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ABSTRACT OF THE DISSERTATION 

Exploring Disease-Driven Biomarkers for Radio-Theranostic Targeting in Cancer 

by 

Claire Madeline Storey 

Doctor of Philosophy in Molecular and Medical Pharmacology 

University of California, Los Angeles, 2024 

Professor H. David Ulmert, Chair 

The field of radioimmunotheranostics (RIT) has emerged as a powerful strategy for targeted cancer 

treatment, combining the specificity of monoclonal antibodies with the cytotoxic effects of 

radionuclides. By leveraging tumor-associated antigens, RIT enables precise imaging, targeted 

radiotherapy, and immune modulation, offering a promising approach for overcoming therapeutic 

resistance in aggressive cancers. However, a key component to the success of RIT is in finding 

disease-driven biomarkers that are representative of the disease state and underlying signaling 

mechanisms. In prostate cancer (PCa), androgen receptor (AR) signaling remains a critical driver 

of disease progression and resistance. [89Zr]11B6-PET, a novel imaging modality targeting AR-

dependent, prostate-specific protein human kallikrein 2 (hK2), effectively assesses AR pathway 

activation and therapy-induced changes in PCa mouse models. Additionally, Leucine-rich repeat-

containing protein 15 (LRRC15) has been identified as a key biomarker and therapeutic target in 

aggressive tumors. The humanized monoclonal antibody DUNP19, radiolabeled with Lutetium-

177, enables precise imaging and radiotherapy of LRRC15-expressing tumors and cancer-

associated fibroblasts (CAFs), leading to tumor suppression and immune reprogramming. Fianlly, 

the key pro-tumorigenic cytokine transforming growth factor beta, or TGFβ, upregulates LRRC15 

expression, contributing to immune evasion and metastasis. Integrative functional and genomic 
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analyses identify key regulators—MMP2, SPARC, TGFβR2, and WNT5B—governing TGFβ-

induced LRRC15 expression and immunotherapy resistance. These findings highlight the potential 

of RIT-based AR and LRRC15-targeted strategies in advancing precision oncology and improving 

patient outcomes. 
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CHAPTER 1. INTRODUCTION 
 
1.1 Antibodies 

i. Antibody Structure and Function 

Antibodies are an essential component of the adaptive immune system, aimed at detecting 

disease-causing foreign antigens. Their high specificity and affinity for a target antigen led to 

their description as “magic bullets” after their discovery in 1890. Monoclonal antibodies (mAbs) 

have emerged as a cornerstone of modern therapeutic strategies, offering highly specific 

interventions across a wide range of diseases, including cancer, autoimmune disorders, and 

infectious diseases. Their rapid rise to prominence is evidenced by the projected $300 billion 

market value by 2025 [1]. This growth is driven by the unique ability of mAbs to target a variety 

of molecules, including cytokines, cell surface receptors, and immune checkpoint molecules, 

thus allowing for precision treatment of pathophysiological processes. 

 

Y-shaped monoclonal antibody proteins have an approximate mass of 150 kDa and consist of 

four polypeptide subunits, each subunit contains two identical light and heavy chains 

interconnected by disulfide bonds. There are two antigen-binding domains forming the arms of 

the “Y” shape, called the Fab (Fragment, antigen-binding) regions. The tip of each Fab contains 

unique and variable regions that binds to its specific antigen. A constant subunit is located below 

the variable region and is used to classify antibodies by their isotype. A hinge region links the 

Fab regions with the crystallizable fragment (Fc) and facilitates interaction with cell surface Fc 

receptors. Specific motifs on the Fc trigger the activation of effector immune cells, leading to 
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antibody-dependent cellular cytotoxicity (ADCC), but can also regulate the classical 

complement pathway, controlling complement-dependent cytotoxicity (CDC). 

The production of mAbs for clinical use relies on multiple expression systems, each with distinct 

advantages and limitations. Traditionally, hybridoma technology has been utilized, wherein B-

cells are fused with myeloma cells to generate hybridomas that are then screened and cloned for 

monoclonal antibody production [2]. However, hybridomas produce murine antibodies, which 

can elicit immune responses in humans due to their non-human origin. To avoid activation of 

human antimouse antibody (HAMA) responses, new methods have been developed to humanize 

murine-derived antibodies. Chimeric antibodies utilize mouse variable domains with a human 

immunoglobulin (IgG) to replace the constant domain. Doing so successfully reduced immune 

reactions in patients [3, 4]. Further advancements in antibody technology were made with the 

introduction of humanized monoclonal antibodies that contained less non-human protein than 

their chimeric counterparts. Humanized antibodies were first accomplished by grafting a 

complimentary-determining region, or CDR, onto a human IgG scaffold [5].  

 

In parallel with the evolution of antibody generation techniques, significant advancements have 

been made in the optimization of expression systems. Cell lines such as Chinese Hamster Ovary 

(CHO) and HEK293 cells have emerged as the preferred platforms for mAb production due to 

their ability to introduce post-translational modifications, including glycosylation [2]. 

Glycosylation patterns, particularly in the Fc region of IgG molecules, are crucial for 

determining immune effector functions, such as ADCC and CDC. Human embryonic kidney 

cells, or HEK293 cells, are favored for their ability to mimic native human glycosylation, a 

critical factor in minimizing immunogenicity and maximizing therapeutic efficacy [2]. 
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In the field of nuclear medicine, the Fc region has been viewed as redundant and various Fc-

edited antibody-like platforms have been invented [6]. Omitting the Fc-region decreases the 

antibody’s half-life, increases tissue penetrance and permits for renal clearance. However, the 

Fc region contains motifs for activation of both effector immune cells and the classical pathway 

of the complement (C1q) responsible, respectively, for ADCC and CDC. One of the most 

important breakthroughs in the field of immunology during the last two decades is the discovery 

and characterization of the Fc-portions interaction with Fcγ receptors (FcγR). FcγR are low 

affinity receptors found on the surface of leukocytes [7] which orchestrates ADCC through 

cytotoxic effects via agonistic and antagonistic binding. The specific FcγR engaged by a given 

Fc domain is dictated by Fc structure, which is determined by the IgG subclass. An example of 

the multifaceted therapeutic activity of FcγRs is checkpoint-inhibitor mAbs (anti-CTLA4) that 

mediate antitumor activity by altering the composition and functional activity of leukocytes 

within the tumor microenvironment. However, the therapeutic action is also an effect of the 

mAb’s capacity to activate FcγR expressing macrophages within the tumor microenvironment 

[8]. 

 

IgG subclasses differ in their binding profiles, half-lives, and Fc receptor binding and can 

mediate different therapeutic responses [9]. While most FDA-approved monoclonal antibodies 

are of the IgG1 subtype, IgG2, IgG3 and IgG4 mAbs are also in clinical use [10]. Several studies 

have compared the IgG subtypes and found varying results based on the target antigen and cell 

type [11]. A study targeting antigen CD146 in osteosarcoma xenograft models generated 

chimeric mAb variants with human IgG1 and IgG3 constant regions, finding that the two 

subtypes demonstrated similar antigen binding but different biodistribution profiles [11]. When 
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labeled with Iodine-125, the IgG1 chimeric mAb displayed higher tumor uptake than its IgG3 

counterpart. This observation was replicated in biodistribution studies with [177Lu]-labeled mAb, 

however, higher uptake was noted in the liver with the IgG1 subtype, alluding to the key clinical 

decision points to be made in therapeutic antibody development. In terms of size, the IgG3 

subtype is 24kD larger than the other three IgG subtypes and certain allotypes have a 

significantly shorter half-life in the blood (7 days versus 20-21 days for the other IgGs) [10]. 

This shorter half-life is attributed to the lower affinity of IgG3 for the neonatal Fc receptor 

(FcRn) that protects antibodies from degradation and promotes transcytosis, internalization and 

recycling [12].  

 

Over the past 50 years, essential Nobel Prize-winning advancements have propelled the field 

forward. Some of these findings include Edelman and Porter’s discovery of the mAb structure, 

as well as Köhler and Milstein’s hybridoma technology. Smith’s invention of phage display and 

Winter’s applications of the technology for engineering of mAbs further accelerated 

development of novel compounds [13]. These ground-breaking discoveries and innovations 

provided opportunities to utilize antibodies in cancer treatment, which was realized in 1980 

when the first mAb human trial was designed to treat lymphoma. 

 

ii. Clinical and Therapeutic Applications of mAbs 

1. Naked Antibodies + Antibody-Drug Conjugates 

Monoclonal antibodies have significantly advanced the field of targeted cancer therapy. 

Engineered to bind to specific antigens expressed by cancer cells, mAbs can circumvent the 

challenges of toxicity and off-target effects by taking advantage of protein targets that 
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exclusively appear on cancer cell surfaces. The clinical success of mAbs is best exemplified by 

drugs like Rituximab (Rituxan), which targets B-cell surface antigen CD20 for the treatment of 

non-Hodgkin's lymphoma. Other strategies have exploited the immune system’s ability to target 

tumor cells with immune checkpoint inhibitors such as Nivolumab (OPDIVO) and Ipilimumab 

(Yervoy). These therapies are part of a growing list of mAbs approved for oncology and 

immunology, offering patients more effective and targeted treatments with fewer side effects 

than traditional chemotherapy or immunosuppressive drugs. 

 

To improve the therapeutic potential of mAbs, various engineering strategies have been 

developed. One notable advancement has been the generation of antibody-drug conjugates 

(ADCs), involving the coupling of cytotoxic agents to mAbs. This allows for the targeted 

delivery of potent drugs directly to malignant cells, minimizing off-target effects. ADCs have 

shown remarkable efficacy, particularly in the treatment of HER2+ solid tumors, with the first 

Her2-targeted ADC using the already approved anti-HER2 mAb trastuzumab to deliver a 

topisomerase I inhibitor [14].  

 

2. Radioimmunotheranostics Applications 

Theranostics combines a diagnostic agent and a therapeutic agent, either with a single 

radionuclide conjugate or two paired radionuclides, one for non-invasive imaging and one for 

therapeutic intent. Radioimmunotherapy (RIT) represents a powerful theranostic modality that 

integrates the specificity of monoclonal antibodies with the cytotoxic capabilities of 

radionuclides. This approach offers a highly targeted means of delivering radiation directly to 

malignant cells, thereby minimizing off-target effects and preserving healthy tissue. Cancer cells 
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emerge, in part, as a result of the accumulation of genetic mutations. These changes render them 

susceptible to death by ionizing radiation, making radiotherapy a pillar of cancer therapy. Once 

the mAbs bind to their target on cancer cells, the attached radioisotope decays, emitting ionizing 

radiation that directly interacts with the DNA or generates reactive oxygen species (ROS), 

leading to double-strand DNA (dsDNA) breaks (DSBs) and other forms of damage [15,16]. 

Double-stranded breaks can be particularly toxic as they damage both DNA strands, often 

leading to irreversible cell cycle arrest or mitotic catastrophe, especially in cancer cells with 

heavily mutated or defective DNA damage response (DDR) pathways. Cells unable to manage 

this stress may undergo programmed cell death or other forms of cell death, like necrosis or 

immunogenic cell death, which can further stimulate the body’s immune system to attack the 

remaining tumor. In this way, RIT provides a dual mechanism: direct radiation-induced 

cytotoxicity and the potential to enhance the immune response through antigen release from 

dying cancer cells. 

 

By exploiting tumor-associated antigens, RIT enables precise tumor targeting, making it an 

attractive option in cancers that are refractory to conventional therapies. The clinical success of 

RIT, however, is contingent upon the identification of robust, tumor-specific antigens that can 

serve as reliable targets for both therapeutic and diagnostic applications. Preclinical and clinical 

trials have demonstrated that successful target antigens for solid tumor RIT must be highly 

expressed on tumor tissue and that the most effective targets support tumor growth, maintenance, 

or survival [17]. Another critical challenge in optimizing RIT is understanding the underlying 

pathobiology and regulations of target antigens. Tumor heterogeneity, immune evasion, and 

therapy resistance are major obstacles to effective cancer treatment, underscoring the need to 
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elucidate the molecular pathways governing these processes and, in turn, tumor antigen 

expression. 

 

In a seminal study from 1978 on tumor detection in humans using 131I-labeled anti-CEA 

antibodies, Goldenberg concluded that successful imaging primarily depends on the specific and 

sensitivity of the antibody [18]. The study was based on an affinity-purified goat antibody 

labeled with 131-Indium targeting carcinoembryonic antigen (CEA). Early imaging 

technologies to assess radiolabeled monoclonal antibody biodistribution were established using 

gamma cameras. Iodine-131 labeled anti-CD-37 and anti-CD-20 in B-cell lymphoma patients 

provided a foundation for the theranostic approach to evaluating RIT treatment response in 

patients [19,20], with the expansion of radioisotopes for labeling leading to the use of PET as a 

dose-planning tool for radioimmunotherapy. This was first demonstrated using Iodine-124 

labeled anti-GD2 mAb 3F8 to target the surface of neuroblastoma cells to B7-H3 protein in 

neuroblastoma patients [21]. The approach used Iodine-124-labeled 3F8 as an imaging agent to 

determine candidates for 131I-3F8 radioimmunotherapy, guiding treatment measures based on 

the indicated dose and uptake by the 124I-labeled mAb [21].  

 

At the same time, hybridoma technologies were introduced which have since revolutionized our 

possibilities to develop highly specific monoclonal antibodies (mAbs) [22]. The first mAb 

(Muromonab) was approved 1986, and approximately 70 mAbs have since then been introduced 

for treatment or management of a variety of diseases use in humans. During the same time span, 

only three radiolabeled mAbs ([90Y]-Ibritumomab, [131I]-Tositumomab and [111In]-Capromab) 

have reached FDA approval. Two of these RITs, [131I]-tositumomab (Bexxar) and [90Y]-
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Ibritumomab (Zevalin), target lymphocyte CD20 receptors for treatment of refractory B-cell 

non-Hodgkin’s lymphoma [23]. Despite the success of Bexxar performing as well as Rituximab 

in B-cell non-hodgkins lymphoma (NHL), the therapy is not currently available [24]. Lagging 

FDA approval and the solidifying of Rituxan and chemotherapy (R-CHOP) for NHL as the 

standard of care kept use of Bexxar low. However, a study comparing Bexxar to the Rituxan 

regimen found no significant differences in toxicities, survival rates or disease progression, 

citing both treatments perform equally well in the treatment of NHL [25]. Anti-CD20 Zevalin is 

the only FDA-approved RIT currently available to B-cell NHL patients. Currently approved for 

refractory or low-grade NHL as well as patients with resistance to rituximab, Zevalin is being 

tested as a front-line therapy across B-cell lymphomas [26,27] as well as a trial using 18F-FDG-

PET to direct treatment to either R-CHOP or RIT [28-31]. Lymphomas are particularly good 

candidates for radiotherapeutic approaches due to the specific and high expression of antigens 

on tumor cells, sensitivity to radiation therapy and well-incorporated nuclear imaging protocols. 

Expanding the field of oncology treatments to RIT should be at the forefront of the next 

generation of lymphoma treatments 

 

iii. Therapeutic Radionuclides 

RIT relies on delivering targeted doses of radiation directly to cancer cells using mAbs 

conjugated to radioactive isotopes. A critical component of RIT’s efficacy is the development 

of appropriate dosing strategies and injected activity, ensuring that therapeutic radiation is 

delivered precisely to tumor tissues while minimizing exposure to healthy cells. The therapeutic 

window is often expanded by using isotopes with appropriate emission ranges. Beta-emitters 

like Yttrium-90 have a moderate tissue penetration range that is ideal for targeting larger tumors, 
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whereas alpha-emitters like Actinium-225 offer high linear energy transfer (LET) radiation that 

is extremely potent but limited in range, making them suitable for eradicating micrometastatic 

disease while sparing surrounding tissues.  

 

Beta emitters are the most frequently utilized radionuclides in RIT due to their relatively 

moderate tissue penetration that can span several cell diameters (2.5mm-10mm) and widespread 

availability. Beta radionuclides can induce cellular damage to both the target cells expressing 

the target antigen as well as nearby cells within the emission path, known as the “crossfire 

effect.” This makes beta emitters particularly effective in treating larger or more heterogeneous 

tumors. Notable examples of beta radionuclides include Yttrium-90 [90Y] and Lutetium-177 

[177Lu]. [90Y], with a half-life of approximately 64 hours, emits high-energy beta particles (2.28 

MeV) that penetrate up to 10 mm in tissue [32]. In contrast, [177Lu] (half-life = ~6.6 days) emits 

both beta particles and low-energy gamma rays to allow for imaging but has a shorter tissue 

penetration range (~2 mm). Given the longer half-life and imaging capabilities, the radionuclide 

is a practical choice for small tumors for both diagnostic and therapeutic applications [33]. 

 

Alpha particles provide a more targeted approach due to their high linear energy transfer (LET) 

and short range in tissues (~50–100 micrometers). Alpha-emitting radionuclides such as 

Actinium-225 [225Ac] and Radium-223 [223Ra] release particles that densely ionize atoms along 

their path due to their larger mass and double positive charge [34]. This ionization induces 

multiple double-stranded DNA breaks that are more difficult for cells to repair, resulting in 

enhanced cytotoxicity per particle and increasing effectiveness for micrometastatic disease, with 
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the short range of alpha particles also reducing off-target toxicity, sparing surrounding healthy 

tissue.  

 

Auger electrons represent a specialized class of radionuclides whose therapeutic potential is 

contingent on proximity to subcellular DNA. Auger electrons are low-energy with minimal 

tissue ranges of ~10-100nm [35]. Auger-emitting radionuclides such as Iodine-125 [125I] or 

Indium-111 [111In] must localize very closely to the cell nucleus [35]. When auger emitters are 

internalized into the cell and deposited near the DNA, they cause substantial DNA damage by 

generating complex double-strand breaks, effectively inducing cell death. Finally, gamma 

emitters play a dual role in radioimmunotherapy, often used in combination with other 

radionuclides to facilitate both therapeutic effects and imaging. Gamma rays, which have very 

low LET do not exhibit the same toxicity to the same extent as beta or alpha radiation. However, 

they are critical for diagnostic purposes for use in imaging modalities like SPECT or PET, 

allowing for non-invasive imaging of the radiolabeled antibody's distribution.  

 

1. Radiolabeling Methods 

Radiolabeling with metallic radionuclides require that the mAb is first conjugated with a 

chelator, forming a complex by providing donor atoms to saturate its coordination sphere and 

prevent hydrolysis [36]. Typically, chelators such as DFO, DTPA, or DOTA are used; one side 

can bind covalently to the mAb, while the other chelates the radionuclide [37]. A linker molecule 

can act as a spacer to ensure that the radionuclide remains conjugated to the mAb until it reaches 

target tissue and ensures that the radionuclide does not interfere with the pharmacokinetic 

properties of the antibody [38]. In standard practice, radioimmunoconjugates are synthesized by 



 11 

random covalent bonds between the chelator and lysines on the antibody. Although simple and 

generally applicable, the method produces a complex assortment of radiolabeled mAbs that are 

poorly defined and heterogenous among different syntheses. Upon selection of an appropriate 

chelator and linker, the payload can be added to the antibody at the mAb’s lysine or cysteine 

residues. Amine-reactive ester reactions on lysine residues are the most common methodology, 

but disulfide bond reduction on cysteine residues can also be used [39]. 

 

To improve upon stochastic labeling, the mAb structure can be engineered with specific sites 

containing ‘unnatural amino acids’, such as short peptide tags or glycans, which provide 

predetermined binding sites for the chelator. The first in-human trial of a site-specifically labeled 

[89Zr]-DFO-Pertuzumab is currently in Phase I clinical trials for patients with HER2-positive 

metastatic breast cancer [40]. Some radionuclides, such as Iodine isotopes, can covalently bind 

to the mAb via iodination, eliminating the need for a chelating agent [41], however, this process 

can leave the isotope subject to dehalogenation in vivo, effectively reducing the circulating time 

and effective half-life [42,43]. It is also essential that the chelation chemistry does not 

significantly alter the mAb’s binding qualities and stability, as the choice of radiolabeling 

method can have a significant impact on successful delivery of the radionuclide to target tissue 

[37]. Upon endocytosis of radiolabeled mAbs, chelate-based methods enable cytoplasmic 

entrapment of the radionuclides, while iodination generates low molecular weight radio-

catabolites that escape the targeted cells by passive transport. 

 

For radioimmunotherapeutic modalities to be most effective, differences in internalizing ability 

and half-life must be considered. For instance, certain radioisotopes with short path lengths such 
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as auger and alpha emitters are only effective when the radioimmuno-conjugate is internalized. 

In addition, given the long circulation time and tumor retention, full-size mAbs are highly 

suitable as carriers of radionuclides with long half-lifes such as Zirconium-89 or Indium-111 for 

PET- or SPECT-imaging and Lutetium-177 or Actinium-225 for radiotherapy. Full-size 

antibodies with longer serum half-lives may require lower injected activities due to prolonged 

circulation, which provides more time for the radioconjugate to accumulate in the tumor. In 

contrast, smaller antibody fragments with shorter half-lives clear from the bloodstream more 

rapidly via renal clearance and may require higher injected activities to achieve effective tumor 

uptake [44]. 

 

Despite mAbs being relatively advantageous for RIT, there are drawbacks to utilizing mAbs as 

vehicles for radionuclides. The neonatal fc-receptor (FcRn) mediates temporary cellular 

internalization by binding to the fc portion, a process that protects IgGs from degradation and 

thus extends half-life [45]. In addition, FcRn functions as a receptor for transcytosis of IgGs 

across polarized membranes [46]. The prolonged blood circulation increases exposure to 

radiosensitive organs, which limits the therapeutic dose that can be given and delays the time to 

get an optimal image. Acute hematological toxicity is the most observed adverse event in 

radioimmunotherapy of solid tumors due to a low tumor-to-nontarget ratio and off-target 

radiation damage due to the prolonged circulation time of mAbs in the blood [47].  

 

Full sized antibodies also lack the ability to naturally reach across barriers of non-fenestrated 

endothelial cells, such as glial processes in the brain and sertoli cells in the testis. Although 

preclinical manufacturing of mAbs are fairly simple and inexpensive, production under Current 
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Good Manufacturing Practices (CGMP) require substantial monitory assets, or production 

facilities that are rarely found at academic institutions. Large pharmaceutical companies are 

hesitant to take on products utilizing preclinical radiolabeled mAbs, especially compounds 

aimed for diagnostic imaging. Unfortunately, numerous very interesting and innovative mAb-

based projects have stranded at this stage. 

 

Successful radioimmunotherapy of solid tumors is uniquely challenging due to the decreased 

radio-sensitivity and high radiation dose requirements for efficacy. Bone marrow toxicity and 

low tumor-to-normal tissue targeting and heterogeneity in target expression are major 

complications for radioimmunotherapy of solid tumors. In addition, physical barriers such as the 

extracellular matrix, elevated interstitial fluid pressure and poor tumoral vascularization also 

contribute to RIT efficacy limitations [48,49]. 

 

2. SPECT, PET, and Theranostics 

Antibody-based imaging in SPECT and PET represents a convergence of precision-targeted 

therapeutics and advanced diagnostic modalities, providing improved resolution in both tumor 

localization and real-time assessment of therapeutic response. PET imaging capitalizes on the 

use of positron-emitting radionuclides like Fluorine-18, Iodine-124, Zirconium-89, Copper-64, 

and Gallium-68, which each offering distinct advantages based on their half-lives, decay 

profiles, and compatibility with different antibodies. For instance, [89Zr], with its longer half-

life of 3.3 days, is particularly suitable for imaging slow biological processes such as the 

distribution of monoclonal antibodies in vivo, making it ideal for long-term tracking of 

therapeutic antibodies [50]. [89Zr]-labeled trastuzumab, for example, is highly effective in 
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imaging HER2-positive tumors, allowing precise monitoring of receptor occupancy and 

response to HER2-targeted therapies. Similarly, SPECT imaging utilizes gamma-emitting 

radionuclides such as Indium-111 or Technetium-99. Although SPECT has lower spatial 

resolution compared to PET, it remains widely used due to its cost-effectiveness and availability 

[51]. 

 

Advancements in [89Zr]-labeled PET tracers such as VEGF-targeting modality [89Zr]-

bevacizumab have broadened the scope of PET imaging, making it a versatile tool for 

monitoring anti-angiogenic therapies across a variety of solid tumors [52]. By visualizing VEGF 

expression and tracking the response to widely-used VEGF inhibitors such as Everolimus, 

clinicians can tailor treatments to individual patient profiles, visualize changes in VEGF 

signaling, and improve therapeutic efficacy. 

 

1.2. Biomarkers and Therapeutic Targets 

i. AR + KLK2 

Biomarkers are understood as “a defined characteristic that is measured as an indicator of normal 

biological processes, pathogenic processes, or responses to an exposure or intervention, 

including therapeutic interventions” according to the NIH Biomarker Working Group [53]. 

Specific to oncology, biomarkers can be used to diagnose, stage, and stratify patients for 

treatment. In prostate cancer, for example, the androgen receptor (AR) pathway plays a pivotal 

role in tumor progression. Biomarkers that reflect the molecular activity downstream of the AR 

can offer important insights into the efficacy and resistance of pharmaceuticals designed to 

inhibit this central disease driver. Human kallikrein related peptidase 2 (hK2, KLK2) is an AR-



 15 

governed trypsin-like enzyme that is only expressed in prostate tissues. Both pre- and clinical 

studies of radio-conjugated anti-hK2 mAb hu11B6, which binds to a unique epitope in the 

catalytic cleft of hK2, have shown highly encouraging results. Findings based on hu11B6 have 

shown that positron emitter [89Zr] can be used as a surrogate reporter for alpha emitter [225Ac] 

with parallel pharmacokinetic profiles and organ uptake. A dosimetry studying testing 111In 

hu11B6 in mCRPC patients was the first hK2 targeting radioimmuno-theranostic approach in 

humans and found accumulation in bone and soft tissue metastases with minimal evidence of 

off-target effects or toxicity [54]. Multiple hu11B6-based compounds have since been initiated, 

including an [225Ac]-labeled version, as well as non-radioactive alternatives like hK2-targeted 

T-cell engagers [55]. 

 

Imaging of androgen receptor signaling in prostate cancer nicely fits the theranostic approach. 

Because the AR pathway is a driver of disease, downstream signaling targets can provide a 

window into the efficacy of therapeutics and reactivation when resistance develops. Anti-hK2 

mAb hu11B6 has demonstrated its potential in AR-dependent imaging and PCa treatment. 

Preclinical studies in mouse and nonhuman primates utilized Zirconium-89 and Actinium-225-

conjugated hu11B6 to image and treat prostate cancer [56]. Positron emitter [89Zr] acted as a 

surrogate reporter for alpha emitter [225Ac] with parallel pharmacokinetic profiles and organ 

uptake. Additional preclinical studies using Indium-111 hu11B6 in AR-positive PCa xenografts 

led to a dosimetry trial in mCRPC patients, the first targeting hK2 with a radioimmuno-

theranostic approach in humans [54,57]. 

