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Introduction
Brain metastases (BrM) are CNS tumors commonly arising in 
patients with lung, melanoma, and breast cancer (1). The emer-
gence of BrM usually marks the most advanced stage of a meta-
static disease and is generally associated with poor survival. Ther-
apeutic options for BrM are limited; the most commonly used 
are local treatments such as surgery and radiotherapy, systemic 
treatments such as targeted therapies (2–4), and more recently, 
immunotherapies (4–6).

Although the CNS is classically described as an immune- 
privileged site, there is emerging evidence of enhanced immune 
infiltration into CNS tumors following immune checkpoint 
blockade (ICB) treatment. In patients with recurrent glioblasto-
ma (rGBM), the most aggressive form of primary brain tumors, 
administration of neoadjuvant anti–programmed cell death 
protein 1 (anti–PD-1) mAb blockade induces the activation 
and recruitment of intratumoral T lymphocytes into the tumor 
before surgery (7, 8). Our recent study further reported the 

recruitment and activation of conventional type 1 DCs (cDC1), 
known to be efficient antigen-presenting cells (APC), for cross 
presentation to CD8+ T cells (9).

Clinically, BrM are more responsive to ICB compared with 
rGBM (10). In fact, BrM respond to ICB treatment at a rate similar 
to that of patient-matched extracranial lesions. For instance, mel-
anoma treated with an ICB combination of anti–PD-1 and anti-cy-
totoxic T lymphocyte–associated protein 4 (anti–CTLA-4) anti-
bodies displayed similar intracranial and extracranial response 
rates (11). Intracranial response rates to single-agent anti–PD-1 
in non–small cell lung cancer BrM were around 17%, close to the 
18% response rate in extracranial metastases (12). In contrast, 
anti–PD-1 response in patients with first recurrence of GBM was 
approximately 8% (13, 14).

The difference in ICB response rates between BrM and rGBM 
has been linked to the baseline immune microenvironment dif-
ferences of the 2 brain tumor types (10). In comparison with the 
tumor microenvironment (TME) of rGBM, T cells in BrM exhibited 
a greater activation and exhaustion phenotype (15, 16). However, 
thus far, no study to our knowledge has comprehensively examined 
the differential effect of ICB treatment on BrM and rGBM. This is 
critical to uncovering the immune populations that are altered in the 
more responsive BrM as compared with the more resistant rGBM.

To address this gap in knowledge, we analyzed a set of surgi-
cally resected rGBM and BrM from patients who had or had not 
received prior ICB, using cytometry by time of flight (CyTOF), sin-
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necrosis, and hemorrhage (Figure 1F). In contrast, ICB-treated BrM 
displayed diffuse infiltration of CD45+ immune cells within the tumor 
parenchyma (Figure 1G). Quantification of the CD45+ cell densities 
confirmed that ICB was associated with a transition from immune 
exclusion to infiltration (Figure 1H). Whereas CD45+ cell density was 
much lower in tumor than in stromal regions in ICB-naive BrM, with 
ICB treatment, CD45+ cell density in the tumor parenchyma marked-
ly increased and became similar to that in the stromal regions.

ICB treatment induced tumor-specific T cell activation and 
exhaustion in metastatic brain TME. Next, we sought to use the 
greater resolution available through scRNA-Seq to better under-
stand the effect of ICB on the lymphoid and myeloid subpopula-
tions. The clustering of tumor-infiltrating lymphoid (TIL) cells 
(n = 22,092 cells in BrM; n = 10,416 in rGBM) identified 3 CD4+ 
clusters, 8 CD8+ enriched clusters, a double-negative memory-like 
cluster (CD4–CD8–-Tm), a proliferating population (cycling), and 2 
NK cell clusters (Figure 2, A and B).

The CD4+ T cells included a central memory population (CD4-
Tcm: IL7R, CCR7, TCF7, and CD40LG), an exhausted population 
(CD4-Tex: PDCD1, CTLA4, CXCL13), and a Treg cluster (FOXP3). 
The CD8+ T cells were classified into 2 clusters of IL-7R+ memory 
CD8+ T cells (CD8-Tm: IL7R, CD69; CD8-Tem: IL7R, CD69, IFNG), 
2 GZMK/Hhi, GZMBlo early activated CD8+ T cell clusters (19, 20) 
(CD8-Tearly.act.1: GZMK, GZMH, IL7R; CD8-Tearly.act.2: GZMK, 
GZMH, IFNG), and 4 activated/exhausted clusters. The latter includ-
ed tissue-resident (CD8-Trm.ex: ITGA1, ITGAL, HAVCR2, TOX), 
progenitor-like exhausted (CD8-Tprog.ex: TCF7, TIGIT, LAG3, 
TOX), intermediately exhausted (CD8-Tinter.ex: IFNG, PDCD1, 
TOX), and terminally exhausted (CD8-Tterm.ex: PDCD1, CTLA4, 
LAG3, CXCL13) populations. The cytotoxic T cell and NK cell clus-
ters included one cluster highly expressing NK cell receptors (KLRB1)  
and one expressing XCL1 and XCL2 (CTL/NK, CTL/NK-XCL1/2).

We estimated the differentiation trajectory of intratumor-
al CD8+ T cells using a diffusion map (21). On a global scale, 
the 3 exhausted subsets, CD8-Tprog.ex, CD8-Tinter.ex, and 
CD8-Tterm.ex, dominated the major branches of the trajectory 
(Figure 2C). RNA velocity inference demonstrated a transition 
from all other T cell states toward the CD8-Tterm.ex branch 
(Supplemental Figure 2A) (22). Concurrent with this transition, 
there was an induction of putative exhaustion markers, such as 
PDCD1, LAG3, CTLA4, and TIGIT (Supplemental Figure 2B). 
The CD8-Tterm.ex upregulated CXCL13 (Supplemental Figure 
2B), a chemokine found to be overexpressed by tumor-reactive T 
cells in various cancer types (23, 24). Interestingly, the CXCL13+ 
CD8-Tterm.ex cluster displayed the highest clonality score 
among all CD8+ T cell clusters, as quantified by the STARTRAC 
clonal expansion index (25) (Figure 2D and Supplemental Figure 
2C), likely reflecting the presence of clonally expanded, tumor 
antigen–specific T cell clones.

To find the distribution of this CXCL13+ CD8-Tterm.ex pop-
ulation and other T cell populations among individual patients, 
we grouped samples into rGBM, BrM arising from melanoma, 
and BrM arising from other cancer types, irrespective of immu-
notherapy treatment, and used the Kruskal-Wallis test to assess 
proportional differences (Supplemental Figure 2D). Intriguingly, 
the CXCL13+ CD8-Tterm.ex population was most prominent in 
melanoma BrM. rGBM and other BrM samples showed a higher 

gle-cell RNA-Seq (scRNA-Seq), multiplex immunofluorescence 
(mIF), and spatial transcriptomics (ST). We hypothesized that 
ICB treatment is associated with divergent effects on the TME 
between the 2 types of brain tumors. We focused on the unique 
effects of ICB in BrM (in contrast with rGBM), which may explain 
their higher response rate to the treatment. The results of our inte-
grated and multidimensional comparative study may help guide 
the development of new therapeutic strategies for improving ICB 
response in brain tumor patients.

Results
ICB increased T cell infiltration within the TME of BrM. To exam-
ine the effect of ICB treatment on BrM at single-cell resolution, 
we purified CD45+ immune cells from 18 BrM samples, 8 of which 
were treated with ICB before surgery due to progression of periph-
eral/extracranial metastatic disease (Figure 1A and Supplemental 
Table 1A; supplemental material available online with this article; 
https://doi.org/10.1172/JCI169314DS1). We performed scRNA-
Seq on 17 (8 ICB treated) of these samples. We also integrated 
scRNA-Seq data of 10 ICB-naive and 1 ICB-treated BrM samples 
from 2 published studies (17, 18), resulting in a combined scRNA-
Seq data set of 28 BrM samples. BrM from melanoma patients 
made up the largest proportion of both ICB-naive and ICB-treat-
ed groups (Figure 1A). Additionally, we performed CyTOF on 
15 (including 5 ICB treated) BrM samples. Our CyTOF antibody 
panel included defining markers of major immune populations 
(Supplemental Table 1B), such as T cells (CD3+) and myeloid cells 
(CD14+CD16+CD11b+CD11c+) (Supplemental Figure 1A).

