across peaks, implying that
additive or epistatic interactions contribute to resistance in
nature. Second, we focused on the location of significantly
associated PdR1 SNPs, which fell into a narrower 103.6 kb region
containing six genes, three of which were RLPs (Fig. 3b, c).

Finally, we assayed gene expression in the region and
manually confirmed gene annotations in this region with
RNAseq data. One RLP gene (g238150) was expressed in b40-
14 leaves, as was a receptor-like-kinase (RLK; g238290) that
fell outside the 103.6 kb region (Fig. 3c). We also assayed gene
expression in three resistant full-sibs that were inoculated with
X. fastidiosa and a control (water). The stems above the
inoculation site were sampled weekly for up to four weeks.
Both g238150 and g238290 were expressed at higher levels
than the control in at least one weekly stage, although not
significantly so (p= 0.98 and p= 0.54 for g238150 and
g238290). Two additional genes - an RLP (g238180) and an
RLK (g239250) - also exhibited this pattern, and g238180 co-
located with several associated kmers (Fig. 2). Altogether four
candidate R genes (g238150, g238180, g238250, and g238290)
under the PdR1 peak were expressed in PD-resistant stems,
but only g238150 and g238290 were found expressed in b40-14
leaves. All four of these genes were also present on the hap2
version of PdR1. Importantly, none of these four candidates
were the closest homologs of the candidate genes that failed to
confer resistance when transformed into V. vinifera22 (see
Discussion).

The genetic basis of resistance in breeding. The complex LD
pattern on chromosome 14 suggests that resistance may require
genic action from more than one locus - i.e., multigenic (hor-
izontal) resistance. To investigate this possibility, we examined
the distribution of kmers across accessions (Supplementary
Data S7). Among the 117 kmers associated with bacterial load, 99
were common among resistant accessions; they were found in

Fig. 3 Genetic analyses of the PdR1 region. a A plot of linkage disequilibrium (LD) across chromosome 14, where darker colors represent higher levels of
LD. The two dark squares on the diagonal include GWA peak 4 (on the left, from 0 to 7Mb on the chromosome) and the GWA peak that corresponds to
PdR1 (on the right, from 22 to 28Mb on the chromosome). The two off-diagonal squares reflect LD between these two distinct regions. b AManhattan plot
of chromosome 14 indicating the locations of peak 4 and the PdR1 region. c An expanded representation of the PdR1 region showing the location of
significant SNPs (red circles denote SNP significant with two GWA methods), significant kmers (green triangles) and CNVs (blue triangles). The dashed
vertical lines represent the 361 kb region defined by SSR markers and the 106 kb region defined by the location of significant markers. The schematics
below represent genes in PdR1 and a summary of gene expression results. Genes are denoted by rectangles and colored if they are related to R genes, with
the category of R gene indicated by its color. Expression information shows expression, in transcripts per million (TPM) for leaves, for stems during four
stages after infection and for mock controls.
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65.0% of resistant plants, on average, but in only 9.5% of sus-
ceptible accessions. We labeled these kmers as resistant (R-
kmers). In contrast, 16 kmers were detected in 67.2% and 10.1%
of susceptible and resistant accessions, on average, suggesting
associations with disease susceptibility (S-kmers). Interestingly,
10 of the 16 S-kmers mapped to a region on chromosome 15 that
was ~12 kb upstream of a Jasmonic Acid-Amido Synthetase gene
(JAR1, g252600). In Arabidopsis, changes in the expression of
JAR1 are associated with a reduction of host defenses42. We
hypothesize that S-kmers are linked to variants that affect the
expression of JAR1 and promote susceptibility to X. fastidiosa. An
important goal for breeding may be to avoid these S-kmers43.

We then investigated the genomic content of five resistant
cultivars (Ambulo Blanc, Caminante Blanc, Camminare noir,
Errante noir and Paseante noir) derived from backcrosses to
V. arizonica (accession b43-17)44 to test whether the basis of
their resistance lay solely in PdR1 or included additional
genomic regions. After resequencing the five cultivars, we
detected all 99 R-kmers in each cultivar but no S-kmers (Fig. 4b,
Supplementary Data S8). In contrast, a control dataset from four
susceptible V. vinifera cultivars (Cabernet Sauvignon cl. 08,
Chardonnay cl. 04, Zinfandel cl. 03 and Petite Sirah) contained
neither R-kmers nor S-kmers (Supplementary Data S8).
Although our analyses used a reference (b40-14) that was not
the source of PD resistance in backcrossed cultivars (b43-17), we
found 56 kmers mapped to b40-14 hap1, 44 to hap2, and 53 to
unplaced contigs. Importantly, the hap1 kmers mapped to both
PdR1 (51 kmers) and to peak 8 on chromosome 15 (5 kmers),
suggesting these two regions contribute to resistance. As a
complementary method, we scanned SNP heterozygosity in
resistant cultivars, reasoning that backcrossed regions should be
heterozygous for V. arizonica-specific alleles. As expected, this
analysis revealed that portions of chromosome 14 were
heterozygous across a region that encompassed Peak 5, Peak 6
(PdR1) and beyond (Supplementary Fig. S12). However, the
proximal peak (peak 4) on chromosome 14 was also hetero-
zygous (spanning from ~6.43Mbp to 6.59 Mbp on chromosome
14; Supplementary Fig. S12). Another prominent peak of
heterozygosity on chromosome 9 did not correspond to peaks
detected in our GWA. In short, both kmer and SNP analyses
suggest that resistance backcrossed from V. arizonica encom-
passed multiple genomic regions.

Resistance markers across Vitis species. These observations raise
additional questions about the evolution of PD resistance: Did PD
resistance arise only once in wild Vitis and, if so, is there evidence
for the involvement of multiple genic regions? These questions
are especially pertinent because all North American wild Vitis
species can hybridize, with their genomes containing relics of
introgression events that are enriched for RLK and RLP genes30.
To address these questions, we extended kmer analyses to a
population genomic sample of 105 individuals from six wild
North American Vitis, all of which were assayed for
resistance30,31 (Fig. 4c, Supplementary Data S8 & Supplementary
Fig. S13). The six species were estimated to have a common
ancestor ~25 million years ago (mya)30.

We hypothesized that PD resistance was introgressed across
species and therefore predicted that the same R-kmers were
present across species. We found (as expected) that R-kmers were
at significantly higher frequencies in a subset of resistant vs.
susceptible individuals for V. arizonica (Welch Two Sample WTS
t-test, p= 4.50e-16), and also for its sister species, V. girdiana
Munson (p= 0.007) (Supplementary Fig. S14). Interestingly, five
of the R-kmers within V. girdiana mapped to the chromosome 15
peak, again suggesting a non-PdR1 component to resistance.
These five kmers were detected in ~67% (12/18) of the V.
girdiana individuals. These data suggest that V. arizonica and
V. girdiana share the basis for resistance, either due to
introgression or (more parsimoniously) common ancestry. For
the remaining four species, no resistant individuals had > 50% of
R-kmers (Fig. 4c), with no difference in R-kmer frequency
between resistant and susceptible accessions (Supplementary
Fig. S14). In fact, we detected R-kmers less often in these species
than for a set of random V. arizonica kmers chosen to have
similar population genetic frequencies as the R-kmers. Contrary
to our hypothesis, the R-kmer distribution in these more distant
species provide no evidence that the genetic mechanism of PD
resistance (or at least the kmers linked to resistance) was
introgressed from V. arizonica/V. girdiana to the remaining four
species.

