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Abstract: Shrimp is one of the most popular and widely consumed seafood products
worldwide. It is highly perishable due to its high moisture content. Thus, dehydration
is commonly used to extend its shelf life, mostly via air drying, leading to a temperature
increase, moisture removal, and matrix shrinkage. In this study, a mathematical model was
developed to describe the changes in moisture and temperature distribution in shrimp dur-
ing hot-air drying. The model considered the heat and mass transfer in an irregular-shaped
computational domain and was solved using the finite element method. Convective heat
and mass transfer coefficients (57.0–62.9 W/m2·K and 0.007–0.008 m/s, respectively) and
the moisture effective diffusion coefficient (6.5 × 10−10–8.5 × 10−10 m2/s) were determined
experimentally and numerically. The shrimp temperature and moisture numerical solution
were validated using a cabinet dryer with a forced air circulation at 60 and 70 ◦C. The
model predictions demonstrated close agreement with the experimental data (R2 ≥ 0.95
for all conditions) and revealed three distinct drying stages: initial warming up, constant
drying rate, and falling drying rate at the end. Initially, the shrimp temperature increased
from 25 ◦C to around 46 ◦C and 53 ◦C for the process at 60 ◦C and 70 ◦C. Thus, it presented
a constant drying rate, around 0.04 kg/kg min at 60 ◦C and 0.05 kg/kg min at 70 ◦C.
During this stage, the process is controlled by the heat transferred from the surround-
ings. Subsequently, the internal resistance to mass transfer becomes the dominant factor,
leading to a decrease in the drying rate and an increase in temperatures. A numerical
analysis indicated that considering the irregular shape of the shrimp provides more realistic
moisture and temperature profiles compared to the simplified finite cylinder geometry.
Furthermore, a sensitivity analysis was performed using the validated model to assess the
impact of the mass and heat transfer parameters and relative humidity inside the cavity
on the drying process. The proposed model accurately described the drying, allowing the
further evaluation of the quality and safety aspects and optimizing the process.

Keywords: seafood; food preservation; mathematical modeling; CFD

1. Introduction
Shrimp is one of the most consumed seafood in the world and holds great economic

importance for the fishing industry of several countries [1,2]. It is a rich source of proteins
with essential amino acids, polyunsaturated fatty acids, vitamin B12, astaxanthin, and
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other micronutrients like calcium and selenium [3]. However, shrimp is highly perishable,
deteriorating rapidly after harvesting due to biochemical reactions and microbial growth [4].
Usually, shrimps are stored under low temperatures or dehydrated to extend their shelf life.
Although refrigeration and freezing help preserve the shrimp’s freshness, these methods
can be costly and require a well-established cold chain to ensure the product quality [5,6].
On the other hand, drying allows shrimp to be stored at room temperature, reduces the
transportation costs, and imparts a pleasant and desirable flavor to the dried product [7–10].

Among the various drying methods found in the literature, sun drying and convective
hot-air drying are the two most commonly used techniques for processing shrimp [11–14].
Although sun drying does not require specialized equipment or technology, it often leads
to lower-quality final products due to the uncontrollable weather conditions and extended
drying times. In this sense, convective hot-air drying has become increasingly popular for
seafood dehydration on an industrial scale [12]. This method offers several advantages,
including shorter drying times, ease of operation, simple process implementation and
control, and relatively low capital investment requirements [14].

The convective hot-air drying of shrimps involves simultaneous heat and mass transfer,
significantly affecting its structure due to shrinkage [15]. The process uses hot, dry air
to supply thermal energy, which promotes water evaporation. As the moisture content
decreases, the water activity is reduced, which plays a crucial role in the preservation
and shelf life of the product. However, the process also deforms the shrimp due to the
combined effects of heat exposure and moisture loss. These changes can impact the texture,
appearance, and overall quality. Understanding how the processing parameters such as air
temperature, relative humidity, and velocity, and food composition, size, and shape affect
these phenomena is crucial for designing and improving the drying systems. Mathematical
modeling and numerical simulation have been used to describe shrimp processing [16,17].
However, there are few mechanistic models in the literature coupling heat and mass
transfer to this end [2,15,18]. Usually, the drying kinetics of the product are described by
using thin-layer models, or the shrimp is assumed to be a long cylinder, and the kinetics
data are used to estimate the effective diffusion coefficient of the moisture within the
shrimp [19–22]. The cited models provide limited information about the process because
they neglect the actual shrimp shape and are often not applicable to other operational
conditions. Models assuming the shrimp is a cylinder simplify the mathematical analysis
and reduce the computational effort. However, they fail to capture the temperature and
moisture distribution dynamics during drying accurately. Actual data demonstrated that,
as expected, the thicker parts take much longer to heat up and dehydrate than the tail [8,23].
Using more realistic geometries in the mathematical model formulation can enhance the
accuracy, impacting the prediction of the quality attributes.

