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Abstract The ESX (or Type VII) secretion systems are protein export systems in mycobacteria

and many Gram-positive bacteria that mediate a broad range of functions including virulence,

conjugation, and metabolic regulation. These systems translocate folded dimers of WXG100-

superfamily protein substrates across the cytoplasmic membrane. We report the cryo-electron

microscopy structure of an ESX-3 system, purified using an epitope tag inserted with

recombineering into the chromosome of the model organism Mycobacterium smegmatis. The

structure reveals a stacked architecture that extends above and below the inner membrane of the

bacterium. The ESX-3 protomer complex is assembled from a single copy of the EccB3, EccC3, and

EccE3 and two copies of the EccD3 protein. In the structure, the protomers form a stable dimer

that is consistent with assembly into a larger oligomer. The ESX-3 structure provides a framework

for further study of these important bacterial transporters.

Introduction
Mycobacteria use a set of specialized secretion systems called ESX to transport proteins across their

complex, diderm cell walls (Gröschel et al., 2016). Originally described as virulence factors in Myco-

bacteria tuberculosis (Guinn et al., 2004; Hsu et al., 2003; Lewis et al., 2003; Stanley et al.,

2003), orthologs of ESX have since been discovered in most Gram-positive bacteria (Bottai et al.,

2017), and are more generally referred to as Type VII secretion systems (Bitter et al., 2009). In

mycobacteria there are five paralogous ESX operons (ESX 1–5) each of which encodes an inner mem-

brane translocon complex consisting of three conserved Ecc proteins: EccB, EccC, and EccD. A

fourth protein, EccE is conserved in all ESX operons except the ancestral ESX-4 operon and is also

considered a part of the ESX translocon complex as it copurifies with EccB, EccC, and EccD

(Houben et al., 2012). All Type VII secretion systems translocate proteins in the WXG100-superfam-

ily, which share a common two-helix hairpin structure and are found as homo- or heterodimers

(Poulsen et al., 2014) and are mutually dependent for secretion with other substrates

(Fortune et al., 2005). In contrast to the general secretory apparatus (Sec), ESX substrates have

been shown to be secreted in their folded, dimeric state (Sysoeva et al., 2014).

Structural and functional information has been reported for truncated and isolated, soluble

domains of the ESX translocon complexes and their homologs (Korotkova et al., 2015;

Korotkova et al., 2014; Renshaw et al., 2005; Rosenberg et al., 2015; Strong et al., 2006;

Wagner et al., 2016; Wagner et al., 2014; Wagner et al., 2013; Zhang et al., 2015; Zoltner et al.,

2016). A low resolution, negative stain electron microscopy structure of ESX-5 shows a translocon

complex assembled into a hexamer (Beckham et al., 2017). Structures of other proteins encoded in
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ESX operons including secreted substrates (Ilghari et al., 2011), substrate chaperons (Ekiert and

Cox, 2014), and the protease MycP (Solomonson et al., 2013) have been solved. Despite revealing

important functional information about ESX, structures of overexpressed and isolated proteins are

insufficient to understand the regulated secretion of fully folded substrates. We therefore undertook

structural studies of an endogenously expressed ESX-3 complex from the model organism M. smeg-

matis using cryo-electron microscopy (cryo-EM). During the preparation of this work for publication,

a similar structure of the ESX-3 system expressed from a plasmid was published by another group

(Famelis et al., 2019).

The ESX-3 translocon complex is important for iron acquisition (Serafini et al., 2013;

Siegrist et al., 2009), cell survival (Tinaztepe et al., 2016), and virulence in pathogenic mycobacte-

ria (Tufariello et al., 2016), and its role in iron homeostasis is conserved in the model system, M.

smegmatis (Siegrist et al., 2009). The ESX-3 translocon complex proteins are transcribed in a single

operon (Li et al., 2017), and expression of the ESX-3 operon is dependent on the transcriptional

regulator IdeR, which controls iron metabolism (Rodriguez et al., 2002) and is required for growth

in the human pathogen M. tuberculosis (Pandey and Rodriguez, 2014). The ESX-3 operon is 67%

identical between the non-pathogenic model organism M. smegmatis and the pathogen M. tubercu-

losis over the 4354 amino acids of the ESX-3 operon. This high degree of conservation and essential

role in cell growth makes ESX-3 an important candidate for small molecule inhibition (Bottai et al.,

2014), as blockade of ESX-3 will both inhibit virulence in M. tuberculosis and kill a broad range of

pathogenic mycobacteria.

Results
A major innovation made possible by the dramatic improvements in cryo-EM (Cheng, 2018) is the

ability to examine challenging protein samples at atomic resolution, even when samples are only

available at low concentrations. When coupled with recent genetic manipulations that allow for facile

insertion of chromosomal epitope and purification tags (Murphy et al., 2018), cryo-EM now holds

the promise of routine structural characterization of many endogenously expressed protein com-

plexes not previously tractable by structural techniques. We undertook the purification of the ESX-3

complex from the native host without the need for overexpression. To facilitate purification of the

endogenous translocon complex, a cleavable EGFP tag was inserted into the chromosome of M.

smegmatis mc(2)155 (wild type) and DideR (Dussurget et al., 1996) strains at the C-terminus of

EccE3 via the ORBIT method (Murphy et al., 2018) (Figure 1A, Figure 1—figure supplement 1).

EccE3 is the final gene in the 11 gene long ESX-3 operon making insertion at this site less likely to

disrupt regulation and expression of the operon. Deletion of the gene for the iron acquisition regula-

tor IdeR greatly increases chromosomal expression of ESX-3 from negligible amounts of protein to a

yield sufficient for purification and structure determination (Figure 1—figure supplement 2A). Com-

ponents of ESX-3 were pulled down using an anti-GFP nanobody (Rothbauer et al., 2008) and the

EGFP tag was proteolytically cleaved. After size exclusion chromatography, the peak fractions were

pooled and analyzed biochemically and by cryo-EM .