Predicting PD resistance. Because our plant accessions were
sampled across a geographic range (Fig. 1), we can use the
resequencing data to investigate relationships to climate. We

Fig. 4 The presence of resistance and susceptibility kmers in different data sets. a Analyses within the V. arizonica sample set. The top-left graph
indicates the 99 different resistance (R-kmers) kmers across the x-axis, with their detection frequency across the resistant (CFU/mL < 13) accessions. The
top-right graph plots the average detection frequency of susceptibility kmers (S-kmers). The bottom-left and bottom-right graph are similar, they but show
R-kmer and S-kmer detection frequencies among susceptible accessions. b The same graphs as in A, but the top graphs plot R-kmer and S-kmer detection
frequencies for the five V. vinifera cultivars bred for PD resistance by backcrossing to V arizonica, while the bottom graphs represent susceptible V. vinifera
cutlivars. c. Plots of kmer frequencies in six Vitis species. The species phylogeny is shown on the left, with the average detection frequency of R-kmers
shown in red dot. The gray dots represent average detection frequencies of randomly chosen kmers that had similar population frequencies in V. arizonica
as the set of R kmers. Whiskers denote 95% confidence intervals.
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utilized gradient forest (GF) to detect bioclimatic factors related
to resistance. GF is a machine learning method that models the
turnover in genetic composition and frequency across the climate
landscape45 while identifying bioclimatic variables that are
important to the construction of the model. As is common for GF
applications46, we applied it to candidate SNPs, specifically the 25
SNPs associated with resistance. To test for robustness, we also

repeated GF analysis 1000 times. In all 1000 runs, GF identified
BIO8 (Mean Temperature of Wettest Quarter) as the most
important model contributor among 10 bioclimatic variables,
followed by BIO3 (Isothermality), BIO4 (Temperature Season-
ality) and BIO17 (Precipitation of Driest Quarter) (Fig. 5a).
Moreover, the turnover function revealed a bias in which sus-
ceptible individuals were from locations where BIO8 was <10 °C

Fig. 5 Relationships among resistance, genetic markers and bioclimatic data. a The estimated relative importance, from GF modeling, of each of the
bioclimatic variables tested. The y-axis is a measure of the importance of various variables to explain the model - i.e., the relative importance of each
bioclimatic variable for predicting changes in allele frequency across the landscape. Each boxplot denotes the average inferred importance of the
bioclimatic variable, with the whiskers plotting the standard deviation of 1000 separate analyses (gray dots). BIO8 was estimated to have the biggest
impact on the model in all 1000 analyses. b The turnover function showing the temperature range of BIO8 on the x-axis and the change in the genetic
composition on the y-axis. The circles represent individuals that are colored by resistance (gray) or susceptible (white). c Individual predictors in a linear
model to predict resistance levels (CFU/ml). The label score_ref represents sets of 1000 randomly chosen sets of 25 SNPs; K1 and K2 are the proportion of
the assignments to each admixture group for each individual. The other predictors include bioclimatic variables and genomic data, as listed in the text, each
evaluated 1000 times with bootstrapped datasets. Each boxplot reports the second and third quartiles, with median values in the square and circles
showing outliers. The barplot whiskers report standard deviation, and the dashed horizontal line reflects the median value of 1000 replicates of the Rpd
score. d The density distribution of BIO8 for a global database of locations of Xylella fastidiosa detection.
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(Fig. 5b), which was confirmed by a significant pairwise com-
parison between resistant and susceptible individuals (Supple-
mentary Fig. S15).

We performed two additional analyses to assess the generality
between resistance and BIO8. First, we examined our complete
dataset of all assayed Vitis individuals (n= 275) across six species.
The dataset was highly skewed, because 30% of susceptible
individuals – but only 1.6% of resistant individuals – had
BIO8 < 10 °C (FET, p= 8.2e-12). This result held separately for V.
arizonica (FET, p= 8.2e-12) and when V. arizonica was not
included in the analysis (FET, p= 0.03). Second, we constructed a
global dataset of known X. fastidiosa geographic locations that
integrates across plant families and all X. fastidiosa subspecies47.
Unfortunately, the dataset had few exact locations suitable for
analysis, leaving only 61 reputable observations. Of these, fewer
than 5% had BIO8 values < 10 °C (Supplementary Fig. S15),
reflecting the previously reported relationship between tempera-
ture and X. fastidiosa presence6,48–50.

Given an association between plant resistance and temperature,
we explored whether genetic or climatic factors better predicted
bacterial load in V. arizonica. We assessed individual predictors
with linear models, focusing on 10 bioclimatic predictors and
nine genomic predictors (Fig. 5c). The genomic predictors
included kmers, CNVs, assignments into genetic groups (K1
and K2), randomly chosen SNPs, and SNPs associated with PD.
We summarized SNPs associated with PD with Spd, a measure
that ranged from 0.0 to 1.0 and reflected the average proportion
of alleles associated with resistance (where 0.0 is no resistance-
associated alleles). Focusing on the performance of each of the 19
predictors, Spd calculated across PdR1 SNPs (10 total SNPs) had
the strongest predictive power (R2= 0.599), followed by related
Spd scores based on all candidate SNPs on chromosome 14 (16
SNPs, R2= 0.592), all candidate SNPs across the genome (25
SNPs, R2= 0.576) and finally all candidate SNPs on chromosome
15 (6 SNPs, R2= 0.412) (Fig. 5c). Among the bioclimatic
variables, BIO8 had an R2 of 0.370 in the linear model, which
was much higher than the median value for 1000 randomly
chosen sets of SNPs (R2= 0.196) and similar to the predictive
power of Kmers (R2= 0.410) and CNVs (R2= 0.307). Thus,
BIO8 was a reasonable predictor of resistance, even in the absence
of genetic data. Notably, the other bioclimatic variables that were
identified by GF were not strongly predictive by themselves, e.g.,
BIO4, BIO17 and BIO3 had lower predictive power than random
sets of SNPs (Fig. 5c).

Discussion
X. fastidiosa causes Pierce’s Disease in domesticated grapevines
(V. vinifera) and economically devastating diseases in other crops
like citrus, olives, coffee and almonds16. A diverse body of work
has investigated the basis of resistance across diverse crop species
but has produced few plausible candidate resistance
genes15,22,23,25. To date, however, no studies of X. fastidiosa
resistance have taken advantage of full-scale genomic approaches
like GWA. Indeed, GWA studies in the wild relatives of crops are
surprisingly rare, despite the importance of understanding the
basis of resistance in ecological settings11 and the transformative
potential of such knowledge for crop breeding28. Here we have
applied GWA to resistance in V. arizonica, based on an improved
reference genome, on resequencing data from 167 wild-sampled
accessions and on phenotypic data measured from X. fastidiosa
infection assays performed in the greenhouse30,31. Together, these
analyses have yielded information about genomic regions asso-
ciated with PD resistance and also identified candidate genes
within those regions. We have also studied the population fre-
quencies of SNPs associated with resistance, using a machine-

learning framework to help identify the climatic features that
correlate with resistance and representing a novel extension of
this approach to study interactions between resistance and
climate.

