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Figure 6.11: Observer error ũ(x, t) with folding points chosen to be y0 =−0.05, ŷ0 =−0.45.140
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ABSTRACT OF THE DISSERTATION

Boundary Feedback Control Design for Classes of Mixed-Type Partial Differential
Equations

by

Stephen Chen

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2019

Professor Miroslav Krstic, Chair

The work in this dissertation summarizes some advancement in the theory of boundary

controller design for coupled partial differential equations (PDEs), including a new interpretation

of designing bilateral boundary controllers as equivalent coupled PDEs via a method dubbed

“folding.” In particular, systems of purely hyperbolic type, purely parabolic type, and mixed

(hyperbolic-parabolic) type are all explored in the context of boundary control. The work centers

around the method of infinite-dimensional backstepping consisting of an non-trivially invertible

spatial transformation mapping to a system with desireable properties, such stability of equilibria

and convergence speed. A companion kernel PDE must be solved to properly define the transform.

xv



The transformations across the different classes of PDEs are similiar (and in certain cases,

identical); however, curious behavior arises from a heterogeneous mixed type PDE, in which the

companion kernel PDE becomes non-standard. The thesis studies some preliminary work into

mixed type PDEs in an attempt to recover a more general backstepping design for linear PDE.

In the purely hyperbolic work, a special case of a underactuated hyperbolic system is

considered. This is in opposition to pre-existing literature, which assumed a fully actuated system.

The classical backstepping boundary controller is modified for the underactuated hyperbolic

case, admitting a two-tiered trasnformation approach in which the backstepping controller is

augmented by a predictor-based controller to achieve a finite-time stability for the trivial solution

of the system. In the purely parabolic work, the notion of the folding approach is introduced as

an alternative design method to pre-existing bilateral boundary control design work. The folding

approach admits additional design parameters for the control designer, allowing the controls to be

biased for differing performance indexes. A complimentary state estimator is designed, which

allows for collocated point measurement at any arbitrary point in the domain independent of the

control design. The two are combined to achieve an output-feedback control result.

Several results are given for mixed type PDE systems of hyperbolic-parabolic type as well.

A first result invovles a scalar system with coupling on the boundary and the interior. The interior

coupling necessitates more advanced techniques in the analysis of the companion kernel PDE,

particularly in showing well-posedness. These ideas are also applied to other higher-order coupled

systems of hyperbolic-parabolic type, including delay compensation for systems of parabolic

PDEs, and delay compensation for bilateral controller design of parabolic PDEs.

Both the notion of bilateral boundary control and mixed type PDE systems arise in short-

wavelength light generation. In the state-of-the-art light generation at the extreme ultraviolet

(EUV) wavelengths, instabilities in the light generation process potentially arise due to coupled

plasma interactions with the generating process. Phenomena such as ion-acoustic waves, free-

electron plasma diffusion, magnetohydrodynamics, and thermofluidics arise due to the interacting

xvi



plasma, introducing potential modes of instability. This instability neceessitates the introduction

of feedback control, which can be introduced via two controllers on either boundary of the process

domain.
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Chapter 1

Introduction

1.1 Motivating example: Extreme ultraviolet

light generation in photolithography

for semiconductor manufacturing

In the realm of semiconductor manufacturing, the process of photolithography is critical

for patterning transistors on silicon. In the photolithography process, as the name may suggest,

light is used to expose a layer of photoresist (a light sensitive layer applied on top of the silicon)

through a patterned mask. The photoresist interacts with the narrowband light, which is then

processed through etching. This process is repeated several times to carve transistors into a silicon

wafer.

The size of the transistor is determined by several different factors, but depends linearly

on the wavelength of the light. Current state-of-the-art photolithography technology utilizes a

spectrum known as deep ultraviolet (DUV), with wavelengths on the order of 280nm. DUV

can be generated via a traditionally well understood process – energizing a gas mixture under

pressure.
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The next stage in light generation focuses on extreme ultraviolet, or EUV, with fundamen-

tally different generation when compared with the aforementioned processes used in DUV. EUV

must be generated by ionizing specific metals, that is, energizing droplets of liquid tin until the

tin disassociates into tin plasma thereby releasing a photon of the correct wavelength, roughly

13.5nm (this value depends on the intrinsic bandgap of the material being ionized). Repeated

ionization events at high frequency lead to sustained light at the correct wavelength.

DROPLET GENEXCIMER

LASER

DROPLET STREAMEUV

PLASMA DISTURB.

Figure 1.1: A simplified figure of the EUV generation process. Liquid tin is ejected from
the generator and ionized by the excimer laser, releasing a photon of EUV light. The re-
sulting tin plasma byproduct (free-electron diffusion, ion-acoustic waves, thermofluidic, and
electromagnetic effects) disturbs the transverse displacement of droplets upstream.

The process of generating this sustained light is in fact quite complex. The process is

depicted in a very simplifed cartoon (Figure 1.1). A droplet generator squeezes droplets of liquid

tin into an evacuated chamber using a piezoelectric sphincter, at high frequencies (75kHz+). The

droplets convect in this channel until they reach an excimer laser, which energizes the liquid tin

and ideally converts the mass to tin plasma. In reality, because of internal disturbances postulated

to be caused by plasma from previous ionization events, the excimer laser does not always have

perfect accuracy and the conversion efficiency is not optimal.

The stabilization problem arises in using the excimer laser and droplet generator as

control inputs to stabilize the plasma disturbance. It is not difficult to see that the dynamics are

inherently infinite-dimensional – the droplet stream convection is modeled by a transport equation

(a first-order hyperbolic PDE), while the assorted plasma phenomena can range across many

different types of PDE including (but not limited to) wave equations, diffusion equations, and

Kortweg-de-Vries equations.
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Droplet stream

Plasma

Droplet
generatorExcimer

laser

Figure 1.2: A systems perspective of the simple control model. The controls are the excimer
laser and the droplet generator, while the coupled plasma and droplet stream dynamics exhibit a
feedback loop.

The structure of the proposed control model exhibits feedback between the plasma and

droplet stream dynamics, the postulated destabilizing phenomena. The structure of the problem is

depicted in Figure 1.3 Thus, the high level control problem can be succinctly stated as: utilizing

the droplet generator initial displacement and excimer laser orientation to stabilize the droplet

stream and plasma dynamics. The models described in this thesis are motivated by this high level

formulation.

1.2 A brief background of the control of backstepping in infi-

nite dimension

Backstepping in infinite dimension has had an explosive growth in researchers working

in the field. In the most basic sense, the backstepping approach in infinite dimension utilizes a

Volterra integral transformation of the second kind in the spatial variables. It can be thought of

as a continuum spatial transformation, which “shifts” certain types of spatially-causal interior

phenomena into a non-local boundary operator, which can consequently be neutralized via a
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control law operating at the boundary. Such is the intuitive idea behind backstepping in infinite-

dimension: we apply a spatial transformation which allows us to collect undesirable phenomena

into the boundary, where they are compensated by the control law via algebraic cancellation.

There are, of course, several caveats with this design methodology. Most critically, the

continuum spatial transformation must be invertible to establish an equivalence relation between

the transformed and original systems. The well-posedness of the transform is not immediately

obvious in non-classical results, and serves as the main technical challenge in this thesis and

much of the ongoing active research. The well-posedness of an invertible Volterra integral

transformation of the second kind, however, is well chararcterized by the existence, uniqueness,

and regularity of the kernel of the transformation. In the backstepping approach, differential

conditions on the kernel are typically imposed – in standard problems, these conditions give rise

to a Goursat problem.

The backstepping method has been applied to many classes of linear PDE, and some

structured nonlinear PDE problems. For much of the classical infinite-dimensional backstepping

work covering standard linear constant coefficient PDEs (heat, wave, transport) as well as some

more exotic PDE (Kortweg de Vries, Kuramoto Sivanshinsky, beam models such as shear,

Euler-Bernoulli) can be found in [30].

In the realm of more general parabolic PDEs, many results in stabilization and estimation

of linear parabolic systems has been investigated. Some initial results on scalar parabolic PDE

with spatially-varying diffusion and spatially and temporally varying reaction can be found

in [37]. The observer (the dual of the boundary control) was developed initially in [36, 40]

for boundary and spatially averaged sensing, respectively. Weakly coupled parabolic PDE

has also been investigated rather thoroughly, with [45, 1, 18] having looked at varying state-

feedback and output-feedback paradigms, and [10] studying the observer analogue. Some special

case of boundary coupling (cascade) has been studied by [41]. More recently, the notion of

bilateral (or actuation at both boundaries, in 1-D) has been lightly explored with [43, 8] studying
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the stabilization for diffusion reaction and nonlinear viscous Burgers equations. The bilateral

methodology for linear parabolic PDE is generalized in [15], which also includes the observer

analogue to bilateral control – collocated interior sensing. Finally, some higher dimensional

results exist in [44], albeit with a restrictive condition on the shape of the domain.

Hyperbolic PDEs have been just as, if not more, prolific than the parabolic studies. With

several key papers [32, 25] studying the state feedback problem of general coupled first-order

hyperbolic PDEs. This idea has been expanded to admit additional ideas such as minimum-time

control in [3] and bilateral control in [5]. The idea of hyperbolic PDEs as been cast as delays as

well, with much literature studying delay problems in the context of hyperbolic PDEs [29].

Typically most coupled PDE system boundary control and observer results are confined

to the one type of PDE, or potentially one classification of PDE and ODEs coupled either at

the boundary or on the interior. Many results exist in both the former and latter (the former has

been discussed prior). The PDE-ODE coupling opens the door for some interesting coupling

topologies, which include results of [38, 17, 51, 47, 29, 7].

Interestingly, in the linear case, the backstepping transforms are near identical (for a fixed

system-order) across varying classes – a quite unusual property for PDE. In fact, Vazquez in [45]

notes the analogy between the kernel PDEs of parabolic and hyperbolic to be similar. These

observations, made by the dissertation author as well, prompted the study of mixed-type PDE

systems. A mixed-type PDE system can have several differing interpretations depending on the

equation structure. One prevalent notion is that in fluid flows, where inviscid free-flow encounters

porous media. The free-flow regime is described by a hyperbolic PDE, while the flow through

porous media is described by a parabolic PDE, which can be derived from considering both the

conservation of mass principle and Darcy’s law.

Some work on boundary control for mixed-type systems has been considered, albeit

limited. One main result by Krstic [28] considers the scalar first-order hyperbolic PDE boundary

cascaded with a scalar parabolic PDE. In this problem, the companion kernel PDE can already be
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∂tu(x, t) = ∂xu(x, t) + λu(0, t)

∂tu(x, t) = ∂2
xu(x, t) + λu(x, t)

∂2
xk(x, y)− ∂2

yk(x, y) = λk(x, y)

∂kx(x, y) + ∂ky(x, y) = 0

hyperbolic PDE

parabolic PDE

System plant Transformation Target dynamics

∂tw(x, t) = ∂2
xw(x, t)

w = u−
∫
k · u dµ

∂tw(x, t) = ∂xw(x, t)

Figure 1.3: Within each (linear) PDE classificiation, associated kernels of transformations are
recovered. These kernels are intimately tied to the classification of the PDE.

noted to be different than classical infinite-dimensional backstepping – a PDE of parabolic type.

Fortunately, the kernel PDE in [28] exhibits well-studied structure (diffusion-reaction equation

with constant coefficients) whose separation property can be exploited for an explicit solution.

Other results in mixed-type PDEs include that of Hashimoto [22], which features hyperbolic

coupling (delay phenomena) in the interior. The design in [22] depends on dominance of the

hyperbolic phenomena rather than compensation. A different design method for the same problem

considered in [28] is explored by Prieur et al. in [34], which utilizes a property of parabolicity

to generate a spectral decomposition of the unstable parabolic PDE into a finite-dimensional

unstable system and an infinite-dimensional stable system.
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1.3 Organization

The thesis is divided roughly into sections. In Chapter 2, a result in the finite-time

stabilization of underactuated hyperbolic systems is presented. A state-feedback methodology,

based on a combination of augmented backstepping and predictor control design techniques,

is presented. The stabilizing property of this feedback control is shown through two invertible

transformations. The well-posedness of the associated kernel PDEs is studied via the method of

characteristics, extending the pre-existing methods of solving classical backstepping companion

gain kernel PDEs.

In Chapter 3, a first result in the control of a strict feedback mixed-type hyperbolic-

parabolic system is given. A novel companion kernel PDE of parabolic type is encountered,

motivating the use of Galerkin methods to prove well-posedness, a technique that is typically

not used in classical backstepping results. The Galerkin method involves the development of

global energy estimates on the kernel domain, which provides the guarantee of well-posedness

for the linear kernel PDE. Numerical solutions of the kernel are given, and the closed-loop system

simulated to show the effectiveness of the backstepping design.

In Chapter 4, results in delay compensated control of coupled unstable parabolic equations

are shown. Surprisingly, although the coupling between the hyperbolic delay and the unstable

parabolic equation is “simpler” than that of results in Chapter 3, the higher-order coupled system

still mandates more advanced techniques such as the Galerkin method in showing well-posedness

of the companion gain kernel PDE. These results extend backstepping designs in coupled, purely

parabolic systems to that of a coupled mixed-type coupled hyperbolic-parabolic system.

In Chapter 5, the problem of designing two boundary controllers bilaterally (defined

on both boundaries of a 1-D PDE) for an unstable parabolic PDE in presence of distinct input

delays is investigated. First, a process of designing bilateral control for an unstable parabolic

PDE with identical delay is developed, giving rise to an interesting geometric interpretation of
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the companion gain kernel PDEs. A method of domain extension, i.e. adding artificial delay,

is developed and utilized to establish an equivalence relation between the identical delay and

distinct delay cases. However, this artificial delay extension transforms a static state-feedback

controller into a dynamic controller. The method of artificial delay extension can be seen to be

analogous to dynamic extension in finite-dimensional systems.

In Chapter 6, the problem of bilateral boundary control design for an unstable parabolic

PDE is considered with a novel approach termed “folding.” This marks an initial step to solving

the problem of Chapter 5 without using the dynamic extension technique. The folding technique

introduces a design parameter called the folding point – mathematically, the single unstable

parabolic PDE is folded around this arbitrarily point to generate a coupled parabolic system with

exotic boundary conditions. The power of this result is being able to bias the controllers, that

is, shift control effort from one controller to another. A complementary state observer is also

designed, which analogously uses collocated measurements of the state and flux at any arbitrary

point in the interior to generate a converging state estimate. The selection of folding point and

sensor locations are independent of one another, which is quite powerful. The two designs are

combined with an additional proof of the separation principle of design to recover an output

feedback result.

In Chapter 7, the result of Chapter 5 is achieved with the folding methodology as opposed

to the dynamic extension method. The folding technique is used to design a nominal controller for

the parabolic PDE and the results of Chapter 4 are modified to accomodate the folding boundary

conditions to recover the delay compensation for bilateral boundary control of unstable parabolic

PDEs in presence of distinct input delays.

In Chapter 8, an interesting natural result of the folding approach is investigated, where

a finite-dimensional linear ordinary differential equation system is coupled to the parabolic

PDE at an arbitrary point on the interior. The folding approach generalizes to this result in a

relatively straightforward manner, although care must be taken in the well-posedness proof of the
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companion kernel PDE to accommodate the additional coupling.
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Chapter 2

Transport-wave

2.1 Introduction

Control of coupled PDE systems has been studied rather extensively, with forays into

various coupling structures of varying classes of PDEs. In particular, the study of coupled

hyperbolic systems of first order have been explored [25],[32],[31]. Decompositions of wave

equations into 2x2 transport systems have also been considered within different contexts [7].

Delay-wave equations have been studied in [48], where it has been shown that for an

antistable wave equation with input delay can only be stabilized for delay of even multiples of the

wave speed. In fact, any odd multiple delay will result in instability. However in this paper we do

not consider an antistable wave equation, rather, one that is marginally stable.

The control of coupled transport systems has been studied in [25], [32], and [31], however,

each case has subtle differences from one another. In [32], the case considered is of n+1 transport

systems, where n transport systems convect in one direction and the controlled system travels in

the opposing direction. This was extended to n+m transport systems in [25], however, with the

caveat that now the m transport systems each have a controlled boundary (i.e. m control inputs

are required). This was further studied in [24].
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We study the problem consisting of a coupled wave-transport equation, which consequen-

tially can be decomposed into a system of transport equations. The tools developed in [30] are

more readibly applicable to systems of the same class. Such systems are physically motivated by

a transport process in which some sort of reaction occurring at the outflow boundary influences

the transport dynamics.

A readily available application is in extreme ultraviolet light generation for photolithog-

raphy. In order to etch transistors into semiconductors, a specific wavelength of light is used.

However, to etch smaller and smaller transistors, one must generate light at smaller and smaller

wavelengths. Enter extreme ultraviolet: a new, fledging technology which can generate light

at sufficiently small wavelengths (∼13nm). However, many issues occur during the generation

of this light, which make the application of feedback control attractive. Currently, the extreme

ultraviolet generation problem consists of the transport of liquid tin droplets through a stream,

which after some travel period are vaporized into plasma by a CO2 drive laser, thus generating the

desired wavelength of light. However, the plasma generated also influences the displacement of

droplets further upstream, incurring potentially destabilizing feedback (dependent on the intensity

of the drive laser). It is possible to model these plasma mechanisms through wave-like behavior.

A more in depth overview of the physics of the system can be found in [46].

In this paper, we consider the case of a coupled transport-wave equation which is decom-

posed into a 2+1 first-order hyperbolic system, where the control enters one transport equation

with another transport equation traveling in the same direction, and the last traveling in the

opposite direction. Hence, this system no longer falls under the n+1 class nor the n+m class

with m inputs. However, in our case we no longer consider the coupling from the controlled

subsystem to the uncontrolled subsystem in the interior, only the boundary. The interior coupling

term from the uncontrolled subsystem entering the controlled subsystem is still considered.

The paper is structured as follows: in Section 8.2 we introduce the system model, and

transform the system from a transport-wave to a transport-transport type system. In Section 2.3
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we introduce the desired target system, study the stability of the target system, and develop a

two-part backstepping transformation. The kernel equations of the backstepping transformation

are also derived. In Section 2.4 we study the well-posedness of the kernel equations, and derive a

solution.

2.2 Problem statement

We consider the model of a coupled transport-wave equation system, where the wave

equation state enters the transport equation in an in-domain distributive manner, while the transport

equation acts as a boundary source for the wave equation.

∂
2
t v(x, t) = µ2

∂
2
xv(x, t) (2.1)

∂tu(x, t) = ∂xu(x, t)+q(x)v(x, t) (2.2)

∂xv(0, t) = u(0, t) (2.3)

v(1, t) = 0 (2.4)

u(1, t) =U(t) (2.5)

where u(x, t) is the transport PDE distributed state, v(x, t) the wave PDE distributed state. q(x) is

the distributed coefficient coupling the wave PDE to the transport PDE, while µ > 0 is the wave

propagation speed. The control input is at the boundary of the transport system u, and is notated

U(t). The spatial domain of the system is defined by x ∈ [0,1].

By defining the following variables v0(x, t) and v1(x, t) as

v0(x, t) = ∂tv(x, t)+µ∂xv(x, t) (2.6)

v1(x, t) = ∂tv(x, t)−µ∂xv(x, t), (2.7)
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x = 0 x = 1

v(x,t)

u(x,t)
U(t)

q(x) q(x) q(x)u(0,t)

Figure 2.1: Schematic view of coupled transport-wave system.

the wave equation v(x, t) can be decomposed into two transport equations v0,1(x, t) in opposing

directions. By utilizing (2.6), (2.7), we can rewrite the system (2.1)-(2.5) as

∂tv0(x, t) = µ∂xv0(x, t) (2.8)

∂tv1(x, t) =−µ∂xv1(x, t) (2.9)

∂tu(x, t) = ∂xu(x, t)

− q(x)
2µ

∫ 1

x
[v0(y, t)− v1(y, t)]dy (2.10)

v0(1, t) =−v1(1, t) (2.11)

v1(0, t) = v0(0, t)−2µu(0, t) (2.12)

u(1, t) =U(t) (2.13)

The system now becomes a set of coupled first-order hyperbolic PDEs. One might note that the

stability of (v0,v1) implies stability in v by imposing the boundary condition (2.4).

The goal is to find a feedback control law U(t) such that the zero equilibrium of the

system (2.8)-(2.13) is exponentially stabilized.
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x = 0 x = 1

v0(x,t)

u(x,t)
U(t)

q(x)

q(x)

u(0,t)

v1(x,t)

v1(1,t)v0(x,t)

Figure 2.2: Schematic view of coupled transport-transport system.

2.3 Control design

2.3.1 Target system

We utilize backstepping methods to design a control law. We seek to map (2.8)-(2.13)

into the following exponentially stable target system:

∂tv0(x, t) = µ∂xv0(x, t) (2.14)

∂tv1(x, t) =−µ∂xv1(x, t) (2.15)

∂tw(x, t) = ∂xw(x, t) (2.16)

v0(1, t) =−v1(1, t) (2.17)

v1(0, t) = 0 (2.18)

w(1, t) = 0 (2.19)

Lemma 1. Consider the system given by (2.14)-(2.19) and initial conditions v0(x,0),v1(x,0),

w(x,0) ∈H 1[0,1]. The equilibrium v0 = v1 = w≡ 0 is exponentially stable in the L2 sense.

Proof. To show that the equilibrium (v0(·, t),v1(·, t),w(·, t)) = 0 of the target system is exponen-

tially stable, we consider the Lyapunov function inspired by [16]:

V (t) =
∫ 1

0
p1eδxw(x, t)2dx+

∫ 1

0

p2

µ
eδxv0(x, t)2dx
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+
∫ 1

0

p3

µ
e−δxv1(x, t)2dx (2.20)

where pi,δ > 0, i ∈ {1,2,3} are positive coefficients to be chosen. The Lyapunov candidate

function V can be bounded by

V (t)≥C0(||v0(·, t)||2 + ||v1(·, t)||2 + ||w(·, t)||2) (2.21)

V (t)≤C1(||v0(·, t)||2 + ||v1(·, t)||2 + ||w(·, t)||2) (2.22)

where the norm || · || is the L2 norm, and the constants C0,C1 defined by

C0 = max{p1, p2/µ, p3e−δ/µ} and C1 = min{p1eδ, p2eδ/µ, p3/µ}. Differentiating V (t) and inte-

grating by parts yields

V̇ (t) =− 1
2

p1w(0, t)2− 1
2

p2v0(0, t)2

− 1
2

(
p3e−δ− p2eδ

)
v1(1, t)2

− 1
2

∫ 1

0
δp1eδxw(x, t)2dx

− 1
2

∫ 1

0
δp2eδxv0(x, t)2dx

− 1
2

∫ 1

0
δp3e−δxv1(x, t)2dx (2.23)

From this, we derive a condition that p3 ≥ p2e2δ, which we can enforce by choosing p2, p3.

Following this, we can bound V̇ (t) by

V̇ (t)≤−δ

2
V (t) (2.24)

From the comparison principle, we can conclude

V (t)≤ e−
δ

2 tV (0) (2.25)
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From (2.21) and (2.22),

||γ(·, t)|| ≤
√

C1

C0
e−

δ

4 t ||γ(·,0)|| (2.26)

γ(x, t) := (v0(x, t),v1(x, t),w(x, t)) (2.27)

It follows that the equilbirium (v0,v1,w) = 0 is exponentially stable.

2.3.2 Backstepping controller

Next, we derive the backstepping feedback control in a two-part process for clarity. The

first transformation will be remove the v0 and v1 coupling terms in (2.10). The second part

involves applying an additive feedfoward to finish stabilizing the system.

Backstepping to remove coupling terms

We seek to use the following transformation to map the original system into an intermedi-

ate target system.

η(x, t) = u(x, t)−
∫ x

0
k(x,y)u(y, t)dy

−
∫ 1

0
l(x,y)v0(y, t)dy−

∫ 1

0
m(x,y)v1(y, t)dy (2.28)

Note that for v0(x, t),v1(x, t), the backstepping integrals are of the Fredholm-type rather than

the typical Volterra-type seen in [30]. This is to account for the nature of the coupling in (2.10).

However, as the integral pertaining to the state being transformed (u(x, t)) is of the Volterra

type, the transformation maintains invertiblility, provided that the kernel functions exist and are

bounded (studied in Section 2.4).
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The intermediate target system is given as

∂tv0(x, t) = µ∂xv0(x, t) (2.29)

∂tv1(x, t) =−µ∂xv1(x, t) (2.30)

∂tη(x, t) = ∂xη(x, t) (2.31)

v0(1, t) =−v1(1, t) (2.32)

v1(0, t) = v0(0, t)−2µη(0, t) (2.33)

η(1, t) =W (t) (2.34)

where W (t) serves as the intermediate control input. Presuming that solutions exist for the control

kernel functions, the intermediate control W (t) can be formulated from (8.17) and (2.34) as

W (t) =U(t)−
∫ 1

0
k(1,y)u(y, t)dy

−
∫ 1

0
l(1,y)v0(y, t)dy−

∫ 1

0
m(1,y)v1(y, t)dy (2.35)

After a executing a tedious derivation of time and space derivatives from (8.17) and imposing

(2.16) and related boundary conditions, one can recover a set of coupled kernel PDEs. However,

there is a structure in the kernel equations dependent on the domain. We therefore define l f (x,y)

and lb(x,y) such that

l(x,y) :=





l f (x,y) 0≤ y≤ x≤ 1

lb(x,y) 0≤ x≤ y≤ 1
(2.36)

and similarly, m f (x,y) and mb(x,y) such that

m(x,y) :=





m f (x,y) 0≤ y≤ x≤ 1

mb(x,y) 0≤ x≤ y≤ 1
(2.37)
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From here, we can find our coupled kernel PDEs as

∂xk(x,y)+∂yk(x,y) = 0 (2.38)

k(x,0) =−2µ2mb(x,0) (2.39)

∂xlb(x,y)+µ∂ylb(x,y) =−
∫ y

0
k(x,z)

q(z)
2µ

dz (2.40)

∂xl f (x,y)+µ∂yl f (x,y) =
q(x)
2µ

−
∫ x

0
k(x,z)

q(z)
2µ

dz (2.41)

∂xmb(x,y)−µ∂ymb(x,y) =
∫ y

0
k(x,z)

q(z)
2µ

dz (2.42)

∂xm f (x,y)−µ∂ym f (x,y) =−
q(x)
2µ

+
∫ x

0
k(x,z)

q(z)
2µ

dz (2.43)

∂xlb(x,0) = mb(x,0) (2.44)

(1−µ)l f (x,x) = (1−µ)lb(x,x) (2.45)

l f (0,y) = 0 (2.46)

(1+µ)mb(x,x) = (1+µ)m f (x,x) (2.47)

m f (x,1) =−l f (x,1) (2.48)

m f (0,y) = 0 (2.49)

The boundary conditions (2.46) and (2.49) are found from enforcing the backstepping transfor-

mation (8.17), the target system boundary condition (2.33), and the original system boundary

condition (2.12). Note that the continuity of l(x,y) and m(x,y) are enforced by the boundary

conditions (2.45) and (2.47), despite their piecewise definitions. However, this does not guarantee

the differentiability of l(x,y) and m(x,y) on the entire domain. We will study the well-posedness

of this system of coupled PDEs in Section 2.4.
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Final derivation to target system

Now we must select W (t) such to derive the final target system. This is relatively

straightforward, and follows from the direct solutions of (2.29)-(2.34) found using the method of

characteristics. The solutions are

η(x, t) =W (t− (1− x)) (2.50)

v0(x, t) =−v1(1, t− (1− x)/µ) (2.51)

v1(x, t) = v0(0, t− x/µ)−2µη(0, t− x/µ) (2.52)

By properly combining the solutions (2.50)-(2.52) with appropriate algebraic manipulation, one

can derive a causal representation of W (t) as

W (t) =
(−1)N

2µ
v0(0, t +1−2N/µ)

+
N

∑
k=1

(−1)k+1W (t−2k/µ) (2.53)

where the value of N ∈ Z≥0 is the smallest possible integer such that N ≥ µ/2.

The control U(t) can then be recovered through combining (2.35) and (2.53).

Theorem 2. Consider the transformed system (2.8)-(2.13), with admissible initial data

(u(x,0),v0(x,0),v1(x,0)). Let N be the smallest integer such that N ≥ µ/2. The control law can

be formulated as

U(t) =W (t)+
∫ 1

0
k(1,y)u(y, t)dy

+
∫ 1

0
l(1,y)v0(y, t)dy+

∫ 1

0
m(1,y)v1(y, t)dy, (2.54)

where the function W (t) is an intermediate control defined by (2.53). Then the equilibrium

(u,v0,v1) = 0 is exponentially stable in the L2 sense.
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Proof. The proof is straightforward and follows from the invertibility of (8.17) and Lemma 1.

2.4 Well-posedness of kernel equations

In this section we study the well-posedness of the kernel equations (2.38)-(2.49).

In general, we consider all potential values of µ, but will show this in two cases (µ > 1 and

µ < 1) as the structure of the problem changes depending on the value of µ. For the special case

of µ = 1, the PDE system degenerates into a simpler problem which can, in fact, be accounted for

in both cases.

The k-system is considered first, and an explicit solution can be found using the method

of characteristics as

k(x,y) =−2µ2mb(x− y,0) (2.55)

Using this, the kernel equations (2.38)-(2.49) can be reduced to a system of four coupled first-

order hyperbolic PDEs.

2.4.1 Solving the kernel equations for µ < 1

We first consider the case of solving the kernel equations for µ < 1. Here, the characteris-

tics of the l f will intercept the boundary l f (x,x), which are then transferred into lb(x,x).

From method of characteristics, we can find the solution of l f (x,y) in terms of mb(x,0) as

l f (x,y) =
∫ x

0

q(s)
2µ

ds

+
∫ x

0

∫ s

0
µmb(s− z,0)q(z)dzds (2.56)

This solution gives us l f (x,1) in terms of mb(x,0), which is needed to solve the m f (x,y) system.

Moreover, it also gives us lb(x,x), which in conjunction with the boundary condition lb(x,0) will

give us the solution for lb(x,y).
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Figure 2.3: Characteristics of Upper left. l(x,y),µ ≤ 1. Lower left. m(x,y),µ ≤ 1. Upper
right. l(x,y),µ > 1. Lower right. m(x,y),µ > 1.

Applying method of characteristics to the m f -system, we find a piecewise solution as

m f (x,y) =





m f ,1(x,y) y > 1−µx

m f ,2(x,y) y≤ 1−µx
(2.57)

where the functions m f ,1(x,y) and m f ,2(x,y) are defined by

m f ,1(x,y) =−l f

(
µx+ y−1

µ
,1
)
−

∫ x

µx+y−1
µ

q(s)
2µ

ds
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−
∫ x

µx+y−1
µ

∫ s

0
µmb(s− z,0)q(z)dzds (2.58)

m f ,2(x,y) =−
∫ x

0

q(s)
2µ

ds

−
∫ x

0

∫ s

0
µmb(s− z,0)q(z)dzds (2.59)

From this, one can solve for m f (x,x) in terms of, which is necessary for solving the mb-system.

Again, applying the method of characteristics, this time to the mb-system, the solution

mb(x,y) can be found.

mb(x,y) = m f

(
µx+ y
µ+1

,
µx+ y
µ+1

)

−
∫ x

µx+y
µ+1

∫ −µs+µx+y

0
µmb(s− z,0)q(z)dzds (2.60)

By evaluating (2.60) at y = 0, we can establish an integral equation in which to solve for mb(x,0),

which is essential for the gain kernels.

mb(x,0) = m f

(
µx

µ+1
,

µx
µ+1

)

−
∫ x

µx
µ+1

∫ µ(x−s)

0
µmb(s− z,0)q(z)dzds (2.61)

From here, one can note that since µ < 1, the condition m f

(
µx

µ+1 ,
µx

µ+1

)
= m f ,2

(
µx

µ+1 ,
µx

µ+1

)
, and

therefore the explicit form of the integral equation (2.61) is

mb(x,0) =−
∫ µx

µ+1

0

q(s)
2µ

ds

−
∫ µx

µ+1

0

∫ s

0
µmb(s− z,0)q(z)dzds

−
∫ x

µx
µ+1

∫ µ(x−s)

0
µmb(s− z,0)q(z)dzds (2.62)

For simplicity, let ε = µ/(1+µ). To solve (2.62), we wil apply the method of successive
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approximations. Consider some sequence {mk(x)}k=∞
k=0 defined by

mk(x) =−
∫

εx

0

q(x)
2µ

ds

−
∫

εx

0

∫ s

0
µmk−1(s− z)q(z)dzds

−
∫ x

εx

∫ µ(x−s)

0
µmk−1(s− z)q(z)dzds (2.63)

If mk(x) converges, we can see that mk(x)→ mb(x,0). We can define a difference ∆mk(x) :=

mk+1(x)−mk(x), which admits an update equation

∆mk(x) =−
∫

εx

0

∫ s

0
µ∆mk−1(s− z)q(z)dzds

−
∫ x

εx

∫ µ(x−s)

0
µ∆mk−1(s− z)q(z)dzds (2.64)

and also the relation

mb(x,0) = m0(x)+
∞

∑
k=0

∆mk(x) (2.65)

We now study |∆mk(x)|, and its growth with respect to k. Let m0(x) = 0. As one begins computing

successive bounds, a general representation can be found as

|∆mk(x)| ≤
εµkQk+1

(2k+1)!
x2k+1 (2.66)

where Q = max |q(x)|.