Global structure of the ESX-3 dimer
Four components of the ESX-3 translocon complex EccB3, EccC3, EccD3 and EccE3 were stably affin-

ity-purified as a large molecular weight species of about 900 kDa (Figure 1B and C, Figure 1—fig-

ure supplement 2B). The sample was imaged by cryo-EM and reconstructed revealing a dimeric

structure, which can be divided into four areas: the flexible periplasmic multimerization domain, the

stable transmembrane region, the stable upper cytoplasmic region, and the flexible lower cyto-

plasmic motor domain (Figure 1D, Table 1). While the peak fraction does not contain particles of a

larger size consistent with higher order oligomers, thorough examination of the void volume

revealed a small number of particles in a higher oligomeric state (Figure 1—figure supplement 3A–

E). The resolution of the ESX-3 dimer varies substantially in different parts of the electron microscopy

map and this heterogeneity was partially resolved through data processing (Figure 1—figure sup-

plement 4 and Figure 1—figure supplement 5). Initially, the entire ESX-3 dimer was reconstructed

to 4.0 Å resolution (Figure 1—figure supplement 6A). Using symmetry expansion, and focused clas-

sification and refinement techniques, the resolutions of targeted regions of the ESX-3 complex were

improved to 3.7 Å for the transmembrane region and upper cytoplasmic region (Figure 1—figure
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Figure 1. Overview of the ESX-3 tagging, purification, and structure. (A) The ESX-3 operon in M. smegmatis and the placement of the purification tag.

Genomic deletion of ideR derepresses ESX-3 to boost expression for purification. (B) SDS-PAGE of purified ESX-3 shows four major bands

corresponding to EccB3, EccC3, EccD3, and EccE3. (C) Blue native page of the purified ESX-3 complex shows a large molecular weight band around 900

kDa. (D) Merged maps of all focused refinement maps (gray transparency) of the ESX-3 dimer filtered to 10 Å resolution. The transmembrane and

upper cytoplasmic focused maps (3.7 Å) are segmented by subunit showing one copy per protomer of EccB3 (pink), EccC3 (blue), EccE3 (orange),

EccD3-bent (yellow), and EccD3-extended (green). (E) Atomic models of the transmembrane and upper cytoplasmic regions. (F) A combined map of the full

complex filtered to 10 Å resolution (gray transparency) with full models for each protein, EccD3-bent (yellow), EccD3-extended (green), EccE3 (orange),

EccC3 (blue), and EccB3 (pink).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. ORBIT tagging of the chromosomal copy of EccE3.

Figure supplement 2. ESX-3 dimer purification optimization.

Figure 1 continued on next page
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supplement 6B–D), 5.8 Å for the periplasmic region (Figure 1—figure supplement 6E), and ~7 Å

resolution for the lower cytoplasmic region (Figure 1—figure supplement 6F). The highest resolu-

tion maps for each region were combined and filtered to the threshold of the lowest resolution map

to form an overall 10 Å combination map for the entire ESX-3 dimer.

The ESX-3 dimer is comprised of ten total proteins, two copies each of EccB3, EccC3, and EccE3
and four copies of EccD3. Two pseudo-symmetric protomers referred to as i and ii, combine to form

the ESX-3 dimer. Each protomer contains one copy of EccB3, EccC3, and EccE3 and two conforma-

tionally distinct copies of EccD3, referred to as EccD3-bent and EccD3-extended (Figure 1E) based on

their highly asymmetric conformations. At 3.7 Å resolution, it was possible to build de novo atomic

models for all observable amino acids in the transmembrane and upper cytoplasmic regions, except

the two transmembrane helices of EccC3 (Figure 1E and Supplementary file 1). The lower

Figure 1 continued

Figure supplement 3. Examination of the void volume.

Figure supplement 4. Initial data collection and initial model generation.

Figure supplement 5. Data processing workflow for final data collection.

Figure supplement 6. Consensus and focused refinements.

Table 1. Data collection and refinement statistics.

Collection parameters for initial test data set and void peak analysis on the Talos Arctica and final collection on Titan Krios micro-

scopes. Refinement details for initial model, consensus map, and focused refinements.

Data Collection

Collection Initial Screening Collection 1 Collection 2 Void peak

Microscope Talos Arctica Titan Krios Titan Krios Talos Arctica

Voltage (kV) 200 300 300 200

Detector Gatan K2 Gatan K2 Gatan K2 Gatan K3

Pixel size (Å/pixel) 1.14 0.82 0.82 0.9

Exposure Time (s) 9 10 10 11.7

Electron dose (e-/Å2) 63 80 67 58

Defocus range (mm) 1.5-2.5 0.4-1.2 0.6-1.4 1.5-2.5

Number of micrographs 2,499 2,705 4,632 1,215

Consensus Reconstruction

Data Set Initial Screening Collection 1 & 2 Void peak

Software Relion 2.1, cisTEM, and cryosparc Relion 3.0 cisTEM

# of particles, picked 240,000 778,149 259,333

# of particles post, Class2D 138,000 554,901 640

# of particles post, Class3D 46,830 362,438 NA

# of particles post, skip align Class3D NA 90,479 NA

Symmetry C1 C1 NA

Map sharpening B-factor (Å2) NA -160 NA

Final resolution (Å) 4.7 Å 4.0 Å NA

Focused Refinements

Location of focus # of particles Resolution

Protomer i 76,967 3.8

Protomer ii 90,479 3.8

Symmetry expanded protomer 52,067 3.7

Periplasmic EccB3 70,000 5.8

ATPase 1, 2, and 3 30,000 7
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resolution regions of density, the EccC3 transmembrane helices, EccC3 ATPase 1, 2, and 3 domains

and the EccB3 periplasmic domain, were flexibly fit using homology models. Using this hybrid

approach, a model of the entire ESX-3 dimer has been produced (Figure 1F).