Not surprisingly, GWA identified several significant SNP and
kmer markers on chromosome 14 between the genetic boundaries
that define the PdR1 locus (Fig. 2). This locus was originally
identified by genetic mapping and QTL analyses19,51 and it was
subsequently backcrossed into susceptible V. vinifera to produce
resistant cultivars21. There had been no insights into causative
genes that lie within this region until Aguero et al.22 trans-
formed two R genes separately into V. vinifera. They failed to find
evidence for enhanced resistance using over-expression assays,
but our study of a different accession (b40-14) provides further
insights. First, based on careful genomic annotation combined
with association and gene expression analyses, we have identified
a narrower PdR1 region with two strong candidates (g238150
and g238180), along with two additional candidates (g238250 and
g238290) within the traditional PdR1 locus (Fig. 3). Second, we
have mapped the two candidate genes tested in Aguero et al.
(RGA14 and RGA18) from b43-1722 to our genome. The closest
homologues in the PdR1 region were genes g238170, which
encodes an putative LRR protein with 99.15% amino acid identity
to RGA14, and g238120, which encodes a putative LRR-RLP with
92.46% identity to RGA18. Both g238120 and g238170 are located
within the PdR1 locus, but they are either not expressed or lowly
expressed in leaves and stems across our sample of three PD-
resistant full-sibs (Supplementary Data S9). Our results thus
suggest that these genes, like their homologues in b43-17, are
unlikely to be involved in PD resistance.

Overall, our candidate genes, which are present on both b40-14
haplotypes, differ substantially from those identified in b43-17. It
is possible, of course, that different genes confer resistance in
different accessions, given that structural variants are common in
Vitis genomes52 and that allelic heterogeneity for resistance is also
common53. A reasonable way to test our candidates would be to
generate knock-outs in V. arizonica, but unfortunately transfor-
mation in Vitis is currently efficient only for a narrow set of V.
vinifera cultivars54. Hence, an important challenge for viticulture
is to improve transformation techniques for application to more
cultivars and to agronomically valuable wild species. A future goal
is to transform V. vinifera with sets of our candidate genes both as
single loci and in combination, because disease resistance genes
often act in tandem and also because stacking resistant genes is
often desirable.

It is possible that candidate genes from PdR1 will not be suf-
ficient to confer complete resistance because contributions from
additional genomic regions are required. There is evidence con-
sistent with and against this multigenic hypothesis. For example,
in an early study of PD resistance among Vitis species, Mortensen
(1968) performed controlled hybrid crosses and concluded that
complementary gene action among three independent genes best
explained his results55. Similarly, although multiple QTL studies
have identified PdR1 as a major effect locus19,20,56,57, they also
hint that other regions may be important. For example, a recent
study used interval mapping and found that PdR1 was the only
major QTL, explaining 55.5% of phenotypic variation57, but
phenotypic associations were also detected to regions of chro-
mosomes 3, 7, 9, 10 and 15. Another study investigated the basis
of resistance across 17V. arizonica accessions and identified three
accessions for which the PdR1 region explained < 10% of phe-
notypic variation for resistance, suggesting that the possibility
that resistance arises from non-PdR1 locations in some
accessions56.

The value of GWA is that, unlike QTL studies, it integrates
across an extensive population sample. Here we have done so in
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the context of a platinum-level reference genome, which likely
provides a more complete view of the basis for resistance. Our
results are tentatively consistent with the idea that multiple
genomic regions contribute to resistance. First, SNPs associated
with resistance are found across the genome. We studied these
significant SNPs further by measuring effect sizes - i.e., by esti-
mating the slope of the phenotypic response to genotypic cate-
gories (Supplementary Fig. S16). We caution that this approach is
subject to numerous caveats, including the Beavis effect and a lack
of independence among SNPs, and thus must be viewed cau-
tiously; ultimately effect estimation requires a second indepen-
dent dataset58. Nonetheless, we find that the SNPs within peak 4
produce ~1.2-fold higher slopes, on average, than those within
the PdR1 peak (peak 5), which have similar (1.02x) slopes, to the
SNPs in peak 6 on chromosome 15. Moreover, the SNPs with the
largest inferred effect are not in PdR1, although PdR1 has the
most associated SNPs. Thus, this simple measure of effect sizes
provides little evidence that SNPs in PdR1 explain resistance
phenotypes more completely than significant SNPs from other
peaks and regions. To further explore this multigenic theme, we
have also applied a multi-locus mixed model, which can more
accurately control for false positives than some other methods
(see Methods). Although the associations to PdR1 remained, the
highest proportion of significant SNPs were in other regions of
the genomes, including significant hits on chromosomes 2, 4, and
11 (Supplementary Data S10 and Supplementary Fig. S17). We
note, however, that some of our peaks are not recapitulated with
this method.

Second, the striking LD pattern on chromosome 14 suggests
the possibility of additive or epistatic interactions between distinct
regions on the chromosome (Fig. 3a). Another explanation for
this pattern could be reduced recombination on chromosome 14.
However, there is no evidence for reduced recombination from
genetic maps and QTL mapping in F1 populations19,20, which
discriminate the PdR1 region from the proximal end of the
chromosome where peak 4 is located. The argument that this
pattern arises from recombination is further discounted by the
fact that the rest of the chromosome, including sequences inter-
vening peaks 4 and 5, are not in strong LD (Fig. 3a). Ultimately,
we cannot discriminate whether this unique pattern is caused by
sampling phenomenon or even whether this pattern of LD con-
tributes to our detection of peak 4. We speculate, however, that
the pattern of LD is likely best explained by selection for resis-
tance that acts on alleles in both regions. Clearly this speculation
requires further investigation.

A third observation is based on the distribution of R-kmers
across species. We found, for example, that V. girdiana and V.
arizonica share R-kmers that map to at least two different
chromosomes (14 and 15), suggesting that not only that multiple
genomic regions contribute to resistance but that these regions
may have contributed to resistance since the divergence of these
two species ~ 23 million years ago30 (Fig. 4b). Finally, we have
also investigated the genomics of five resistant V. vinifera culti-
vars, representing the only grapevine cultivars bred for PD
resistance to date. Because these cultivars were produced by
backcrossing, we hypothesized that genomic regions contributing
to resistance are highly heterozygous. The PdR1 region was highly
heterozygous, as expected, but so were additional peaks on
chromosomes 8, 9, 14 and 15 (Fig. 4a). These patterns suggest
that additional, non-PdR1 regions may have been instrumental
for backcrossing resistance into the V. vinifera background and
continue to hint that non-PdR1 regions contribute to the resis-
tance phenotype.