We can then conclude uniform convergence of the sum in (2.65) through the Weierstrass

M-test, and therefore existence and uniqueness of mb(x,0) can be concluded. It is straightforward

to substitute mb(x,0) back into derived expressions for mb(x,y),m f (x,y), l f (x,y) to find the

respective gain kernels. The derivation of lb(x,y) is likewise straightforward and is omitted for
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space.

2.4.2 Solving the kernel equations for µ > 1

Solving the kernel equations for the µ > 1 case is somewhat similar to that of µ < 1, but

with some subtle differences in how the boundary conditions are utilized.

We first solve the lb-system in terms of mb(x,0).

lb(x,y) = mb

(
µx− y

µ
,0
)

+
∫ x

µx−y
µ−1

∫ µs−µx+y

0
µmb(s− z,0)q(z)dzds (2.67)

Next we solve the l f -system with two boundary conditions l f (0,y) and l f (x,x).

l f (x,y) =





l f ,1(x,y) y > µx

l f ,2(x,y) y≤ µx
(2.68)

where l f ,1, l f ,2 are given by

l f ,1(x,y) =
∫ x

0

q(s)
2µ

ds

+
∫ x

0

∫ s

0
µmb(s− z,0)q(z)dzds (2.69)

l f ,2(x,y) = lb

(
µx− y
µ−1

,
µx− y
µ−1

)
+

∫ x

µx−y
µ−1

q(s)
2µ

ds

+
∫ x

µx−y
µ−1

∫ s

0
µmb(s− z,0)q(z)dzds (2.70)

Following, we solve the m f -system, which like the l f -system will be piecewise defined,
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considering the boundary conditions m f (0,y) and m f (x,1).

m f (x,y) =





m f ,1(x,y) y > 1−µx

m f ,2(x,y) y≤ 1−µx
(2.71)

where m f ,1 and m f ,2 are defined as

m f ,1(x,y) =−l f

(
µx+ y−1

µ
,1
)
−

∫ x

µx+y−1
µ

q(s)
2µ

ds

−
∫ x

µx+y−1
µ

∫ s

0
µmb(s− z,0)q(z)dzds (2.72)

m f ,2(x,y) =−
∫ x

0

q(s)
2µ

ds

−
∫ x

0

∫ s

0
µmb(s− z,0)q(z)dzds (2.73)

Finally, we can derive the solution mb(x,y) in terms of mb(x,0), which will admit an

integral equation.

mb(x,y) =−
∫ x

µx+y
µ+1

∫ −µs+µx+y

0
µmb(s− z,0)q(z)dzds

+m f

(
µx+ y
µ+1

,
µx+ y
µ+1

)
(2.74)

By combining all the solutions and evaluating mb(x,0), the integral equation can be

(piecewise) defined as

mb(x,0) =





mb,1(x,0) x≤ 2
µ

mb,2(x,0) x > 2
µ

(2.75)

where mb,1 and mb,2 are defined by below. For simplicty of notation, ε := µ/(1+µ).

mb,1(x,0) =−
∫

εx

0

q(s)
2µ

ds
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−
∫

εx

0

∫ s

0
µmb(s− z,0)q(z)dzds

−
∫ x

εx

∫ µ(x−s)

0
µmb(s− z,0)q(z)dzds (2.76)

mb,2(x,0) =−mb(x−2/µ,0)−
∫

εx

µx−2
µ−1

q(s)
2µ

ds

−
∫ µx−2

µ−1

µx−2
µ

∫ µs−µx+2

0
µmb(s− z,0)q(z)dzds

−
∫

εx

µx−2
µ−1

∫ s

0
µmb(s− z,0)q(z)dzds

−
∫ x

εx

∫ µ(x−s)

0
µmb(s− z,0)q(z)dzds (2.77)

To prove existence and uniqueness for the system of kernel equations, it is sufficient to

show that the the integral equations given by (2.76) and (2.77) have solutions.

The case for mb,1 is identical to solving mb(x,0) in the µ < 1 case, and therefore will be

omitted. The case for mb,2, however, must be proven through induction.

We will illustrate that m2,b has a solution through the method of successive approximations.

To do this, we consider solving iteratively, where domains of length 2/µ are considered in turn.

Let i∈ {1, ...,N}, where N is the smallest integer such that N ≥ µ/2−1. We now consider

the domain Ii = [2i/µ,min{2(i+ 1)/µ,1}], where the minimum is utilized for the corner case

i = N. First, from (90) we derive an iterating equation

mk+1(x) =−mb(x−2/µ,0)−
∫

εx

µx−2
µ−1

q(s)
2µ

ds

−
∫ µx−2

µ−1

µx−2
µ

∫ µs−µx+2

0
µmk(s− z)q(z)dzds

−
∫

εx

µx−2
µ−1

∫ s

0
µmk(s− z)q(z)dzds

−
∫ x

εx

∫ µ(x−s)

0
µmk(s− z)q(z)dzds (2.78)

where if mk converges in the domain I, it will converge to the true value mb(x,0) in I. Note
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that the term mb(x−2/µ,0) already references the well-posedness of mb, however, containing

values on the previous domain Ii−1. This is the reason for solving on successive intervals - we are

presented with a base case defined by mb,1 (already shown to be well-posed), and iterate forward

in x.

One can then define a successive difference ∆mk(x) := mk+1(x)−mk(x), which admits an

update equation

∆mk(x) =−
∫ µx−2

µ−1

µx−2
µ

∫ µs−µx+2

0
µ∆mk−1(s− z)q(z)dzds

−
∫

εx

µx−2
µ−1

∫ s

0
µ∆mk−1(s− z)q(z)dzds

−
∫ x

εx

∫ µ(x−s)

0
µ∆mk−1(s− z)q(z)dzds (2.79)

and assuming that the sequence mk(x) converges, the function mb(x,0) on the domain Ii can be

written as

mb(x,0) = m0(x)+
∞

∑
k=0

∆mk(x),x ∈ Ii (2.80)

Much like the µ < 1 case, instead of studying the convergence of this sequence we will

study |∆mk(x)|. Then by selecting m0(x) = 0 and computing several successive approximations,

we arrive at the bound

|∆mk(x)| ≤
(2µQ)k

(2k)!
Mi−1x2k +

ε(2µ)k−1Qk+1

(2k+1)!
x2k+1 (2.81)

where Mi is defined by max |mb(x,0)|< Mi,x ∈ Ii, and Q = max |q(x)|.

Again, by the Weierstrass M-test one can see that for every i ∈ {1, ...,N}, the summation

in (2.80) will converge uniformly, guaranteeing existence and uniqueness of mb(x,0). Much like

the µ < 1 case, it is straightforward to substitute mb(x,0) and find the solution for all gain kernels.

27



2.5 Conclusion

A two-part controller is developed for the coupled transport-wave PDE system, in two

distinct cases where the transport delay is short when compared to the wave speed (µ < 1), and

when the transport delay is long (µ > 1). An extended backstepping transformation is utilized,

where Fredholm integrals (as opposed to Volterra) are now required. The gain kernels are solved

through exploiting the reflections in the kernel domains to derive an integral equation.

Ongoing work involves developing a state estimation algorithm. In the physical application

to extreme ultraviolet light generation, the system is not only underactuated, but also undersensed,

leading to additional complexity. Thus, a straightforward backstepping based observer is not

feasible, and a novel design must be considered that exploits the system structure.
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Chapter 3

Heat-transport

3.1 Introduction

The control of coupled partial differential equation systems has developed in great leaps

recently, in scenarios involving both boundary and interior coupling structures. This innovation,

in part, is due to coupled PDE systems arising naturally in various physical engineering pro-

cesses such as oil well drilling, biological reactors, extreme ultraviolet lithography (EUV) for

semiconductor manufacturing, and more.

Previous work in coupled PDEs has investigated various coupling structures. Almost all of

these results involve PDEs of the same class, or of PDE-ODE type (a specific boundary-coupled

case). The results for interior-coupled systems explore only the coupling of systems of the same

class [25],[32],[45]. For a mixed class system, only a single existing result for a boundary coupled

case exists [28]. However, an interior-coupled mixed class had never been explored prior, which

this paper will investigate.

The work in this paper was motivated from the authors’ previous work in a coupled

transport-wave PDE system [13]. It should be noted that the approach applied is very similar,

however, the most distinct difference lies in the derivation of the solutions of the gain kernels
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involved. Results also exist for the cascade of a hyperbolic-parabolic PDE system in [28], which

is very similar but lacks interior coupling. The result in this paper sits naturally between the two

aforementioned cases. Both this paper and [45] explore and illustrate the wide applicability of the

backstepping control methodology for PDEs across various coupled and mixed class systems.

The notion of a mixed class interior coupled PDE system can be quite difficult to work

with theoretically. It is well known that many PDE tools can only be used in the context of a

single class, thus making it quite surprising that a tool like backstepping can be applied across

different classes. However, depending on the mixed class interior coupled systems in question,

certain coupling topologies can be quite difficult to tackle — this paper being a prime example.

The coupling in one direction (the one authors have considered) is considerably more tractable

than the case where the coupling runs opposite.

The study of a hyperbolic-parabolic mixed class coupled PDE system are naturally

motivated by physical problems which include biological chemotaxis (such as tumor and fungal

growth), predator-prey population models, and EUV lithography. In particular, a particular part of

EUV lithography involves a liquid metal droplet stream convecting through plasma, modeled with

a first-order hyperbolic PDE. The plasma, which influences the droplet stream, will diffuse in

space, which is modeled using a parabolic PDE, giving arise to the coupled hyperbolic-parabolic

mixed-type PDE system [46].

The paper is structured as follows: Section 3.2 establishes the model, Section 3.3 designs

the control and proves its exponentially stabilizing property, Section 3.4 explores the existence

of a stablizing gain function, and finally Section 3.5 illustrates the effectiveness of the control

design through simulation.

30



3.2 Model

The model under consideration is given below:

∂tv(x, t) = ε∂
2
xv(x, t)+λv(x, t) (3.1)

∂tu(x, t) = ∂xu(x, t)+
∫ x

0
q(x,y)v(y, t)dy (3.2)

∂xv(0, t) = u(0, t) (3.3)

v(1, t) = 0 (3.4)

u(1, t) =U(t) — control (3.5)

The controlled PDE is the transport system u, which convects leftward. The outflow of the

transport system drives an unstable (for λ > 0) reaction-diffusion system as a boundary source.

The function q(x,y) represents the coupling kernel, and is assumed to be sufficiently smooth. A

schematic representation can be found in Fig. 3.1.

In general, (3.1) can be taken to be any unstable parabolic PDE of the form:

∂tv(x, t) = ε∂
2
xv(x, t)+σ(x)∂xv(x, t)+λ(x)v(x, t)

+g(x)v(1, t)+
∫ 1

x
f (x,y)v(y, t)dy (3.6)

The extension to (3.6) is straightforward, and uses theory developed in [35],[30].

3.3 Control design

A target system is chosen as

∂tη(x, t) = ε∂
2
xη(x, t)− cη(x, t) (3.7)
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Figure 3.1: A schematic view of the plant.

∂tω(x, t) = ∂xω(x, t) (3.8)

∂xη(0, t) = ω(0, t) (3.9)

η(1, t) = 0 (3.10)

ω(1, t) = 0 (3.11)

where c > 0. Corresponding backstepping transformations for u↔ ω and v↔ η are formulated

as:

η(x, t) = v(x, t)−
∫ 1

x
p(x,y)v(y, t)dy (3.12)

ω(x, t) = u(x, t)−
∫ x

0
k(x,y)u(y, t)dy

−
∫ 1

0
l(x,y)v(y, t)dy (3.13)

A special note should be made about transformation (8.41). (8.41) is a Volterra type transforma-

tion. The terms involving u(x, t) and w(x, t) involve only a Volterra integral, while the Fredholm

integral in v(x, t) is seen as an “affine” relationship. The only condition we require for invertibility

then is the existence of kernels p,k, l of sufficient regularity. This inverse transformation is critical

for the proof of stability.
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Theorem 3. Consider the plant model (3.1)-(3.5) with the controller

U(t) =
∫ 1

0
k(1,y)u(y, t)dy+

∫ 1

0
l(1,y)v(y, t)dy (3.14)

k : [0,1]× [0,x]→ R and l : [0,1]× [0,1]→ R are the solutions of the following coupled

hyperbolic-parabolic PDE system:

∂xk(x,y) =−∂yk(x,y) (3.15)

k(x,0) = ε∂yl(x,0) (3.16)

∂xl(x,y) = ε∂
2
y l(x,y)+λl(x,y)−F [k](x,y) (3.17)

∂yl(x,0) = 0 (3.18)

l(x,1) = 0 (3.19)

l(0,y) = p(0,y) (3.20)

where the operator F is a piecewise defined as

F [k](x,y) =





q(x,y)− ∫ x
y k(x,z)q(z,y)dz y≤ x

0 otherwise
(3.21)

and p : [0,1]× [x,1]→ R is the solution of the Goursat-type problem

∂
2
x p(x,y)−∂

2
y p(x,y) =

λ+ c
ε

p(x,y) (3.22)

p(x,1) = 0 (3.23)

p(x,x) =
λ+ c

2ε
(x−1) (3.24)

Assume arbitrary initial conditions (u(x,0),v(x,0)) compatible with the boundary conditions
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(3.3), (3.4). Then the closed-loop system is exponentially stable in the L2×H1 sense.

We will prove Theorem 3 in several parts.

3.3.1 Stability analysis for target system

It is relatively easy to see intuitively that the target system (3.7)-(3.11) is exponentially

stable — a finite-time stable system ω cascades into the exponentially stable reaction-diffusion

equation η (for c > 0). The primary difficulty here is in necessitating a higher-order norm in

ω—we can only establish stability in the L2×H1 norm.

We first transform the target system into an intermediate form using the following trans-

formation:

ζ(x, t) = η(x, t)− (x−1)ω(0, t) (3.25)

By introducing this transformation, we can derive an equivalent target system in (z,ω).

∂tζ(x, t) = ε∂
2
xζ(x, t)− cζ(x, t)

+(x−1)(cω(0, t)−∂tω(0, t)) (3.26)

∂tω(x, t) = ∂xω(x, t) (3.27)

∂xζ(0, t) = 0 (3.28)

ζ(1, t) = 0 (3.29)

ω(1, t) = 0 (3.30)

Lemma 4. Consider the transformed target system (3.26)-(3.30) with arbitrary intial conditions

(ζ(x,0),ω(x,0)). Then the equilibrium (ζ,ω) = 0 is exponentially stable in the L2×H1 sense.
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Proof. By choosing a Lyapunov function W (t) as

W (t) =
1
2

∫ 1

0
ζ(x, t)2dx+

c
2

∫ 1

0
eax

ω(x, t)2dx

+
δ

2

∫ 1

0
ebx

ωx(x, t)2dx (3.31)

for a,b,δ > 0 we can prove exponential stability of the transformed target system.

Differentiating (3.31) in time and integrating by parts, we can arrive at

Ẇ (t) =−ε ||ζx||2L2− c ||ζ||2L2

+
∫ 1

0
ζ(x, t)(x−1)(cω(0, t)−∂xω(0, t))dx

− c
2

ω(0, t)2− ac
2

∫ 1

0
eax

ω(x, t)2dx− δ

2
∂xω(0, t)2

− δb
2

∫ 1

0
ebx

∂xω(x, t)2dx (3.32)

Applying the Wirtinger inequality [21],

Ẇ (t) =−
(

ε
π2

4
− c
)
||ζ||2L2

+
∫ 1

0
ζ(x, t)(x−1)(cω(0, t)−∂xω(0, t))dx

− c
2

ω(0, t)2− ac
2

∫ 1

0
eax

ω(x, t)2dx− δ

2
∂xω(0, t)2

− δb
2

∫ 1

0
ebx

ωx(x, t)2dx (3.33)

Then applying Young’s inequality [30] twice, we can arrive at the following expression:

Ẇ (t)≤−
(

επ2

4
− 1

2γ

)
||ζ||2L2− 5c

12
ω(0, t)2

−
(

δ

2
− γ

2

)
∂xω(0, t)2− ac

2

∫ 1

0
eax

ω(x, t)2dx
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− δb
2

∫ 1

0
ebx

∂xω(x, t)2dx (3.34)

where γ > 0 is a constant to be chosen, arising from one application of Young’s inequality. We

can note that by selecting γ > 2/(επ2) and choosing δ≥ γ, we can derive a bound that will allow

us to prove exponential stability. By doing so, we can further bound Ẇ (t) by

Ẇ (t)≤−min
{

επ2

2
− 1

γ
,a,b

}
W (t) (3.35)

From the comparison principle, we can conclude

W (t)≤ eC(t−t0)W (t0) (3.36)

where C :=
{

επ2

2 − 1
γ
,a,b

}
. Thus, we can conclude exponential stability in the L2×H1 norm.

Lemma 5. Consider a Lyapunov function V (t) for the system (η,ω), defined by

V (t) =
1
2

∫ 1

0
η(x, t)2dx+

1
2

∫ 1

0
∂xω(x, t)2dx (3.37)

Then there exist constants C1,C2 > 0 such that

C1V (t)≤W (t)≤C2V (t) (3.38)

Proof. The lemma follows from expansion and direct application of Cauchy and Agmon inequal-

ities.

Lemma 6. Consider the target system (3.7)-(3.11) with arbitrary initial conditions

(η(x,0),ω(x,0)), subject to compatibility conditions. Then the equlibrium (η,ω) is exponentially

stable in the L2×H1 sense.
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Proof. From Lemma 4, we have the exponential stability bound

W (t)≤ eC(t−t0)W (t0) (3.39)

By employing Lemma 5 twice, we can transform the bound to be in terms of V (t), and therefore

conclude exponential stability in L2×H1.

V (t)≤ C2

C1
eC(t−t0)V (t0) (3.40)

This concludes the proof.

3.3.2 Backstepping transformation and gain kernel derivations

Differentiating (3.12) in time once and integrating by parts admits

∂tη(x, t) = ε∂
2
xv(x, t)+λv(x, t)− εp(x,1)∂xv(1, t)

+ εp(x,y)∂xv(x, t)+ ε∂y p(x,1)v(1, t)

− ε∂y p(x,y)v(x, t)−
∫ 1

x
ε∂

2
y p(x,y)v(y, t)dy

−
∫ 1

x
λp(x,y)v(y, t)dy (3.41)

Differentiating (3.12) twice in time gives

∂
2
xη(x, t) = ∂

2
xv(x, t)+

d
dx

[p(x,x)]v(x, t)+ p(x,x)∂xv(x, t)

+∂x p(x,x)v(x, t)−
∫ 1

x
∂

2
x p(x,y)v(y, t)dy (3.42)

From enforcing (3.7) with the relevant boundary conditions, we can derive conditions that

comprise the PDE given by (3.22)-(3.24). From [30], we know an explicit form of p can be found
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as

p(x,y) =−(λ+ c)(1− y)
I1(z)

z
(3.43)

z =
√

(λ+ c)((1− x)2− (1− y2)) (3.44)

where I1 denotes a modified Bessel function of the first kind.

Utilizing a similar approach as above, we differentiate (8.41) once in time and integrate

by parts to find

∂tω(x, t) = ∂xu(x, t)+
∫ x

0
q(x,y)v(y, t)− k(x,x)u(x, t)

+ k(x,0)u(0, t)+
∫ x

0
∂yk(x,y)u(y, t)dy

−
∫ x

0
k(x,y)

∫ y

0
q(y,z)v(z, t)dzdy

− εl(x,1)∂xv(1, t)+ εl(x,0)∂xv(0, t)

+ ε∂yl(x,1)v(1, t)− ε∂yl(x,0)v(0, t)

−
∫ 1

0
ε∂

2
y l(x,y)v(y, t)dy−

∫ 1

0
λl(x,y)v(y, t)dy (3.45)

Differentiating (8.41) once in space admits

ωx(x, t) = ux(x, t)+ k(x,x)u(x, t)

−
∫ x

0
∂xk(x,y)u(y, t)dy−

∫ 1

0
∂xl(x,y)v(y, t)dy (3.46)

Enforcing (3.8) with the relevant boundary conditions will allow us to derive the conditions that

comprise the coupled hyperbolic-parabolic PDE system (3.15)-(3.20). This PDE in general will

not have an explicit solution, but under the assumption that it is well-posed (to be studied in

Section 3.4), numerical methods can yield a sufficiently accurate solution. It is also good to
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p(x,y)

l(x,y)

x

y

k(x,y)

l(x,0) → k(x,0) 

p(0,y) → l(0,y) 

Figure 3.2: Domains and coupling structure of p(x,y) (red), l(x,y) (blue), and k(x,y) (green)

note that we merely require existence of a solution and not necessarily uniqueness — as long

as the solution fulfills the conditions prescribed, then the target system and original system are

equivalent.

With this, we are now equipped to prove Theorem 3.

Proof of Theorem 3. First, we assume that the initial conditions of the target system 3.7-3.11

meet the proper compatibility conditions.
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Consider the Lyapunov function

Ω(t) =
1
2

∫ 1

0
[u(x, t)2 +∂xu(x, t)2 + v(x, t)2]dx (3.47)

Using the inverse transformations (3.12) and (8.41) (which are guaranteed to exist given sufficient

regularity of the gain kernels), Young’s inequality, and boundedness of the inverse gain kernels

we can arrive at the relation

||(u,v)||2 ≤C3 ||(η,ω)||2 , C3 > 0 (3.48)

Similarly, by considering first the Lyapunov function V (t) defined in (3.37), and using the forward

transformations (3.12) and (8.41) with the boundedness of the gain kernels, we can derive

||(η,ω)||2 ≤C4 ||(u,v)||2 , C4 > 0 (3.49)

Then, from Lemma 6, there exists a,M1 > 0 such that

||(η,ω)|| ≤M1ea(t−t0) ||(η0,ω0)|| (3.50)

By applying (3.48), (3.49), we can finally conclude

||(u,v)|| ≤M2ea(t−t0) ||(u0,v0)|| (3.51)

for some M2 > 0, thus implying exponential stability in the original system.
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3.4 Existence of solutions k, l for the gain kernel PDE system

The first-order hyperbolic PDE for k ((3.15),(3.16)) can be explicitly solved as a function

of l as

k(x,y) = εl(x− y,0) (3.52)

Then, showing the existence of gain kernel l is sufficient to show that both k, l exist.

To show the existence of a weak solution, we must first investigate a priori estimates

(energy estimates). The interpretation of this a priori estimate is a bound on the solution purely

dependent on the nonhomogeneous forcing and initial condition. The result is stated in the

following lemma:

Lemma 7 (A priori estimates). For the system of gain kernel PDEs (3.15)-(3.21) and (3.52), one

can establish the following L2(0,1;H1) a priori estimate on l:

max
s∈[0,x]

||l||H1 + ||l||L2 (0,x;H1)≤ K(Q, ||p(0,y)||H1) (3.53)

where Q = ||q||L2(0,1;H2), and K : R+×R+→ R+.

Proof. To begin establishing the energy estimate, we first begin by multiplying (3.17) by l(x,y)

and integrating over y. Integrating by parts, and applying Young’s inequality several times admits

d
dx
||l||2L2 ≤

(
2λ+1− ε

2

)
||l||2L2 +Q2

+ εQ(||l||2L2 + max
s∈[0,x]

||l(s)||2H1) (3.54)

Next, we differentiate (3.17) once in y, multiply by ly(x,y), and integrate over y. Following a

similar procedure to before, we find

d
dx

∣∣∣∣∂yl
∣∣∣∣2

L2 ≤
(

2λ+1− ε

2

)∣∣∣∣∂yl
∣∣∣∣2

L2 +Q2
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+2εQ ||l||2H1

+ εQ(||l||2L2 + max
s∈[0,x]

||l(s)||2H1) (3.55)

Combining (3.54),(3.55), and rewriting everything in terms of the highest norms, we arrive at

d
dx
||l||2H1 ≤

(
2λ+1− ε

2
+4εQ

)
||l||2H1

+2εQ max
s∈[0,x]

||l(s)||2H1 +2Q2 (3.56)

To deal with this type of differential inequality, we consider two separate cases – the increasing

and decreasing cases (the constant case falls naturally between the two, and is actually trivial). It

is important to note that the choice of the case is purely dependent on the parameters λ,ε,q(x,y),

which has no effect on the condition of continuous dependence on initial data l(0,y). For the

increasing case, we can make note that maxs∈[0,x] ||l(s)||2H1 = ||l(x)||2H1 . Thus, (3.56) becomes

d
dx
||l||2H1 ≤

(
2λ+1− ε

2
+6εQ

)
||l||2H1

+2Q2 (3.57)

which allows us, by the comparison principle, to derive the following H1 spatial bound on l:

||l||2H1 ≤ exp
(
(2λ+1− ε

2
+6εQ)x

)
||l(0)||2H1

+
∫ x

0
exp
(
(2λ+1− ε

2
+6εQ)(x− z)

)
2Q2dz (3.58)

Noting that x ∈ [0,1], and l(0,y) = p(0,y) one can certainly find the existence of a function K

such that (3.53) is fulfilled for all x. We turn our attention to the opposite case – the decreasing
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case. Note that maxs∈[0,x] ||l(s)||2H1 = ||l(0)||2H1 . Then (3.56) becomes

d
dx
||l||2H1 ≤

(
2λ+1− ε

2
+4εQ

)
||l||2H1

+2εQ ||l(0)||2H1 +2Q2 (3.59)

In a manner similar to the increasing case, we can find the following H1 spatial bound on l:

||l||2H1 ≤ exp
(
(2λ+1− ε

2
+4εQ)x

)
||l(0)||2H1

+
∫ x

0
exp
(
(2λ+1− ε

2
+6εQ)(x− z)

)

× (2Q2 +2εQ ||l(0)||2H1)dz (3.60)

Again, noting that x ∈ [0,1] and l(0,y) = p(0,y), one can find a different K such that (3.53) is

fulfilled for all x.

Theorem 8. The kernel PDE defined by (3.17)-(3.20) with the operator F defined piecewise as

F [l](x,y) =





q(x,y)− ∫ x
y εl(x− z,0)q(z,y)dz y≤ x

0 otherwise
(3.61)

has a weak solution l ∈ L2[0,1]×H1[0,1].

Proof. We apply a Galerkin-type argument to prove the existence of weak solutions. Note that

most of the proof of well-posedness follows directly from [19], so we merely sketch the proof.

The central idea behind the Galerkin method is to approximate solutions to the PDEs

using a truncated sum of weighted orthogonal basis functions. Suppose φn form an orthogonal

basis of n functions for the projected n-th dimensional space. Then, consider the definiton of an

“approximate” solution l̂m as

l̂m(x) :=
m

∑
k=1

ak(x)φk (3.62)
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Our goal is to choose the coefficients ak(x) such that ak(0) = 〈l(0),φk〉, and such that l̂m(x)

satisfies the projection of (3.17)-(3.19) onto the orthonormal basis φk.

The PDE “projected” into an m-dimensional subspace give arise to m ordinary differential

equations, which by standard differential equation theory, exist and are unique.

We build a sequence {l̂m}∞
m=1 (i.e. the sum (3.62) is then taken to infinity). This sequence

converges in the weak sense, due to the uniform energy estimates derived in Lemma (7). It is not

difficult to see that the uniform bound (7) gives arise to a bound
∣∣∣∣l̂m(x)

∣∣∣∣
L2 ≤ ||l(x)||L2 ,∀m ∈ N,

where we have exploited the property of orthonormality. This limit generates a weak solution.

3.5 Numerical study

Table 3.1: Simulation parameters

Parameter Value
ε 0.5
λ 2
c 1

q(x,y) 10(ey−1)

Simulations were executed for a choice of ε = 1.5,λ = 2,c = 1 with q(x,y) = q(y) =

3exp(1− y). The gain kernel l(x,y) was numerically solved using a central finite difference

scheme, which leads to the control gains k(1,y) and l(1,y).

It is evident that unstable behavior exists for the choice of parameters in the open-loop

simulations shown in Figure 3.6. With the application of feedback control, however, the system

exhibits exponentially stable behavior. After some initial transient (due to the initial conditions of

the first-order hyperbolic system), the system quickly converges to the zero equililbrium, as seen

in Figure 3.7. It should be noted that while purely first-order hyperbolic systems can be stabilized

in finite-time, the system of mixed hyperbolic and parabolic equations can only be stabilized
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Figure 3.3: The gain kernel l(x,y), with ffect of triangular forcing function f (x,y) observed.

exponentially at best.

The construction of the simulation is also non-trivial. The study of methods to numerically

solve coupled hyperbolic-parabolic mixed class systems is still a somewhat active field, due to

the different behaviors explored necessitating different requirements in discretization. For this

problem, however, the finite-element methods suffice, albeit with some condition.

3.6 Conclusion

A control algorithm for exponentionally stabilizing a unidirectionally coupled mixed-type

hyperbolic-parabolic PDE system in the L2×H1 sense is presented. The gain kernel PDE, also

consisting of a hyperbolic-parabolic coupled system, is required to be solved, which raises the

question of existence of solutions. The existence of solutions is shown, and the gain kernel

PDE numerically solved. The overall system is simulated with the control law to illustrate the

effectiveness of the control algorithm.

The results in this chapter raise an interesting question for backstepping as a tool in PDE
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Figure 3.4: k(1,y) gain kernel

control. It is widely known that many tools in PDEs are constrained to within a certain class

(examples include method of characteristics for hyperbolic PDEs, and maximum principles for

parabolic PDEs). However, backstepping has been successfully applied across various different

classes of systems, albeit with minor modifications. This result, in particular, brings an interesting

new perspective. Prior to this, few results existed for mixed-type coupled PDEs — largely in

[28], which inspected a cascade structure. Now, interior coupling is beginning to be explored for

various types of coupling structures. Future work will explore to what extent backstepping can be

applied across mixed-type coupled PDE systems.

The coupling structure of the system explored in this paper is more restrictive than what

the authors would prefer. However, depending on how the control signal enters the system

and how the system is coupled in the interior, the problem ranges from tractable (this paper) to

potentially impossible. Current ongoing work is exploring the extent of which coupling topologies

in hyperbolic-parabolic mixed class PDEs can be stabilized using backstepping.
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Chapter 4

Delay-compensated control for coupled

parabolic systems with distinct input

delays

4.1 Introduction

Control of input delay systems has been a primary focus of much work in backstepping-

based boundary control of infinite-dimensional systems. Very often, the input delay is converted

to a first-order hyperbolic equation [29]. Recognizing this equivalence relation between first-order

hyperbolic PDEs and delays, many tools in boundary control of PDEs can be then be utilized

[35],[30].

Intimately related to controlling PDEs with input delay is the control of coupled PDE

systems. In the recent years, there has been a wide swath of literature with this theme, and

hyperbolic PDE in particular. One of the most central (and major) results in controlling n+1

first-order hyperbolic equations with a single controller is found in [32]. This result was later

extended in [25], which generalized the problem to n+m (with m ≤ n) first-order hyperbolic
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equations with m controllers. Other results in the control of hyperbolic systems include [13],

which considers the case of 1+ 2 first-order hyperbolic systems with a single controller (an

underactuated case), and minimum-time control of n+m systems [3].

Results for parabolic PDE have also been generated in parallel. In particular, Vazquez

in [45] recognized the similarity between gain kernel PDEs in both parabolic and hyperbolic

backstepping control designs to great effectiveness. A more general result was generated via a

different solution methodology in [18], expanding to a wider class of boundary conditions as well

as including non-local interior coupling. In another direction, [33] considered output feedback

control, but with constant coefficients.