Based on our CyTOF data, we observed a significant increase 
in the T cell fraction in ICB-treated BrM (BrM.ICB) versus ICB-na-
ive BrM (BrM) (Figure 1B). To compare the effect of ICB on the T 
cell fraction in BrM and rGBM, we subtracted the median T cell 
fraction of ICB-naive samples from each ICB-treated sample with-
in each group and used a 2-sided Wilcoxon’s rank-sum test to test 
the difference between the adjusted T cell fractions in BrM.ICB 
and rGBM.ICB. BrM.ICB had a larger increase in T cell fraction 
than rGBM.ICB (Supplemental Figure 1B). The increase in T cell 
frequency in BrM.ICB was not simply due to a relative decrease in 
myeloid cells, but an absolute increase of the tumor-infiltrating T 
cell abundance (Figure 1C).

We next used scRNA-Seq data to evaluate how ICB affected 
the proportions of intratumoral immune populations. We analyzed 
the transcriptome of a total of 170,129 cells from the 28 BrM and 
25 rGBM samples (9). After applying our integration pipeline (see 
Methods), we confirmed that there was no appreciable batch effect 
across the different data sets (Supplemental Figure 1C). We iden-
tified multiple lymphoid, myeloid, and CD45– cell clusters (Figure 
1D and Supplemental Figure 1D). The fraction of these populations 
exhibited high interpatient heterogeneity, especially among the 
BrM that spanned various cancer types (Supplemental Figure 1E). 
Despite the heterogeneity, the scRNA-Seq data confirmed a sig-
nificant increase of lymphoid cell fraction in ICB-treated BrM and 
rGBM, though the increase was greater in BrM (Figure 1E).

Using mIF, we observed that ICB changed the organization of 
immune cells in the BrM TME. In ICB-naive BrM, CD45+ immune 
cells were largely excluded from the tumor tissue and gathered in 
peritumoral areas such as the fibrovascular stroma, fibrotic areas, 
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Despite the diverse T cell composition across patients 
(Supplemental Figure 2D and Supplemental Table 2A), our dif-
ferential gene expression (DEG) analysis uncovered differenc-
es in the T cell phenotype between ICB-naive BrM and rGBM 

proportion of memory-like and early differentiated T cells and NK 
cells. Since there were too few samples (≤3) from each BrM cancer 
type other than melanoma, we could not pinpoint any dominant T 
cell population in these BrM types.

Figure 1. ICB increases T cell infiltration within the TME of BrM. (A) Schematic of experimental design and analysis workflow. (B) The fraction of tumor-infil-
trating T and myeloid cells analyzed with CyTOF (348,257 cells from 37 patients: 8 rGBM, 14 rGBM.ICB, 10 BrM, and 5 BrM.ICB). (C) The number of myeloid and T 
cells per mg of tissue section from 36 patients: 7 rGBM, 14 rGBM.ICB, 10 BrM, and 5 BrM.ICB. One rGBM sample was excluded because the tumor mass was not 
recorded. (D) UMAP of tumor-infiltrating CD45+ cells analyzed with scRNA-Seq with 170,129 cells from 53 patients: 11 rGBM, 14 rGBM.ICB, 19 BrM, and 9 BrM.
ICB. rGBM and rGBM.ICB data are from Lee et al., 2021, 10 BrM samples are from Gonzalez et al., 2022, and 1 BrM.ICB sample is from Sade-Feldman et al., 2018. 
(E) The fraction of total TIL and myeloid cells (including the proliferating population) across different tumor groups analyzed by scRNA-Seq. (F) Representative 
mIF images of immune cell distribution in 33 ICB-naive BrM tumors. Original magnification, ×20. (G) Representative mIF images of immune cell distribution in 
5 ICB-treated BrM tumors. Original magnification, ×20. (H) mIF quantification of immune-cell density within the stromal and tumor regions (33 BrM and 5 BrM.I 
CB). For all box plots, each dot represents a patient, the lower and upper bounds indicate the 25th and 75th percentiles, and the middle lines the median values. 
P values were calculated using a 2-sided Wilcoxon’s rank-sum test.
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phage-inflammatory: NLRP3, TNF, IL1B, IL1A, CCL4, CXCL8, 
NFKB1), (b) an angiogenic cluster (macrophage-angiogenesis: 
VCAN, VEGFA), (c) a phagocytic cluster expressing lysosomal 
genes (macrophage-lysosome: CTSB/D/Z/L, CSTB, LYZ, LIPA), 
and (d) a cluster with perivascular macrophage (PVM) signature 
(macrophage-MRC1-LYVE1: MRC1, LYVE1, CD163) (Figure 3B 
and Supplemental Figure 3B).

In a recent study comparing the TMEs between BrM and 
GBM (15), the authors observed a predominance of MG in GBM, 
but higher invasion of monocyte-derived macrophages in BrM. 
Our current analysis supported this observation, but further pin-
pointed an MDSC subset that was more abundant in BrM. As 
shown in Figure 3C, among the ICB-naive samples, the myeloid 
population from BrM had overall higher expression of monocyte- 
and MDSC-associated genes (LYZ, S100A8, S100A9, JAML, and 
CXCL2). The frequency of MG was higher in rGBM, while MDSC-
ISG was higher in BrM (Figure 3D). MDSC-ISG was also found to 
be more abundant in melanoma BrM (Supplemental Figure 3D). 
Interestingly, while the other ISG-high clusters, MG-ISG and 
monocyte-ISG, showed higher M1 macrophage gene signature 
enrichment, MDSC-ISG enriched both M1 and M2 signatures, 
indicating its more complex phenotype in comparison with the 
M1/M2 polarization paradigm (28, 32) (Figure 3E).

Next, we compared how ICB affected the myeloid compart-
ment. To objectively find all ICB-induced changes specific to 
BrM, we adjusted for basal level difference between the 2 tumor 
types by calculating the DEG (in log2 fold) between ICB-naive 
(log2FCBrM-rGBM) and ICB-treated BrM and rGBM samples (log2 

FCBrM.ICB-rGBM.ICB). We selected genes that were highly upregulated 
in BrM.ICB with respect to rGBM.ICB after adjusting for baseline 
BrM and rGBM difference (Supplemental Table 3C). The Gene 
Ontology (GO) analysis of the differentially upregulated genes 
highlighted the upregulation of IFN genes in BrM (Figure 3F and 
Supplemental Figure 3E). The IFN gene set was also enriched in 
BrM.ICB to a higher magnitude than in rGBM.ICB in both MG- 
and blood-derived myeloid compartments (Figure 3G), suggesting 
a highly inflammatory TME in ICB-treated BrM tumors.

Increased engagement of multiple T cell checkpoints by myeloid 
cells after ICB therapy in BrM and rGBM. Since ICB treatment 
enhanced T cell infiltration into the tumor parenchyma of BrM 
and altered various immune populations within the TME, we com-
prehensively investigated the potential intercellular ligand-recep-
tor interactions among the lymphoid and myeloid cell subsets 
using CellChat (33). We first ranked CellChat’s curated signaling 
pathways by their interaction score difference between ICB-treat-
ed and ICB-naive BrM (Supplemental Figure 4A). The interaction 
score is the sum of interaction probability (of the related recep-
tor-ligand partners) among all pairs of cell subsets in the 2 groups 
of BrM. Overrepresented pathways in BrM.ICB can be classified 
into immune cell recruitment (XCR, VCAM, CCL, and CXCL), 
immune stimulatory or inhibitory checkpoint (CD137, CD70, 
ICOS, CD80-CD28/CTLA4 and NECTIN-CD226/TIGIT), anti-
gen presentation (MHC-I), IFN activation (IFN-II), and antiin-
flammatory pathways (TGFb, ANXA1). In both BrM and rGBM, 
ICB treatment induced more interactions across these pathways 
(Supplemental Figure 4B). However, the cell populations involved 
in the interactions differed between the 2 groups.