Inferring the spatial distribution of disease resistance is critical
for understanding its evolution and ecology53. We have investi-
gated resistance across the landscape of V. arizonica (Fig. 1) and

across six wild species that segregate for PD resistance. Given that
all North American Vitis species are interfertile and that there is
ample genomic evidence for historical introgression of resistance
genes among species30, we predicted that the genetic solution to
PD would yield clear signals of introgression. As mentioned
above, we find that R-kmers are commonly shared between
V. arizonica and its closest species in our sample, V. girdiana, but
not across the other species (Fig. 4c). It is possible that we cannot
detect introgression events because causative loci and associated
R-kmers have become uncoupled over evolutionary time. At a
minimum, however, our results provide no evidence that PD
resistance has introgressed from V. arizonica to the non-girdiana
species in our sample, as speculated previously22. If true, this
implies that other wild Vitis species have independently evolved
mechanisms of PD resistance, such that further study of these
species may provide additional insights into alternative genetic
mechanisms of PD resistance. In this vein, one particularly
interesting species is V. mustangensis (syn V. candicans), which
has not been widely utilized agronomically as a rootstock or for
hybrid scion breeding, but it does segregate for PD resistance and
also contains alleles that may be useful for viticulture in the
context of climate change59.

We have taken advantage of our geographic sampling to
investigate correlates between resistance and climate, finding that
resistance-associated SNP markers correlate with climatic vari-
ables, especially temperature in the wettest quarter (BIO8). More
specifically, susceptible plants tend to be found below specific
BIO8 thresholds. Based on the turnover function, which is
inferred from both climatic and population genetic data, the BIO8
threshold lies between 8 °C and 10 °C (Fig. 5b). Focusing speci-
fically on the higher of these two thresholds, we have found that
the 10 °C threshold not only applies within V. arizonica, but also
to our expanded sample of Vitis species and to a wider (although
still quite limited) geographic sample of X. fastidiosa that sum-
marizes across plant hosts and bacterial subspecies47 (Fig. 5d).
Somewhat remarkably, this simple climatic measure predicts
bacterial load nearly as well as some genetic markers (e.g., kmers)
and better than others (e.g., CNVs) (Fig. 5c). This is, to our
knowledge, the first time that genomic data have been used to
associate plant resistance with climate, yielding a useful biocli-
matic predictor. Our findings are not without precedent, however,
because temperature has previously been identified as a strong
predictor of X. fastidiosa distribution and presence6,48,49,60.
Combining these observations, we suspect that individuals with
low (<10 °C) BIO8 temperatures lack resistance because X. fas-
tidiosa growth is hampered at low temperatures50,61 and/or
because temperature affects its insect vectors17,62. Plant resistance
will not be favored by natural selection in regions where the
pathogen does not persist, particularly if there is a fitness cost to
resistance, as has been demonstrated for R-gene mediated resis-
tance in A. thaliana63.

Previous work has modeled the distribution of X. fastidiosa
under climate change6,48,49,60,64, but these models have not been
informed by data on the distribution of plant resistance. To
illustrate how such information may be useful, we have employed
climate models to predict where BIO8 will shift in the future.
More specifically, we have identified regions where BIO8 will
transition across the thresholds of 10 °C (Fig. 6a), as informed by
our analysis of genetic variants associated with plant resistance.
By categorizing regions where BIO8 is predicted to move from
below (or above) 10 °C in the present to above (or below) 10 °C in
the future, we can identify regions where X. fastidiosa pressure is
likely to expand or contract. We performed these categorizations
across 54 climate models to consider uncertainty in global cir-
culation models, shifts in greenhouse gas emissions and time (see
Methods). Summarizing across models, we have found that most
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of the globe will not transition - i.e., it will remain either above or
below the 10 °C (Fig. 6a) during the wettest quarters. Perhaps
unsurprisingly65, large portions of Canada, Eastern Europe,
Russia and Northern Asia climate are predicted to move beneath
the10 °C BIO8 threshold, suggesting that these regions may be
less likely to have pathogen pressure in the future.

There are, however, discrete areas of the Western Americas,
Western Europe, Central Asia, Southern Australia and elsewhere

that are predicted to transition above the 10 °C (Fig. 6a) threshold
in most models, suggesting increasing X. fastidiosa pressure in
these regions. These models of course make numerous assump-
tions. Some are common to all climate models (e.g., a reliance on
accuracy of the climate predictions) and to previous X. fastidiosa
species distribution models (which assume X. fastidiosa is not
dispersal limited and often ignore the potential of X. fastidiosa to
evolve to new temperature regimes46,64). Some are more specific

Fig. 6 Climate predictions and projections of the prevalence of X. fastidiosa for focal crops. a The map portrays the number of climate models (out of 54
total) that support movement across the BIO8= 10 °C threshold. The warmer colors reflect regions that are moving from below (in the present) to above
the threshold, while the cooler colors portray areas that are moving from above (in the present) to below the threshold. The intensity of color in the scale
bar reflects the number of 54 climate models that agree with the threshold transition. The generation of this map, as well as the maps in Figures S1 and S18,
relied on publicly available information fromWorldClim2 (https://www.worldclim.org/) and CMIP6 (https://pcmdi.llnl.gov/CMIP6/). b A summary of the
percentage of locations associated with movement from above the 8 C °C or 10 °C threshold (in the present) to below that threshold for five crops and for
V. arizonica. c. A summary of the percentage of locations associated with movement from above the threshold (in the present) to below the threshold for
five crops and V. arizonica. Both b and c are based on 6204 locations for coffee; 3386 locations for almonds, 1111 locations for V. arizonica; 5256 locations for
Citrus; 174,713 locations for olives and 33,225 locations for grapevines. In both b and c, each dot represents an estimate based on one of the 54 climate
models.
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to this work, specifically that the BIO8 threshold has application
to plant species beyond V. arizonica, but this assumption is
supported by our analysis of data that includes different plant
hosts (Fig. 5c). Finally, we note that there is some uncertainty in
the appropriate BIO8 threshold, because the turnover function
has inflection points along the range of 8 °C to 10 °C (Fig. 5b).
Hence, we repeated these analyses with an 8 °C threshold, finding
similar results (Supplementary Fig. S18). Importantly, our climate
modeling illustrates how data about plant resistance can help
inform the potential distribution of disease under a shifting
climate.