The control of mixed-type (consisting of combinations of hyperbolic and parabolic) PDE

is significantly more complicated than homogenous systems of PDE, but recently has been studied.

A first result cast as the control of a parabolic (scalar) PDE with input delay was generated in [29],

in which the system was transformed into the cascade of a first-order hyperbolic PDE (modeling

the delay) with an unstable diffusion-reaction system (parabolic). An extension to this problem

was considered in [12], which introduced additional in-domain coupling of strict-feedback type

between the two PDE classes.

This paper acts as a matrix extension to [29], or alternatively interpreted, an extension to

[45] with input delay characterstics.

4.2 Model

We will utilize the L2([0,1]) and H1([0,1]) function spaces over x, and the L2([0,∞], ·)

over t (respective to a function space in x). L2([0,1]) represents the space of square-integrable

functions and is written L2 shorthand. L2 has the norm

|| f ||L2 :=

√∫ 1

0
| f (x)|2dx.
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Similarly, the H1([0,1]) is written to be H1 in short and has the norm:

|| f ||H1 := || f ||L2 + ||∂x f ||L2 .

We consider a 2×2 parabolic system

∂tU(x, t) = Γ∂
2
xU(x, t)+Λ(x)U(x, t) (4.1)

U(0, t) = 0 (4.2)

U(1, t) = DD1,D2U(t) (4.3)

with U ∈ (L2([0,∞),H1(0,1)))2, consisting of two scalar elements ui(x, t), i ∈ {1,2}. Γ =

diag(ε1,ε2),εi > 0 is taken to be a constant diagonal matrix. Λ(x) is a matrix of functions

λi j(x). In general, Λ � 0 causes instability in the system. The input U =

(
U1 U2

)T

is

operated on by the componentwise delay operator D , which is defined as

DD1,D2U(t) =




U1(t−D1)

U2(t−D2)


 (4.4)

It is well known that delays can be represented with first-order hyperbolic PDEs. We

rewrite the delays found in (4.3) with a first-order hyperbolic matrix PDE:

∂tU(x, t) = Γ∂
2
xU(x, t)+Λ(x)U(x, t) (4.5)

∂tV (x, t) = Σ∂xV (x, t) (4.6)

U(0, t) = 0 (4.7)

U(1, t) =V (1, t) (4.8)

V (2, t) = U(t) (4.9)
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where V ∈ (L2([0,∞),H1(1,2)))2 consisting of two scalar elements vi(x, t), i ∈ {1,2}. The

component delay lengths D1,D2 > 0 are encoded in the diagonal matrix Σ = diag(σ1,σ2), with

the definition σi := D−1
i > 0.

We make several assumptions on the parameter ordering:

Assumption. Assume ε1 > ε2 and σ1 > σ2.

Remark. The assumption on the ordering of σi be relaxed by the following method. If σ2 > σ1,

we define

P =




0 1

1 0




and let V̄ = PV . This permutation matrix will order the σi according to our assumption. This

will change (4.8) into

U(1, t) = PV̄ (1, t)

and the corresponding boundary condition in the target system (4.15). This change in boundary

condition has no bearing on the stability.

4.3 Backstepping control design

We use two backstepping transformations. The first shifts the instability of U(x, t) to the

x = 1 boundary. The second will shift the instabilitly from the x = 1 to the x = 2 boundary, where

it can be neutralized by the controller U.

The first transformation is

W (x, t) =U(x, t)−
∫ x

0
K(x,y)U(y, t)dy (4.10)
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where K(x,y) : TK → R2×2 consists of the continuous gain kernels of the transformation. The

domain of K, TK := {(x,y) ∈ R2|0≤ y≤ x≤ 1}, is a triangular domain. This transformation for

coupled parabolic systems is relatively well studied, with results found in [45],[18],[33], amongst

others. In this paper, we will not concentrate our efforts on the kernel K, and instead refer the

reader to the aforementioned papers. The well-posedness of K is henceforth assumed.

The second transformation is

Z(x, t) =V (x, t)−
∫ x

1
L(x,y)V (y, t)dy

−
∫ 1

0
M(x,y)U(y, t)dy (4.11)

where L(x,y) : TL→ R2×2 and M(x,y)L(x,y) : TM→ R2×2, where the domains are respectively

defined TL := {(x,y) ∈ R2|1 ≤ y ≤ x ≤ 2} and TM := {(x,y) ∈ R2|1 ≤ x ≤ 2,0 ≤ y ≤ 1} Note

that TL is a triangular domain, much like TK ; however, TM is on a square domain. We must study

the existence of these gain kernels, which is a novel contribution.

These transformations will admit the following target system:

∂tW (x, t) = Γ∂
2
xW (x, t)−CW (x, t)

−G1(x)∂xW (0, t) (4.12)
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∂tZ(x, t) = Σ∂xZ(x, t)+G2(x)Z(x, t) (4.13)

W (0, t) = 0 (4.14)

W (1, t) = Z(1, t) (4.15)

Z(2, t) = 0 (4.16)

where C = diag(c1,c2) is a design parameter affecting the convergence rate of the state W . The

ci must be chosen such that min{ci} ≥ max{1,ε2/2}+ δ, with an arbitrary δ > 0. This is a

condition arising in [45] as well, which in a sense represents the necessity of selecting a C to

dominate the effect of the trace term G1. The matrices Gi(x) have specific structures

Gi =




0 0

gi(x) 0


 (4.17)

where gi are predetermined, and not designed. They are in fact related to the gain kernels, and will

be studied later. The structure of G1 and the regularity of the nonzero element g1 will guarantee

the exponential stability of the system. G1 in particular arises from the kernel K. In [45], the

nonzero element is explicitly defined g1 :=−ε1k21(x,0).

Theorem 9. Consider the system given by (4.5)-(4.9). With the application of the feedback

controller

U(t) =
∫ 1

0
M(2,y)U(y, t)dy+

∫ 2

1
L(2,y)V (y, t)dy (4.18)

where M satisfies the parabolic system of PDEs given by

Σ∂xM(x,y)−∂
2
yM(x,y)Γ = M(x,y)Λ(y)

+G2(x)M(x,y) (4.19)
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M(x,1) = 0 (4.20)

M(x,0) = 0 (4.21)

M(1,y) = K(1,y) (4.22)

and L satisfies the hyperbolic system of PDEs given by

Σ∂xL(x,y)+∂yL(x,y)Σ = G2(x)L(x,y) (4.23)

L(x,1)Σ = ∂yM(x,1)Γ (4.24)

where G2 is defined by

G2(x) = L(x,x)Σ−ΣL(x,x) (4.25)

and where K arises from the gain kernel equations found in [45], the trivial solution (U,V ) = 0 to

system (4.5)-(4.9) will be exponentially stabilized in the H1×H1 sense, i.e. there exist Ξ,Ω > 0

such that

||(U,V )||H1×H1 (t)≤ Ξe−Ωt ||(U,V )||H1×H1 (0) (4.26)

4.3.1 Lyapunov stability

To study the stability of the target system (4.12)-(4.16), we first employ a transformation

in the state to make analysis simpler. First, we define the following affine transformation from W

to Θ:

Θ(x, t) =W (x, t)− xZ(1, t) (4.27)
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It is quite obvious that (4.27) is trivially invertible. The invertibility is a necessary condition for

establishing an equivalence relation between the transformed target system and the original plant

(with feedback control applied). (4.27) will admit the following coupled system:

∂tΘ(x, t) = Γ∂
2
xΘ(x, t)−CΘ(x, t)

−G1(x)∂xΘ(0, t))− xΣ∂xZ(1, t)

− (xC+G1(x)+ xG2(1))Z(1, t) (4.28)

∂tZ(x, t) = Σ∂xZ(x, t)+G2(x)Z(x, t) (4.29)

Θ(0, t) = 0 (4.30)

Θ(1, t) = 0 (4.31)

Z(2, t) = 0 (4.32)

Exponential stability of (Θ,Z) = 0 can be concluded using the following Lyapunov

function:

V (t) = VΘ(t)+bVZ(t) (4.33)

VΘ is defined as

VΘ =
∫ 1

0
Θ

T QΘ+(∂xΘ)T Q(∂xΘ)dx (4.34)

where the matrix Q = diag(q1,q2) contains design parameters q1,q2 > 0. VZ(t) is defined

VZ(t) =
∫ 2

1
exp(κ1(x−1))ZT Z

+ exp(κ2(x−1))(∂xZ)T (∂xZ)dx (4.35)
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where the design parameters κ1,κ2 must be chosen according to the following constraints:

κ1 >
2

σ2
||g2||L∞

(4.36)

κ2 >
4 ||g′2(x)||L∞

σ2
+

2
σ2
||g2||L∞

(4.37)

Finally, the coefficient b must be chosen according to the following rule:

b >
4

σ2δ
max

{
2(σ1 max{qi})2,

max{qi}2 ((max{ci}+ ||g1||L∞
+ ||g2||L∞

)2

+(max{ci}+
∣∣∣∣g′1
∣∣∣∣

L∞
+ ||g2||L∞

)2
)}

(4.38)

This will allow us to find the following bound on the H1×H1 norm of (Θ,Z):

||(Θ,Z)||H1×H1 (t)≤ Ξ̄exp(−Ωt) ||(Θ,Z)||H1×H1 (0) (4.39)

where

Ξ̄ =

√
max{bexp(κ1),bexp(κ2),q1,q2}

min{1,q1,q2}
(4.40)

Ω = min
{

δ,
b
2

σ2κ1− exp(κ1) ||g2|| ,

b
2

σ2κ2−2exp(κ2)
∣∣∣∣g′2
∣∣∣∣−||g2||

}
(4.41)

We will omit the derivation of the bound for the sake of space. An interesting observation one

may make from (4.41) is that the analysis parameter b can be made sufficiently high, to which the

rate of convergence of the target system is purely defiend by δ, the design parameter associated

with choosing C.
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The stability bound on (Θ,Z) can be transformed into a stability bound for (W,Z) using

the invertible transformation (4.27). Then, the stability of (W,Z) can generate a stability bound

for the original system (U,V ) through the use of (4.10),(4.11), and their inverses (which are

guaranteed to exist as long as the kernels K,L,M exist and are bounded).

4.3.2 Kernel derivations

Differentiating (4.11) once in time and twice in space, then imposing (4.5)-(4.9) and

(4.12)-(4.16), the set of PDEs (4.19)-(4.24) that comprise the gain kernel equations can be

recovered.

The condition (4.22) is derived from (4.10),(4.11), and (4.15). The matrix condition

(4.25) actually consists of three boundary conditions and the definition for g2(x), which arises due

to the assumption σ1 > σ2. Noting (4.17) and (4.25), we can find the definition for the nonzero

element of G2(x) to be

g2(x) := (σ1−σ2)l21(x,x) (4.42)

In the following section, we will drop the (x,y) arguments on ki j, li j unless otherwise specified

for compact notation (i.e., if the arguments are not included, then they are assumed to be (x,y)).

If one writes out the component equations for L, one finds

σ1∂xl11 +σ1∂yl11 = 0 (4.43)

σ1∂xl12 +σ2∂yl12 = 0 (4.44)

σ2∂xl21 +σ1∂yl21 = g2(x)l11 (4.45)

σ2∂xl22 +σ2∂yl22 = g2(x)l12 (4.46)
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If one writes out the component equations for M, one finds

∂xm11 =
ε1

σ1
∂

2
ym11 +

λ11(y)
σ1

m11 +
λ21(y)

σ1
m12 (4.47)

∂xm12 =
ε2

σ1
∂

2
ym12 +

λ12(y)
σ1

m11 +
λ22(y)

σ1
m12 (4.48)

∂xm21 =
ε1

σ2
∂

2
ym21 +

λ11(y)
σ2

m21 +
λ21(y)

σ2
m22

+
g2(x)

σ2
m11 (4.49)

∂xm22 =
ε2

σ2
∂

2
ym22 +

λ12(y)
σ2

m21 +
λ22(y)

σ2
m22

+
g2(x)

σ2
m12 (4.50)

Immediately apparent in (4.43)-(4.46) is a cascading problem arising from the structure of G2.

(4.43),(4.44) are readily solvable, which then proceed to act as source functions in (4.45),(4.46).

Likewise, (4.47)-(4.50) exhibits the same cascading nature. One must first solve (4.47),

(4.48) simultaneously (a vector diffusion-reaction equation). Then, the solutions m11,m12 are

then utilized to solve (4.49),(4.50).

One additional difficulty that the reader may have noticed is the presence of g2(x) in

(4.45). g2 is an evaluation of l21 at y = x, as according to (4.42). This term affects the evolution

of l21. Thus, we must take care in solving (4.45). However, with this solution in hand, (4.46)

becomes very straightforward. (4.49)-(4.50) also depend on g2, which will further complexify the

solution, as the initial data of (4.45) depends boundary data of m21. This cascading of problem

data is depicted in the block diagram Figure 4.2, with each subsystem arranged by color. The

following procedure is followed to fully solve the gain kernel equations:

1. Solve (4.47),(4.48),(4.43),(4.44).

2. Solve (4.45), expressing the solution as an operator of (m21,m22).

3. Solve (4.49),(4.50) with the operator expression for l21.
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Figure 4.2: The gain kernels propagate data via in-domain and boundary coupling. There is
some cascading structure (marked with color) that makes solving the system more tractable.

4. Solve (4.46).

To show existence of (weak) solutions to this system of coupled gain kernel PDEs, we

reduce the work to finding existence of solutions to the subsystem (l21,m21,m22), while the rest

follow from classical results and application of method of characteristics.

σ2∂xl21 =−σ1∂yl21 +(σ1−σ2)l21(x,x)l11 (4.51)

∂xm21 =
ε1

σ2
∂

2
ym21 +

λ11(y)
σ2

m21 +
λ21(y)

σ2
m22

+
(σ1−σ2)

σ2
l21(x,x)m11 (4.52)

∂xm22 =
ε2

σ2
∂

2
ym22 +

λ12(y)
σ2

m21 +
λ22(y)

σ2
m22

+
(σ1−σ2)

σ2
l21(x,x)m12 (4.53)

with the boundary conditions

l21(x,1) =
ε1

σ1
∂ym21(x,1) (4.54)

m21(x,0) = m21(x,1) = 0 (4.55)
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m22(x,0) = m22(x,1) = 0 (4.56)

m21(1,y) = k21(1,y) (4.57)

m22(1,y) = k22(1,y) (4.58)

4.4 Well-posedness of gain kernel equations for l21,m21,m22

We will first begin with (4.51), and attempt to express the value of the solution at y = x as

an integral equation.

A direct application of method of characteristics to the expression (4.51) can be integrated

to find a representation for l21(x,y), which is then evaluated at y = x. A change of integration

variables leads to:

l21(x,x) =
ε1

σ1
∂ym21 (a(x),1)

−
∫ x

a(x)

σ1−σ2

σ2
l21 (ζ,ζ)

× l11

(
ζ,a(x)+

σ2
1−σ2

2
σ1σ2

ζ

)
dζ (4.59)

where for ease of reading we have defined

a(x) :=
(

1− σ2

σ1

)
x+

σ2

σ1
. (4.60)

We now define the following iteration for l21 in the spirit of successive approximations:

l̂n+1(x) =
ε1

σ1
∂ym21 (a(x),1)

−
∫ x

a(x)

σ1−σ2

σ2

× l11

(
ζ,a(x)+

σ2
1−σ2

2
σ1σ2

ζ

)
l̂n (ζ)dζ (4.61)
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where if the above integral equation is a contraction, the limit of the iterations will approach the

solution, i.e.

lim
n→∞

l̂n(x) = l21(x,x) (4.62)

By defining ∆l̂n := l̂n+1− l̂n, we find the following relation:

∆l̂n+1(x) =
∫ x

a(x)

σ1−σ2

σ2

× l11

(
ζ,a(x)+

σ2
1−σ2

2
σ1σ2

ζ

)
∆l̂n (ζ)dζ (4.63)

Where now (4.62) can be rewritten as an infinite sum:

l21(x,x) = l̂0(x)+
∞

∑
n=0

∆l̂n(x) (4.64)

Choosing l̂0(x) = 0, one can find a representation of the solution l21(x,x) to be

l21(x,x) =
ε1

σ1
∂ym21 (a(x),1)

+
∞

∑
n=1

∫ x

a(x)

∫
ζn−1

a(ζn−1)
. . .

∫
ζ2

a(ζ2)(
σ1−σ2

σ2

)n

Pn(x,ζ1,ζ2, . . . ,ζn)

× ε1

σ1
∂ym21 (a(ζ1),1)dζ1 . . .dζn (4.65)

where we have defined Pn(x,ζ1,ζ2, . . . ,ζn) as

Pn = l11

(
ζn,a(x)+

σ2
1−σ2

2
σ1σ2

ζn

)

×
n−1

∏
m=1

l11

(
ζm,a(ζm+1)+

σ2
1−σ2

2
σ1σ2

ζm

)
(4.66)
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Let l21(x,x) := Ψm21, where Ψ is an operator (for notational simplicity). We seek a bound on

Ψm21 from above, which will guarantee the existence of the solution.

|Ψm21| ≤
∣∣∣∣

ε1

σ1
∂ym21 (a(x),1)

∣∣∣∣

+
∞

∑
n=1

∫ x

a(x)

∫
ζn−1

a(ζn−1)
. . .

∫
ζ2

a(ζ2)∣∣∣∣
ε1

σ1

∣∣∣∣
∣∣∣∣
σ1−σ2

σ2

∣∣∣∣
n

|Pn|

× |∂ym21 (a(ζ1),1) |dζ1 . . .dζn (4.67)

Note that since a(x)≤ x,∀x

∣∣∂ym21 (a(ζ1),1)
∣∣≤ sup

1≤z≤x
C ||m21 (z, ·)||H2 (4.68)

where C is a scaling constant as a result of H1 being continuously embedded in L∞ [19]. Next,

we can majorize l11(x,y) by its pointwise sup-norm:

l11(x,y)≤ sup
(x,y)
|l11(x,y)|=: ||l11||L∞

(4.69)

which will allow us to bound Pn in the following way:

|Pn(x,ζ1, . . . ,ζn)| ≤ ||l11||nL∞
(4.70)

This will ultimately allow us to establish the bound (7.117) as

|Ψm21| ≤
∣∣∣∣

ε1

σ1

∣∣∣∣exp
((

σ1−σ2

σ2
||l11||L∞

)
(x−1)

)
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× sup
1≤z≤x

C ||m21 (z)||H2 (4.71)

Thus, if we find existence of H2 solutions for m21, then l21 exists. Nevertheless, we have an

expression for l21 as an operator of m21. This allows us to express g2 as an operator on m21, and

finally, study the existence of solutions for m21 and m22.

We let m1 =

(
m11 m12

)T

and m2 =

(
m21 m22

)T

for compact notation, and define

parameter matrices accordingly.

∂xm2(x,y) = Γm∂
2
ym2(x,y)+Λm(y)m2(x,y)

+Gm[m2](x)m1(x,y) (4.72)

m2(x,0) = m2(x,1) = 0 (4.73)

m2(1,y) =
(

k21(1,y) k22(1,y)

)T

(4.74)

where m1 is known from the bounded solution of (4.47),(4.48). The entries in Γm,Λm,Gm[m2]

naturally follow from (4.49)-(4.50). (7.112) is a vector parabolic PDE, where x acts as a “time”

like variable on the finite domain [1,2]. A very similar parabolic PDE consisting of diffusion and

reaction terms with one additional boundary term entering the evolution was studied in [12],

Lemma 10 (A priori H2 energy estimates for m2). We can find the following energy estimate

bound on m2:

||m2(x)||H2 ≤ eα(x) ||m2(1)||H2 (4.75)

The proof nicely follows due to linearity allowing us to employ coercivity estimates for

the “nice” diffusion and reaction terms, and the only challenge thus comes from the

Gm[m2](x)m1(x,y) trace term in (7.112). We will merely sketch the novel part of the proof, and

refer the reader to [19] for much of the details.
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Proof. Taking the inner product of m2 with (7.112),

∫ 1

0
m2(x,y)T

∂xm2(x,y)dy =∫ 1

0
m2(x,y)T [

Γm∂
2
ym2(x,y)+Λm(y)m2(x,y)

+Gm[m2](x)m1(x,y)]dy (4.76)

⇒ 1
2

d
dx
||m2(x)||2L2

≤ ||Λ2||L∞
||m2(x)||2L2

+ |(σ1−σ2)| |Ψm21|

×
∫ 1

0
|m1(x)||m2(x)|dy (4.77)

By using the bound on Ψm21,

1
2

d
dx
||m2(x)||2L2

≤ ||Λm||L∞
||m2(x)||2L2 + |(σ1−σ2)|

∣∣∣∣
ε1

σ1

∣∣∣∣

× exp
((

σ1−σ2

σ2
||l11||L∞

)
(x−1)

)

× sup
1≤z≤x

C ||m2(z)||H2

×
∫ 1

0
|m1(x)||m2(x)|dy (4.78)

where we have additionally employed the fact that ||m21(x)||H2 ≤ ||m2(x)||H2 ,∀x. Next, we do

the same process, but differentiate (7.112) once in y, and take the inner product of ∂ym2. Much

of the work is similar, but most importantly, note that Gm[m2](x) is purely a function of x, and

therefore is unaffected by differentiation in y. That is, we will utilize the bound on Ψm21 (as

opposed to Ψ∂ym21), which will give H2 estimates. We will again do this once more for ∂2
ym2,

and similar results hold. Then the sum of the three bounds, ||m2||L2
,
∣∣∣∣∂ym2

∣∣∣∣
L2
,
∣∣∣∣∂2

ym2
∣∣∣∣

L2
will
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allow us to find a differential inequality on ||m2||H2 .

1
2

d
dx
||m2(x)||2H2

≤
(
||Λm||L∞

+2
∣∣∣∣Λ′m

∣∣∣∣
L∞

+
∣∣∣∣Λ′′m

∣∣∣∣
L∞

)
||m2(x)||2H2

+ |(σ1−σ2)|
∣∣∣∣

ε1

σ1

∣∣∣∣ sup
1≤z≤x

C ||m2 (z)||H2

× exp
((

σ1−σ2

σ2
||l11||L∞

)n

(x−1)
)

×||m1(x)||H2 ||m2(x)||H2 (4.79)

where we have applied Young’s inequality to the integral terms to arrive at a product of H2 norms.

Now let M(x) := ||m2(x)||2H2 and note that ∀x,M(x)≥ 0. Associate the following differ-

ential equation in M̄(x) to the differential inequality (7.132):

1
2

d
dx

M̄(x) = AM̄(x)

+B(x)

(
sup

1≤z≤x

√
M̄(z)

)√
M̄(x) (4.80)

where the parameters A,B(x) are defined by

A = ||Λm||L∞
+2
∣∣∣∣Λ′m

∣∣∣∣
L∞

+
∣∣∣∣Λ′′m

∣∣∣∣
L∞

(4.81)

B(x) = |(σ1−σ2)|
∣∣∣∣

ε1

σ1

∣∣∣∣ ||m1(x)||H2

× exp
((

σ1−σ2

σ2
||l11||L∞

)n

(x−1)
)

(4.82)

where the initial condition is taken to be M̄(1) = M(1) = ||m2(1, ·)||2H1 . Noting that the right

hand side of (7.135) is nonnegative, the supremum of M̄(z) in the interval [1,x] is clearly at z = x.
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Thus, the differential equation (7.135) becomes

1
2

d
dx

M̄(x) = (A+B(x))M̄(x) (4.83)

and one can easily see via the integrating factor method

M̄(x) = exp
(∫ x

1
2(A+B(z))dz

)
M̄(1) (4.84)

Thus, by the comparison principle,

||m2(x)||H2 ≤ exp
(∫ x

1
(A+B(z))dz

)
||m2(1)||H2 (4.85)

Letting α(x) =
∫ x

1 A+B(z)dz, we arrive at our resullt.

Theorem 11 (Existence of weak solutions m2). A weak solution in L2([1,2],H2((0,1)) to (7.112)

exists.

We will omit the proof and refer the reader to [19]. To give a sketch this approach, first,

Galerkin approximations are used to project m2 into a finite subspace spanned by a truncated set

of orthonormal basis functions φk for H2, i.e.

m2,k(x) =
k

∑
j=1
〈m2(x),φk〉 (4.86)

Then the projection of (7.112) into this finite subspace spanned by φk will admit a system of

k ordinary differential equations, and therefore, existence and uniqueness come as a result of

classical theory. Noting that
∣∣∣∣m2,k(x)

∣∣∣∣≤ ||m2(x)|| for all k, one can then use energy estimates

uniform in k to guarantee weak convergence of m2,k→ m2.

67



4.5 Conclusion

We have presented results in the control of coupled parabolic PDEs with distinct input

delays. The assumption on the ordering of the delays in the system was mostly used for simplicity,

and with the choice of a non-identity permuation matrix P, one can prove the same results. This

result sits naturally as a matrix extension to [29], as well as the input delay extension to [43].

The work in this paper extends the work in mixed-type coupled PDEs further, in which

coupled systems of more than 1 type per PDE are considered. The work also naturally leads to

more interesting problems, such as the generalization to n-th order coupled systems of mixed

type, which possibly could be interpreted as an analagous result to [25]. However, the primary

difficulty with mixed-type PDE, as usual, is two-fold – the choice of a stable target system is not

always very obvious, as well as the gain kernel PDEs often being difficult to show well-posedness.

Unlike systems of coupled PDE of the same class, which always give hyperbolic gain kernels,

mixed-type PDE will give mixed-type gain kernels, which must be solved using different methods.

The problem solved also leads naturally to future work in n×n systems, as well as an

interesting and newly considered problem of “folded” PDE. In particular, bilateral control (in

1-D) has recently been considered in parabolic and hyperbolic contexts [43]. Such systems can

be “folded,” and expressed as a system of coupled PDE along the “folding” points. This has huge

ramifications in the design of bilateral controllers, as it will put the system in the context of a

coupled PDE system, albeit with an exotic boundary condition that must be considered.
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Chapter 5

Bilateral Backstepping Boundary Control

for an Unstable Parabolic PDE with

Distinct Input Delays via Artifical Delay

5.1 Introduction

Bilateral backstepping control of a one dimensional parabolic partial differential equation

is a natural extension to the standard, unilateral backstepping control design. It may be more

natural to consider having control actuation on both boundaries in many applications.

In extreme ultraviolet light generation (EUV), liquid tin droplets are expelled by a droplet

generator, which then travel in a stream. They are then energized into tin plasma by a CO2 drive

laser, which generates a photon of the correct wavelength. However, this energized tin plasma

acts as a disturbance to the droplet stream, which may have plasma collision like effects. These

effects can be modeled by a parabolic partial differential equation. Thus, one can formulate the

control objective to stabilize this plasma effect through the two actuators available – the droplet

generator and the energizing CO2 laser.

69



Bilateral backstepping control is a relatively new concept, but one that is naturally

interpreted and has much relevance. Bilateral control for partial differential equations can

open the door to fault-tolerant designs (in the case one actuator fails). An additional benefit is that

the presence of a second actuator can lead to less control effort per actuator, and thus extending

the operating life cycle of the system significantly. Lastly, as one can intuit, the single acutator

case falls under the bilateral control case, and thus, one can see that bilateral control is the natural

extension to pre-existing backstepping boundary control. Previously, bilateral backstepping

control has been initially developed by [43] for both parabolic and second-order hyperbolic

equation cases. This work is extremely relevant, as this paper builds upon this result. Other

results in bilateral control have been explored in first-order hyperbolic system contexts ([5],[4]),

and most recently, in a parabolic context of trajectory tracking for a viscous Hamilton-Jacobi

equation [8].

Input delay is a more commonly studied field, as it has direct relevance to many control

problems (existing as actuator, communication, computational delays). There exists a wide swath

of literature exploring many different variations of delay problems casted as partial differential

equations, but few in input delay for parabolic equations. A large part of this is due to the

mixed-class nature of these problems, as they entail a coupled system of a delay (hyperbolic) with

the physical plant (parabolic). Interestingly, the gain PDE to be solved that arises from these types

of problems maintain the mixed-class character of the plant (as opposed to homogeneous class

systems, which always have a hyperbolic gain PDE). The most basic case of this mixed-class

system has been explored in [28], where an unstable diffusion-reaction equation is considered

with an arbitrariliy long input delay. This work was further extended in [12], where unidirectional

in-domain coupling was next considered for systems of mixed-class type.

In this paper, we solve the problem of having distinct input delays to the bilateral control

problem for an unstable parabolic equation. To approach this, we first state the main result in

Section 5.2. We first establish the result for the identical delay case in Section 5.3, and use this
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result in showing our approach for the distinct delay case in Section 5.4. Finally, we conclude our

paper in Section 8.5.

5.2 Model and main result

We study a reaction-diffusion partial differential equation in one dimension with two

Neumann boundary inputs, with delay.

∂tu(x, t) = ∂
2
xu(x, t)+λu(x, t) (5.1)

∂xu(−L, t) =U1(t− (D+ γ)) (5.2)

∂xu(L, t) =U2(t−D) (5.3)

where u ∈ H1([−L,L])×C1([0,∞)). Without loss of generality, we let γ ≥ 0 (γ = 0 being the

case of the identical delay). Thus, the parameter D≥ 0 represents smaller of the two delays, and

the parameter γ signifies the difference of the two input delays.

We can alternatively interpret this system as a coupled mixed-class (of parabolic and

hyperbolic type) partial differential equation system as follows:

∂tu(x, t) = ∂
2
xu(x, t)+λu(x, t) (5.4)

∂tv(x, t) =−∂xv(x, t) (5.5)

∂tw(x, t) = ∂xw(x, t) (5.6)

∂xu(−L, t) = v(−L, t) (5.7)

∂xu(L, t) = w(L, t) (5.8)

v(−L− (D+ γ), t) =U1(t) (5.9)

w(L+D, t) =U2(t) (5.10)
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u(x,t) w(x,t)v(x,t)

Figure 5.1: Schematic of system: the source of instability is purely in u(x, t). To stabilize the
system we actuate U1,U2 through delays.

with u ∈H1([−L,L])×L2([0,∞)), v ∈ L2([−L− (D+ γ),−L])×L2([0,∞)), v ∈ L2([L,L+D])×

L2([0,∞)). The problem is thusly transformed into a bilateral control problem of a mixed-

class system, and pre-existing results in bilateral control (CITATION) and mixed-class systems

(CITATIONS) can be extended to this case.

Theorem 12. With the plant model given by (5.4)-(5.10), and with the control laws

U1(t) =
∫ −L

−L−(D+γ)
k(−L− (D+ γ),y)v(y, t)dy

+
∫ L

−L
l(−L− (D+ γ),y)u(y, t)dy

+
∫ L+D

L
m(−L− (D+ γ),y)w(y, t)dy

+
∫

γ

0
m(−L− (D+ γ),L+D+ y)U∗2 (t + y− γ)dy (5.11)

U2(t) =
∫ L+D

L
p(L+D+ γ,y)w(y, t− γ)dy

+
∫ L

−L
q(L+D+ γ,y)u(y, t− γ)dy

+
∫ −L−(D+γ)

−L
r(L+D+ γ,y)v(y, t− γ)dy

+
∫

γ

0
p(L+D+ γ,L+D+ y)U2(t + y‘− γ)dy (5.12)

where the prediction of U2 is denoted U∗2 and is computed using the following relation:

U∗2 (t) =
∫ L+D

L
p(L+D+ γ,y)w(y, t)dy
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+
∫ L

−L
q(L+D+ γ,y)u(y, t)dy

+
∫ −L−(D+γ)

−L
r(L+D+ γ,y)v(y, t)dy

+
∫

γ

0
p(L+D+ γ,L+D+ y)U∗2 (t + y− γ)dy (5.13)

The equilibrium solution (u,v,w) = 0 is exponentially stabilized in the L2×H1×H1 sense.

5.3 Identical delay (γ = 0)

5.3.1 Backstepping transformation

We use a series of two Volterra transformations to establish equivalency to a desireable

target system. The first transformation directly comes from [43], and is as follows:

η(x, t) = u(x, t)−
∫ x

−x
β(x,y)u(y, t)dy (5.14)

This will admit a gain kernel PDE on a sideways “hourglass” domain shape.