 

ii. TGFB + LRRC15 
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Similar to AR, the transforming growth factor beta (TGFβ) signaling pathway is recognized as 

a key driver of tumor progression, immune suppression, and metastatic potential across various 

cancer types. TGFβ signaling is perhaps the most pervasive contributor to late-stage disease 

progression through suppression of anti-tumor immune responses. TGFB’s role as a pleiotropic 

cytokine modulates the differentiation, proliferation, migration, and survival of immune and 

non-immune cells within the tumor microenvironment to shield cancer cells from immune attack 

and further promote tumor growth [58-60]. Systemic pharmacological inhibition of TGFβ 

activity through TGFB-blockade has been unsuccessful due to TGFB’s key functions in tissue 

healing and immune regulation of healthy tissue, often leading to accelerated disease progression 

followed by increased pro-tumorigenic TGFβ signaling [61,62]. Thus, there is an unmet need 

for the selective inhibition of TGFβ signaling in tumors that are resistant to immunotherapy, 

while sparing healthy tissue and normal physiological functions of TGFβ. 

 

Cancer-associated fibroblasts (CAFs) within the tumor microenvironment (TME) have impeded 

therapeutic strategies through their mechanical support of tumor cells, physical blockade of anti-

tumor drugs, immunomodulation, and biochemical aid in tumor cell growth and survival [63-

68]. CAF-rich tumors exhibit increased endurance to standard chemotherapy regimens used in 

the clinic [69,70] and have repeatedly failed small molecule trials due to the stroma’s barrier to 

drug delivery and multitude of upregulated resistance mechanisms in response to therapeutics 

[71-73]. In addition, the tumor stroma heavily regulates immune cell infiltration and can limit 

anti-tumor immune response, thus weakening tumor response to immunotherapy [68].  

 



 17 

Within this context, leucine-rich repeat-containing protein 15 (LRRC15) has emerged as a 

promising therapeutic target. LRRC15 is a transmembrane protein governed by TGFβ and is 

upregulated in the tumor microenvironment of highly aggressive malignant lesions, particularly 

in stromal and fibrotic tissues, as well as malignancies originating from mesenchymal stem cells 

(MSCs) [74]. Studies conducted on murine cancer models and human tumor tissues have 

revealed that the presence of LRRC15+ CAFs, together with a panel of 10 other genes, make up 

nearly half of all CAFs within the tumor microenvironment [75]. Notably, LRRC15 expression 

is low in healthy tissues making the protein an excellent target for therapeutic intervention 

downstream of TGFB signaling. However, little is known regarding the proposed pathological 

role of LRRC15. Genetic ablation of LRRC15-expressing CAFs significantly reduces tumor 

growth in murine models of pancreatic cancer, as well as ameliorate the antitumor immune 

response after anti-PDL1 immunotherapy through enhanced CD8+ T cell function and 

infiltration [76]. In murine models, targeting LRRC15 in tumor stroma has proven to be 

efficacious for both reducing tumor volume and improving response to immune checkpoint 

blockade (ICB) [76]. However, the LRRC15-targeted antibody-drug conjugate ABBV-085 

showed little reduction in tumor volume in sarcoma patients during a Phase I/II trial, likely due 

to the heterogeneity of LRRC15 expression [77,78]. 

 

Here, we propose LRRC15 as a theranostic target, both as a diagnostic marker for selecting 

patients with advanced disease as well as a radioimmunotherapeutic target. Even with 

heterogeneous LRRC15 expression, we demonstrate that targeting LRRC15 with a radionuclide-

antibody conjugate can elicit antitumor effects such as the suppression of tumor growth, loss of 

TGFβ-driven expression patterns, and enhanced survival across several models of aggressive 



 18 

disease. Immunotherapy has revolutionized the treatment of hematological malignancies, 

demonstrating remarkable response rates and achievement of long-term survival in patients with 

otherwise incurable disease. However, the success of immunotherapy in solid tumors has been 

limited to a small percentage of patients. Non-responders are subject to a wide range of 

resistance mechanisms including immune cell exhaustion in larger solid tumors, physical 

barriers preventing immune infiltration, and cytokine-mediated signaling that hijack immune 

responses critical to successful treatment. 

 

As mentioned, attempts have been made to exploit LRRC15’s potential as a therapeutic target, 

including AbbVie’s ABBV-085, a LRRC15-targeted antibody-drug conjugate. The compound 

employs an antimitotic drug, monomethyl auristatin E (MMAE), coupled to a LRRC15 antibody 

through a protease-cleavable valine-citrulline linker. Preclinical assessments of therapeutic 

efficacy displayed promising results in murine models of human tumors. However, the outcome 

of a Phase 1 study in a cohort of mixed malignancies did not suggest that further investigation 

of ABBV-085 would yield significant clinical benefits. We hypothesize that the ADC’s success 

was hindered by two major factors, heterogeneity of LRRC15 tumor expression and 

characteristics of the antibody vehicle utilized by Abbvie for targeted delivery, including lack 

of internalization of the ADC into target cells and lack of selection for patients with LRRC15+ 

disease. 

 

Given the lack of efficacy of Abbvie’s LRRC15-targeted ADC, it is important to recognize the 

widely varied LRRC15 expression patterns observed across patients and indications. Tumors 

may express high LRRC15 in cancer cells, but do not express LRRC15 within the stroma. This 
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presents a challenge for LRRC15-targeted therapy on two levels- one being the need for an 

imaging agent that can guide therapeutic approaches, the other being the need to deliver a 

cytotoxic modality that can overcome this heterogeneous landscape. To test this hypothesis, we 

developed a LRRC15 humanized IgG1 monoclonal antibody, DUNP19. DUNP19 exhibits rapid 

internalization by target cells following binding to a phylogenetically conserved epitope on 

LRRC15 with picomolar affinity. The antibody’s equimolar binding to murine LRRC15 

provides valuable opportunities to explore off-target toxicity and therapeutic effects resulting 

from LRRC15+ CAF targeting within the tumor microenvironment [76]. 

 

Comparatively, ABBV-085 does not undergo endocytosis upon binding to LRRC15, and release 

of the cytotoxic payload relies on proteases present in the tumor microenvironment and the 

hydrophobic nature of  monomethyl auristatin E (MMAE) to cross the cell membrane. With the 

use of an ADC, there is a potential risk of incomplete or inefficient cleavage of the protease-

cleavable linker, leading to inadequate release of the cytotoxic payload at the target site and 

limitations on the maximum dose delivered to target tissue. Additionally, extra-tumoral release 

of cytotoxic payload may result in non-specific accumulation and toxicity in healthy tissues. As 

an alternative to an ADC-based approach and address the challenges encountered with ABBV-

085, we opted to develop DUNP19 as a radio-immunotheranostic modality that could be used 

as a tool for non-invasive imaging as well as a therapeutic for delivering cytotoxic radionuclides. 

This innovative strategy enables non-invasive and image-driven selection of patients with 

LRRC15-expressing disease. Moreover, it offers the potential for individualized dose planning, 

thereby enhancing the likelihood of eradicating TGFβ-driven disease associated with LRRC15 

expression. We hypothesized that conjugation of the beta-emitting radionuclide Lutetium-177 
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to DUNP19 ([177Lu]DUNP19) could not only induce DNA damage in LRRC15+ cells upon 

decay, but also in CAFs and LRRC15-negative cells in close proximity to the target cell. In this 

study, we present the precise molecular accumulation of [177Lu]DUNP19 in tumor models with 

LRRC15+ cancer cells and CAFs, as well as in tumor models where LRRC15 expression was 

restricted to CAFs. We evaluated the therapeutic efficacy of [177Lu]DUNP19 by monitoring 

volumetric changes over time and survival outcomes – a single dose of [177Lu]DUNP19 

exhibited significant yet transient therapeutic effects while stable tumor volumes were achieved 

after multiple doses administered across course of treatment. RNA-sequencing analysis of 

[177Lu]DUNP19-treated tumor tissues revealed substantial depletion of the TGFβ-driven 

LRRC15+ genetic signature. In addition, treatment with our LRRC15-targeted 

radioimmunotherapy upregulated transcripts of critical immunotherapy signature response 

genes, including CXCL10, CCL5, and IRF1. Together, these findings highlight the promise of 

[177Lu]DUNP19 as a standalone modality and its potential to expand existing immunotherapy 

applications across indications as an adjuvant therapy. Finally, multiomics evaluations of 

TGFβ’s regulation of LRRC15 reveal key LRRC15-related genes that may help stratify patients 

for LRRC15-targeted therapy. 

 

1.3. Technologies 

i.  Single Cell RNA Sequencing 

Single-cell RNA sequencing (scRNA-seq) offers a detailed analysis of specific or rare cell 

populations, revealing unique characteristics often masked in bulk transcriptomics. In cancer 

research, scRNA-seq enables high-resolution exploration of tumor stroma and cellular 

compartments, helping to identify heterogeneous cell populations within tumor tissue. In cancer 
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research, the technology allows for high resolution analyses of tumor stroma, cellular 

compartments, and individual cell types. For example, the technology has also been used to 

investigate specific immune cell populations that influence patient responses to immunotherapy 

[79]. By leveraging scRNA-seq, researchers can map the tumor transcriptome in detail, 

facilitating a deeper understanding of cell-cell interactions and regulatory networks involved in 

tumor pathology. 

 

To analyze transcriptomes at the single-cell level, individual cells are encapsulated in oil-based 

droplets, which are then merged with beads carrying unique barcodes that serve as cell identifiers 

[80]. These beads capture cellular mRNA and reverse transcription reactions are performed, 

followed by library generation and sequencing. The transcript reads are later matched to their 

corresponding barcoded beads, providing a comprehensive transcriptomic profile for each cell 

[81]. 

 

Typically, the number of genes detected in scRNA-seq is lower compared to bulk RNA 

sequencing due to high levels of technical noise, dropout events, and a phenomenon known as 

transcriptional bursting. Transcriptional bursting refers to the variability in gene transcription 

kinetics and periods of transcriptional silence that individual cells may undergo after periods of 

gene transcription [82,83]. At the single-cell level, the transcriptional bursting phenomenon is 

more likely to be observed, often resulting in low gene counts. Additionally, scRNA-seq is 

affected by high cell-to-cell variability, as transcript expression can fluctuate depending on cell 

cycle stage or the health of individual cells [83]. Despite these limitations in gene detection, 

scRNA-seq excels at capturing cellular heterogeneity, identifying different cellular states, and 
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revealing gene co-expression patterns within populations. It is for this reason that we opted to 

perform scRNAseq over bulk RNA transcriptomics, as identifying the genes that were uniquely 

co-expressed with LRRC15 in TGFB-responsive cell lines would help us construct LRRC15’s 

regulatory network.  

 

To construct co-expression networks, robust quantitative methodologies are essential to capture 

unique biological features within cells and account for gene interactions. In this study, we 

employed two such methods: high-dimensional weighted gene co-expression network analysis 

(hdWGCNA) [84] and Single Cell INtegrative Gene regulatory network inference (SCING) 

[85]. hdWGCNA is an unsupervised clustering technique that generates metacells to avoid 

issues due to cell sparsity within subsets [84]. These metacells are similar in their transcriptomes 

and are typically representative of a cellular state. Pairwise correlations between genes are then 

calculated to estimate the strength of co-expression across metacells. Topological overlaps are 

computed to identify genes that are co-expressed with two highly correlated genes, and those 

with similar expression patterns are clustered into modules, which often represent larger 

biological processes [84]. 

 

Comparatively, SCING preprocesses data to filter out genes with low expression variability, 

focusing instead on highly variable genes [85]. Cells are similarly grouped to reduce cell sparsity 

into supercells, and average gene expression values are calculated from these supercells for 

downstream analysis. SCING then applies gradient boosting regression, a machine learning 

technique, to predict gene regulatory relationships. For example, Gene A’s expression is 

predicted based on the expression of potential upstream regulators, identified as the 100 nearest 
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genes in a principal component analysis. These regulatory elements are then placed into gene 

regulatory networks to identify broader biological processes [85]. 

 

Both methods offer novel insights into single-cell transcriptomics by placing genes within larger 

regulatory (SCING) or co-expression (hdWGCNA) networks, allowing researchers to observe 

key biological phenomena. hdWGCNA can uncover novel gene interactions through 

unsupervised clustering, while SCING can account for regulatory interactions between genes 

and capture gene effects within a pathway. In this study, we employed both methods in our initial 

exploratory analysis of the TGFB-LRRC15 pathway to discover novel gene interactors with 

LRRC15 and to identify the regulatory elements and pathways involved in the TGFB-LRRC15 

axis. 

 

ii. Chemical Genomics 

Phenotypic screens provide a valuable layer of functional information that can inform cancer 

cell mechanisms, identify lead compounds for drug discovery, and help establish mechanisms 

of resistance. Chemical genomics, or chemogenomics, studies a biological or molecular system 

using a compound library or set of small molecules. This approach is typically applied to 

investigate molecular mechanisms, identify biological targets, or aid in drug discovery. Before 

compound screening became a widely utilized technique in biological research, efficiency and 

capacity for assays conducted with a laboratory setting was severely limited both by quantity of 

assays performed, and by reagent limitations due to the large-volume reactions that were being 

utilized within those assays [86]. One of the earliest screens conducted by Pfizer’s Natural 

Products Screening Group paved a path for improved efficiency and output in biological 
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research; by miniaturizing reactions to fit within a 96-well plate volume (100uL), they could 

simultaneously conduct soil fermentations for antibiotic discovery [86]. While prototype screens 

took many years to perfect, the screening approach paved the way for discoveries in oncology, 

microbiology, and virology. Today, chemical genomics expands on the fundamentals 

established by Pfizer’s Screening Group and others, adapting small molecule compound libraries 

to study biological systems in a high-capacity manner.  

 

Compound libraries are critical to a screen’s success. Compound libraries can span drug classes 

or specialize to include a specific drug class (for example, kinase inhibitor libraries) depending 

on the researcher’s question. A well-designed compound library includes compounds with the 

same target and orthogonal mechanisms of action or distinct chemical structures. This ensures 

that any phenotypic or biological effects observed are a result of on-target activity, providing 

secondary confirmation of a hit compound’s mechanism [87]. The Sigma-Aldrich LOPAC1280 

library comprises 1,280 compounds that target critical biological mechanisms and receptors, 

such as ion channels, G-proteins, and glucocorticoid signaling [88]. The library contains 

clinically relevant drugs, many of which are FDA-approved or have been evaluated in clinical 

trials, alongside standard compounds commonly used in screening libraries. Numerous 

chemogenomic screens have been conducted using the LOPAC library, including the 

identification of bone morphogenetic protein activators in cervical carcinoma cells and the 

discovery of key mechanisms regulating cytokine production in dendritic cells, critical for 

autoimmune processes [89,90]. 
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A typical chemogenomics screen utilizes a biological system that closely replicates disease 

biology, enabling more accurate estimates of phenotypic responses to screened compounds. 

Establishing proper positive and negative controls is critical for the success of such screens. To 

assess the statistical power of a screen, a Z-factor can be calculated, which accounts for the 

variation within conditions of a screening plate, as well as the overall mean of the controls [91]. 

Before any analysis of compound-treated conditions, the plate’s positive and negative controls 

are used to calculate a Z-factor and determine adequate separation of control conditions. A 

standard Z-factor calculation is as follows, with “POS” denoting the positive control, and “NEG” 

denoting the negative control: 

 

𝐙 = 	𝟏 −
(𝟑𝝈𝐏𝐎𝐒 + 𝟑𝝈𝐍𝐄𝐆)
|𝝁𝐏𝐎𝐒 − 𝝁𝐍𝐄𝐆|

 

 

 

Z-factors below 0 indicate a poorly run screen that will yield no significant results. This typically 

arises from either large deviations within the control conditions or a small separation between 

the positive and negative controls, leading to a narrow window for any variability to be 

introduced. While a Z-factor can never equal 1, an ideal Z-factor is greater than 0.5, signifying 

that the separation between the positive and negative controls is sufficiently large and that intra-

control variation is minimal [91]. 

 

Compound hit analysis can be performed similarly by assigning a Z-prime score to each 

compound-treated well. This score provides a normalized measure for each condition or 
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compound within the screened plate. The Z-prime score is calculated using the following 

formula, where "COMPOUND" represents the readout from the well of interest, and "PLATE" 

represents all readouts from compound-treated wells: 

 

𝐙′ = 	𝟏 −
(𝟑𝝈𝐂𝐎𝐌𝐏𝐎𝐔𝐍𝐃 + 𝟑𝝈𝐏𝐋𝐀𝐓𝐄)
|𝝁𝐂𝐎𝐌𝐏𝐎𝐔𝐍𝐃 − 𝝁𝐏𝐋𝐀𝐓𝐄|

 

 

 

Antagonist screens, or screens probing for inhibition of a biological phenomenon, typically 

classify hits as those with a score three or more standard deviations from the mean, reaching a 

99.73% confidence limit. Although initial compound libraries may be tested at high 

concentrations (ranging anywhere from 1-10 μM, depending on the compound library), it is 

essential to conduct dose-response studies on identified hits to confirm the potency of the 

compounds. 

 

Once a list of hit compounds is generated, it is critical to investigate the mechanisms of action 

and chemical identities of the compounds to identify potential genes or pathways of interest. 

This can be achieved through various methods, one of the most common being the integration 

of hit compounds with established datasets. The L1000 platform offers a powerful tool for this, 

combining chemogenomics with sequencing of 1,000 landmark genes to assess the effects of 

small molecules on the transcriptomes of cancer cells [92]. Using the L1000 database, 

researchers can query genes, gene signatures, or compounds to identify matching gene 

signatures or biological pathways, offering additional context to the findings from 
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chemogenomic screens. Since many compounds in screening libraries have loosely defined 

mechanisms of action, the L1000 database can provide insights into the broader biological 

perturbations induced by compound treatment [92]. 

 

Finally, chemogenomic screens can be integrated with functional genomics to further validate 

biological mechanisms. Genes of interest that arise from compound hits can be silenced or 

overexpressed by functional genomic approaches such as CRISPR/Cas9, silencing RNA, or 

overexpression by cDNA plasmids [93]. These technologies provide critical loss-of-function 

and gain-of-function evidence, helping to solidify any biological mechanisms identified and 

refine the list of key compound hits for future analysis. 

 

 

1.4. Conclusion 

The primary focus of this thesis is to target biomarkers that are regulated by disease-driving 

pathobiological mechanisms.  We provide evidence for non-invasive monitoring of the androgen 

receptor pathway and AR’s critical downstream signaling mechanisms that driven aggressive 

prostate cancer. On the other hand, we also investigate the molecular interplay between TGFβ 

signaling and LRRC15 expression, as well as to assess the potential of LRRC15-targeted 

radioimmunotherapy to eliminate TGFβ-driven tumor cell populations before exploring the 

genomic and tumor microenvironmental consequences of LRRC15-targeted therapy. Through a 

combination of high-content screening, single-cell RNA sequencing, and in vitro and in vivo 

studies, this work aims to identify key molecular drivers of LRRC15 overexpression and to 

evaluate the therapeutic impact of disrupting the TGFβ-LRRC15 axis. By uncovering the 
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molecular signatures associated with therapeutic resistance and developing predictive gene 

signatures linked to patient outcomes, this research provides novel insights into how targeted 

radioimmunotherapy can be optimized for improved efficacy in TGFβ-driven malignancies. 

Furthermore, these findings emphasize the broader significance of dissecting the molecular 

biology of therapeutic targets to enhance the precision and effectiveness of cancer treatments. 

By establishing the capability of RIT-based non-invasive monitoring of signaling pathways such 

as AR with conventional models of prostate cancer, we can extrapolate these techniques into 

future LRRC15-targeted treatment for monitoring TGFβ-driven disease. 
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CHAPTER 2. KLK2 AS A PATHOBIOLGICAL THERAPEUTIC TARGET IN 
PROSTATE CANCER 

 
Non-invasive biomarkers for androgen receptor (AR) pathway activation are urgently needed to 

better monitor patient response to prostate cancer (PCa) therapies. AR is a critical driver and 

mediator of resistance of PCa but currently available non-invasive PCa biomarkers to monitor 

AR activity are discordant with downstream AR pathway activity. External beam radiotherapy 

(EBRT) remains a common treatment for all stages of PCa, and DNA damage induced by EBRT 

upregulates AR pathway activity to promote therapeutic resistance. [89Zr]11B6-PET is a novel 

modality targeting prostate-specific protein human kallikrein 2 (hK2), which is a surrogate 

biomarker for AR activity. Here, we studied if [89Zr]11B6-PET can accurately assess EBRT-

induced AR activity. Genetic and human PCa mouse models received EBRT (2–50 Gy) and 

treatment response was monitored by [89Zr]11B6-PET/CT. Radiotracer uptake and expression 

of AR and AR target genes was quantified in resected tissue. EBRT increased AR pathway 

activity and [89Zr]11B6 uptake in LNCaP-AR and 22RV1 tumors. EBRT increased prostate-

specific [89Zr]11B6 uptake in PCa-bearing mice (Hi-Myc x Pb_KLK2) with no significant 

changes in uptake in healthy (Pb_KLK2) mice, and this correlated with hK2 protein levels. 

 
Adapted from “Quantitative In Vivo Imaging of the Androgen Receptor Axis Reveals Degree 

of Prostate Cancer Radiotherapy Response” 

Claire M Storey, Mohamed Altai, Mesude Bicak, Darren R Veach, Katharina Lückerath, Gabriel 

Adrian, Michael R McDevitt, Teja Kalidindi, Julie E Park, Ken Herrmann, Diane Abou, Wahed 

Zedan, Norbert Peekhaus, Robert J Klein, Robert Damoiseaux, Steven M Larson, Hans Lilja, 

Daniel Thorek, David Ulmert 
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2.1 Introduction 

External beam radiotherapy (EBRT), a mainstay in prostate cancer therapy, activates 

androgen receptor (AR); this increases the expression of DNA repair genes, which may promote 

radioresistance [1-4] and explain the synergy between ionizing radiation and AR signaling 

inhibitors (ARSI) [5,6]. Noninvasive biomarkers for monitoring DNA damage–induced AR 

activity may allow monitoring response to EBRT and early detection of treatment resistance, 

and thus, providing patients with prostate cancer with individualized treatment options. In the 

clinical setting, AR activity is currently monitored through the assessment of serum PSA (KLK3) 

levels over time [7]. However, measurements of serum kallikreins provide limited information 

as they reflect a global average of multiple heterogenic lesions in the metastatic setting with 

limited correlation to protein production [8]. The development of imaging-based response 

criteria [RECIST, positron emission tomography response criteria in solid tumors (PERCIST)] 

reflects this challenge; the increasing application of RECIST/PERCIST for assessing response 

(to radionuclide therapies)—for example in the VISION trial, in which blood PSA levels were 

a secondary endpoint only—supports the relevance of these criteria. The capacity to decipher 

which lesions at which anatomic sites respond and which do not respond would significantly 

augment future patient management. 
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Similar to PSA, human kallikrein 2 (hK2; KLK2) is a prostate gland-specific and cancer cell–

specific trypsin-like serine protease that is tightly governed by the functional status of the AR 

hormone response circuit, and is elevated in the serum of >20% of patients following EBRT [9]. 

We previously developed 11B6, an IgG1 antibody with high selectivity and specificity for the 

active cleavage site of hK2. 11B6 uniquely binds to hK2 directly at the cell surface—that is, at 

the site of hK2 production and thus, AR activity—and avoids interaction with serum kallikreins. 

When derivatized with medically relevant radionuclides, this platform can be used for 

radioimmunotheranostics for detection, delineation, and treatment of diverse models of AR-

expressing adenocarcinoma [10-12]. PET with [89Zr]11B6 enables monitoring of prostate cancer 

growth and quantification of lesion-specific AR activity [10-12]. 

We hypothesize that [89Zr]11B6-PET can be used to noninvasively monitor EBRT-induced 

changes in AR activity in individual prostate cancer lesions. Using quantitative imaging and 

genomic analyses of human xenograft and genetically engineered mouse models of prostate 

cancer, EBRT-induced AR activity was visualized and correlated to transcriptomic alterations 

following therapy with near-term implications for prostate cancer treatment paradigms. 

  

2.2 Materials and Methods 

2.2.1 Radiochemistry 

Radiosynthesis of [89Zr]-DFO-11B6 ([89Zr]11B6) has been described previously [13]. 11B6 

antibody was provided by Dr. Kim Pettersson, University of Turku, Turku, Finland. All labeling 

reactions achieved >99% radiochemical purity. Average specific activity of the final 

radiolabeled conjugate was 51.8 MBq/mg (1.4 mCi/mg). 
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2.2.2 Cell Lines 

22Rv1 cells were purchased from ATCC. LNCaP-AR (LNCaP with overexpression of wildtype 

AR) was a kind gift from Charles Sawyers [14]. Cells were cultured according to the providers’ 

instructions and frequently tested for Mycoplasma contamination. Cell lines were authenticated 

using GenePrint10 short tandem repeat analysis (Laragen Inc). 

 

2.2.3 Mouse Models 

All animal experiments were conducted in compliance with Memorial Sloan Kettering Cancer 

Center (MSKCC) guidelines, Institutional Animal Care and Use Committee–established 

guidelines, and RARC animal protocol (# 04-01-002). Xenografts were established in male 

athymic BALB/c (nu/nu) mice (6–8 weeks old, 20–25 g; Charles River) by subcutaneous 

injection of LNCaP-AR or 22Rv1 cells (1–5 × 106 cells, 1:1 = media: Matrigel). Tumors 

developed after 3–7 weeks. The transgenic prostate cancer mouse models used, Hi-Myc × 

Pb_KLK2 with prostate-specific AR-driven hK2 expression, as well as Pb_KLK2 mice with 

abundant AR-driven hK2 expression specific to murine prostate tissue, have been reported 

previously [15]. Irradiated animals ranged from 35 to 42 weeks at study outset. 

 

2.2.4 EBRT 

Irradiation of disease sites was performed as described previously [15]. Briefly, a whole-body 

CT was acquired (XRad225Cx, Precision X-Ray, Inc.; dual focal spot x-ray tube at 45 kVp with 

a flat-panel amorphous silicon imager mounted on a C-arm gantry), tumor fields were identified 

and a treatment plan with >3 angles and a dose rate of approximately 3 Gy/minute (tube voltage, 

225 kVp) was devised. Radiation dosimetry was performed using Gafchromic EBT film (ISP 

javascript:;
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Inc.); a clear film that polymerizes with increasing optical density to a degree linearly with dose. 

The Gafchromic film verified the targeting accuracy, the magnitude of dose delivered and the 

geometry of the planned dose plan. 

2.2.5 MRI 

Prostate tumor volumes were defined using T2-weighted MR scans (Bruker BioSpin 4.7 T). An 

interleaved T2-weighted turbo spin echo sequence (3,200/57.1) with 8 averages was used, with 

slice dimensions of 8.5 × 3.99 × 0.8 cm. A total scan duration of 10 minutes, 14 seconds 

generated 220 and 800 μm in and out of plane slices, respectively. A trained reader calculated 

prostate volumes by segmenting the prostate (OsiriX, v8.1) [16]. 

 

2.2.6 Bioluminescence Imaging 

Activity of the AR-dependent reporter construct expressed in LNCaP-AR tumors was quantified 

by bioluminescence imaging (Living Image 4.5.2) following retro-orbital injection of D-

Luciferin (30 mg/mL, 10 μL; exposure times 1, 5, 10, 20, and 40 seconds). Data were expressed 

as radiance (photons/second) divided by tumor volume measured by caliper (V = length × 

width2). 