(Supplemental Table 2, B and C) (see Methods). As shown in 
Supplemental Figure 2E, T cells in BrM displayed significant-
ly higher expression of activation/exhaustion-related genes as 
compared with those in rGBM, suggestive of a higher basal level 
T cell activation/exhaustion in BrM. Given such differences, we 
hypothesized that ICB would also differentially affect the T cell 
phenotypes in BrM and rGBM. Indeed, when we separated the 
diffusion map of the CD8+ T cells by tumor type and treatment, 
we observed divergent population shifts driven by ICB (Figure 
2E). In rGBM, ICB shifted T cells toward CD8-Tprog.ex, as we 
reported previously (9). In BrM, ICB shifted T cells toward the 
CXCL13+ CD8-Tterm.ex state and upregulated T cell exhaus-
tion-related genes, such as CXCL13, PDCD1, PRDM1, TOX, 
HAVCR2, and NR4A2 (Supplemental Figure 2F), supporting 
ICB-driven activation and transition of multiple T cell popu-
lations toward the CD8-Tterm.ex state. Since the CD8-Tterm.
ex population was also enriched with clonally expanded T cell 
clones (Figure 2D and Supplemental Figure 2C), we determined 
whether ICB drives the enrichment of tumor-specific T cells 
across the whole T cell compartment in BrM. Indeed, we found 
greater enrichment of a newly identified tumor-specific T cell 
signature (24) in BrM.ICB than in the other groups (Figure 2F 
and Supplemental Table 2D). Thus, ICB not only induced the 
activation and exhaustion of intratumoral T lymphocytes, but 
also potentially expanded tumor-specific T cell clones to a much 
larger extent in BrM compared with rGBM.

ICB treatment induces IFN activation in the myeloid compart-
ment of BrM. Despite increased T cell infiltration by ICB, the 
tumor-associated myeloid cells were still the dominant immune 
population in the brain TME in rGBM and BrM (Figure 1, B–E). 
Based on the expression of known brain-resident microglial (MG) 
genes (TMEM119, CX3CR1, P2RY12), we distinguished the MG 
population from the blood-derived monocytes/macrophages 
(Figure 3A and Supplemental Figure 3A). We then dissected the 
MG population into a resting population (MG), an activated, 
phagocytic population (MG-inflammatory: PLCG2, DAB2) (26, 
27), an IFN-stimulated population (MG-ISG), and a population 
overexpressing complement and ribosomal genes (MG-C1QB/
RiboHigh). Based on markers of major blood-derived myeloid cell 
lineages (28), we identified clusters of monocytes (VCAN, FCN1, 
S100A8, and S100A9), type 1 and type 2 cDCs (cDC1: CLEC9A, 
BATF3; cDC2: CLEC10A, FCER1A), plasmacytoid DCs (pDC: 
CLEC4C, IL3RA), and multiple macrophage subsets (Figure 3A 
and Supplemental Figure 3B).

Our diffusion map projection suggested a potential differ-
entiation continuum from monocytes into diverse macrophage 
subsets within the blood-derived myeloid compartment (Figure 
3B). The trajectory starts with the 2 monocyte clusters, one of 
which was IFN activated (monocyte-ISG) (Supplemental Figure 
3A). Right next to the monocyte-ISG, there was another cluster 
sharing similar monocyte and IFN-stimulated signatures, but 
with additional myeloid-derived suppressor cell (MDSC) features 
(MDSC-ISG). These included PD-L1 (CD274) and LILRB2, an new 
immune checkpoint target (29, 30), and newly identified MDSC 
surface marker JAML (31) (Supplemental Figure 3, A and C). After 
monocytes and MDSCs were the 4 macrophage clusters: (a) an 
inflammatory cluster expressing NFKB-related factors (macro-

https://doi.org/10.1172/JCI169314
https://www.jci.org/articles/view/169314#sd
https://www.jci.org/articles/view/169314#sd
https://www.jci.org/articles/view/169314#sd
https://www.jci.org/articles/view/169314#sd
https://www.jci.org/articles/view/169314#sd
https://www.jci.org/articles/view/169314#sd
https://www.jci.org/articles/view/169314#sd
https://www.jci.org/articles/view/169314#sd
https://www.jci.org/articles/view/169314#sd
https://www.jci.org/articles/view/169314#sd
https://www.jci.org/articles/view/169314#sd
https://www.jci.org/articles/view/169314#sd
https://www.jci.org/articles/view/169314#sd
https://www.jci.org/articles/view/169314#sd
https://www.jci.org/articles/view/169314#sd
https://www.jci.org/articles/view/169314#sd


The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

5J Clin Invest. 2023;133(17):e169314  https://doi.org/10.1172/JCI169314

Figure 2. scRNA-Seq analysis of intratumoral lymphoid cells. (A) UMAP of the lymphoid cells, with 32,508 cells from 53 patients: 11 rGBM, 14 rGBM.ICB, 
19 BrM, and 9 BrM.ICB. (B) Dot plots of marker genes of lymphoid cell subtypes. (C) 3D diffusion map of CD8+ T cell clusters identified in A. Colors of the cell 
types are the same as in A. (D) Box plot of clonal expansion levels of T cell clusters from the 3 BrM.ICB samples with paired scTCR-Seq data. (E) 3D diffu-
sion map as in C overlaid with each cell’s tumor type and treatment. (F) Sample-level enrichment score of tumor-specific CD8+ T cell gene signature across 
different tumor groups: 11 rGBM, 14 rGBM.ICB, 18 BrM, and 9 BrM.ICB. One BrM sample was excluded because it had fewer than 20 lymphoid cells. For all 
box plots, each dot represents a patient, the lower and upper bounds indicate the 25th and 75th percentiles, and the middle lines the median values. P 
values were calculated using a 2-sided Wilcoxon’s rank-sum test.
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As indicated by the bottom histogram of the signaling strength 
sum per cell type (Figure 4A), interactions involving T cells 
increased after ICB therapy in both BrM and rGBM. The increase 
in T cell–related interactions was greater in BrM, agreeing with its 
larger fraction of lymphoid cells. In BrM.ICB, we observed stron-
ger interactions involving terminally exhausted and tissue-resi-
dent exhausted T cell subsets (CD8-Trm.ex and CD8-Tterm.ex) 
relative to BrM. In contrast, rGBM.ICB showed a weaker induc-
tion of T cell–related interactions (Figure 4A).

Looking at specific receptor-ligand interactions, the MDSC-
ISG subset expressed higher levels of CXCL9 and CXCL10 in 
BrM compared with rGBM (Supplemental Figure 4C). ICB further 
induced the expression of CXCL9 and CXCL10 in multiple ISG-
high myeloid subsets in rGBM.ICB and BrM.ICB (Supplemental 
Figure 4C). These IFNG-stimulated chemokines attract T cells 
through binding to their cognate receptor CXCR3 (34, 35). We also 
found significant upregulation of CXCL12 in MRC1+LYVE1+ mac-
rophages in BrM.ICB (Supplemental Figure 4, C and D). CXCL12 
signals via CXCR4 to regulate lymphocyte and monocyte migra-
tion and development (36, 37). Since CXCR4 was highly expressed 
across most T cell subsets in BrM.ICB, the MRC1+LYVE1+ macro-
phage population could recruit these T cells into the BrM tumor 
parenchyma through CXCR4:CXCL12 interactions.

We observed an increase of CD80 (B7-1) expression after 
ICB treatment in both rGBM and BrM. Unlike rGBM.ICB, where 
CD80 was overexpressed within MDSC-ISG and cDC1, in BrM.
ICB, CD80 was upregulated within the cDC2 population (Figure 
4B and Supplemental Figure 4E). These CD80-expressing cDC2s 
are predicted to interact with multiple T cell subsets express-
ing the coinhibitory CTLA-4 receptor, which may include Tregs, 
exhausted CD4+ T cells (CD4-Tex), and the terminally exhaust-
ed CD8-Tterm subsets (Figure 4B and Supplemental Figure 4E). 
The engagement of CTLA-4 on the exhausted CD8+ T cell popu-
lations by CD80+ cDC2 is predicted to diminish their effector T 
cell function (38). CD80 can also interact with the costimulatory 
molecule CD28, albeit with a lower affinity than with CTLA-4. 
Notably, among all cytotoxic CD8+ T cell subsets, CD8-Tprog.ex 
displayed the highest expression of CD28 (Supplemental Figure 
4E). However, our cell-cell interaction analysis suggests that the 
CTLA-4–CD80 interaction is much more dominant than CD28-
CD80 interaction in BrM.ICB (Supplemental Figure 4E).