Niamnuy et al. [15] developed a physics-based model combining heat and moisture
transfer in shrinkable and irregular-shaped material to describe the shrimp drying in a
jet-spouted bed dryer. They observed that considering the deformation effect, the model
predictions improved compared to the model without deformation, although both ap-
proaches showed good descriptions of the experimental data. Nguyen et al. [2] estimated
moisture-effective diffusion and convective mass transfer coefficients from experimental
drying curves using a Bi–Di correlation (Biot and Dincer numbers). These estimated pa-
rameters were then used to predict the shrimp’s moisture and temperature profiles in a
tunnel dryer. Abedini et al. [18] applied a model based on heat and mass transfer equations
considering an irregular shape and non-deformable shrimp geometry to study the drying
process in a natural convection–solar hybrid dryer. They evaluated two approaches for
determining the moisture diffusion and mass transfer coefficients (constant or moisture-
dependent values), showing that variable parameters reduced the deviation between the
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simulated and experimental data. However, no study has (i) evaluated the effect of the
shrimp geometry (irregular vs. cylindrical) on model predictions, (ii) accounted for the
temperature- and composition-dependent thermophysical properties of shrimp, or (iii) sep-
arately described the heat transfer mechanisms—convective heat transfer and evaporative
cooling due to moisture evaporation—in the model formulation, to develop a more robust
and extensible model.

To address the identified research gaps, this study investigated the shrimp drying
process, developing and validating a mathematical model that considers the product’s
irregular shape while coupling the heat and mass transfer mechanisms. The model was
validated under different drying conditions to support the parametric analysis, including
the effects of the shrimp geometry and air relative humidity. Furthermore, experimental
data were used to estimate the heat transfer coefficient, and an optimization method
estimated the moisture diffusion within the shrimp and the convective mass transfer
coefficient associated with such process.

2. Materials and Methods
2.1. Shrimp Sample

Frozen shrimp (Litopenaeus vannamei) acquired from the local market (Marabá, Pará,
Brazil) were used in this study. The pre-cooked and peeled shrimp were sold in packages
with 70 to 110 units per 400 g (CostaSul, Brazil). The individual weight and size of the
samples were measured using an analytic scale (resolution 0.0001 g) and digital caliper
(resolution 0.01 mm), respectively. The average mass value was 3.94 ± 0.81 g, and the
average diameter of the first abdominal segment (Figure 1a) was 11.02 ± 1.95 mm with an
average length of 51.6 ± 4.7 mm. The average values represent the measurements obtained
using ten shrimps. The gravimetric method determined the moisture content in an oven
at 105 ◦C for 24 h [24]. The pH was measured using a digital Meter (Tecnopon, MPA-210,
Piracicaba, SP, Brazil), for which approximately 20 g of shrimp was homogenized with
80 mL of distilled water. The pH measurements were replicated six times.
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Figure 1. (a) Schematic representation of experimental device; (b) illustrations of the shrimp sample,
computational domain with the heat and mass transport mechanisms considered in the model, and
the mesh used in the numerical solution.

The moisture content (3.64 ± 0.32 kg/kg on a dry basis; 78.44 ± 1.49% on a wet basis)
and pH (6.88 ± 0.02) of the shrimp used in this study agree with the literature values:
75–80% for the moisture content [22,25,26] and pH 6.62–7.04 [27–29].
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The shrimp computational geometry (Figure 1b) was created in the CAD Tool of
COMSOL MultiphysicsTM, following a visual inspection of the shrimp samples and size
measurements that included the length and the semiaxis (bigger diameter and smaller
diameter) of the elliptical cross-section of the shrimp in three positions throughout the
sample (Figure 1a). The volume of the computational domain was 3.92 cm3, and the
experimental volume obtained by the fluid displacement method was 3.82 ± 0.76 cm3, i.e.,
an error lower than 3%. A shrimp sample was placed in a graduated cylinder (resolution
0.2 mL) with n-heptane, and the displaced volume was determined [30]. This procedure
was repeated ten times using different shrimp samples.

