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Abstract

Background—Brain MRI allows researchers to observe structural pathology that may predict 

cognitive decline. Some populations are less accessible through traditional in-person visits, and 

may be under-represented in the literature.
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Methods—We examined white matter hyperintensity volume (WMHV) and cerebral 

parenchymal fraction (CPF) as predictors of cognitive decline measured by a modified Telephone 

Interview for Cognitive Status (TICS-m) in Northern Manhattan Study (NOMAS), a racially and 

ethnically diverse cohort study. Participants were stroke-free, >50 years old, and had no 

contraindications to MRI. 1,143 participants had MRI and TICS-m data available (mean age 70 

(SD=9), 61% women, 66% Hispanic, 17% black, 15% white).

Results—Those in the third and fourth quartiles of WMHV had significantly greater decline in 

TICS-m over time as compared to those in the first quartile (Q3: −0.17 points/year, Q4: −0.30 

points/year). Those in the bottom two quartiles of CPF had significantly greater decline in TICS-m 

than those in the top quartile (Q1: −0.3 points/year, Q2: −0.2 points/year). APOE e4 allele carriers 

had greater cognitive decline per unit of CPF. Those with greater CPF preserve TICS-m 

performance better despite greater WMHV.

Conclusions—Telephone cognitive assessments can detect decline due to white matter lesions 

and smaller brain volumes.

Keywords

brain volume; white matter hyperintensities; cognition

INTRODUCTION

The number of people with vascular cognitive impairment (VCI) and neurodegenerative 

disease is expected to increase as the population of older people expands during this 

century.1 Blacks and Hispanics/Latinos carry a disproportionate burden of vascular risk 

factors and may suffer a greater risk of both stroke and dementia than non-Hispanic 

whites.2,3 Understanding the effects of modifiable vascular risk factors on cognitive 

performance and identifying practical methods to remotely detect cognitive changes related 

to vascular or neurodegenerative damage may aid in preventing cognitive impairment in 

these at-risk groups. We hypothesized that the modified Telephone Interview for Cognitive 

Status (TICS-m) would provide such a tool.

Epidemiological studies show that white matter hyperintensities (WMH), an MRI marker of 

cerebral small vessel disease (SVD), are associated with cognitive decline.4–6 Cerebral 

atrophy has also been associated with cognitive decline7 and may synergize with WMH to 

affect cognition8. Most studies are limited to non-Hispanic white populations or have relied 

on semi-quantitative measures of WMH burden that lack reliability and do not provide 

quantitative measurements of WMH volume.5,6,9–11 Additionally, studies relating the TICS-

m to WMH lesion load are limited, though the TICS-m has been shown to effectively 

identify dementia in a race/ethnically diverse cohort of older adults12.

The purpose of this study was to examine WMH lesion load and cerebral parenchymal 

fraction (CPF) as predictors of cognitive decline on the TICS-m among stroke-free Hispanic, 

black, and white people older than age 50 from an urban community-based sample. We also 

explored the contribution of WMHV and the APOE4 allele as potential effect modifiers of 
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any association between CPF and cognitive decline to understand their potential contribution 

to age-related losses in cerebral volume.

METHODS

Cohort

The Northern Manhattan Study (NOMAS), a racially and ethnically diverse, stroke-free 

prospective cohort study, included 3,298 participants at baseline who were identified through 

random digit dialing using dual-frame sampling to identify published and unpublished 

numbers in Northern Manhattan.13 People were eligible if never diagnosed with stroke, >40 

years of age, and residents of Northern Manhattan >3 months in a household with a 

telephone. Participants were recruited for in-person assessments (overall response rate of 

68%) and underwent complete neurological examinations between 1993 and 2001 by trained 

bilingual research assistants, and underwent complete neurological examinations, medical 

histories and risk factor interviews using standardized instruments, and fasting blood 

samples for glucose and lipids.

MRI sub-study

Between 2003 and 2008, NOMAS participants were recruited for a brain MRI during annual 

telephone follow-up using the following criteria: 1) still clinically stroke-free; 2) >50 years; 

and 3) no contraindications to MRI. To supplement the sample, original cohort subjects were 

asked if there were other individuals, 50 years or older and stroke free, living in their 

household, that might wish to participate. An additional 199 stroke-free people were thus 

added to the prospective cohort from 2006–2008 (Figure 1). All participants provided 

written IRB-approved informed consent.