∂
2
xβ(x,y)−∂

2
yβ(x,y) = (λ+ c)β(x,y) (5.15)

β(x,x) =−(λ+ c)
2

x (5.16)

β(x,−x) = 0 (5.17)

where β ∈ H1([−L,L])×H1([−L,L]).

The second transformation is

ξ(x, t) = v(x, t)−
∫ −L

x
k(x,y)v(y, t)dy

−
∫ L

−L
l(x,y)u(y, t)dy
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−
∫ −x

L
m(x,y)w(y, t)dy (5.18)

ω(x, t) = w(x, t)−
∫ x

L
p(x,y)w(y, t)dy

−
∫ L

−L
q(x,y)u(y, t)dy

−
∫ −x

−L
r(x,y)v(y, t)dy (5.19)

(5.20)

Differentiating (5.18) once in time and applying integration by parts admits

∂tξ(x, t) =−∂xv(x, t)+(k(x,−L)+ l(x,−L))v(−L, t)

+(m(x,L)− l(x,L))w(L, t)− k(x,x)v(x, t)

−m(x,−x)w(−x, t)

+∂yl(x,L)u(L, t)−∂yl(x,−L)u(−L, t)

−
∫ −L

x
∂yk(x,y)v(y, t)dy

+
∫ −x

L
∂ym(x,y)w(y, t)dy

−
∫ L

−L
(∂2

y l(x,y)+λ)u(y, t)dy (5.21)

Differentiating (5.18) once in space:

ξx(x, t) = vx(x, t)+ k(x,x)v(x, t)+m(x,−x)w(−x, t)

−
∫ −L

x
kx(x,y)v(y, t)dy

−
∫ L

−L
lx(x,y)u(y, t)dy

−
∫ −x

L
mx(x,y)w(y, t)dy (5.22)
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Differentiating (5.19) once in time and applying integration by parts admits

∂tω(x, t) = ∂xw(x, t)+(−p(x,L)+q(x,L))w(L, t)

− (r(x,−L)−q(x,−L))v(−L, t)+ p(x,x)w(x, t)

+ r(x,−x)v(−x, t)

+∂yq(x,L)u(L, t)−∂yq(x,−L)u(−L, t)

+
∫ x

L
∂y p(x,y)w(y, t)dy

+
∫ −x

−L
∂yr(x,y)v(y, t)dy

−
∫ L

−L
(∂2

y l(x,y)+λ)u(y, t)dy (5.23)

Differentiating (5.19) once in space:

∂xω(x, t) = ∂xw(x, t)− p(x,x)w(x, t)+ r(x,−x)v(−x, t)

−
∫ x

L
∂x p(x,y)v(y, t)dy

−
∫ L

−L
∂xl(x,y)u(y, t)dy

−
∫ −x

−L
∂xr(x,y)v(y, t)dy (5.24)

These partial derivatives ωt and ωx leads to gain kernel PDEs for k, l,m, p,q,r:

∂xk(x,y)+∂yk(x,y) = 0 (5.25)

k(x,−L) =−l(x,−L) (5.26)

∂xm(x,y)−∂ym(x,y) = 0 (5.27)

m(x,L) = l(x,L) (5.28)

∂xl(x,y) =−∂
2
y l(x,y)−λl(x,y) (5.29)
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∂yl(x,−L) = 0 (5.30)

∂yl(x,L) = 0 (5.31)

l(−L,y) = β(−L,y) (5.32)

where now k ∈ L2([−L−D,−L])×L2([−L−D,−L]), m ∈ L2([−L−D,−L])×L2([L,L+D])

and l ∈ L2([−L−D,−L])×H1([−L,L]). Similarly,

∂x p(x,y)+∂y p(x,y) = 0 (5.33)

p(x,L) = q(x,L) (5.34)

∂xr(x,y)−∂yr(x,y) = 0 (5.35)

r(x,−L) =−q(x,−L) (5.36)

∂xq(x,y) = ∂
2
yq(x,y)+λq(x,y) y ∈ (−L,L) (5.37)

∂yq(x,−L) = 0 (5.38)

∂yq(x,L) = 0 (5.39)

q(L,y) = β(L,y) (5.40)

where now p ∈ L2([L,L+D])×L2([L,L+D]), r ∈ L2([L,L+D])×L2([−L−D,−L)) and q ∈

L2([L,L+D])×H1([−L,L]).

As one can note in Figure 5.2, we have essentially constructed a larger sideways hourglass

domain. One may naturally be inclined to ask why the gain kernels cannot be solved all at once

in this larger domain. The subtlety is in the mixed-class character of the gain kernels (which

arise from the mixed-class nature of the model). The l,q kernels cannot be solved via method of

characteristics like the k,m, p,r,β kernels can, as l,q are parabolic PDEs. Thus, one must initially

solve the hyperbolic gain kernel PDE β (which has an terminal and initial condition emanating

from x = y = 0 due to the Goursat nature of the PDE). β will then provide the sufficient terminal
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β(x,y)

q(x,y)l(x,y)

m(x,y) p(x,y)

k(x,y) r(x,y)

y

x

Figure 5.2: Domains of the gain kernels and how their boundary conditions interact

and initial conditions for l and q, respectively.

One may now question the viability of solving l; specifically l has a negative diffusion

coefficient. This may initially appear to be suspicious, as backwards heat equations are ill-posed.

However, we provide the terminal condition l(−L,y), which leads us to, in fact, a well-posed

problem for l. Therefore, there is no worry of ill-posedness in any of the equations.

After solving the parabolic gain kernels l,q, we are provided with the initial and terminal

conditions to k,m, p,r, which can be trivially solved via method of characteristics.
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These gain kernels will admit the following target system:

∂tβ(x, t) = ∂
2
xβ(x, t)− cβ(x, t) (5.41)

∂tξ(x, t) =−∂xξ(x, t) (5.42)

∂tω(x, t) = ∂xω(x, t) (5.43)

∂xβ(−L, t) = ξ(−L, t) (5.44)

∂xβ(L, t) = ω(L, t) (5.45)

ξ(−L−D, t) = 0 (5.46)

ω(L+D, t) = 0 (5.47)

5.3.2 Stability of target system

The target system given by (5.41)-(5.47) must be shown to be exponentially stable. We

propose the following transformation to make this proof more tractable:

φ(x, t) = β(x, t)− f (x)ξ(−L, t)

−g(x)ω(L, t) (5.48)

where f ,g are defined by

f (x) =
(
−1

L
x2 +

1
2

x
)

(5.49)

g(x) =
(

1
L

x2 +
1
2

x
)

(5.50)

This transformation allows us to find the following system:

∂tφ(x, t) = ∂
2
xφ(x, t)− cφ(x, t)
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+a(x)ξ(−L, t)+b(x)ω(L, t)

− f (x)∂xξ(−L, t)−g(x)∂xω(L, t) (5.51)

∂tξ(x, t) =−∂xξ(x, t) (5.52)

∂tω(x, t) = ∂xω(x, t) (5.53)

∂xφ(−L, t) = 0 (5.54)

∂xφ(L, t) = 0 (5.55)

ξ(−L−D, t) = 0 (5.56)

ω(L+D, t) = 0 (5.57)

where a,b are defined as

a(x) = c f (x)− 1
2L

(5.58)

b(x) = cg(x)+
1

2L
(5.59)

We let ā, b̄, f̄ , ḡ be the sup norm for their respective functions.

Lemma 13. The system given by (5.51)-(5.57) is exponentially stable in the L2×H1×H1 sense.

Proof. Consider the Lyapunov function

V (t) =
∫ L

−L

1
2

φ(x, t)2dx

+
∫ −L

−L−D

d1

2
e−δ1x

ξ(x, t)2dx

+
∫ −L

−L−D

h1

2
e−η1x

∂xξ(x, t)2dx

+
∫ L+D

L

d2

2
eδ2x

ω(x, t)2dx

+
∫ L+D

L

h2

2
eη2x

∂xω(x, t)2dx (5.60)
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The Lie derivative of this Lyapunov function gives

V̇ =
∫ L

−L
φ(x, t)∂2

xφ(x, t)dx

−
∫ L

−L
cφ(x, t)2dx

+
∫ L

−L
a(x)φ(x, t)ξ(−L, t)dx

+
∫ L

−L
b(x)φ(x, t)ω(L, t)dx

−
∫ L

−L
f (x)φ(x, t)∂xξ(−L, t)dx

−
∫ L

−L
g(x)φ(x, t)∂xω(L, t)dx

−
∫ −L

−L−D

d1

2
eδ1x

ξ(x, t)∂xξ(x, t)dx

−
∫ −L

−L−D

h1

2
eη1x

∂xξ(x, t)∂2
xξ(x, t)dx

+
∫ L+D

L

d2

2
eδ2x

ω(x, t)∂xω(x, t)dx

+
∫ L+D

L

h2

2
eη2x

∂xω(x, t)∂2
xω(x, t)dx (5.61)

Then, integrating by parts, and applying Young’s and Poincare’s inequalities appropriately admits

V̇ ≤−
∫ L

−L

(
c+

1
2

)
φ(x, t)2dx

+
∫ L

−L

(
ā

2ε1
+

b̄
2ε2

+
f̄

2ε3
+

ḡ
2ε4

)
φ(x, t)2dx

−
∫ −L

−L−D

d1δ1

2
e−δ1x

ξ(x, t)2dx

−
∫ −L

−L−D

h1η1

2
e−η1x

∂xξ(x, t)2dx

−
(

d1

2
e−δ1L− ε1āL

)
ξ(−L, t)2

−
(

h1

2
e−η1L− ε3 f̄ L

)
∂xξ(−L, t)2

80



−
∫ L+D

L

d2δ2

2
eδ2x

ω(x, t)2dx

−
∫ L+D

L

h2η2

2
eη2x

∂xω(x, t)2dx

−
(

d2

2
eδ2L− ε2b̄L

)
ω(L, t)2

−
(

h2

2
eη2L− ε4ḡL

)
∂xω(L, t)2

(5.62)

Where εi > 0 for i = 1,2,3,4 are to be chosen. These parameters arise from the application

of Young’s inequality. It is then clear that one can choose these εi sufficiently large so that

c+ 1
2 > ā

2ε1
+ b̄

2ε2
+ f̄

2ε3
+ ḡ

2ε4
. Following this, one can select the pairs di,δi and hi,ηi for i = 1,2

such that the conditions d1
2 e−δ1L > ε1āL,h1

2 e−η1L− ε3 f̄ L, d2
2 eδ2L > ε2b̄L and h2

2 eη2L > ε4ḡL are

fulfilled. By enforcing these conditions with our choices of εi,d j,δ j,h j,η j, we can collapse the

inequality into a relatively simple form:

V̇ (t)≤−CV (t) (5.63)

where now C is now defined by

C = min
{

c+
1
2
−
(

ā
2ε1

+
b̄

2ε2
+

f̄
2ε3

+
ḡ

2ε4

)
,

δ1

2
,
δ2

2
,
η1

2
,
η2

2

}
(5.64)

Applying the comparison principle to (5.63), one can find

V (t)≤ e−CtV (0) (5.65)
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It follows that there exists some constant M where now

||(φ,ξ,ω)|| ≤Me−
C
2 t ||φ(0),ξ(0),ω(0)|| (5.66)

where this norm is defined as ||(φ,ξ,ω)||= ||φ||L2
+ ||ξ||H1 + ||ω||H1 . This concludes the proof.

Due to the invertibility of the transformations (5.14),(5.18),(5.19),(5.48), we can establish

an equivalent stability condition on the original system with the designed feedback control

applied.

5.3.3 Feedback control laws

The feedback control laws are found from evaluating (5.18) and (5.19) at their respective

control boundaries x =−L−D and x = L+D, and are found to be

U1(t) =
∫ −L

−L−D
k(−L−D,y)v(y, t)dy

+
∫ L

−L
l(−L−D,y)u(y, t)dy

+
∫ L+D

L
m(−L−D,y)w(y, t)dy (5.67)

U2(t) =
∫ L+D

L
p(L+D,y)w(y, t)dy

+
∫ L

−L
q(L+D,y)u(y, t)dy

+
∫ −L−D

−L
r(L+D,y)v(y, t)dy (5.68)

5.4 Distinct delay

In the distinct delay case, one controller (with the longer input delay) will no longer

be feasible, as this controller must begin to anticipate future values of the opposing controller,
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leading to a noncausal formulation.

The proposed workaround to accommodate the distinct delay case involves domain

extension. We begin by defining a new auxiliary control U∗(t), and the augmented system

∂tw̄(x, t) = ∂xw̄(x, t) (5.69)

w̄(L+(D+δ), t) =U∗2 (t) (5.70)

The augmented system (5.69),(5.70) serve to extend the system (5.6),(5.10). By choosing our

controller U2 as

U2(t) =U∗2 (t−δ) (5.71)

one can note that the solution of w̄ can be expressed in the following piecewise form:

w̄(x, t) =





w(x, t) x ∈ (L,L+D)

U∗2 (t +(x− (L+D))) otherwise
(5.72)

The main takeaway from this is that by applying our control via the relation (5.71), a relation is

established between the extended system w̄ and the original system w.

This allows us to design a controller in the identical input delay case for D+ γ, and select

the controller U2 from the designed control U∗2 .

From the previous section (but with the domain as D+γ), we have the following controllers

for the augmented system (u,v, w̄):

U1(t) =
∫ −L

−L−(D+γ)
k(−L− (D+ γ),y)v(y, t)dy

+
∫ L

−L
l(−L− (D+ γ),y)u(y, t)dy

+
∫ L+D

L
m(−L− (D+ γ),y)w̄(y, t)dy (5.73)
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U∗2 (t) =
∫ L+D

L
p(L+D+ γ,y)w̄(y, t)dy

+
∫ L

−L
q(L+D+ γ,y)u(y, t)dy

+
∫ −L−(D+γ)

−L
r(L+D+ γ,y)v(y, t)dy (5.74)

(5.75)

Using the representation (5.72) in conjunction with the relationship between the predicted con-

troller U∗2 and U2 (5.71), one can derive the feedback controllers (5.11),(5.12), and (5.13).

5.5 Conclusion

A method for designing bilateral backstepping feedback controllers for a parabolic equa-

tion with input delays is presented. The unstable parabolic equation with input delays is trans-

formed into a mixed-class system of three partial differential equations. Due to the mixed-class

nature of this system, the gain PDEs that are solved are also of a mixed-class type. Since there

exists favorable structure in the system, a solution can be determined through cascading the

solutions of the gain kernel PDEs.

The problem is initially solved for the case of identical delays, which is then extended to

the distinct delay case. The method of how the distinct delays is solved is somewhat lackluster, in

the sense that the controller essentially adds “artificial” delay to build a prediction of the future

states. For simpler systems (and perhaps even more complex ones), if one can find a prediction

method that does not rely on adding delay, the stabilization of systems such as these would be

faster, as well as being more of an elegant solution.

The results in this paper, however, do raise several new questions in bilateral backstepping

control – dealing primarily with the domain of the control kernel, and its impact in the type of

systems we can stabilize using the basic Volterra transformation. In this paper, the sideways
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hourglass domain was augmented by additional square and triangular domains to construct a

“larger” hourglass domain. One may ask the questions “Must this domain be an hourglass? How

might one incorporate different domains, and how would this affect the control design process?”

These questions are subject to future work, and may provide insight into developing a more

general, nonlinear backstepping transformation for PDEs.
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Chapter 6

Folding Bilateral Backstepping

Output-Feedback Control Design For an

Unstable Parabolic PDE

6.1 Introduction

Parabolic partial differential equations (PDEs) describe numerous physical processes,

which include but are not limited to heat transfer, chemical reaction-diffusion processes, tumor

angiogenesis [11], predator-prey Lotka-Volterra population models [23], opinion dynamics (of

the Fischer-Kolmogorov-Petrovsky-Piskunov type equation [2]), free-electron plasma diffusion,

and flows through porous media [42].

Previous results in boundary control for 1-D PDEs has been largely focused on unilateral

boundary controllers, i.e. controllers acting on a single boundary. Results have been generated

for a wide variety of parabolic PDE systems and objectives, beginning with the classical scalar

1-D PDE with homogeneous media results [30]. Other extensions to the parabolic PDE boundary

control case introduce nonhomgeneous media (such as [37]), parallel interconnected parabolic
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PDE systems [45], series interconnected parabolic PDE systems [41], and output feedback

extensions for coupled parabolic PDE [33]. Some work that is tangentially related is that of

[50],[51], which investigates a problem of using an in-domain actuation to control a parabolic

PDE.

The notion of bilateral boundary control is partially motivated by boundary control of

balls in Rn [44], in which the controls actuate on the surface of the n-dimensional ball. The

analogous case (in 1-D) is a controller actuating on the boundary of the 1-dimensional ball,

i.e., the endpoints of an interval. Bilateral control has been studied in some contexts for both

hyperbolic and parabolic PDE systems. [5] studies bilateral controllers achieving minimum-time

convergence in coupled first-order hyperbolic systems via a Fredholm transformation technique,

while [43] additionally studies bilateral control for diffusion-reaction equations, albeit with the

limitatin of a symmetric Volterra transformation. [8] studies a nonlinear viscous Hamilton-Jacobi

PDE, which likewise uses the symmetric Volterra transformation from [43].

Boundary observer design is of equal (and perhaps arguably more) importance when

compared with the boundary controller design. Many results have been generated as a dual

problem to the boundary controller case. In [36], a boundary observer design for parabolic PDEs

is formulated, with measurements taken at a boundary (in both collocated and anticollocated

cases). [6] studies a coupled parabolic PDE system with identical diffusion coefficients. [10]

recovers a result for coupled parabolic PDEs with varying diffusion coefficients.

The main contribution of the paper are results for bilateral control of diffusion-reaction

equations with spatially-varying reaction via the method of “folding,” i.e. using an arbitrarily

defined domain separation and transformation to design the boundary controllers. The idea of

folding has been touched upon in the hyperbolic context [17], where the authors have explored

a linearized Rijke tube model. The folding technique admits a design parameter (called the

folding point) whose choice influences the control effort exerted by the boundary controllers.

Additionally, a state-estimator is designed to complement the state-feedback controller. The
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state-estimator is an interesting new development in which collocated measurements are taken

from any arbitrary point in the interior of the PDE, and the folding approach applied. Finally, the

output feedback is formulated by combining both the state-feedback and state-estimation.

The state observer design is an interesting development, as it generates a result where

measurements are taken at a single measure zero point in the interior. It is of physical importance,

as measurements at the boundary are not necessarily guaranteed for a given realization. [40] has

also investigated observer designs where measurements are not given at a boundary, rather, as a

weighted average (the state appearing underneath a bounded integral operator). A related result

is [20], in which the authors consider the combination of boundary measurements with a single

interior measurement to achieve estimation convergence for semilinear parabolic problems.

The primary technical difficulty in the paper is compensating the folding-type boundary

conditions, which arises due to the regularity property of the solutions. In hyperbolic PDE,

this constitutes an imposition of continuity – a first-order compatibility condition. However, in

parabolic PDE, one must treat second-order compatibility conditions existing at the same point,

which will require additional correctional designs to compensate.

The paper is organized as follows: the notations and model are introduced in Section

8.1. The output feedback controller consisting of the state-feedback and state-estimator designs

is developed in Section 6.3. The gain kernel well posedness is studied in Section 8.4. Some

simulations for various folding scenarios are given and analyzed in Section 6.5. Finally, the paper

is concluded in Section 6.6.
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6.2 Preliminaries

6.2.1 Notation

The partial operator is notated using the del-notation, i.e.

∂x f :=
∂ f
∂x

L2(Io) is defined as the the L2 space on the interval Io, equipped with the norm

|| f ||L2(Io)
=

(∫
Io

f 2 dµ
) 1

2

We also consider the standard inner product (that induces the standard norm) for L2:

〈 f ,g〉L2(Io)
=

∫
Io

f ·g dµ

For compact notation, we will let L2(Io) be represented merely as L2, where the interval

is implied by the function. The norm notation (||·||) is used to notate the function norm over the

vector 2-norm (notated with | · |2). If the norm is taken over a matrix function, then the induced

2-norm is implied, i.e. for vector-valued function f and matrix-valued function F :

|| f ||L2 :=
(∫

Io

|| f ||22 dµ
) 1

2

||F ||L2 :=
(∫

Io

||F ||22,i dµ
) 1

2

Furthermore, if f is a function of the space-time tuple (x, t), the norm is assumed to be

the norm in space (x) unless otherwise stated. The written x-dependence is dropped, i.e.

|| f (x, t)||L2 = || f (t)||L2 :=
(∫

Io

| f (t)|22 dµ
) 1

2
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We will introduce the notion of stability in the sense of a norm. Rigorously, this refers to

the norm in which stability is derived. Per example, stability in the sense of L2 refers to a stability

estimate using L2 norms:

|| f (t)||L2 ≤M || f (t0)||L2

Elements of a matrix A are denoted with lowercase ai j, with the subscripts defining the

i-th row and j-th column.

6.2.2 Model and problem formulation

We consider the following reaction-diffusion PDE for u on the domain [0,∞)× (−1,1):

∂t ū(y, t) = ε∂
2
y ū(y, t)+ν(y)∂yū(y, t)+ λ̄(y)ū(y, t) (6.1)

ū(−1, t) = Ū1(t) (6.2)

ū(1, t) = Ū2(t) (6.3)

It is assumed that ε > 0 for well-posedness, and ν, λ̄ ∈ C1((−1,1)). The controllers operate

at x = 1 and x = −1, and are denoted Ū1(t),Ū2(t), respectively. We define the following

transformation:

u(y, t) = exp
(∫ y

−1

ν(z)
2ε

dz
)

ū(y, t) (6.4)

and with the appropriate parameter definitions, we find the equivalent system

∂tu(y, t) = ε∂
2
yu(y, t)+λ(y)u(y, t) (6.5)

u(−1, t) = Ū1(t) =: U1(t) (6.6)
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u(1, t) = exp
(∫ 1

−1

ν(z)
2ε

dz
)

Ū2(t) =: U2(t) (6.7)

The transformation (6.4) removes the advection/convection term in (6.1). The attenuation and/or

amplification of control effort in the controllers matches intuition – the controller upstream of

the “average” convection requires less control effort, while the controller downstream requires

more control effort (average, as the sign of ν can vary across the domain). In this paper, we will

assume that ν = 0, but in general, the methodology can compensate convection phenomena.

6.3 Output-feedback control design

The output feedback is designed via solving two subproblems: the state-feedback design,

and state-estimator design. The output-feedback result is then recovered by replacing the state-

feedback control law with the state-estimate, and the resulting stability of the interconnected

systems is proven.

6.3.1 Model transformation for control via folding

The folding approach entails selecting a point y0 ∈ (−1,1) in which the scalar parabolic

PDE system u is “folded” into a 2×2 coupled parabolic system. A special case y0 = 0 (divid-

ing into a symmetric problem) recovers the result of [43]. We define the the folding spatial

transformations as

x = (y0− y)/(1+ y0) y ∈ (−1,y0) (6.8)

x = (y− y0)/(1− y0) y ∈ (y0,1) (6.9)
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admits the following states:

U(x, t) :=




u1(x, t)

u2(x, t)


=




u(y0− (1+ y0)x, t)

u(y0 +(1− y0)x, t)


 (6.10)

whose dynamics are governed by the following system:

∂tU(x, t) = E∂
2
xU(x, t)+Λ(x)U(x, t) (6.11)

αUx(0, t) =−βU(0, t) (6.12)

U(1, t) = U(t) (6.13)

with the parameters given by :

E := diag(ε1,ε2)

:= diag
(

ε

(1+ y0)2 ,
ε

(1− y0)2

)
(6.14)

Λ(x) := diag(λ1(x),λ2(x))

:= diag(λ(y0− (1+ y0)x),λ(y0 +(1− y0)x)) (6.15)

α :=




1 a

0 0


 (6.16)

β :=




0 0

1 −1


 (6.17)

a := (1+ y0)/(1− y0) (6.18)

The boundary conditions at x = 0 are curious. While they may initially appear to be encapsulated

as Robin boundary conditions in (8.9), they are actually compatibility conditions that arise

from imposing continuity in the solution at the folding point. Analogous conditions have been
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considered in some previous parabolic backstepping work in [41], albeit in a differing context.

Assumption. The folding point y0 is constricted to the half domain (−1,0] without loss of

generality. The case y0 ∈ [0,1) can be recovered by using a change in spatial variables ŷ =−y

and performing the same folding technique. By choosing y0 in this manner, we impose an ordering

ε1 > ε2.

y
0 1-1 y0y0

u(y,t)
U1(t) U2(t)

ˆ

Figure 6.1: System schematic of diffusion-reaction equation with two boundary inputs. The
control folding point y0 and the measurement location ŷ0 can be arbitrarily chosen on the interior,
independent of one another.

6.3.2 State-feedback design

The backstepping state-feedback control design is accomplished with two consecutive

backstepping transformations. The first transformation is a 2×2 Volterra integral transformation

of the second kind:

W (x, t) =U(x, t)−
∫ x

0
K(x,y)U(y, t)dy (6.19)

where K(x,y) ∈C2(T ) is a 2×2 matrix of kernel elements (ki j), with T := {(x,y) ∈R2|0≤ y≤

x≤ 1}, and W (x, t) :=
(

w1(x, t) w2(x, t)

)T

. The inverse transformation is analogous:

U(x, t) =W (x, t)−
∫ x

0
K̄(x,y)W (y, t)dy (6.20)
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The corresponding target system for (6.19) is chosen to be

∂tW (x, t) = E∂
2
xW (x, t)−CW (x, t)+G[K](x)W (x, t) (6.21)

α∂xW (0, t) =−βW (0, t) (6.22)

W (1, t) = V (t) (6.23)

where V (t) =
(

0 ν2(t)

)T

is an auxiliary control which is designed later in the paper. The

controller U(t) can be expressed as an operator of V (t) by evaluating (6.19) for x = 1:

U(t) := V (t)+
∫ 1

0
K(1,y)U(y, t)dy (6.24)

The matrix C can be arbitrarily chosen such that C � 0, but for simplicity of analysis, we select a

diagonal matrix C = diag(c1,c2) with c1,c2 > 0. The matrix-valued operator G[·](x) acting on K

is given by

G[K](x) =




0 0

(ε2− ε1)∂yk21(x,x) 0


=:




0 0

g[k21](x) 0


 (6.25)

Imposing the conditions (8.8), (8.9), (6.19), (8.20)-(8.22) admits the following companion gain

kernel PDE system for K(x,y):

E∂
2
xK(x,y)−∂

2
yK(x,y)E = K(x,y)Λ(y)+CK(x,y)

−G[K](x)K(x,y) (6.26)

∂yK(x,x)E +E∂xK(x,x) =−E
d
dx

K(x,x)−Λ(x)

−C+G[K](x) (6.27)

EK(x,x)−K(x,x)E = 0 (6.28)
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K(x,0)E∂xU(0) = ∂yK(x,0)EU(0) (6.29)

It is clear to see that by imposing (6.28), the definition for G[K](x) can be recovered from

(6.27) Upon first inspection, the resulting kernel PDE is very similar to those found in [45],[18].

However, one may see that (6.29) is different, and in fact quite new in backstepping designs.

(6.29) arises due to the folding boundary condition (8.9). Surprisingly enough, if one analyzes

(6.29) componentwise and employs (8.9), “anti-folding” conditions on K can be recovered,

which preserve continuity in the spatial derivative of the state (as opposed to folding conditions

preserving continuity in the state). The folding conditions that arise from (6.29) are:

ε1k11(x,0)−aε2k12(x,0) = 0 (6.30)

ε1∂yk11(x,0)+ ε2∂yk12(x,0) = 0 (6.31)

ε1k21(x,0)−aε2k22(x,0) = 0 (6.32)

ε1∂yk21(x,0)+ ε2∂yk22(x,0) = 0 (6.33)

or, more compactly written,

α̃K(x,0) = β̃∂yK(x,0) (6.34)

where

α̃ :=




1 −a

0 0


 , β̃ :=




0 0

1 1


 (6.35)
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The kernel equations for the inverse kernels K̄ are similar to those of K, and are derived in an

analogous manner:

E∂
2
xK̄(x,y)−∂

2
yK̄(x,y)E =−K̄(x,y)(C−G[K̄](y))

−Λ(x)K̄(x,y) (6.36)

∂yK̄(x,x)E +E∂xK̄(x,x) =−E
d
dx

K̄(x,x)+Λ(x)

+C−G[K̄](x) (6.37)

EK̄(x,x)− K̄(x,x)E = 0 (6.38)

K̄(x,0)E∂xW (0) = ∂yK̄(x,0)EW (0) (6.39)

The second transformation is designed to admit an expression for the auxiliary controller

V (t) =
(

0 ν2(t)

)T

. The goal of ν2(t) is to remove the potentially destabilizing effect of the

coupling term G[K](x). The second set of transformations is:

ω1(x, t) = w1(x, t) (6.40)

ω2(x, t) = w2(x, t)−
∫ x

0

(
q(x,y) p(x− y)

)
W (y, t)dy

−
∫ 1

x

(
r(x,y) 0

)
W (y, t)dy (6.41)

Let Ω(x, t) :=
(

ω1(x, t) ω2(x, t)

)T

. The inverse transformations are given by

w1(x, t) = ω1(x, t) (6.42)

w2(x, t) = ω2(x, t)−
∫ x

0

(
q̄(x,y) p̄(x− y)

)
Ω(y, t)dy

−
∫ 1

x

(
r̄(x,y) 0

)
Ω(y, t)dy (6.43)
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We impose the following target system dynamics:

∂tΩ(x, t) = E∂
2
xΩ(x, t)−CΩ(x, t) (6.44)

α∂xΩ(0, t) =−βΩ(0, t) (6.45)

Ω(1, t) = 0 (6.46)

Noting that G[K](x) is parametrized by the difference in diffusion coefficients ε1− ε2, one can

interpret (6.41) to be the correction factor to the first transformation in presence of selecting a

non-trivial folding point. Indeed, when the folding point is chosen to be the midpoint, G[K](x)≡ 0

(and therefore (6.41) becomes an identity transformation). This necessity for correction factors is

to compensate for the behavior unique to bilateral control design in parabolic PDE, and is not

observed in the results featuring bilateral control design of hyperbolic PDE systems [5].

The transformation (6.41) features two major components – a Volterra integral operator in

w2 characterized by kernel p, a Volterra integral operator in w1 characterized by kernel q, and an

forwarding type of transformation in w1 characterized by kernel r. The kernels p,q are defined

on the domain T , while r is defined on the domain Tu := {(x,y) ∈ R2|0≤ x≤ y≤ 1}.

The transformation (6.41) with the conditions (8.20)-(8.22),(6.44)-(6.46) imposed will

admit the following definition for p and kernel PDE for q:

p(x) = a−1q(x,0) (6.47)

ε2∂
2
xq(x,y)− ε1∂

2
yq(x,y) = (c2− c1)q(x,y)

+g[k21](y)p(x− y) (6.48)

ε2∂
2
xr(x,y)− ε1∂

2
yr(x,y) = (c2− c1)r(x,y) (6.49)
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subject to the following boundary conditions:

∂yq(x,x) = ∂yr(x,x)+
g[k21](x)
ε2− ε1

(6.50)

r(x,x) = q(x,x) (6.51)

∂yq(x,0) = a2 p′(x) = a∂xq(x,0) (6.52)

r(x,1) = 0 (6.53)

In addition, two initial conditions on r can be found from enforcing (8.21) on (6.41):

r(0,y) = 0 (6.54)

∂xr(0,y) = 1{y=0}(y)
g[k21](0)
ε2− ε1

(6.55)

where 1{y=0}(y) is the indicator function equal to 1 on the set {y = 0} and 0 otherwise. This is

quite unusual when compared to standard backstepping techniques, but is necessary to resolve the

condition (6.50),(6.51) at x= y= 0. Despite having this unusual initial condition, the target system

and gain kernels are unaffected as ∂xr(0,y) only appears underneath an integration operation. The

kernel equations for the inverse kernels p̄, q̄, r̄ are similar to those of p,q respectively:

p̄(x) = a−1q̄(x,0) (6.56)

ε2∂
2
x q̄(x,y)− ε1∂

2
y q̄(x,y) = (c1− c2)q̄(x,y)

−g[k21](x)p̄(x− y) (6.57)

ε2∂
2
x r̄(x,y)− ε1∂

2
y r̄(x,y) = (c2− c1)r̄(x,y) (6.58)

with boundary conditions

∂yq̄(x,x) = ∂yr̄(x,x)+
g[k21](x)
ε1− ε2

(6.59)
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r̄(x,x) = q̄(x,x) (6.60)

∂yq̄(x,0) =−a2 p̄′(x) =−a∂xq̄(x,0) (6.61)

As in the forward transformation, initial conditions on r̄ can be found:

r(0,y) = 0 (6.62)

∂xr(0,y) = 1{y=0}(y)
g[k21](0)
ε1− ε2

(6.63)

An interpretation of the (p,q,r) coupled kernel is that of a hyperbolic PDE (q,r) defined on

the square T ∪Tu, subject to non-local coupling and memory phenomena via p. Transmission

conditions between q,r exist at the interface y = x, where operator g[k21](x) acts as a point forcing

through the interface. This interpretation will motivate the well-posedness study of (p,q,r).