2.2. Drying Procedure

The shrimp were thawed at room temperature for around 30–40 min (26–28 ◦C and
40–60% RH). The excess water on the samples’ surface was removed using towel paper,
and then each shrimp was placed individually in the aluminum trays (100 mm in diameter,
10 mm in height, and 0.5 mm wall thickness). Next, the samples were placed in a pre-heated
convection oven (Nova Ética, model 400-2ND, Vargem Grande Paulista, SP, Brazil) at 60
and 70 ◦C (Figure 1a). During drying, samples were taken every 15 min for the first 60 min
and then every 30 min until 180 min for moisture content measurement. Experimental
drying curves (moisture content on a dry basis, Xdb, vs. time, t) were obtained in triplicate
for each experimental condition. The shrimp temperature was measured using T-type
thermocouples between the shrimp’s first and second abdominal sections (Figure 1a). The
thermocouples were connected to a data logger system that recorded measurements at
30 s intervals (Novus, LogBoxBLE, Canoas, RS, Brazil). Inside the dryer cavity, the air
temperature (Tair) and relative humidity (RH) were measured using a digital thermo-
hygrometer data logger (UNI-T, model UT330B, Dongguan City, Guangdong Province,
China) (Figure 1a).

2.3. Mathematical Modeling

A three-dimensional (3-D) model was proposed to describe simultaneous heat and
mass transfer in the shrimp during convective drying. Figure 1b illustrates the irregular
shape of the computational domain and the transport mechanisms considered in the
mathematical model. It was assumed that heat was transferred from the air to the shrimp via
convection and within the shrimp via conduction as temperature gradients were developed
in all directions. At the same time, the water evaporates at the shrimp’s surface, and the
moisture gradients promote water transport by diffusion in the direction of the surface.

The governing equation for water transport within the shrimp is based on the con-
servation of mass and Fick’s Law for diffusion, as given by Equation (1). Using energy
conservation and Fourier’s Law, the heat transfer within the product was described using
Equation (2) [31].

∂cw

∂t
=

→
∇·
(

D
→
∇cw

)
(1)

ρshcp,sh
∂T
∂t

=
→
∇·
(

ksh
→
∇T
)

(2)

in which cw is the moisture concentration (kg/m), D is the effective moisture diffusion
coefficient of water in the shrimp (m2/s), T is the temperature (K), ρsh is the shrimp
density (kg/m3), cp,sh is the shrimp specific heat capacity (J/kgK), ksh is the shrimp thermal
conductivity (W/mK), and t is the time (s).
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The moisture volumetric concentration (cw,0) homogeneously distributed in the shrimp
was used as the initial condition to solve Equation (1), and the constant and homogeneous
temperature (T0) was used to solve Equation (2).

cw(x, y, z, 0) = cw,0 (3)

T(x, y, z, 0) = T0 (4)

Equation (5) represents the boundary condition between the shrimp and the air for
mass transfer during drying, which describes the amount of water that leaves the sample
through evaporation, as proposed in Parisotto et al. [16].

→
n ·
(
−D

→
∇cw

)
= hm Mw

[
aw

Psat,sh

RT
−
(

RH
100

)
Psat,air

RTair

]
(5)

in which hm is the convective mass transfer coefficient (m/s), Mw is the molar mass of water
(18 g/mol), aw is the water activity of the shrimp (between 0.0 and 1.0, it was described by
a moisture sorption isotherm as a function of the local moisture content on a dry basis, Xdb

(kg/kg)), RH is the relative humidity of the air inside the oven (%), R is the gas constant
(8.314 J/mol·K), Psat is the vapor pressure of water (Pa) estimated with the shrimp surface
temperature (Psat,sh) or the drying air temperature (Psat,air), and