EccD3 forms a homodimer that encloses a large hydrophobic cavity
There are two copies of EccD3 in each ESX-3 protomer (Figure 2A). The ubiquitin-like N-terminal

domain of each EccD3 molecule interacts with EccE3 and EccC3 in the cytoplasm, and a long linker

joins the soluble domain of EccD3 to 11 transmembrane helices (Figure 2B and Figure 2—figure

supplement 1A–F). The four EccD3 molecules account for 44 of the total 54 transmembrane helices

observed in the ESX-3 dimer. A distinct transmembrane cavity is formed by dimerization of the two

copies of EccD3 in each protomer with a cross-sectional diameter of ~20�30 Å without significant

regions of constriction. Transmembrane helices 1, 9 and 10 interact across the cavity dimer interface

in a tight bundle making passive lipid transport into the membrane from the cavity unlikely

(Figure 2C). The inner surface of the periplasmic half of the cavity is composed primarily of hydro-

phobic residues and in our maps, eight extended densities consistent with hydrophobic lipid tails or

detergent molecules line the periplasmic inner face of the cavity (Figure 2C). In contrast, the

A B

EccD
extended

EccD
bent

EccD
bent

EccD
extended

Protomer i Protomer ii

Protomer i Protomer ii

C Ordered hydrophobic tails

EccD
bent

100

127

127

D

EccD
bent

EccD
extended

85°

EccD
bent

EccD
extended

EccD
extended

90°

90°

TM10
TM9

TM1

Figure 2. The structure of EccD3. (A) EccD3-bent (yellow) and EccD3-extended (green) in the context of the overall ESX-3 dimer (gray transparency). (B)

Atomic models of EccD3-bent and EccD3-extended (C) An unsharpened electron microscopy density map of the ESX-3 dimer shows extra densities

consistent with lipid or detergent molecules (teal) on the periplasmic face of the EccD3 cavity. (D) EccD3-bent (yellow) and EccD3-extended (green) aligned

based on the transmembrane regions shows two distinct conformations of the EccD3 cytoplasmic domains. Amino acids 100–127 of EccD3 adopt a bent

(yellow) and an extended (green) conformation.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. EccD3 map and model.
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cytoplasmic face of the cavity has several polar residues and ordered hydrophobic densities are not

visible.

In the cytoplasm below the membrane, a stable, upper cytoplasmic region is formed by interac-

tions between the soluble domains of EccD3-bent, EccD3-extended, EccE3, and EccC3. The linker joining

the cytoplasmic ubiquitin-like domain to transmembrane helix 1 (residues 100–127) of EccD3 con-

serves a high sequence identity throughout evolution (Ashkenazy et al., 2016), yet it adopts two

distinct secondary structures resulting in the asymmetric placement of the cytoplasmic domains of

EccD3 (Figure 2D and Figure 2—figure supplement 1A–G). In EccD3-bent, residues 100–127 are

bent, folding into an a-helix and forming a nexus of stabilizing contacts with EccB3 and EccC3 (Fig-

ure 2—figure supplement 1H). In EccD3-extended, residues 100–127 are extended and fold into a

shorter a-helix that interacts with EccE3 and the cytoplasmic domain of EccD3-bent (Figure 2—figure

supplement 1I). This conformational flexibility suggests that if residues 100–127 were released from

their associations with EccC3 and EccE3 they could rearrange into the alternative bent or extended

conformation with little energetic barrier.

EccC3 and EccE3 make extensive, stabilizing interactions with the
asymmetric, cytoplasmic domains of EccD3

The next component of the stable upper cytoplasmic region is EccE3. EccE3 is positioned at the front

of the ESX-3 dimer (Figure 3A), where the conserved transmembrane helix 1 of EccE3 interacts with

helix 11 of EccD3-bent in the membrane. Helix 1 is followed by a second EccE3 transmembrane helix,

a linker helix, and then extends into the cytoplasm (Figure 3B and C and Figure 3—figure supple-

ment 1A–D). The anti-parallel b-sheets of the cytoplasmic domain of EccE3 have weak structural

homology to glycosyl transferase proteins, however, the nucleotide binding pocket is absent in

EccE3, leaving it incapable of performing this function (Figure 3—figure supplement 1E and F,

Supplementary file 2). EccE3 does not have another obvious ligand or catalytic site. Two conserved

helices in the cytoplasmic region of EccE3 between amino acids 133 and 163 form extensive stabiliz-

ing interactions with both subunits of EccD3 (Figure 3D, Figure 3—figure supplement 1G). These

interactions hold the flexible linker of EccD3-extended in the extended conformation and sterically hin-

der EccD3-extended from assuming the bent conformation (Figure 3—figure supplement 1H). EccE3
does not form direct protein-protein interactions with either EccB3 or EccC3 suggesting the contacts

with EccD3-extended and EccD3-bent are extremely stable as EccE3 was the tagged protein used to

immunoprecipitate the ESX-3 dimer.

The final component of the stable upper cytoplasmic region is the domain of unknown function

(DUF) of EccC3. EccC3 extends from the membrane into the upper and lower cytoplasmic regions

(Figure 4A). Amino acids 1–33 and 94–403 of EccC3 were built de novo into the higher resolution

region of the electron microscopy map revealing the structure of the DUF domain (Figure 4B, Fig-

ure 4—figure supplement 1A–C). The de novo model of the DUF has the typical Rossman fold of a

nucleotide hydrolysis domain (Figure 4—figure supplement 1D and E) and its closest homolog by

Dali search is the ATPase 1 domain of EccC of T. curvata. It is linked to the transmembrane domains

by a long helical bundle making extensive contacts with the flexible linker region of EccD3-bent

(Figure 4C). The DUF makes additional stabilizing contacts with the ubiquitin-like domains of EccD3-

bent and EccD3-extended in the cytoplasm (Figure 4D).

When the transmembrane and upper cytoplasmic regions are compared between protomers,

only the transmembrane helices of EccC3 and the N-terminal tail of EccB3 differ (Figure 4—figure

supplement 2A and B), otherwise the protomers are superimposable. All four EccC3 transmembrane

helices were modeled at 6 Å resolution through a combination of homology modeling and molecular

dynamics. In protomer i, transmembrane helix 2 forms lipid mediated hydrophobic interactions with

the transmembrane helix of EccB3 in protomer i, and transmembrane helix 1 interacts with trans-

membrane helix 2 of EccC3 in protomer ii. Transmembrane helix 1 of EccC3 in protomer ii is shifted

relative to the protomer i conformation and does not directly interact with other proteins.