 

2.2.7 Impact of EBRT on [89Zr]11B6 tumor uptake 

Mice bearing LNCaP-AR and 22Rv1 xenografts, and Hi-Myc × Pb_KLK2 and Pb_KLK2 mice, 

received [89Zr]11B6 [3.7–5.55 MBq (100–150 μCi), 25 μg protein, i.v.; t = 0 hour], after EBRT 

(n = 4–5/group). To confirm specificity, a control group of mice with 22Rv1 tumors treated with 

4× 5 Gy was coinjected with 1 mg of unlabeled 11B6. [89Zr] radioactivity in tumors and organs 

harvested 120 hours post-injection (p.i.) was quantified using a gamma-counter. Data were 
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background and decay corrected, and the percentage injected activity per gram tissue (%IA/g) 

was calculated. 

 

2.2.8 Monitoring AR activity using PET/CT 

PET/CT imaging (Inveon MM, IRW Acquisition software) was performed as described 

previously [19], at 120 hours p.i. with Hi-Myc × Pb_KLK2 following administration of 

[89Zr]11B6 [3.7–5.55 MBq (100–150 μCi), 25 μg of protein, i.v.]. Duration of PET scans were 

approximately 1 hour or until 20 × 106 coincident events were recorded. A three-dimensional 

maximum a priori reconstruction was used to generate tomographic datasets. Assessment of 

hK2 expression for correlation with [89Zr]11B6 uptake was reported previously [17]. 

 

2.2.9 Histology 

Prostate tissues of Hi-Myc × Pb_KLK2 and Pb_KLK2 mice harvested after EBRT (5× 10 Gy) 

were fixed in 4% paraformaldehyde and cut into 15 μm sections before staining with 

hematoxylin and eosin. IHC for detection of AR and c-Myc was performed at the Molecular 

Cytology Core Facility (MSKCC) using a Discovery XT processor (Ventana Medical Systems). 

Sections were blocked in 10% normal goat serum in PBS for 30 minutes before staining with an 

anti-AR (N-20) antibody (1 μg/mL, 3 hours; Santa Cruz Biotechnology, #SC-816; secondary: 

biotinylated goat anti-rabbit IgG, 1:200, 16 minutes; Vector labs, #PK6101), or an anti-c-Myc 

antibody (1:100, 5 hours; Epitomics, #P01106; secondary: biotinylated goat anti-rabbit IgG, 

1:200, 1 hour; Vector labs, #PK6101). Blocker D, Streptavidin-HRP, and DAB detection kit 

(Ventana Medical Systems) were used according to the manufacturer's instructions. 
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2.2.10 Gene Expression Analysis 

RNA was purified using the RNeasy Mini Kit (Qiagen), and qPCR to determine expression 

of KLK2, KLK3, and FOLH1 was performed as described previously. 

For RNA sequencing, raw read count RNA-sequencing data were generated from untreated 

(NT; n = 3) LNCaP-AR tumor samples and 5 × 10 Gy (n = 3) treated samples. A total of 58,828 

genes were acquired and analyzed as reported previously [17]. Both hierarchical clustering 

analysis (based on Euclidean distance) and multidimensional scaling plots demonstrated a clear 

division between the samples from the two cohorts (Supplementary Fig. S1 and S2). 

Differentially expressed genes (DEG) were defined at an adjusted P < 0.001 and an absolute 

value of log2 fold change >1. A positive fold change represented upregulation and a negative 

fold change represented downregulation in EBRT-treated tumors. Pathway analysis was 

performed using enrichR [18] and the Kyoto Encyclopedia of Genes and Genomes 2021 

database. 

 

2.2.11 Statistical Analysis 

Statistical significance was determined by unpaired two-tailed t test (two groups) or, for >2 

groups, by one-way ANOVA followed by Dunnett test to correct for multiple comparisons and 

set to P < 0.05. Data are presented as mean ± SD. Analysis was performed with GraphPad Prism 

Version 9.2.0. For RNA sequencing, differentially expressed genes were considered significant 

with an adjusted P < 0.001 and log2 fold change >1 as described previously [17]. 

 

2.2.12 Data Availability 
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The RNA-sequencing data reported in this article have been deposited in the Gene Expression 

Omnibus database, https://www.ncbi.nlm.nih.gov/geo (accession no. GSE206847). Other data 

generated in this study are available upon request from the corresponding author. 

 

2.3 Changes in AR and AR-driven prostate cancer biomarkers in response to EBRT 

PCR analysis of LNCaP-AR tumors treated with 1, 3, or 5 fractions of 2, 5, or 10 Gy EBRT 

revealed dose-dependent increases in AR, KLK2, and KLK3 compared with nontreated (NT) 

controls (Fig. 1; Table 1). FOLH1 expression after EBRT varied and remained unchanged under 

EBRT (Fig. 1B; Table 1). After three cycles of EBRT in 22Rv1 xenografts, AR gene expression 

was significantly increased along with KLK2 and KLK3, while there were no significant changes 

in FOLH1 expression (Fig. 1C; Table 1). The fold change of AR transcription was higher in 

22Rv1 than LNCaP-AR tumors, which is likely an effect of lower baseline AR expression in the 

22Rv1 model. This outcome corresponds with previously reported findings and provides 

additional support for the correlation between KLK2 and AR expression when monitoring 

changes rendered by EBRT [9].  
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Figure 1. AR activity and gene expression after EBRT in LNCaP-AR and 22Rv1 

xenografts. (A) Schematic of EBRT fractionation regimen. Gene expression analysis of 

LNCaP-AR (B) and 22Rv1 (C) xenografts after 1, 3, and 5 fractions of 2, 5 or 10 Gy EBRT 

revealed upregulation of AR and KLK2/KLK3 in a dose-dependent manner. Data were 

normalized to NT. See Table 1 for mean and p-values.  Bioluminescence imaging readout of AR 

activity in LNCaP-AR xenografts after 1 or 4 fractions of EBRT revealed dose-dependent 

increase in AR activity independent of fractionation (all p=not significant vs. NT). Mean ± SD 

and individual values are given; statistical significance was calculated using one-way ANOVA 

and Dunnett’s test for multiple comparisons. 

 

Investigating ERBT-induced transcriptomic changes in an unbiased approach, 4,851 DEGs 

(8.2% of transcriptome gene set) were identified in LNCaP-AR tumors after EBRT (5× 10 Gy; 

vs. NT); 2,552 genes were upregulated and 2,299 were downregulated (Fig. 2). Upregulation of 

AR-regulated genes such as AR signaling coactivator ETV1 (20), KLK2, and KLK3 (log2 fold 
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change = 10.01, 1.033, 1.882) indicated that AR signaling was increased after EBRT. 

Interestingly, other AR target genes, including TMPRSS2 and FKBP5, were downregulated 

following treatment. Of the 144 previously established AR-associated DNA repair genes (21), 

18 were DEGs with 8/18 upregulated (CHEK1, FANCL, MAD2L1, MBM7, PARP1, RAD18, 

RAD21, RFC3) [21,22]. FOLH1 was also upregulated despite its inverse correlation to AR 

pathway activity, contrasting qPCR findings. Upregulated Myc expression in EBRT-treated 

tumors supports a role for Myc in AR-driven EBRT responses, and pathway analysis showed 

that the top DEGs converged on cell cycle and regulation of DNA replication, both of which are 

closely intertwined with AR through cyclins and changes in protein expression during 

replication [23,24], further supporting a role for AR signaling in prostate cancer response to 

EBRT. 
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Figure 2. EBRT-induced transcriptomic changes in LNCaP-AR xenografts. (A) Volcano 

plot showing 4,851 (8.24%) DEGs (FDR=0.01) following EBRT. (B) Top 10 up- and 

downregulated genes (FDR=0.01). Green data points indicate significant genes. 

 

2.4 EBRT increases AR activity in prostate cancer in vivo 

To confirm EBRT-induced AR signaling in vivo, activation of an AR-reporter gene in 

LNCaP-AR tumors was assessed using bioluminescence imaging. EBRT increased mean AR 

activity without significant differences between 1 and 4 fractions (Fig. 1D). 

 

2.5 [89Zr]11B6 uptake is an indicator of EBRT-induced AR activity 

[89Zr]11B6 tissue uptake was assessed in 22Rv1 and LNCaP-AR tumors treated with 2, 5, 

or 10 Gy (1 or 4 fractions) EBRT or left untreated (Fig. 3). A total EBRT dose >10 Gy 

significantly increased uptake of [89Zr]11B6 by LNCaP-AR tumors (38.61%–47.24%IA/g vs. 

17.9%–28.3%IA/g in NT) and 22Rv1 xenografts (13.2%–62.6%IA/g, vs. 7.9%–11.2%IA/g NT). 

Coinjection of cold 11B6 significantly decreased [89Zr]11B6 uptake by 22Rv1 tumors after 20 

Gy EBRT (13.2%–21.9%IA/g vs. 2.1–13.2%IA/g blocked), confirming hK2 specificity (Fig. 

3B). 
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Figure 3. [89Zr]11B6 localizes to PCa after irradiation. Ex vivo biodistribution of [89Zr]11B6 

in LNCaP-AR (A) and 22Rv1 (B) at 120h post-EBRT revealed higher uptake in irradiated 

tumors that received more than 8 Gy total dose of EBRT. Cold, unlabeled 11B6 confirmed 

specificity in 22Rv1. Mean ± SD and individual values are given; statistical significance was 

calculated for tumor uptake (NT vs. EBRT) using one-way ANOVA and Dunnett’s test for 

multiple comparisons. 

 

 

2.6 EBRT-induced AR activity in prostate cancer can be monitored by [89Zr]11B6 PET/CT 

imaging 

To confirm [89Zr]11B6 uptake as a surrogate marker for EBRT-induced AR activity, 

[89Zr]11B6 uptake was quantified in vivo and ex vivo in Pb_KLK2 (nonmalignant) and Hi-Myc x 

Pb_KLK2 (prostate cancer) mice after treatment with 5 fractions of 10 Gy. No significant 

volumetric changes were observed by MRI (Fig. 4A, B) after EBRT treatment of prostate cancer 

tissue. EBRT increased AR expression in prostate cancer (Hi-Myc x Pb-KLK2; Fig. 4C); this 

was paralleled by significantly higher [89Zr]11B6 uptake after EBRT in vivo [before EBRT, 

11.04% ± 4.42%; after EBRT (same cohort of mice), 20.23% ± 4.28%]. 
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Figure 4. EBRT treatment of Hi-Myc x Pb_KLK2 and Pb_KLK2 mice. (A) EBRT and 

imaging schedule for PCa (Hi-Myc x Pb_KLK2) and healthy (Pb_KLK2) mice. (B) MR imaging 

revealed comparable PCa volumes ±50 Gy treatment. Mean ± SD and individual values are 

given; statistical significance was calculated using unpaired two-tailed t-test (p=0.5872). (C) 

IHC of Hi-Myc x Pb-KLK2 tumors revealed increased intratumor AR and c-MYC expression 

after EBRT (magnification: overview 10x, insert 40x). 

 

 

In contrast, EBRT did not impact uptake in Pb_KLK2 mice (Fig. 5A–C). Correlation of hK2 

protein levels in tumors and [89Zr]11B6 uptake further confirmed AR activity (Fig. 5D). Taken 

together, these results indicate that hK2-targeted [89Zr]11B6 can noninvasively monitor 

increased AR signaling after radiotherapy in a Myc-driven model of prostate cancer. 
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Figure 5. AR activity increase following EBRT visualized by [89Zr]11B6-PET/CT. 

Representative MR, IHC (40x magnification) and volume rendered PET/CT images before 

treatment (A) and after irradiation with 50 Gy (B) of a Hi-Myc x Pb_KLK2 mouse. White arrow 

indicates prostate location in MR images (scale: 0.5 cm). (C) Activity concentration of 

[89Zr]11B6 increased following irradiation (p<0.05). Mean ± SD are given; statistical 

significance was calculated using unpaired two-tailed t-test. (D) PET signal from [89Zr]11B6 

corresponds with ex vivo hK2 expression. 

 

2.7 Discussion 

The current study demonstrates that EBRT-induced AR activity, which increases in a dose-

dependent manner, can be monitored noninvasively using PET. Activation of AR signaling by 

EBRT may serve as prognostic biomarker and improve development of EBRT combination 

regimens. In a phase III clinical trial, the combination of EBRT with bicalutamide increased 

disease-free survival [25], and PSA decay rate during salvage radiotherapy has been identified 

as a predictor of progression-free survival [26]. EBRT-induced AR activity might thus 

negatively impact patient outcomes, and vice versa, inhibition of this response may improve 
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patient care. Attempts to monitor AR noninvasively have been made with [18F]FDHT, a radio-

analog of testosterone [27]; however, [18F]FDHT reports AR levels rather than its functional 

signaling activity. To measure AR pathway activity, several AR target genes are utilized as 

biomarkers and therapeutic targets in prostate cancer, including prostate-specific membrane 

antigen (PSMA) and PSA. Recently, FDA-approved PSMA-PET has increased the ability to 

detect metastatic prostate cancer lesions and is considered as a strategy to monitor AR blockade 

by androgen deprivation therapy (ADT). Unfortunately, preclinical and clinical studies 

demonstrated that PSMA-PET is not an optimal tool for assessment of ADT efficacy [28-31]. 

We observed similar findings in our evaluation of PSMA levels after EBRT; FOLH1 expression 

increased 2.5-fold in 22Rv1 but not in LNCaP-AR xenografts. Taken together, these results 

underline the complex links between AR activity, EBRT resistance, and AR pathway 

biomarkers. It should however be noted that resistance to EBRT may also be caused by non–

AR-driven mechanisms. 

KLK2 expression and corresponding hK2 protein levels are well established as biomarkers 

of AR pathway activity [9,10]. In line with a previous study [9], we showed that EBRT 

increases KLK2 expression in a dose-dependent manner. To noninvasively target KLK2-

expressing cells, we developed 11B6, an antibody that specifically internalizes into prostate 

cancer cells in response to AR activity by binding uncomplexed hK2 [10]. 11B6 can be exploited 

for PET, single photon emission tomography, intraoperative imaging [10,13], and 

radioimmunotherapy [18,26]. Studies in multiple rodent models and non-human primates 

showed that [89Zr]11B6 rapidly accumulates in prostate cancer [11], and changes in prostate 

cancer [89Zr]11B6 uptake correspond to both AR activity and hK2 protein levels [10]. We thus 

hypothesized that [89Zr]11B6 could be used to monitor changes in AR activity during and after 
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EBRT. We confirmed relevance of [89Zr]11B6 uptake as biomarker by correlating its tumor 

uptake with EBRT-induced expression of the canonical AR biomarker KLK2. Furthermore, 

EBRT did not increase [89Zr]11B6 prostate uptake in healthy Pb_KLK2 mice while uptake was 

significantly elevated in prostate cancer of Hi-Myc x Pb_KLK2 mice; this suggests that EBRT-

induced AR activation is a radiobiological response unique to malignant prostate tissues. 

EBRT-induced AR activation exclusively in prostate cancer–bearing mice as well as 

elevated Myc levels in xenografts and c-Myc expression in the genetic prostate cancer model 

after EBRT support the known relationship between Myc and AR. Myc upregulation 

antagonizes AR signaling and AR target gene expression in patient samples [32] but has been 

positively correlated to AR variant expression in another study [33]. Upregulation of Myc may 

provide rationale for the use of cotreatment concepts using direct or indirect Myc inhibitors to 

block additional protumorigenic transcription factors that drive prostate cancer [34]. 

The difference in [89Zr]11B6 uptake in the LNCaP-AR xenograft tumor model and the 

well-documented role of AR as a transcription factor led us to hypothesize that there would be 

a significant transcriptomic impact in the post-EBRT treatment setting. However, analysis of 

RNA sequencing of irradiated mice revealed a downregulation of AR, highlighting the 

variability in tissue response to EBRT. This result exemplifies the need for diagnostic agents 

that focus on assessing functional AR pathway activity rather than the number of available 

receptors or AR expression itself. Upregulation of AR pathway target genes KLK2 and KLK3 in 

our data clearly demonstrate that the AR pathway is being differentially activated in tumor-

bearing mice after radiotherapy. 

The transcriptional EBRT signature observed in the current study is in line with that 

reported for 11B6 alpha-radioimmunotherapy in Hi-Myc x Pb_KLK2 mice [17]. Comparison of 
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the top 10 upregulated and downregulated DEGs revealed five common upregulated 

(MMP7, ETV1, NTS, PLA2G2A, PEG3) and downregulated DEGs 

(PASD1, DENN2D, PTGFR, SLC25A43, FAM213A); this similarity underscores the ability of 

[89Zr]11B6-PET to reflect AR-driven therapeutic responses. 

Overall, we demonstrated a highly specific and sensitive approach for noninvasive 

monitoring of functional AR activity under EBRT. We propose that a baseline hK2-PET would 

be utilized at the time of dose planning, with repeated imaging following treatment start to 

monitor AR signal. Exclusively in cancerous tissue, [89Zr]11B6 tumor uptake correlated with 

AR pathway activation after irradiation. Changes in [89Zr]11B6 prostate cancer uptake paralleled 

increases in KLK2 and AR expression seen in qPCR analysis, as well as ex vivo hK2 protein 

concentrations and IHC staining. The significantly shorter circulation time of the 11B6 mAb 

construct in humans (and non-human primates) compared with mice supports feasibility of serial 

imaging [35] in patients. 

Most patients receive cotreatment with pharmacologic compounds inhibiting the AR 

pathway. However, in some lesions, the AR pathway is still active to some degree due to 

insufficient dosing, and unknown resistance mechanisms and pathobiology. In this scenario, the 

molecularly specific and spatially defined signal of 11B6-PET may indicate areas that should 

receive increased radiation, or conversely, areas without remaining hK2-PET signal could be 

deescalated to reduce risk of radiation-induced toxicity to surrounding tissues. The notion that 

rodents have about 50-fold lower testosterone levels than humans, rather on par with castrated 

patients, underlines the utility of this molecular, lesion-specific, cancer imaging strategy. 

There is no doubt that the cost of imaging is a contentious issue in modern patient management. 

However, the cost of a PET scan, or multiple scans, relative to the treatment planning scans and 
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daily radiation dosing is incremental—and the ability to capture personalized precision 

information of patient response (in particular, AR-active lesions that may be outside of the 

prescribed dose field) is capable of driving significant long-term cost savings. Therefore, hK2-

PET/CT would facilitate a deeper understanding of response and resistance patterns of 

individual tumor lesions and patients and ultimately, of how to adjust treatment. 

Thus, although clinical trials are needed, monitoring the AR-target gene hK2 in the 

treatment setting could allow patient stratification based on AR-pathway response and 

refinement of treatment and dosing strategies. For example, by selection of AR-targeted 

treatment combinations and allowing physicians to prescribe the lowest dose needed, monitoring 

hK2 may provide mechanistic insights into enhancement of EBRT in some patients with 

concurrent or adjuvant ARSI. 
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CHAPTER 3. LRRC15 AS A RADIOIMMUNOTHERAPEUTIC TARGET 
 
Leucine-rich repeat containing 15 (LRRC15) has emerged as an attractive biomarker and target 

for cancer therapy. We have developed a humanized monoclonal antibody (mAb), DUNP19, 

that specifically binds to a phylogenetically conserved LRRC15 epitope and is internalized by 

target-expressing cancer and stromal cells. In xenograft mouse models, Lutetium-177 labeled 

DUNP19 ([177Lu]-DUNP19) enables non-invasive imaging and precise radiotherapy to 

LRRC15-expressing cancer cells and murine cancer-associated fibroblasts (CAFs), halting 

tumor progression and prolonging survival with minimal toxicity. Transcriptomic analyses of 

[177Lu]-DUNP19-treated tumors reveal a loss of pro-tumorigenic mechanisms, including a 

transforming growth factor beta (TGFβ)-driven and LRRC15+ signature associated with 

immunotherapy resistance. Together, these results demonstrate that radio-theranostic targeting 

of LRRC15 with DUNP19 is a compelling precision medicine platform for image-guided 

diagnosis, eradication, and reprogramming of LRRC15+ tumor tissue that drives immuno-

resistance and aggressive disease. 
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3.1 Introduction 

Advancements in the field of immuno-engineering have catalyzed the development of potent 

antibody-based treatments. However, these therapies are currently applicable towards a narrow 

subset of malignancies (1). A persistent challenge remains in identifying widely expressed 

surface antigens for therapy-resistant and metastasized solid tumors (2). The integration of 

antibodies targeting these biomarkers, alongside advancements in radiochemistry and non-

invasive imaging technologies for visualization of radiolabeled antibody distribution, holds 

substantial promise. This synergy provides a basis for radio-theranostics; selecting patients via 

imaging that could benefit from treatment and using the same antibody armed with cytotoxic 
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radionuclides for therapy (3). Such an approach could revolutionize cancer treatment, expanding 

its reach to address a broader spectrum of therapy-resistant and disseminated cancers. 

Leucine-Rich Repeat Containing 15 (LRRC15) is a transmembrane protein expressed in TGFβ-

driven cancer-associated fibroblasts (CAFs) and cancer cells of mesenchymal stem cell origin, 

including sarcomas and glioblastomas (4, 5). Although LRRC15 lacks an obvious intracellular 

signaling domain, recent evidence suggests a role in Wnt/β-catenin signaling pathway activation 

to promote invasion and metastasis (6, 7). In tumor tissue, the presence of LRRC15+ cells 

correlates with resistance to immune checkpoint blockade, increased risk for metastasis, and 

lower survival rates, underscoring LRRC15's role as an immunomodulator governed by the 

TGFβ pathway (4, 8-9). Notably, LRRC15 has little or no expression in healthy tissue, making 

the protein a highly promising target for therapeutic intervention.  

Here, we describe the development of a highly specific monoclonal antibody (mAb) 

targeting LRRC15 (designated as DUNP19) that exhibits high specificity for a phylogenetically 

conserved epitope present on both human and murine LRRC15, and, upon binding to target cells, 

rapidly internalizes. We exploit DUNP19’s rapid internalization profile by labeling the mAb 

with both diagnostic and cytotoxic radionuclides, transforming it into a dual-purpose agent for 

use in non-invasive imaging and in therapeutic applications. The potential of this technology 

extends to personalized treatment strategies and dose planning, maximizing the therapeutic 

index for individual patients. 

For diagnostic and therapeutic purposes, we functionalized DUNP19 with positron 

emitting Copper-64 (diagnostic [64Cu]-DUNP19) and beta particle emitting Lutetium-177 

(therapeutic [177Lu]-DUNP19). As a beta-particle emitter, Lutetium-177 has the potential to 

cause single-stranded DNA breaks across a span of 10-50 cell diameters. We hypothesized that 
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the crossfire irradiation by [177Lu]-DUNP19 could address the challenges presented by the 

heterogeneous expression of LRRC15 within lesions, especially in larger solid tumors. Our 

studies, carried out in a range of tumor models with LRRC15+ cancer cells and LRRC15+ CAFs, 

and in models with LRRC15 expression restricted to CAFs, demonstrate that DUNP19 

selectively accumulates in LRRC15+ cells after systemic injection.  

Our approach also capitalizes on the deposition of radiation in LRRC15+ cells to 

eradicate adjacent LRRC15-null tumor tissue and is distinct from classical antibody-drug-

conjugates for which target heterogeneity is a limitation. Importantly, systemic treatment with 

[177Lu]-DUNP19 resulted in significant therapeutic efficacy and survival in tumor-bearing mice. 

In addition, transcriptomic profiling of [177Lu]-DUNP19-treated tissues revealed progressive 

loss of TGFβ-driven genomic signatures associated with malignant disease aggressiveness and 

immunotherapy resistance. Taken together, these findings highlight the potential of DUNP19 as 

a radio-theranostic modality for non-invasive detection, targeting, and reprogramming of 

immuno-suppressive gene signatures within cancer cells and the tumor microenvironment. 

 

3.2 Materials and Methods 

3.2.1 Production and labeling of DUNP19  

For DUNP19 production, HEK293 cells were cultured in a 2L suspension using 

FreeStyle 293 Expression Medium (Life Technologies, Carlsbad, CA, USA) with a cell density 

maintained at 1 × 10^6 cells/mL on the day of transfection. Expression plasmids harboring genes 

for DUNP19 heavy chain and light chain in human IgG1/kappa format were combined with the 

transfection agent and incubated for 10 min at room temperature. The transfected cell culture 

was then incubated at 37 °C, 8% CO2 on an orbital shaker rotating at approximately 110 rpm 
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for seven days. Culture medium was collected, subjected to centrifugation, and filtered through 

0.22 µm filter systems. Antibodies were isolated through Protein A chromatography, followed 

by buffer exchange to PBS (pH 7.4) via gel filtration. The concentration was calculated from 

absorbance measurement at 280 nm. 

For labeling with Lutetium-177 and Copper-64, respectively, DUNP19 was 

functionalized with benzylisothiocyanate derivatives of the acyclic chelating agent CHX-A’’-

DTPA (p-SCN-CHX-A’’-DTPA) or cyclic NOTA (p-SCN-NOTA), respectively, using amine-

reactive chemistry. Radiolabeling was performed as previously described (see Supplementary 

Materials and Methods) (31). The average radiochemical yield was 95±5 % with a radiochemical 

purity >99 % and an average specific activity of 4 MBq/mg. Injection solutions of [177Lu]-

DUNP19 were formulated in 2% BSA/PBS containing 0.14 mM EDTA (100-fold molar excess). 

Binding affinity of the radio-conjugate to life cells was determined using Ligandtracer 

technology (32).  

An amine-based protein labeling kit (Invitrogen, #A20173) was used for labeling 

DUNP19 with AlexaFluor-647 or AlexaFluor-594. Labeling was performed as described by the 

kit’s recommended protocol. All buffers were treated with Chelex 100 resin (sodium form, 

Merck KGaA, Darmstadt, Germany) to remove any metal ions and filtered through a 0.22 μm 

filter before use. Prior to conjugation, DUNP19 was buffer exchanged using an AMICON Ultra-

0.5-centrifugal filter device with a MWCO 30 kDa (Millipore, Burlington, MA, USA). DUNP19 

(500 μg in 500 μl 0.07 M sodium borate, pH 9.3) was mixed with the bifunctional chelator p-

SCN-CHX-A’’-DTPA (Macrocyclics, Texas, USA) in a 6:1 molar ratio. The mixture was 

extensively vortexed and incubated overnight at 38°C. The reaction mixture was then 
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centrifuged for 10 minutes at 14000 x g using a 30 kDa filter to remove the excess non-bound 

chelator. The concentrate containing the CHX-A''-DTPA-DUNP19 conjugate was recovered, 

and the buffer was adjusted to 0.2 M ammonium acetate (pH 5.5). The conjugate was aliquoted 

and kept at -20 °C until labeling.  For labeling with 177Lu, 30-50 μg of the conjugate was mixed 

with 15-20 MBq 177LuCl3 (Curium, Sweden) and incubated at 38oC with continuous vortexing 

for 30 min. Thereafter the radiolabeled conjugate was purified, and buffer exchanged using 

AMICON 30 kDa filter. Radiochemical yield and purity of the radioconjugate were determined 

using silica-impregnated ITLC strips (150–771 DARK GREEN Tec-Control Chromatography 

strips, Biodex Medical Systems) eluted with 0.2 M citric acid and measured using the Cyclone 

Storage Phosphor System (PerkinElmer, Waltham, MA, USA). To reduce radiolysis, the final 

product was diluted with 2% BSA/PBS buffer (pH 7.4) and 100X molar excess of EDTA was 

added to scavenge any free metal ions.   