Imaging was performed on a 1.5T MRI system (Philips Medical Systems, Best, the 

Netherlands) at the Columbia University Medical Center. Quantification of WMH has been 

previously described.13 Briefly, we removed non-brain elements manually using operator-

guided tracing of the dura matter within the cranial vault, including the middle cranial fossa 

but above the posterior fossa and cerebellum, to define the total intracranial volume (TIV). 

Segmentation of WMH required the identification of brain matter (total cerebral volume), 

removal of image intensity non-uniformities, and modeling of a mixture of two Gaussian 

probability functions with the segmentation threshold determined at the minimum 

probability between these distributions. A single Gaussian distribution was then fitted to 

image data and a segmentation threshold for WMH volume was determined a priori as 3.5 

standard deviations (SDs) in pixel intensity above the mean of the fitted distribution of brain 

parenchyma, with morphometric erosion of two exterior image pixels to remove the effects 

of partial volume cerebrospinal fluid pixels on WMH determination. We used a custom-

designed image analysis package (QUANTA 6.2 using a Sun Microsystems Ultra 5 

workstation).13 All analyses were performed blind to participant identifying or risk factor 

information.

Determination of the presence or absence of subclinical brain infarcts (SBIs) has been 

previously published14. In brief, a superimposed image of the subtraction, proton density, 
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and T2-weighted images at three times magnified view was used to assist in the 

interpretation of lesion characteristics. Vessels were indicated via signal void, best seen on 

T2-weighted images. Other imaging characteristics required for interpretation included CSF 

density on the subtraction image, and if stroke was in the basal ganglia area, distinct 

separation from the circle of Willis and perivascular spaces. Infarcts were counted for total 

number, and characterized by location (cortical, subcortical, and specific region) and size 

(small: <1 cm or large: >1cm). Two raters were used to determine the presence of infarcts, 

and agreement among them has been generally good (previously published kappa values: 

0.73 to 0.90)15.

Cognitive Assessment

Beginning in 2001, we assessed cognition during our annual telephone follow-up with the 

modified Telephone Interview for Cognitive Status (TICS-m). As a global measure, the 

TICS-m was designed to assess a variety of cognitive domains including attention, language, 

calculation, and immediate recall of ten words.16 The TICS-m includes a delayed recall of 

the ten words, and has been validated in clinical and research settings.16–18 Only TICS-m 

assessments done at or after MRI were included. Among 1,290 MRI subjects, 135 

participants did not complete TICS-m evaluations at or after MRI. We excluded incomplete 

TICS-m exams since the total score is not valid.

Baseline Evaluation

Study definitions for race/ethnicity, diabetes, cardiac disease and other risk factors have been 

previously described.19 Briefly, trained bilingual research assistants and study physicians 

collected demographic, medical, and laboratory data at enrollment using standardized data 

collection techniques and risk factor questions based on the Centers for Disease Control and 

the Prevention Behavioral Risk Factor Surveillance System. Race-ethnicity was based on 

self-identification. Smoking status was categorized as never smoked verse ever smoker. 

Moderate alcohol usage was defined as current drinking between one drink per month and 

two drinks per day versus other.20 Physical activity was defined as any recreational physical 

activity in the prior two weeks versus none21. Body mass index (BMI) was calculated as 

kg/m2. Hypertension was defined as blood pressures ≥ 140/90 mm Hg (based on the average 

of two measurements with a mercury sphygmomanometer), the patient’s self-reported 

history of hypertension, or antihypertensive medication use at time of MRI. Diabetes 

mellitus was defined by the subject’s self-reported medical history, usage of hypoglycemic 

medications, or fasting blood sugar ≥126 mg/dL at time of MRI. Hypercholesterolemia was 

defined as total cholesterol ≥240 mg/dL or use of lipid-lowering medication use at time of 

MRI. Peripheral vascular disease was defined as any history of pain or arterial disease in the 

legs. Past history of heart disease included any history of angina, myocardial infarction, 

congestive heart failure, coronary artery disease, atrial fibrillation, or valvular heart disease. 