Another immune checkpoint pathway, TIGIT/CD226/NEC-
TIN2, was engaged in both rGBM and BrM after ICB therapy (Fig-
ure 4C). In BrM.ICB, NECTIN2 was upregulated in MG, monocytes, 
cDC1, cDC2, and multiple macrophage subsets (Supplemental Fig-
ure 4F). NECTIN2’s interaction partner, T cell coinhibitory recep-
tor TIGIT, was already highly expressed in multiple T cell subsets 
in BrM, such as CD8-Tinter.ex, CD8-Trm.ex, CD8-Tterm.ex, and 
Tregs; ICB did not significantly change TIGIT expression in these 
T cell populations. In rGBM, ICB treatment slightly induced TIG-
IT expression in T cells while NECTIN2 expression in the myeloid 
subsets stayed high. Like CD80, NECTIN2 can also bind a T cell 
costimulatory receptor, CD226, which was minimally expressed in 
CD8-Tprog.ex, CD4-Tcm, and CD4-Tex subsets of BrM (Supple-
mental Figure 4F). In rGBM, CD226 upregulation was more prom-
inent, especially in the CD8-Tprog.ex subset.

In both BrM.ICB and rGBM.ICB, NECTIN2 was mostly 
expressed in IFN-stimulated MG (MG-ISG), monocytes (Mono-
ISG), macrophage-angiogenesis, macrophage-MRC1-LYVE1, and 
cDC2. Yet BrM.ICB and rGBM.ICB differed in their predicted 
TIGIT receptor engagement with the various exhausted CD8+ T 
cell subsets. For instance, in BrM.ICB, the myeloid cells engaged 
CD8-Tinter.ex, CD8-Trm.ex, and CD8-Tterm.ex cells, but in 
rGBM.ICB, they engaged CD8-Tprog.ex and CD8-Trm.ex cells. 
We expect that in the TME of BrM, the lower expression of CD28 
and CD226 in CD8-Tinter.ex, CD8-Trm.ex, and CD8-Tterm.
ex cells may further augment the T cell–suppressive effects of 
CD80-CTLA-4 and NECTIN2-TIGIT interactions.

In summary, ICB enhanced the recruitment of T cells through 
myeloid-associated CXC chemokines, but at the same time induced 
a convergent, immunosuppressive myeloid cell phenotype that acts 
on distinct groups of exhausted CD8+ T cell subsets in rGBM and 
BrM. The engagement of parallel immune checkpoint pathways, 
combined with the absence of costimulatory activation in the BrM 
T cells, supports our previous observation of an ICB-induced CD8+ T 
cell transition toward the terminally exhausted CD8-Tterm.ex state.

ICB induced distinct changes in the spatial distribution of immune 
subtypes in BrM and rGBM. Although scRNA-Seq is useful for charac-
terizing different intratumoral cell populations, its tissue dissociation 
step leads to the loss of the cells’ spatial information. To elucidate 
important spatial crosstalk among the tumor, immune, and stromal 
populations, we performed ST on 6 tissue sections from 3 tumor 
types: 2 melanoma BrM, 2 lung BrM, and 2 rGBM tumor sections. For 
each tumor type, one sample was ICB naive and the other ICB treat-
ed (Supplemental Figure 5A). These tumor samples were mounted 
on Visium ST slides (10x Genomics), covering 40.7% to 81.8% of the 
Visium ST capture area and detecting an average of 2,775 genes per 
capture spot on the ST slide (Supplemental Table 4A).

By plotting the expression of the canonical gene markers for 
tumor and normal cells (Figure 5A), we noticed that, among the 3 
ICB-naive tissues, BrM developed highly proliferative tumor cell 
colonies with clear tumor-normal boundaries, whereas rGBM dis-
played a diffuse nature in which the tumor cells were integrated 
into the normal brain tissue (39).

We then delineated the spatial architecture of the scRNA-Seq–
defined immune subtypes. Since each spot on the Visium ST slide 
is a mixture of one or more cell types, we used the Robust Cell 
Type Decomposition (RCTD) package (40) to predict the compo-

Figure 3. scRNA-Seq analysis of intratumoral myeloid cells. (A) UMAP of the 
myeloid cells with 76,256 cells from 53 patients: 11 rGBM, 14 rGBM.ICB, 19 BrM, 
and 9 BrM.ICB. (B) 2D diffusion map of monocyte and macrophage clusters 
identified in A. Colors of the cell types are the same as in A. (C) Normalized 
expressions of genes which were differentially expressed between ICB-naive 
rGBM and BrM samples: 11 rGBM, 4 melanoma BrM, and 15 other BrM. (D) The 
fractions of MG and MDSC-ISG in ICB-naive rGBM and BrM samples: 11 rGBM, 4 
melanoma BrM, and 15 other BrM. (E) Heatmap of single cell level enrichment 
of MG/macrophage gene signatures across different myeloid clusters identified 
in A. (F) MSigDB Hallmark gene signature enrichment of genes that were 
differentially upregulated by ICB in BrM compared with rGBM: (log2FC[BrM.ICB – 
rGBM.ICB] – log2FC[BrM – rGBM] ≥ 0.322). (G) Sample-level enrichment score of 
MSigDB Hallmark IFNG signature in MG- and blood-derived myeloid compart-
ments across different tumor groups: 11 rGBM, 14 rGBM.ICB, 19 BrM, and 9 BrM.
ICB. For all box plots, each dot represents a patient, the lower and upper bounds 
indicate the 25th and 75th percentiles, and the middle lines the median values. 
P values were calculated using 2-sided Wilcoxon’s rank-sum test.
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their enrichment in each spot using AUCell (41). Based on the pre-
dicted cell-type fractions and the distribution of the AUCell score 
of each subtype, we defined a cutoff value to define the “presence” 
or “absence” of a subtype in each spot (see Methods).

sition of the major cell types (e.g., tumor, normal brain, vascula-
ture, myeloid, and T cells) in each spot (Supplemental Figure 5B; 
see Methods). We then constructed gene signatures specific to 
each subset (Supplemental Table 4B; see Methods) and computed 

Figure 4. Interactome analysis of the scRNA-Seq–derived lymphoid and myeloid subtypes. (A) The overall interaction strength of overrepresented pathways in 
BrM.ICB versus BrM. The bottom histogram compares the sum of normalized interaction strength per subtype. (B) Inferred CTLA4-CD28-CD80 signaling networks 
among the lymphoid and myeloid subtypes. (C) Inferred TIGIT-CD226-NECTIN2 signaling networks among the lymphoid and myeloid subtypes. For B and C, edge 
width represents the pathway-specific interaction strength. Up to the top 10 subsets based on the sum of their interaction probability were labeled.
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Figure 5. ST and mIF analysis of immune subtypes in BrM and rGBM. (A) Spatial expression pattern of selected marker genes: PMEL, melanoma 
BrM; EPCAM, lung BrM; SOX2, rGBM; MKI67, cycling cells; GFAP, brain cells. (B) Fraction of CD8-Tterm.ex among all tumor-adjacent spots in each 
sample. (C) Spatial distribution of CD8-Tterm.ex subtype on melanoma and lung BrM and rGBM tissue sections. (D) Box plot showing the fraction of 
MRC1+ macrophage subtypes in the neighborhood of vascular cell spots. ***P ≤ 1 × 10–15. (E) Representative mIF images of CD3 and CD206 staining in 
blood vessel–enriched regions in 5 ICB-naive and 5 ICB-treated BrM tumors. Original magnification, × 20. (F) mIF quantification showing the number 
of CD3+ and CD14+CD206+ cells per mm2 of tumor section within the blood vessel–enriched regions (50 μm in diameter around α-SMA+ vessels). The 
analysis includes 5 BrM and 5 BrM.ICB patients. Each dot represents a patient. For all box plots, the lower and upper bounds indicate the 25th and 
75th percentiles and the middle lines the median values. P values were calculated using a 2-sided Wilcoxon’s rank-sum test.

https://doi.org/10.1172/JCI169314


The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

J Clin Invest. 2023;133(17):e169314  https://doi.org/10.1172/JCI1693141 0

phages residing in the perivascular region and those scattered in 
the tumor tissue, we identified all BrM spots containing MRC1+ 
macrophages and looked for DEGs between the 2 regions (Supple-
mental Figure 5E). Since each spot contains a mixture of one or 
more cell types, many of these DEGs reflect the cell types enriched 
in the local microenvironment. For instance, spots in regions rich 
in blood vessels expressed genes related to key components of 
the BBB, such as endothelial cells (AQP1), smooth muscle cells 
(FN1), astrocytes (GFAP, AQP4, SLC1A3), and extracellular matrix 
(ECM) (51). In addition, we found a gene, TIMP1, that may be 
upregulated by macrophages (52, 53). TIMP1 is a well-known 
inhibitor of matrix metalloproteinase-9 (MMP9), an enzyme that 
directly breaks down ECM proteins (54, 55). Therefore, by produc-
ing TIMP1, these MRC1+ PVMs could help preserve the structur-
al integrity of blood vessels by preventing ECM degradation and 
BBB disruption. On the other hand, those spots within the tumor 
parenchyma expressed more tumor cell genes (e.g., PMEL) and 
IFN-stimulated genes (e.g., ISG15, IFITM3, IFI6), confirming 
their closeness to tumor cells and IFN activation. These spots also 
upregulated the chemokines CXCL9 and CXCL12, which could 
attract T cells into the tumor via CXCR3 and CXCR4, respective-
ly. This finding supports our previous results showing that ICB in 
BrM stimulated CXCL9/CXCR3 and CXCL12/CXCR4 interac-
tions between macrophage and T cell subsets (Supplemental Fig-
ure 4C). Despite these findings from ST and mIF, further function-
al studies are needed to confirm the involvement of perivascular 
cuffs in regulating T cell infiltration into the tumor parenchyma.