→
n is the unit normal vector

of the surface.
The heat transfer from the oven air to the product and the heat to evaporate the water

on the surface of the shrimp were incorporated into the boundary condition for solving
Equation (2), as defined by Equation (6) [16]. Radiation was excluded from the model as
it has minimal impact on the heat transfer at oven temperatures up to 70 ◦C, particularly
since the oven walls are made of polished stainless steel. Furthermore, the conductive
thermal resistance of the aluminum tray (Rcond = Lal

kal
= 0.0005 m

229 W/mK ≈ 2.2 × 10−6 m2·K/W)

is much lower than the convective resistance (Rconv = 1
hT

= 1
57 W/m2K ≈ 0.018 m2·K/W)

between the sample and air. Therefore, the effect of the aluminum tray on the heat transfer
at the shrimp’s surface is negligible.

→
n ·
(
−ksh

→
∇T
)
= hT(T − Tair)− hm Mw

[
aw

Psat,sh

RT
−
(

RH
100

)
Psat,air

RTair

]
∆Hevap (6)

in which hT is a convection heat transfer coefficient (W/m2·K), and ∆Hevap is the latent
heat of the water vaporization (J/kg).

2.4. Model Parameters
2.4.1. Thermophysical Properties of the Shrimp

The shrimp was assumed to be an isotropic and non-deformable medium, and its
thermophysical properties are a function of local composition (water and protein content)
and temperature. The density (ρsh), specific heat capacity (cp,sh), and thermal conductivity
(ksh) were calculated using Equations (7), (8), and (9), respectively [32].

1
ρsh

=
xw

ρw
+

xpr

ρp
(7)

cp,sh = xwcp,w + xprcp,p (8)

ksh =
1
2

(
vwkw + vprkp

)
+

1/2(
vw/kw + vp/kp

) (9)
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in which xw = cw/(cw + cs) is the mass fraction of water (kg/kg) and xp = 1 − xw is the
mass fraction of proteins; cs is the solid volumetric concentration in the shrimp (kg/m3);
vw = xwρsh/ρw is the volume fraction of water (m3/m3); and vp = xpρsh/ρp is the volume
fraction of proteins. The density, heat capacity, and thermal conductivity of each component
as a function of the temperature are summarized in Table 1.

Table 1. Equations for predicting the thermophysical properties of water and proteins [32].

Property Equation 1

Density (kg/m3)
ρw 997.18 + 3.1439 × 10−3T − 3.7574 × 10−3T2

ρp 1329.9 − 0.51840T
Heat capacity (J/kgK)

cp,w 4176.2 − 0.0909T + 5.4731 × 10−3T2

cp,p 2008.2 + 1.2089T − 1.3129 × 10−3T2

Thermal conductivity (W/mK)
kw 0.57109 + 1.762 × 10−3T − 6.7036 × 10−6T2

kp 0.17881 + 1.958 × 10−3T − 2.7178 × 10−6T2

1 Temperature, T, in Celsius degree.

2.4.2. Moisture Isotherm and Water Vapor Pressure

Equation (10) was used to predict shrimps’ water activity (aw) based on their moisture
content (Xdb). It is a sigmoid function that outputs aw ranging between 0 and 1. To
determine the model parameters (ATair , BTair , and CTair ), Equation (10) was fitted to the
experimental data of the moisture desorption isotherm at 60 ◦C and 70 ◦C (aw values
between 0.1 and 0.85) obtained by Prachayawarakorn et al. [33]. The relationship between
vapor pressure and temperature for water was established using the Antoine equation
(Equation (11)) [34].

aw = exp
[
−ATair exp

(
−BTair X

CTair
db

)]
(10)

Psat = 103exp
(

16.3872 − 3885.7
T + 42.83

)
(11)

in which Xdb = cw/cs is the moisture content on a dry basis (kg/kg), cs is the solid
volumetric concentration in the shrimp (kg/m3), and ATair (A60 = 6.03, A70 = 11.09), BTair

(B60 = 11.00, B70 = 11.54), and CTair (C60 = 0.0980, C70 = 0.7195) are the fitting parameters.