Subjects were contacted annually via telephone after enrollment to gather information 

regarding illnesses, hospitalizations, vital status, and cardiovascular events.

Statistical Analyses

Established risk factors and potential confounders of the association between WMHV and 

cognitive performance were selected as covariates for multivariable analysis. Each 
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participant’s WMHV and total cerebral volume (TCV) was divided by TIV to correct for 

differences in head size, and WMHV was natural log transformed to create a normal 

distribution. Cerebral parenchymal fraction (CPF) is used to refer to TCV as a fraction of 

TIV. We used mixed effects models with random intercepts to examine the association 

between WMHV and performance on the TICS-m. The time variable was calculated based 

on the TICS-m examination date and MRI date, and was used as a continuous variable. We 

examined the effect of WMHV on change in cognition over time by entering an interaction 

term between WMHV and time in the model and adjusted for sociodemographic variables 

(model 1: age, sex, education, race-ethnicity), vascular risk factors (model 2; smoking status, 

reported alcohol intake, physical activity, body mass index, hypertension, diabetes mellitus, 

hypercholesterolemia, peripheral vascular disease, and a history of heart disease), and 

finally, SBI, and APOE genotype (model 3). We tested for effect modifiers of the association 

between TICS-m and WMHV by including interaction terms in the models.

RESULTS

The characteristics of the 1,143 stroke-free NOMAS participants with WMHV, CPF, TICS-

m, and other covariate data available for this analysis are presented in Table 1. The sample 

had a mean age of 70.1 (8.7) years and was made up of 61% women, 66% Hispanics/

Latinos, 17% non-Hispanic blacks, and 15% non-Hispanic whites. The mean age TICS-m 

score at MRI was 32 (6.1), and participants had an average of 4.6 (2.5) TICS-m assessments 

since MRI. Compared to those without complete data, there were more Hispanics (66% 

versus 63%), and fewer blacks (17% versus 20%) and whites (15% versus 16%). The sample 

was younger on average than those not included (70 years vs. 75 years). This sample had 

smaller WMHV (n=1143, median: 0.3, IQR: 0.2–0.7; p value<0.001) when compared to 

those not included (n=147, median: 0.5, IQR: 0.3–1.1), and brain volume was significantly 

larger in the included group (p value<0.001) (Supplemental Table 1).

The adjusted mean of TICS-m at year of MRI and 5 years since MRI for quartiles of 

WMHV and CPF are shown in Figure 2. TICS-m scores at year of MRI were similar across 

levels of WMHV when comparing the top to the bottom quartile (Supplemental Table 2). 

Participants with the greatest white matter lesion load (i.e. quartile 4) at MRI performed 

significantly worse on the TICS-m at year 5 of follow-up compared to those with the lowest 

white matter lesion load at MRI (i.e. quartile 1, P=0.002). Additionally, CPF was similar 

among participants at year of MRI, though participants in the third quartile of CPF 

performed slightly better than those in the fourth quartile (P=0.03). Those with the lowest 

cerebral volume at MRI (i.e. quartile 1 of CPF) performed significantly worse on the TICS-

m at year 5 of follow-up, compared to those with the greatest brain volume (P=0.01) 

(Supplemental Table 2).

Per 1 SD larger WMHV, participants exhibited worse performance on the TICS-m over an 

average of 4.6 years in a model adjusted for sociodemographic factors, and this effect 

remained significant in models further adjusted for vascular risk factors, MRI variables, and 

APOE genotype (Table 2). We also divided the participants into quartiles of WMHV to 

observe any dose-dependent effects of WMHV on TICS-m performance. There was a 

significant trend across increasing quartiles of WMHV of having worse TICS-m scores over 
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time. When compared to those in quartile 1, those in the third and fourth quartiles, i.e. those 

with greater WMHV, performed significantly worse over time when compared to those in 

quartile 1. This pattern remained significant in models further adjusted for vascular risk 

factors, MRI variables, and APOE genotype. There was a trend for worse TICS-m 

performance over time for those in the second quartile in the models adjusted for 

sociodemographics and then further adjusted for vascular risk factors (Table 2).