Thus, ICB therapy induced the infiltration of tumor-specific, 
terminally exhausted CD8-Tterm.ex cells into the tumor paren-
chyma of BrM and rGBM. In BrM specifically, the increased T 
cell infiltration is accompanied by a migration of CD14+CD206+ 
macrophages away from the perivascular regions into the tumor 
bed, which could cause the blood vessels to be more permeable 
to immune infiltrates. These macrophages can further attract the 
T cells through CXCL-CXCR interactions. However, the comigra-
tion of the T cells and myeloid cells may also result in increased 
immunosuppressive interactions between the two.

Higher abundance of progenitor-exhausted CD8+ T cells is asso-
ciated with better overall survival of BrM and rGBM patients. Final-
ly, we sought to determine whether the relative abundance of 
immune populations was correlated with overall survival in BrM 
patients. We first performed univariate survival analysis of patient 
age, sex, presurgery ICB treatment, and the time from last ICB to 
surgery (Supplemental Figure 6A and Supplemental Table 5A) and 
observed no significant correlation between these clinical vari-
ables and survival (Supplemental Figure 6A).

We then performed multivariate Cox’s regression analysis on the 
frequency of each T cell and myeloid subset. Among the 30 subsets, 
we adopted the penalized Cox’s modeling approach to select the top 
5 subsets that best explained overall survival and used the 5 variables 
to fit a multivariate Cox’s regression model (see Methods). As shown 
in Table 1, CD8-Tprog.ex, CD8-Tearly.act.1, and CD4–CD8–-Tm 
were found to be important predictors of survival. Specifically, CD8-
Tprog.ex showed a protective effect on survival, whereas the other 2 
were risk factors of death (Table 1 and Figure 6A). We also observed 
a positive effect of the CD8-Tterm.ex on survival, albeit with no sta-
tistical significance (Supplemental Figure 6B).

We were first interested in the spatial proximity between tumor 
cells and other cell types. Since the Visium spots are arranged using 
an “orange crate packing” configuration, we defined each spot and 
its 6 surrounding spots as its direct neighbors. If more than half of 
the direct neighbors (4 out of 7 wells; the 4 wells may include the 
center spot) had tumor presence, this center spot was determined 
to be tumor adjacent (Supplemental Figure 5C). We calculated the 
number of tumor-adjacent spots in each sample and categorized 
these spots into tumor-adjacent T cell or myeloid subtypes (Sup-
plemental Table 4C). Interestingly, among all T cell subtypes, we 
found that the proportion and abundance of tumor-adjacent ter-
minally exhausted CD8-Tterm.ex consistently increased with ICB 
treatment (Figure 5, B and C); the tendency of CD8-Tterm.ex cells 
to be found in tumor cells’ proximity supports our earlier proposi-
tion that this cluster is enriched with tumor-specific T cells.

Next, we extended the neighborhood analysis from tumor-cen-
tered to any cell type (Supplemental Figure 5D). For a given cen-
ter spot, we calculated the fraction of each cell type X among the 
spot’s 7 direct neighbors. In ICB-naive BrM, we noted the pres-
ence of MRC1+ macrophages (macrophage-angiogenesis, mac-
rophage-MRC1-LYVE1, and macrophage-lysosome) in the direct 
neighborhood of spots enriched with a blood vasculature signature. 
Intriguingly, the colocalization of MRC1+ macrophage and vascu-
lar-rich spots decreased significantly in ICB-treated BrM samples 
(Figure 5D). MRC1, which is also referred to as CD206, is a classical 
M2 macrophage marker and a conventional marker for PVMs, a spe-
cial macrophage type located alongside or near the abluminal surface 
of blood vessels (42). Multiple studies show that endothelial cells in 
the perivascular space provide a specific niche for the polarization of 
macrophages into M2-like phenotypes and that these M2-like PVMs 
could promote angiogenesis and maintain blood-brain barrier (BBB) 
integrity (43, 44). The MRC1+LYVE1+ subset, in particular, has been 
implicated in regulating blood vessel homeostasis (45, 46).

A high degree of inflammation can lead to BBB leakage and 
immune infiltration within the CNS (47–49). A recent paper specif-
ically reported the connection among IFN activation, repositioning 
of MRC1/CD206+/– macrophages, and enhanced vascular perme-
ability (50). Seeing the decreased proximity between the MRC1+ 
macrophage and vascular spots in BrM.ICB (Figure 5D), we further 
investigated the functional relevance of the MRC1+ PVMs in our 
highly inflamed BrM.ICB tumors. We performed mIF staining of 
BrM tumor sections with CD3, CD14, CD206/MRC1, and α–smooth 
muscle actin (α-SMA), a major marker of brain blood vessels. In 
ICB-naive BrM, we observed aggregation of CD14+CD206+ macro-
phages in the perivascular space, forming “perivascular cuffs” (Fig-
ure 5E); this structure is known to confine immune cells to the local 
space next to blood vessels. This corroborates the immune exclusion 
phenotype shown in Figure 1F. In ICB-treated BrM, whose myeloid 
cell populations displayed a strong IFN response, most immune 
cells left the perivascular space and diffusely infiltrated the tumor 
tissue (Figure 5E); this migration explains the significant decrease 
of MRC1+ macrophages near the vascular regions seen in both the 
ST and mIF data (Figure 5, D and F, and Supplemental Table 4D). 
Interestingly, the proportion of MRC1+ macrophages increased with 
ICB in rGBM, suggesting a different myeloid cell spatial organiza-
tion between ICB-treated BrM and rGBM (Figure 5D).

To investigate the difference between these MRC1+ macro-
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rGBM patient survival. Among the immune subtypes, 4 T cell 
subsets were found to be important predictors of overall survival 
based on their estimated hazard ratios, with CD8-Tprog.ex again 
coming out as the strongest factor (Table 2 and Figure 6B).

We next separated the BrM patients by their presurgical ICB 
treatment status and found that CD8-Tprog.ex improved overall 
survival only for those who received ICB, while CD8-Tearly.act.1 

The positive survival association of a higher CD8-Tprog.ex 
fraction was also established in our rGBM patient cohort (Sup-
plemental Table 5B). In this analysis, we first confirmed that sex, 
number of recurrences, and isocitrate dehydrogenase (IDH) sta-
tus (IDH1wt versus IDH1mut) were significantly correlated with 
overall survival of rGBM patients (Supplemental Figure 6C); these 
clinical variables were included in our penalized Cox’s model of 

Table 1. Summary of multivariate Cox’s regression analysis of BrM patients’ overall survival for the top 5 scRNA-Seq–defined  
immune subtypes

Variable Coefficient Hazard ratio P value R2 (i) Relative difference (%)
CD8-Tprog.ex. –0.5162 0.5968 0.0875 0.4404 –33.26%
CD8-Tearly.act.1 1.5039 4.4991 0.0075 0.11 –83.33%
CD4–CD8–-Tm 0.4638 1.5901 0.0175 0.5315 –19.46%
CD4-Tex. –0.4589 0.6320 0.0837 0.7468 13.17%
Macrophage-Lysosome 0.6049 1.8310 0.0428 0.7279 10.3%
Overall R2 0.6599

Overall R2 is the overall measure of predictive power of the full regression model; R2 (i) measures the predictive power of the reduced model in which the ith 
variable has been removed; relative difference (%) of R2 is the relative difference in R2 between the reduced model and full model.