A point of interest to be raised is on the postulated continuity of the solutions. From (6.51),

continuity is imposed between q,r, however, due to (6.50), the partial derivatives will not exhibit

the same property. One may expect piecewise differentiability, in which the derivative loses

continuity at the interface y = x.

Lemma 14. The trivial solution Ω≡ 0 of the target system (6.44)-(6.46) is exponentially stable

in the sense of the L2 norm. That is,

||Ω(·, t)||L2 ≤Πexp(−γ(t− t0)) ||Ω(·, t0)||L2 (6.64)

where the constants Π,γ are given by

Π = a−
3
2 (6.65)

γ = min{a3c1,c2}+
ε2

4
(6.66)
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Proof. We define a Lyapunov functional V1 as follows:

V (t) :=
∫ 1

0
Ω(x, t)T AΩ(x, t)dx (6.67)

where A = diag(a3,1). V (t) is equivalent to the squared norm in L2:

V (t)≥ a3 ||Ω(·, t)||2L2 (6.68)

V (t)≤ ||Ω(·, t)||2L2 (6.69)

Barring the details of the derivation, one can find the following bound on V̇ through

integration by parts:

V̇ (t)≤−2Ω(0, t)T AE∂xΩ(0, t)−2π1 ||∂xΩ(·, t)||2L2

−2π2 ||Ω(·, t)||2L2 (6.70)

where the constants πi, i ∈ {1,2} are given by

π1 = ε2 (6.71)

π2 = min{a3c1,c2} (6.72)

Noting A, the term −2Ω(0, t)T AE∂xΩ(0, t) = 0. From one application of the Poincare inequality,

(6.70) results in the following inequality for V̇1(t):

V̇ (t)≤−2
(

π2 +
π1

4

)
||Θ(·, t)||2L2 ≤−2γV (t) (6.73)

Applying the comparison principle to above, the differential inequality in V can be converted to a
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bound on V (t).

V (t)≤ exp(−2γ(t− t0))V (t0) (6.74)

By using (6.68),(6.69), one can arrive at the inequality in the theorem:

||Ω(·, t)||L2 ≤Πexp(−γ(t− t0)) ||Ω(·, t0)||L2 (6.75)

With Lemma 23, we are equipped to establish state feedback result.

Theorem 15. The trivial solution of the system (6.1)-(6.3) is exponentially stable in the sense of

the L2 norm under the pair of state feedback control laws Ū1,Ū2:




Ū1(t)

Ū2(t)


=

∫ 1

−1




F1(y)

F2(y)


 ū(y, t)dy (6.76)

with feedback gains F1,F2 defined as

F1(y) =





(1+ y0)
−1k11

(
1, y0−y

1+y0

)
y≤ y0

(1− y0)
−1k12

(
1, y−y0

1−y0

)
y > y0

(6.77)

F2(y) =





(1+ y0)
−1h1

(
y0−y
1+y0

)
y≤ y0

(1− y0)
−1h2

(
y−y0
1−y0

)
y > y0

(6.78)

h1(y) = k21(1,y)+q(1,y)−
∫ 1

y

[
p(1− z)k21(z,y)

+q(1,z)k11(z,y)
]
dz (6.79)

h2(y) = k22(1,y)+ p(1− y)−
∫ 1

y

[
p(1− z)k22(z,y)
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+q(1,z)k12(z,y)
]
dz (6.80)

where ki j, p,q are C2(T ) solutions to the kernel equations (6.26),(8.47),(8.48) respectively (with

associated boundary conditions). That is, under the controllers Ū1(t),Ū2(t), there exists a

constant Π̄ such that

||ū(·, t)||L2 ≤ Π̄exp(−γ(t− t0)) ||ū(·, t0)||L2 (6.81)

Proof. The feedback controllers (8.74) are derived via evaluating transforms (6.19),(6.41) at the

boundary x = 1. From (6.41):

W (1, t) = V (t) =




0

ν2(t)




=




0∫ 1
0

(
q(1,y) p(1− y)

)
W (y, t)dy


 (6.82)

From (6.19),(8.24):

U(t) =
∫ 1

0
K(1,y)U(y, t)dy+V (t) (6.83)

Or componentwise,

U1(t) =
∫ 1

0

(
k11(1,y) k12(1,y)

)
U(y, t)dy (6.84)

U2(t) =
∫ 1

0

(
k21(1,y) k22(1,y)

)
U(y, t)dy

+
∫ 1

0

(
q(1,y) p(1− y)

)
U(y, t)dy
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−
∫ 1

0

∫ y

0
K(y,z)U(z, t)dzdy (6.85)

By exchanging the order of integrals in the nested integrals, and applying the inverse folding

transformations (8.7), the controllers (8.74) can be recovered.

The proof of the bound (8.80) relies on the well-posedness of the kernel PDEs, studied in

Section 8.4. Specifically, Lemmas 25,26,22 state that continuous solutions exist and are unique.

By Morrey’s inequality (5.6.2 Theorem 4 in [19]), the continuous embedding C1(T )⊆ L2(T )

holds, and therefore C1(T ) functions possess a bounded L2(T ) norm. The boundedness (in

L2(T )) of the kernels K, p,q,r (and their inverses K̄, p̄, q̄, r̄, via the bounded inverse theorem) are

required, but can be shown from their continuity properties on the compact sets T ,Tu.

From (6.41), (6.43), one can derive the following equivalence:

M−1
1 ||W (·, t)||2L2 ≤ ||Ω(·, t)||2L2 ≤ M̄1 ||W (·, t)||2L2 (6.86)

where the coefficient M1 depends on kernels p,q,r, and is given by

M1 = (1−||q||L2−||p||L2−||r||L2)
2 (6.87)

and M̄1 is analogous with inverse kernels p̄, q̄, r̄. Similarly, from (6.19),(8.19), the following

equivalence can be derived:

M̄−1
2 ||U(·, t)||2L2 ≤ ||W (·, t)||2L2 ≤M2 ||U(·, t)||2L2 (6.88)

with

M2 = (1−||K||L2)2 (6.89)
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and M̄2 analogous with inverse kernel K̄. Then, applying (6.86),(6.88) to the bound (8.58) in

Lemma 23, one can arrive at (8.80), with

Π̄ =
(√

M1M̄1M2M̄2

)
Π (6.90)

6.3.3 Model transformation for estimation via folding

In the state-estimation problem, we tackle the related problem to the state-feedback

problem. Rather than the controllers existing at either opposing boundary, we establish a problem

which has two collocated measurements (of state and flux) in the interior of the PDE at some

point ŷ0. We also note that the sensor location ŷ0 need not to be chosen equal to the control

folding point y0. The output, denoted Y , is formulated as

Y (t) =




u(ŷ0, t)

∂yu(ŷ0, t)


 (6.91)

Much like the control case, applying a folding transformation about ŷ0 will recover a

coupled parabolic system. The transformation

x̂ = (ŷ0− y)/(1+ ŷ0) y ∈ (−1, ŷ0) (6.92)

x̂ = (y− ŷ0)/(1− ŷ0) y ∈ (ŷ0,1) (6.93)

will admit the following folded states:

Ǔ(x̂, t) :=




ǔ1(x̂, t)

ǔ2(x̂, t)


=




u(ŷ0− (1+ ŷ0)x̂, t)

u(ŷ0 +(1− ŷ0)x̂, t)


 (6.94)

104



The evolution of Ǔ(x, t) governed by the following dynamics:

∂tǓ(x, t) = Ě∂
2
xǓ(x, t)+ Λ̌(x)Ǔ(x, t) (6.95)

α̌∂xǓ(0, t) =−βǓ(0, t) (6.96)

Ǔ(1, t) = U(t) (6.97)

The hat notation on x̂ has been dropped for simplicity and the spatial domains are defined within

the context of the equation in which it arises. The parameter matrices are then as follows:

Ě := diag(ε̌1, ε̌2)

:= diag
(

ε

(1+ ŷ0)2 ,
ε

(1− ŷ0)2

)
(6.98)

Λ̌(x) := diag(λ̌1(x), λ̌2(x))

:= diag(λ(ŷ0− (1+ ŷ0)x),λ(ŷ0 +(1− ŷ0)x)) (6.99)

α̌ :=




1 ǎ

0 0


 (6.100)

ǎ := (1+ ŷ0)/(1− ŷ0) (6.101)

Certainly, if ŷ0 = y0, then the observation and control folded models are identical.

6.3.4 Backstepping state estimator design

Note that the sensor values in the folded coordinates can be expressed in the following

manner:




u(ŷ0, t)

∂yu(ŷ0, t)


=




u1(0, t)

−(1+ y0)
−1∂xu1(0, t)


 (6.102)
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=




u2(0, t)

(1− y0)
−1∂xu2(0, t)


 (6.103)

With the two sensor values collocated at a single point, the design of the state estimator

can be uncoupled into two near-identical subproblems. Specifically, we choose the following the

estimator structure (indexed by i ∈ {1,2}):

∂t ûi = ε̌i∂
2
x ûi(x, t)+ λ̌i(x)ûi(x, t)

+φi(x)(∂xui(0, t)−∂xûi(0, t)) (6.104)

ûi(0, t) = u(0, t) (6.105)

ûi(1, t) = Ui(t) (6.106)

We define the error systems of the estimators as ũi(x, t) := ui(x, t)− ûi(x, t). They are governed

by

∂t ũi = ε̌i∂
2
x ũi(x, t)+ λ̌i(x)ũi(x, t)

−φi(x)∂xũi(0, t) (6.107)

ũi(0, t) = 0 (6.108)

ũi(1, t) = 0 (6.109)

We can then design the φi(x) independently to stabilize trivial solutions ũi(x, t)≡ 0 of the error

systems ũi. We employ the following pair of backstepping transformations

w̃i(x, t) = ũi(x, t)−
∫ x

0
Φi(x,y)ũi(y, t)dy (6.110)
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with the following target systems:

∂tw̃i(x, t) = ε̌i∂
2
xw̃i(x, t)− čiw̃i(x, t) (6.111)

w̃i(0, t) = 0 (6.112)

w̃i(1, t) = 0 (6.113)

The inverse transformations are postulated to be

ũi(x, t) = w̃i(x, t)−
∫ x

0
Φ̄i(x,y)w̃i(y, t)dy (6.114)

where Φ̄i(x,y) will satisfy similar kernel equations to Φ.

Lemma 16. For the choice of coefficients či > 0, i ∈ {1,2}, the trivial solutions (w̃i, ṽi)≡ 0 of

the observer error target systems (6.111)-(6.113) are exponentially stable in the L2×H1 sense,

that is, there exist coefficients Π̌i, γ̌i > 0 such that for i ∈ {1,2},

||w̃i(·, t)||L2 ≤ Π̌i exp(−γ̌i(t− t0)) ||w̃i(·, t0)||L2 (6.115)

The proof of Lemma 16 can be found in [36].

The companion gain kernel PDEs for φi can be found from imposing conditions arising

from (6.95)-(6.97), (6.111)-(6.113), and the transformation (6.110).

∂
2
xΦi(x,y)−∂

2
yΦi(x,y) =−

λi(x)+ ci

εi
Φi(x,y) (6.116)

Φi(1,y) = 0 (6.117)

Φi(x,x) =
∫ 1

x

λi(y)+ ci

2εi
dy (6.118)
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In addition, one additional condition is imposed, which defines the observation gain φi(x) in terms

of the transformation kernel Φi(x,y).

φi(x) =−εiΦi(x,0) (6.119)

Lemma 17. The Klein-Gordon PDEs defined by (6.116)-(6.118) admit unique C2(T ) solutions.

As a direct result, the gain kernels φi are bounded in the domain T , that is,

||Φi||L∞ := max
(x,y)∈T

|Φi(x,y)| ≤ Φ̄i < ∞ (6.120)

The proof of Lemma (17) is given in [37].

Remark. For the special case λi(x) = λi is a constant, an explicit solution to (6.116)-(6.118)

can be found:

Φi(x,y) =−
λi + ci

εi
(1− x)

I1(z)
z

(6.121)

z =

√
λi + ci

εi
(2− x− y) (6.122)

where I1(z) is the modified Bessel function of the first kind.

Theorem 18. Consider the original system (8.1)-(8.3) and the auxiliary observer system defined

in (6.104)-(6.106) with measurements u(0, t),∂yu(0, t). Define the state estimate

û(y, t) :=





û1

(
ŷ0−y
1+ŷ0

)
y≤ ŷ0

û2

(
y−ŷ0
1−ŷ0

)
y > ŷ0

(6.123)
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and

ˆ̄u(y, t) := exp
(
−
∫ y

−1

ν(z)
2ε

dz
)

û(y, t) (6.124)

Then ˆ̄u(y, t)→ ū(y, t) exponentially fast in the sense of the L2 norm, i.e. there exist coefficients

ˇ̄
Π, γ̌min > 0 such that

∣∣∣∣ū(·, t)− ˆ̄u(·, t)
∣∣∣∣

L2

≤ ˇ̄
Πexp(−γ̌min(t− t0))

∣∣∣∣ū(·, t0)− ˆ̄u(·, t0)
∣∣∣∣

L2 (6.125)

Proof. The proof follows from Lemmas 16, 17. The boundedness of the kernel Φi implies the

existence of invertible transformations (6.114). Then one can directly apply the transformation

(6.110) to (6.115) to recover the following bound:

||u(·, t)− û(·, t)||L2

≤ ˇ̃
Πmax exp(−γ̌min(t− t0)) ||u(·, t0)− û(·, t0)||L2 (6.126)

where the coefficients ˇ̃
Πmax, γ̌min are defined:

ˇ̃
Πmax = max{ ˇ̃

Π1,
ˇ̃
Π2} (6.127)

γ̌min = min{γ̌1, γ̌2} (6.128)

and ˇ̃
Πi, i ∈ {1,2} are

ˇ̃
Πi = (1+ ||Φi||L2)2(1+

∣∣∣∣Φ̄i
∣∣∣∣

L2)
2
Π̌i (6.129)
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Finally, by applying the transformation (6.4), one can recover (6.125) with the coefficient ˇ̄
Π

defined as follows:

ˇ̄
Π = exp

(
max

y∈[−1,1]

∫ y

−1

ν(z)
2ε

dz+ min
y∈[−1,1]

∫ y

−1

ν(z)
2ε

dz
)

ˇ̃
Πmax (6.130)

6.3.5 Output-feedback controller

The output feedback controller proposed is the composition of the state observer with the

state feedback. We state the main result below:

Theorem 19 (Separation principle). Consider the original system (8.1)-(8.3) and the auxiliary

observer system defined in (6.104)-(6.106) with measurements u(0, t),∂yu(0, t). With the state

estimate (6.123), the feedback controller pair Ū1(t),Ū2(t):




Ū1(t)

Ū2(t)


=

∫ 1

−1




F1(y)

F2(y)


 ˆ̄u(y, t)dy (6.131)

with the gains F1,F2 defined in (8.75),(8.76) will stabilize (ū, ˆ̄u)≡ 0 exponentially in the L2 sense

– that is, there exist constants ¯̄
Π, ¯̄γ > 0 such that

∣∣∣∣(ū, ˆ̄u)(·, t)
∣∣∣∣

L2 ≤ ¯̄
Πexp(̄̄γ(t− t0))

∣∣∣∣(ū, ˆ̄u)(·, t0)
∣∣∣∣

L2 (6.132)

Proof. The output feedback control law (6.131) is rewritten in the (ū, ˜̄u) coordinates (recalling
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that ˜̄u := ū− ˆ̄u):




Ū1(t)

Ū2(t)


=

∫ 1

−1




F1(y)

F2(y)


 ū(y, t)dy+

∫ 1

−1




F1(y)

F2(y)


 ˜̄u(y, t)dy (6.133)

Applying the transformations (6.19),(6.41) will yield the same target system (6.44),(6.45), with

the modified boundary condition

Ω(1, t) =
∫ 1

−1




F1(y)

F2(y)


 ˜̄u(y, t)dy (6.134)

Applying the Cauchy-Schwarz inequality and the bound from Theorem 18, we can bound this

boundary condition in the following manner:

||Ω(1, t)||2 ≤ ˇ̄
Π

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣




F1(y)

F2(y)




∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
L2

|| ˜̄u(·, t0)||L2

× exp(−γ̌min(t− t0)) (6.135)

Following the proof of Lemma 23 and Theorem 24, one can arrive at the following inequality on

the L2 norm of the system state:

||ū(·, t)||L2 ≤ Π̄exp(−γ̄(t− t0)) ||ū(·, t0)||L2

+ ˆ̄
Πexp

(
−min{γ̄, γ̌}(t− t0)

)
|| ˜̄u(·, t0)||L2 (6.136)

where

ˆ̄
Π = (1+ ||p||L2 + ||q||L2)(1+ ||K||L2)
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×

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣




F1

F2




∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
L2

ˇ̄
Π√

2|γ̄− γ̌max|
(6.137)

Taking the root sum square of (6.125) and (6.136), one can arrive at an exponential stability result

for (ū, ˜̄u):

||(ū, ˜̄u)(·, t)||L2 ≤ ˜̃
Πexp

(
− ¯̄γ(t− t0)

)
||(ū, ˜̄u)(·, t0)||L2 (6.138)

where

˜̃
Π = max{Π̄, ˆ̄

Π+ ˇ̄
Π} (6.139)

¯̄γ = min{γ̄, γ̌} (6.140)

Finally, transforming back into the (ū, ˆ̄u) coordinates, (6.132) can be recovered, with ¯̄
Π= 4 ˜̃

Π.

6.4 Gain kernel well-posedness studies

A necessary and sufficient condition for the invertibility of (6.19), (6.41) (and their

respective inverse transforms) is the existence of bounded kernels K, p,q on their respective

domains. It is not trivially obvious that the kernel PDEs (6.26)-(6.29), (8.47),(8.48) are well-

posed. The goal of this section is to establish and characterize the existence and uniqueness (and

regularity) properties of these kernel PDEs.
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6.4.1 Well-posedness of K

For K, we note that the kernel PDE is very similar to that of [45], and thus apply an

adjusted approach to (6.26)-(6.28), (6.34). We use the following definition:

Ǩ(x,y) =
√

E∂xK(x,y)+∂yK(x,y)
√

E (6.141)

which allows us to transform the 2×2 system of 2nd-order hyperbolic PDE K into the following

2× 2× 2 1st-order hyperbolic PDE system (K, Ǩ). Due to G possessing triangular structure

(8.25) (a result of Assumption 8.2), we can separate the kernel PDEs into cascading sets of PDE

systems.

Well-posedness of first row K, Ǩ: (k1i, ǩ1i)

The first set of kernel PDEs we study is (k11,k12, ǩ11, ǩ12). These kernels comprise an

autonomous system of first-order hyperbolic PDEs on a bounded triangular domain, and are

linear and x-invariant PDEs. Thus, our expectation is that the energy of a (potentially weak)

solution can only grow (in x) at an exponential rate at best.

The component-wise kernels are

√
ε1∂xk11(x,y)+

√
ε1∂yk11(x,y) = ǩ11(x,y) (6.142)

√
ε1∂xk12(x,y)+

√
ε2∂yk12(x,y) = ǩ12(x,y) (6.143)

√
ε1∂xǩ11(x,y)−

√
ε1∂yǩ11(x,y) = (λ1(y)+ c1)k11(x,y) (6.144)

√
ε1∂xǩ12(x,y)−

√
ε2∂yǩ12(x,y) = (λ2(y)+ c1)k12(x,y) (6.145)

with boundary conditions

k11(x,0) =
aε2

ε1(aε2 +
√

ε1ε2)
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×
∫ x

0

√
ε1ǩ11(y,0)+

√
ε2ǩ12(y,0)dy (6.146)

k12(x,0) =
1

aε2 +
√

ε1ε2

×
∫ x

0

√
ε1ǩ11(y,0)+

√
ε2ǩ12(y,0)dy (6.147)

k12(x,x) = 0 (6.148)

ǩ11(x,x) =−
λ1(x)+ c1

2
√

ε1
(6.149)

ǩ12(x,x) = 0 (6.150)

The system of kernel equations (k1i, ǩ1i) is self contained. Due to Assumption 8.2, the characteris-

tics of the kernel equations k12, ǩ12 will have sub-unity slope, in turn neccessitating two boundary

condtions on k12 at the y = 0 and y = x boundaries.

Lemma 20. The system of first-order hyperbolic PDEs (8.94)-(8.97) and associated boundary

conditions admit a unique set of k11,k12 ∈C2(T ), ǩ11, ǩ12 ∈C1(T ) solutions.

Proof. With a direct application of the method of characteristcs to (8.94)-(8.97), Volterra-type

integral equations can be recovered:

k11(x,y) = c1a3
∫ x−y

0

√
ε1ǩ11(z,0)+

√
ε2ǩ12(z,0)dz

+
∫ √

ε
−1
1 y

0
ǩ11(
√

ε1z+ x− y,
√

ε1z)dz (6.151)

k12(x,y) =





k12,l
√

ε1y≤√ε2x

k12,u
√

ε1y≥√ε2x
(6.152)

ǩ11(x,y) =−
λ1
(x+y

2

)
+ c1

2
√

ε1

+
∫ x−y

2√ε1

0

(
λ1

(
−√ε1z+

x+ y
2

)
+ c1

)

× k11

(√
ε1z+

x+ y
2

,−√ε1z+
x+ y

2

)
dz (6.153)
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ǩ12(x,y) =
∫ x−y√

ε1+
√

ε2

0
λ2(−

√
ε2z+σ3(x,y)+ c1)

× k12(
√

ε1z+σ3(x,y),−
√

ε2z+σ3(x,y))dz (6.154)

where k12,u,k12,l is defined by

k12,l(x,y) =
∫

σ1(x,y)

0

√
ε1ǩ11(z,0)+

√
ε2ǩ12(z,0)dz

+
∫ √

ε
−1
2 y

0
ǩ12(
√

ε1z+σ1(x,y),
√

ε2z)dz (6.155)

k12,u(x,y) =
∫ x−y√

ε1−
√

ε2

0
ǩ12(
√

ε1z+σ2(x,y),

√
ε2z+σ2(x,y))dz (6.156)

and the functions σi given by

σ1(x,y) =
√

ε
−1
2 (
√

ε2x−√ε1y) (6.157)

σ2(x,y) = (
√

ε1−
√

ε2)
−1(
√

ε1y−√ε2x) (6.158)

σ3(x,y) = (
√

ε1 +
√

ε2)
−1(
√

ε2x+
√

ε1y) (6.159)

From substituting (6.154) into (6.152) on the domain Tu := {(x,y) ∈R2|0≤
√

ε2/ε1x≤ y≤ x≤

1}, one can immediately notice k12,u(x,y) = ǩ12(x,y)≡ 0,(x,y) ∈ Tu.

Using (6.151)-(6.154), the following integral equation relations can be established:




k11

k12


= Γ1







ǩ11

ǩ12





 := I1







ǩ11

ǩ12





(x,y)+Ψ1(x,y) (6.160)




ǩ11

ǩ12


= Γ2







k11

k12





 := I2







k11

k12





(x,y)+Ψ2(x,y) (6.161)
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where the operators Γ1,Γ2 over (x,y) ∈ T ) encapsulate the affine integral equations (6.151)-

(6.154), and I1, I2 represent the linear part in k, ǩ, while Ψ1,Ψ2 represent the constant part. We

establish the following iteration via the method of successive approximations to recover a solution:




k11,n+1

k12,n+1


= (Γ1 ◦Γ2)







k11,n

k12,n





 (6.162)

The existence of a solution (k11,k12) through the iteration (6.162) will imply the existence of a

solution (ǩ11, ǩ12) via (6.161). To show that this iteration converges, we first define

∆k1,n :=




∆k11,n

∆k12,n


 :=




k11,n+1− k11,n

k12,n+1− k12,n


 (6.163)

Applying (6.163) to (6.162) and utilizing the properties of affine operators, one can recover the

following iteration for ∆k1,n:

∆k1,n+1 = (I1 ◦ I2)[∆k1,n](x,y) (6.164)

As Γ1 ◦Γ2 is a continuous mapping over the complete convex space of bounded continuous

functions, then the following statement holds via the Schauder fixed point theorem.

lim
n→∞




k11,n

k12,n


=




k11,0

k12,0


+

∞

∑
n=0

∆k1,n =




k11

k12


 (6.165)

Choosing k11,0 = k12,0 = 0, one can compute the following bound on ∆k1,0 directly:

||∆k1,0||1 ≤ (λ̄+ c1)
(

c1a3 + ε
−1
1 +1

)
x (6.166)
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where we have taken the liberty of defining

λ̄ := max{||λ1||L∞ , ||λ2||L∞}= ||λ||L∞ (6.167)

It is important to note that the norm ||∆k1,0||1 is the vector 1-norm and not the L1 function norm.

That is,

||∆k1,n||1 := |∆k11,n(x,y)|+ |∆k12,n(x,y)| (6.168)

By using (6.166) in (6.164), one can find the following bound on ||∆k1,n||1 indexed by iteration n:

||∆k1,n||1 ≤
2n((λ̄+ c1)(c1a3 + ε

−1
1 +1))n+1

(2n+1)!
x2n+1 (6.169)

Due to the bounded domain T , one can find uniform convergence properties (where the uniform

bound is simply evaluated for x2n+1 ≤ 1,∀x ∈ [0,1]). From (6.165),

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣




k11

k12




∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
1

≤
∞

∑
n=0

2n((λ̄+ c1)(c1a3 + ε
−1
1 +1))n+1

(2n+1)!
x2n+1 (6.170)

To recover the C2(T ) regularity, one can directly reference (6.165). Noting that the set Cn(T )

is closed under addition for n ∈ N along with the integral iteration (6.164), it is easy to see that

λ1,λ2 ∈C1([0,1]) generates the regularity k11,k12 ∈C2(T ).

Well-posedness of second row K, Ǩ: (k2i, ǩ2i)

The second set of kernels is (k21,k22, ǩ21, ǩ22). These feature the kernels k11,k12 acting as

source terms, however, by employing estimates of k11,k12 from Lemma 25, we can simplify the

system significantly. However, the structure of the problem is different, most notably in how the

characteristics evolve.
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To account for the different nature of these characteristics, we perform one more transfor-

mation on the kernels for k2i:

k̂2i(x,y) =
√

ε2∂xk2i(x,y)−
√

εi∂yk2i(x,y) (6.171)

where i ∈ {1,2}. We then turn our attention to the gain kernel system (k̂21, ǩ21, k̂22, ǩ22).

The component system of kernel PDEs for (k̂21, ǩ21, k̂22, ǩ22) is

√
ε2∂xk̂21(x,y)+

√
ε1∂yk̂21(x,y) = (λ1(y)+ c2)k21(x,y)

−g[k21](x)k11(x,y) (6.172)

√
ε2∂xk̂22(x,y)+

√
ε2∂yk̂22(x,y) = (λ2(y)+ c2)k22(x,y)

−g[k21](x)k12(x,y) (6.173)

√
ε2∂xǩ21(x,y)−

√
ε1∂yǩ21(x,y) = (λ1(y)+ c2)k21(x,y)

−g[k21](x)k11(x,y) (6.174)

√
ε2∂xǩ22(x,y)−

√
ε2∂yǩ22(x,y) = (λ2(y)+ c2)k22(x,y)

−g[k21](x)k12(x,y) (6.175)

subject to the following boundary conditions:

k̂21(x,0) =−
1−a2

1+a2 ǩ21(x,0)+
2a3

1+a2 ǩ22(x,0) (6.176)

k̂22(x,0) =
2

a(1+a2)
ǩ21(x,0)+

1−a2

1+a2 ǩ22(x,0) (6.177)

ǩ21(x,x) =−
√

ε1−
√

ε2√
ε1 +
√

ε2
k̂21(x,x) (6.178)

ǩ22(x,x) =−
λ2(x)+ c2

2
√

ε2
(6.179)
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where the inverse transformations are given to be

k21(x,y) =
1

2
√

ε2

∫ x

y
ǩ21(z,y)+ k̂21(z,y)dz (6.180)

k22(x,y) =−
∫ y

0

λ2(z)+ c2

2
√

ε2
dz

+
1

2
√

ε2

∫ x

y
ǩ22(z,y)+ k̂22(z,y)dz (6.181)

and the function g[k21](x) can be expressed in terms of k̂21, ǩ21:

g[k21](x) =
(ε2− ε1)

2
√

ε1
(ǩ21(x,x)− k̂21(x,x)) (6.182)

Without the estimates given by Lemma 25, the system of gain kernels would in fact be nonlinear,

a significantly harder problem.

Lemma 21. The system of first-order hyperbolic PDE (8.107)-(8.110) and associated boundary

conditions admit a unique set of k̂21, ǩ21, k̂22, ǩ22 ∈C1(T ) solutions.

Proof. The primary technical difficulty of this proof is incorporating the boundary conditions

(8.111),(8.113). While in standard integral equation solutions one can apply successive approxi-

mations to recover a convergent sum of monomial terms (in increasing powers), the trace term

g[k21](x) presents issues with this approach. Thus, we utilize an approach inspired from [5],[10]

involving a recursion relating to the finite volume of integration (of the domain T ).

We apply the method of characteristics to (8.107)-(8.110) to recover the following system

of coupled integro-algebraic equations:

k̂21(x,y) = k̂21 (σ4(x,y),0)+ Î21[k̂21, ǩ21](x,y) (6.183)

k̂22(x,y) = k̂22 (x− y,0)+ Î22[k̂22, ǩ22, k̂21](x,y)
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−
∫ y√

ε2

0

[
λ2(
√

ε2z)+ c2

2
√

ε2

×
∫ √

ε2z

0
(λ2(ξ)+ c2)dξ

]
dz (6.184)

ǩ21(x,y) = ǩ21 (σ5(x,y),σ5(x,y))+ Ǐ21[k̂21, ǩ21](x,y) (6.185)

ǩ22(x,y) = ǩ22

(
x+ y

2
,
x+ y

2

)
+ Ǐ22[k̂22, ǩ22, k̂21](x,y)

−
∫ x−y

2√ε2

0

[
λ2
(
−√ε2z+ x+y

2

)
+ c2

2
√

ε2

×
∫ −√ε2z+ x+y

2

0
(λ2(ξ)+ c2)dξ

]
dz (6.186)

where

σ4(x,y) := x−
√

ε2√
ε1

y (6.187)

σ5(x,y) :=
√

ε1x+
√

ε2y√
ε1 +
√

ε2
(6.188)

and the integral operators Î21, Î22, Ǐ21, Ǐ22 are defined

Î21[k̂21, ǩ21](x,y)

:=
∫ y√

ε1

0

[
− ε2− ε1√

ε1 +
√

ε2
k11(
√

ε2z+σ4(x,y),
√

ε1z)

× k̂21(
√

ε2z+σ4(x,y),
√

ε2 +σ4(x,y))

+
λ1(
√

ε1z)+ c2

2
√

ε2

∫ √
ε2z+σ4(x,y)

√
ε1z

(
ǩ21(ξ,

√
ε1z)

+ k̂21(ξ,
√

ε1z)
)

dξ

]
dz (6.189)

Î22[k̂22, ǩ22, k̂21](x,y)

:=
∫ y√

ε2

0

[
− ε2− ε1√

ε1 +
√

ε2
k12(
√

ε2z+ x− y,
√

ε2z)

× k̂21(
√

ε2z+ x− y,
√

ε2 + x− y)
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+
λ2(
√

ε2z)+ c2

2
√

ε2

(∫ √
ε2z+x−y

√
ε2z

(
ǩ22(ξ,

√
ε2z)

+ k̂22(ξ,
√

ε2z)
)

dξ

)]
dz (6.190)

Ǐ21[k̂21, ǩ21](x,y)

:=
∫ x−y√

ε1+
√

ε2

0

[
− ε2− ε1√

ε1 +
√

ε2
k11(
√

ε2z+σ5(x,y)

,−√ε1z+σ5(x,y))

× k̂21(
√

ε2z+σ5(x,y),
√

ε2 +σ5(x,y))

+
λ1(−

√
ε1z+σ5(x,y))+ c2

2
√

ε2

×
∫ √

ε2z+σ5(x,y)

−√ε1z+σ5(x,y)

(
ǩ21(ξ,−

√
ε1z+σ5(x,y))

+ k̂21(ξ,−
√

ε1z+σ5(x,y))
)

dξ

]
dz (6.191)

Ǐ22[k̂22, ǩ22, k̂21](x,y)

:=
∫ x−y

2√ε2

0

[
− ε2− ε1√

ε1 +
√

ε2

× k12

(√
ε2z+

x+ y
2

,−√ε2z+
x+ y

2

)

× k̂21

(√
ε2z+

x+ y
2

,
√

ε2 +
x+ y

2

)

+
λ2
(
−√ε2z+ x+y

2

)
+ c2

2
√

ε2

×
(∫ √

ε2z+ x+y
2

−√ε2z+ x+y
2

(
ǩ22

(
ξ,−√ε2z+

x+ y
2

)

+ k̂21

(
ξ,−√ε2z+

x+ y
2

))
dξ

)]
dz (6.192)

From enforcing (8.111)-(8.114) on (8.118)-(8.121) recursively, one can eventually arrive

at an integral equation system representation for (k̂21, k̂22, ǩ21, ǩ22) involving infinite sums of

integral operators. The infinite sums appear due to the reflection boundary conditions
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x

y

1

y 
= x

σ4(x,y)δ1σ4(x,y)

k21(x,y)

δ1
2σ4(x,y)

...

k21(x,y)

k21(x,y)

k22(x,y)

k22(x,y)

̂

̂

ˇ

ˇ

k22(x,y)

Figure 6.2: Characteristics of k̂21, k̂22, ǩ21, ǩ22 featuring an infinite number of reflection boundary
conditions.