The EccC3 motor domains are flexible and asymmetric across the dimer
The motor domains containing the EccC3 ATPase 1, 2 and 3 hang below the DUF domain in the flex-

ible lower cytoplasmic region. They were resolved at a lower resolution than the upper cytoplasmic

domain, but they are clearly asymmetric between protomers i and ii (Figure 4A). Although the
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EccC3 ATPase 1 domains in both protomers are in a similar location relative to the DUF, the ATPase

2 and 3 domains do not superimpose across protomers even at low resolution (Figure 4—figure

supplement 2C) suggesting significant asymmetry between these domains. In protomer i, a homol-

ogy model based on existing EccC structures fits well into the density; however in protomer ii, the

interface between ATPase 1 and 2 is broken relative to the crystal structure with ATPase 2 and

ATPase 3 rotated away from the crystal structure interface.

EccB3 extends into the periplasm and stabilizes dimer formation
The ESX-3 dimer is stabilized by cross-protomer interactions formed by the two EccB3 proteins.

EccB3 begins in the cytoplasm with a flexible N-terminal tail leading into a linker helix, followed by a

single-pass transmembrane helix, and an extended periplasmic domain (Figure 5A and B, Figure 5—

figure supplement 1A and B). The N-terminal tail of EccB3 from protomer i forms extensive cross-
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Figure 3. The structure and protein-protein interactions of EccE3. (A) The placement of EccE3 in the overall ESX-3 dimer. (B) Atomic model of EccE3 (C)

Transmembrane helix 1 of EccE3 interacts with transmembrane helix 11 of EccD3-bent (D) Two soluble helices of EccE3 interact with EccD3-extended and

EccD3-bent.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. EccE3 map and model.
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protomer contacts with EccB3, EccC3, EccD3-bent and EccD3-extended from protomer ii (Figure 5C,

Supplementary file 3). The linker helix of EccB3 forms further protein-protein interactions with

EccC3 and EccD3-bent. The transmembrane helix of EccB3 interacts with transmembrane helix 11 of

EccD3-extended. Two hydrophobic tails consistent with a lipid or detergent molecules link the trans-

membrane helix of EccB3 to transmembrane helix 2 of EccC3 (Figure 5D). The two EccB3 periplasmic

domains share a large interaction interface across the protomers further stabilizing dimerization.

Homology models of two EccB3 proteins can be docked into the periplasmic domain (Figure 5—fig-

ure supplement 1C); however, this region is not resolved sufficiently to identify specific interactions.

The majority of cross-protomer interactions involve EccB3, suggesting the periplasmic domain is

essential for oligomerization.

A hexameric model of ESX-3
Previous reports have shown ESX-1 and ESX-5 form hexamers or higher order multimers

(Beckham et al., 2017; Houben et al., 2012). We modeled a higher order oligomeric state of ESX-3

based on the low-resolution negative stain structure of ESX-5, which had C6 symmetry imposed

EccB
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EccC

A

Protomer i Protomer ii
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EccB

EccC

EccC

EccD
extended

EccD
extended

EccD
fbent

EccD
fbent

EccD
fbent

EccD
extended

EccC

90°

90°

90°

Figure 4. The structure and protein-protein interactions of EccC3. (A) The placement of EccC3 in the overall ESX-3 dimer. (B) Atomic model of the

EccC3 DUF (C) The stalk helices of EccC3 interact with EccB3, EccD3-bent, and EccD3-extended (D) Interactions between EccC3 and the ubiquitin-like

domains of EccD3-bent and EccD3-extended in the cytoplasm.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. EccC3 map and model.

Figure supplement 2. Conformational differences between protomer i and protomer ii.
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during refinement (EMDB 3596). The ESX-3 translocon complex was modeled as a trimer of dimers

by low pass filtering the density to 6 Å and docking into the ESX-5 negative stain map (Figure 6—

figure supplement 1A). The model of the ESX-3 dimer transmembrane and upper cytoplasmic

regions, including the EccC3 transmembrane helices modeled to 6 Å resolution, was fitted into the

trimerically positioned ESX-3 density maps (Figure 6—figure supplement 1B). The angle between

A B

C

Protomer i Protomer ii

EccB

EccB

EccB EccB

EccB

EccB

Protomer i

Protomer ii

D

EccC

TM 1&2
EccD

extended

TM 11

EccB

Ordered hydrophobic tails

90°

Figure 5. The periplasmic multimerization domain. (A) EccB3 (pink) in the context of the overall ESX-3 dimer (gray transparency). EccB3 has a single-

pass transmembrane domain which extends into a large periplasmic domain which was resolved at 5.8 Å resolution. (B) Atomic models of the EccB3

cytoplasmic and transmembrane domains, amino acids 14–93 and 32–93. (C) The N-terminus of EccB3 forms extensive cross-protomer contacts with

EccC3 (blue), EccD3-bent (yellow), and EccD3-extended (green). (D) An unsharpened map of the ESX-3 dimer reveals ordered densities consistent with lipids

or detergent molecules mediating the interactions between the EccB3 transmembrane helix (marked with a pink dot) and the EccC3 transmembrane

helices.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. EccB3 maps and models.

Poweleit et al. eLife 2019;8:e52983. DOI: https://doi.org/10.7554/eLife.52983 9 of 20

Research article Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.52983


protomers in the trimer of dimers model alternates between 72˚ (the angle between protomers i and

ii in the ESX-3 dimer map) and 48˚ and contains both experimentally observed conformations of

EccC3. The complete model of the ESX-3 translocon complex was docked into the ESX-5 negative

stain map in the same manner revealing major clashes between the low resolution periplasmic and

motor domains in a hexameric form (Figure 6—figure supplement 1C). Accommodation of a hex-

americ complex would require extensive rearrangement of both EccC3 and EccB3.