Figure 6. The frequency of T cell subsets is associated with overall survival of BrM and rGBM patients. (A) Overall survival analysis by Kaplan-Meier 
plotting of BrM patients with high and low frequencies of the selected lymphoid subtypes. (B) Overall survival analysis by Kaplan-Meier plotting of rGBM 
patients with high and low frequencies of the selected lymphoid subtypes.
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CXCL9/10-CXCR3 (potentially driven by IFN activation) (35) 
and CXCL12-CXCR4 interactions.

Even in ICB-naive BrM, the tumor-infiltrating T cells already 
display a more activated/exhausted phenotype than in rGBM, 
potentially because they have already been primed in the drain-
ing lymph nodes by (tumor) antigens from extracranial tumors. 
This exposure might enhance the recall response of T cells when 
they encounter metastatic tumors in the brain. Such priming may 
not occur for primary brain tumors (e.g., GBM) that do not leave 
the CNS. After ICB treatment, BrM-infiltrating T cells underwent 
greater clonal expansion and adapted a transcriptome signature 
that suggests they are tumor specific. However, these T cells 
also expressed high levels of inhibitory receptors such as CTLA-
4 and TIGIT, which could be exploited by their binding partners 
expressed on myeloid cells to suppress their cytotoxic activity and 
induce adaptive immune resistance.

Our multivariate survival analysis highlights that the progen-
itor-exhausted population (CD8-Tprog.ex) is significantly cor-
related with overall survival of both BrM and rGBM patients. This 
population overexpressed costimulatory molecules, such as CD28 
and CD226, and could be rejuvenated if their inhibitory CTLA-4 
and TIGIT receptors are blocked. Previous studies have reported 
improved responses to combined PD-1 and CTLA-4 blockade in 
melanoma BrM (60). Our group is currently conducting a phase 1B 
clinical trial testing the combination of anti–PD-1 and anti-CTLA-4 
therapy for rGBM patients (ClinicalTrials.gov NCT04606316). 
A TIGIT-blocking antibody (BMS) also recently cleared a phase I 
study, opening the possibility of its combination with PD-1 block-
ade in BrM and rGBM (61).

One limitation of our study is the diverse range of histologies of 
these BrM tumors and different prior therapies, which could affect 
the TME and ICB responses. More prospective studies/trials with 
more homogeneous histologies are needed to control for these con-
founding factors. Another limitation is that our BrM tumor samples 
were collected only when symptomatic BrM occurred and necessi-
tated surgery. Therefore, a “window of opportunity” clinical study 
with larger sample size and shorter and similar ICB treatment tim-
ing is needed to interrogate the immediate presurgical ICB effect 
on BrM. Despite these limitations, our findings demonstrated con-
sistent ICB effects across BrM of different cancer types.

worsened survival in both ICB-naive and ICB-treated groups (Sup-
plemental Figure 6D). Similarly, for rGBM, CD8-Tprog.ex was 
linked to improved overall survival only in ICB-treated patients 
(Supplemental Figure 6E). This analysis highlights the importance 
of progenitor-exhausted T cells as a component of enhancing 
checkpoint blockade response.

In a 4-stage developmental model proposed by Beltra et al. 
(56), the CD8-Tprog.ex population was reported to retain self-re-
newal capacity. These are the precursors of terminally exhausted 
T cells. A separate study also confirmed that the progenitor-ex-
hausted T cell population has a longer life span and a more robust 
antitumor functionality than the fully exhausted T cells (57). We 
showed that this CD8-Tprog.ex subset still expressed the costim-
ulatory receptors CD28 and CD226 (Supplemental Figure 4, E 
and F), suggesting that they can still be activated by ICB. In this 
way, the CD8-Tprog.ex population may serve as a tumor-specific 
T cell pool that is continuously activated by ICB to give rise to the 
tumor-killing CD8-Tterm.ex T cells (58).

Puzzlingly, the association between CD8-Tearly.act.1 cluster 
and BrM patient survival is the opposite of that in rGBM patients. 
We noted that the gene markers of CD8-Tearly.act.1 cluster 
matched the cluster markers of bystander T cells enriched with 
viral TCRs (24) (Supplemental Table 5C), suggesting that this clus-
ter is enriched with non–tumor-specific T cells. We hypothesize 
that increased infiltration and activation of non–tumor-specific 
T cells would have an opposite effect in a highly T cell–inflamed 
TME of BrM, which potentially results in a life-threatening intra-
cranial inflammation, compared with a relatively T cell–poor TME 
of rGBM, where both tumor-specific and bystander T cell activa-
tions may synergize to suppress the tumor (59). More studies will 
be needed to confirm this proposition.

Discussion
Our study compared the immune landscape of the TME of rGBM 
and BrM and revealed key alterations induced by presurgical 
ICB treatment. Compared with what occurred in rGBM, ICB 
caused prominent T cell infiltration into the tumor parenchyma 
of BrM, which was associated with the migration of the MRC1+ 
macrophages from the perivascular space into the tumor bed. 
These macrophages could attract T cells to its vicinity through 

Table 2. Summary of multivariate Cox’s regression analysis of rGBM patients’ overall survival for the top 5 scRNA-Seq–defined 
immune subtypes

Variable Coefficient Hazard ratio P value R2 (i) Relative difference (%)
Age 0.2121 1.2363 0.0130 0.5113 –34.56
Sex (M vs. F) –0.3677 0.6924 0.6599 0.7783 –0.38
No. of recurrences 1.4165 4.1227 0.0248 0.4960 –36.52
CD8-Tprog.ex. –1.1132 0.3285 0.0493 0.6222 –20.36
CD8-Trm.ex. –0.8472 0.4286 0.0047 0.6959 –10.93
CD8-Tearly.act.1 –0.7600 0.4676 0.0532 0.7063 –9.6
T.Cycling –0.5651 0.5683 0.0519 0.7604 –2.68
CD8-Tinter.ex. –0.4191 0.6577 0.2801 0.7818 0.06
Overall R2 0.7813

The statistics were adjusted for the selected clinical variables. The definitions of overall R2, R2 (i), and relative difference (%) are the same as in Table 1.
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buffer and distilled water. Due to likely enzymatic degradation of the 
CD8 coreceptor (the same CD8 antibody worked on control PBMCs; 
data not shown), we only performed general CD3+ T cell analysis. We 
also noted that the magnitude of PD-1 (CD279) protein expression in 
BrM.ICB patients was specifically lower than in BrM, which likely indi-
cates competition between the CyTOF antibody targeting CD279 and 
the humanized pembrolizumab antibody (data not shown). Thus, we 
excluded the PD-1 marker from our CyTOF analysis.

Events were subsequently acquired n a Helios mass cytometer 
(Fluidigm) at the UCLA JCCC Flow Cytometry Core. After acqui-
sition, all fcs files were normalized together using the R package 
premessa with the 4 element calibration beads (Fluidigm, catalog 
201078). After normalization, live singlets were gated. Each mark-
er’s intensities were capped at 1st and 99th percentiles, normalized 
from 0 to 1, and centered at the mean. Up to 10,000 cells were sub-
sampled from each sample. Dimensional reduction was performed 
using the R package umap. Unsupervised clustering was carried out 
by the PhenoGraph algorithm using R package cytofkit (64).

mIF analysis. Tumor tissue samples were fixed in 10% formalin 
and embedded in paraffin, and 5 μm sections were used for multiplex 
immunohistochemistry staining with the Opal 4 Color Manual IHC 
Kit protocol (PerkinElmer) and the Leica Bond RX Autostainer Kit. 
The following markers were applied and spatially quantified: CD3, 
CD8, CD4, PD1, CD45, CD14, CD206, HLA-DR, MART1, PANCK, 
and α-SMA. Slides were deparaffinized with xylene and rehydrated 
with an ethanol gradient. Before antibody application, heat-induced 
antigen retrieval was obtained using pH6 or pH9 antigen-retrieval 
buffer. For each panel, the antibody clones, dilutions, and Opal tyra-
mide signal amplification listed in Supplemental Table 1G were used. 
After staining, the slides were mounted (ProLong Diamond Antifade 
Mountant, Life Tech) and imaged at ×20 resolution (0.32 μM pixel–1) 
with a Leica Aperio Versa 200 Slide Scanning Microscope equipped 
with a 16-bit Andor Zyla 5.5-megapixel fluorescence camera (UCLA’s 
Translational Pathology Core Laboratory). We used equipped filters 
to acquire 8-bit images. These were as follows: DAPI 350/460 exci-
tation/emission (ex/em), green 495/537 ex/em, red 580/625 ex/em, 
and Cy5 640/690 ex/em. The quantification of cell staining per mm2 
tissue area and analysis of distribution were performed with HALO 
Image Analysis software (Indica Labs). Thresholds for positivity (non-
specific background and autofluorescence staining) were determined 
by primary antibody–negative control slides.