(8.111),(8.113) observed in the system.

k̂21(x,y) =

lim
n→∞

[
−δ

n
1δ

n+1
2 ǩ21 (δ

n
1σ4(x,y),0)

+δ
n
1δ

n
2

2a3

1+a2 ǩ22(δ
n
1σ4(x,y),0)

]

−
∞

∑
n=0

[
δ

n
1δ

n
2

2a3

1+a2

(
λ2(δ

n
1σ4(x,y))+ c2

2
√

ε2

122



+
∫ 1

2√ε2
δn

1σ4(x,y)

0

(
λ2(−

√
ε1z+ 1

2δn
1σ4(x,y))+ c2

2
√

ε2

×
∫ −√ε2z+ 1

2 δn
1σ4(x,y)

0
(λ2(ξ)+ c2)dξ

)
dz
)]

+
∞

∑
n=0

[
δ

n
1δ

n
2Î21[k̂21, ǩ21](δ

n
3σ4(x,y),δn

3σ4(x,y))

−δ
n
1δ

n+1
2 Ǐ21[k̂21, ǩ21](δ

n
1σ4(x,y),0)

+δ
n
1δ

n
2

2a3

1+a2 Ǐ22[k̂22, ǩ22, k̂21](δ
n
1σ4(x,y),0)

]

+ Î21[k̂21, ǩ21](x,y) (6.193)

k̂22(x,y) =

2
a(1+a2)

lim
n→∞

[
δ

n
1δ

n
2ǩ21(δ

n
1(x− y),0)

]

−δ2

(
λ2
(x−y

2

)
+ c2

2
√

ε2

)

+
4a2

(1+a2)2

∞

∑
n=1

[
(−1)n

δ
n
1δ

n
2

(
λ2(δ

n
1(x− y))+ c2

2
√

ε2

−
∫

δn
3

x−y
2√ε2

0

[
λ2
(
−√ε2z+δn

3
x−y

2

)
+ c2

2
√

ε2

×
∫ −√ε2z+δn

3
x−y

2

0
(λ2(ξ)+ c2)dξ

]
dz
)]

+
2

a(1+a2)

∞

∑
n=1

[
(−1)n

δ
n
1δ

n−1
2

× Î21[k̂21, ǩ21](δ
n
3(x− y),δn

3(x− y))

+δ
n−1
1 δ

n−1
2 Ǐ21[k̂21, ǩ21](δ

n
1(x− y),0)

+(−1)n
δ

n
1δ

n−1
2

2a
1+a3 Ǐ22[k̂22, ǩ22, k̂21](δ

n
3(x− y),0)

]

+δ2Ǐ22[k̂22, ǩ22, k̂21](x− y,0)+ Î22[k̂22, ǩ22, k̂21](x,y)

−
∫ y√

ε2

0

[
λ2(
√

ε2z)+ c2

2
√

ε2

∫ √
ε2z

0
(λ2(ξ)+ c2)dξ

]
dz

−
∫ x−y

2√ε2

0
δ2

[
λ2
(
−√ε2z+ x−y

2

)
+ c2

2
√

ε2
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×
∫ −√ε2z+ x−y

2

0
(λ2(ξ)+ c2)dξ

]
dz (6.194)

ǩ21(x,y) =

lim
n→∞

[
δ

n
1δ

n
2ǩ21(δ

n
1σ5(x,y),δn

1σ5(x,y))
]

+
∞

∑
n=0

[
δ

n+1
1 δ

n
2

(
λ2

(
1
2

δ1
δ3

δn
1σ5(x,y)

)
+ c2

2
√

ε2

−
∫ δ1

δ3
δn

1
σ5(x,y)
2√ε2

0

[
λ2

(
−√ε2z+ δ1

δ3
δn

1
σ5(x,y)

2

)
+ c2

2
√

ε2

×
∫ −√ε2z+ δ1

δ3
δn

1
σ5(x,y)

2

0
(λ2(ξ)+ c2)dξ

]
dz
)]

+
∞

∑
n=0

[
−δ

n+1
1 δ

n
2Î21[k̂21, ǩ21](δ

n
1σ5(x,y),δn

1σ5(x,y))

− 2a3

1+a2 δ
n+1
1 δ

n
2Ǐ22[k̂22, ǩ22, k̂21]

(
δ1

δ3
δ

n
1σ5(x,y),0

)

+δ
n+1
1 δ

n+1
2 Ǐ21[ǩ21, k̂21]

(
δ1

δ3
δ

n
1σ5(x,y),0

)]

+ Ǐ21[k̂21, ǩ21](x,y) (6.195)

ǩ22(x,y) =

− λ2(
x+y

2 )+ c2

2
√

ε2
+ Ǐ22[k̂22, ǩ22, k̂21](x,y)

−
∫ x−y

2√ε2

0

[
λ2
(
−√ε2z+ x+y

2

)
+ c2

2
√

ε2

×
∫ −√ε2z+ x+y

2

0
(λ2(ξ)+ c2)dξ

]
dz (6.196)

where δ1,δ2 are defined

δ1 =

√
ε1−
√

ε2√
ε1 +
√

ε2
(6.197)

δ2 =
1−a2

1+a2 (6.198)
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δ3 =

√
ε1√

ε1 +
√

ε2
(6.199)

Since a < 1,ε1 > ε2 as per Assumption 8.2, the coefficients δ1,2,3 ∈ (0,1). It is unclear initially

whether the limit and infinite sum terms are convergent, however, as one may notice from Figure

6.2, the contracting volume of integration and the reflection coefficients (appearing in the δi

coefficients) will guarantee convergence.

Like in the proof of Lemma 25, we will define the integral equations (8.128)-(8.131) in

terms of operators for notational compactness. Let k2 :=
(

k̂21, k̂22, ǩ21, ǩ22

)
, and

k2 = I3[k2](x,y)+Θ[k2](x,y)+Ψ3(x,y) (6.200)

where I3 is the operator involving the integral operators Î2i, Ǐ2i, Θ is the operator involving limits,

and Ψ3 collects the terms independent of k̂2i, ǩ2i. We establish an iteration k2,n as

k2,n+1 = I3[k2,n](x,y)+Θ[k2,n](x,y)+Ψ3(x,y) (6.201)

with the iteration residual ∆k2,n := k2,n+1− k2,n defining the iteration

∆k2,n+1 = I3[∆k2,n](x,y)+Θ[∆k2,n](x,y) (6.202)

We note that (6.200) is a continuous mapping over the complete (convex) metric space of bounded

continuous functions (via the Schauder fixed point theorem), and make the following statement:

lim
n→∞

k2,n = k2,0 +
∞

∑
n=0

∆k2,n = k2 (6.203)
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Supposing that k2,0 = 0,

||∆k2,0||1 = ||Ψ3||1 ≤
(

λ̄+ c2

2
√

ε2
+

1
2

(
λ̄+ c2

2
√

ε2

)2)

×
(

1+
1

1−δ1δ2
+

2a3

1+a2
1

1−δ1δ2

+
4a2

(1+a2)2
1

1−δ1δ2

)

≤ Ψ̄3,0 (6.204)

From iterating ||∆k2,0||1 through (6.202), one can achieve successive bounds on ∆k2,n:

||∆k2,n||1 ≤
1
n!

[
3
((

1+
2

1−δ1δ2

)
+

2
a(1+a2)

1
1−δ1δ2

)

×
(

a−1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣




k11

k12




∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
1,L∞

+
λ̄+ c2

ε2

)]n

Ψ̄3,0xn (6.205)

We remark that it is easy to see for any polynomial bound ||∆k2,n||1, ||Θ[∆k2,n](x,y)||1 ≤ 0 due

to continuity (and boundedness). Then, via (6.203) and noting x ∈ [0,1], we can arrive at the

following bound on k2:

||k2||1 ≤
∞

∑
n=0
||∆k2,n||1 (6.206)

which is the power series representation of an exponential bound. The regularity of the solution

k2 is also derived from (6.203), where noting that the initial choice of k2,0 = 0 admits ∆k2,0 = Ψ3,

which is C1(T ) as it involves sums of λ2 ∈ C1([0,1]). Then from (8.115),(8.116), a single

integration yields k21,k22 ∈C2(T ).
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6.4.2 Well-posedness of p,q,r

As aformentioned, the (p,q,r)-system of kernel PDEs comprise a fairly interesting

structure, the heart of which is a wave equation with an interface, whereby forcing is introduced

via the differential transmission condition (6.50) at the interface. It is quite trivial to see that if

one can show a solution exists for q, then necessarily, a solution p must exist as well.

To faciliate the study of the kernels, we will apply the Riemann invariant transformation

as before found in the K kernel. As q,r share congruent characteristics, the solution method is

much more straightforward and involves tracing characteristics through the square T ∪Tu.

In this section, we have used the relation (8.47) to reduce the (p,q,r) system to (q,r),

albeit at the cost of introducing trace terms into the q-PDE.

We begin by apply the following definition to derive the Rienmann invariants:

q̂(x,y) =
√

ε2∂xq(x,y)−√ε1∂yq(x,y) (6.207)

q̌(x,y) =
√

ε2∂xq(x,y)+
√

ε1∂yq(x,y) (6.208)

which admit the following coupled PDEs for (q̂, q̌) defined on T :

√
ε2∂xq̂(x,y)+

√
ε1∂yq̂(x,y) = Iq[q̂, q̌](x,y) (6.209)

√
ε2∂xq̌(x,y)−√ε1∂yq̌(x,y) = Iq[q̂, q̌](x,y) (6.210)

where the operator Iq[q̂, q̌] is a linear integral operator defined as

Iq[q̂, q̌](x,y) =
c2− c1

2
√

ε2

∫ x

0
q̌(z,0)dz

+
c2− c1

2
√

ε1

∫ y

0
(q̌(x,z)− q̂(x,z))dz

+
a−1g[k21](y)

2
√

ε2

∫ x−y

0
q̌(z,0)dz (6.211)
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In a similar manner, we define the Riemann invariants for r on Tu:

r̂(x,y) =
√

ε2∂xr(x,y)−√ε1∂yr(x,y) (6.212)

ř(x,y) =
√

ε2∂xr(x,y)+
√

ε1∂yr(x,y) (6.213)

which admits the coupled PDE:

√
ε2∂xr̂(x,y)+

√
ε1∂yr̂(x,y) = Ir[r̂, ř](x,y) (6.214)

√
ε2∂xř(x,y)−√ε1∂yř(x,y) = Ir[r̂, ř](x,y) (6.215)

where Ir[r̂, ř] is a linear integral operator defined as

Ir[r̂, ř](x,y) =
c2− c1

2
√

ε2

∫ x

0
(r̂(z,y)+ ř(z,y))dz (6.216)

The PDEs given by (6.209),(6.210),(6.214),(6.215) are subject to the following boundary

conditions, which consist of transmission and reflection boundary conditions:

q̂(x,0) = 0 (6.217)

q̌(x,x) = ř(x,x)− (
√

ε1 +
√

ε2)
−1g[k21](x) (6.218)

r̂(0,y) = ř(0,y) = 0 (6.219)

r̂(x,x) = q̂(x,x)− (
√

ε1−
√

ε2)
−1g[k21](x) (6.220)

ř(x,1) =−r̂(x,1) (6.221)

An additional condition employed implicity in the derivation of (q̂, q̌, r̂, ř) is the following point

condition:

q(0,0) = r(0,0) = 0 (6.222)
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Lemma 22. The system of first-order hyperbolic PDE (6.209),(6.210),(6.214),(6.215) with asso-

ciated boundary conditions admit a unique set of solutions (q̂, q̌) ∈C1(T ) and (r̂, ř) ∈C1(Tu).

Proof. We can directly apply the method of characteristics to (6.209),(6.210),(6.214),(6.215) to

recover the following linear integral equations:

q̂(x,y) =
∫ y√

ε1

0
Iq[q̂, q̌](σ6(x,y)+

√
ε2z,
√

ε1z)dz (6.223)

q̌(x,y) = ř(σ7(x,y),σ7(x,y))

− (
√

ε1 +
√

ε2)
−1g[k21](σ7(x,y))

+
∫ x−y√

ε1+
√

ε2

0
Iq[q̂, q̌](

√
ε2z+σ7(x,y),

−√ε1z+σ7(x,y))dz (6.224)

where σ6,σ7,σ8 are defined as

σ6(x,y) = x−
√

ε2

ε1
y (6.225)

σ7(x,y) =
√

ε1x+
√

ε2y√
ε1 +
√

ε2
(6.226)

while for r̂, ř, we recover piecewise defined linear integral equations which arises due to the

mixing of initial and boundary conditions.

r̂(x,y) =





r̂l(x,y) x≤
√

ε2/ε1y

0 x >
√

ε2/ε1y
(6.227)

ř(x,y) =





řu(x,y) x≤
√

ε2/ε1

řl(x,y)
√

ε2/ε1 < x≤
√

ε2/ε1

0 x <
√

ε2/ε1y

(6.228)
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where

r̂l(x,y) = q̂(σ8(x,y),σ8(x,y))

− (
√

ε1−
√

ε2)
−1g[k21](σ8(x,y))

+
∫ y−x√

ε1−
√

ε2

0
Ir[r̂, ř](

√
ε2z+σ8(x,y),

√
ε1z+σ8(x,y))dz (6.229)

řu(x,y) =−r̂(σ9(x,y),1)

+
∫ 1−y√

ε1

0
Ir[r̂, ř](

√
ε2z+σ9(x,y),

−√ε1z+1)dz (6.230)

řl(x,y) =
∫ √

ε1−
√

ε2
2√ε1

0
Ir[r̂, ř](

√
ε2z+σ10(x,y),

−√ε1z+σ10(x,y))dz (6.231)

with σ8,σ9,σ10 defned as

σ8(x,y) =
√

ε1x−√ε2y√
ε1−
√

ε2
(6.232)

σ9(x,y) = x+
√

ε2

ε1
(y−1) (6.233)

σ10(x,y) = x+
√

ε2

ε1
y (6.234)

To study the well-posedness q̂, q̌, r̂, ř system, it is helpful to study the characteristics

geometrically, which are depicted in Figure 6.3.

Much like the analysis of the K kernel, we establish the following operator representation

for the affine integral equations that govern ρ := (q̂, q̌, r̂, ř):

ρ = Γ3[ρ](x,y) := I4[ρ](x,y)+Ψ4(x,y) (6.235)
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Figure 6.3: Solution characteristics of q̂, q̌, r̂, ř. An interface between the solutions exists at
y = x defining a jump discontinuity. Because of the initial conditons imposed, r̂ = ř = 0 in the
shaded triangle.

where analogous to before, Γ3 encapsulates the affine integral equations given by (6.223),(6.224),

(6.227),(6.228). We separate the operator into the linear operator I4 and the constant Ψ4. Ψ4 is

evaluated to be

Ψ4(x,y) :=
(

0 Ψ4,1(x,y) Ψ4,2(x,y) Ψ4,3(x,y)

)T

(6.236)

Ψ4,1(x,y) = (
√

ε1−
√

ε2)
−1

×g[k21](σ8(σ9(σ7(x,y),σ7(x,y)),1))

− (
√

ε1 +
√

ε2)
−1g[k21](σ7(x,y))

Ψ4,2(x,y) =−(
√

ε1−
√

ε2)
−1g[k21](σ8(x,y))

Ψ4,3(x,y) = (
√

ε1−
√

ε2)
−1g[k21](σ8(σ9(x,y),1))
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Intuitively, one can understand Ψ4 to represent the nonzero data of the problem. If, perchance the

folding point is chosen y0 = 0, then g[k21]≡ 0⇔Ψ4 ≡ 0. It is precisely the unmatched artifact

from the first transformation, g[k21], that acts as the sole forcing to the (q,r) PDE, as expected.

We carry out the same methodology as for K, and establish an iteration ρk for n ∈ N:

ρn+1 = I4[ρn](x,y)+Ψ4(x,y) (6.237)

The residual ∆ρn := ρn+1−ρn will obey the following linear integral equation,

∆ρn = I4[∆ρn](x,y) (6.238)

which arises from abusing the linear property of I4. We note that in the complete space of bounded

continuous functions, the iteration (6.237) will converge (via the Schauder fixed point theorem) if

we can show uniform Cauchy convergence. The iteration limit thus can be rewritten as an infinite

summation:

lim
n→∞

ρn = ρ0 +
∞

∑
n=0

∆ρn = ρ (6.239)

It is quite clear from imposing (6.237),(6.238) that by choosing ρ0 = 0, ∆ρ0 can be computed to

be

∆ρ0 = Ψ4

⇒ ||∆ρ0||1 = ||Ψ4||1 ≤
4
√

ε1 +2
√

ε2

ε1− ε2
||g[k21]||L∞ (6.240)

From using (6.240) in the iteration (6.238), one can find the successive bounds on the residuals:

||∆ρn||1 ≤
1
n!

(
2ε
−1
2 (2|c1− c2|+ ||g[k21]||L∞

2
x

)n

||Ψ4||1 (6.241)
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Noting (6.239), it is quite trivial to see that ρ is bounded (in vector 1-norm) by an exponential.

This guarantees the existence of a solution ρ, and thus (q̂, q̌, r̂, ř) admit a solution. In fact, due

to the linearity of the PDEs (6.209),(6.210),(6.214),(6.215), it is not difficult to show that this

solution is also unique.

6.5 Folding point analysis and numerical study

Table 6.1: Simulation parameters

Parameter Value
ε 1

λ(x) −4x2−2x+6
y0 −0.05,−0.30
ŷ0 0.05,−0.45

c1,c2 5
č1, č2 1

The parameters chosen for simulation are given in Table 6.1. λ is specifically chosen to

not be symmetric about x = 0, and actually attains a maximum at x =−0.25. This is motivated

by the intuition that choosing a folding point not at the point of symmetry x = 0 may afford better

performance according a preferred index. It is also important to note that c1,c2, č1, č2 all influence

the system response in some manner that is not wholly independent from the choices y0, ŷ0.

6.5.1 Folding point selection

It is difficult to directly characterize the size of the controller gains F1,F2 (defined in

(8.75),(8.76)), but one may glean intuition for how the controllers grow based upon what the

bounds on the gain kernels suggest.

As one may note from Figure 6.4, the control gains are not necessarily continuous at the

selected folding point. Surely, as y0→ 0 (the point of symmetry), one recovers the continuous

case. However, as the folding point is chosen to be more and more biased (for the same set of
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Figure 6.4: Numerically computed gains for given reaction coefficient λ for three separate
folding cases: (red) y0 =−0.05, (green) y0 =−0.15, (blue) y0 =−0.30

target system reaction coefficients ci), one control gain grows smaller (less effort) while the other

is magnified (more effort).

Although not provable, the bounds (6.170),(6.206),(6.241) suggest this behavior as well.

In (6.170), the bound on the controller gains k1i arise as an exponential in a3. In (6.206),(6.241),

the control gains k2i, p,q are parametrized (exponentially as well) in a−1.

6.5.2 Numerical results for output-feedback

Due to the choice of a sufficiently large positive λ, the open-loop system is unstable and

therefore necessitates feedback control. Two choices of control folding points y0 and two choices

of measurement points ŷ0 are simulated, with the control folding point y0 marked in red and the

measurement point ŷ0 marked in blue.

Comparing Figures 6.5, 6.7 with Figurues 6.6,6.8 gives insight to how changing the
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Figure 6.5: Closed-loop response u(x, t) with folding points chosen to be y0 =−0.05, ŷ0 = 0.05.

control folding point affects the response – the controller U1 has a lower peak value in the biased

case (Figure 6.6,6.8) than that of the close-to-symmetric case (Figure 6.5,6.7). However, it is

quite clear to note that the controller U2 pays the cost in having a much higher peak value.

Comparing Figures 6.5,6.6 with Figures 6.7,6.8 gives insight to how changing the mea-

surement point ŷ0 affects the system response. One can note that the closer the measurement is to

the boundary, the performance will improve (uniformly).

The controller responses are given in Figures 6.13,6.14. It can be noted that the selection

of the control folding point appears to suggest an inherent waterbed effect in L2 versus L∞ (in time.

The numerical simulations suggest that as y0→−1 (the biased case), the controller improves

in the L2 sense at the cost of the peak value. Conversely, as y0→ 0 (the symmetric case), the

controller improves in the L∞ sense at the cost of the convergence speed (related to L2).
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Figure 6.6: Closed-loop response u(x, t) with folding points chosen to be y0 =−0.30, ŷ0 = 0.05.

6.6 Conclusion

A methodology for designing output feedback bilateral boundary controllers for linear

parabolic class PDEs is generated as the main result of the paper. Compared with existing bilateral

control designs for parabolic PDEs, the folding appraoch affords additional design degrees of

freedom in not only control but also estimator design.

The primary advantage that the folding approach admits is a generalization of bilateral

control design. A design for a given performance index e.g. energy (L2) or boundedness (L∞) can

be achieved in a straightforward manner. The unilateral control design is recoverable in the limit

from the folding control design; therefore, the design is far more flexible as a methodology.

Without explicit solutions to the gain kernel equations, the effect of the design parameters

on system response is difficult to quantify. However, numerical analysis is given which suggests

at least qualitative intuition for selecting folding points for desired behavior. A waterbed effect is
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Figure 6.7: Closed-loop response u(x, t) with folding points chosen to be y0 = −0.05, ŷ0 =
−0.45.

noted, in which the controller energy (L2) exhibits an inherent trade off with boundedness (L∞).

The observer result as a stand alone result is particularly interesting theoretically, as it no

longer technically falls within the “boundary” observer design any more. Of future interest is

developing methodology for design of estimators with arbitrarily placed measure zero measur-

ments in the interior. One may even begin to ask more fundamental questions about conditions

about the number of measurements needed to make and allowable locations, because it is not

immediately obvious how either affects the observability of the system.

The folding approach also opens the door to potential results involving 1-D PDEs ex-

hibiting coupling structures at points on the interior, as opposed to spatially distributed coupling

or boundary coupling. An extension to the folding framework, involving an unstable ODE

coupled on an arbitrary point on the interior, is explored in [14]. Certainly, one may begin to

explore additional couplings, which involve feedback coupling between the unstable ODE and
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Figure 6.8: Closed-loop response u(x, t) with folding points chosen to be y0 = −0.30, ŷ0 =
−0.45.

the parabolic PDE, or even coupling other 1-D PDEs at the boundary.
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Figure 6.10: Observer error ũ(x, t) with folding points chosen to be y0 =−0.30, ŷ0 = 0.05.
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Figure 6.11: Observer error ũ(x, t) with folding points chosen to be y0 =−0.05, ŷ0 =−0.45.
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Figure 6.12: Observer error ũ(x, t) with folding points chosen to be y0 =−0.30, ŷ0 =−0.45.
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Figure 6.13: Comparison of control effort by left controller (U1(t)) over different folding
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Chapter 7

A Folding Approach to Bilateral Control of

a 1-D Unstable Parabolic PDE with

Distinct Input Delays

7.1 Introduction

We return to the problem investigated in Chapter 5 involving bilateral control design for

a 1-D parabolic PDE subject to distinct input delays. However, rather than to resort to using

artifical delay (an infinite-dimensional analogue to dynamic extension), we will apply the folding

approach developed in the previous chapter to admit a system representation that can account for

the distinctness of the input delays without using artifical delay.

Bilateral backstepping control is a relatively new concept, but one that is naturally

interpreted and has much relevance. Bilateral control for partial differential equations can

open the door to fault-tolerant designs (in the case one actuator fails). An additional benefit

is that the presence of a second actuator can lead to less control effort per actuator, and thus

extending the operating life cycle of the system significantly. Lastly, as one can intuit, the single
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acutator case falls under the bilateral control case, and thus, one can see that bilateral control

is the natural extension to pre-existing backstepping boundary control. Previously, bilateral

backstepping control has been initially developed by [43] for both parabolic and second-order

hyperbolic equation cases, and the previous work by the author in [15]. Other results in bilateral

control have been explored in first-order hyperbolic system contexts ([5],[4]), and most recently,

in a parabolic context of trajectory tracking for a viscous Hamilton-Jacobi equation [8].

Input delay is a more commonly studied field, as it has direct relevance to many control

problems (existing as actuator, communication, computational delays). There exists a wide swath

of literature exploring many different variations of delay problems casted as partial differential

equations, but relatively few in input delay for parabolic equations. A large part of this is due to

the mixed-class nature of these problems, as they entail a coupled system of a delay (hyperbolic)

with the physical plant (parabolic). Interestingly, the gain PDE to be solved that arises from these

types of problems maintain the mixed-class character of the plant (as opposed to homogeneous

class systems, which always have a hyperbolic gain PDE). The most basic case of this mixed-class

system has been explored in [28], where an unstable diffusion-reaction equation is considered

with an arbitrariliy long input delay. This work was further extended in [12], where unidirectional

in-domain coupling was next considered for systems of mixed-class type.

In this paper, we solve the problem of having distinct input delays to the bilateral control

problem for an unstable parabolic equation via the method of folding.

7.2 Model and “folding” transformation

We consider the problem of an unstable diffusion-reaction equation with distinct input

delays Dv,Dw > 0.

∂tu(y, t) = ε∂yyu(y, t)+λ(y)u(y, t) (7.1)
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∂xu(−1, t) = U1(t−Dv) (7.2)

∂xu(1, t) = U2(t−Dw) (7.3)

with y ∈ (−1,1). It is well known that delays can be represented with first-order hyperbolic PDEs.

We rewrite the delays found in (7.2),(7.3) as first-order hyperbolic PDEs:

∂tv(x, t) =−∂xv(x, t) (7.4)

∂tw(z, t) = ∂zw(z, t) (7.5)

v(−1−Dv, t) = U1(t) (7.6)

w(1+Dw, t) = U2(t) (7.7)

Where x ∈ (−1−Dv,−1),z ∈ (1,1+Dw). Thus, (7.2),(7.3) become

∂xu(−1, t) =−v(−1, t) (7.8)

∂xu(1, t) = w(1, t) (7.9)

We select an arbiitary point y0 ∈ (−1,1) to “fold” the parabolic equation (7.1) around. We first

use the following piecewise definition of u(y, t) as:

u(y, t) =





u1(y, t) y ∈ (−1,y0)

u2(y, t) y ∈ (y0,1)
(7.10)

and define the following spatial transformations in x,y,z:

x1 = (y0− y)/(1+ y0) y ∈ (−1,y0) (7.11)

x2 = (y− y0)/(1− y0) y ∈ (y0,1) (7.12)
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x3 =−
1

Dv
(x+1)+1 (7.13)

x4 =
1

Dw
(z−1)+1 (7.14)

Note that x1,x2 ∈ [0,1] and x3,x4 ∈ [1,2]. This set of scaling and folding transformations will

allow us to map the system (7.1)-(7.8) into the following system in matrix form:

∂tU(x, t) = E∂xxU(x, t)+Λ(x)u(x, t) (7.15)

∂tV (x, t) = Σ∂xv(x, t) (7.16)

αUx(0, t) =−βU(0, t) (7.17)

Ux(1, t) =V (1, t) (7.18)

V (2, t) = U(t) (7.19)

We have dropped the subscript indexing on x for simplicity. The states U : [0,1]× [0,∞)→ R2

and V : [1,2]× [0,∞)→ R2 are defined as

U(x, t) :=




u1(y0− (1+ y0)x, t)

u2(y0 +(1− y0)x, t)


 (7.20)

V (x, t) :=




v(−1−Dv(x+1), t)

w(x, t)


 (7.21)

while the control U : [0,∞)→ R2 is defined

U :=




U1(t)

U2(t)


 (7.22)
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and the parameter matrices are defined by

E := diag(ε1,ε2) (7.23)

Λ(x) := diag(λ1(x),λ2(x)) (7.24)

Σ := diag(σ1,σ2) (7.25)

α :=




1 1

0 0


 (7.26)

β :=




0 0

1 −1


 (7.27)

ε1 =
ε

(1+ y0)2 (7.28)

ε2 =
ε

(1− y0)2 (7.29)

λ1(x) = λ(y0− (1+ y0)x) (7.30)

λ2(x) = λ(y0 +(1− y0)x) (7.31)

σ1 = D−1
v (7.32)

σ2 = D−1
w (7.33)

The conditions encoded in the α,β matrices arise from imposing compatibility conditions between

u1 and u2 at x = 0.

7.3 Backstepping control design

We use two sets of backstepping transformations. The first shifts the instability of U(x, t)

to the x = 1 boundary. The second will shift the instabilitly from the x = 1 to the x = 2 boundary,

where it can be neutralized by the controller U.

147



The first transformation is

W (x, t) =U(x, t)−
∫ x

0
K(x,y)U(y, t)dy (7.34)

where K(x,y) : R×R→ R2×2 are the continuous gain kernels of the transformations. The

existence of K is studied in [18]. For brevity, we will skip over the details in determining K in

this paper.

The second transformation is

Z(x, t) =V (x, t)−
∫ x

1
L(x,y)V (y, t)dy

−
∫ 1

0
M(x,y)U(y, t)dy (7.35)

where, again, L(x,y),M(x,y) : R×R→ R2×2. We must study the existence of these gain kernels,

which is a novel contribution.

These transformations will admit the following target system (depending on parameters):

∂tW (x, t) = E∂xxW (x, t)−µW (x, t)

−C1(x)(F1FT
1 W (0, t)+F2FT

2 ∂xW (0, t)) (7.36)

∂tZ(x, t) = Σ∂xZ(x, t)+C2(x)Z(x, t) (7.37)

α∂xW (0, t) =−βW (0, t) (7.38)

∂xW (1, t) = Z(1, t) (7.39)

Z(2, t) = 0 (7.40)

where µ ∈ R+ is a design parameter affecting the convergence rate of the state, and F1,F2 are
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indicator vectors defined as

F1 =

(
1 0

)T

F2 =

(
0 1

)T

(7.41)

The structure of C1(x) will change according to the parameters ε1,ε2:

C1(x) =








0 0

c1(x) 0


 ε1 > ε2




0 c1(x)

0 0


 ε1 < ε2

0 ε1 = ε2

(7.42)

The structure of the matrix-valued functions C2(x) is analagous to C1(x) in structure, but

instead according to the parameters σ1,σ2, i.e.

C2(x) =








0 0

c2(x) 0


 σ1 > σ2




0 c2(x)

0 0


 σ1 < σ2

0 σ1 = σ2

(7.43)

The system will be exponentially stable due to the structure of these matrix valued functions. The

ci(x) are predefined (in fact related to the gain kernel functions, which will be defined in a later

section).