2.4.3. Convective Heat Coefficient Experimental Estimation

The convective heat transfer coefficient (hT) was calculated using the lumped capacity
method as described in Rodrigues et al. [35]. A cylindrical-shaped object made of aluminum
with dimensions similar to the shrimp samples (10.21 mm diameter and 50.68 mm length)
was used to perform the experiments. The metallic cylinder was subjected to the same
environment used later for the drying essays, i.e., it was placed on an aluminum tray
and heated under the same conditions and in the same convective oven used for the
shrimp samples (as detailed in Section 2.2), and the temperature was measured using a
T-type thermocouple inserted in the center of the object (Figure 2a). The experiments were
performed in triplicate for each condition.
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It was assumed that the conductive resistance in the aluminum piece is much smaller
than the external convective resistance, i.e., the Biot number is lower than 0.1 [36]. Therefore,
the thermal energy balance, as presented in Equation (12), describes the heating process of
the aluminum object.

malcp,al
dT
dt = hT(Tair − T)
T(0) = T0

(12)

in which mal and Aal are the mass (11.1214 g) and surface area (0.0017893 m2) of the
aluminum object, respectively, and cp,al is the heat capacity of the aluminum (900 J/kgK).
The solution to Equation (12) leads to Equation (13), which was fitted to the experimental
temperature data (see Figure 2b) to determine the heat transfer coefficient.

T = Tair + (T0 − Tair)exp

(
− hT Aal

malcp,al
t

)
(13)

The obtained hT values were 57.0 W/m2K at 60 ◦C, and 62.9 W/m2K at 70 ◦C. The
Biot number (Bi = hT (Val/Aal)

kal
, in which Val and kal are the volume, 4.15 × 10−6 m3, and

thermal conductivity, 229 W/mK, of the aluminum, respectively) was calculated to be
lower than 6.5 × 10−4 for both temperature conditions. These Bi values indicate that the
lumped capacitance method is valid [36]. The obtained heat transfer coefficients are in
accordance with Ratti and Crapiste [37], who found values ranging from 25 to 95 W/m2K
during the drying of slices and cylinders of vegetables with an air temperature between 40
and 65 ◦C and air velocity ranging from 1 to 5 m/s.

2.4.4. Convective Mass Transfer Coefficient and Moisture Effective Diffusion Coefficient

The convective mass transfer (hm) and moisture effective diffusion (D) coefficients
were determined by fitting the model solution to the experimental data using an exhaustive
optimization method [38]. The model was solved by screening hm values from 0.005 to
0.01 m/s at intervals of 0.001 m/s and D from 5 × 10−10 to 1 × 10−9 m2/s at intervals of
0.5 × 10−10 m2/s [39]. The hm and D values that minimized the root mean squared error
(RMSE) between the numerical and experimental temperature data were selected as the
optimal values.

2.5. Numerical Solution

The mathematical model (Equations (1)–(6)) was solved using the Finite Element
Method in the COMSOL MultiphysicsTM (version 6.2) software with the Chemical Reaction
Engineering and Heat Transfer modules. The computational domains were discretized
using first-order tetrahedral elements with a maximum element size of 1 mm (Figure 1b).
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The direct solver PARDISO was used to solve the system of linear equations, and the
time-dependent problem was solved by using the Backward Differentiation Formula (BDF)
solver with a maximum time step of 10 s. A study of mesh independence was conducted
to determine the ideal mesh size for the model numerical solution. The center moisture
content (Xdb,c) of the shrimp after 180 min of drying was used as a criterion for selecting
the mesh size [40]. Figure 3 illustrates how the Xdb,c values change as the elements increase,
converging to a specific value. Based on these results, an element size of 1.0 mm, which
corresponded to 67,252 elements and 24,822 degrees of freedom, was used for the model
numerical solution.
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Figure 3. Influences of the number of elements on the calculated moisture content in the center of the
shrimp (Xdb,c) during drying at 60 ◦C.

2.6. Statistical Parameters

The coefficient of determination (R2, Equation (14)) and root mean square error (RMSE,
Equation (15)) were used to evaluate the goodness of fit between the model predictions
(Ycal,j) and the experimental data (Yexp,j) for the temperature and moisture.

R2 = 1 −
∑J

j=1

(
Yexp,j − Ycal,j

)2

∑J
j=1
(
Yexp,j − Yexp

)2 (14)

RMSE =

√√√√∑J
j=1

(
Yexp,j − Ycal,j

)2

J
(15)

in which J is the total number of experimental data points.