To determine the maximal attainable specific activity for labeling DUNP19 with 177Lu, 

decreasing amounts of CHX-A''-DTPA-DUNP19 (10, 5, and 2.5 g) were incubated at 38oC for 

30 minutes with a fixed quantity of 177LuCl3 (10 MBq). The radiochemical yield was determined 

using SG-ITLC, as previously described. Conjugation of p-SCN-Bn-NOTA chelator to 

DUNP19 was performed in a manner similar to that used in the CHX-A’’-DTPA conjugation 

described above. Copper-64 was produced at the Washington University in St. Louis School of 

Medicine Cyclotron facility. 64CuCl2 (20 mCi; 25 uL) was diluted with a 10-fold excess 0.1 M 

ammonium acetate (NH4OAc), pH 5.5 and then added to NOTA-conjugated anti-LRRC15 

antibody. After mixing for 30 min at room temperature, the antibody conjugate was purified by 

gel chromatography (PD10) into 0.1 M HEPES buffer in saline. Purity was assessed by 

radioITLC (Bioscan AR2000 using samples spotted on Whatman paper in a running buffer of 
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50 mM DTPA (pH 5.5). Quantitative labeling with >99% radiochemical purity was observed.  

 

3.2.2 Cell Culture 

U118MG (glioblastoma), U87MG (glioblastoma), RPMI7951 (melanoma), NCI-H196 

(small cell lung cancer), HCC1954 (breast cancer), SAOS2 (osteosarcoma), U2OS (OS), 

Kasumi-2 (leukemia), Calu-1 (non-small-cell lung cancer), RCH-ACV (leukemia), MHH-Call-

3 (leukemia), Hs737.T (giant cell sarcoma), HEK293T, LNCaP (prostate cancer), and K7M2 

(murine osteosarcoma) were purchased from ATCC. HuO9 (osteosarcoma) was purchased from 

the Japanese Cancer Research Resources Bank (Tokyo, Japan). All cell lines were cultured 

according to the manufacturer’s instructions and frequently tested for Mycoplasma.   

To overexpress LRRC15, HEK293T and K7M2 cells were transduced with a pLenti-

LRRC15-GFP-Puro vector (Origene, NM_130830) with a multiplicity of infection of 5. Optimal 

puromycin concentrations for stable selection of pLenti-LRRC15-GFP-Puro were determined 

by kill curves. Following selection with puromycin for 14 days, single cell clones were plated 

by serial dilution, expanded, and sorted for the top 1% of GFP+ cells.  

 

3.2.3 In Vitro Studies 

3.2.3.1 Pulldown Assay (Immunoprecipitation - Mass Spectrometry) 

Pierce Protein G Magnetic Beads (ThermoFisher, #88847) were pre-incubated with 70 

ug DUNP19 antibody or hIgG1 mAb in PBS at room temperature (RT) for 1 h. Bead-antibody 

conjugate was recovered using magnetic separation before adding 300 ug protein lysates 
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(isolated from U118MG cells) for 2 h on ice. Beads were washed with PBS and an on-bead 

digestion was performed with 0.25 % Trypsin for 16 h. MS-MS was run using the Agilent 6530 

LC/MS in collaboration with the UCLA Molecular Instrumentation Center according to 

previously described protocols (33, 34).  

 

3.2.3.2 Flow Cytometry  

To assess the binding affinity of DUNP19, cells were blocked (10% normal goat serum 

in PBS, 15 minutes at RT) and incubated with serial dilutions of fluorophore-conjugated 

DUNP19 or hIgG1 mAb (0.051 – 1000 ng/mL) in triplicate for 1 h at RT. Cells were washed 

with 1% BSA in PBS (180 x g, 3 minutes) before adding viability dye per manufacturer’s 

instructions (Invitrogen, #L34989). Antibody binding capacity of cells was assessed using 1 

µg/mL DUNP19 and anti-human IgG Simply Cellular bead standards (Bangs Laboratories, 

#816). Quantity of LRRC15 surface antigens available for DUNP19 binding was normalized to 

cell surface area (determined experimentally by confocal microscopy). All flow cytometry 

experiments were run in collaboration with UCLA’s Jonsson Comprehensive Cancer Center 

Flow Cytometry Shared Resource using an Attune NxT Flow Cytometer (Invitrogen). Flow 

cytometry data were analyzed using FlowJo (Version 10, BD Biosciences).  

 

3.2.3.3 Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) 

Expression of LRRC15 in cells was determined by Taqman qRT-PCR. Cells were lysed 

and one-step reverse transcription/quantitative PCR performed with Cells-to-CT Taqman kit 
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(A25603). LRRC15 was probed with Applied Biosystems Taqman Assay probes (Assay ID 

Hs00370056_s1) and normalized using GAPDH housekeeping gene (Assay ID 

Hs02786624_g1). All qPCR assays were run using the ViiA 7 Real-Time PCR system (Applied 

Biosystems).  

 

3.2.3.4 Confocal Microscopy of Cells 

For immunocytochemistry, cells were blocked with 10% normal goat serum in PBS for 

1 h at room temperature. Cells were stained with DUNP19 (20 ug/mL) and anti-PMCA1 

antibody (Abcam, ab3528, 1:100). Primary antibodies were incubated overnight at 4 ºC before 

washing and staining with goat anti-rabbit AlexaFluor647 (1:500, Invitrogen A21235) and goat 

anti-human AlexaFluor488 (1:500, Invitrogen A11013) secondary antibodies. Cells were fixed 

with 3.7% paraformaldehyde for 15 minutes at RT before washing and mounting cells with 

Vectashield mounting media with DAPI (H1200-10) onto slides for imaging with a Leica TCS 

SP8 Digital Microscope.  

To confirm internalization, cells (0.0015 x 106 cells/well) were seeded in phenol red-free 

complete media in 384-well u-clear flat bottom black plates (Greiner, #781092) and stained with 

1 ug/mL DUNP19-AF647, anti-huLAMP1-A488 antibody (1:250, Invitrogen, 53-1079-42) and 

Hoechst 33342 (1:2000 dilution, Invitrogen) at 4ºC for 1 h to prevent antibody internalization 

while promoting surface binding. Unbound antibody was aspirated and replaced with phenol 

red-free complete media. Time-lapse confocal imaging was performed using a temperature 

controlled ImageXpress MicroXL High Content Imaging microscope (Molecular Devices). The 

microscope temperature was set to mimic cell culture conditions (37ºC, 5% CO2) and images 
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were taken at 10x magnification (4 sites per well) every 20 minutes for 6-12 h. The plasma 

membrane signal of DUNP19-AF647 relative to the cytosolic signal (LAMP1) at time 0 (directly 

after incubation at 4ºC) was quantified to calculate the fraction of internalized antibodies over 

time.  

 

3.2.4 In Vivo Studies 

3.2.4.1 Animal Studies 

All animal experiments were conducted in compliance with national legislation on 

laboratory animal protection and permitted by the local ethics committees for animal research 

at Washington University, Lund University, University of California, Los Angeles and 

University of Duisburg-Essen.  

 

3.2.4.2 Subcutaneous Tumor Models 

Athymic nude mice (BALB/cAnNRj-Foxn1 nu/nu; 6–8 weeks old, 20–25 g; Janvier) 

were inoculated with U118MG (5.8 x 106 cells), SAOS2 (6 x 106 cells), HuO9 (6 x 106 cells), 

HCC1954 (4.9 x 106 cells) or LNCaP (5 x 106 cells) cells in a 200 μL (1:1 v/v) mixture of media 

with Matrigel via subcutaneous injection in the right flank. Tumors developed after 3 to 6 weeks. 

Tumor volume was estimated with caliper measurements twice weekly (V (mm3) = 0.5 x length 

x width2). 
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3.2.4.3 Orthotopic Osteosarcoma Model 

Nineteen athymic nude mice (BALB/cAnNRj-Foxn1 nu/nu; males, 6-8 weeks old, 

24.2±1 g; Janvier) were anesthetized,      and the tibia of the right hind limb was punctured. 

HuO9 cells (1.5 x 106 cells in 10 μL media) were injected into the cavity using a microvolume 

syringe with a 27-gauge needle. Bone wax (Surgical Specialties Corporation, #903) was applied 

to seal the punctured area and prevent exodus of implanted cells before the area was washed 

with saline. Tumor development was confirmed using ultra-high-resolution CT and [177Lu]-

DUNP19 SPECT/CT imaging (nanoScan; Mediso, Budapest, Hungary).  

 

3.2.4.4 Small-Animal Imaging  

PET: Male mice (B6;129-Rag2tm1FwaII2rgtm1Rsky/DwlHsd) (n = 5) bearing s.c. SAOS2 

xenografts were intravenously (i.v.) injected with [64Cu]-DUNP19 (8.75 MBq, 100 µg DUNP19 

in 100 μL 10 mM ammonium acetate). Dynamic PET images were acquired during the first hour 

post-injection (p.i.), followed by static scans (20 minutes each) at 12 h, 24 h, and 36 h using a 

microPET R4 rodent scanner (Siemens). To confirm specificity of the DUNP19 PET-signal, 

imaging with the bone-seeking PET-probe Fluorine 18-sodium fluoride ([18F]-NaF; 10 MBq 

i.v.) was performed in mice bearing SAOS2 tumors. SPECT: Mice with intratibial HuO9 

xenografts were i.v. injected with [177Lu]-DUNP19 (20 MBq, 30 μg). Mice were scanned for 

50-60 minutes under anesthesia (2-3% isoflurane) using a SPECT/CT device (nanoScan Mediso, 

Budapest, Hungary). Details on PET, SPECT and CT acquisition are provided in the 

Supplementary Materials and Methods. 
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3.2.4.5 [177Lu]-DUNP19 Biodistribution and Kinetics  

To investigate the biodistribution of [177Lu]-DUNP19, mice with s.c. SAOS2, HuO9, 

U118MG, HCC1954, or K7M2 tumors, respectively, received 0.5 MBq [177Lu]-DUNP19 

(SAOS2, U118MG, K7M2: 16 µg; HuO9, HCC1954: 30 µg) by i.v. injection and were sacrificed 

at predetermined time points (SAOS2: 6, 24, 48, 72, 168 and 336 hours p.i.; HuO9: 6, 24, 48, 

72, 168 and 336 h p.i.; U118MG: 24, 48 and 72 hours p.i.; n=4 mice/time point, HCC1954 and 

K7M2: 72 h p.i.). To confirm targeting specificity, mice bearing both LRRC15+ U118MG (left 

flank) and LRRC15- LNCaP (right flank) xenografts were i.v. injected with either 0.5 MBq 

[177Lu]-hIgG1 mAb or [177Lu]-DUNP19 (n=4 mice) and sacrificed 48 hours later. To study the 

effect of the antibody mass amount on the biodistribution and tumor uptake, mice bearing HuO9 

tumors (n=5 mice/group) were administered escalating DUNP19 doses (1, 10, 30, 100 and 300 

μg/mouse at 0.5 MBq 177Lu; i.v.) and euthanized 72 h p.i.. In all studies, blood, tumors, and 

several normal tissues were collected, dried and weighed. The radioactivity contained in the 

respective tissue and reference standards (0.5 MBq [177Lu]-DUNP19) was quantified in a 

NaI(Tl) automated well counter (1480 WIZARD; Perkin Elmer). Decay-corrected data were 

expressed as percent injected activity per gram tissue (% IA/g).  

 

3.2.4.6 Radiological Analysis of Tumor Calcification 

Quantification of radiopacity was analyzed using ImageJ software (version 1.53). A 

brightness threshold of 41 was used to define the area of each tumor sample. The total area of 
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the tumor was then quantified using ImageJ’s built-in area analysis program. Areas of 

calcification were defined by a brightness threshold of 81 and quantified in the same manner. 

Percent calcification was calculated by dividing the area of calcification over the area of the 

entire tumor.  

 

3.2.4.7 Confocal Microscopy of Xenografts  

Mice with HuO9, SAOS2 and HCC1954 tumors, respectively, were injected with 30 ug 

DUNP19-AF594 when tumor volume reached between 200-300 mm3. Sections were washed 

two times with PBS before permeabilization with 0.1 % Triton-X/ PBS and blocking for 1 h at 

RT with 10 % goat serum/ PBS. Sections were stained with an anti-LAMP1-A488 antibody 

(HuO9, SAOS2: anti-hLAMP1, 1:250, Invitrogen, #53-1079-42; HC1954: anti-mLAMP1, 

1:250, Invitrogen, #53-1071-82, to detect the murine stroma) overnight at 4ºC. The next day, 

slides were stained with Phalloidin-AF647 for 1 h at RT (1:2000, Invitrogen, #A22283) and 

mounted with Vectashield Antifade mounting media with DAPI (Vector Laboratories, H-2000-

2). Confocal microscopy was done by the UCLA Advanced Light Microscopy and Spectroscopy 

Laboratory (ALMS) with a Leica TCS-SP8 microscope at 63x magnification and sequential 

imaging for far-red, orange, green and blue emitting dyes. Z-stack images were taken and 

Lightning deconvolution and 3D reconstruction (Leica Microsystems) were performed during 

post-processing. 

 

3.2.4.8 Therapy Studies  
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Average tumor volume at the start of treatment was 181 ± 20 mm3 and the average animal 

weight was 25.2 ± 0.7 g. Mice bearing s.c. HuO9 or U118MG xenografts with LRRC15 

expression in both tumor cells as well as tumor stroma, and HCC1954 xenografts with LRRC15 

expression only in the tumor stroma, were randomized into groups of 10-12 animals receiving 

either [177Lu]-DUNP19 (16-30 μg, i.v.) or no treatment. HCC1954 model: Mice were treated 

with a single injection of either 10 MBq or 20 MBq [177Lu]-DUNP19. HuO9 model: Animals 

received three fractionations [177Lu]-DUNP19 at days 0, 32 and 75 resulting in a cumulative 

administered activity of 50 MBq (group 1: 10+20+10 MBq; group 2:  20+10+20 MBq). To 

investigate the impact of pre-therapeutic tumor volume on the efficacy of [177Lu]-DUNP19 in 

the HuO9 model, mice (n=6-10 mice/group) were administered 30 MBq [177Lu]-DUNP19 (30 

µg, i.v.) when tumors reached a volume of 203±64 mm3 (group 1) or 504±152 mm3 (group 2). 

U118MG model: Mice were treated with two fractions [177Lu]-DUNP19 at days 0 and 34 and a 

cumulative activity of 20 MBq (10+10 MBq) or 30 MBq (20+10 MBq). Treatment efficacy was 

assessed by measuring tumor growth and time to a humane endpoint. Mice survival was 

analyzed by using a log rank test in GraphPad Prism. P values <0.05 were considered significant 

statistically. Tumors from a subset of mice were harvested 90-120 days p.i. (except U118MG: 

day 155 p.i.) and processed for RNA-sequencing (see below). 

To evaluate the efficacy of [177Lu]-DUNP19 in a clinically relevant orthotopic 

osteosarcoma model, mice with intratibial HuO9 tumors were randomized (23 days post-tumor 

engraftment) to receive 20 MBq [177Lu]-DUNP19 (30 µg, i.v.; n=12) or PBS (n=7). Four days 

after treatment, [177Lu]-DUNP19 tumor uptake and presence of viable HuO9 tumor was assessed 

by SPECT/CT imaging. At day 163 post-first injection, mice received an additional 20 MBq 
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[177Lu]-DUNP19 and were re-scanned to detect residual viable HuO9 tumor tissue. Mice were 

followed up for 190 days after the first [177Lu]-DUNP19 injection.  

 

3.2.4.9 Toxicity of [177Lu]-DUNP19 

Body weights and hematological toxicity and recovery were monitored in mice treated 

with [177Lu]-DUNP19. Blood samples were taken before and weekly after injection of [177Lu]-

DUNP19 for 4 weeks p.i.. Samples (20 µL) were collected from the tail vein of awake, 

immobilized mice by piercing the vein with a needle (27G) and collecting blood in a K2EDTA-

coated plastic micropipette. Blood cell counts were obtained using an Exigo Veterinary 

Hematology Analyzer (Boule Medical, Stockholm, Sweden). 

 

3.2.4.10 Immunohistochemistry 

LRRC15 expression was analyzed on formalin-fixed, paraffin embedded sections using 

the Dako REAL Peroxidase Detection System (Dako) according to the manufacturer's 

instructions. Antigen retrieval was performed by heat-induced epitope retrieval using 

Tris/EDTA (pH 8.1). Sections were incubated with anti-hLRRC15 antibody [EPR8188(2)] 

(1:100; #ab150376, Abcam) for 1 h at room temperature.  

3.2.5 Gene Expression Analysis 

For RNA-sequencing, tumor tissues were harvested at 90-120 days (HuO9, HCC1954) 

or 155 days (U118MG) post-treatment, apart from untreated mice (harvested when tumor 
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volume measured greater than 1000 mm3, in accordance with established endpoint protocols). 

Tumor tissue was preserved in RNAlater stabilization solution (Invitrogen, AM7020) before 

RNA isolation with the Qiagen RNeasy kit (#74004). RNA quality control was assayed via 

TapeStation (Agilent) and stranded mRNA library preparation performed in accordance with 

Illumina protocols. Samples were sequenced on Illumina’s Novaseq platform to generate 50bp 

paired-end reads. Library preparation and sequencing was done with the help of UCLA’s 

Technology Center for Genomics and Bioinformatics (TCGB). 

Raw read count RNA-sequencing data were generated from untreated and [177Lu]-

DUNP19 treated HuO9 (untreated n=6, treated n=16), U118MG (untreated n=8, treated n=16) 

and HCC1954 (untreated n=8, treated n=10) tumors. Paired-end reads were aligned to either 

human (Hg38) or murine (Mm19) genome using the STAR method, as previously described 

(35). Ambiguous reads were discarded and FastQC analysis was utilized to confirm sequence 

quality. Low read count filtering was used to remove transcriptomic features for which fewer 

than 4 samples had at least 5 read counts of a gene, as described by the EdgeR differential 

analysis user guide (36). For each tumor model, principal component analysis based on log2 

counts in RStudio Version 2023.06.1 was plotted. K-Clustering and heat maps were generated 

on log2-transformed read counts to visualize gene signatures in treated versus untreated samples. 

Differential expression analysis to identify differentially expressed genes was performed using 

EdgeR (Bioconducter, Version 3.40.2) using quasi-likelihood F-tests within the EdgeR program. 

A false discovery rate of 0.05 (adjusted using Benjamini-Hochburg methodology) and absolute 

log2-fold change >1 were selected as the cutoff for DEGs within this analysis. A positive fold-

change represented upregulation and a negative fold change represented downregulation of gene 

expression in treated tumors. For comparison and visualization of gene expression between 
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clustered samples, z-scores were calculated per gene. Pathway analysis was performed using 

gene set enrichment analysis and molecular signatures defined using the human and murine 

Molecular Signature Database Hallmark pathways (37). Additional analysis was performed 

using Gene Ontology (GO) Biological Pathways. For cell classification and identification, 

Syllogist (22) was used to identify signatures present from 43 cell types within normalized gene 

expression matrices. For murine cell classification, murine orthologs were matched to Syllogist 

cell signatures using g:Profiler. 

 

3.2.6 Statistical Analysis 

Statistical analyses were conducted using Graphpad Prism software (Version 9.5.1). Data 

are expressed as mean and standard deviation. Statistical comparisons were performed using 

one-way ANOVA with Tukey multi-comparison tests and unpaired Student’s t-tests. A P-value 

of less than 0.05 was considered statistically significant. RNA-sequencing data are available 

from the Gene Expression Omnibus NCBI database upon publication (cite). 

 

3.3 LRRC15 can be Targeted Utilizing the mAb DUNP19 

Our initial investigations tested the specificity of DUNP19 and demonstrated binding to both 

human and murine recombinant LRRC15 with high affinity (Supp. Fig. 1A). Specific interaction 

of DUNP19 with LRRC15 was further substantiated by immunoprecipitation of the LRRC15 

protein from glioblastoma (U118MG) cell lysates with DUNP19-coated magnetic beads (Supp. 

Fig. 1B). We next characterized the binding of DUNP19 to LRRC15 across a wide range of 
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cancer cell lines from a range of lineages including melanoma (RPMI7951), glioblastoma 

(U118MG) and osteosarcoma (HuO9, SAOS2), selecting cell lines based on LRRC15 gene 

expression data in publicly available databases: the EMBL-EBI expression atlas, Harmonizome 

3.0, COSMIC, and the Cancer Cell Line Encyclopedia (CCLE) database (10). Despite selecting 

cell lines that exhibited high LRRC15 expression at the RNA level, not all were found to have 

detectable protein on the cell surface. Among those that did, DUNP19 retained picomolar 

affinity for cell-surface target antigen (EC50 = 0.83 – 222.22 pM) (Fig. 1A). In addition, a 

positive correlation was noted between the number of LRRC15 molecules on the cell surface 

and LRRC15 mRNA levels (R2 = 0.567) (Fig. 1B). Specific binding to LRRC15 on the cell 

surface was further confirmed by confocal microscopy of AF647-labeled DUNP19 (Fig. 1C). 

Next, we studied cellular internalization of DUNP19. Antibody internalization enhances the 

retention time of the delivered radionuclide, thereby increasing both image contrast and 

absorbed doses of therapeutic radiation (11). Confocal microscopy studies illustrated that 

DUNP19 is rapidly internalized by LRRC15 expressing cells (Fig. 1D,E). Interestingly, 

internalization rates for DUNP19 were contingent on the quantity of available molecules; faster 

kinetics were observed in cells with a higher abundance of LRRC15 molecules (HuO9: 1284.74 

± 63.17 molecules per um2, 132.06 ± 10.14 minutes; SAOS2: 684.89 ± 100.67 molecules per 

um2, 145.62 ± 15.18 minutes; Fig. 1D). Conjugation chemistry did not impact DUNP19; the 

internalization rate of the chelate-conjugated antibody (CHX-A”-DTPA-DUNP19) was 

analogous to that of the unconjugated antibody (Supp. Fig. 2A). Furthermore, time-resolved 

cellular assays indicated that 177Lu-radiolabeling did not affect affinity (U118MG: Kd = 301 ± 

39 pM; HuO9: 117 ± 46 pM; SAOS2: 56 ± 27 pM; RPMI-7951: 25 ± 0.1 pM; Fig. 1F). 
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Figure 1. In vitro evaluation of DUNP19’s binding profile to LRRC15.  A. Flow cytometry 

demonstrates that DUNP19 binds with picomolar affinity to LRRC15 molecules on various cell 

lines, exhibiting distinct expression levels and tissue origins. Detection of LRRC15 was based 

on the assessment of antigen-antibody equilibrium. B. Analysis across a diverse range of cell 

lines unveils correlations between LRRC15 mRNA expression and the abundance of LRRC15 

molecules bound by DUNP19. C. Confocal microscopy of various cell lines incubated with 

AlexaFluor647-labeled DUNP19 at room temperature, followed by staining for plasma 

membrane-associated calcium ATPase (PCMA) and DNA (DAPI). Images reveal that DUNP19 

binding corresponds with LRRC15 expression levels and co-localizes with LRRC15. D. 

Internalization rates of AlexaFluor647-labeled DUNP19 at 37°C were examined in LRRC15-



 79 

expressing HuO9 and SAOS2 cells using live confocal microscopy. The endocytic process of 

DUNP19 is accelerated in cells with higher LRRC15 abundance. E. Confocal microscopy of 

SAOS2 cells incubated with AlexaFluor647-labeled DUNP19 at 4°C or 37°C, co-stained for 

lysosomes (LAMP1) and DNA (DAPI). DUNP19 is exclusively found in the plasma membrane 

at the lower temperature demonstrating that the rapid endocytosis after binding to LRRC15 is 

an active, energy-requiring process. F. LigandTracer sensorgram of [177Lu]-DUNP19 binding to 

LRRC15-expressing HuO9 cells, measured at 1 nM and 3 nM concentrations. Cell-bound 

activity, presented as CPS, was used to determine association, dissociation rates, and equilibrium 

dissociation constants (KD). The table shows KD values for various LRRC15-expressing cell 

lines. 

 

3.4 DUNP19 In Vivo PET Can Monitor Tumor-Associated LRRC15 Expression 

To evaluate in vivo kinetics of DUNP19 in healthy organs and LRRC15-expressing tumors, 

sequential PET images were acquired of subcutaneous (s.c.) osteosarcoma (SAOS2) bearing 

mice after intravenous (i.v.) administration of a 64Cu-labeled version of the mAb ([64Cu]-

DUNP19). Tumor accumulation was compared to the clinical bone scanning agent [18F]-NaF. 

Rapid [64Cu]-DUNP19 uptake in vivo recapitulated in vitro internalization, selectivity, and 

retention in malignant tissue. In contrast, [18F]-NaF exhibited limited accumulation in 

osteogenic tumors, with the bladder showing the highest activity due to urinary excretion (Fig. 

2A). These findings suggest that DUNP19-PET can be utilized to noninvasively determine 

LRRC15 expression and select patients for treatment, improving upon existing FDA-approved 

PET tracers for bone cancer lesions. 



 80 

 

Figure 2. Specificity and biodistribution of DUNP19 in multiple mouse models with 

LRRC15 expressing tumors. A. Representative PET images of s.c. SAOS2 osteosarcoma 

xenografts obtained at different time points post i.v. administration of [64Cu]-DUNP19, 

highlighting significant tumor-specific uptake with minimal accumulation in normal tissues. In 

contrast, PET with the clinical bone scanning agent [18F]-NaF showed low activity in tumor 

tissue, with the majority of the tracer dose observed in bone (Bn) and bladder (Bl). B. In vivo 

assessment of LRRC15 targeting specificity by [177Lu]-DUNP19. At 48 h post i.v. injection, 

[177Lu]-DUNP19 displayed significantly higher uptake (p < 0.001) in LRRC15+ U118MG (blue 

bar) and HuO9 (red bar) tumors compared to LRRC15- LNCaP tumors (light gray bar). The 

accumulation of non-specific [177Lu]-IgG1 in LRRC15+ U118MG tumors (dark grey bar) was 
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significantly lower than that of [177Lu]-DUNP19.  C. [177Lu]-DUNP19 tumor uptake in multiple 

s.c. tumor models at 72 h p.i., correlating with the LRRC15 expression level in the respective 

model. D. + E. Kinetics of [177Lu]-DUNP19 in healthy organs and LRRC15+ SAOS2 and HuO9 

osteosarcoma lesions. Ex vivo tissue biodistributions of [177Lu]-DUNP19 obtained at multiple 

time points after i.v. injection showed a continuous decline in activity levels in healthy organs, 

but sustained uptake by malignant lesions. F. + G. Microanatomy of tumor tissues obtained from 

animals treated with fluorescently labeled DUNP19. Confocal images of s.c. SAOS2 (LRRC15+ 

cancer cells / LRRC15+ CAF) and HCC1954 (LRRC15- cancer cells / LRRC15+ CAF) tumors 

harvested at 72 h post- i.v. injection of AF594-DUNP19 (yellow). Tumor sections were co-

stained for Actin (red), DNA (DAPI, blue) and LAMP1 (lysosomal marker, green). Images show 

that DUNP19 accumulates in the cellular cytoplasm and co-localized with LAMP1 indicating 

intracellular trafficking of the mAb to the lysosomal compartments (arrow) after binding 

membranous LRRC15.                      