Discussion
The ESX-3 structure presented here is purified without the addition of substrates or nucleotide. It is

therefore likely to be in a conformation representing the end of the translocation cycle, awaiting

either the direct binding of substrates, the binding of nucleotide or both, to reset a substrate-bind-

ing competent state. By fitting our dimer structure into a prior low resolution envelope we suggest a

model of the oligomeric state of the complex, in close agreement with Famelis et al. However, even

allowing for major rearrangements in the more flexible regions of EccC3 and EccB3, a model built by

the static trimerization of the experimentally determined dimer structure cannot itself explain the

mechanism of action of ESX-3 secretion. The existence of an R-finger catalytic site for ATPase 1 of

EccC3 (Rosenberg et al., 2015) requires the R-finger of one protomer to insert into the active site of

another protomer. Given the ~65 Å distance we observe between ATPase 1 domains, the comple-

tion and activation of the catalytic site of ATPase 1 by an R-finger will necessitate an extremely large

rearrangement of the position of the ATPase domains. How might this rearrangement occur? We

propose movements in the highly flexible EccD3 linker lead to the release of EccE3 and EccC3 from

their rigid positions, thus allowing for a rearrangement of the ATPase domains into an active confor-

mation (Figure 6).

Once EccC3 assembles into an oligomeric state, the substrate proteins will need to translocate

through the inner membrane. We have considered two models for how pore formation and transit

might occur: 1) through a pore created by the oligomerization of EccC3 and EccB3 or 2) through the

large cavity created by the dimerization of EccD3. In the first model (Figure 6A), the resting state of

an ESX translocon complex is a hexamer, with disordered EccC3 ATPase domains free in the cytosol,

stabilized by interactions with proteins not seen in the structures presented here (van Winden et al.,

2016). It is possible the rare multi-dimer oligomeric state we see in the void volume, and also seen

by Famelis et al., represents this state. In a hexamer model, the center of the multimer is formed by

the transmembrane helices of EccC3 and EccB3, which create a cavity that could serve as a pore for

translocation of substrates. These transmembrane helices are largely hydrophobic and do not con-

tain obvious residues that would allow for the conductance of hydrated substrates. Thus the produc-

tion of a protein transit channel would require either a large, conformational change in the

transmembrane helices, likely facilitated by movements in the cytoplasmic domains of EccC3, EccD3

and EccE3, or a novel mechanism of action for transit through the central pore.

A hexameric pore created by EccC3 agrees well with the documented mechanism of action for

motor ATPases in the additional strand catalytic E (ASCE) division of P-loop NTPases

(Erzberger and Berger, 2006), which includes EccC3. A hexameric pore also agrees with the pro-

posed mechanism of action for other bacterial secretion systems, such as the Type IV secretion sys-

tem VirD4 coupling protein (Gomis-Rüth et al., 2001; Hormaeche et al., 2002), which is related

evolutionarily to EccC3 (Iyer et al., 2004). The hexamer model is thus firmly grounded in the motor

ATPase and bacterial secretion systems literature, although the oligomeric state of VirD4 has

recently been called into question (Redzej et al., 2017) and remains controversial (Llosa and

Alkorta, 2017).

In a second, more speculative model, EccD3 dimers form a channel for translocation of substrates

(Figure 6B). The large cavity found in the EccD3 dimer is striking and by structural homology, is

unlike any other membrane protein in the Protein Data Bank. In our density maps, the EccD3 dimer

cavity appears capped on the periplasmic side by a dense layer of lipids. In contrast, on the cyto-

plasmic side the cavity does not exhibit bound lipids due to the polar residues lining the lower half

of the cavity. The large cavity is of sufficient diameter to transit a folded EsxG/H dimer, however

given the strong hydrophobicity of the cavity the mechanism would not be mediated by water and

would require a novel mechanism of secretion that has not been seen in other bacterial secretion

systems. It is also possible that the cavity exists to transit a non-protein substrate such as a specific
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mycobacterial lipid. The ability to transport non-protein substrates could resolve some of the myster-

ies that remain about the relationships between ESX systems, cell wall stability, lipid content, and

nutrient acquisition (Barczak et al., 2017; Bosserman and Champion, 2017; Siegrist et al., 2014;

Tufariello et al., 2016).

As each protomer contains an EccD3 cavity, the second model, proposing translocation through

EccD3, does not require hexamerization. However, this model is also not incompatible with hexame-

rization, which would not block a substrate path through EccD3. Further, the role of the hexamer

may not be to form a central channel for substrate transit. Rather, hexamerization could serve some

other purpose. For example, it may tether functional dimers together, facilitate localization, or

increase local concentration and allosteric control of enzymatic activity (Kuriyan and Eisenberg,

2007).

Although the ESX-3 structure presented here allows for mechanistic hypotheses about the transit

of substrates across the inner-membrane, it does not provide sufficient information to allow for a

structural model of transit across the outer mycomembrane. The EccB3 periplasmic domain

(Wagner et al., 2016) has been found to have similarity to the peptidoglycan binding phage protein
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Figure 6. Two models of the ESX-3 translocon complex. ATPase activity entails, at a minimum, oligomerization of ATPase 1 to bring the R-finger (R)

into proximity of the catalytic site, marked by the Walker A motif (WA). This requires at least 65 Å of movement from the position seen in the structure.

(A) The first model of ESX substrate secretion involves trimerization of the ESX-3 dimer followed by multimerization of the EccC ATPase domains into a

stack of one to four rings of ATPases (B) The second model shown through the function of a single protomer of the ESX-3 complex. Substrates are

selected by interaction with ATPase 3 of EccC and transported via the upper cytoplasmic region to the EccD cavity for secretion.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. A hexameric model of the ESX-3 dimer.
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PlyCB, which forms a ring inside the bacterial cell wall facilitating phage entrance into the cell. A

hypothesis is that EccB3 is anchored to a larger outer membrane complex, but the purification condi-

tions we have employed remove proteins required for its stabilization.