In fact, we can proceed one step further by assessing the
potential effects of climate on specific plant taxa: wild V. arizonica
and five affected crops (grapes, coffee, almonds, citrus and olives).
To do so, we first downloaded data on global locations where
each species is grown, and we then used climate projections to
estimate the proportion of locations that will transition over
either the 8 °C threshold or the 10 °C BIO8 threshold under cli-
mate models (see Methods). Using this approach, we predict that
few locations for these crops will transition below the 8 °C and the
10 °C thresholds. In citrus and grapes, for example, the average
estimate across the 54 climate models is that only between 0.21%
and 0.97% (of 7853) locations and between 0.24% and 2.10% (of
40,075) locations will transition below 8 °C or 10 °C, respectively,
under climate projections (Supplementary Fig. S18 & Fig. 6b).
Perhaps not unexpectedly, a much higher proportion of locations
are estimated to exceed the 8 °C and 10 °C threshold over time.
For example, we estimate that between 11% and 38% of regions of
almond cultivation will transition above the 8 °C and 10 °C
threshold, respectively (Fig. 6c). The corresponding numbers for
grapevine cultivation are 24% and 41%, suggesting that roughly a
quarter of viticulture will be subjected to additional X. fastidiosa
pressure even under the less expansive value based on an 8 °C
threshold. Similarly, 4% and 18% of olive growing locations are
expected to transition above the 8 °C and 10 °C threshold,
respectively, corroborating previous modeling work that predicts
further spread of the bacterium amongst olive growing regions
even under current climates7. We note that, like some other cli-
mate studies, our calculations treat X. fastidiosa subspecies
similarly, even though there are differences in their host
specificity6,66 and distributions7,67. However, X. fastidiosa can
move between crops, as has been shown, for example, between
almonds and grapevines68; hence we believe that a multi-crop
perspective is critical.

Overall, our study has considered the genomic, climate and
evolutionary context of resistance to a pathogen that is an
emerging global pest and that already causes devastating eco-
nomic damage to several crops. By studying the complex genetic
architecture of PD resistance in a wild grapevine, we have
implicated several genomic regions in resistance and identified
genes that are fitting candidates for genetic introduction into
susceptible crops. Furthermore, by comparing features across
breeding lines and wild Vitis species we have uncovered hints
about the origins of this critical trait. Finally, our work has
highlighted the potential of combining landscape-scale rese-
quencing data and climate models to predict the shifting pres-
sures of a damaging plant pathogen. These results underscore the
urgent need to identify additional X. fastidiosa management and
containment methods, potentially via enhanced information
about resistance mechanisms and genes.

Methods
Plant material and PD disease evaluations. We studied 167 accessions of V.
arizonica collected across the southwestern states of the US and northern Mexico,
covering the distribution of the species (Fig. 1 and Supplementary Fig. S1). The
sampling location was available for all 167 V. arizonica accessions, which are part

of a living collection of Southwest Vitis accessions maintained at the University of
California, Davis; all Vitis accessions used in this paper were from that collection.
PD resistance in these 167 accessions were previously assayed in controlled
greenhouse trials30,31, following previously published protocols31,69. Briefly,
accessions were inoculated with Xylella fastidiosa subsp. fastidiosa (Wells) using a
randomized complete block design that included at least two water-inoculated
plants and susceptible V. vinifera cultivar Chardonnay plants as controls. Nineteen
screens were carried out from 2011 to 2020, with a minimum of four biological
replicates per accession. Disease severity was assessed 10 to 14 weeks after
inoculation using categorical phenotypes for disease severity. Whole immunoglo-
bulin (IgG) antiserum raised against X. fastidiosa in a rabbit were used to quantify
the bacteria levels from stem tissue above the inoculation site from 12 to 14 weeks,
using a double-antibody sandwich ELISA method as described previously69. In this
assay, absorbance values were converted to colonizing forming units per milliliter
(CFU/ml) concentrations using a standard calibration curve. The ELISA data were
log-transformed and statistical analysis was performed using JMP Pro14 software
(Copyright 2020, SAS Institute Inc.) to determine the variability of ELISA for the
reference control plants across experiments. Following precedent30,31, we used the
least squared means of CFUs/ml across biological replications as an indicator of
disease resistance. Lower bacterial load reflects higher PD resistance.

Genomic reference, resequencing data and SNP calling. Version 1 of the V.
arizonica sequence (b40-14 v1) was published previously30,70, but this study relied
on an updated version (b40-14 v2). Version 2 was a complete re-assembly based on
the application of Haplosync71 combined with ~2000 rhAmpSeq Vitis markers72,
independent of any single reference genome assembly. This new version of V.
arizonica genome chromosome haplotypes were better phased, with fewer
unplaced sequences (~65Mb; 3035 gene loci). Correct phasing was assessed during
the assembly quality control steps based on genome and locus-specific markers and
gene content. The gene annotations were reported between versions 1 and 2, so that
genes may have moved locations in the new assembly but no new annotations were
performed. The genome contains 57,003 gene loci. This version 2 assembly
represents the most contiguous genome assembly of any wild Vitis genome released
to date and was used as the reference for all analyses. The genome is available for
browsing at grapegenomics.com, and the long-read sequencing data are available
from NCBI BioProject ID PRJNA593045.

Our V. arizonica resequencing dataset consisted of short-read, whole genome
data from 167 V. arizonica individuals, for which a subset of n= 20 had been
sequenced previously30. The data for this subset was available from NCBI
BioProject PRJNA731597. For the remaining 147 individuals, genomic DNA was
extracted from leaf samples with the Qiagen DNeasy plant kit and assessed for
quality and degradation on agarose gels and a BioAnalyzer (Agilent). Sequencing
libraries were constructed with an insert size of ~300 bp using Illumina library
preparation kits; the libraries were assessed for quality and quantified using a Kapa
library quantification kit; libraries were then sequenced using the Illumina HiSeq
2500 platform with 2 × 150 bp paired reads to a target coverage of 10x. The raw
sequencing data for this study were deposited in the Short Read Archive at NCBI
under BioProject ID: PRJNA842753.

We filtered and evaluated raw reads from 167 individuals using Trimmomatic-
0.3673 and FastQC74. Reads were scanned in windows of four base pairs, cutting
when the average quality per base dropped below 20. We removed leading and
trailing bases of reads that had a quality below 3 and finally kept reads with sizes of
60 bp or higher after trimming. Filtered reads were then mapped to the reference
genome (independently to Hap1 and Hap2) with the BWA-MEM algorithm75

implemented in bwa-0.78. Joint SNP calling was conducted using the GATK
v.4.2.2.0 pipeline76 for Hap1 and Hap2 independently. We first used the integrated
version of Picard tools77 to remove duplicated reads with the “MarkDuplicates”
function, followed by the “AddOrReplaceReadGroups” function to label the reads
for each individual. For the SNP prediction we used the HaplotypeCaller algorithm
with a sample ploidy of 2 and a mapping base quality score threshold of 20
(Q > 20). We combined the VCF files of all individuals to make the final SNP calls
using the “GenotypeGVCFs” function with default parameters. We then filtered
raw SNPs with bcftools v1.978 (https://samtools.github.io/bcftools/) and vcftools
v0.1.17 (https://vcftools.github.io/)79. We kept SNP sites for downstream analysis if
they were biallelic, had quality higher than 30, had a depth of coverage higher than
five reads, had no more than three times the median coverage depth across
accessions, and had no missing data among individuals. Additionally, the following
expression was applied under the exclusion argument of the filter function in
bcftools: “QD < 2.0 | FS > 60.0 | MQ < 40.0 | MQRankSum <−12.5 |
ReadPosRankSum <−8.0 | SOR > 3.0”.