 

3.5 [177Lu]-DUNP19 Exhibits a Favorable Biodistribution 

177Lu is a clinically relevant beta particle emitter with a half-life of 6.7 days and maximum 

tissue penetration range of 1.5 mm. Because of the radionuclide’s long path length, 177Lu can be 

used to deliver ionizing radiation to target cells and to target-null cells in close proximity via a 

crossfire effect (12). Given these characteristics, we hypothesized that [177Lu]-DUNP19 could 

overcome the heterogeneous expression of LRRC15 observed across tumor tissue and stroma 

(5). First, we evaluated the influence of antibody carrier mass on the biodistribution of [177Lu]-

DUNP19 in s.c. osteosarcoma (HuO9) tumors. We found that an injected antibody mass of 15-
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30 µg yielded the optimal tumor-to-normal tissue radioactivity uptake ratios. Next, we 

systematically examined the biodistribution and pharmacokinetic profile of [177Lu]-DUNP19 in 

a variety of s.c. tumor models originating from diverse malignant tissues. These studies 

evaluated multiple cancer lineages with various levels of LRRC15 expression and with target 

expression in distinct tumoral compartments. Tumor models with LRRC15+ cancer cells and 

CAFs included K7M2LRRC15+, HuO9 and SAOS2 osteosarcomas (OS) and U118MG 

glioblastoma (GBM). We also assessed [177Lu]-DUNP19 uptake in the HCC1954 breast cancer 

model, characterized by high LRRC15 expression in CAFs and LRRC15-null cancer cells. (Fig. 

2, Supp. Fig. 3, 4). 

The accumulation of [177Lu]-DUNP19 in tumors peaked at 72 h post-injection (p.i.) 

(HCC1954: 12.5 ± 2.8 %IA/g [percent injected activity per gram tissue], U118MG: 13.3 ± 1.1 

%IA/g, K7M2LRRC15+: 13.6 ± 1.5 %IA/g, SAOS2: 23.1 ± 2.9 %IA/g, HuO9: 43.9 ± 7.9 %IA/g) 

and remained consistently elevated at all studied time points throughout the time course, out to 

336 h p.i.  (Fig. 2B). Retention of [177Lu]-DUNP19 steadily decreased in blood and healthy 

organs after injection, and [177Lu]-DUNP19 in blood reflected the expected half-life of a human 

IgG1 in mice, indicating interaction with the murine neonatal fragment crystallizable (Fc) region 

receptor (FcRn) (13, 14). Retention of [177Lu]-DUNP19 in the liver was representative of typical 

blood volume and metabolic elimination of antibodies. Taken together, these data indicate a 

favorable biodistribution profile of [177Lu]-DUNP19 (Fig. 2D,E).  

LRRC15 targeting specificity in vivo was further addressed in the s.c. LRRC15+ 

glioblastoma tumor model, U118MG. Uptake of [177Lu]-DUNP19 was compared to nonspecific 

[177Lu]-huIgG1, a human IgG1 with non-binding complementary-determining regions (CDRs) 
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that had been radiolabeled with 177Lu. At 48 h post- i.v. administration, tumor uptake of [177Lu]-

DUNP19 was significantly higher than [177Lu]-huIgG1 (14.31 ± 2.01 vs. 4.72 ± 0.82 %IA/g, 

respectively). Additionally, in LRRC15- s.c. LNCaP tumors, which lack relevant amounts of 

murine LRRC15 expressing stroma but are highly vascularized, systemic injection of [177Lu]-

DUNP19 resulted in tumor retention of 6.57 ± 1.28 %IA/g at 48 h p.i. (Fig. 2B). These findings 

indicate that DUNP19 specifically targets LRRC15-expressing tumor tissue with minimal off-

target retention in vivo. Accumulation of [177Lu]-DUNP19 in LRRC15- LNCaP tumors is likely 

due to the enhanced permeability and retention effect. This pathophysiological mechanism 

involves the entrapment of macromolecules >45 kDa by the tumor vasculature, exhibiting a 

pronounced non-specific uptake of compounds in small animal xenograft tumor models as 

opposed to malignant lesions observed in humans (14, 15). 

Next, we investigated the subcellular localization of DUNP19 in human osteosarcoma 

(SAOS2 and HuO9), and breast cancer (HCC1954) tumor models following systemic 

administration. Sections from s.c. tumors collected 72 h after i.v. injection of AlexaFluor647-

labeled DUNP19 were co-stained for DNA, actin, and lysosomes (LAMP1) and analyzed by 

confocal microscopy (Fig. 2F,G, Supp. Fig. 4). Consistent with our in vitro findings, DUNP19 

co-localized with murine LAMP1 in HCC1954 tumors, and with human LAMP1 in HuO9 and 

SAOS2 tumors. This co-localization suggests cellular internalization of the antibody after 

binding with LRRC15 on the plasma membrane of both cancer and stromal cells.  

 

3.6 [177Lu]-DUNP19 Radioimmunotherapy (RIT) of Aggressive Osteosarcoma 
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We then investigated the impact of [177Lu]-DUNP19 radioimmunotherapy (RIT) on tumor 

volume and overall survival in mice bearing HuO9 osteosarcoma tumors. Following a single 

systemic administration of 30 MBq [177Lu]-DUNP19, tumor growth was significantly inhibited 

(P<0.005, Fig 3AI). All mice treated with a single administration of 30 MBq [177Lu]-DUNP19 

survived through the entirety of the observation period (126 days) for initial tumor volumes in 

the 150-200 mm³ range. Infiltrative and bulky osteosarcoma have poorer prognoses and reduced 

treatment options. To test the impact of a larger tumor burden, a second group of animals with 

greater tumor volume (500-600 mm³) were treated with a single administration of 30 MBq 

[177Lu]-DUNP19. Disease progression was again delayed relative to control, and overall survival 

was also improved to 115 days (67-126 days). All untreated animals succumbed by day 65 days 

(range: 58-69 days) (Fig 3AII). Thus, irrespective of initial tumor volume, treatment with [177Lu]-

DUNP19 RIT was effective at significantly reducing disease progression and improving overall 

survival. 

To investigate the efficacy of [177Lu]-DUNP19 dosing regimens on tumor growth and 

survival, we conducted therapeutic fractionated dosing studies. From a translational perspective, 

this approach is commonly utilized in clinical settings to optimize maximum tolerated dose 

while reducing dose-limiting toxicities (16-18). Fractionation is also recommended to 

compensate for the anticipated heterogeneity in RIT dose distribution, particularly in large 

poorly vascularized tumors with regions of hypoxia (19). Rather than adhering to a 

predetermined activity and treatment schedule, additional therapeutic doses were given based 

on recovery from bone marrow toxicity determined by measuring differential blood counts, 

regrowth of tumor volume, and their effect on animal overall weight (Supp. Fig. 5,6). Mice 

bearing subcutaneous HuO9 tumors (150-200 mm³) were administered a cumulative activity of 
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50 MBq in three fractions over a span of 88 days (Fig. 3CI). Continuous progression-free 

survival was sustained in treated animals throughout the study duration, contrasting to untreated 

animals which exhibited a median survival of 47 days (Fig. 3CII). 

We further studied LRRC15-targeted radio-theranostics in a translationally relevant 

orthotopic osteosarcoma model (Fig. 3B-D). HuO9 cells were injected into the left tibia of 

Balb/c mice and half of the subjects were randomly selected for systemic injection with 30 MBq 

of [177Lu]-DUNP19 23 days after inoculation. Imaging by SPECT at 72 h post- [177Lu]-DUNP19 

administration revealed LRRC15-specific accumulation of activity at the tumor site (Fig. 3B). 

Of treated animals, 9 of 10 survived to study endpoint (190 d), while all untreated animals 

succumbed due to disease-related endpoints (Fig. 3BI). Follow-up imaging with [177Lu]-

DUNP19 was acquired at 163 days after treatment and revealed no accumulation of the 

theranostic agent at the site of HuO9 tumor inoculation or at other anatomical locations (Fig. 

3BII). Based on these results, we concluded that the previously detected LRRC15+ tissue had 

been eradicated.  

Radiation is widely known to induce calcifications in sarcomatous processes (20). To 

investigate this phenomenon in animals bearing HuO9 lesions, we quantified tumor radiopacity 

and uptake of tumor-associated [177Lu]-DUNP19 using SPECT/CT and gamma-spectrometry. 

Animals treated with [177Lu]-DUNP19 and untreated mice received an imaging dose of 3.5 MBq 

[177Lu]-DUNP19 and tumors were harvested 72 hours after injection. Treated tumors exhibited 

significantly lower tumor-associated [177Lu]-DUNP19 activity, coupled with higher levels of 

tumor calcification (Fig. 3CIII-V).  
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Figure 3. Evaluation of [177Lu]-DUNP19 therapy and monitoring in HuO9 osteosarcoma 

tumors. AI-II. Tumor volumes in mice bearing s.c. HuO9 xenografts (n=10 per arm) were 

randomized for a single i.v. administration of 30 MBq [177Lu]-DUNP19 when tumors reached 

203±64 mm3 (blue line; day 21) or 504±152 mm3 (red line; day 39) or received no treatment 

(black line). The results demonstrated a significant delay in disease progression, with treatment 

efficacy being influenced by tumor volume (AI). Kaplan-Meier survival analysis revealed that 

[177Lu]-DUNP19 extended survival, with the impact varying based on the timing of intervention 

(AII). BI-II. Representative coronal SPECT/CT images showing orthotopic HuO9 osteosarcoma 

tumors (indicated by arrow) after initial (left) and follow-up (right) i.v. administrations of 20 

MBq [177Lu]-DUNP19. In all treated mice (right) (n=10), no tumor associated uptake was 

observed at 163 days after treatment (BI). Kaplan-Meier survival analysis revealed a significant 

increase in survival for the [177Lu]-DUNP19 treated group during the observed 190-days period 

(BII). CI-V. Mice with s.c. HuO9 osteosarcoma xenografts (n=12 per arm) were randomized for 

three treatment cycles (red: 10+20+10 MBq; blue: 20+10+20 MBq) of i.v. [177Lu]-DUNP19 (at 

day 0, 32, and 75), resulting in a total administered activity of 50 MBq, or no treatment (black; 

n=12). Assessment of tumor volumes demonstrated that repeated cycles of LRRC15-RIT 

effectively inhibit tumor growth (CI). Kaplan-Meier survival analysis confirmed significantly 

improved survival for mice randomized for [177Lu]-DUNP19 over no treatment (CII). Four 

tumors from the treatment and control (non-treatment) arm, harvested 72 hours after 

administration of an imaging dose of [177Lu]-DUNP19 (3 MBq), were imaged ex vivo by SPECT 

and CT (CIII). Tissue activity levels (%IA/g), assessed by gamma counter and normalized to 

tissue weight, revealed significantly lower uptake of the antibody in treated vs. non-treated 

tumors (p < 0.001), reflecting reduction in total LRRC15-expressing cells post-treatment (CIV). 
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Quantification of radiopacity in CT images showed significantly higher ossification levels in 

treated vs. non-treated tumor tissues (p < 0.001) (CV). Together, these findings illustrate that 

repeated cycles of [177Lu]-DUNP19 effectively reduce tissue viability and calcification. 

 

3.7 [177Lu]-DUNP19 Therapy is Effective Across a Range of Tumors with Varying 

LRRC15 Expression Patterns 

Given the high expression of LRRC15 on HuO9 osteosarcoma cells (Fig. 1), we also sought 

to understand how the effects of [177Lu]-DUNP19 therapy would change in a tumor of different 

tissue origin and with lower LRRC15 expression. Mice bearing s.c. tumors from glioblastoma 

U118MG cells were treated with a cumulative activity of 20 MBq or 30 MBq [177Lu]-DUNP19 

in two fractions. [177Lu]-DUNP19 treatment significantly extended survival (p<0.0001), and 

therapy prevented further tumor growth as tumor volumes reached a plateau phase around 100-

200 mm3. All untreated mice succumbed due to disease-related endpoints by 78 days, whereas 

11/12 mice (91.67 %) and 12/12 mice (100%) were alive at the end of the observation period in 

the 20 MBq and 30 MBq treatment groups, respectively (Fig. 4A, B). 

Finally, we evaluated the therapeutic efficacy of [177Lu]-DUNP19 in aggressive breast 

cancer tumors comprising LRRC15- HCC1954 cancer cells and LRRC15+ murine CAFs. 

Despite LRRC15 expression in stroma only, a single systemic injection of 20 MBq [177Lu]-

DUNP19 effectively suppressed HCC1954 tumor growth and significantly prolonged median 

survival compared to untreated mice, where median survival was 30.5 days (p=0.0005; median 

survival not reached in treated animals). Notably, 80% of the treated mice (8 out of 10) survived 

until the end of the observation period (Fig. 4C, D). Given the lack of target expressing cancer 
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cells, the response of HCC1954 tumors to [177Lu]-DUNP19 is reliant on targeting of LRRC15+ 

murine CAFs. We presume that the therapeutic impact results from the synergy of two 

components: the direct induction of DNA damage by beta-particles, affecting both stromal and 

cancer cells, as well as the ablation of tumor-supporting stromal tissue on which cancer cells 

depend for growth and survival. 

Throughout all studies, treatment was well-tolerated as indicated by stable body weights 

(Supp. Fig. 5). Administration of [177Lu]-DUNP19 resulted in a transient bone marrow 

suppression, which recovered to baseline levels within 21 days (Supp. Fig. 6).  
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Figure 4. Therapeutic efficacy of [177Lu]-DUNP19 in LRRC15-expressing human 

xenograft models. A, B. [177Lu]-DUNP19 demonstrates antitumor activity in other cancer 

indications. BALB/c nude mice bearing s.c. U118MG glioblastoma xenografts (were treated 

with two fractions of [177Lu]-DUNP19 at days 0 and 34 for a cumulative activity of 20 MBq 

(10+10 MBq, red, n=12) or 30 MBq (20+10 MBq, blue, n=11). Despite lower LRRC15 

expression by U118MG tumors, treatment with [177Lu]-DUNP19 significantly controlled tumor 

growth and prolonged survival in both [177Lu]-DUNP19 doses (median survival; untreated = 74 

days, 20 MBq = not reached, 30 MBq = not reached, p < 0.001). C, D. [177Lu]-DUNP19 is 

effective in HCC1954 breast cancer models (LRRC15- cancer cells, LRRC15+ stroma). Results 

demonstrate delayed s.c. HCC1954 growth in female mice intravenously administered a single 

dose of [177Lu]-DUNP19 (20 MBq; day 7, n=10). D. Median survival was not reached for the 

treated group by the end of the observation period (day 62), while median survival of treated 

mice was 30.5 days (p < 0.005).            

 

3.8 LRRC15-targeted RIT Depletes TGFβ-Driven Signature in Tumors 

Having demonstrated the significant therapeutic potential of our radio-immunotheranostic 

platform, we sought to understand the molecular effects of LRRC15-targeted RIT on cancer 

cells and the tumor microenvironment. Transcripts of bulk RNA-sequencing of tumors harvested 

at 90-155 days after [177Lu]-DUNP19 treatment were aligned to human and murine genomes to 

identify the transcriptomic profiles of human cancer cells and murine stromal cells. Ambiguous 

reads were subsequently removed (Fig. 5A).  
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Due to the fractionated dosing regimens utilized in our therapeutic studies (Fig. 3, 4), our 

first objective was to determine whether there were significant differences in tumor gene 

signatures when comparing [177Lu]-DUNP19 dosing regimens. However, we did not find gene 

signatures that were associated with the [177Lu]-DUNP19 radiation dose received. Therefore, 

tumor samples were not separated by [177Lu]-DUNP19 radiation dose received in subsequent 

analyses and for each model, [177Lu]-DUNP19-treated tumors were compared to untreated 

tumors. 

In human cancer cells, RNA-sequencing analysis identified 19,578 protein-coding genes, of 

which 1,985 (HuO9), 1,043 (U118MG), and 23 (HCC1954) were differentially expressed genes 

(DEGs) after [177Lu]-DUNP19 therapy. In [177Lu]-DUNP19-treated murine stroma, 663 (HuO9), 

319 (U118MG), and 73 (HCC1954) DEGs were identified compared to untreated controls (Fig. 

5B). In U118MG tumors, the most upregulated genes included bone morphogenic protein 

(BMP2) and inhibin subunit beta A (INHBA), two modulators of TGFβ signaling and epithelial-

mesenchymal transition (Fig. 5B). In HuO9 tumors, epigenetic modulators such as HINFP and 

H4C11 were upregulated, while anti-apoptotic genes (HRK) and genes in the canonical pro-

tumorigenic WNT and RAS pathways were among the most significantly downregulated genes 

after DUNP19 RIT (Fig. 5B). 

To gain a sense of the biological pathways altered by DUNP19 RIT, gene ontology analysis 

of DEGs from tumors containing LRRC15+ cancer cells (U118MG, HuO9) was performed (Fig. 

5C,D). In treated U118MG tumors, gene ontology terms were immune- and epithelial-

mesenchymal transition related (response to cortisol, myeloid leukocyte mediated immunity, 

anatomical structural development) (Fig. 5C). Further analysis using gene set enrichment 
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analysis (GSEA) of genes ranked by fold-change (log2FC) revealed enrichment of myogenesis 

(myoblast stem cell differentiation) and a downregulation of MYC target genes (Fig. 5C, Supp. 

Table 1).  In contrast, GSEA and gene ontology analysis of treated HuO9 tumors revealed 

alterations in metabolic and cell cycle-related pathways, as indicated by negative enrichment of 

E2F cell cycle transcription factors, as well as alterations in nitrate metabolism, lipoprotein 

homeostasis, and response to stress (Fig. 5F, Supp. Table 1). Despite differences in the biological 

pathways involved in DUNP19 RIT response, 40 genes were differentially expressed in both 

U118MG and HuO9 treated tumors (Fig. 5E,F). This was surprising given the different origins 

and different cell lineages of the two models. Of the 40 shared genes, several had functions 

similar to the hypothesized roles of LRRC15 (cell migration, invasion, and adhesion) or had 

been shown to be co-expressed with LRRC15, including COL11A1, FGF13, and CXCL14 (Fig. 

5E,F) (8, 21). 

 

Figure 5. [177Lu]-DUNP19 induced radioimmunotherapy signatures in LRRC15+ cancer 

cells. A. Schematic of transcriptomic analysis of HuO9, U118MG, and HCC1954 tumors after 
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[177Lu]-DUNP19 treatment. Treated or untreated tumor samples were harvested for RNA 

isolation, before sequencing and alignment to either murine or human genomes. Overlapping or 

ambiguous reads were discarded. B. Volcano plot of the top up- (red) and downregulated (blue) 

DEGs after treatment with [177Lu]-DUNP19 in U118MG (left) and HuO9 (right) cancer cells 

(FDR < 0.05). DEGs were ranked by fold-change. The top and bottom genes were labeled. C, 

D. Gene ontology (GO) biological pathway enrichment analysis of DEGs in treated (C) 

U118MG and (D) HuO9 cancer cells (adjusted p-value < 0.05). Enriched biological pathways 

with more than 10 overlapping terms (genes) were plotted by Padj value to indicate processes 

most significantly enriched after [177Lu]-DUNP19 RIT. E, F. Overlapping differentially 

expressed genes (40 genes, FDR < 0.05, FC > 1) in (E) U118MG and (F) HuO9 cancer cells 

after [177Lu]-DUNP19 treatment were plotted for visualization of [177Lu]-DUNP19-induced 

changes. Relative expression per gene was plotted to indicate up- (in red) or downregulated 

(blue) genes by Z-score normalization. 

 

To complement our understanding of transcriptomic responses by DUNP19 RIT in the tumor 

microenvironment, we also conducted a comprehensive analysis of the murine stroma in HuO9, 

U118MG, and HCC1954 tumors. In all three models, RIT induced changes in pathways related 

to immune activation, including the upregulation of Gzmk, Cxcr6, and Lck (Fig. 6A-C). Whole 

transcriptome principal component analysis identified three distinct transcriptional clusters for 

treated cancer cells in the HuO9 and U118MG models and two clusters in HCC1954 (Supp. Fig. 

7). Based on these results, we studied whether these changes could be explained by an overall 

shift in cell types present within the [177Lu]-DUNP19 treated tumor samples (i.e. loss of 
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mesenchymal phenotypes). We employed Syllogist to further assess the proportional 

distribution of cell types in treated tumors compared to untreated samples (22). In accordance 

with the expression of LRRC15 in cancer cells originating from mesenchymal stem cells, HuO9 

and U118MG tumors displayed a notable overrepresentation of mesenchymal cells across all 

examined samples, with a significant loss of the mesenchymal cell phenotype in DUNP19-

treated HuO9 cancer cells (Supp. Fig 8). No discernible alterations in relative cell composition 

were observed following treatment with [177Lu]-DUNP19 in other tumor models. Additionally, 

our observations revealed that HCC1954 tumor cells predominantly maintained an epithelial 

phenotype, consistent with the absence of LRRC15 expression in the cancer cells (Supp. Fig 8).  

Overall, and in line with plasma membrane associated LRRC15 protein levels (Fig. 1B,C), 

LRRC15 expression was higher in HuO9 than in U118MG cancer cells, and not quantifiable in 

HCC1954 cancer cells. In contrast, stromal Lrrc15 expression was 3- and 4-fold higher in 

HCC1954 tumors than in U118MG and HUO9 tumors, respectively (Supp. Fig. 9). Comparison 

of LRRC15/Lrrc15 expression in cancer cells and stroma of HuO9 and U118MG tumors across 

clusters showed a trend of decreased expression with increasing cluster distance from untreated 

samples in both cancer cells and stroma (Fig. 6D); the expression of TGFB1, a known regulator 

of LRRC15 expression, mirrored the LRRC15/Lrrc15 expression pattern (Fig. 6D). 

Interestingly, Lrrc15 and Tgfb1 levels in HCC1954 stroma remained constant, while TGFB1 

expression was increased in treated LRRC15-null HCC1954 cancer cells. 

Further analysis of LRRC15+ clusters showed that treatment with [177Lu]-DUNP19 resulted 

in the progressive loss of a gene signature associated with immune cell exclusion and poor 

response to immune checkpoint blockade in TGFβ-driven, LRRC15+ CAFs (4, 8) (Fig. 6E,F). 
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Consistently, in two mice with HCC1954 tumors which progressed despite [177Lu]-DUNP19 

RIT, neither Lrrc15 nor the LRRC15+ CAF gene-signature decreased (Fig. 6H). Taken together, 

these findings collectively imply that LRRC15 serves as a critical modulator of the immune 

system within the tumor microenvironment and suggest that targeting LRRC15 with [177Lu]-

DUNP19 could remodel the tumor microenvironment, hindering tumor progression. 

 

Figure 6. [177Lu]-DUNP19 therapy eradicates a LRRC15+ TGFβ signature associated with 

immunotherapy resistance. A-C. DEGs overlapped in [177Lu]-DUNP19-treated stroma from 

U118MG (A, 26 genes), HuO9 (B, 23 genes), and HCC1954 (C, 26 genes) tumors. Relative 

expression (Z-score normalization) was plotted to indicate upregulated (red) or downregulated 

(blue) genes. D. Box-and-whisker plots representing relative transcript expression of LRRC15 

(top) and TGFB1 (bottom), comparing untreated tumors to tumors after [177Lu]-DUNP19 
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therapy. HuO9 transcripts are plotted in red (left), U118MG in blue (middle), and HCC1954 in 

black (right). Samples were separated by transcript signature based on PCA plots and 

hierarchical clustering (Supp. Fig. 7) into 2 (HCC1954) or 3 (U118MG, HuO9) clusters. 

Expression of LRRC15 and TGFB1 in treated samples from cluster 3 are significantly (p<0.005) 

decreased in U118MG and HuO9, while no changes are observed in the LRRC15- HCC1954 

cancer cells. E, F. Transcript data from clustered (Supp. Fig. 7) cancer cells (E) or tumor stroma 

(F) show decreased expression of the LRRC15+ TGFβ signature. E. Untreated U118MG (top) 

and HuO9 (middle) cancer cells lose expression of the LRRC15+ TGFβ signature after [177Lu]-

DUNP19 treatment (red = high, blue = low expression). F. Loss of the LRRC15+ TGFβ 

signature is observed across all tumor stroma after [177Lu]-DUNP19 RIT (green = high, orange 

= low expression) G. HCC1954 tumors that were resistant to [177Lu]-DUNP19 treatment 

(defined as reaching 1000m3 endpoint before conclusion of study) had no significant reduction 

of the 11-gene LRRC15+ TGFβ signature within tumor stroma. 

 

3.9 Discussion 

LRRC15 has emerged as a promising TGFβ-driven biomarker expressed on the cell 

membrane of cancer cells derived from mesenchymal stem cells and on a subset of cancer-

associated fibroblasts within the tumor microenvironment (4, 8). Studies evaluating genes 

associated with metastatic progression have characterized LRRC15’s role in metastases to bone 

in breast cancer and to bowel in ovarian cancer, while LRRC15 knockdown by siRNA 

significantly inhibits tumor progression in preclinical models (23). Furthermore, a retrospective 
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study assessing primary osteosarcoma lesions identified a correlation between LRRC15 

expression, aggressive disease, and shorter overall survival (9). 

The novel technology presented here harnesses the unique characteristics of a humanized 

IgG1 antibody, DUNP19, to specifically bind to a phylogenetically stable epitope of LRRC15. 

The rapid cellular internalization of DUNP19 exhibited by LRRC15-expressing cells provides 

an optimal foundation for leveraging DUNP19 as an effective vehicle for delivery of 

radionuclides to target cells. In this investigation, we have also substantiated DUNP19’s 

versatility by demonstrating its functionalization with both diagnostic and therapeutic 

radioisotopes. The radiolabeled modality facilitates identification of patients harboring 

LRRC15+ lesions, allowing for precise therapeutic intervention via molecularly specific PET or 

SPECT imaging. Subsequently, patients with LRRC15+ tissues can be selected for personalized 

therapeutic dosing, delivering tumor-specific ionizing radiation with minimal off-target effects. 

A similar approach is currently used in clinical practice, with examples including the application 

of radioactive iodine in thyroid cancer therapy and the use of radioligands binding to specific 

membrane antigens, such as [177Lu]-PSMA-617 for prostate-specific membrane antigen and 

[177Lu]-DOTATATE for somatostatin receptors. Patients exhibiting high tumoral uptake of the 

diagnostic radioligand on PET/CT imaging, reflecting elevated target expression and successful 

drug delivery, are deemed eligible for treatment with these therapeutic radioligands. 

Our LRRC15-RIT approach exhibited effective targeting across various cancer models, 

including models of breast cancer, osteosarcoma, and glioblastoma, all representing highly lethal 

cancers with distinct tumor biology and LRRC15 expression patterns. Notably, the specific 

depletion of LRRC15+ cancer and stromal cells through a single systemic administration of 
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[177Lu]-DUNP19 significantly slowed tumor progression and conferred a survival benefit in all 

models. These outcomes align with previous observations where the genetic ablation of 

LRRC15+ CAFs in murine models of pancreatic adenocarcinoma significantly reduced tumor 

volume and slowed tumor growth (8). Moreover, our findings underscore the practicality of 

directing therapeutic efforts towards LRRC15-deficient tumor cells via the crossfire 

phenomenon. Upon binding of [177Lu]-DUNP19 with adjacent LRRC15-expressing CAFs, the 

decay of 177Lu can instigate DNA breaks spanning multiple cell diameters. These crossfire 

effects can significantly improve responses in tumors with low or heterogeneous target 

expression (24, 25). The strategic application of a 177Lu antibody-conjugate addresses the 

challenge of heterogeneous LRRC15 expression within tumor tissue, thereby enhancing the 

therapeutic efficacy of the treatment. DUNP19 also binds to an epitope shared by human and 

murine LRRC15 and we do not expect the antibody to demonstrate vastly different 

biodistribution upon translation to patients. Moreover, in vivo cellular internalization, as 

observed for the DUNP19-based radioconjugate, has been reported to enhance radioisotope 

retention and reduce extracellular shedding of the radioisotope (26). In agreement with other 

beta-emitting RIT, we noted a decrease in white and red blood cells after administration of 

[177Lu]-DUNP19 (27). However, the bone marrow recovered within an expected time frame 

after treatment injection, allowing for serial dosing. 