The description of ESX-3 presented here agrees in both protein composition and structure with

the work recently published by Famelis et al. Given the high sequence conservation among the ESX

systems in mycobacteria and related actinobacteria, these structures likely represent an excellent

framework for the structural modeling of the other ESX systems. Together, these structures provide

a wealth of information about protein-protein interaction interfaces and ESX complex architecture,

which can be used to guide structure-based drug design and to generate hypotheses for further

mechanistic investigations.

Materials and methods

Key resources table

Reagent type (species)
or resource

Designation
Source or
reference

Identifiers
Additional
Information

Biological sample
Mycobacterium smegmatis

mc(2)155 ATCC 700084 Wild type strain

Biological sample
Mycobacterium smegmatis

mc(2)155 with
ideR::mgd200
(KanR)

Dussurget et al., 1996,
Provided by GM Rodriguez

Biological sample
Mycobacterium smegmatis

mc(2)155,
MSMEG_0626-3C-
EGFP

This paper

Biological sample
Mycobacterium smegmatis

mc(2)155 with
ideR::mgd200
(KanR),
MSMEG_0626-3C-
EGFP

This paper

Recombinant
DNA reagent

pKM444 Murphy et al., 2018
Addgene
Plasmid #108319

Plasmid encoding for
Che9c phage RecT and
Bxb1 phage Integrase

Recombinant
DNA reagent

pKM444 - zeo This paper
Addition of zeocin
resistance cassette to
pKM444 plasmid

Recombinant
DNA reagent

pKM468-3C-
EGFP

This paper
Modified ORBIT
tagging plasmid

Sequenced-
based reagent

ORBIT targeting
oligonucleotide

This paper Oligo

5’ TGTGCGTTCCACTGGTTCCC
CGGCAACCACCTGCTGCACGTG
AGCCAGCCGGACTACCTAGGTT
TGTACCGTACACCACTGAGACC
GCGGTGGTTGACCAGACAAACC
CGCCGGATGACCCGCTTCCTGC
GCGGCTTCATGTTCGACTGAAC
CCTTCACCGAGGTCCG 3’

Antibody
Anti-GFP
stabilized antibody
preparation

Roche
Cat. #:
11814460001

Dilution 1:10000

Antibody
Anti-mouse IgG
HRP-conjugated
antibody

R&D Systems
Cat. #:
HAF007

Dilution 1:5000

Antibody
Goat anti-rabbit
IgG antibody HRP

GenScript
Cat. #:
A00098

Dilution 1:5000

Antibody
Rabbit anti-
GroEL

Sigma-Aldrich
Cat. #:
G6532-.5ML

Dilution 1:5000

Peptide,
recombinant protein

Human
Rhinovirus (HRV)
3C Protease

Thermo Scientific Pierce
Cat. #:
88946

Continued on next page
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Continued

Reagent type (species)
or resource

Designation
Source or
reference

Identifiers
Additional
Information

Commercial
assay or kit

Superose 6
Increase 10/300 GL

GE Healthcare
Cat. #:
29091596

Chemical compound,
detergent

DDM, n-Dodecyl-
b-D-Maltopyranoside

Inalco
Cat. #:
1758-1350

Chemical compound,
detergent

GDN, glyco-
diosgenin

Anatrace
Cat. #:
GDN101

Other

NativePAGE 3-
12% Bis-Tris
Protein Gels, 1.0 mm,
10-well

ThermoFisher Scientific
Cat. #:
BN1001BOX

Commercial
assay or kit

Pierce Silver
Stain Kit

Pierce
Cat. #:
PI24612

Software,
algorithm

SerialEM Mastronarde, 2005
https://bio3d.colorado.edu/
SerialEM/

Software,
algorithm

MotionCor2 Zheng et al., 2017
http://msg.ucsf.edu/em/software/
motioncor2.html

Software,
algorithm

CTFfind4 Rohou and Grigorieff, 2015
https://grigoriefflab.umassmed.edu/
ctffind4

Software,
algorithm

RELION Scheres, 2012
cam.ac.uk/relion/index.php/
Download_%26_install

Software,
algorithm

cisTEM Grant et al., 2018 https://cistem.org/

Software,
algorithm

cryosparc Punjani et al., 2017
https://cryosparc.com/docs/
reference/install/

Software,
algorithm

pyem Asarnow et al., 2019
https://github.com/
asarnow/pyem

Software,
algorithm

coot Emsley et al., 2010 https://www2.mrc-lmb.cam.

Software,
algorithm

raptorX Källberg et al., 2012 http://raptorx.uchicago.edu/

Software,
algorithm

phenix real
space refine

Afonine et al., 2018 https://www.phenix-online.

Software,
algorithm

MDFF Trabuco et al., 2009
org/documentation/reference/
refinement.html

Software,
algorithm

namdinator Kidmose et al., 2019 https://namdinator.au.dk/

Software,
algorithm

pisa Krissinel, 2015 http://www.ccp4.ac.uk/pisa/

Software,
algorithm

chimera Pettersen et al., 2004 https://www.cgl.ucsf.edu/chimera/

Software,
algorithm

chimeraX Goddard et al., 2018 https://www.cgl.ucsf.edu/chimerax/

Software,
algorithm

DALI Holm and Laakso, 2016
http://ekhidna2.biocenter.helsinki.fi/
dali/

Strain construction
Mycobacteria smegmatis mc(2)155 (wild type) and DideR cells were chromosomally tagged using the

ORBIT protocol (Figure 1—figure supplement 1). For wild type cells, the integrase and annealase

expressing plasmid was pKM444. For recombineering in the DideR strain, which already contained a

kanamycin resistance marker, we created a modified pKM444 plasmid with a zeocin resistance cas-

sette inserted at the EcoIV restriction site. The tagging plasmid was pKM468 with a 3C protease

cleavage site added before the EGFP tag. The targeting oligo had the sequence: 5’ TGTGCG

TTCCACTGGTTCCCCGGCAACCACCTGCTGCACGTGAGCCAGCCGGACTACCTAGGTTTGTACCG
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TACACCACTGAGACCGCGGTGGTTGACCAGACAAACCCGCCGGATGACCCGCTTCC

TGCGCGGCTTCATGTTCGACTGAACCCTTCACCGAGGTCCG 3’. M. smegmatis cells containing

pKM444 were grown in an overnight liquid culture and induced for annealase and integrase expres-

sion. Cells were prepared for electroporation and electroporated with the targeting oligo and tag-

ging plasmid. The transformed M. smegmatis were plated on hygromycin (wild type) or hygromycin

and kanamycin (DideR) containing 7H9 plates and incubated at 37˚ C for 3 days. Colonies were veri-

fied for insertion of the tagging plasmid into the chromosome by PCR.