3. Results and Discussion
3.1. Model Validation

The comparisons between the calculated and experimental values of the moisture
content (Xdb) and temperature (T) of the shrimp during the drying process at 60 and
70 ◦C are presented in Figure 4. Additionally, it presents the air temperature (Tair) and
relative humidity (RH) inside the dryer cavity. The model predictions demonstrated close
agreement with the experimental data. It revealed that the drying process consists of three
stages, namely warming up, constant drying rate, and falling drying rate, as detailed in
the next section. The statistical parameters R2 were greater than 0.95, and the RMSE was
lower than 1.12 ◦C and 0.22 kg/kg, as shown in Table 2, confirming the accuracy of the
predictions. For drying at 60 ◦C, the estimated values for the moisture diffusivity (D)
and mass transfer coefficient (hm) were 6.5 × 10−10 m2/s and 0.008 m/s, respectively. At
70 ◦C, these values were 8.5 × 10−10 m2/s and 0.007 m/s. The values of the moisture
diffusion coefficient are consistent with those reported by Panagiotou et al. [41] for drying
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fish and fishery products, which ranged between 10−11 and 10−9 m2/s. The estimated
hm values are similar to those found by Poós and Varju [42] regarding water evaporation
under forced convection at various air temperatures and velocities. The reported values
range from 0.007 m/s at 18.5 ◦C to 0.006 m/s at 60.2 ◦C, with a constant air velocity of
1 m/s. Additionally, at a temperature of 40 ◦C, they found values between 0.0029 m/s and
0.0108 m/s as the air velocity increased from 0.27 m/s to 2.02 m/s.
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Figure 4. Moisture content (left side) and mid-layer temperature (right side) curves obtained experi-
mentally (dots) and predicted by the mathematical model (continuous lines) during shrimp drying
at 60 ◦C (a) and 70 ◦C (b). Values were calculated using a computational domain discretized with a
maximum element size of 1 mm.

Table 2. R2 and RMSE obtained by comparing experimental and predicted values of temperature and
moisture content on a dry basis during the drying of shrimp at 60 and 70 ◦C.

Temperature (◦C) R2
T R2

Xdb
RMSET (◦C) RMSEXdb (kg/kg)

60 0.99 0.95 0.50 0.22
70 0.97 0.97 1.12 0.16

3.2. Dynamic of Heat and Mass Transfer in the Shrimp During Drying

The shrimp drying curves (Figure 5) present three distinct stages (warming up, con-
stant drying rate, and falling drying rate), which are often observed in the convective
drying process of solid foods [43]. Initially, there is a brief period of rapid heating and a
rising drying rate (dXdb/dt). Next, there was observed a period in which the temperature
remained mostly constant (around 46 ◦C and 53 ◦C for the process at 60 ◦C and 70 ◦C,
respectively) and the drying rate reached its maximum value (Figure 5a). During this
stage, the heat is transferred from the surroundings to the surface of the shrimp through
convection (estimated by reference to the convective heat flux, q′′

conv, W/m2) and used in
the water evaporation (described by reference to the evaporative heat flux, q′′

evap, W/m2).
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The latent heat of evaporation prevented a temperature rise since they are very close to
each other, i.e., q′′

conv ≈ q′′
evap, as shown in Figure 5b. Subsequently, the temperature rises

again, approaching the air temperature, and the drying rate gradually decreases. In this
stage, the drying process is governed by the mass transfer within the shrimp.
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Figure 5. (a) Total drying rate (dXdb/dt, continuous lines) and temperature (T, dotted lines) of the
shrimp as a function of the moisture content (Xdb) over drying at 60 ◦C (blue) and 70 ◦C (red). (b) Av-
erage heat flux transferred to the shrimp via convection (q′′

conv , continuous lines) and evaporative heat
flux (q′′

evap, dotted lines) in the shrimp surface over-drying at 60 ◦C (blue) and 70 ◦C (red). Numerical
results used computational domain discretized with a maximum element size of 1 mm.