The LRRC15 protein is representative of a distinct set of TGFβ-driven genes that are 

predictors of immune checkpoint blockade resistance and unfavorable tumor evolution (4, 8). 

Given LRRC15's known association with TGFβ, immunosuppression, and the observed 

potential immunomodulatory effects of RIT (28), our second aim was to explore whether the 

anti-tumor activity induced by [177Lu]-DUNP19 could reverse the signaling profile associated 
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with immunosuppression and resistance to immunotherapy. To target tumor-supporting 

immunosuppressive stroma, many investigations have focused on fibroblast activation protein-

α (FAP), a membrane bound serine protease overexpressed by CAFs (29). However, normal 

tissues and healthy activated fibroblasts also express FAP during wound healing, such as the 

activation of myofibroblasts post-myocardial infarction. While both LRRC15 and FAP have 

been shown to be upregulated by TGFβ (30), recent studies revealed a unique subset of TGFβ-

driven CAFs that express LRRC15 and are negative for FAP expression (4, 8), and that these 

LRRC15+ CAFs are associated with CD8+ T-cell exclusion (8). During our therapeutic studies, 

a notable observation emerged: LRRC15+ tumors exhibited a concurrent reduction in both 

growth and the TGFβ–LRRC15 gene signature upon exposure to RIT. However, within a small 

subset (2 out of 12) of LRRC15- breast cancer (HCC1954) cases, tumor volumes did not 

decrease following the administration of [177Lu]-DUNP19. Moreover, this subset exhibited a 

persistent TGFβ–LRRC15 signature, suggesting a nuanced response within this specific context.  

We also show that LRRC15-targeted RIT leads to differential expression of genes in stromal 

cells related to immune cell function, including genes indicative of activation and proliferation 

of T-cells (Cd3, Cd8, Gimap7, Gzmk, Lat, Lck, Eomes) and natural killer cells (Cxcr6, Eomes, 

Prf1). In the stroma of U118MG tumors, the T-cell suppressor gene encoding PD-1 was 

downregulated, suggesting that [177Lu]-DUNP19 may contribute to relief of immune cell 

suppression and T-cell exclusion, and that immune-based adjuvant therapies may be 

complementary to LRRC15-RIT. The transcriptomic remodeling of immune-related signaling 

pathways and expression of immune activating cytokines after RIT may increase immune cell 

activation and infiltration in previously immunologically “cold” tumors. Additionally, ablation 

of radio-resistant stroma may further increase immune cell invasion and help amplify the anti-
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tumor immune response, but future studies in immunocompetent mouse models will be required 

to investigate [177Lu]-DUNP19 RIT’s effects on the adaptive immune system and potential 

synergies with immunotherapies. 

In the broader context of cancer treatment, our findings provide a novel technique for non-

invasive imaging and treatment of a wide range of aggressive tumors with limited options for 

targeted therapy. Critically, we demonstrate that [177Lu]-DUNP19 therapy can be effective 

despite heterogenous LRRC15 expression within tumor tissue and that targeted radiation by 

[177Lu]-DUNP19 treatment is not limited to LRRC15+ tumor cells, taking advantage of the 

crossfire effects of beta-radioimmunotherapy. In addition, LRRC15’s regulation by TGFβ 

allows for successful targeting of pro-tumorigenic TGFβ signaling mechanisms that have been 

shown to contribute to immunotherapy resistance and poor prognosis. We show, at a 

transcriptomic level, that these TGFβ-LRRC15 signatures are largely erased in [177Lu]-

DUNP19-treated tumors and expression of other anti-tumor immune pathways increases. Based 

on these observations, we hypothesize that the eradication of this TGFβ-LRRC15 signature in 

tumor cells would be synergistic with existing immunotherapies and allow for immune cell 

infiltration, as demonstrated by Krishnamurty et al (8). However, this remains an open question, 

as more advanced syngeneic models will be required to answer questions about immune 

functionality after LRRC15-targeted RIT. In summary, we propose targeting LRRC15+ cells 

with [177Lu]-DUNP19 as a novel theranostic strategy that provides sustained tumor control 

across models of LRRC15+ disease, improves survival, and reprograms the transcriptomic 

landscape of pro-tumorigenic and immunosuppressive mechanisms within the TME, all with 

minimal side effects. 
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3.11 Supplementary Figures 

 

Supplemental Figure 1. DUNP19 binds to human and murine LRRC15 protein. A. DUNP19 

binding kinetics to human (left) and murine (right) LRRC15 recombinant protein using the Bio-

Layer Interferometry Octet system. Association of 100ug/mL DUNP19 (pink trace) or 

100ug/mL IgG1 isotype control (green trace) are shown in real time over 850 s. Association and 

dissociation of DUNP19 to hLRRC15 or mLRRC15 is measured by binding rate (nm). B. The 

11 unique proteins present after an immunoprecipitation-mass spectrometry (IP-MS) analysis of 

crude protein lysates from U118MG cells incubated with Protein G magnetic bead-conjugated 

DUNP19. Pulldown-MS composition was compared to protein composition present in non-

ABSupplemental Figure S1
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specific IgG1 with U118MG lysates. LRRC15 is among the top proteins in complex with 

DUNP19. 

 

  
Supplemental Figure 2. Live confocal microscopy-based assays to determine internalization 

kinetics of DUNP19 after chelator conjugation and in various cell types. A. AF647-DUNP19 or 

AF647-DUNP19-DOTA conjugate internalize into U118MG cells at similar rates. To determine 

internalization rate, images were taken every hour across 12 h at 37C. Time to 50% 

internalization (T1/2) of AF647-DUNP19 (measured by ratio of cytosolic intensity of AF647-

DUNP19 compared to membrane integrated intensity) was 5.16 ± 0.83 h. The AF647-DUNP19-

DOTA conjugate internalized at a similar rate, with a T1/2 of 5.75 ± 0.93 h. B. Internalization of 

AF647-DUNP19 in fibroblast-derived Hs819.T cells compared to osteosarcoma SAOS2 cancer 

cells. To determine Internalization rate was determined by an 8 h microscopy-based assay with 

images were taken every 10m at 37C. Time to 50% internalization (T1/2) of AF647-DUNP19 in 

SAOS2 cells was 1.31 ± 0.14 h. T1/2 internalization of AF647-DUNP19 into Hs819.T cells was 

significantly slower with a T1/2 of 1.66 ± 0.09 h. 

Effect of chelator on DUNP19 internalization (U118MG)

AB 

Internalization of DUNP19 in fibroblast cells (Hs819.T)

Supplemental Figure S2
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Supplemental Figure 3. Expanded tumor biodistribution of [177Lu]-DUNP19 in U118MG, 

SAOS2, HuO9, K7M2LRRC15+ and HCC1954 xenograft models across 6 timepoints; 6h, 24h, 

48h, 72h, 168h, and 336h. Tumor accumulation of [177Lu]-DUNP19 peaks between 48-72 h for 

all models and is represented as %IA/g (percent injected activity per gram tissue). At 72h, 

tumoral accumulation is as follows; U118MG: 14.31 ± 2.01 %IA/g, SAOS2: 23.07 ± 2.90 

%IA/g, HuO9: 43.93 ± 7.89 %IA/g, K7M2LRRC15+: 13.60 ±1.49 %IA/g, HCC1954: 11.83 ± 2.50 

%IA/g. 

  
Supplemental Figure 4. IHC and IF analysis of ex vivo LRRC15+ tumor models. A. Ex vivo 

immunohistochemistry analysis of HuO9, K7M2LRRC15+, and K7M2 wildtype tumor sections 
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harvested from untreated animals. Images are stained for LRRC15 and counterstained with 

hematoxylin, shown at 4x and 20x. 

B. Confocal microscopy of tumor tissues obtained from animals treated with fluorescently 

labeled DUNP19. Confocal images of s.c. HuO9 (LRRC15+ cancer cells / LRRC15+ CAF) 

tumors harvested at 72 h post- i.v. injection of AF594-DUNP19 (yellow). Tumor sections were 

co-stained for Actin (red), DNA (DAPI, blue) and LAMP1 (lysosomal marker, green). Images 

show that DUNP19 accumulates in the cellular cytoplasm and co-localized with LAMP1 

indicating intracellular trafficking of the mAb to the lysosomal compartments (arrow) after 

binding to LRRC15.                              

  
Supplemental Figure 5. Animal weights across tumor models (HuO9, U118MG, HCC1954) 

corresponding to therapy studies in Figure 3 (HuO9, top), and Figure 4 (U118MG, middle, and 

HCC1954, bottom). Gray arrows denote administration of [177Lu]-DUNP19 or PBS. Overall, 

weight was stable throughout [177Lu]-DUNP19 therapy studies across tumor models. 

Supplemental Figure S5
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Supplemental Figure 6. Toxicity studies examining blood cell counts during treatment course 

across tumor models (HuO9, U118MG, HCC1954). HuO9 (top), U118MG (middle) and 

HCC1954 (bottom) exhibited transient reductions in lymphocytes and monocytes after 

administration of [177Lu]-DUNP19, which recovered to baseline levels within 3 weeks, 

recapitulating toxicity profiles observed in clinical cases. 

Supplemental Figure S6
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Supplemental Figure 7. Principal component analysis (PCA) plots of whole transcriptome 

cancer cell reads (left) and stromal cell reads (right). PC1 and PC2 show separation of treated 

samples in distinct clusters that were determined to correlate with LRRC15 transcript responses 

to [177Lu]-DUNP19 RIT. In HuO9 and HCC1954 tumor models, treated cancer cells and stromal 

cells from the same sample clustered in similar patterns. U118MG and HuO9 treated tumors 

were grouped into three distinct clusters, whereas HCC1954 treated tumors formed two clusters 

that were differentiated from untreated mice. 
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Supplemental Figure 8. Relative cell characterization of individual tumor samples using 

Syllogist. Overall, 43 cell types were analyzed and relative expression was averaged into seven 

summary cell types as shown (Germ/ESC, Neural/Glial, Mesenchymal, Endothelial, Epithelial, 

HSPC, Myeloid, Lymphoid). Normalized relative expression of cell types is presented on a scale 

of 0 (underrepresented cell type, not present in sample) to 1 (overrepresented cell type, present 

in sample). U118MG and HuO9 cancer cells were characterized as mesenchymal phenotypes, 

whereas HCC1954 cancer cells were majority epithelial (left plots), in line with relative 

LRRC15 cancer cell expression between the three models. In stromal cells, no significant cell 

phenotype was observed in any of the three models (right plots). 
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Supplemental Figure 9. Stromal cell expression of Lrrc15 and Tgfb1. A. Transcript data from 

clustered (Supp. Fig.7) tumor stroma of Lrrc15 (top) and Tgfb1 (bottom) relative expression, 

represented by box-and-whisker plots. HuO9 transcripts are plotted in green (left), U118MG in 

orange (middle), and HCC1954 in grey (right). In HuO9 and U118MG stromal cells, expression 

of Tgfb1 is significantly reduced in cluster 3 (p<0.05). Across tumor models, changes in Lrrc15 

transcript expression were not significant between treated and untreated samples. B. Comparison 

of relative baseline transcript expression of Lrrc15 in tumor stroma, comparing HCC1954 

(right), HuO9 (middle) and U118MG (left). In HCC1954 tumors, median stromal Lrrc15 

expression is high (8.91) compared to moderate expression in HuO9 (3.02) and U118MG (3.48). 
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Table 1. Biodistribution of [177Lu]-DUNP19 in male BALB/c-nu/nu mice bearing SAOS2 
osteosarcoma xenografts 6-336 h after intravenous injection. The measured radioactivity of 
different organs is expressed as %ID/g and presented as an average value from 4 animals ± SD.
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Table 2. Biodistribution of [177Lu]-DUNP19 in male BALB/c-nu/nu mice bearing HuO9 osteosarcoma 
xenografts 6-336 h after intravenous injection. The measured radioactivity of different organs is 
expressed as %ID/g and presented as an average value from 4 animals ± SD.
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Table 3. Biodistribution of [177Lu]-DUNP19 in male BALB/c-nu/nu mice bearing U118MG 
glioblastoma xenografts 24, 48 and 72 h after intravenous injection. The measured radioactivity of 
different organs is expressed as %ID/g and presented as an average value from 4 animals ± SD. 
*GI tract uptake is presented as %ID only.
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Table 4. Biodistribution of [177Lu]-DUNP19 in male BALB/c-nu/nu mice bearing murine K7M2LRRC15+ 
osteosarcoma and human HCC1954 breast cancer xenografts after intravenous injection. The measured 
radioactivity of different organs is expressed as %ID/g and presented as an average value from 4 animals 
± SD. *GI tract uptake is presented as %ID only.
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Table S1. Gene set enrichment analysis of HuO9, U118MG, and HCC1954 cancer cells
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CHAPTER 4. KEY REGULATORY ELEMENTS OF THE TGFβ-LRRC15 AXIS 
PREDICT DISEASE PROGRESSION AND IMMUNOTHERAPY RESISTANCE 

ACROSS CANCER TYPES  
 

Transforming growth factor-beta (TGFβ) has dual roles in cancer, initially suppressing tumors 

but later promoting metastasis and immune evasion. Efforts to inhibit TGFβ have been largely 

unsuccessful due to significant toxicity and indiscriminate immunosuppression. Leucine-rich 

repeat-containing protein 15 (LRRC15) is a TGFβ-regulated antigen expressed by 

mesenchymal-derived cancer cells and cancer-associated fibroblasts (CAFs). In preclinical 

studies, ablation of TGFβ-driven LRRC15+ CAFs increased tumor infiltration of CD8+ T cells. 

However, the underlying pathobiological mechanisms prompting TGFβ’s upregulation of 

LRRC15 expression are unclear. Using an integrated approach combining functional compound 

screening with single-cell RNA sequencing, we reveal key genomic features regulating TGFβ’s 

ability to increase LRRC15 expression on cancer cells. Construction of gene regulatory 

networks converged our analyses on four key genes—MMP2, SPARC, TGFβR2, and 

WNT5B—central to TGFβ-induced LRRC15 pathobiology. Validation of these genes in cell 

models and their use in predicting immunotherapy responses highlight their potential in refining 

immunotherapy strategies and personalizing co-treatment options. 

 

Adapted from: “Key Regulatory Elements of the TGFβ-LRRC15 Axis Predict Disease 

Progression and Immunotherapy Resistance Across Cancer Types” 

Claire M. Storey,  Michael Cheng,  Mohamed Altai, Julie E. Park, Julie Tran,  Smiths S. Lueong,  

Daniel Thorek, Liqun Mao, Wahed Zedan, Constance Yuen, Alexander Ridley, Marija Trajovic-
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4.1. INTRODUCTION 

The transforming growth factor-beta (TGFβ) signaling pathway, recognized for its dual role in 

cancer biology, acts as a tumor suppressor in early-stage malignancies but promotes progression, 

metastasis, and immune evasion in aggressive cancers and advanced stages of disease [1-3]. This 

paradoxical behavior complicates targeting of TGFβ in oncology, as its functions vary widely 

from tumor suppression to the facilitation of epithelial-mesenchymal transition (EMT) and 

therapy resistance [4-6]. TGFβ also plays a role in both primary and acquired resistance to 

treatment; signaling initially contributes to an immunosuppressive microenvironment that 

shields emerging tumors from immune surveillance. During acquired resistance, TGFβ signaling 

intensifies, enabling cancer cells to evade ongoing therapies by promoting invasiveness, 

metastasis, and maintaining an immunosuppressive microenvironment [7-9]. 
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Leucine-rich repeat-containing protein 15 (LRRC15) has been recognized for its role as 

surrogate marker for TGFβ signaling and its association with immunosuppression and therapy 

resistance in aggressive TGFβ-mediated malignancies, notably in treatment-resistant 

osteosarcoma [10]. Its predominant association with cancer-associated fibroblasts (CAFs) in the 

tumor microenvironment (TME) of immune-excluded, metastatic, and aggressive primary 

tumors further underscores its therapeutic relevance [11]. Investigations into the TGFβ-driven 

TME have identified that LRRC15 is a part of an 11-gene signature that correlates to immune 

checkpoint therapy (ICT) resistance in patients [12-14]. Furthermore, recent data from 

engineered mouse models demonstrated that targeted depletion of LRRC15+ CAFs markedly 

diminishes tumor fibroblast content and augments CD8+ T cell efficacy [13]. Our previous 

independent verification using a novel radiotheranostic antibody-based approach confirmed that 

radioimmunotherapeutic targeting of LRRC15+ cells significantly decreased tumor burden and 

stopped disease progression, along with suppression of genes linked to TGFβ-driven 

immunotherapy resistance [15]. 

  

In this study, we evaluated the complex interplay of TGFβ signaling and LRRC15 expression 

within mesenchymal stem cell (MSC)-derived tumors. We show a bifurcated cellular response 

to TGFβ activity; certain tumor cells undergo a rapid induction of LRRC15, while expression is 

unaltered in others. To further explore the transcriptional dynamics observed in TGFβ-

responsive LRRC15+ cell models, we comprehensively investigated how this differential 

expression of LRRC15 is indicative of TGFβ-mediated tumor pathobiology. Integration of high-

throughput screening (HTS) to identify small molecules that modulate TGFβ-mediated LRRC15 

induction, along with single-cell RNA sequencing (scRNAseq) to identify the gene networks 
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and key regulators of LRRC15 inducibility, identified four genes—TGFβR2, SPARC, MMP2, 

and WNT5B—that activate TGFβ-mediated LRRC15 expression. Further evaluation in patient 

tumor cohorts revealed that these activating genes, alongside LRRC15, are a prognostic 

determinator for patient response to immunotherapy and the progression of aggressive 

malignancies.  

 

4.2. MATERIALS AND METHODS 

Cell Lines  

CALU1 (non-small-cell lung cancer), KASUMI-2 (leukemia), NCI-H196 (small cell lung 

cancer), RPMI7951 (melanoma), SAOS2 (osteosarcoma), U118-MG (glioblastoma), U2OS 

(osteosarcoma) and U87-MG (glioblastoma), were purchased from ATCC. HUO9 

(osteosarcoma) was purchased from the Japanese Collection of Research BioSources (Tokyo, 

Japan). All cell lines were cultured according to the manufacturer’s instructions (base media 

with 10% FBS) and frequently tested for Mycoplasma by PCR. 

  

Flow Cytometry 

Cells were serum-starved in appropriate base media + 0.3% FBS for 16 hours, followed by 

treatment with recombinant human TGFβ1 (0.001ng/mL-10ng/mL, Peprotech, #100-21C) for 

24 hours. The LRRC15-binding antibody DUNP19 

(https://doi.org/10.1101/2024.01.30.577289) was conjugated to Alexa Fluor 647 with an amine-

reactive antibody labeling kit (ThermoFisher, #A20186) following manufacturer protocols for 

labeling. Cells were stained for LRRC15 expression with 100ng/mL DUNP19-AF647 for 45 

minutes at room temperature and analyzed using the Attune NxT Flow Cytometer (Invitrogen) 
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in collaboration with UCLA’s Jonsson Comprehensive Cancer Center Flow Cytometry Shared 

Resource. Data was analyzed using FlowJo (Version 10, BD Biosciences). 

 

Confocal Microscopy 

Cells (0.002 x 106 cells/well) were seeded in appropriate base media + 0.3% FBS for 16 hours 

in 384-well u-clear flat bottom black plates (Greiner, #781092) before treatment with 

recombinant human TGFβ1 (0.001ng/mL-10ng/mL) for 24 h. Cells were fixed with 3.7% PFA 

in PBS for 15 minutes at room temperature, washed, and stained with 100ng/mL DUNP19-

AF647 and Hoechst 33342 at a 1:2000 dilution (Invitrogen, #H1399) for 2 hours at room 

temperature in the dark. Cells were washed with PBS and imaged using a ImageXpress Micro 

Confocal High-Content Imaging microscope (Molecular Devices). For each well, images were 

taken at 10x objective with 4 sites imaged per well. For TGFβ inhibition, 0-100uM Galunisertib 

(MedChemExpress, #HY-13226) was added 16 h prior to addition of 0-10 ng/mL TGFβ1. After 

24 h, cells were fixed and stained for LRRC15 as described above. 

 

Small Molecule Screening 

The LOPAC1280 compound library (Sigma Aldrich) was used to identify inhibitors that could 

block TGFβ’s induction of LRRC15 protein expression. Compounds were dissolved at 1 mM in 

DMSO, and 250 nL of each was transferred into 384-well u-clear flat-bottom black plates, 

resulting in a final concentration of 5 μM. The liquid transfer was performed using a Biomek 

automated liquid handler (Beckman Coulter). 
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TGFβ-responsive cells (0.04 x 106 cells/mL; HUO9, RPMI7951, or U118-MG) were 

resuspended in media containing 0.3% FBS, transferred to the prepared plates (50 µL/well, 2000 

cells), and incubated for 16 h. After incubation, plates were treated with a final concentration of 

4 ng/mL TGFβ1 diluted in serum-starved media; this TGFβ1 concentration was chosen because 

it resulted in maximal LRRC15 induction in flow cytometry and confocal microscopy assays 

across cell lines. Columns 1-2 of the 384-well plates were treated with TGFβ1 without any 

compounds, serving as positive controls for LRRC15 induction. In contrast, columns 23-24 were 

left untreated to establish baseline LRRC15 expression. 

 

After 24 h, cells were fixed with 3.7% PFA in PBS for 15 minutes at room temperature, washed 

with PBS, and stained with 100 ng/mL DUNP19-AF647 and Hoechst 33342 at a 1:2000 dilution 

(Invitrogen, #H1399) for 2 h at room temperature in the dark. After staining, cells were washed 

with PBS before imaging with a ImageXpress Micro Confocal High-Content Imaging 

microscope (Molecular Devices). For each well, images were taken at 10x objective with 4 sites 

imaged per well. 

 

Image Analysis of Confocal Microscopy  

Images from the plates were processed using a custom image analysis module in MetaXpress. 

Nuclei were first identified based on Hoechst 33342 staining, and nuclei count, integrated 

Hoechst 33342 intensity, and nucleus size were recorded. LRRC15+ cells were defined by 

staining intensity at or exceeding a threshold of 2000 above background. The number of 

LRRC15+ cells was normalized to total nuclei count, and the average %LRRC15+ cells per well 

was calculated by averaging values across all imaged sites within each well. 
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A standardized Z-score was calculated by subtracting the mean %LRRC15+ value of all wells 

within the plate and dividing by the standard deviation in %LRRC15+ scoring. Z-scores were 

similarly calculated for nuclei counts to identify toxic compounds, excluding control wells from 

all calculations.  Hit compounds were defined as any non-toxic compounds (nuclei count Z-

score > -1) that reduced LRRC15 staining to a Z-score of < -3. 

 

Silencer RNA  

Silencer RNAs targeting selected genes were obtained from ThermoFisher Scientific (catalog 

#4392420). For a complete description of siRNA transfection, see supplementary methods. 72 

h after siRNA transfection, cells were treated with 0-8 ng/mL TGFβ1 for 24 h, followed by 

fixation and LRRC15 staining as described above. Successful transfection was confirmed by 

loss of LRRC15 expression in all three siLRRC15 conditions. Plates were imaged using a 

ImageXpress Micro Confocal High-Content microscope, and images were analyzed with a 

custom module in MetaXpress (see supplementary methods). Total LRRC15 expression for each 

siRNA condition was quantified by measuring the average integrated intensity of LRRC15 

staining in each well, normalized to the staining intensity in non-transfected, TGFβ1-treated and 

untreated controls. 

 

scRNAseq Analysis 

scRNAseq datasets from all cell lines (6 cell lines, 2 replicate per cell line) were analyzed 

together using Seurat’s library size normalization, log transformation, scaling, principal 

component analysis (PCA), K-nearest neighbor detection, and UMAP visualizations [44-45]. 

Standard quality control (QC) procedures were applied to filter out poor quality cells, keeping 
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only cells with mitochondrial gene percentage below 5% and gene count between 200 and 5000. 

We kept genes that were expressed in at least 100 cells. QC plots are reported in Supplemental 

Figure 3. In total, 57,771 cells passing QC across all cell lines were kept for downstream 

analysis. With hdWGCNA’s metacell approach [46] cells with similar expression were 

aggregated and averaged within each cell line to reduce gene expression sparsity for differential 

gene expression analysis and network modeling. To identify DEGs associated with TGFβ 

inducibility while considering the sample size (2 replicates per cell line), a one sample-vs-

opposite group DEG analysis was performed consisting of 6 separate Wilcoxon rank sum tests 

comparing each cell line (e.g., one cell line in the TGFβ inducible group) to all cell lines in the 

opposite comparison group (e.g., all cell lines in the non-inducible group). Only DEGs that were 

consistent across all comparisons were considered for downstream analysis to avoid cell line-

specific variation that could heavily skew the gene counts distribution and produce false 

positives. All significant DEGs passing false discovery rate (FDR) <5% and large-effect DEGs 

with an absolute value log fold change of at least 0.5 were used as two DEG sets for downstream 

analysis.  

 

Pathway Analysis of DEGs using GSEA 

Pathway enrichment of DEGs and SCING and hdWGCNA modules and was conducted using 

the EnrichR R package for Gene Ontology Biological Process and Reactome databases 

separately [47]. Benjamini Hochberg (BH) correction was performed to control the false 

discovery rate. 

 

Network Analysis 
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SCING regulatory network inference [21] was employed on scRNAseq data from all cell lines 

to assess gene regulatory relationships and to identify subnetworks specific to TGFβ 

inducibility. When given scRNAseq data, SCING trains gradient boosting machines to predict 

target gene expression based on their co-expressed genes and extracts feature importance 

measures of the feature genes to weight directed network edges. To add robustness, SCING 

pseudo-bulks cells through Leiden clustering [22] to mitigate gene sparsity and implements a 

bootstrapping strategy to generate and aggregate gene regulatory networks to produce a 

consensus GRN across subsamples of the data [21]. With the final GRN, Leiden clustering was 

used to identify highly connected subnetworks, or modules, and generated module expression 

profiles for each cell line using the module eigengene approach from hdWGCNA [19].  

 

As a complementary network approach, hdWGCNA was run to establish a correlation-based co-

expression network method for single cell data [19]. Modules from this network were obtained 

through the method’s topological overlap matrix and corresponding expression using the module 

eigengene approach [19].  We performed module-trait association analysis to correlate TGFβ 

inducibility with the modules. To identify modules associated with TGFβ responsiveness, the 

one sample-vs-opposite group approach mentioned in the DEG analysis was performed on the 

module expression data for SCING and hdWGCNA modules separately. Pathway enrichment 

for SCING and hdWGCNA modules was conducted using the EnrichR R package for Gene 

Ontology Biological Process and Reactome databases separately [47]. BH correction was 

performed to control the false discovery rate. 

 

In Silico Drug Repositioning Analysis Using scRNAseq DEGs and Network Modules  
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To identify drug candidates matching the TGFβ inducible gene sets from scRNAseq (two DEG 

sets, one with all significant DEGs and the other with upregulated DEGs with log fold change 

>0.5;  two differential network module sets from SCING and hdWGCNA), we applied a one-

tailed Fisher’s exact test between each of the four TGFβ inducible gene sets and curated drug 

target gene signatures from the L1000 forward drug signature database [23]. 