Western blotting
100 mL of EccE3 tagged wild type and DideR knock out cells were grown overnight to an OD600 of

1.0–1.2. Cells were pelleted and resuspended in 1 mL of buffer (50 mM Tris-HCl pH 8.0, 150 mM

NaCl, 1% DDM) and sonicated for 30 s. Cell lysates were run on a 4–20% SDS-PAGE gel (GenScript)

and transferred to PVDF membrane (BioRad) using a BioRad Trans-Blot Turbo Transfer System. The

blot was washed with PBS and blocked in a 5% milk/PBS-T solution for 1 hr. The blot was incubated

with mouse anti-GFP monoclonal antibody (Roche) overnight. After rinsing with PBS-T, the blot was

incubated with anti-mouse IgG HRP-conjugated antibody (R&D Systems) for 2 hr. After activation

(Amersham) the blot was imaged on a BioRad ChemiDoc. The blot was stripped with stripping buffer

(ThermoFisher Scientific) as per the manufacture’s instructions, and incubated overnight with rabbit

anti-GroEL monoclonal antibody (Sigma-Aldrich). The blot was incubated with goat anti-rabbit IgG

antibody HRP (GenScript) for 2 hr, activated (Amersham), and imaged on a BioRad ChemiDoc.

Protein purification
Purification for high resolution structural determination: M. smegmatis was grown in 6 L of 7H9 sup-

plemented with 0.05% Tween 80 and 20 mg/mL kanamycin to an OD600 of ~0.8. After harvest, cells

were washed three times with PBS and frozen in liquid nitrogen before lysis with a cryogenic grinder

(SPEX SamplePrep). 24.9 g of powdered cell material was resuspended by adding 56.3 mL 50 mM

Tris-HCl pH 8.0, 150 mM NaCl, 1% DDM supplemented with 1X protease inhibitor cocktail (Sigma-

Fast) and 224 units Benzonase endonuclease. The suspension was stirred for 120 min at 4˚C. After

centrifugation for 30 min at 98,000 g, the supernatant was incubated with 1.4 mL anti-GFP-nano-

body resin for 110 min at 4˚C. The resin was transferred to a column and washed sequentially with

28 ml of wash buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl and 0.1% GDN), 14 mL of high salt

wash buffer (50 mM Tris-HCl pH 8.0, 400 mM NaCl, and 0.1% GDN), and 14 mL of wash buffer (50

mM Tris-HCl pH 8.0, 150 mM NaCl, and 0.1% GDN). To cleave off the purification tag, the resin was

incubated o/n at 4˚C with 70 units Pierce HRV 3C protease (Thermo Scientific Pierce) in 2.8 mL wash

buffer supplemented with 0.2 mM DTT. This resin was sedimented by gentle centrifugation (300 x g

for 3 min), the supernatant collected, and the resin was subsequently washed with 1.4 mL wash

buffer. The supernatant and wash fraction were combined and concentrated using an Amicon Ultra-

4 centrifugal filter unit with a 100 kDa molecular weight cut-off. The sample was centrifuged at

16,000 g before injection on a Superose 6 10/300 column equilibrated in 50 mM Tris-HCl pH 8.0,

150 mM NaCl and 0.021% GDN. Peak fractions were concentrated using a 0.5 mL centrifugal filter

unit (Amicon, 100 kDa cut-off) to an A280 of 5.52 by Nanodrop reading in about ~30 mL . Purification

completed for examination of the void fractions was similar except: volumes were scaled for a pow-

der weight of 21.1 g. and the high salt wash was omitted.

Blue-Native polyacrylamide gel electrophoresis (BN-PAGE)
BN-PAGE experiments were carried out using the Invitrogen NativePAGE Novex Bis-Tris Gel system

as recommended by the manufacturer. Samples were prepared in a total volume of 10 mL using 0.5

mL 5% G-250 sample additive. Electrophoresis was performed at a constant voltage of 105-120 V for

2-3.5 hr at 4˚C. The gel was fixed and stained using the Pierce silver stain kit.

Cryo-EM – data acquisition
Samples were frozen for cryo-EM. Quantifoil R1.2/1.3, 400 mesh, copper grids were glow discharged

using a Solarus plasma cleaner (Gatan) with an H2/O2 mixture for 30 s. 2 mL of sample were applied

per grid and the grids were plunged into liquid ethane using a FEI Vitrobot Mark IV.
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Initially, samples were screened, and test data sets were collected on a FEI Talos Arctica 200kV

microscope equipped with a Gatan K2 Summit detector. For the initial screen of freezing conditions,

2499 movies were collected at a magnification of 36,000 with a pixel size of 1.14, and a defocus

range of �1.5 to �2.5 mm, an exposure time of 9 s, and a dose rate of 7 electrons/Å2/second

(Table 1). Data collection for the final structure presented in the main text was collected on a FEI

Titan Krios at 300kV with a Gatan K2 Summit detector. Two imaging sessions were used. In the first

imaging session, 2705 movies were collected at a magnification of 29,000 with a pixel size of 0.82,

and a defocus of �0.4 to �1.2 mm, an exposure time of 10 s to collect 100 total frames, and a dose

rate of 8 electrons/Å2/second (Table 1). In the second imaging session, data was collected on the

same microscope with the same detector, 4632 movies were collected at a magnification of 29,000

with a pixel size of 0.82, and a defocus range of �0.6 to �1.4 mm, an exposure time of 10 s to collect

80 total frames, and a dose rate of 6.7 electrons/Å2/second. Data used to analyze the void, plateau,

and peak regions of the SEC profile were collected on a FEI Talos Arctica at 200kV with a Gatan K3

detector. All micrographs were collected at a magnification of 28,000 with a pixel size of 0.9, and a

defocus range of �1.5 to �2.5 mm, an exposure time of 11.7 s to collect 117 total frames at a total

dose of 58 electrons/ Å2. For the void region, 1215 micrographs were collected.