scRNA-Seq. CD45+ cells were isolated using a Miltenyi bead pull-
down assay and immediately frozen for batched analysis, as described 
above. Cell preparation, library preparation, and sequencing were car-
ried out according to Chromium product-based manufacturer’s proto-
cols (10x Genomics). Sequencing was carried out on a NovaSeq 6000 
S2 2 × 50 bp flow cell (Illumina) utilizing the Chromium single-cell 3′ 
gene expression library preparation (10x Genomics) per the manufac-
turer’s protocol with a customized 26 bp (10x barcodes and unique 
molecular identifier [UMI]) + 74 bp (mRNA read) read length at the 
Technology Center for Genomics and Bioinformatics Core, UCLA. For 
paired scRNA-Seq and scTCR-Seq, we used the Chromium single-cell 
5′ and VDJ library construction (10x Genomics), following the manu-
facturer’s instructions.

scRNA-Seq data analysis. Data were demultiplexed and aligned 
with Cell Ranger, version 3.0.0 or higher (10x Genomics), and aligned 
to the Genome Reference Consortium Human Build 38 (GRCh38). 

Our results reveal the distinct and shared effects of ICB in pri-
mary and metastatic brain tumors, which may lead to new ther-
apeutic strategies for improving the clinical outcomes of brain 
tumor patients. BrM tumors had increased T cells after ICB treat-
ment, but they were fully exhausted, possibly due to their extra-
cranial priming. Thus, a therapeutic goal for treating BrM is to 
maintain the tumor-killing T cell source, such as the CD8-Tprog.
ex population, within the tumor parenchyma (57, 62). Interesting-
ly, a recent paper demonstrated that pharmacologic treatment or 
gene therapies that induced a starvation response in antitumor T 
cells helped maintain their progenitor-like phenotype and result-
ed in enhanced killing of big, persistent tumors (63). On the oth-
er hand, rGBM tumors had more CD8-Tprog.ex T cells than BrM 
after presurgical ICB treatment, but the absolute number of such 
T cells may still be insufficient for effective therapy in rGBM. 
Therefore, rGBM patients may need to increase the number of 
TILs before ICB can induce effective antitumor immunity. More-
over, the large amount of immunosuppressive macrophage/MG 
populations could be a major obstacle in both metastatic and pri-
mary brain tumors. Modifying these populations may improve the 
immunotherapy efficacy for both types of brain tumors.

Methods
Tumor digestion and isolation of immune cells. Tumor tissue was 
obtained from tumors of patients who underwent surgery at UCLA 
Medical Center. BrM samples were initially digested with type IV col-
lagenase and DNase I. Immune and tumor cells were separated on a 
Percoll (70%/30%) step gradient. Later, samples of BrM tissues were 
digested using the Miltenyi Brain Tumor Dissociation Kit (Miltenyi 
Biotec, catalog 130-095-42) and gentleMACS dissociator (Miltenyi 
Biotec, catalog 130-093-235). After purification with Myelin Remov-
al Beads II (Miltenyi Biotec, catalog 130-096-433) and labeling with 
CD45+ MicroBeads (Miltenyi Biotec, catalog 130-045-801), CD45+ 
cells were isolated with the Miltenyi LS columns (Miltenyi Biotec, cat-
alog 130-042-401) and MidiMACS separator (Miltenyi Biotec, catalog 
130-042-302). Collected CD45+ cells were then resuspended in freez-
ing media comprising 90% fetal bovine serum (Gibco, Thermo Fisher 
Scientific, 10091) and 10% dimethyl sulfoxide (MilliporeSigma, cata-
log C6295-50ML) and stored in liquid nitrogen.

CyTOF. Tumor-associated CD45+ cells were collected at the time 
of surgery as described above. On the day of data acquisition, samples 
were briefly thawed in a 37°C water bath and washed in RPMI-1640 
media (Genesee Scientific, catalog 25-506) supplemented with FBS 
and penicillin and streptomycin. Cells were then prepared for mass 
cytometry analysis according to the Maxpar cell-surface staining pro-
tocol. Briefly, 0.5 to 3 × 106 cells were washed with PBS and treated 
with 0.1 mg/mL of DNAse I Solution (StemCell Technologies, catalog 
07900) for 15 minutes at room temperature. Cells were then resus-
pended in 5 μM Cell-ID cisplatin (Fluidigm, catalog 201064) as a live/
dead marker for 5 minutes at room temperature. After quenching with 
the Maxpar cell-staining buffer (Fluidigm, catalog 201068), cells were 
incubated with a 32-marker panel for 30 minutes at room temperature 
(Supplemental Table 1B). After washing with cell-staining buffer, cells 
were incubated overnight in 125 nM iridium intercalation solution 
(×1,000 dilution of 125 μM Cell-ID Intercalator-Ir; Fluidigm, catalog 
201192A) in Maxpar Fix and Perm Buffer (Fluidigm, catalog 201067) 
to label intracellular DNA. Cells were then washed with cell-staining 
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tified significant interactions between cell groups using a permutation 
test by randomly permuting the group labels of cells. The interactions 
with P values of less than 0.05 from the permutation test were con-
sidered significant and are shown in the interaction dot plots. The 
thicker the connecting lines, the higher the interaction probability/
strength. Cells from the tumor-normal–like clusters, doublets, and 
unknown clusters were excluded from this analysis. We first generat-
ed separate cellchat objects for rGBM, rGBM.ICB, BrM, and BrM.ICB 
cells (following closely the analysis steps for single data sets at https://
github.com/sqjin/CellChat). The interaction comparisons were then 
performed using the compareInteractions and RankNet functions. Dot 
plots showing the normalized expression levels (color) and fraction 
cells expressing the genes (size of dot) in specific pathways were visu-
alized using the plotGeneExpression function. The circle plots depict-
ing interactions among different immune populations were generated 
using netVisual_circle function.

ST sequencing. ST was performed using 10x Genomics’ Visium 
Spatial Gene Expression Kit for FFPE. Tissue preparation, optimiza-
tion, and library construction were done according to the manufac-
turer’s protocol. First, for each FFPE sample, tissue sections of 10 μm 
were collected for RNA quality assessment. Percentages of total RNA 
fragments greater than 200 nucleotides (DV200) of extracted RNA 
were calculated. Only samples with DV200 greater than or equal to 
30% were used. The Visium Spatial Gene Expression Slide has four 6.5 
× 6.5 mm capture areas, each with approximately 5,000 gene expres-
sion spots. For each tissue, a 10 μm thick section was mounted onto 
1 capture area within the fiducial frame. The Visium slides mount-
ed with FFPE tissue sections were then deparaffinized, stained with 
H&E, and imaged using a Leica DM6000 microscope. After imaging, 
human whole transcriptome probe pairs were added to the tissue with-
in the capture area to bind to their complementary target RNA. The 
probe pairs were then ligated and were released to the Visium slide by 
RNase treatment and permeabilization. They were further extended 
to include UMI, spatial barcode, and partial Read 1 sequencing primer. 
These spatially barcoded ligated probe products were sent for library 
construction and were sequenced using NovaSeq 6000 (Illumina).