 

The L1000 database consists of drug signatures from a variety of in vitro and in vivo studies in 

various cell lines and tissues, drug dosages, and response times. We subset the L1000 drug 

signatures to focus on human datasets. BH FDR correction was applied to the overlap analysis 

to derive significant overlaps at FDR<5% and drugs with fewer than 5 gene overlaps with the 

scRNAseq signatures were eliminated from the significant results. Significant drugs from our 

in-silico drug repositioning analysis were overlaps with those from our in-vitro high throughput 

screening to identify consistent drugs. The scRNAseq-based TGFβ inducible gene sets targeted 

by these replicated drugs were used for candidate regulatory gene prioritization, where gene 

signatures were overlapped across the four TGFβ inducible gene sets targeted by replicated 

drugs to identify consistent target genes with potential relationships to the TGFβ-LRRC15 axis. 

  

Key Driver Analysis to Identify Potential Regulators of TGFβ-LRRC15 Axis 

Potential regulators of the TGFβ-LRRC15 axis were identified using Key Driver Analysis 

(KDA) on the SCING GRN [46]. KDA uses the GRN topology to identify hub genes with high 

connectivity to gene sets of interest. It identifies hub gene neighborhoods enriched for the gene 

sets through a chi-like statistic, and measures significance of the enrichment based on the null 

distribution of enrichment scores generated from permuted networks. The significant hub genes 



 129 

are proposed as the key drivers of the gene sets of interest. We performed KDA on SCING GRN 

modules to detect key drivers within each module. 

 

Network Visualization 

Network visualization was performed on the SCING network using Cytoscape [48]. The 

network visualized in Figure 4C include the top drug target candidates from the in-silico drug 

screen and their direct paths to LRRC15 and TGFB. All neighbors of the drug targets are found 

in Supplemental Figure 2B. Because these networks focus on the drug targets, some key drivers’ 

connections are not visualized and thus show little connectivity. 

 

In silico analysis 

Gene expression data from the different tumor entities were obtained from publicly available 

repositories for the following entities (breast cancer GSE25066), glioblastoma multiform 

(PRJNA482620) and skin cutaneous melanoma (phs00452) or in-house generated (pancreatic 

cancer). The expression data for all genes constituting the LRRC15 signature was extracted. A 

regression model with time-to-event outcome was performed and the regression coefficients 

were used to compute the LRRC15 signature as previously described [14]. Kaplan-Meier 

survival analysis was performed for the LRRC15 signature for all entities after an optimal-cutoff 

was determined using the Survminer package with R version 4.4.1 environment. 

 

4.3. TGFβ1 induces LRRC15 expression in cancer cells 

Previous studies have shown that TGFβ1 induced LRRC15 expression in MSCs under 

supraphysiological conditions over extended periods of time [16]. In this study, we investigated 
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the response of LRRC15 expression in cancer cells to physiologically relevant TGFβ1 

concentrations, simulating conditions within the TME [17]. Nine LRRC15+ cancer cell lines 

(CALU1, KASUMI2, SAOS2, U2OS, HUO9, NCI-H196, U118, U87, RPMI7951) [15] 

underwent 24-hour incubation in reduced-serum media prior to reintroduction of TGFβ1 at 

concentrations from 0 to 10 ng/mL (Figure 1A). Subsequently, plasma membrane-associated 

LRRC15 was detected via flow cytometry using the AlexaFluor-647 labeled anti-LRRC15 IgG1 

antibody (DUNP19). 

 

These assessments revealed variable responses to TGFβ, with minimal changes in LRRC15 

expression levels in CALU1 (percent change in LRRC15 staining = -21.94%, p = 0.2805), 

KASUMI2 (-8.16%, p = <0.0005), SAOS2 (+4.89%, p = 0.0517) and U2OS (+18.98%, p = 

0.0008), while pronounced increases were noted in HUO9 (+210.26%, p = 0.0220), NCI-H196 

(+70.82%, p = <0.0005), U118 (+173.06%, p = <0.0005), U87 (+53.65%, p = <0.0005), and 

RPMI7951 (+76.45%, p = 0.0038), (Figure 1A). For subsequent analyses, the latter cell lines 

were deemed “TGFβ-responsive” for their ability to upregulate LRRC15 after treatment with 

exogenous TGFβ1. Among the TGFβ-responsive cell lines, we focused on three models 

representing aggressively growing malignant tissues from different anatomical origins: HUO9 

(osteosarcoma), RPMI7951 (malignant melanoma), and U118 (glioblastoma multiforme). Using 

a confocal microscopy-based approach with an AlexaFluor-647-conjugated DUNP19, we 

confirmed a significant increase in LRRC15 expression in cells treated with TGFβ compared to 

controls as shown for the RPMI7951 cell line (Figure 1B). Furthermore, pretreatment with the 

TGFβ receptor inhibitor galunisertib before addition of TGFβ1 effectively suppressed LRRC15 
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induction in HUO9, RPMI7951, and U118 cells, demonstrating the role of TGFβ in modulating 

LRRC15 expression (Figure 1C). 

 

Next, we sought to annotate the molecular mechanisms impacting TGFβ's regulation of LRRC15 

(Figure 1Di-iii). We conducted a high-throughput screen using the LOPAC1280 library, which 

comprises 1,280 well-annotated small molecules spanning various mechanisms of action and 

drug classes (Figure 1Dii-iii). LRRC15+ cells were incubated in reduced-serum media to deplete 

endogenous cytokines before treatment with the compound library and TGFβ (Figure 1Di). 

Following compound incubation, cells were treated with TGFβ and assessed for LRRC15 

expression via confocal microscopy (Figure 1Di). All screened compounds were categorized by 

class and mechanism, and the normalized results were presented as their average effect on 

LRRC15 expression (Figure 1Ei). Compounds that significantly inhibited TGFβ-driven 

LRRC15 expression, defined as those reducing the integrated intensity of LRRC15 by more than 

three standard deviations (SD) from the plate mean, were identified as hits (Figure 1Eii) In 

addition, compounds were assessed for toxicity; those reducing cell viability >3 SD from the 

mean were excluded from subsequent analyses. Ultimately, we identified 26, 22, and 24 hits in 

the HUO9, RPMI7951, and U118 cell lines, respectively (Supplemental Table 1). 

 

Established TGFβR2 antagonists such as SB-525334 and RepSox further validated the 

specificity of the assay and the mechanism by which LRRC15 is upregulated (Supplemental 

Table 1). Notably, various histaminergics, antivirals, and hormone modulators, for example 

chloroquine, Tenidap, and hydrocortisone, also reduced TGFβ-induced LRRC15 expression, 

underscoring the diverse roles of TGFβ in inflammation and immune modulation via diverse 
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biological pathways (Figure 1E). Other compound classes, including potassium channel 

inhibitors and angiotensin inhibitors, increased LRRC15 expression above baseline (Figure 1E). 

These compound hits were particularly intriguing given LRRC15’s previously reported role in 

SARS-CoV-2 infection and structural similarity to the angiotensin-converting enzyme ACE2 

[18], suggesting some utility in preventing viral infection. All gene targets from the effective 

compounds within our screen were compiled for further analysis. 
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FIGURE 1. Dissection and modulation of the TGFβ-LRRC15 axis in select cancer cell 

lines. (A) LRRC15+ cancer cell lines were exposed to TGFβ1 concentrations from 0 to 10 
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ng/mL following 24 hours of cytokine starvation to simulate physiological conditions. Flow 

cytometry analysis shows variable LRRC15 expression responses across cell lines, with minimal 

changes observed in CALU1, KASUMI-2, SAOS2, and U2OS (TGFβ non-inducible, red), and 

significant upregulation in HUO9, NCI-H196, RPMI7951, U118, and U87 (TGFβ inducible, 

blue) (P < 0.0001). LRRC15 staining is represented as mean ± SD. (B) Confocal microscopy of 

LRRC15 expression in TGFβ-responsive cell line RPMI7951 after treatment with or without 

TGFβ. Cells were stained with Hoechst (nuclei, cyan) and anti-LRRC15 IgG1-AlexaFluor-647 

(magenta). (C) Pretreatment with the TGFβ receptor inhibitor Galunisertib significantly 

suppressed TGFβ-induced LRRC15 expression in a dose-dependent manner (p < 0.0001), 

confirming pathway specificity. Data is expressed as average LRRC15 expression across U118, 

RPMI7951, and HUO9 cells. (D) Schematic of high-throughput screening workflow. (i) 

LRRC15+ cells were pre-treated with the LOPAC1280 compound library, followed by TGFβ1 

reintroduction and analysis of LRRC15 expression using confocal microscopy. (ii) Compounds 

were classified based on mechanism of action, and the effects on LRRC15 expression were 

recorded. (iii) 1,280 compounds were screened, and 282 non-toxic compounds were identified 

(cell count Z-score > -3). Of these, 72 compounds were hits, reducing LRRC15 expression below 

3 standard deviations from the plate mean. (E) Heatmap (red = increase, blue = decrease) of 

LRRC15 staining Z-scores across compound classes (left heat map) and all hit compounds (right 

heat map) after screening with LOPAC1280 compound library. 

 

 

4.4. Single-cell sequencing of TGFβ-responsive cell lines reveals distinct LRRC15-related 

signatures 
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After identifying compounds that could disrupt the TGFβ-LRRC15 pathway, we performed 

scRNAseq on the cell lines utilized in the compound screen. In addition to the screened cell 

lines, three TGFβ non-responsive cell lines (CALU1, KASUMI2, SAOS2) were also sequenced 

and used in subsequent differential gene and pathway analyses (Figure 2A). To reduce gene 

expression sparsity, we used a high-dimensional weighted gene co-expression network analysis 

(hdWGCNA) metacell aggregation approach [19], which aggregates neighboring cells based on 

gene expression similarity and averages their expression to create metacells that are robust to 

scRNAseq dropouts Figure 2A.  This enabled us to identify individual differentially expressed 

genes (DEGs) and transcriptomic pathways that were exclusive to TGFβ-responsive cells. While 

the lower dimension representation of the gene expression data did not separate the six cell lines 

by TGFβ inducibility (Figure 2B), we identified sets of DEGs with consistent effects in TGFβ-

responsive cells (Figure 2C). Key cell proliferation and non-canonical TGFβ signaling genes, 

including TGFβ activator LTBP1 (latent-transforming growth factor beta-binding protein 1) and 

Wnt ligand WNT5B, were upregulated in TGFβ-responsive cells. Interestingly, T-cell 

modulators and inflammatory driver genes such as IL-7R (interleukin-7 receptor) [20] were 

downregulated in TGFβ-inducible cell lines, providing insights into the potential 

immunoregulatory mechanisms within the TGFβ-LRRC15 pathway (Figure 2C). Gene set 

enrichment analysis of upregulated genes in the TGFβ-responsive cells showed enrichment of 

apoptotic processes and cytokine signaling within immune pathways, while downregulated 

DEGs were associated with translation and ribosomal function (Figure 2D). Furthermore, the 

DEG effect, calculated using metacell expression, followed a similar pattern in single cell 

expression UMAP plots. Several genes such as SPARC, WNT5B, MMP2, and EID1, showed a 

stark upregulation of expression within TGFβ-responsive cells (Figure 2E). 
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FIGURE 2. ScRNAseq reveals distinct transcriptional signatures in TGFβ-inducible 

cancer cell lines. (A) Schematic overview of the scRNAseq workflow. TGFβ-inducible (HUO9, 

RPMI7951, U118) and TGFβ non-inducible (CALU1, KASUMI2, SAOS2) cell lines were 

sequenced after TGFβ stimulation. Gene expression data were subjected to quality control, 

normalization, and clustering, followed by hdWGCNA metacell aggregation. DEGs between 

TGFβ-inducible and non-inducible cell lines were identified and enriched for pathways in Gene 

Ontology (GO) and Reactome databases using hypergeometric tests implemented in Enrichr. 

(B) UMAP visualization of scRNAseq data from TGFβ-inducible (blue) and non-inducible (red) 

cell lines. Cell lines did not cluster by TGFβ-inducibility. (C) Heatmap of metacell-level 

expression of large-effect DEGs (|log2FC| > 0.5) across TGFβ-inducible (blue) and non-

inducible (red) cell lines, represented by average expression (high = red, low = blue) and percent 

metacell expression by dot size. (D) Pathway enrichment analysis of DEGs between TGFβ-

inducible and non-inducible cells. Upregulated DEGs were enriched in apoptotic processes and 

cytokine signaling, while downregulated genes were associated with translation and ribosomal 

function. (E) UMAP plots showing single-cell expression patterns of key upregulated genes in 

TGFβ-inducible cells, including SPARC, WNT5B, MMP2, and EID1. These genes demonstrated 

a marked increase in expression in TGFβ-inducible cells compared to non-inducible cells, 

consistent with metacell analysis. 

 

 

4.5. Network analysis of TGFβ-responsive transcriptional signatures 

To further elucidate molecular mechanisms involved in the TGFβ-LRRC15 axis, and to better 

understand the biological role of the DEGs within LRRC15’s regulation, we employed 
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scRNAseq-based gene network modeling approaches to capture both gene regulatory networks 

(GRNs) and gene coexpression signatures that distinguished the TGFβ-responsive cell lines 

(Figure 3A). GRNs consist of nodes and edges representing genes and regulatory interactions, 

respectively. To construct a GRN for the TGFβ-LRRC15 axis, we used SCING [21], a bagging 

gradient-boosting machine learning approach to predict regulatory relationships between genes. 

This method was previously shown to effectively predict gene perturbation effects and uncover 

key driver genes for disease [21]. We incorporated all samples to build an aggregate GRN and 

identified 41 highly connected SCING GRN modules through Leiden clustering [22]. We also 

constructed a gene co-expression network across samples using hdWCGNA based on gene 

correlation [19], identifying 25 co-expression modules. The expression levels of individual gene 

regulatory or coexpression modules from both SCING and hdWCGNA networks were 

computed for each cell and subsequently for each metacell using hdWGCNA’s module 

eigengene calculation [19]. Modules associated with TGFβ inducibility were identified (Figure 

3A).  

 

We identified differential expression in SCING modules S1, S3, and S4, and hdWGCNA 

modules H1 and H3 (Figure 3B) that consistently differentiated TGFβ-inducible from non-

inducible cell lines, and 11 other modules with consensus across 5 cell lines (Supplemental 

Figure 2A). Gene Ontology and Reactome pathway analysis revealed upregulation of biological 

pathways related to apoptotic processes and cytokine and immune signaling, with a 

downregulation of translation (consistent with DEG analysis in Figure 2D), cell motility 

regulation and DNA damage response in TGFβ-inducible cell lines. UMAP visualization of the 

cellular expression of the modules and their associated pathways confirmed these patterns 
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(Figure 3C). Surprisingly, cell motility pathways were also downregulated in TGFβ-inducible 

cell lines (Figure 3C), which contrasted LRRC15’s proposed role as a driver of invasiveness and 

cell migration in tumor cells. 
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FIGURE 3. Network analysis of TGFβ-responsive transcriptional signatures. (A) SCING 

and hdWGCNA were used to model gene regulatory networks and coexpression networks, 

respectively, in TGFβ-responsive and non-responsive cell lines. SCING GRNs were constructed 

to predict regulatory relationships between genes and identify SCING modules containing genes 

with regulatory relationship. hdWGCNA co-expression networks were built to capture gene 

coexpression relations and identify coexpression modules. Expression patterns of SCING and 

hdWGCNA modules in metacells were compared between TGFβ-inducible and non-inducible 

cell lines to identify differential modules. (B) Heatmap showing expression patterns in SCING 

and hdWGCNA network modules across cell lines. Modules upregulated and associated with 

TGFβ responsiveness (in red) included pathways related to cell cycle, cytokine signaling, 

immune response, and apoptosis. (C) UMAP plots displaying single-cell expression patterns of 

key biological processes of network modules in TGFβ-inducible (top) and non-inducible 

(bottom) cell lines, confirming the patterns seen in (B). 

 

 

4.6. Integrated high-throughput drug screening and scRNAseq data reveals converging 

molecular pathways involved in LRRC15’s regulation 

After identifying modules and DEGs associated with TGFβ inducibility from scRNAseq 

analysis, we combined these results to carry out an in-silico drug screen to identify the top 

candidate drugs and genes within the TGFβ-LRRC15 axis (Figure 4A) and further integrated 

the results with those from the in-vitro drug screen (Figure 1). The L1000 database is a curated 

library of thousands of compounds and their corresponding affected genes, based on in-vitro 

screening assays across different organisms, tissues, drug dosages, and timepoints [23]. After 
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filtering the database for all human drug signatures, we performed a Fisher’s exact test against 

hdWGCNA- and SCING-derived network modules, all significant (adjusted p-value < 0.05) 

DEGs, and all large-effect DEGs (|log2FC| > 0.5) to identify L1000 compounds that, upon 

treatment, displayed gene signatures that overlapped with our scRNAseq findings (Figure 4A). 

This in-silico drug screening identified 26 compounds whose gene signatures matched our 

scRNAseq results, and that were also present in our in-vitro drug screen (Figure 1D). We also 

identified 14 gene targets shared across all analyses (Figure 4B, Table 1). Visualizing these gene 

targets around TGFβ1 and LRRC15 in the SCING GRN revealed interconnected subnetworks 

with potential regulators of the TGFβ-LRRC15 axis (Figure 4C). 
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and in-vitro drug screening approaches were combined to identify candidate compounds 

targeting the TGFβ-LRRC15 axis. The in-silico screen utilized the L1000 drug database to map 

compounds against DEGs and differential hdWGCNA and SCING modules, identifying drug 

and corresponding genes signatures consistent across analyses. Overlap between the in-silico 

and in-vitro drug screens against scRNAseq results highlighted 26 compounds as top candidates 

for targeting LRRC15 regulation. (B) Illustration of the overlap between hdWGCNA, SCING, 

and DEG datasets, highlighting 26 candidate compounds hits from screening (Figure 1) and 14 

gene targets shared across analyses. (C) Visualization of gene targets in a gene regulatory 

network. Key driver analysis revealed potential regulators (larger nodes) of the TGFβ-LRRC15 

pathway. Circle fill indicates the total number of compounds targeting each gene, and the 

number of overlapping analyses identifying the gene as significant is denoted by outline color 

intensity. 

 
 

Gene 

Average 
Expression 
Log2 Fold 

Change 

Significant 
Modules Compounds 

LGALS1 2.63 
S3, S4, H1, 
ALL_DEG, 
DEG_0.5 

Danazol, GW-5074, Hydrocortisone, RO-90-7501, 
Rottlerin, Bosutinib, Budesonide, Cilnidipine, Dilazep, 

Perphenazine, Pifithrin-mu, Pimozide, SB-525334, 
Tamoxifen, Temsirolimus, Tyrphostin-AG-1478, 

Chlorpromazine, Clemastine, Desipramine, Triamcinolone, 
Acyclovir, Azithromycin, BW-723C86, Chloroquine, 

Clomipramine, Maprotiline, Mibefradil, Norepinephrine, 
TTNPB 

SPARC 1.96 
S4, 

ALL_DEG, 
DEG_0.5 

Bosutinib, Budesonide, Chlorpromazine, Danazol, 
Desipramine, GW-5074, Hydrocortisone, Maprotiline, 

Promethazine, Rottlerin, SB-525334, Tamoxifen, 
Temsirolimus, Triamcinolone, Tyrphostin-AG-1478, 

Acyclovir, Bexarotene, Chloroquine, Cilnidipine, 
Clemastine, Desmethylclozapine, Dilazep, Mibefradil, 

Perphenazine, RO-90-7501, TTNPB, Arvanil, 
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Azithromycin, BW-723C86, Clomipramine, Flupentixol, 
Icariin, Pifithrin-mu, Pimozide, Tenidap 

FKBP1A 1.74 
S3, S4, H1, 
ALL_DEG, 
DEG_0.5 

Tyrphostin-AG-1478, Chlorpromazine, Danazol, 
Hydrocortisone, Budesonide, Chloroquine, Mibefradil, 

Tamoxifen, Temsirolimus, TTNPB, Cilnidipine, GW-5074, 
Pifithrin-mu, Pimozide, Rottlerin, Tenidap, Triamcinolone 

TPM4 1.51 
S3, S4, H1, 
ALL_DEG, 
DEG_0.5 

Chlorpromazine, Promethazine, RO-90-7501, Rottlerin, 
Budesonide, Dilazep, Hydrocortisone, Tamoxifen, 

Temsirolimus, Tyrphostin-AG-1478, Acyclovir, 
Azithromycin, Bosutinib, Cilnidipine, GW-5074, ML-7, 

Norepinephrine, Perphenazine, Pimozide, Triamcinolone, 
BW-723C86, Chloroquine, Clomipramine, Danazol, 

Flupentixol, Maprotiline, Pifithrin-mu, SB-525334, TTNPB 

MMP2 1.48 
H1, 

ALL_DEG, 
DEG_0.5 

Cilnidipine, Desipramine, GW-5074, Norepinephrine, 
Perphenazine, Clemastine, Hydrocortisone, Maprotiline, 

Pifithrin-mu, Pimozide, RO-90-7501, Triamcinolone, 
Tyrphostin-AG-1478 

HSBP1 1.24 
S3, S4, H1, 
ALL_DEG, 
DEG_0.5 

Promethazine, GW-5074, Rottlerin, Tamoxifen, Bexarotene, 
Hydrocortisone, Azithromycin, Budesonide, Chloroquine, 

Chlorpromazine, Cilnidipine, ML-7, Pifithrin-mu, 
Triamcinolone 

H2AFV 1.13 
S3, S4, H1, 
ALL_DEG, 
DEG_0.5 

Danazol, Hydrocortisone, Promethazine, Rottlerin, 
Budesonide, Chlorpromazine, Desipramine, Dilazep, GW-
5074, Icariin, Perphenazine, Tamoxifen, Tyrphostin-AG-

1478, Acyclovir, Cilnidipine, Clomipramine, RO-90-7501, 
SB-525334, Triamcinolone, Chloroquine, Mibefradil, 

Pimozide, Tenidap, TTNPB 

ARF4 1.04 
S3, S4, H1, 
ALL_DEG, 
DEG_0.5 

Danazol, Tyrphostin-AG-1478, Chlorpromazine, 
Cilnidipine, Rottlerin, Chloroquine, GW-5074, 

Hydrocortisone, Mibefradil, Pimozide, Tamoxifen 

LSM5 1.01 
S3, S4, H1, 
ALL_DEG, 
DEG_0.5 

Chlorpromazine, Danazol, GW-5074, RO-90-7501, 
Rottlerin, Bosutinib, Budesonide, Cilnidipine, Desipramine, 

Hydrocortisone, Perphenazine, Pifithrin-mu, Pimozide, 
Temsirolimus, Acyclovir, Chloroquine, Clemastine, 

Dilazep, Norepinephrine, Tamoxifen, TTNPB, Tyrphostin-
AG-1478, Arvanil, BW-723C86, Maprotiline, SB-525334, 

Triamcinolone 

EID1 0.97 
S3, S4, H1, 
ALL_DEG, 
DEG_0.5 

Cilnidipine, Budesonide, Desipramine, GW-5074, 
Hydrocortisone, Perphenazine, RO-90-7501, TTNPB, 

Acyclovir, Arvanil, Azithromycin, Bosutinib, 
Chlorpromazine, Clemastine, Desmethylclozapine, 
Rottlerin, SB-525334, Tamoxifen, Triamcinolone 

SEPT7 0.9 
S3, S4, H1, 
ALL_DEG, 
DEG_0.5 

Danazol, Desipramine, Pimozide, GW-5074, Tyrphostin-
AG-1478, Bosutinib, Chloroquine 
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MKKS 0.87 
S3, S4, H1, 
ALL_DEG, 
DEG_0.5 

Danazol, Maprotiline, Chlorpromazine, Rottlerin, 
Tyrphostin-AG-1478, Mibefradil, Tenidap 

NDUFC2 0.82 
S3, S4, H1, 
ALL_DEG, 
DEG_0.5 

Budesonide, Danazol, GW-5074, Bosutinib, SB-525334, 
Pimozide, Triamcinolone, TTNPB 

CAP1 0.77 
S3, S4, H1, 
ALL_DEG, 
DEG_0.5 

GW-5074, Promethazine, Budesonide, Rottlerin, Bosutinib, 
Tamoxifen, Maprotiline, Pifithrin-mu, Pimozide, 

Triamcinolone, Tyrphostin-AG-1478 

IQGAP1 0.64 
S3, S4, H1, 
ALL_DEG, 
DEG_0.5 

GW-5074, Hydrocortisone, RO-90-7501, Rottlerin, 
Tamoxifen, Tyrphostin-AG-1478, Budesonide, 

Chlorpromazine, Norepinephrine, Perphenazine, Pimozide, 
Temsirolimus, Acyclovir, Azithromycin, Chloroquine, 

Cilnidipine, Clemastine, Clomipramine, 
Desmethylclozapine, Dilazep, Mibefradil, SB-525334, 

TTNPB, Arvanil, Bosutinib, BW-723C86, Desipramine, 
Flupentixol, Icariin, Maprotiline, Tenidap, Triamcinolone 

WNT5B 0.6 
S2, H1, 

ALL_DEG, 
DEG_0.5 

Budesonide, Tamoxifen, Temsirolimus, Bosutinib, 
Chloroquine, GW-5074, Hydrocortisone, Pifithrin-mu, RO-

90-7501, Rottlerin 
TABLE 1. Top gene candidates for modulating the TGFβ-LRRC15 axis. 

 

4.7. TGFβ-induced LRRC15 expression can be modulated by siRNA knockdown of 

candidate genes 

To test the functional relevance of genes identified in overlapping analyses (Figure 4) within 

the TGFβ-LRRC15 pathway, candidate genes were knocked down in TGFβ-responsive cell lines 

via small interfering RNA (siRNA). Following a similar protocol to our compound screening 

approach (Figure 1), cells were incubated in low-serum media before transfection with the 

siRNA construct. After transfection, cells were treated with TGFβ and assessed for LRRC15 

expression via confocal microscopy. As a positive control, we validated siRNA transfection and 

knockdown using three LRRC15-targeting siRNAs (Figure 5A). Transfection with siLRRC15 

reduced LRRC15 protein levels by an average of 98.61 ± 0.47% in untreated cells, and 94.21 ± 
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2.02% in TGFβ-treated cells. As an additional control in subsequent siRNA experiments, we 

also utilized siRNAs targeting TGFβR2, given the receptor’s established role in LRRC15 CAFs 

[13]. 