Figure 5a shows the calculated values of the temperature (T) and the drying rate
(dXdb/dt) of shrimp as a function of the moisture content (Xdb). As illustrated, the max-
imum drying rate for the process at 70 ◦C (0.05 kg/kg·min) was higher than at 60 ◦C
(0.04 kg/kg·min). Moreover, the constant drying rate period was shorter for the process at
70 ◦C than at 60 ◦C. Delfiya et al. [44] found around 0.025 kg/kg·min using hot air at 45 ◦C
and 1.5 m/s for drying shrimp. These results were expected since a higher temperature
leads to a higher heat flux to the shrimp (Figure 5b), resulting in a higher moisture flux from
the shrimp to the air [45]. Also, it was demonstrated that the higher the drying temperature,
the higher the equilibrium moisture on the shrimp’s surface (aw

Psat,sh
RT ) and the higher the

moisture diffusion coefficient (see Section 3.1). Additionally, the relative humidity (RH)
in the dryer working at 60 ◦C ranged between 16 and 23%, while the dryer working at
70 ◦C ranged between 11 and 19% (as shown in Figure 4), which also increased the rate of
moisture loss by the shrimp samples. After 180 min of drying, the shrimp moisture content
on a dry basis was 0.69 kg/kg (40.8% on a wet basis) at 60 ◦C and 0.40 kg/kg (28.6% on a
wet basis) at 70 ◦C.

Figures 6 and 7 show the spatial distribution of the temperature and moisture within
the sample during drying at 60 ◦C. Initially, the temperature of the shrimp rises rapidly,
reaching up to 39 ◦C after 1 min. Subsequently, after 15 and 30 min, it stabilizes at around
46 ◦C before gradually increasing after 60, 120, and 180 min, eventually approaching the
air temperature of 60 ◦C (Figure 6). The shrimp’s tail, thinner than the body, experiences a
faster temperature increase and moisture loss. According to Figure 7, after 180 min, the
moisture content in the shrimp tail and on its surface had decreased to less than 0.2 kg/kg
(16.7% on a wet basis), while the moisture content in the inner part of the sample was
approximately 1.9 kg/kg (65.5% on a wet basis). During storage, the moisture gradients
within the product diminish as moisture continues to diffuse, while water loss nearly ceases,
maintaining a constant average moisture content. The predicted moisture profile in shrimp
(Figure 7) follows the qualitative behavior observed using magnetic resonance imaging
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(MRI) to assess the dynamics of moisture change in shrimps during the hot-air drying
process [8,23].
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Figure 6. Temperature profiles (T) in the mid-layer of the shrimp during the drying at 60 ◦C calculated
using a computational domain discretized with a maximum element size of 1 mm.
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Figure 7. Moisture content profiles (Xdb) in mid-layer of the shrimp during the drying at 60 ◦C
calculated using a computational domain discretized with a maximum element size of 1 mm.

3.3. Effect of the Shrimp Geometry

A numerical analysis was performed to evaluate how the selected geometry to rep-
resent the shrimp shape impacts the mathematical modeling of the drying process. The
shrimp was represented as a finite cylinder (a common assumption in the literature) with
dimensions similar to the shrimp samples (11 mm diameter and 42 mm length). The
irregular-shaped computational domain had the same volume as the one with a simplified
shape. The results differed for both geometries’ moisture content and temperature profiles
(Figure 8a). However, the moisture loss curve and temperature at the cold spot were
very close (Figure 8b). Therefore, using a finite cylinder may serve as a simplification
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for process assessment. Still, a geometry with an irregular shape should be the preferred
choice as it offers more realistic information about the moisture and temperature variation
inside the shrimp, allowing a much more accurate description of the quality parameters
that differentiate what happens in thinner and thicker regions. Moreover, regarding the
numerical solution of the models, the number of degrees of freedom was 24,822 for the
irregular shape and 23,670 for the cylindrical shape, resulting in similar computation times,
which also do not justify the use of a simplified geometry.
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Figure 8. (a) Numerical solution for moisture and temperature distribution in the shrimp after 180 min
of drying at 60 ◦C for cylindrical-shaped and irregular-shaped computational domains. (b) Moisture
content and mid-layer temperature curves (black lines—irregular shape, red lines—cylindrical shape).
Values were obtained with computational domain discretized with a maximum element size of 1 mm.