ST data analysis. Sequencing data were demultiplexed and mapped 
to the reference genome GRCh38 using Space Ranger software, ver-
sion 1.3.0 (10x Genomics). We used the Seurat ST framework for vari-
ance-stabilizing transformation, sample integration, and normalization 
(https://satijalab.org/seurat/articles/spatial_vignette.html). The bar-
coded gene expression spots on Visium slides were 55 μm in diameter 
so that each spot contained 1 to 10 cells. To decompose each spot’s 
cell-type mixtures, we used the RCTD computational method (40). 
This decomposition method used scRNA-Seq data as cell-type tran-
scriptome reference, which we separately constructed for melanoma 
and lung BrM and rGBM (Supplemental Figure 5B). For melanoma and 
lung BrM, the scRNA-Seq reference incorporates the melanoma or lung 
BrM samples from both our UCLA cohort and the set from Gonzalez et 
al., 2022 (17). The rGBM reference was built based on the rGBM subset 
from Lee et al., 2021 (9), and Abdelfattah et al., 2022 (70). To ensure 
the specificity of the transcriptome profile of each cell type, we excluded 
the cycling population and clusters with high mitochondrial genes from 
the decomposition analysis. To define the tumor cells, we inferred each 
cell’s copy-number variance (CNV) using CONICSmat (71). For rGBM, 
we focused on chr7 gain and chr10 loss, the hallmark chromosomal 
alterations of GBM. For each chromosome, we fitted a 2-component 

Data were analyzed with the Seurat package for R (65), version 4.2.0. 
We only included cells with more than 200 features for further anal-
ysis. Cells with greater than 20% mitochondrial or 40% ribosomal 
features were excluded. The raw transcript count for each sample 
was individually normalized using the NormalizeData function. We 
then separately constructed Seurat data objects and computed the 
top 2,000 variable features for each data set, i.e., BrM from the UCLA 
cohort; BrM from Gonzalez et al., 2022 (17); BrM from Sade-Feldman 
et al., 2018 (18); and rGBM from Lee et al., 2021 (9). The 4 objects were 
then integrated into one Seurat object. Integrated expression values 
were further scaled by regressing out the percentage of mitochondri-
al features, percentage of ribosomal features, cell-cycle score (66), 
and the number of detected genes. For dimension reduction, we ran 
principal component analysis and uniform manifold approximation 
and projection (UMAP). We used Harmony (67) to regress out poten-
tial batch effects arising from different data sets. Different cell cluster 
populations were defined using the FindNeighbors function and the 
genes that were differentially expressed in each cluster or treatment 
were computed using the FindMarker or FindAllMarker function. Sin-
gle-cell level gene-set enrichment was computed using Seurat’s Add-
ModuleScore function.

TCR analysis. For scTCR-Seq data generated from 10x Chromium 
Single-Cell 5′ VDJ libraries, we used the cellranger vdj pipeline (Cell 
Ranger, version 3.0.0 or higher, 10x Genomics) for sequence assembly 
and clonotype calling. We only included highly confident, productive 
clonotypes with exactly 1 TCR-α and 1 TCR-β sequence. For scRNA-
Seq data generated using the 10× Chromium 3′ Kit, we inferred CDR3 
sequences of TCRs from the scRNA-Seq bam files using TRUST4 
software, version 1.0.2 (68). Cells with at least 1 productive TCR-β 
chain were kept for subsequent analysis. Cells with the same TCR-β 
sequence were considered to be 1 TCR clone. A clone with at least 
2 cells in a given population was defined as an expanded clone. The 
clonal expansion index of a given population was measured using 
STARTRAC (version 0.1.0) (25). The likelihood of 2 cell populations 
sharing clones was defined by the STARTRAC transition index.

Developmental trajectory analysis of scRNA-Seq data. We construct-
ed a diffusion map (21) to infer cells’ differentiation trajectory. For 
each cell type, we performed data integration, normalization, scaling, 
and dimension reduction using Seurat. Based on the first 10 principal 
components, we constructed its diffusion map using the DiffusionMap 
function from R package destiny (version 3.10.0). A 3D diffusion map 
was visualized using plot3d from R package rgl (version 3.10.0).

RNA velocity analysis on scRNA-Seq data. We quantified the spliced/
unspliced/ambiguous UMIs for each gene in each cell using the Python 
package velocyto (69) and yielded a.loom file for each sample. We 
then outputted the original gene-count matrix and the metadata from 
the integrated Seurat object. The count matrix was then normalized 
by each cell’s library size and was log transformed. Based on the nor-
malized count matrix and quantified spliced/unspliced UMI counts, 
we estimated the mRNA splicing dynamics using the python package 
scvelo with the mode set to dynamical (22). Finally, we visualized the 
estimated velocities by projecting them onto the 2D diffusion map.

Interactome analysis. We performed ligand receptor interaction 
analysis using the CellChat R package, version 1.1.1 (33). The inter-
action probability for a particular receptor-ligand pair Pi,j from cell 
groups i to j was calculated based on the ligand and receptor gene 
expression levels and the proportion of cells of each group. We iden-
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Data availability. scRNA-Seq data for BrM were deposited in the 
NCBI’s Gene Expression Omnibus database (GEO GSE193745). CyTOF.
fcs files were deposited in the FlowRepository database (FR-FCM-
Z6K5). The Lee et al. 2021 data set is available in the GEO (GSE154795) 
and FlowRepository (FR-FCM-Z4LX) databases. The Gonzalez et al. 
2022 data set was downloaded from GEO (GSE186344). The Sade-Feld-
man et al. 2018 data set was downloaded from the dbGAP database 
(dbGAP: phs001680.v1.p1). The Abdelfattah et al. 2022 data set was 
downloaded from GEO (GSE182109). All the analyses performed in this 
study were based on publicly available packages, which are described in 
detail in Methods. Supplemental Tables 1–5 provided the source data for 
Figures 1–6 and Supplemental Figures 1–6. Values for all data points in 
graphs are reported in the Supporting Data Values file.
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Gaussian mixture model to the average expressions of genes on that 
chromosome. Cells with a posterior probability (pp) for chr7 of greater 
than 0.8 or for chr10 of less than 0.2 were determined as tumor.

After the RCTD decomposition, each Visium gene expression 
spot can be represented by the weighted sum of cell types, with the 
weight as the predicted fraction of each cell type within the spot 
(Supplemental Figure 5B). To determine the spatial distribution of 
our scRNA-Seq–derived immune subtypes, we used the FindAll-
Markers function in Seurat to identify the subtypes’ signature genes. 
Based on the output of FindAllMarkers, for each subtype, genes were 
ordered using the multiplication of difference in the fraction of 
detection (pct.1–pct.2) and avg_log2FC, and the top 100 genes were 
defined as the subtype’s signature genes (Supplemental Table 4B). 
We then computed gene signature enrichment on each spot using the 
ranking-based AUCell method (41). In order to set the AUCell score 
cutoff to define the presence/absence of a subtype, we utilized the 
predicted cell-type fractions from the decomposition step. For each 
immune subtype, we first selected all the spots that were predicted to 
be devoid of the major cell type (i.e., T cell or myeloid) the subtype 
belonged to. The AUCell scores of this particular immune subtype 
on these selected spots made up the “null distribution” of this sub-
type. We than computed the cutoff value by the 95th percentile of the 
distribution and binarized the AUCell scores into 1 and 0: spots with 
scores higher than the cutoff were set as 1, representing the presence 
of this subtype, while the rest of the spots were defined as absence 
and were set as 0. Nonimmune cell types, such as tumor, vascular, 
and normal brain cells, were labeled as present if their predicted 
decomposition fraction was larger than 10%.

Survival analysis. We first dichotomized each of the clinical variables 
and subtype frequencies by its median value and calculated the survival 
probabilities of the cohort stratified by the dichotomized variables. The 
survival probabilities were calculated based on the Kaplan-Meier esti-
mator. Since the subtype frequency data has a nonignorable number of 
zeros, we transformed the data by log10(x + 0.001) to adjust their distri-
bution and avoid the numerical issue caused by those zero values. Next, 
we performed multivariate Cox’s regression analysis on the subtype 
frequencies. Since there were 30 subtypes, we adopted the penalized 
Cox’s modeling approach to select the top 5 variables that best explain 
overall survival. Clinical variables found to be significantly correlated 
with overall survival (by Kaplan-Meier estimator) were also included 
in multivariate Cox’s regression modeling, except for IDH_status in the 
rGBM cohort. We excluded IDH_status because no observed event was 
found in the mutant group. We then used the selected clinical variables 
and the top 5 subtypes to fit a multivariate Cox’s regression model and 
used the PAmeasures R package (72) to calculate R2 (ranging from 0 to 
1, with being closer to 1, the better the predictive power).

Statistics. P values for pairwise comparisons were calculated using 
a 2-sided Wilcoxon’s rank-sum test. Group comparisons were per-
formed using the Kruskal-Wallis test (the nonparametric equivalent 
1-way ANOVA test). Other than the differentially expressed genes 
called by Seurat, all P values calculated for the box plots were nominal 
(unadjusted) P values. A P value less than or equal to 0.05 was consid-
ered significant.

Study approval. The UCLA Medical Institutional Review Board 2 
(IRB 18-000300-CR-00003) approved all protocols related to patient 
specimen collection. All patients gave written, informed consent. This 
study was conducted in accordance with the Declaration of Helsinki.
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