 

We then tested siRNAs targeting various genes identified as potential nodes within the TGFβ-

LRRC15 axis, including EID1, H2AFV, IQGAP1, LGALS1, MMP2, SPARC, TGFβR2, TPM4, 

and WNT5B (Figure 5B). Among these, EID1 (EP300 interacting inhibitor of differentiation 1), 

significantly induced LRRC15 expression upon EID1 knockdown (p = 0.0059). As a known 

inhibitor of p300-mediated transcription and differentiation in fibroblast cell populations [24], 

the inhibition of EID1 may lead to upregulated p300 activity, possibly explaining the increased 

LRRC15 expression observed in our studies. While this finding presented an intriguing avenue 

for further exploration, our primary focus remained on genes whose knockdown led to reduced 

LRRC15 expression. In addition, we sought to focus solely on genes that were co-expressed 

with LRRC15 to improve the feasibility of targeting the TGFβ-LRRC15 pharmacologically. Of 

the genes tested, MMP2, SPARC and WNT5B, as well as TGFβR2, significantly impacted TGFβ-

induced LRRC15 expression in two or more cell lines, with TGFβR2 and SPARC knockdown 

significantly reducing LRRC15 expression across multiple concentrations of TGFβ treatment 

(Figure 5B, C). These results support the regulatory role of 4 out of the 9 tested candidate genes 

in activating the TGFβ-LRRC15 axis and promoting LRRC15 expression. Notably, the genes 

that were experimentally validated tended to be the ones with outgoing edges to other genes in 

the network (Figure 5C); outgoing network edges indicate that the gene likely functions as an 

upstream regulator.   
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4.8. Activators of LRRC15 expression correlate to immunotherapy response and tumor 

progression 

The four genes whose knockdown consistently inhibited LRRC15 expression (MMP2, SPARC, 

TGFβR2, WNT5B), along with LRRC15, became the basis for further exploration into clinical 

tumor databases. Given the significant impacts of knockdown on TGFβ-induced LRRC15, we 

reasoned that high expression these 5 genes were indicative of an active TGFβ-LRRC15 axis. 

We first performed an independent prognostic analysis of the LRRC15 activating genes in 

cohorts of patients from different tumor entities including breast cancer, glioblastoma, and skin 

cutaneous melanoma to better understand how our tumor models translated to clinical analyses. 

Of the three tumor types, our signature acted as a prognostic marker only in breast cancer 

patients (HR: 2.50, 95% CI 1.66-3.77, p = < 0.001) (Supplemental Figure 6). We instead 

explored The Cancer Genome Atlas (TCGA) to analyze each gene’s correlation to LRRC15 

across TCGA tumor types to better understand whether LRRC15 and the potential activators of 

LRRC15 were co-expressed in patient tumors [25]. 

 

Of the TCGA datasets, LRRC15 was highly correlated with MMP2 (r = 0.77, p < 0.0005) and 

SPARC (r = 0.79, p < 0.0005), and moderately correlated with TGFβR2 (r = 0.35, p < 0.0005) 

in lung squamous cell carcinoma (LUSC) (Figure 5D). Given the strong correlation of 3 out of 

4 genes within LUSC tumors, along with LRRC15’s known role in anti-PD1 immunotherapy 

resistance, we applied our signature to an anti-PD1 immunotherapy trial involving LUSC 

patients to evaluate whether it could predict immunotherapy resistance. When the genes were 

assigned weights using an eigenvector principal component weighted analysis, and patients were 

stratified based on the median expression of the signature, we found that LRRC15 plus the four 
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LRRC15 activating genes significantly predicted survival outcomes in LUSC (p = 0.044, 13 

patients) (Figure 5E). To validate these findings further, we investigated the role of these genes 

in additional anti-PD1 patient cohorts across other tumor types. We next tested our LRRC15 

expression activators in a clear cell renal cell carcinoma (ccRCC) anti-PD1 cohort. Similarly, 

high expression of WNT5B, TGFβR2, SPARC, MMP2, and LRRC15 significantly predicted 2-

year survival outcomes (p = 0.035, 24 patients). Notably, when LRRC15 was removed from 

analysis, the remaining four genes (MMP2, SPARC, WNT5B, TGFβR2) failed to predict 

outcomes (Supplemental Figure 8). However, using LRRC15 alone did not have the predictive 

power (Supplemental Figure 8A), emphasizing the importance of the cooperation and co-

expression of the 5 genes in contributing to prognostic accuracy. 

 

We evaluated a third cohort from a metastatic bladder cancer trial where patients received 

atezolizumab (anti-PD1) immunotherapy and were profiled for immune phenotypes based on 

CD8+ T-cell infiltration within the tumor and surrounding peritumoral region [26]. Before 

undergoing treatment, patients were categorized as “infiltrated” (CD8+ T-cells present within 

the tumor), “excluded” (CD8+ T-cells confined to the tumor stroma), or “desert” (absence of 

CD8+ T-cells). Given previous studies implicating LRRC15+ cancer-associated fibroblasts 

(CAFs) in T-cell exclusion and exhaustion, we tested the predictive power of the LRRC15-

activating genes using transcriptomic data from immune-excluded tumors prior to anti-PD1 

therapy. Our analysis demonstrated that high expression of the 5 genes was significantly 

predictive of patient prognosis (p = 0.012, 113 patients) in immune-excluded tumors (Figure 

5F). In contrast, gene expression showed no significant predictive power in tumors classified as 

immune-infiltrated or desert, or with LRRC15 alone (Supplemental Figure 7B, 8C). These 
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findings indicate that expression of MMP2, SPARC, WNT5B and TGFβR2, alongside LRRC15, 

can predict patient prognosis and overall response immunotherapy in immune-excluded tumors, 

and can accurately reflect the pathobiological consequences of TGFβ-LRRC15 axis signaling. 

While further analysis is needed, it is likely that immune-excluded tumors harbor large 

populations of LRRC15+ CAFs and tumor cells, which may contribute to the poor therapeutic 

response observed by creating a physical barrier as well as imposing immunomodulatory effects. 

Together, these findings underscore the critical role of LRRC15, along with several key genes 

within the TGFβ-LRRC15 axis, in shaping the immune-excluded tumor microenvironment. This 

gene set not only offers a potential biomarker for predicting immunotherapy resistance but also 

highlights novel therapeutic avenues for targeting LRRC15+ cell populations in resistant 

cancers. 
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FIGURE 5. High expression of LRRC15 activating genes predicts immunotherapy 

resistance and tumor progression. (A) Control experiments using LRRC15-targeted siRNA 

in TGFβ-responsive cancer cell lines significantly reduced LRRC15 expression, overcoming 

TGFβ-induced upregulation (p < 0.0005). (B) Response to siRNA knockdown of target genes 

identified within the TGFβ-LRRC15 axis from integrated analysis of scRNAseq and compound 

screening is not consistent across cell lines, highlighting the importance of genetic background 

within the TGFB-LRRC15 pathway. (C) Heatmap of LRRC15 staining intensity after siRNA 
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gene knockdown across increasing TGFβ concentrations. Significant reductions in LRRC15 

expression were observed for TGFβR2, SPARC, WNT5B, and MMP2 in osteosarcoma (HUO9), 

while effects gene knockdown in melanoma (RPMI7951), and glioblastoma (U118) cells were 

less ubiquitous. (D) Correlation plots of LUSC tumor expression from the TCGA database 

reveal a strong correlation between LRRC15 and MMP2 (r = 0.77) and SPARC (r = 0.79), but 

weak correlations between LRRC15, WNT5B, and TGFBR2. There is also a strong correlation 

between the four genes and LRRC15 (r = 0.81). (E) Kaplan-Meier survival curve demonstrating 

the predictive power of the 5 genes (including LRRC15) in LUSC patients treated with anti-PD1 

immunotherapy. Patients stratified by high (red) vs. low (blue) gene expression had significantly 

different survival outcomes (p = 0.044). (F) Kaplan-Meier survival analysis in metastatic clear 

cell renal cell carcinoma patients receiving anti-PD1 therapy. The LRRC15-related genes 

significantly predicted 2-year survival outcomes in ccRCC patients (p = 0.035). (G) Finally, in 

metastatic bladder cancer patients receiving atezolizumab (anti-PD1) immunotherapy, high 

expression of LRRC15-related genes was significantly predictive of poorer prognosis in 

immune-excluded tumors (p = 0.012), with no significant predictive power in immune-

infiltrated or desert tumors (Supplemental Figure 8B). 

 

 

4.9. Discussion 

Deciphering the intricate molecular pathways, genomic determinants, and tumor 

microenvironmental factors that regulate biomarker dynamics is pivotal for refining targeted 

diagnostic and therapeutic approaches in oncology. Detailed knowledge of these factors enables 

the stratification of patient populations most likely to respond to specific treatments, thereby 
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enhancing clinical efficacy [27-28]. The absence of pathobiological understanding is a major 

contributor to the substantial attrition rates in clinical oncology trials, where nearly half of 

failures are attributed to lack of established relevance of the target to the disease phenotype [27]. 

With the surge in oncology target and biomarker discovery, the translation of these findings into 

clinically beneficial entities remains elusive, highlighting the critical need for comprehensive 

molecular profiling to fully realize the promise of personalized medicine in cancer care. 

The initial identification of LRRC15’s regulation by TGFβ in MSCs under prolonged 

supraphysiological cytokine levels [16] prompted a reevaluation of its translational relevance. 

To address this, our study aimed to investigate LRRC15 regulation under shorter durations and 

physiologically relevant concentrations of TGFβ. As tumors progress, CAFs and cancer cells 

increasingly exhibit similar behaviors and interactions, enhancing tumor complexity and 

resilience. Both cell types are responsive to extracellular molecules such as growth factors and 

cytokines and are subject to frequent genetic alterations, with cancer cells commonly inducing 

expression changes in CAFs via paracrine signaling, which can lead to selective CAF expansion 

[29-30]. Furthermore, CAFs can maintain tumor-promoting properties independent of direct 

interactions with cancer cells [31]. This convergence of characteristics guided our focus to 

LRRC15+ MSC-derived cancer cells for deeper insights. 

Our investigation revealed two distinct cellular responses to TGFβ following cytokine 

withdrawal: one subset of cell lines demonstrated LRRC15 upregulation, suggesting an adaptive 

mechanism, while another remained unaffected. Integrative analysis using scRNAseq, chemical 

compound screening, and siRNA knockdown pinpointed TGFβR2, WNT5B, SPARC, and MMP2 

as key mediators inducing TGFβ-LRRC15 activity. In patient tissue databases, the impact of 
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these genes on TGFβ-LRRC15 activity was observed across a wide range of solid tumors 

(Supplemental Figure 5), including those demonstrating expression exclusively in CAFs but not 

in cancer cells. Moreover, a significant correlation emerged with a previously identified 

LRRC15-containing 11-gene panel (Supplemental Figure 9), which was obtained by screening 

of CAFs in TGFβ-driven tumor microenvironments in PDAC patients [14].  

 

LRRC15, together with the four genes regulating its expression, differentiated survival rates and 

disease progression in tumor settings that were characterized by the exclusion of CD8+ T cells 

and resistance to ICTs. However, we did not find significant prognostic value in tumors 

categorized as immune-infiltrated or immune-desert. It could be speculated that these variations 

may be attributed to immunological mechanisms driven by non-LRRC15 related mechanisms. 

 

Among the four genes within the TGFβ-LRRC15 axis, TGFβR2 has previously been established 

as a regulator of LRRC15+ CAF formation in GEMM models [13].  Tumor fibrosis is a common 

consequence of aberrant TGFβ signaling, contributing to immune cell exclusion in the stroma-

rich ECM and poor drug delivery [32]. Several of these ECM components were significantly co-

expressed with LRRC15, such as matrix metalloproteinases (MMP2, MMP14) and collagen 

genes (COL1A1, COL1A2). Further, MMP2 plays a critical role in cancer cells by promoting 

angiogenesis and cell growth, and by facilitating collagen degradation in the TME, thereby 

aiding tumor invasion. This highlights its dual function in promoting cancer progression and 

supporting CAF populations. In parallel, SPARC, a secreted protein of the extracellular matrix, 

has been shown to synergize with TGFβ signaling to boost collagen production and induce 

canonical TGFβ signaling pathways, such as SMAD2 activation [33]. While further research is 
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necessary to fully delineate SPARC's function in tumor tissues, existing studies indicate that its 

knockdown in pterygium fibroblasts diminishes TGFβ signaling and MMP2 expression [34], 

potentially leading to a similar effect on LRRC15+ CAF and cancer cell interactions. 

 

In the current study, we identified a broad spectrum of potential regulatory genes, however, 

siRNA knockdown of certain genes, such as H2AFV, did not significantly affect TGFβ-induced 

LRRC15 expression in our cancer cell models. The lack of significant effects on TGFβ-induced 

LRRC15 expression could stem from several main factors. First, these genes tend to have more 

incoming edges (i.e., receivers of regulation by other genes) than outgoing edges (i.e., acting as 

upstream regulators) in the networks. Second, although H2AFV is upregulated in various 

cancers, it primarily operates through epigenetic mechanisms such as DNA methylation 

reprogramming [35]. The epigenetic influence of H2A and its variants, which often have 

overlapping functions, adds a layer of complexity to gene regulation [36]. Lastly, even with 

effective siRNA transfection, residual protein expression might maintain H2AFV's role within 

the TGFβ-LRRC15 axis [37]. Further investigations, possibly employing CRISPR/Cas9 gene 

editing for more complete gene disruption, are necessary to fully understand these genes' 

involvement in LRRC15 expression [38]. 

 

Our pioneering small molecule screens identified a multitude of compounds capable of 

disrupting the TGFβ-LRRC15 pathway (Figure 1), potentially providing alternative strategies 

to overcome the pro-tumorigenic effects of TGFβ without direct inhibition of the pathway itself. 

This is especially important given the clinical challenges associated with TGFβ receptor 

inhibitors, where inhibition often leads to adverse off-target effects. For example, bosutinib, a 
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Bcr-Abl tyrosine-kinase inhibitor, is actively studied in chronic myeloid leukemia (CML) as a 

combination therapy with anti-PD1 immunotherapy [39]. In solid tumors, bosutinib may be able 

to play a similar complementary role to immune checkpoint blockade by inhibition of TGFβ-

related immunosuppressive pathways. In addition, the significant downregulation of DNA 

damage response processes in TGFβ-inducible cell lines may expose a potential therapeutic 

vulnerability in these cell populations. The positive hits identified from our drug screening, 

particularly those supported by both in-vitro and in-silico screens, could be further explored for 

such applications in the future.  

 

Upon exploring LRRC15 as a biomarker for therapeutic resistance, our analysis of TCGA 

sarcoma datasets suggested that LRRC15 alone is insufficient as a prognostic biomarker for 

aggressive disease and overall survival and is not predictive of therapeutic outcomes in 

immunotherapy trials (Supplemental Figure 7C).  Our in vitro observations diverge from both 

prior preclinical data and clinical findings, as our CRISPR-mediated knockout of LRRC15 did 

not yield significant changes in aggressive cellular growth patterns associated with LRRC15 

expression in clinical contexts (data not shown). This discrepancy highlights that LRRC15 alone 

may not solely drive tumor aggressiveness. Integrating the results of this study, we hypothesize 

that LRRC15 functions primarily as a bystander protein, indicative of an extensive network of 

TGFβ-driven pathobiological processes prevalent in the microenvironment of aggressive, 

immunoresistant tumors. 

 

We have previously demonstrated that LRRC15-targeted PET and SPECT imaging is applicable 

for non-invasive detection, quantification, and monitoring of lesion-specific LRRC15 [15]. 
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LRRC15, with its low expression in non-cancerous and healthy tissues and high expression in 

aggressive tumors, serves as an ideal therapeutic target for RIT. This strategy facilitates the 

selective delivery of cytotoxic radionuclides to specifically target and ablate both cancer cells 

and CAFs that contribute to treatment resistance and metastatic growth. In addition to the 

ablation of LRRC15+ cell populations, tumors treated with 177Lu-LRRC15-RIT exhibited 

downregulation of SPARC, MMP2, TGFβR2, and WNT5B (Supplemental Figure 4). These 

findings partially confirm that LRRC15 is co-expressed with other crucial factors involved in 

driving tumor progression and resistance. 

 

Finally, with the integration of next-generation sequencing and comprehensive genomic 

profiling in clinical decision making, it has become possible to stratify patients more accurately 

based on tumor molecular profiles [40]. Large-scale studies like NCI-MATCH have successfully 

matched patients to treatment options, with 38% of patients having tumor molecular profiles that 

were actionable by currently available clinical trials [41-42]. Other molecular sequencing studies 

such as ComboMATCH have expanded beyond simple biomarker analysis to incorporate 

circulating tumor DNA (ctDNA), histology, and RNA sequencing of patient tumors [43], 

highlighting the feasibility of applying assessment of LRRC15-related profiles to guide 

decision-making and individualized treatment in a clinical setting. 

 

In summary, by computationally integrating high-throughput small molecule screening data 

with scRNA sequencing, we identified TGFβR2, MMP2, SPARC, and WNT5B as key mediators 

driving LRRC15 upregulation in response to TGFβ signaling. These molecules, secreted by both 

cancer cells and fibroblasts, are critical in promoting EMT, during which LRRC15 expression 



 157 

is significantly elevated. Their coordinated activity shapes a fibrotic and immunosuppressive 

tumor microenvironment, predicting resistance to immune checkpoint inhibitors and correlating 

with aggressive cancer phenotypes. These findings elucidate the molecular architecture of the 

TGFβ-LRRC15 axis, revealing a cascade of effector molecules that present potential targets for 

the development of inhibitors and modulators to disrupt these pathways. This improved 

understanding may also provide insight into the mechanisms underlying immunoresistance, 

offering a basis for exploring novel diagnostic and therapeutic strategies to enhance the efficacy 

of immunotherapy. 
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4.11. Supplementary figures 
 
 

 
FIGURE 1. Compound screening controls. (A) Summary of TGFβ-treated (POS, green) or 

non-treated (NEG, red) LRRC15 staining controls, represented by Z-score. (B) Cell count per 

well across 1,280 screened compounds, represented by Z-score. Dotted blue line represents 

compound toxicity cutoff where compounds were omitted due to cytotoxic effects (Z-score < -
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3). (C) LRRC15 staining per well across 1,280 screened compounds, represented by Z-score. 

Dotted red line represents a LRRC15 staining Z-score of < -3, which was determined to be a hit 

within compound screens. 

 
FIGURE 2. Network Analysis. (A) Differential module expression heatmap. Cell lines are 

grouped by TGFB inducibility. Significance measured by one-vs-opposite group (*<0.05, 

**<0.01, ***<0.001). (B) GRN of top drug targets. 
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FIGURE 3. scRNAseq quality control plots pre-filtering (left) and post-filtering (right). 

Top box plots are the number of genes per cell. Middle box plots are the number of UMI counts 

per cell. Bottom box plots are the percentage of counts mapping to mitochondrial genes per cell.  
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FIGURE 4. Loss of gene expression in LRRC15 activators after LRRC15-targeted 

radioimmunotherapy. Z-score normalized transcriptomic expression of LRRC15, MMP2, 

WNT5B, SPARC, and TGFβR2 across [177Lu]-DUNP19-treated HUO9 (osteosarcoma), U118 

(glioblastoma), and HCC1954 (breast carcinoma) tumors. High expression (red = high) is 

observed in untreated tumors, while progressive loss of gene expression is observed in treated 

tumors (blue = low). Tumors were clustered based on principal component analysis. 
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FIGURE 5. LRRC15 expression activators predict survival in TCGA mesenchymal-

derived tumors. TCGA overall survival data comparing patient survival, with high LRRC15, 

MMP2, WNT5B, SPARC, and TGFβR2 gene expression (red) significantly decreasing survival 

probability across mesenchymal-derived tumor types.  
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FIGURE 6. Survival and hazard ratios in tumors based on cell line models. Progression-

free survival probability and hazard ratios for individual genes, as well as overall gene 

expression for LRRC15, MMP2, WNT5B, SPARC, and TGFβR2. For glioblastoma, melanoma, 
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and pancreatic adenocarcinoma patient cohorts, patients were not differentiated by treatment 

received. Within the breast cancer patient cohort, patients received taxane therapy. 
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FIGURE 7. Correlation of LRRC15-associated genes with LRRC15 expression in TCGA 

tumor cohorts. Correlation plots of uveal melanoma (UVM), mesothelioma (MESO), stomach 

adenocarcinoma (STAD), sarcoma (SARC), kidney renal cell carcinoma (KIRC) and bladder 

cancer (BLCA) comparing MMP2, WNT5B, SPARC, and TGFβR2 gene expression to LRRC15, 

either individually (left plots, smaller) or together (right plot, larger). Overall, LRRC15-related 

genes demonstrate a positive correlation with LRRC15 expression across tumor types. 
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Figure 7. 5-gene signature predicts survival patients with PD1 blockade

A. Progression free survival in ccRCC patients treated with PD1 blockade

B. Progression free survival in bladder cancer patients treated with PD1 blockade 
(IMVIGOR210 trial) - segmented by immune phenotype
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C. Progression free survival in bladder cancer patients treated with PD1 
blockade (IMVIGOR210 trial) - segmented by immune phenotype
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FIGURE 8. LRRC15 expression activators predict survival in patients with PD1 blockade. 

(A) Progression-free survival in clear cell renal cell carcinoma patients treated with PD1 

blockade. Left Kaplan-Meier plot shows no significant predictive ability in signature expression 

(red = high, blue = low) of a previously identified TGFβ CAF signature that includes LRRC15. 

Excluding LRRC15 (right plot) decreases predictive power of the LRRC15-related genes 

MMP2, WNT5B, SPARC, and TGFβR2. 

 

 

 
FIGURE 9. Correlation between previously identified CAF LRRC15 signatures and our 

LRRC15 gene signatures. (Left) Correlation plots of solid tumor expression of previously 

identified TGFβ-driven CAF signature by Turley et al. (Turley-11) to LRRC15 expression (left 

plot). (Middle) Plot demonstrates a strong correlation between LRRC15-related genes MMP2, 

WNT5B, SPARC, and TGFβR2 and the TGFβ-CAF Turley-11 signature. (Right) Strong 

correlation between MMP2, WNT5B, SPARC, and TGFβR2 plus LRRC15 and the TGFβ-CAF 

Turley-11 signature. 
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-3.179 -3.354 
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Tyrphostin AG 879 
 

-3.494 -3.12 

Total Compound Hits 26 22 24 

SUPPLEMENTAL TABLE 1. Compound hits from LOPAC1280 screen across three cell 

lines. Hits are represented as normalized effect on LRRC15 expression. 
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CHAPTER 5. CONCLUSION 
5.1. Future Directions 

Targeting Tumor-Stroma Interactions 

While our study establishes foundational insights into TGFβ-LRRC15 signaling, the limitations 

posed by in vitro models and selected cell lines underscore the need for expanded validation. 

Future studies should integrate syngeneic models to better replicate the tumor heterogeneity and 

cancer cell-stromal interactions that are a hallmark of TGFβ-driven cancers. Additionally, 

examining variations in TGFβ signaling across cancer subtypes will provide a nuanced 

understanding of the pathway’s role in immunosuppression and metastasis, potentially 

identifying subtype-specific therapeutic targets. 

 

Our study identified promising compounds, including GW-5074 and Rottlerin, which disrupt 

LRRC15 expression via the TGFβ-LRRC15 pathway. These compounds act on key signaling 

nodes such as the Raf pathway and protein kinase C. These study findings also emphasize the 

roles of the bone microenvironment and stromal components, such as collagen and extracellular 

matrix proteins, which may support metastatic growth. Future research could focus on 

elucidating specific interactions between tumor cells and the stroma that sustain the aggressive 

phenotype of TGFβ-driven cancers. This could involve dual targeting of stromal biomarkers 

(LRRC15, SPARC, MMP2) with non-canonical TGFβ signaling mechanisms (for example, Raf 

kinase) known to remodel the CAF microenvironment and make tumors more responsive to 

immunotherapy [1]. In addition, other compounds targeting pathways such as autophagy 

(Chloroquine) and anti-inflammatory agents (Budesonide) could alleviate TGFβ-induced 

immunosuppression. In vivo testing of these compounds in conjunction with immunotherapies 
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may reveal approaches to overcome resistance mediated by LRRC15 expression and enhance 

patient response rates. 

 

Our scRNAseq and high-content screening analyses identified a set of genes with potential roles 

in modulating the TGFβ-LRRC15 axis, including ARF4, IQGAP1, LGALS1, LSM5, SEPT7, 

TPM4, and H2AFV. Notably, WNT5B, SPARC, and MMP2 appear central to facilitating 

TGFβ’s immunosuppressive effects by contributing to immune evasion. Future work should 

investigate these genes' roles in creating an immunosuppressive tumor microenvironment and 

their potential as co-targets for immunotherapy. For instance, LGALS1, which encodes 

Galectin-1, may aid tumor immune evasion by inducing T-cell apoptosis; targeting this pathway 

alongside LRRC15 could enhance T-cell efficacy. 

 

To confirm the roles of key regulatory genes in the TGFβ-LRRC15 pathway, CRISPR-mediated 

knockout studies targeting LRRC15, MMP2, SPARC, TGFβR2, and WNT5B should be 

prioritized. Knockouts in TGFβ-responsive cancer models will allow us to observe the effects 

of complete gene disruption, advancing beyond siRNA limitations. Given the observed roles of 

MMP2 and SPARC in extracellular matrix remodeling, these genes are particularly relevant to 

understanding TGFβ-mediated immune exclusion. Validation studies using CRISPR-engineered 

cell lines and organoid models may uncover mechanisms through which these genes influence 

tumor invasiveness, immune cell infiltration, and response to RIT. Similarly, high-throughput 

CRISPR screens or siRNA libraries targeting these identified proteins may help delineate their 

functional roles and therapeutic potential in androgen-independent prostate cancer models. 
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LRRC15-Targeted Radioimmunotherapy in Metastatic Prostate Cancer 

Prostate cancer metastases present unique therapeutic challenges in advanced androgen-

independent stages, with the most common metastases occurring in lymph node and bone. Bone 

metastatic lesions, notably enriched in extracellular matrix proteins and factors facilitating 

tumor-stroma interactions, provide a microenvironment conducive to treatment resistance. 

Genes like MMP9, WNT5A, and LRRC15 are highly expressed in bone-metastatic androgen-

independent prostate cancers, reinforcing the tumor-supportive microenvironment by enhancing 

matrix remodeling and signaling pathways that promote cell survival and invasion [2]. 

 

LRRC15-targeted radioimmunotherapy could target therapeutic resistance in bone metastases, 

particularly with the most recent Phase I/II clinical trials using Actinium-225 RIT therapeutics 

[3,4]. Given LRRC15’s amplified expression in metastatic prostate cancers of the bone [2], 

coupling LRRC15-RIT to Actinium-225 could direct radionuclide-induced cytotoxicity to 

micrometastases, and with the short path length of the radionuclide, minimize damage to 

surrounding healthy tissue and bone marrow. Preclinical syngeneic models [5] focusing on 

LRRC15-targeted therapies in bone-metastatic prostate cancer could provide insights into how 

such treatments affect both the tumor cells and the surrounding stroma, as well as reactivate the 

immune system. While combined targeting of LRRC15 and TME interactions holds promise, 

there is a risk that prostate cancer cells may adaptively upregulate compensatory pathways, 

leading to treatment resistance. For instance, the upregulation of alternative growth or survival 

pathways such as PI3K/AKT, MAPK, or DNA damage response pathways, could counteract the 

efficacy of AR inhibitors and RIT [1]. Regular monitoring of pathway activation through 

biomarkers such as KLK2 and adaptive treatment protocols that modify the therapeutic regimen 
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based on real-time data could mitigate this risk. Future research could focus on preemptive 

strategies that anticipate resistance mechanisms, enabling dynamic therapy adjustments in 

clinical trials. The current clinical trials examining KLK2-targeted therapies [4] in prostate 

cancer offer a valuable context for testing our findings on the TGFβ-LRRC15 axis. In clinical 

settings, stratifying patients based on LRRC15 and KLK2 expression, and correlating these 

biomarkers with therapeutic response, could provide a pathway for personalizing treatments for 

advanced disease.  
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