Population Structure and genome-wide associations. We transformed the VCF
file into BEAGLE format using vcftools 0.1.17. We used BEAGLE files as input to
evaluate the genetic structure of the V. arizonica using the NGSAdmix software
included in the ANGSD package version 0.931-21-g13af01480. We ran NGSadmix
for 1 to 10 ancestral populations (K), repeating analyses 10 times for each K value
and including variants with a minimum minor allele frequency > 0.05 (Supple-
mentary Fig. S19). We then employed the Cluster Markov Packager Across K
(ANGSD package version 0.931-21-g13af014 software81 to detect the K value with
the highest likelihood of K= 2.
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The NGSadmix results were used to help guide controlling for genetic structure
in genome-wide association (GWA). We performed GWA to identify significant
associations between SNP allelic frequencies and bacterial load (Xylella fastidiosa
CFU’s), using two different methods that control for population structure using
different approximations. First, we used LFMM2, which uses latent factors to
control for genetic structure82. The number of latent factors were chosen based on
a visual observation of the screenplot of the percentage of variance explained by the
loadings of the genetic PCA of all individuals. The PCA was obtained using all loci
with no missing data and with the prcomp function in R83. In total, we defined
K= 5 latent factors (Supplementary Fig. S20). Next, we ran LFMM2 using a ridge
penalty (function lfmm_ridge), and we controlled for genomic inflation factor
(function lfmm_test, with calibrate= “gif”). We corroborated that the p values had
a flat distribution, and we corroborated that the genetic structure was well
controlled based on a qqplot (Supplementary Figs. S4 & S7).

In addition, we used the variance component algorithm Efficient Mixed-Model
Association eXpedited (EMMAX) version beta-07Mar201084. We converted the set
of filtered SNPs with no missing data from VCF format to transposed ped format
using PLINK version 1.90b6.1685. Using the transposed ped files as input, we
calculated the Balding-Nichols (BN) kinship matrix using the “emmax-kin” script
and default parameters. Finally, we ran the associations using the SNPs data (as
transposed ped), the BN matrix, and the phenotype as Least Squares Means of
CFU/ml of X. fastidiosa for each accession. Both methods (EMMAX and LFMM2)
were adjusted for multiple comparisons using the Bonferroni correction of the
function “p.adjust” from the stats package version 4.1.2 in R. We focused only on
SNPs and candidate regions that were detected by both methods.

Finally, we also used the R package mrMLM v 5.0.186 to perform a multi-locus
genome-wide association. We used the FASTmrEMMA algorithm87 within the
mrMLM package with the same set of SNPs, bacterial load measurements and the
kinship matrix described above to run multi-locus associations.

Kmer-based GWA. To perform GWA based on kmers, we followed a previously
published pipeline35 (https://github.com/voichek/kmersGWAS). Briefly, we
extracted all kmers and canonized (i.e. reverse complement is assumed to be the
same kmer) kmers of 31 bp in size using KMC version 388. We extracted the kmers
directly from the paired and unpaired filtered reads for each of the 167V. arizonica
samples independently. We compared the kmers across samples and created a table
of kmers that were found in at least 5 individuals (“-mac 5”) and in each cano-
nized/non-canonized form in at least 20% of individuals from which it appeared in
(“-p 0.2”). We used the script “emma_kinship_kmers” included in the pipeline with
a MAF < 0.05 filter to create a kinship matrix based on the kmer table. Finally, we
ran the kmer-GWAS with the script “kmers_gwas.py” and GEMMA version
0.98.589 with the kinship matrix, the kmer table, and the phenotype data as Least
Squares Means of CFU/ml of X. fastidiosa for each accession. The script provided a
list of 9991 kmers that passed a parametric test as an initial filter. To filter more
stringently, we used the number provided in the file “pheno.tested_kmers”, which
was 967066440, to adjust the p-values with a Bonferroni correction using the
program “p.adjust” from the stats package version 4.1.2 in R. To create a textual
version of the presence/absence kmers of the significant Kmers we used the “fil-
ter_kmers” from the pipeline. Given 115 significant kmers, we mapped them to the
V. arizonica genome using BLASTN90 and a word size of 8 bp. We filtered all the
BLASTN results and kept alignments, allowing a maximum of 1 mismatch.

We further explored the sequences of the 36 kmers that did not map to our
reference genome. We first searched and extracted the reads matching these 36
kmers across the 167 V. arizonica accessions. We then used SPADES v3.15.491 to
assemble the matching reads into contigs independently for each kmer. Finally, we
aligned the resulting contigs to the Reference RNA Sequences database
(Refseq_rna) using BLASTN (visited on 06/10/2022) and recorded the top hit gene.

Copy Number variation analysis and associations. To identify Copy Number
Variants (CNVs), we used the program CNVcaller version 2.0 (https://github.com/
JiangYuLab/CNVcaller)92. CNVcaller uses normalized read-depth values across
windows in the genome to identify CNVs and it is especially suited for large
population data like our V. arizonica sample. First, we generated a duplicated
window record file specifically from our genome reference V. arizonica b40-14 v2
using a window size of 2 kb and for each chromosome independently. We then
analyzed the individual read depth in 2 kb non-overlapping windows using the
“Individual.Process.sh” script and the alignment files of all 167 accessions in bam
format with the PCR duplicated reads removed during the SNP calling pipeline (see
section above). The script produces normalized values of read depth across the
genome for each genotype. We then used the normalized read depth values of all
genotypes as input to the script “CNV.Discovery.sh”, excluding windows with a
lower frequency of gain/loss individuals of 0.1 (“-f 0.1”) and with Pearson’s cor-
relation coefficient lower than 0.3 (“-r 0.3”). Finally, we used “Genotype.py” to
classify genotypes across the population according to their CNV profiles.

To explore the associations between CNVs and PD-resistance, we used the
CNVcaller estimation of diploid copy number for each CNV and tested for
correlations with X. fastidiosa bacterial levels, while taking into account the genetic
structure of the V. arizonica population. We used the function “pcor.test” from the
R library “ppcor” v1.193 to run a partial correlation for each of the CNVs, using
genotype assignment (Qi) values from the genetic structure analysis (see section

above) as the confounding variable. To account for multiple testing we imposed a
Bonferroni correction and identified significant CNVs with adjusted p < 0.05.

Defining PD-associated peaks. We performed a total of four association analyses:
LFMM2 based on SNPs, EMMAX based on SNPs, kmer-based GWA, and CNV-
based GWA. From these analyses we defined eight GWA peaks of interest in the
genome (Fig. 2). To define these peaks, we required that a peak contains at least
one SNP that was significant with both LFMM2 and EMMAX. However, most
peaks had multiple pieces of evidence - i.e., either more than one SNPs, significant
kmers and/or CNV variants. When applying this logic, we focused only on kmers
that mapped uniquely to the genome and so excluded 17 kmers that mapped to
multiple places in the genome with the same identity and alignment length.