We examined the association of CPF on TICS-m performance over time (Table 2). Per 1 SD 

smaller CPF, participants performed significantly worse on the TICS-m in models adjusted 

for sociodemographics, as well as for models further adjusted for vascular risk factors, MRI 

variables, and APOE genotype. We examined the dose-dependent relationship of cerebral 

volume on TICS-m performance over time by dividing participants into quartiles. There was 

a significant trend across quartiles for those with smaller CPF to have worse TICS-m scores 

over time (Table 2). When compared to the fourth quartile, or those with the largest cerebral 

volumes, those in the first and second quartiles performed significantly worse on the TICS-

m over time. This remained significant in models further adjusted for vascular risk factors, 

MRI variables, and APOE genotype. Those in the third quartile also performed worse on the 

TICS-m over time as compared to those in the fourth quartile, but this association did not 

reach significance in any models. The presence of SBIs or an APOE e4 allele did not 

independently predict TICS-m performance in any models (Table 2).

Finally, we observed effect modification by APOE e4 allele and WMHV on the association 

between CPF and change in TICS-m scores over time, after adjustment for 

sociodemographics, modifiable vascular risk factors, cardiovascular disease history, and 

APOE e4 genotype. For those with an APOE e4 allele, smaller CPF was significantly 

associated with worse TICS-m scores over time as compared to those without an APOE e4 

allele (interaction term beta=−0.11, P=0.02). Also, those with greater WMHV performed 

better on the TICS-m over time with larger CPF (beta=0.17, P<0.01). There was no 

significant modification affect by race-ethnicity in the association of cognitive decline with 

WMHV (p=0.69) or with brain volume (p=0.62).

DISCUSSION

In this prospective study of an urban, community-based, stroke-free sample, we found more 

cerebral small vessel disease and smaller cerebral volumes were associated with greater 

decline in general cognition over time in a dose-dependent manner as measured by a 

telephone assessment tool, independent of vascular risk factors, APOE genotype, or other 

MRI markers. APOE e4 carriers, who are at high risk for developing Alzheimer Disease, 

were more likely to exhibit greater cognitive decline with smaller cerebral volumes when 

compared to APOE e4 non-carriers. Larger brain volumes seemed to preserve cognition in 

those with the greatest cerebral small vessel disease.

Other population-based studies have observed worse cognition with increased 

WMHV7,22–25, but few studies have investigated the association between MRI markers of 

cerebral small vessel disease and general cognition as measured by a practical, validated, 

telephone interview. Our data suggests such a tool is able to measure cognitive variability 
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due to such brain changes. The TICS-m is a valuable instrument for testing cognition in 

populations that may be unable to accommodate a regular in-person visit, providing more 

flexibility in both research and clinical settings.

Since WMH burden has been associated with the risk of stroke, dementia, and 

mortality26–28, identification of small vessel disease in older adults becomes a target for 

prevention of these outcomes. Recent data indicate that vascular risk factors in mid-life, such 

as hypertension, smoking, diabetes mellitus, and obesity, predict cerebrovascular damage, 

brain atrophy, and poorer executive function.29 In particular, WMH may mediate the 

relationship between hypertension and cognition.30 Most of these studies are performed in 

non-Hispanic white populations, despite race/ethnic disparities in cardiovascular health.31 In 

the NOMAS cohort, hypertension is particularly prevalent,32 and higher diastolic blood 

pressure has been associated with larger WMH lesion load33. When examined in quartiles, 

only those with the greatest WM lesion load exhibited significant cognitive decline, despite 

similar cognitive performance at initial assessment across quartiles of WMH load, 

suggesting that accumulation of a certain amount of damage from vascular risk factors is 

required to reach a critical level before cognitive decline occurs. However, the TICS-m is not 

as sensitive as detailed neuropsychological tests and may not detect decline in those with 

less disease.

The presence of an APOE e4 allele and greater WM lesion load modified the effect of 

cerebral volume on cognitive decline over time. Brain volume is heterogeneous in etiology, 

but aging, neurodegenerative processes, and vascular damage are important contributors, and 

may have a synergistic effect with cerebral small vessel disease on cognitive decline. Data 

from cognitively normal older adult samples show that WM lesion load and brain atrophy 

are associated with each other34, and that more atrophy and WM lesion load are associated 

with worse cognition35. Several studies in cognitively normal older adults have also found 

that measures of brain atrophy and cerebral small vessel disease interact to accelerate 

cognitive decline36,37.