3.4. Parametric Sensitivity Analysis

Based on the validated model, numerical simulations were conducted to evaluate the
influence of the moisture diffusion coefficient (D) and convective transfer coefficients (hT

and hm) on the shrimp drying process. The simulations were performed for the shrimp
drying at 60 ◦C. Figure 9a shows that a higher D value, i.e., a lower inner resistance of
mass transfer, resulted in a faster decrease in moisture and an extension of the period of
the constant drying rate. Defraeye and Verboven [46] observed the same effect of D on
the dynamics of change in the temperature and moisture content in apples during the
convective drying process. Unlike the diffusion coefficient D, which is an intrinsic property
of the food, the values of hT and hm are influenced by the process conditions, particularly
the airflow within the dryer, sample geometry, the thermophysical properties of the air,
and the flow regime (whether laminar or turbulent) [36]. Specifically, as the air velocity
increases, these coefficients rise due to a reduction in the thickness of the boundary layers
around the shrimp or changes in the flow regime, resulting in shorter drying times, as
shown in Figure 9b. However, up to a certain point (around 2.0 × hT = 114 W m−2K−1

and 2 × hm = 0.016 m s−1), further increases in the convective transfer coefficients have a
diminishing effect on the drying time (internal resistance to mass transfer becomes much
more relevant). The time necessary to reduce the moisture content of shrimp (to 1 kg kg−1)
was 174, 142, 133, 124, 120, and 117 min for 0.5, 0.8, 1.0, 1.5, 2.0, and 3.0 × hT and hm,
respectively. In such conditions, higher temperatures and the lower relative humidity of the
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air were more effective in removing the remaining moisture from the food than increasing
the air velocity in the cavity.
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Figure 9. Temperature (T) and moisture (Xdb) kinetics resulting from parametric analysis of (a) diffu-
sion coefficient (D), (b) convective transfer coefficients (hT and hm), and (c) relative humidity of air
(RH) during shrimp drying at 60 ◦C. Numerical results obtained using a computational domain with
a maximum element size of 1 mm.

Figure 9c illustrates how the relative humidity of air (RH) impacts the drying. This
process parameter influences the driving force of moisture transfer by altering the differ-
ence

[
aw

Psat,sh
RT −

(
RH
100

)
Psat,air
RTair

]
, which affects the evaporative flow at the shrimp surface. It

explains the lower drying rate and higher temperatures of the shrimp dried at 40% of RH
(0.03 kg kg−1min−1 and 49.6 ◦C during the period of the constant drying rate) compared to
those processes at 5% of RH (0.05 kg kg−1min−1 and 42.7 ◦C). When the shrimp’s surface
has no more moisture, the internal resistance to mass transfer becomes the limiting factor
for the drying. This was observed in the present study when evaluating the drying curves
after 120 min. There, the difference in the drying rate between 40% (0.0086 kg kg−1min−1)
and 5% of relative humidity (0.0101 kg kg−1min−1) was around only 15%. By controlling
the RH in the oven, the drying time needed to reach a shrimp moisture content of 1 kg
kg−1 was reduced from 140 min (40% RH) to 125 min (5% RH). The effect of this process
parameter on the shrimp’s moisture content and temperature curve is consistent with the
literature data on the convective drying of food products [40,47].

4. Conclusions
The three-dimensional mathematical model based on heat and mass transfer phenom-

ena successfully simulated shrimp dehydration in a cabinet dryer with forced air circulation,
as validated by the excellent agreement with the experimental data on the moisture content
and temperature (R2 > 0.95). The model demonstrated how the temperature and moisture
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changed over time within the shrimp during drying. It also identified three distinct stages
in the drying kinetics: the warming up, the constant drying rate, and the falling drying
rate phases. The irregular shape of the computational domain did not require additional
numerical effort compared to the simplified cylindrical shape. However, the irregular-
shaped domain showed the possibility of differentiating the shrimp body parts over time,
allowing a further quality assessment. Specifically, the moisture content at the shrimp tail
was significantly lower than at its center, while the temperature differences were relatively
small. The isolated evaluation of the convective heat transfer and evaporative cooling is
another advantage of this model, as it enables predicting shrimp drying under varying
process conditions (e.g., relative humidity, air velocity, and temperature). Furthermore, the
convective heat and mass coefficients and moisture effective diffusion coefficient exper-
imental and numerical procedures were valuable in estimating the parameters. Overall,
the proposed model is a powerful tool that can be used for controlling and optimizing the
drying process and for predicting the moisture content and temperature under various
drying conditions.
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