Cryo-EM – data processing
For all data, movies were motion corrected using MotionCor2 (Zheng et al., 2017) and CTF correc-

tion was performed using CTFfind4 (Rohou and Grigorieff, 2015). For the Arctica dataset, particles

were picked using a gaussian blob in either RELION (Zivanov et al., 2018) or cisTEM (Grant et al.,

2018) and initial 2D classification was performed to remove obvious artifactual particles. Initially, a

shotgun approach was taken to generate several initial models using RELION, cisTEM, and cryosparc

(Punjani et al., 2017). Once an initial model which contained realistic low-resolution features was

generated, a user defined descent gradient was performed to improve the model with the goal of

achieving accurate secondary structure features. First, all particles selected during 2D classification

were refined in 3D against the randomly generated initial model. Second, a round of 3D classifica-

tion with four classes and default RELION settings was performed and the best class selected. Third,

the best class was refined as a single class in 3D classification with increasing Tau2_Fudge and

decreasing search angle size. The resulting EM density map had clear transmembrane helix densities

and was used as the model for a new 3D reconstruction. This reconstruction was used to back proj-

ect models for reference-based particle picking in RELION. Two rounds of 2D classification were per-

formed and the best classes selected. One round of 3D classification was performed using the

Tau2_Fudge value optimized during the previous run through (T = 12) and the best class selected. A

final 3D reconstruction of the Arctica data set yielded a map of about 4.7 Å resolution (Figure 1—

figure supplement 4).

After motion correction and CTF determination, the final Titan Krios dataset was processed

entirely using RELION. Particles were picked using a gaussian blob, and extracted as 4x binned par-

ticles. Two rounds of initial 2D classification were performed with T = 3 on the binned particles and

obvious artifactual particles were removed. The final reconstruction from the Arctica dataset was

used as the initial model for a 3D reconstruction of the binned particles. 3D classification with four

classes and the previously optimized Tau2_Fudge value, T = 12, was performed on the binned par-

ticles. The two best classes were selected and re-extracted without binning. A 3D reconstruction

was performed. A mask was created for the high-resolution region of the reconstruction and 3D clas-

sification without image alignment was performed focused on this region. The best class was

selected and the subsequent 4.0 Å reconstruction is the consensus structure for the entire complex

(Figure 1—figure supplement 5). Focused classification of each protomer, the periplasmic EccB

region, and the ATPase 1, 2, and 3 domains of EccC were performed. To perform focused classifica-

tion, the center of mass of the region of interest was determined using chimera (Pettersen et al.,

2004). Particles were recentered on this area and reextracted. Masks for the region of interest were

generated and 3D classification without image alignment was performed. The best class was

selected and used for a focused 3D reconstruction without image alignment of the region of interest.

A reconstruction was generated and density outside of the region of interest was subtracted. A final

reconstruction of the masked and density subtracted particles was then performed. This procedure

improved the resolution of the protomer i to 3.75 Å and protomer ii 3.83 Å, 5.8 Å resolution for the

EccB3 periplasmic domain, and ~7 Å resolution for the EccC3 lower cytoplasmic region.
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To generate the symmetry expanded protomers based on non-point group symmetry (also known

as non-crystallographic symmetry or NCS), a transformation matrix between the two protomers was

calculated using chimera. Particles were then transformed and aligned using the subparticles.py and

star.py utilities in pyem (Asarnow et al., 2019) resulting in a particle stack with twice as many par-

ticles as the input file, each focused on protomer i or protomer ii. Density subtraction was performed

to remove density outside of the symmetry expanded protomer, and focused classification and

refinement were performed as described above. This procedure improved the resolution of the sym-

metry expanded protomer to 3.69 Å resolution.

Atomic model building
The cytoplasmic domain from the crystal structure of EccD1 (PDB 4KV2) was docked into the cyto-

plasmic domains of the two EccD3 molecules and the sequence was mutated. The remaining trans-

membrane domains of EccD3 and the residues 14–93 of EccB3 were built de novo in Coot

(Emsley et al., 2010) using baton building. The alpha helices of EccE3 and EccC3 were initially mod-

eled using the RaptorX (Källberg et al., 2012) homology server. The loops and strands of EccE3 and

EccC3 were built in Coot using baton building. All models were subsequently refined individually, as

a symmetry expanded protomer, left and right protomers, and as the full model using phenix real

space refine (Afonine et al., 2018), Coot, and the MDFF (Trabuco et al., 2009) server, Namdinator

(Kidmose et al., 2019; Supplementary file 1).

Low resolution modeling
The left and right protomer map, periplasmic focused refined map, and lower cytoplasmic focused

refined map were all docked into the consensus map and added together using chimera. The com-

bined map was filtered to 10 Å resolution to match the lowest resolution component. Homology

models for amino acids 94–516 of EccB3, the transmembrane helixes of EccC3, and 404–1268 of

EccC3 were generated using RaptorX. These models were fit into the combined map density using

the fit map to model utility in Chimera. The full model was refined using phenix.real_space_refine.

Model interpretation and display
Buried surface area between subunits was calculated by PISA (Krissinel, 2015). Atomic models for

individual proteins were compared against the PDB using the DALI server (Holm and Laakso, 2016).

Chimera and ChimeraX (Goddard et al., 2018) were used to display maps and models for figure cre-

ation. Consurf (Ashkenazy et al., 2016) was used to produce multisequence alignments and to color

structural models by homology.
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