Analyses of PD-associated kmers in other Vitis species. We identified kmers
associated with resistance in V. arizonica sample and then characterized their
presence in three different resequencing datasets: i) a multiple species Vitis dataset,
ii) a dataset generated from scion cultivars bred for PD resistance by backcrossing
to the b43-17 accession of V. arizonica, and iii) a set of PD susceptible cultivars.
The first dataset included 105 accessions from five species: V. arizonica (n= 22), V.
candicans (n= 24), V. berlandieri (n= 22), V. girdiana (n= 18) and V. riparia
(n= 19)30. All of these accessions had been assayed for PD resistance, and cate-
gorized as resistant if CFU/mls were <13.0 at the time of assay. In this dataset, 20 V.
arizonica were resistant (n= 20), 21 V. candicans (n= 25), 3V. berlandieri
(n= 21), 9 V. girdiana (n= 17), 2 V. monticola (n= 5) and 2 V. riparia (n= 20).
The resistance assay data and sampling locations of the accessions are available30.
For the second dataset, we generated resequencing data for five PD resistant cul-
tivars (Ambulo Blanc, Caminante Blanc, Camminare noir, Errante noir and
Paseante noir). DNA extraction, library preparation and Illumina sequencing fol-
lowed the protocols mentioned above, and the data were deposited into Bioproject:
PRJNA842753. Finally, the ‘control’ dataset of PD susceptible accessions was
downloaded from public databases (Cabernet Sauvignon cl. 08: SRR3346862;
Chardonnay cl. 04: SRR5627799; Zinfandel cl. 03: SRR8727823; and Petite Sirah:
SRR12328988). For each of the datasets, we generated kmers of 31 bp for each
sample as described above. We then searched for the presence of 115 associated
kmers from V. arizonica using the “filter_kmers” script from the kmer-GWAS
pipeline35 (https://github.com/voichek/kmersGWAS).

To compare the R-kmers with random sequences in other Vitis species, we first
extracted 100,000 unique and random kmers from the V. arizonica population. We
then calculated the frequency of these sequences across all individuals and selected
kmers with similar frequencies as the R-kmers mean (0.52), resulting in 38,523
kmers. We then created 100 subsets of 99 random kmers from the set with similar
frequencies as R-kmers. Finally, we searched for the presence of each set of other
Vitis species and calculated the mean frequencies of the 99 kmers in each random
set. We report the average and standard error of means across the 100 sets in
Fig. 4c.

Linkage disequilibrium. We calculated the genome-wide LD decay across the V.
arizonica population with the software PopLDdecay v3.4094. We used the filtered
SNPs of the 167 individuals from hap1, allowing a maximum distance of 1 Mb
(Supplementary Fig. S11). We used the perl script “Plot_OnePop.pl” included in
the package to create the decay graph.

To explore the LD landscape of the regions around PdR1 and chromosome 14
as a whole we used Tomahawk v0.7.0 (https://github.com/mklarqvist/tomahawk).
We used as input the filtered SNPs of chromosome 14 for hap1 as input, containing
the 167 V. arizonica accessions. We converted the VCF file into a custom format
file (“.twk”) for the package and calculated the LD with the “calc” function. We
then filtered LD values using the “view” function, keeping regions with R2 > 0.5 and
p values < 0.001. Given that we were interested in the LD at the chromosome-scale
( ~ 30Mb) we used the “aggregate” function. Using this function we aggregated R2

values in 1000 bins for both the x and y-axis, and used 5 as the minimum cut-off
value in the reduction function. Finally, we used the “rtomahawk” R package
(https://github.com/mklarqvist/rtomahawk) to create the chomosome-scale LD
landscape plot using the aggregated R2 values.

Functional annotation and refinement of PdR1 gene models. Gene models
located within the two haplotypes of PdR1 were manually refined by visualizing
alignments of RNA-seq reads from V. arizonica b40-14 leaves30 using the Inte-
grative Genomics Viewer (IGV) v.2.4.1495. RNA-seq reads were aligned onto the
diploid genome of V. arizonica b40-14 using HISAT2 v.2.1.096 and the following
settings: --end-to-end --sensitive -k 50.

Predicted proteins of PdR1 genes were scanned with hmmsearch from HMMER
v.3.3.1 (http://hmmer.org/) and the Pfam-A Hidden Markov Models (HMM)
database97 (downloaded on January 29th, 2021). Protein domains with an
independent E-value less than 1.0 and an alignment covering at least 50% of the
HMM were selected. Transmembrane helices were predicted with TMHMM2
v2.0c98. Proteins with a predicted Leucine Rich Repeat (LRR) domain and a
transmembrane helix were classified as LRR receptor-like proteins. Proteins having
a predicted LRR or lysin motif (LysM), a kinase domain, and transmembrane
helices were categorized as receptor-like kinases.
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Predicted proteins of PdR1 genes were aligned onto the predicted proteome of
A. thaliana and the grape PN40024 (V1 annotation) using BLASTP v.2.2.28+ 99.
Alignments with an identity greater than 30% and a reciprocal target:query
coverage between 75% and 125% were kept. For each V. arizonica protein, best hit
in the A. thaliana and PN40024 proteomes was determined using the highest
product of identity, query coverage, and reference coverage. The sequences of the
two ORFs (V.ari-RGA14 and V.ari-RGA18)22 were aligned onto the b40-14
genome using blastn v. 2.2.28+ 99.

Gene expression analyses. To evaluating the transcript abundance of candidate
gens, plants from three PD-resistant genotypes and three PD-susceptible genotypes
of the 07744 population ([V. rupestris Wichita refuge x V. arizonica b40-14] x V.
vinifera Airen) were propagated in a controlled environment and inoculated with
either Xylella fastidiosa or water. Pieces of green stem at 10, 20, 30 and 40 cm above
the inoculation were collected from each plant at 1, 2, 3, and 4 weeks post-
inoculation. Pieces of the green stem from each genotype were pooled together.
Each genotype constitutes a biological replicate. All plant material was immediately
frozen in liquid nitrogen after collection and ground into powder. Total RNA were
extracted as described100, using the Spectrum Plant Total RNA kit (Sigma-Aldrich).
RNA quality and quantity were determined using a Nanodrop 2000 spectro-
photometer (Thermo Fisher Scientific) and a Bioanalyzer Chip RNA 7500 series II
(Agilent Technologies). cDNA libraries were prepared using the Illumina TruSeq
RNA sample preparation kit v.2 (Illumina, CA, USA) and sequenced in single-end
100-bp reads on an Illumina HiSeq4000. RNA-seq reads were parsed using
Trimmomatic v.0.373 with the following settings: LEADING:7 TRAILING:7 SLI-
DINGWINDOW:10:20 MINLEN:36. Transcript abundance was evaluated with
Salmon v.1.5.1101 with the parameters: --gcBias --seqBias --validateMappings. A
transcriptome index file was built using a k-mer size of 31 and the combined
transcriptomes of V. arizonica b40-14 (v2.1), V. vinifera cv. Cabernet Sauvignon70,
with their genomes as decoy. Quantification files were imported using the R
package tximport v.1.20.0102. The RNAseq data were deposited in NCBI Bioproject
PRJNA956994.