For the sake of brevity in this paper, we will make the following assumption:

Assumption. Assume the case ε1 > ε2 and σ1 > σ2. By a simple permutation of states, this is
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equivalent to the case ε2 > ε1 and σ2 > σ1.

Remark. Based upon this assumption, also note that the product C2F2FT
2 = 0.

Remark. The unconsidered cases of (ε1 < ε2,σ1 > σ2) and (ε2 < ε1,σ2 > σ1) are equivalent

via a permutation of states. For this case, C1F1FT
1 = 0. Therefore, the stability analysis for this

case is mildly different, owing to a slightly different target system, but nevertheless naturally

extends from the stability analysis in this paper.

These remarks follow directly from a special 2×2 case found in [18].

7.3.1 Kernel derivations for L,M

Differentiating (7.35) once in time admits

∂tZ(x, t) = ∂tV (x, t)−
∫ x

1
L(x,y)∂tV (y, t)dy

−
∫ 1

0
M(x,y)∂tU(y, t)dy (7.44)

= Σ∂xV (x, t)−
∫ x

1
L(x,y)Σ∂yV (y, t)dy

−
∫ 1

0
M(x,y) [E∂yyU(y, t)+Λ(y)U(y, t)]dy (7.45)

Integrating by parts,

= Σ∂xV (x, t)−L(x,x)ΣV (x, t)+L(x,1)ΣV (1, t)

+
∫ x

1
∂yL(x,y)ΣV (y, t)dy

−M(x,1)E∂xU(1, t)+M(x,0)E∂xU(0, t)

+∂yM(x,1)EU(1, t)−∂yM(x,0)EU(0, t)

−
∫ 1

0
[∂yyM(x,y)E +M(x,y)Λ(y)]U(y, t)dy (7.46)
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While differentiating (7.35) once in space admits

∂xZ(x, t) = ∂xV (x, t)−L(x,x)V (x, t)

−
∫ x

1
∂xL(x,y)V (y, t)dy

−
∫ 1

0
∂xM(x,y)U(y, t)dy (7.47)

By imposing (7.1)-(7.7) and (7.36)-(7.40), we can recover the following set of conditions on L,M

that comprise a coupled mixed-type PDE:

Σ∂xL(x,y)+∂yL(x,y)Σ =C2(x)L(x,y) (7.48)

ΣL(x,x)−L(x,x)Σ =−C2(x) (7.49)

L(x,1)Σ = M(x,1)E (7.50)

Σ∂xM(x,y)−∂yyM(x,y)E = M(x,y)Λ(y)

+C2(x)M(x,y) (7.51)

∂yM(x,1)E = 0 (7.52)

∂yM(x,0)EU(0, t) = M(x,0)E∂xU(0, t) (7.53)

The matrix condition (7.49) actually consists of three boundary conditions and one definition,

which arises due to the assumption σ1 ≥ σ2. Noting (7.43), we can find the definition for the

nonzero element of C2(x) to be

c2(x) = (σ1−σ2)l21(x,x) (7.54)

Additionally, the gain kernel has a dependence on U,∂xU . However, the structure of the

plant allows for some very interesting reductions. Due to the singularity of the matrices α,β

found in (7.17), we will have to analyze this boundary condition componentwise. The α matrix
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encodes the continuity of the spatial derivative of the state, ∂xu1(0, t) = −∂xu2(0, t) (analgous

condition regarding the state and β). Using this knowledge, we can rewrite (7.53) as

M(x,0)E




1

−1


∂xu1(0, t)−My(x,0)E




1

1


u1(0, t) = 0 (7.55)

From this, we can derive two sufficient conditions:

M(x,0)E




1

−1


= 0 (7.56)

∂yM(x,0)E




1

1


= 0 (7.57)

In its current form, the M gain kernel appears to be overdefined. However, one can notice that

writing out these two conditions componentwise, they actually encode sets of folding boundary

conditions on M! This is an interesting symmetry between the plant and the gain kernel, in the

sense that we have folded the parabolic equation in the plant, and proceed to unfold the parabolic

equation in the kernel. The equations written out are:

m11(x,0)ε1−m12(x,0)ε2 = 0 (7.58)

m21(x,0)ε1−m22(x,0)ε2 = 0 (7.59)

∂ym11(x,)ε1 +∂ym12(x,0)ε2 = 0 (7.60)

∂ym21(x,0)ε1 +∂ym22(x,0)ε2 = 0 (7.61)

Thus, one can rewrite the m11,m12 component gain kernel PDEs into a single PDE, and
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the same for m21,m22. By defining m1,m2 as the following:

m1(x,y) :=





ε1
ε2

m11(x,−y) y ∈ (−1,0)

m12(x,y) y ∈ (0,1)
(7.62)

m2(x,y) :=





ε1
ε2

m21(x,−y) y ∈ (−1,0)

m22(x,y) y ∈ (0,1)
(7.63)

we can consolidate the four (mi j) component parabolic gain kernel PDEs into two reaction-

diffusion equations with identically zero Neumann boundary conditions:

∂xm1(x,y) = D1(y)∂yym1(x,y)+Λ1(y)m1(x,y) (7.64)

∂ym1(x,−1) = 0 (7.65)

∂ym1(x,1) = 0 (7.66)

m1(1,y) =





ε1
ε2

∂xk11(1,−y) y ∈ (−1,0)

∂xk12(1,y) y ∈ (0,1)
(7.67)

∂xm2(x,y) = D2(y)∂yym2(x,y)+Λ2(y)m2(x,y)

+Φ(x,y) (7.68)

∂ym2(x,−1) = 0 (7.69)

∂ym2(x,1) = 0 (7.70)

m2(1,y) =





ε1
ε2

∂xk21(1,−y) y ∈ (−1,0)

∂xk22(1,y) y ∈ (0,1)
(7.71)
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where the parameters are now defined spatially as

D1(y) :=





ε1/σ1 y ∈ (−1,0)

ε2/σ1 y ∈ (0,1)
(7.72)

Λ1(y) :=





ε2λ1(y)/ε1σ1 y ∈ (−1,0)

λ2(y)/σ1 y ∈ (0,1)
(7.73)

D2(y) :=





ε1/σ2 y ∈ (−1,0)

ε2/σ2 y ∈ (0,1)
(7.74)

Λ2(y) :=





ε2λ1(y)/ε1σ2 y ∈ (−1,0)

λ2(y)/σ2 y ∈ (0,1)
(7.75)

and Φ is a function defined as

Φ(x,y) :=





ε2
ε1

c2(x)m1(x,y) y ∈ (−1,0)

0 y ∈ (0,1)
(7.76)

where we have used the lower triangular structure of the matrix valued function C2(x) alongside

the condition (7.49) to define Φ(x,y) appropriately.

Curiously, this brings up an interesting structure in the gain kernels. One must actually

solve the m1 equation prior to attempting to solve the m2 equation, due to the cascading found in

F(x,y). Fortunately, the solution m1 only requires information of the gain kernel K(x,y), which

is readily available.

As for the gain kernel PDEs in L, there exists some difficulty. Due to the structure of the

coefficient γ (which in itself is a necessity for well-posedness), one must approach these gain

kernels in a componentwise fashion.
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Figure 7.1: The gain kernels express a cascaded nature which can be exploited to recover linear
PDE problems solved in succession.

The first set of gain kernels, m1, one can directly observe that they in fact are merely

reaction-diffusion equations with spatially varying reaction. In fact, one can solve these directly

using the method of separation of variables.

The next set of gain kernel PDEs are simple to solve. For l11, l12, we can express them as

simply:

∂xl11(x,y)+∂yl11(x,y) = 0 (7.77)

l11(x,1) =
ε2

σ1
m1(x,−1) (7.78)

σ1∂xl12(x,y)+σ2∂yl12(x,y) = 0 (7.79)

l12(x,1) =
ε2

σ2
m1(x,1) (7.80)

l12(x,x) = 0 (7.81)

l12 requires two boundary conditions for y = 1 and y = x, as per the assumption σ1 ≥ σ2.

The second set of gain kernel PDEs are a little more involved, due to C2(x) introducing
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additonal coupling structures. They are expressed in the following manner:

σ2∂xl21(x,y)+σ1∂yl21(x,y) = c2(x)l11(x,y) (7.82)

l21(x,1) =
ε2

2
ε1σ1

m2(x,−1) (7.83)

∂xl22(x,y)+∂yl22(x,y) = c2(x)l11(x,y) (7.84)

l22(x,1) =
ε2

σ2
m2(x,1) (7.85)

Herein lies the difficulty of showing existence or otherwise solving the gain kernel PDEs. In the

second set of gain kernel PDEs consisting of l21, l22, one notes that l11 enters the equation. This

is not a problem, as we can merely solve via cascading the solution of l11 into these equations.

However, the more difficult part is noticing that l21 is introudced into the equations as well

(through the coupling term c2(x)) and the equations become far more difficult to solve as it

contains a nonlocal term, l21(x,x). Moreover, the boundary condition given for this equation

depends on m2, which (if the reader may recall in (7.68),(7.76)) depends on l21.

Thus, one must attempt to solve l21 and m2 simultaneously before being able to solve l22.

The gain kernel equations (and definitions) relevant and reiterated are then:

∂xσ2l21(x,y) =−∂yσ1l21(x,y)

+(σ1−σ2)l21(x,x)l11(x,y) (7.86)

l21(x,1) =
ε2

2
ε1σ1

m2(x,−1) (7.87)

∂xm2(x,y) = D2(y)m2
yy(x,y)+Λ2(y)m2(x,y)

+Φ(x,y) (7.88)

∂ym2(x,−1) = 0 (7.89)

∂ym2(x,1) = 0 (7.90)
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m2(1,y) =





ε1
ε2

∂xk21(1,−y) y ∈ (−1,0)

∂xk22(1,y) y ∈ (0,1)
(7.91)

Φ(x,y) :=





ε2
ε1
(σ1−σ2)

×l21(x,x)m1(x,y) y ∈ (−1,0)

0 y ∈ (0,1)

(7.92)

where one can assume that l11,m1,k21
x ,k22

x exist and have sufficient regularity.

7.3.2 Well-posedness of gain kernel equations for l21(x,y),m2(x,y)

We will first begin with the l21 equation, and attempt to express the solution at the

boundary y = x,l21(x,x), as an integral equation.

By method of characteristics, we find

dx
ds

= σ2 (7.93)

dy
ds

= σ1 (7.94)

dl21

ds
= (σ1−σ2)l11(x(s),y(s))l21(x(s),x(s)) (7.95)

The evolution of x,y along the characteristics is simple to find:

x(s) = x0 +σ2s (7.96)

y(s) = 1+σ1s (7.97)

One can also show that given a pair (x,y), s,x0 can be found accordingly:

s =
1

σ1
(y−1) (7.98)
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x0 = x− σ2

σ1
(y−1) (7.99)

Then, the expression (7.95) can be integrated to find

l21(x,y) = l21

(
x− σ2

σ1
(y−1),1

)

−
∫ 1

σ1
(y−1)

0
l11

(
x− σ2

σ1
(y−1)+σ2z,1+σ1z

)

× l21

(
x− σ2

σ1
(y−1)+σ2z,x− σ2

σ1
(y−1)+σ2z

)

× (σ1−σ2)dz (7.100)

Evaluating this expression at y = x,

l21(x,x) = l21

((
1− σ2

σ1

)
x+

σ2

σ1
,1
)

−
∫ 1

σ1
(x−1)

0
l11

((
1− σ2

σ1

)
x+

σ2

σ1
+σ2z,1+σ1z

)

× l21

((
1− σ2

σ1

)
x+

σ2

σ1
+σ2z,

(
1− σ2

σ1

)
x+

σ2

σ1
+σ2z

)
(σ1−σ2)dz (7.101)

Making the following substitution for the variable of integration

ζ = a(x)+σ2z (7.102)

a(x) :=
(

1− σ2

σ1

)
x+

σ2

σ1
(7.103)

The integral equation for l21(x,x) becomes

l21(x,x) = l21 (a(x),1)
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−
∫ x

a(x)

σ1−σ2

σ2
l11

(
ζ,

(
1− σ1

σ2

)
x+

σ1

σ2
ζ

)
l21 (ζ,ζ)dζ (7.104)

=
ε2

2
ε1σ1

m2 (a(x),−1)

−
∫ x

a(x)

σ1−σ2

σ2

× l11

(
ζ,

(
1− σ1

σ2

)
x+

σ1

σ2
ζ

)
l21 (ζ,ζ)dζ (7.105)

We can now define the following iteration for l21 in the spirit of successive approximations:

l̂n+1(x) =
ε2

2
ε1σ1

m2 (a(x),−1)

−
∫ x

a(x)

σ1−σ2

σ2

× l11

(
ζ,

(
1− σ1

σ2

)
x+

σ1

σ2
ζ

)
l̂n (ζ)dζ (7.106)

where if the above integral equation is a contraction, the limit of the iterations will approach the

solution, i.e.

lim
n→∞

l̂n(x) = l21(x,x) (7.107)

By defining ∆l̂n := l̂n+1− l̂n, we find the following relation:

∆l̂n+1(x) =
∫ x
(

1−σ2
σ1

)
x+σ2

σ1

σ1−σ2

σ2

× l11

(
ζ,

(
1− σ1

σ2

)
x+

σ1

σ2
ζ

)
∆l̂n (ζ)dζ (7.108)

Where now (7.107) can be rewritten as an infinite sum:

l21(x,x) = l̂0(x)+
∞

∑
n=0

∆l̂n(x) (7.109)
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Choosing l̂0(x) = 0, one can find the solution l21(x,x) to be

l21(x,x) =
ε2

2
ε1σ1

m2 (a(x),−1)

+
∞

∑
n=1

∫ x

a(x)

∫
ζn−1

a(ζn−1)
. . .

∫
ζ2

a(ζ2)(
σ1−σ2

σ2

)n

Pn(x,ζ1,ζ2, . . . ,ζn)

× ε2
2

ε1σ1
m2 (a(ζ1),−1)dζ1 . . .dζn (7.110)

Pn(x,ζ1, ...,ζn) = l11

(
ζn,

(
1− σ1

σ2

)
x+

σ1

σ2
ζn

)

×
n−1

∏
m=1

l11

(
ζm,

(
1− σ1

σ2

)
ζm+1 +

σ1

σ2
ζm

)
(7.111)

One can now proceed to study the existence of solutions to m2. The existence of l21 is

contigent on the existence of m2. Letting l21(x,x) := Ψ[m2](x) as defined above,

∂xm2(x,y) = D2(y)∂yym2(x,y)+Λ2(y)m2(x,y)

+Φ(x,y) (7.112)

∂ym2(x,−1) = 0 (7.113)

∂ym2(x,1) = 0 (7.114)

m2(1,y) =





ε1
ε2

∂xk21(1,−y) y ∈ (−1,0)

∂xk22(1,y) y ∈ (0,1)
(7.115)

Φ(x,y) :=





ε2
ε1
(σ1−σ2)

×m1(x,y)Ψ[m2](x) y ∈ (−1,0)

0 y ∈ (0,1)

(7.116)

We will attempt to establish energy estimates on m2. First we will bound the term Ψ[m2](x)
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as defined above.

|Ψ[m2](x)| ≤
∣∣∣∣

ε2
2

ε1σ1
m2

((
1− σ2

σ1

)
x+

σ2

σ1
,−1

)∣∣∣∣

+
∞

∑
n=1

∫ x

a(x)

∫
ζn−1

a(ζn−1)
. . .

∫
ζ2

a(ζ2)∣∣∣∣
ε2

2
ε1σ1

∣∣∣∣
∣∣∣∣
σ1−σ2

σ2

∣∣∣∣
n

|Pn(x,ζ1,ζ2, . . . ,ζn)|

×
∣∣∣∣m2

((
1− σ2

σ1

)
ζ1 +

σ2

σ1
,−1

)∣∣∣∣dζ1 . . .dζn (7.117)

Note that since a(x)≤ x,∀x

|m2 (a(x),−1)| ≤ sup
y∈[−1,1]

|m2 (a(x),y)| (7.118)

≤ ||m2 (a(x), ·)||L∞
(7.119)

≤ sup
1≤z≤x

||m2 (z, ·)||L∞
(7.120)

≤C ||m2 (z, ·)||H1 (7.121)

where C is a scaling constant as a result of H1 being continuously embedded in L∞. Likewise, we

can majorize l11(x,y) by its pointwise sup-norm:

l11(x,y)≤ sup
(x,y)
|l11(x,y)|=: ||l11||L∞

(7.122)

which will allow us to bound Pn in the following way:

|Pn(x,ζ1, . . . ,ζn)| ≤ ||l11||nL∞
(7.123)
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We can then redefine (7.117) as

|Ψ[m2](x)| ≤
∣∣∣∣

ε2
2

ε1σ1

∣∣∣∣

∣∣∣∣∣ sup
1≤z≤x

C ||m2 (z, ·)||H1

∣∣∣∣∣

+
∞

∑
n=1

∫ x

1

∫
ζn−1

1
. . .

∫
ζ2

1

∣∣∣∣
σ1−σ2

σ2

∣∣∣∣
n

×||l11||nL∞

∣∣∣∣
ε2

2
ε1σ1

∣∣∣∣

× sup
1≤z≤x

C ||m2 (z, ·)||H1 dζ1 . . .dζn (7.124)

≤ ε2
2

ε1σ1

×
(

1+
∞

∑
n=1

∫ x

1

∫
ζn−1

1
. . .

∫
ζ2

1
∣∣∣∣
σ1−σ2

σ2

∣∣∣∣
n

||l11||nL∞
dζ1 . . .dζn

)

× sup
1≤z≤x

C ||m2 (z, ·)||H1 (7.125)

≤ ε2
2

ε1σ1
exp
((

σ1−σ2

σ2
||l11||L∞

)
(x−1)

)

× sup
1≤z≤x

C ||m2 (z, ·)||H1 (7.126)

Taking the inner product of m2 with (7.112),

∫ 1

−1
∂xm2(x,y)m2(x,y)dy = ∫ 1

−1
D2(y)∂yym(x,y)m(x,y)dy

+
∫ 1

−1
Λ2(y)m(x,y)2dy

+
∫ 1

−1
Φ(x,y)m2(x,y)dy (7.127)
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⇒ 1
2

d
dx
||m2(x, ·)||2L2

≤ ||Λ2||L∞
||m2(x, ·)||2L2

+
∫ 1

−1
Φ(x,y)m2(x,y)dy (7.128)

≤ ||Λ2||L∞
||m2(x, ·)||2L2

+

∣∣∣∣
ε2

ε1
(σ1−σ2)

∣∣∣∣ |Ψ[m2](x)|

×
∫ 0

−1
|m1(x,y)||m2(x,y)|dy (7.129)

By using the bound on Ψ,

1
2

d
dx
||m2(x, ·)||2L2

≤ ||Λ2||L∞
||m2(x, ·)||2H1

+

∣∣∣∣
ε2

ε1
(σ1−σ2)

∣∣∣∣
ε2

2
ε1σ1

× exp
((

σ1−σ2

σ2
||l11||L∞

)n

(x−1)
)

× sup
1≤z≤x

C ||m2 (z, ·)||H1

×
∫ 0

−1
|m1(x,y)||m2(x,y)|dy (7.130)

Also by differentiating (7.112) once in y, and taking the inner product with ∂ym2,

1
2

d
dx

∣∣∣∣∂ym2(x, ·)
∣∣∣∣2

L2
≤
(
||Λ2||L∞

+
∣∣∣∣Λ′2

∣∣∣∣
L∞

)
||m2(x, ·)||2H1

+

∣∣∣∣
ε2

ε1
(σ1−σ2)

∣∣∣∣
ε2

2
ε1σ1

× exp
((

σ1−σ2

σ2
||l11||L∞

)n

(x−1)
)

× sup
1≤z≤x

C ||m2 (z, ·)||H1

×
∫ 0

−1
|∂ym1(x,y)||∂ym2(x,y)|dy (7.131)
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Then one can see simply that from the sum of the two bounds,

1
2

d
dx
||m2(x, ·)||2H1 ≤

(
||Λ2||L∞

+
∣∣∣∣Λ′2

∣∣∣∣
L∞

)
||m2(x, ·)||2H1

+2
∣∣∣∣
ε2

ε1
(σ1−σ2)

∣∣∣∣
ε2

2
ε1σ1

× exp
((

σ1−σ2

σ2
||l11||L∞

)n

(x−1)
)

× sup
1≤z≤x

C ||m2 (z, ·)||H1

×||m1(x, ·)||H1 ||m2(x, ·)||H1 (7.132)

Now let M(x) := ||m2(x, ·)||2H1 and note that ∀x,M(x) ≥ 0. Associate the following

differential equation in M̄(x) to the differential inequality (7.132):

1
2

d
dx

M̄(x) = aM̄(x)+b(x)

(
sup

1≤z≤x

√
M̄(z)

)√
M̄(x) (7.133)

a = ||Λ2||L∞
+
∣∣∣∣Λ′2

∣∣∣∣
L∞

(7.134)

b(x) = 2C
∣∣∣∣
ε2

ε1
(σ1−σ2)

∣∣∣∣
ε2

2
ε1σ1

× exp
((

σ1−σ2

σ2
||l11||L∞

)n

(x−1)
)

×||m1(x, ·)||H1 (7.135)

where the initial condition is taken to be M̄(1) = M(1) = ||m2(1, ·)||2H1 . Noting that the right

hand side of (7.135) is nonnegative, the supremum of M̄(z) in the interval [1,x] is clearly at z = x.

Thus, the differential equation (7.135) becomes

1
2

d
dx

M̄(x) = (a+b(x))M̄(x) (7.136)
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and one can easily see via the integrating factor method

M̄(x) = exp
(∫ x

1
2(a+b(z))dz

)
M̄(1) (7.137)

Thus, by the comparison principle,

M(x)≤ exp
(∫ x

1
2(a+b(z))dz

)
M(1) (7.138)

||m2(x, ·)||H1 ≤ exp
(∫ x

1
(a+b(z))dz

)
||m2(1, ·)||H1 (7.139)

The implicatiton here is that the energy quantity ||m2(x, ·)||H1 is bounded only by its initial

condition m2(1, ·) on the finite interval [1,1+D] (and by the nature of using the H1 norm, m2(x, ·)

can be noted to be bounded pointwise as well), and therefore a weak solution will exist. One

merely needs to additionally construct Galerkin approximations to m2, and take the limit. The

energy estimate (which is uniform with respect to the sequence of Galerkin approximations) will

guarantee the weak convergence of the sequence to a weak solution.

7.4 Conclusions

A delay compensation design augmenting the technique the folding technique for de-

signing bilateral controllers with distinct input delays is presented in this paper. The delay

compensation for parabolic PDEs can be cast as a mixed-type (hyperbolic-parabolic) PDE system,

which motivates the use of new and different techniques. Namely, the gain kernel that arises from

applying backstepping to mixed-type PDEs is of differing type than homogeneous-type PDE

systems. As a result, parabolic PDEs are found in the resulting gain kernel PDE system, which

necessitates the well-posedness analysis not by method of characteristcs (as of typical fashion

in classical backstepping with purely hyperbolic kernel PDE), rather, applying a Galerkin-type

argument to show existence and uniqueness properties. Conditions on the parameters of the
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system can be imposed to demand a certain regularity of the kernel solutions if necessary, but in

general, a weak solution with discontinuities over measure zero sets is sufficient, as the kernel

appears strictly under an integration.

The development of these results motivate further study into mixed-type PDEs, in particu-

lar, ones with “harder” coupling between the hyperbolic and parabolic equations. Some coupling

in-domain had previously been considered, but in the sense that the strict feedback structure

(spatial causality) from the control boundary is preserved. However, it does not seem wholly

unreasonable that even more intricate coupling can be considered.

7.5 Acknowledgements

Chapter 7, in part, is a reprint of the material as it appears in: S.Chen, R. Vazquez, M.

Krstic. Bilateral Boundary Control Design for Unstable Parabolic PDE Subject to Distinct Input

Delays. Submitted to Systems and Control Letters, 2019. The dissertation author was the primary

investigator and co-author of this paper.

166



Chapter 8

Bilateral boundary control design for a

cascaded diffusion-ODE system coupled at

an arbitrary interior point

8.1 Preliminaries

8.1.1 Introduction

Systems modeled by parabolic partial differential equations are relevant in many engi-

neering and social systems, with applications found in field as varied as heat transfer, chemical

reaction-diffusion processes, tumor angiogenesis [11], predator-prey Lotka-Volterra population

models [23], opinion dynamics (of the Fischer-Kolmogorov-Petrovsky-Piskunov type equation

[2]), free-electron plasma diffusion, and flows through porous media [42]. Often times, there is

some control objective associated with these systems, especially that of stabilization.

Also of interest are systems that involve various couplings of infinite-dimensional and

finite-dimensional systems. This subject, in the context of control design, has been explored

significantly, of various coupling structures of equations of varying class. In particular, cascading
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structures with parabolic and hyperbolic actuation paths entering linear and nonlinear ODEs – in

the parabolic case, one can think of a “smearing” phenomena affecting the control input. The

stabilization problem of parabolic PDEs coupled with ODEs via backstepping boundary control

has been studied by [27]. This initial result has been extended to consider various different

coupling topologies, including different boundary conditions ([38]), bidirectional coupling ([39]),

and sliding mode control designs ([49]).

A majority of boundary backstepping designs (in 1-D) are unilateral, meaning a single

scalar controller actuates at precisely one boundary. A wide variety of results have been developed

for a broad class of systems under this paradigm. However, in higher dimensions, the analogous

control design would be to only actuate at some subset of the boundary (rather than on the entire

boundary surface). The fully actuated high dimensional boundary control case (studied on n-D

ball geometry by [44]) motivates the study of bilateral control design in 1-D, which, as the name

suggests, involves two scalar controls two boundary points (the boundary surface of a 1-D ball).

The two controllers are coupled implicitly through the equation. Intuitively, the addition of one

more controller augments the controllability of the system – a analogy to having two hands

versus one when performing tasks. Some bilateral boundary control design techniques for 1-D

PDEs has been studied prior in other specific contexts: for parabolic PDEs in [43] and [15], for

heterodirectional hyperbolic PDE systems ([5]), and nonlinear viscous Hamilton-Jacobi PDE

([8]), amongst others.

The system in question in this paper involves an unstable linear ODE coupled not at

a boundary, rather, at an interior point. Previous work by [53] has studied this problem in

the context of unilateral control design, employing a nontraditional Fredholm transformation

technique with separable kernels. This is in contrast to the work proposed in this paper, which

utilizes a methodology of bilateral control design called folding. The folding approach (detailed in

[15]) involves using a transformation to “fold” the system around an interior point into a coupled

parabolic PDE with a degree of freedom in choosing the folding point. In this particular case, we
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select the coupling point to fold about to recover a type of cascaded coupled PDE-ODE system.

The ODE coupling appearing in the interior of the PDE falls in a special class of so-called

“sandwich” systems–systems that have a tri-layer (possibly more) of systems coupled together.

Certain results exist for these systems in the unilateral sense – for example, for ODEs “sandwiched”

between first-order hyperbolic PDEs as in [52]. This idea exists for ODEs sandwiched by parabolic

equations in the work by Zhou [53]. An addition to parabolic-ODE sandwich systems is related

work by Koga involving the two-phase Stefan problem, a special case of an ODE sandwiched by

parabolic equations whose domains evolve as a function of the ODE (a nonlinear bidirectional

coupling) [26]. Finally, results also exist for ODEs sandwiched by second-order hyperbolic

PDEs in the context of the Rijke tube, a phenomena found in thermoacoustics [17]. The problem

considered in this paper of the heat equation with an ODE coupled at the interior point is an

example of such a sandwiched system.

The paper is structured as follows: in Section 8.2, the model is introduced and the folding

transformation is applied to recover the equivalent coupled PDE-ODE system. In Section 8.3,

the controller is designed via applying a two-tiered backstepping approach to recover a target

system with a trivial solution possessing desirable stability properties. The stability is shown via

the method of Lyapunov, and the feedback controllers (in the original coordinates) are derived.

In Section 8.4, the well-posedness of the transformations from Section 8.3 is investigated. The

existence of the transformations are shown, verifying the equivalence relation between the original

plant under feedback with the chosen target system. Finally, the paper is concluded in Section

8.5.

8.1.2 Notation

The partial operator is notated using the del-notation, i.e.

∂x f :=
∂ f
∂x
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We will consider several different spaces and their Cartensian products. Rn is the standard

real n-dimensional space. An element v ∈ Rn has elements notated vi, i ∈ {1, ...,n}. The p-norm

denoted

|v|p :=

(
n

∑
k=1
|vk|p

) 1
p

We also consider the space of square-integrable functions L2(I) over two different closed intervals

I. For notational compactness, we label the spaces L2(I) as merely L2, where the domain is

implicit in the function considered. The L2 space is endowed with the norm

|| f ||L2 :=
(∫

I
| f |22 dµ

) 1
2

The Cartesian product space L2×Rn induces a norm ||·||

||( f ,v)|| :=
√
|| f ||2L2 + |v|22

Elements of a matrix A are denoted by ai j, in reference to the i-th row and j-th column.

8.2 Model and problem formulation

We consider the following coupled PDE-ODE system consisting of a diffusion PDE with

an unstable ODE:

∂tu(y, t) = ε∂
2
yu(y, t) (8.1)

Z′(t) = AZ(t)+Bu(y0, t) (8.2)

u(−1, t) = U1(t) (8.3)

u(1, t) = U2(t) (8.4)
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Figure 8.1: System schematic of heat equation coupled with interior ODE with two boundary
inputs. The ODE system Z(t) is located at some arbitrary interior point y0.

with solutions u : [−1,1]× [0,∞)→R,Z : [0,∞)→Rn. It is assumed that ε> 0 for well-posedness.

The controllers operate at x = 1 and x = −1, and are denoted Ū1(t),Ū2(t), respectively. The

ODE (8.2) is forced by the state of the heat equation at an interior point y0 ∈ (−1,1), which is

assumed to be known a priori. The pair (A,B) is assumed to be stabilizable.

Remark. In general, a general class of reaction-advection-diffusion equations with spatially

varying advection and reaction can be chosen rather than the pure heat equation, i.e. equations

of the form

∂tu(y, t) = ε∂
2
yu(y, t)+b(y)∂yu(y, t)+λ(y)u(y, t)

For clarity in the paper, we merely use the pure heat equation, but the analysis is analogous to the

work in [15].

We perform a folding transformation about y0, in which the scalar parabolic PDE system u

is “folded” into a 2×2 coupled parabolic system. We define the the folding spatial transformations

as

x = (y0− y)/(1+ y0) y ∈ (−1,y0) (8.5)

x = (y− y0)/(1− y0) y ∈ (y0,1) (8.6)
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admitting the following states:

U(x, t) :=




u1(x, t)

u2(x, t)


=




u(y0− (1+ y0)x, t)

u(y0 +(1− y0)x, t)


 (8.7)

whose dynamics are governed by the following system:

∂tU(x, t) = E∂
2
xU(x, t) (8.8)

Z′(t) = AZ(t)+BΘU(0, t) (8.9)

αUx(0, t) =−βU(0, t) (8.10)

U(1, t) = U(t) (8.11)

with the parameters given by :

E := diag(ε1,ε2)

:= diag
(

ε

(1+ y0)2 ,
ε

(1− y0)2

)
(8.12)

α :=




1 a

0 0


 (8.13)

β :=




0 0

1 −1


 (8.14)

a := (1+ y0)/(1− y0) (8.15)

Θ =

(
θ 1−θ

)
,θ ∈ [0,1] (8.16)

In particular, the boundary conditions (8.10) are curious. While they may initially appear to

be Robin boundary conditions, they actually encapsulate compatibility conditions arising from

imposing continuity in the solution at the folding point. Some related conditions have been
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Figure 8.2: System schematic of folded system. The system becomes equivalent to a coupled
parabolic PDE system with folding conditions imposed at the distal boundary. The folding
conditions also enter the ODE as an input.

considered in some previous parabolic backstepping work in [41], albeit with differing context.

This is contrasted with more typical boundary conditions which impose a single condition at a

single boundary.

From Figure 8.2, it is quite clear to see the control problem after folding becomes

equivalent to stabilizing an ODE system through a coupled parabolic PDE actuation path, however,

one which has the distal end “pinned” together. The control designs for U1,2 will be coupled.