Other studies have shown an interaction between cerebral atrophy and WML load in 

Alzheimer’s patients38 and their future decline39, suggesting a synergistic effect between 

neurodegeneration and cerebral small vessel disease on the pathophysiology of AD. Our 

finding that APOE e4 carriers had greater cognitive decline than APOE e4 non-carriers with 

smaller cerebral volumes supports a synergistic relationship. In addition, those with greater 

cerebral volumes were more likely to preserve cognition with greater WM burden. This 

finding supports theories of brain reserve, which posit that clinical symptoms associated 

with pathological changes occur after a certain amount of pathological damage has occurred, 

and individuals with greater cerebral volumes may be able to withstand more damage 

compared to those with smaller cerebral volumes before clinical symptoms present24. 

Overall, those who are affected by both neurodegenerative disease and small vessel damage 

are at greater risk for cognitive impairment than those who suffer from either pathology 

independent of the other. None of the aforementioned studies assess cognition with a brief 

telephone interview. Therefore, the interaction between brain atrophy and measures of 

cerebral small vessel disease on cognitive performance as measured by the TICS-m 
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emphasizes the potential for this tool to detect cognitive deficits due to underlying brain 

changes detectable with MRI.

There are important limitations to this study. First, the TICS-m is a test of global cognition, 

and while it has been used in a number of other large studies, the test does not allow 

examination of specific cognitive domains that may be preferentially affected in different 

disease processes. In addition, TICS-m was not administered on the same day as the MRI, 

but our analysis shows that scores did not differ by the time interval between the initial 

TICS-m assessment and MRI. Since participants were enrolled in the original study an 

average of eight years prior to the MRI visit (Figure 1), and had to be healthy enough to 

undergo an MRI, survivor bias is an issue, though this would most likely have reduced the 

apparent effect of WMHV on cognitive decline. Finally, unmeasured confounding is likely 

in this observational study and our results must be interpreted with caution. The strengths of 

this study include its prospective design, and race/ethnically diverse cohort. We assessed 

cognition using the modified TICS, which is a tool that is not constrained by ceiling effects 

and has been used in other large studies where in-person examination is not practical.17,40

We found that that greater white matter lesion load and smaller cerebral volume were 

associated with decline on a global test of cognitive performance in dose-dependent manner 

in a clinically stroke-free race/ethnically diverse urban sample. Our findings have 

implications for detecting vascular contributions to cognitive impairment in populations 

where telephone follow-up is the preferred means of contact.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Recruitment of the Northern Manhattan Study.
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Figure 2. 
a) Trajectory of TICS-m score over time, stratified by WML lesion load quartiles. b) 

Trajectory of TICS-m score over time, stratified by CPF quartiles.
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Table 1

Sample Characteristics (N=1,143)

N (%)

Women 698 (61)

Less than high school education 617 (54)

Non-Hispanic, White 168 (15)

Non-Hispanic-Black 193 (17)

Hispanics 755 (66)

Non-Hispanic other 27 (2)

Medicaid/no insurance 539 (47)

Former smoker 487 (43)

Current smoker 101 (9)

Moderate alcohol intake 389 (34)

Leisure-time physical activity 648 (57)

Heart disease 175 (15)

Hypertension 831 (73)

Diabetes 263 (23)

Hypercholesterolemia 462 (40)

SBI* 161 (15)

APOE 4 allele carriers 277 (24)

Mean (SD) Median (IQR)

TICS-m score at MRI 32 (6.1) 32 (28–36)

White matter hyperintensity volume (WMHV)# 0.66 (0.8) 0.35 (0.20–0.75)

Age, years 70.1 (8.7) 69 (64–76)

Body mass index (BMI, kg/m2) 28.6 (5.1) 28 (25–32)

Brain volume (CPF)# 72.6 (4.2) 72 (70–75)

Intracranial volume (TIV) (cm3) 1154.4 (124) 1143(1066–1237)

Numbers of TICS-m assessments since MRI 4.6 (2.5) 4 (2–6)

*
43 with missing data.

#
presented as %TIV
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