Bioclimatic variables associated with resistance. To identify the association
between SNPs associated with resistance and the environmental landscape, we
applied gradient forest (GF)103, which models the turnover in genetic composition
across the landscape45 and identifies both the bioclimatic variables that contribute
to the construction of the model and the ‘turnover function’ - i.e., the change of
genetic composition across the landscape45,104,105. To estimate the GF model, we
used the gradient forest package in R, using the 25 SNPs identified by LFMM2 and
EMMAX as response variables and using bioclimatic variables as predictive vari-
ables. The 19 bioclimatic variables were filtered to retain any correlations < 0.80,
based on a variance inflation factor calculated by corSelect from the R package
fuzzySim106. After filtering, we retained 10 of 19 bioclimatic variables (BIO1, BIO2,
BIO3, BIO4, BIO8, BIO9, BIO12, BIO14, BIO17, BIO19). We performed the GF
analysis using SNP frequencies from each individual (i.e., 0, 1 and 0.5 for
heterozygotes)59 and repeated the analysis 1000 times. We also plotted the turnover
functions for each bioclimatic variable to show how populations with different
resistance to PD are distributed across allele frequency change (Supplementary
Fig. S15).

Predicting PD resistance. To determine whether genetic and environmental
variables predicted PD resistance, we first ran a linear model individually for each
bioclimatic and genetic variable to determine their individual predictive power,
using the lm function in R. We performed 1000 bootstrap replicates for each model
to estimate the variance in predictive ability. For the bioclimatic variables, we
estimated the individual linear models between the 10 bioclimatic values from
where the arizonica individuals were sampled and their bacterial load. For some
genetic variables, we first estimated a polygenic score across SNPs that associated
with bacterial load. This polygenic score, which we called the PD score (Spd), was
calculated as the proportion of alleles that contribute to resistance to PD in a given
individual. The state of these contributing alleles was inferred from the GWA
results. Spd was designed after the population adaptive index, which measures the
proportion of alleles that show patterns of local adaptation107. Spd assumes that
alleles contribute equally to PD resistance and that a higher proportion of resis-
tance alleles correlates with lower CFU in the individuals. Spd ranges from 0 when
no resistance alleles are present to 1 when all alleles across loci are homozygous for
the resistant state. We estimated Spd for different sets of SNPs: i) all candidate SNPs
across the genome (25 SNPs), ii) all candidate SNPs on chromosome 14 (16 of the
25 SNPs); iii) all candidate SNPs in the region defined by PdR1 (10 of 25 SNPs); iv)
all candidate SNPs on chromosome 15 (6 of 25 SNPs). To control for potential
ancestry effects, we also tested an analogous Spd score, which we called the refer-
ence PD scores (Rpd). For Rpd we sampled 25 random reference SNP (SNPs that
were not significant for any of the two GWA methods) and obtained a Rpd dis-
tribution based on 1000 Rpd values. Following the concept of Spd, we also estimated
a Kmer score (Kpd), which consisted of the proportion of Kmers associated with
resistance across populations. A value of 1 indicates that the individual has all the
resistant Kmers and none of the susceptible Kmers (see Above), while a value of 0
indicates that the individual has all the susceptible kmers and none of the resistant

ones. Finally, we also estimated a CNV score (Cpd) that corresponds to the number
of adaptive copy variants in an individual, where a higher number of CN variants
indicates that the individual is more resistant to PD. For the Spd, Kpd and Cpd

scores, we estimated the fit between the scores and the bacterial load. Finally, for
the genetic independent variables, we also analyzed the linear model between the
assignments into genetic groups (K1 and K2) based on the admixture analyses and
the concentration of bacterial load.

Climate modeling. We used BIO8 to model the future distribution of Xylella
fastidiosa, assuming that 8 °C and 10 °C were predictive thresholds of potential
Xylella fastidiosa presence and absence. We predicted two discrete types of loca-
tions: i) regions across the globe that currently have BIO8 > 8 °C or >10 °C in the
present but predicted to have BIO8 < 8 °C and <10 °C in the future and ii) regions
across the globe that currently have BIO8 < 8 °C and <10 °C in the present but
predicted to have BIO8 > 8 °C and >10 °C in the future. To make these predictions,
we downloaded the BIO8 data at a 2.5 minutes resolution from Worldclim 2108 for
the present and for 54 climatic models in the future to consider the uncertainty in
future climate projections. These future climate models included five global cir-
culation models (GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0,
UKESM1-0-LL), three-time periods (2041-2060; 2061-2080; 2081-2100) and
4 shared socioeconomic pathways (SSPs: 126, 245, 370, 585). To plot the areas
where the climate is expected to change across the 10 °C threshold, for the present
and the 54 future layers we set the raster layers to 1 and 0 if they were above or
below the BIO8 temperature threshold. Next, we subtracted each future layer from
the present layer. Areas with values of -1 indicate that a region in the future layer is
expected to be under the threshold but is currently above the threshold. Regions
with values of 0 indicated that the threshold remained unchanged in present and
future layers. Finally, regions with values of +1 indicated that the future layer was
expected to become above the threshold in the future. We performed this calcu-
lation for the 54 layers (or models) and created a sum_raster object by summing
the 54 raster layers.

We tested how BIO8 will change in the future for regions where V. arizonica, V.
vinifera (grapevines), Citrus sp., Olea europea (olives), Prunnus amygdalus (almond)
and Coffea sp currently grow. For this, we first used the gbif function in the R dismo
package109 to download all the known locations of V arizonica, grapevines, olives,
almonds, coffee sp. and Citrus sp (gbif.org; download data: 2022-06-06). Next, for
each species we used the CoordinateCleaner package in R110 to remove locations
that 1) were duplicated; 2) had equal longitude and latitude; 3) were next to country
centroids, capitals of countries, biological stations or gbif headquarters; 4) were in
the sea; 5) were outliers based on the “quantile” option. Finally, we also removed
locations if they were the only report in a given country, suggesting they may be
outliers. After cleaning the data, we retained 6204 locations (from 11,834) for Coffee
sps.; 3386 locations (from 9992) for almonds; 1111 locations (from 1155) for V.
arizonica; 5256 locations (from 7853) for Citrus sps.; 174,713 locations (from
204,775) for olives; and 33,225 locations (from 47,075) for grapevines. For each
species, we used the extract function in the raster R package111 to obtain for each
location whether climate is expected to cross the 8 °C and 10 °C BIO8 threshold. For
each species we estimated the percentage of locations that are expected to move
below and above the 8 °C and 10 °C threshold across the 54 layers.

Data availability
Raw genome resequencing data of the 147 new V. arizonica accessions and the PD
resistance V. vinifera breeding lines are available at NCBI under BioProfect ID
PRJNA842753. The remaining 20 V. arizonica accessions, which were previously
published, are available at NCBI under BioProject PRJNA731597. The RNAseq data were
deposited in NCBI Bioproject PRJNA956994.The published long-read V. arizonica
genome sequencing data were taken from NCBI BioProject ID PRJNA593045. The
genome files and a genome browser can also be found at www.grapegenomics.com/
pages/Vari/.

Code availability
Analyses in this paper relied on published methods, the sources for which has been cited
throughout. Climate change analyses relied on previously published pipelines46, which
can be accessed here: https://static-content.springer.com/esm/art%3A10.1038%
2Fs41559-021-01526-9/MediaObjects/41559_2021_1526_MOESM1_ESM.pdf.
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