Assumption. The ODE location y0 is constricted to the half domain (−1,0] without loss of

generality. The case y0 ∈ [0,1) can be recovered by using a change in spatial variables ŷ =−y

and performing the same folding technique. By choosing y0 in this manner, we impose an ordering

ε1 > ε2.

8.3 State-feedback design

The backstepping state-feedback control design is accomplished with two PDE backstep-

ping steps. First, we will assume the existence of a stabilizing nominal control.

Assumption. There exists Γ0 ∈ R1×n such that the matrix A+BΓ0 is Hurwitz.

Assumption 8.3 is a direct consequence of the stabilizability of the pair (A,B).
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8.3.1 First transformation K

The first PDE backstepping transformation is a 2×2 Volterra integral transformation of

the second kind:

W (x, t) =U(x, t)−
∫ x

0
K(x,y)U(y, t)dy−Γ(x)Z(t) (8.17)

where K ∈C(T ), with T := {(x,y) ∈ R2|0≤ y≤ x≤ 1} and Γ : [0,1]→ R2×n. We suppose the

row elements of Γ are denoted with the index i = 1,2, i.e.

Γ(x) :=




Γ1(x)

Γ2(x)


 (8.18)

where Γ1(x),Γ2(x) ∈ R1×n. The associated inverse transformation is given by

U(x, t) =W (x, t)−
∫ x

0
K̄(x,y)W (y, t)dy− Γ̄(x)Z(t) (8.19)

with K̄ ∈C(T ) and Γ̄ : [0,1]→ R2×n. The corresponding target system for (8.17) is chosen to be

∂tW (x, t) = E∂
2
xW (x, t)+G[K](x)W (x, t) (8.20)

Z′(t) = (A+BΓ0)Z(t)+BΘW (0, t) (8.21)

α∂xW (0, t) =−βW (0, t) (8.22)

W (1, t) = V (t) (8.23)

where V (t) =
(

0 ν2(t)

)T

is an auxiliary control which is designed later in the paper. The

controller U(t) can be expressed as an operator of V (t) by evaluating (8.17) for x = 1:

U(t) := V (t)+
∫ 1

0
K(1,y)U(y, t)dy (8.24)
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The matrix-valued operator G[·](x) acting on K is given by

G[K](x) =




0 0

(ε2− ε1)∂yk21(x,x) 0


=:




0 0

g[k21](x) 0


 (8.25)

From enforcing conditions (8.8)-(8.11), (8.20)-(8.23), the following cascaded ODE-PDE kernel

can be recovered from (8.17):

E∂
2
xK(x,y)−∂

2
yK(x,y)E = G[K](x)K(x,y) (8.26)

EΓ
′′(x)−Γ(x)A+G[K](x)Γ(x) = 0 (8.27)

subject to boundary conditions

EK(x,x)−K(x,x)E = 0 (8.28)

E∂xK(x,x)+∂yK(x,x)E +E
d
dx

K(x,x) = G[K](x) (8.29)

K(x,0)E∂xU(0) = 0 (8.30)

(Γ(x)BΘ−∂yK(x,0)E)U(0) = 0 (8.31)

Γ(0) =




Γ0

Γ0


 (8.32)

Γ
′(0) =




0

0


 (8.33)

The intial condition (8.32) arises from two conditions on W (0): (8.21), (8.22). Evaluating (8.17)

at x = 0 admits

W (0, t) =U(0, t)−Γ(0)Z(t) (8.34)
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From (8.9) and (8.21), we recover a condition on Γ(0):

ΘΓ(0) = Γ0 (8.35)

Additionally, from (8.22),(8.34), we can note

Γ1(0) = Γ2(0) (8.36)

(8.35),(8.36) uniquely determine (8.32). The conditions (8.33) are derived in an analogous

manner.

A symmetry with the plant is observed with (8.30),(8.31) encapsulating folding conditions

on K. By imposing (8.10) onto (8.30),(8.31), one can recover the scalar conditions

ε1k11(x,0)−aε2k12(x,0) = 0 (8.37)

ε1k21(x,0)−aε2k22(x,0) = 0 (8.38)

ε1∂yk11(x,0)+ ε2∂yk12(x,0) = Γ1(x)B (8.39)

ε1∂yk21(x,0)+ ε2∂yk22(x,0) = Γ2(x)B (8.40)

8.3.2 Second transformation (p,q)

A second transformation is designed to compensate for the term G[K](x) in (8.20). One

can see this as the correction factor needed to compensate the interaction between the two

controllers. Indeed, if one inspects the structure of the operator G, one may note two things.

Firstly, the coupling is from the faster equation (associated with ε1) to the slower equation

(associaterd with ε2). That is, the slower equation will have additional dynamics. Secondly, the

nonzero element g depends on the difference of the diffusion coefficients. For the symmetric

folding (ODE located at x = 0) case, the coupling does not appear.
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The following transformation for designing the compensation controller V (t) is consid-

ered:

Ω(x, t) =W (x, t)−
∫ x

0




0 0

q(x,y) p(x− y)


W (y, t)dy (8.41)

The corresponding inverse is given by

W (x, t) = Ω(x, t)−
∫ x

0




0 0

q̄(x,y) p̄(x− y)


Ω(y, t)dy (8.42)

We define our target system (Ω,Z) as

∂tΩ(x, t) = E∂
2
xΩ(x, t) (8.43)

Z′(t) = (A+BΓ0)Z(t)+BΘΩ(0, t) (8.44)

α∂xΩ(0, t) =−βΩ(0, t) (8.45)

Ω(1, t) = 0 (8.46)

The transformation (8.41), original system model (8.8)-(8.11), and target system (8.43)-(8.46)

will impose a set of conditions on p,q that comprise a scalar nonlocal Goursat problem:

p(x) = a−1q(x,0) (8.47)

ε2∂
2
xq(x,y)− ε1∂

2
yq(x,y) = (c2− c1)q(x,y)

+g[k21](y)p(x− y) (8.48)
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subject to the following boundary conditions:

∂yq(x,x) =
g[k21](x)
ε2− ε1

(8.49)

q(x,x) = 0 (8.50)

∂yq(x,0) = a2 p′(x) = a∂xq(x,0) (8.51)

The kernel equations for the inverse kernels p̄, q̄ are similar to those of p,q respectively:

p̄(x) = a−1q̄(x,0) (8.52)

ε2∂
2
x q̄(x,y)− ε1∂

2
y q̄(x,y) = (c1− c2)q̄(x,y)

−g[k21](x)p̄(x− y) (8.53)

with boundary conditions

∂yq̄(x,x) =
g[k21](x)
ε1− ε2

(8.54)

q̄(x,x) = 0 (8.55)

∂yq̄(x,0) =−a2 p̄′(x) =−a∂xq̄(x,0) (8.56)

The PDE (8.47),(8.48) and associated boundary conditions (8.50),(8.51) are studied in previous

work on folding bilateral control. The controller V (t) can be computed by evaluating (8.41) at

x = 1 and using the appropriate boundary conditions:

V (t) =




0

ν2(t)


=

∫ 1

0




0 0

q(1,y) p(1− y)


W (y, t)dy (8.57)
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8.3.3 Stability of target system (Ω,Z)

Lemma 23. The trivial solution (Ω,Z) ≡ 0 of the target system (8.43)-(8.46) is exponentially

stable in the sense of the L2×Rn norm. That is, there exist constants Π,µ > 0 such that

||(Ω(·, t),Z(t))|| ≤Πexp(−µ(t− t0)) ||(Ω(·, t0),Z(t0))|| (8.58)

Proof. The proof of Lemma 23 is relatively straightforward. First consider the a Lyapunov

function of the form

V (Ω(·, t),Z) = Z(t)T PZ(t)+
∫ 1

0

[
Ω(x, t)T MΩ(x, t)

]
dx (8.59)

where M = diag(a3m,m),m > 0 is an analysis parameter to be chosen later, and P � 0 is the

(symmetric) solution to the Lyapunov equation

P(A+BΓ0)+(A+BΓ0)
T P =−Q (8.60)

for a chosen Q� 0. The symmetric solution P� 0 is guaranteed to exist since A+BΓ0 is designed

to be Hurwitz. We note that V (t) is equivalent to the L2×Rn norm:

Π1 ||(Ω(·, t),Z(t))||2 ≤V (t)≤Π2 ||(Ω(·, t),Z(t))||2 (8.61)

where the coefficients Πi are:

Π1 = min{λmin(P),a3m} (8.62)

Π2 = max{λmax(P),m} (8.63)
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Differentiating (8.59) in time, one finds

V̇ (t)≤ (Ω(0, t)T
Θ

T BT +Z(t)T (A+BΓ0)
T ))PZ(t)

+Z(t)T P((A+BΓ0)Z(t)+BΘΩ(0, t))

+
∫ 1

0

[
∂

2
xΩ(x, t)T EMΩ(x, t)

+Ω(x, t)T ME∂
2
xΩ(x, t)

]
dx (8.64)

Using integration by parts and (8.60) will admit

V̇ (t)≤−Z(t)T QZ(t)+2Z(t)T PBΘΩ(0, t)

−
∫ 1

0

[
2∂xΩ(x, t)T EM∂xΩ(x, t)

]
dx

≤−λmin(Q)|Z(t)|22 +2Z(t)T PBΘΩ(0, t)

−2a3mε2 ||∂xΩ(·, t)||2L2 (8.65)

Applying Young’s inequality,

V̇ (t)≤−µ1|Z(t)|22−4µ2 ||∂xΩ(·, t)||2L2 (8.66)

where

µ1 = λmin(Q)−δ|P|2,i|B|2,i (8.67)

µ2 =
1
4

(
2a3

ε2m− 1
δ
|P|2,i|B|2,i

)
(8.68)

The analysis parameters δ,m1,m2 must be chosen such that µ1,2 > 0. This is easily achievable by
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choosing

δ <
λmin(Q)

λmax(P)|B|2,i
(8.69)

m >
λmax(P)|B|2,i

2δa3ε2
(8.70)

Applying Young’s inequality and (8.61) to (8.66), one finds

V̇ (t)≤−min{µ1,µ2}
Π1

V (t) (8.71)

which via the comparison principle admits the bound

V (t)≤ exp(−2µ(t− t0))V (t0) (8.72)

where

µ :=
min{µ1,µ2}

2Π1
(8.73)

Applying the equivalence (8.61) once more recovers the bound (8.58) with Π =
√

Π2/Π1. This

completes the proof.

8.3.4 Main result: closed-loop stability

Theorem 24. The trivial solution of the system (8.1)-(8.4) is exponentially stable in the sense of

the L2×Rn norm under the pair of state feedback control laws U1,U2:




U1(t)

U2(t)


=

∫ 1

−1




F1(y)

F2(y)


u(y, t)dy+F3Z(t) (8.74)
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with feedback gains F1,F2 defined as

F1(y) =





(1+ y0)
−1k11

(
1, y0−y

1+y0

)
y≤ y0

(1− y0)
−1k12

(
1, y−y0

1−y0

)
y > y0

(8.75)

F2(y) =





(1+ y0)
−1h1

(
y0−y
1+y0

)
y≤ y0

(1− y0)
−1h2

(
y−y0
1−y0

)
y > y0

(8.76)

h1(y) = k21(1,y)+q(1,y)−
∫ 1

y

[
p(1− z)k21(z,y)

+q(1,z)k11(z,y)
]
dz (8.77)

h2(y) = k22(1,y)+ p(1− y)−
∫ 1

y

[
p(1− z)k22(z,y)

+q(1,z)k12(z,y)
]
dz (8.78)

F3 =




Γ1(1)

Γ2(1)−
∫ 1

0 [q(1,y)Γ1(y)+ p(1− y)Γ2(y)]dy


 (8.79)

where ki j, p,q ∈C(T ) are solutions to the kernel PDE equations (8.26),(8.47),(8.48) respectively

(with associated boundary conditions), and Γ1,2 ∈ C([0,1]) are solutions to the kernel ODE

equations(8.27). That is, under the feedback controllers (8.74), there exists a constant Π̄ such

that

||(u(·, t),Z(t))|| ≤ Π̄exp(−µ(t− t0)) ||(u(·, t0),Z(t0))|| (8.80)

The proof of Theorem 24 is not given but is analogous to the proofs found in [15]. The

proof involves utilizing the invertability of the transformations (8.7),(8.17),(8.41) that arise either

trivially (folding), or from the boundedness of the kernels (studied in Section 8.4). The forward

and inverse transform give estimates on the equivalence relation between the target system
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(8.43)-(8.46) and the original system (8.1)-(8.4), which are applied to (8.80).

8.4 Well-posedness of K,Γ kernel system

The PDE gain kernel K and ODE kernel Γ must be shown to be well-posed. The following

lemmas establish these results.

8.4.1 Γ kernel

The ODE system (8.27) is written into into two separate n-th order ODEs:

Γ
′′
1(x) = ε

−1
1 Γ1(x)A (8.81)

Γ
′′
2(x) = ε

−1
2 Γ2(x)A+ ε

−1
2 g[k21](x)Γ1(x) (8.82)

where the initial conditions can be found from (8.32),(8.33) to be

Γ1(0) = Γ0 (8.83)

Γ
′
1(0) = 0 (8.84)

Γ2(0) = Γ0 (8.85)

Γ
′
2(0) = 0 (8.86)

From the variation of constants formula, it is easy to see that the solutions for Γ1 can be expressed

via

Γ1(x) =
(

Γ0 0

)
exp







0 I

ε
−1
1 A 0


x







I

0


 (8.87)
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while Γ2 is

Γ2(x) =
[(

Γ0 0

)
exp







0 I

ε
−1
2 A 0


x




+
∫ x

0

(
0 ε

−1
2 g[k21](ξ)Γ1(ξ)

)

× exp







0 I

ε
−1
2 A 0


(x−ξ)


dξ

]



I

0


 (8.88)

Noting that Γ2(x) depends on g[k21](x), an element of K, we define the operator formulation

(Γ̌2 ◦g)[k21] := Γ2. We will additionally define the operator Φ : C(T ;R)→C([0,1];R2×n) as

Φ[ f ](x) :=




Γ1(x)

(Γ̌2 ◦g)[ f ](x)


 (8.89)

where Φ[ f ] maps from the scalar C(T ;R) to the multidimensional C([0,1];R2×n) function space.

From this definition, it naturally follows that Φ[k21] = Γ. This operator representation will be

used in the well-posedness analysis for the PDE kernel K.

Of interest are bounds on Γ1(x),Γ2(x). The following bound on Γ1(x) is trivial to find:

|Γ1(x)| ≤ |Γ0|2S(x) (8.90)

where

S(x) = σmax


exp







0 I

ε
−1
2 A 0


x





 (8.91)

and σmax(X) denotes the largest singular value of the matrix X (the induced 2-norm). It is

important to note that the largest singular value of the matrix exponential is bounded on the
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compact set [0,1], i.e. |S(x)| < ∞,∀x ∈ [0,1]. With a bound on Γ1, the following bound on

(Γ̌2 ◦g)[k21](x) can be found, which will be used in the proof of well-posedness for K.

|(Γ̌2 ◦g)[k21](x)| ≤ |Γ0|2S(x)

+
∫ x

0

ε1− ε2

ε2
||Γ1||L∞ S(x−ξ)

×|∂yk21(ξ,ξ)|dξ (8.92)

8.4.2 K kernel

The K-kernel must be approached in two sets of equations: (k11,k12) and (k21,k22). The

reason for this is that the operator G[K] introduces coupling between the two sets of kernels. We

first apply a transformation to gain kernel (8.26)

Ǩ(x,y) =
√

E∂xK(x,y)+∂yK(x,y)
√

E (8.93)

which transforms the kernel PDE into a 2×2 system of coupled first-order hyperbolic PDEs.

(k11,k12)-system

The transform (8.93) will admit the following coupled 2×2 system

√
ε1∂xk11(x,y)+

√
ε1∂yk11(x,y) = ǩ11(x,y) (8.94)

√
ε1∂xk12(x,y)+

√
ε2∂yk12(x,y) = ǩ12(x,y) (8.95)

√
ε1∂xǩ11(x,y)−

√
ε1∂yǩ11(x,y) = 0 (8.96)

√
ε1∂xǩ12(x,y)−

√
ε2∂yǩ12(x,y) = 0 (8.97)

185



with boundary conditions

k11(x,0) =
aε2

ε1(aε2 +
√

ε1ε2)

×
∫ x

0
[
√

ε1ǩ11(y,0)+
√

ε2ǩ12(y,0)

−Γ1(y)B]dy (8.98)

k12(x,0) =
1

aε2 +
√

ε1ε2

×
∫ x

0
[
√

ε1ǩ11(y,0)+
√

ε2ǩ12(y,0)

−Γ1(y)B]dy (8.99)

k12(x,x) = 0 (8.100)

ǩ11(x,x) = 0 (8.101)

ǩ12(x,x) = 0 (8.102)

Lemma 25. The system of first-order hyperbolic PDEs (8.94)-(8.97) and associated boundary

conditions admit a unique set of k11,k12 ∈C(T ) solutions.

Proof. (k11,k12) can actually be solved explicitly via the method of characteristics. First, note that

(8.96),(8.97),(8.101),(8.102) imply that (ǩ11, ǩ12) = 0, the solution can be simplified significantly:

k11(x,y) =
aε2

ε1(aε2 +
√

ε1ε2)

∫ x−y

0
Γ1(z)Bdz (8.103)

k12(x,y) =





k12,l(x,y)
√

ε2x≥√ε1y

0 otherwise
(8.104)

k12,l(x,y) =
1

aε2 +
√

ε1ε2

∫ x−
√

ε1
ε2

y

0
Γ1(z)Bdz (8.105)
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It is not difficult to see that k11 ∈C∞(T )⊂C(T ) from the matrix exponential properties,

while k12 ∈C(T ).

(k21,k22)-system

The (k21,k22) system must be treated in a differing manner than the (k11,k12) system, due

to the existence of a nonlocal trace term To account for the different nature of these characteristics,

we perform one more transformation on the kernels for k2i:

k̂2i(x,y) =
√

ε2∂xk2i(x,y)−
√

εi∂yk2i(x,y) (8.106)

where i ∈ {1,2}. We then turn our attention to the gain kernel system (k̂21, ǩ21, k̂22, ǩ22).

The component system of kernel PDEs for (k̂21, ǩ21, k̂22, ǩ22) is

√
ε2∂xk̂21(x,y)+

√
ε1∂yk̂21(x,y) =−g[k21](x)k11(x,y) (8.107)

√
ε2∂xk̂22(x,y)+

√
ε2∂yk̂22(x,y) =−g[k21](x)k12(x,y) (8.108)

√
ε2∂xǩ21(x,y)−

√
ε1∂yǩ21(x,y) =−g[k21](x)k11(x,y) (8.109)

√
ε2∂xǩ22(x,y)−

√
ε2∂yǩ22(x,y) =−g[k21](x)k12(x,y) (8.110)

subject to the following boundary conditions:

k̂21(x,0) =−
1−a2

1+a2 ǩ21(x,0)+
2a3

1+a2 ǩ22(x,0)

− 2a2
√

ε1(1+a2)
(Γ̌2 ◦g)[k21](x)B (8.111)

k̂22(x,0) =
2

a(1+a2)
ǩ21(x,0)+

1−a2

1+a2 ǩ22(x,0)

− 2√
ε2(1+a2)

(Γ̌2 ◦g)[k21](x)B (8.112)

ǩ21(x,x) =−
√

ε1−
√

ε2√
ε1 +
√

ε2
k̂21(x,x) (8.113)
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ǩ22(x,x) = 0 (8.114)

where the inverse transformations are given to be

k21(x,y) =
1

2
√

ε2

∫ x

y
ǩ21(z,y)+ k̂21(z,y)dz (8.115)

k22(x,y) =
1

2
√

ε2

∫ x

y
ǩ22(z,y)+ k̂22(z,y)dz (8.116)

and the function g[k21](x) can be expressed in terms of k̂21, ǩ21:

g[k21](x) =
(ε2− ε1)

2
√

ε1
(ǩ21(x,x)− k̂21(x,x))

= (
√

ε1−
√

ε2)k̂21(x,x) (8.117)

Lemma 26. The system of first-order hyperbolic PDE (8.107)-(8.110) and associated boundary

conditions admit a unique set of k̂21, ǩ21, k̂22, ǩ22 ∈C(T ) solutions.

Proof. We recognize that (k̂21, ǩ21, k̂22, ǩ22) are similar in structure to the (previous result), albeit

with an additional non-local recirculation term appearing in the boundaries (8.111),(8.112). The

non-local term in the boundary does not change the method of the proof by too much, however,

additional care must be given to incorporate the behavior.

The solutions for the k̂21 can be recovered via a direct application of the method of

characteristics:

k̂21(x,y) = k̂21 (σ4(x,y),0)+ Î21[k̂21](x,y) (8.118)

k̂22(x,y) = k̂22 (x− y,0)+ Î22[k̂21](x,y) (8.119)

ǩ21(x,y) = ǩ21 (σ5(x,y),σ5(x,y))+ Ǐ21[k̂21](x,y) (8.120)

ǩ22(x,y) = ǩ22

(
x+ y

2
,
x+ y

2

)
+ Ǐ22[k̂21](x,y) (8.121)
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x

y

1

y 
= x

σ4(x,y)δ1σ4(x,y)

k21(x,y)

δ1
2σ4(x,y)

...

k21(x,y)

k21(x,y)

k22(x,y)

k22(x,y)

̂

̂

ˇ

ˇ

k22(x,y)k22(x,y)
...

Figure 8.3: Characteristics of k̂21, k̂22, ǩ21, ǩ22. To solve for a given point, the solution must be
known on a triangle of smaller volume.

σ4(x,y) := x−
√

ε2√
ε1

y (8.122)

σ5(x,y) :=
√

ε1x+
√

ε2y√
ε1 +
√

ε2
(8.123)

and the integral operators Î21, Î22, Ǐ21, Ǐ22 are defined

Î21[k̂21](x,y)

:=
∫ y√

ε1

0

[
− ε2− ε1√

ε1 +
√

ε2
k11(
√

ε2z+σ4(x,y),
√

ε1z)

× k̂21(
√

ε2z+σ4(x,y),
√

ε2 +σ4(x,y))
]

dz (8.124)
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Î22[k̂21](x,y)

:=
∫ y√

ε2

0

[
− ε2− ε1√

ε1 +
√

ε2
k12(
√

ε2z+ x− y,
√

ε2z)

× k̂21(
√

ε2z+ x− y,
√

ε2 + x− y)
]

dz (8.125)

Ǐ21[k̂21](x,y)

:=
∫ x−y√

ε1+
√

ε2

0

[
− ε2− ε1√

ε1 +
√

ε2
k11(
√

ε2z+σ5(x,y)

,−√ε1z+σ5(x,y))

× k̂21(
√

ε2z+σ5(x,y),

√
ε2 +σ5(x,y))

]
dz (8.126)

Ǐ22[k̂21](x,y)

:=
∫ x−y

2√ε2

0

[
− ε2− ε1√

ε1 +
√

ε2

× k12

(√
ε2z+

x+ y
2

,−√ε2z+
x+ y

2

)

× k̂21

(√
ε2z+

x+ y
2

,
√

ε2 +
x+ y

2

)]
dz (8.127)

From enforcing (8.111)-(8.114) on (8.118)-(8.121) recursively, one can eventually arrive

at an integral equation system representation for (k̂21, k̂22, ǩ21, ǩ22) involving infinite sums of

Volterra-type integral operators. The infinite sums appear due to the reflection boundary conditions

(8.111),(8.113) observed in the system.

k̂21(x,y) =

lim
n→∞

[
−δ

n
1δ

n+1
2 ǩ21 (δ

n
1σ4(x,y),0)

+δ
n
1δ

n
2

2a3

1+a2 ǩ22(δ
n
1σ4(x,y),0)

]
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+
∞

∑
n=0

[
δ

n
1δ

n
2Î21[k̂21](δ

n
3σ4(x,y),δn

3σ4(x,y))

−δ
n
1δ

n+1
2 Ǐ21[k̂21](δ

n
1σ4(x,y),0)

+δ
n
1δ

n
2

2a3

1+a2 Ǐ22[k̂21](δ
n
1σ4(x,y),0)

−δ
n
1δ

n
2

2a2
√

ε1(1+a2)
(Γ̌2 ◦g)[k21](δ

n
1σ4(x,y))

]

+ Î21[k̂21](x,y) (8.128)

k̂22(x,y) =

2
a(1+a2)

lim
n→∞

[
δ

n
1δ

n
2ǩ21(δ

n
1(x− y),0)

]

+
2

a(1+a2)

∞

∑
n=1

[
(−1)n

δ
n
1δ

n−1
2

× Î21[k̂21](δ
n
3(x− y),δn

3(x− y))

+δ
n−1
1 δ

n−1
2 Ǐ21[k̂21](δ

n
1(x− y),0)

+(−1)n
δ

n
1δ

n−1
2

2a
1+a3 Ǐ22[k̂21](δ

n
3(x− y),0)

+δ
n
1δ

n−1
2

2a2
√

ε1(1+a2)
(Γ̌2 ◦g)[k21](δ

n
1(x− y))

]

+δ2Ǐ22[k̂21](x− y,0)+ Î22[k̂21](x,y)

− 2√
ε2(1+a2)

(Γ̌2 ◦g)[k21](x− y)B (8.129)

ǩ21(x,y) =

lim
n→∞

[
δ

n
1δ

n
2ǩ21(δ

n
1σ5(x,y),δn

1σ5(x,y))
]

+
∞

∑
n=0

[
−δ

n+1
1 δ

n
2Î21[k̂21](δ

n
1σ5(x,y),δn

1σ5(x,y))

− 2a3

1+a2 δ
n+1
1 δ

n
2Ǐ22[k̂21]

(
δ1

δ3
δ

n
1σ5(x,y),0

)

−δ
n+1
1 δ

n
2

2a2
√

ε1(1+a2)
(Γ̌2 ◦g)[k21]

(
δ1

δ3
δ

n
1σ5(x,y)

)

+δ
n+1
1 δ

n+1
2 Ǐ21[k̂21]

(
δ1

δ3
δ

n
1σ5(x,y),0

)]
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+ Ǐ21[k̂21](x,y) (8.130)

ǩ22(x,y) = Ǐ22[k̂21](x,y) (8.131)

with

δ1 =

√
ε1−
√

ε2√
ε1 +
√

ε2
(8.132)

δ2 =
1−a2

1+a2 (8.133)

δ3 =

√
ε1√

ε1 +
√

ε2
(8.134)

Since a < 1,ε1 > ε2 as per Assumption 8.2, the coefficients δ1,2,3 ∈ (0,1). It is unclear initially

whether the limit and infinite sum terms even converge, however, as one may notice in Figure 8.3,

the contracting volume of integration and the reflection coefficients (appearing implicitly in the δi

coefficients) will guarantee the convergence.

The argument is similar to that of [15], but the additional non-local term (Γ̌2 ◦ g)[k21]

must be accounted for. As we have shown in (8.92), the operator Γ̌2 ◦g) is a bounded Volterra

operator on the transformed variable k̂21. It is easy to see that if a solution k̂21 exists, then the

solutions ǩ21, k̂22, ǩ22 follow from direct evaluation. Thus, in this proof, we will merely show that

k̂21 exists.

We establish an iteration k̂21,i as

k̂21,i(x,y) =
∞

∑
n=0

[
δ

n
1δ

n
2Î21[k̂21,i](δ

n
3σ4(x,y),δn

3σ4(x,y))

−δ
n
1δ

n+1
2 Ǐ21[k̂21,i](δ

n
1σ4(x,y),0)

+δ
n
1δ

n
2

2a3

1+a2 Ǐ22[k̂21,i](δ
n
1σ4(x,y),0)

192



−δ
n
1δ

n
2

2a2
√

ε1(1+a2)
(Γ̌2 ◦g)[k21,i](δ

n
1σ4(x,y))

]

+ Î21[k̂21,i](x,y) (8.135)

We seek the existence fixed point of the iteration (in the complete space C(T )), that is,

limi→∞ k̂21,i = k̂21. For the limit to converge, we can seek for uniform bounds over T , which will

imply uniform convergence. For simplicity of analysis, we study the residuals of the iteration,

∆k̂21,i := k̂21,i+1− k̂21,i. Noting the linearitiy of the integral operators, and evaluating the infinite

geometric sum, one can eventually find the following iterative bound:

|∆k̂21,i+1(x,y)| ≤
1

1−δ1δ2

[
|Î21[|∆k̂21,i|](δn

3σ4(x,y),δn
3σ4(x,y))|

+δ2|Ǐ21[|∆k̂21,i|](δn
1σ4(x,y),0)|

+
2a3

1+a2 |Ǐ22[|∆k̂21,i|](δn
1σ4(x,y),0)|

+
2a2

√
ε1(1+a2)

∫
δn

1σ4(x,y)

0

√
ε1−
√

ε2

ε2

×||Γ1||L∞ ||S||L∞ |∆k̂21,i(ξ,ξ)|dξ

]

+ |Î21[|∆k̂21,i|](x,y)| (8.136)

where now we can establish the postulated fixed point as

k̂21 = lim
i→∞

k̂21,i = k̂21,0 +
∞

∑
i=0

∆k̂21,i (8.137)

The equivalent condition for convergence of the residuals is showing that the sum in (8.137)

converges uniformly, which we will show via the Weierstrass M-test. We select k̂21,0 = 0, and
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from (8.135), we can find

∆k̂21,0 ≤
1

1−δ1δ2

2a2
√

ε1(1+a2)
|Γ0|2 ||S||L∞ =: Ψ0 (8.138)

Noting this, one may substitute Ψ0 into (8.136) to compute successive bounds on ∆k̂21,i, which

can be encapsulated into the following bound:

|∆k21,i(x,y)| ≤ 3Ψ0
1
n!

Ψ
nxn (8.139)

where

Ψ = max
{(

1
1−δ1δ2

)(
1+δ2 +

2a3

1+a2

)

×
(√

ε1−
√

ε2√
ε2

||k11||L∞

)
,

(
1

1−δ1δ2

)(
2
ε2
||Γ1||L∞ ||S||L∞

)
,

√
ε1−
√

ε2√
ε2

||k11||L∞

}
(8.140)

Then it is quite clear that

∞

∑
i=0
|∆k21,i(x,y)| ≤ 3Ψ0 exp(Ψx)< ∞ (8.141)

since x∈ [0,1]. By the Weierstrass M-test we can conclude the uniform (and absolute) convergence

of (8.137) in C(T ). This proves the existence of k̂21 ∈C(T ) via the Schauder fixed point theorem.

As mentioned previously, the existence of k̂21 ∈C(T ) will imply the existence of

k̂22, ǩ21, ǩ22 ∈C(T ) by a mere straightforward evaluation of (8.129),(8.130),(8.131).

Lemma 27. The ODE (8.27) and associated initial conditions admit a unique C([0,1]) solution.
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Proof. The proof directly follows from (8.87),(8.88) and Lemmas 25,26. It is trivial to see that

Γ1 ∈C∞([0,1]) by virtue of the matrix exponential.

The regularity of Γ2 can be recovered noting that Γ2 involves a convolution of the operator

g[k21](x) with a matrix exponential (seen in (8.88)). As the exponential is C∞([0,1]), it is quite

clear that it acts as a mollifier to recover a C∞([0,1]) solution for Γ2.

8.5 Conclusion

A control design methodology via folding and infinte-dimensional backstepping is detailed

in the paper. The result comes as a natural extension to the folding framework to designing

bilateral controllers.

Of great interest is an alternative interpretation of the folded system with an ODE. The

control of an ODE through two distinct controllers can be seen to play a cooperative “game”,

whose objective is to stabilize the ODE through the coupled actuation path. This interpretation

naturally raises the question of casting a noncooperative game, where perhaps the two controllers

are designed independently of one another. Such a formulation may lead to more robust bilateral

implementations, where the failure of one controller does not compromise the stability of the

system.

A nautral extension to consider is state estimation. Some work by Camacho-Solario has

explored a similar problem, albeit for a single parabolic equation (as opposed to two distinct

parabolic input paths) [9]. The state estimation analogue to the problem has been considered

without the ODE in (...), where two collocated measurements of state and flux are taken at an

arbitrary interior point (independent of the ODE coupling/folding point). When only the ODE

is measured, however, the designer can really only generate an estimate of the state at the point

of coupling, and not necessarily of the flux – an undersensed system. This problem is of great

engineering interest, and is under investigation.
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