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In order to study the “Cosmic Dawn” and the Epoch of Reionization with 21 cm tomography, we need to
statistically separate the cosmological signal from foregrounds known to be orders of magnitude brighter.
Over the last few years, we have learned much about the role our telescopes play in creating a putatively
foreground-free region called the “EoR window.” In this work, we examine how an interferometer’s effects
can be taken into account in a way that allows for the rigorous estimation of 21 cm power spectra from
interferometric maps while mitigating foreground contamination and thus increasing sensitivity. This
requires a precise understanding of the statistical relationship between the maps we make and the
underlying true sky. While some of these calculations would be computationally infeasible if performed
exactly, we explore several well-controlled approximations that make mapmaking and the calculation of
map statistics much faster, especially for compact and highly redundant interferometers designed
specifically for 21 cm cosmology. We demonstrate the utility of these methods and the parametrized
trade-offs between accuracy and speed using one such telescope, the upcoming Hydrogen Epoch of
Reionization Array, as a case study.

DOI: 10.1103/PhysRevD.91.023002 PACS numbers: 95.75.-z, 95.75.Kk, 98.62.Ra, 98.80.Es

I. INTRODUCTION

The prospect of directly probing the intergalactic
medium (IGM) during the cosmic dark ages, through the
“Cosmic Dawn” and culminating with the Epoch of
Reionization (EoR) has generated tremendous excitement
in 21 cm cosmology over the past few years. Not only could
it provide the first direct constraints on the astrophysics of
the first stars and galaxies, but it could make an enormous
new cosmological volume accessible to tomographic
mapping—enabling exquisitely precise new tests of the
standard model of cosmology [1]. For recent reviews, see
e.g. [2–5].
More recently, that excitement has translated into

marked progress toward a statistical detection of the
21 cm signal in the power spectrum. The first generation
of experiments, including the Low Frequency Array [6], the
Donald C. Backer Precision Array for Probing the Epoch of
Reionization (PAPER [7]), the Giant Metrewave Radio
Telescope [8], and the Murchison Widefield Array (MWA
[9,10]) have already begun their observing campaigns.
Both PAPER [11] and the MWA [12] have released upper
limits on the 21 cm power spectrum across multiple
redshifts. PAPER has already begun to use their results

to constrain some models of the thermal history of the
IGM [13].
Still, the observational and analytical challenges that lie

ahead for the field are considerable. The sensitivity require-
ments for a detection of the 21 cm power spectrum
necessitate large collecting areas and thousands of hours
of observation across multiple redshifts [14–18]. Of no less
concern is the fact that the cosmological signal is expected
to be dwarfed by foreground contaminants—synchrotron
radiation from our galaxy and other radio galaxies—by 4 or
more orders of magnitude in brightness temperature at the
frequencies of interest [19–24].
The problem of power spectrum estimation in the

presence of foregrounds has been the focus on considerable
theoretical effort over the past few years [25–30]. Liu and
Tegmark [29] adapted inverse-covariance-weighted quad-
ratic estimator techniques developed for cosmic microwave
background [31] and galaxy survey [32] power spectrum
analysis to 21 cm cosmology. Dillon et al. [30] showed how
those methods, which nominally take OðN3Þ steps, where
N is the number of voxels in a 3D map or “data cube,”
could be accelerated to as fast as OðN logNÞ.
However, both of those works took as their starting point

data cubes containing signal, foregrounds, and noise.
Neither considered the important impact that an interfer-
ometer has, not just on the noise in our maps, but on the*jsdillon@mit.edu
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maps themselves. An instrument-convolved map or “dirty
map” has fundamentally different statistical properties than
the underlying sky and the effects of the instrument cannot
in general be fully undone. Dillon et al. [12] discussed this
problem approximately by assuming that point spread
functions (PSFs) or “synthesized beams” depended only
on frequency. Generally speaking, that is not true; PSFs are
direction dependent and typically not invertible. In this
work, we relax the assumption that went into Liu and
Tegmark [29] and Dillon et al. [30] while retaining the
goals they strove for: minimal information loss, rigorously
understood statistics, and well-controlled approximations
that make the analysis computationally feasible.
For any near-future 21 cm measurement, interferometric

maps are essentially an intermediate data-compression step.
The ultimate goal is to turn time-ordered data coming from
the instrument—namely, visibilities—into statistical mea-
surements that constrain our models of astrophysics and
cosmology. So why even bother making a map if we are
only going to take Fourier transforms of it and look at
power spectra? The answer to that question depends on
which strategy we pursue for separating the cosmological
signal from foregrounds. There are two major approaches,
which we will review presently.
Over the last few years, it has been realized that a region

of cylindrical Fourier space1 should be essentially free of
foreground contamination [28,33–40]. We call this region
the “EoR window” (see Fig. 1). Observations of the EoR
window thus far have found it noise dominated [12,22]. For
slowly varying spectral modes (i.e. low k∥), the edge of the
window is set by a combination of the intrinsic spectral
structure of foreground residuals and the spectral structure
introduced by the instrument. Fundamentally, an interfer-
ometer is a chromatic instrument and the fact that the shape
of its point spread functions depends on frequency creates
complex spectral structure in 3D maps of intrinsically
smooth foregrounds [39,40].
Fortunately, there is a theoretical limit to the region of

Fourier space where instrumentally induced spectral struc-
ture can contaminate the power spectrum. It is set by the
delay associated with a source at the horizon (which is the
maximum possible delay) for any given baseline [34]. This
region of cylindrical Fourier space is known colloquially
as “the wedge.” Furthermore, we expect that most of the
foreground emission should appear in the main lobe of the
primary beam, setting a soft limit on foreground emission at
lower k∥ (see Fig. 1).
The simplest approach to power spectrum estimation in

the presence of foregrounds, and likely the most robust, is

to simply excise the entire section of Fourier space that
could potentially be foreground dominated. This
conservative approach takes the perspective that we have
no knowledge about the detailed spatial or spectral struc-
ture of the foregrounds and therefore that the entire region
under the wedge is hopelessly contaminated. If that were
the case, the optimal strategy would simply be to project
out those modes. This “foreground avoidance” strategy has
been used to good effect by both PAPER [11,13] and the
MWA [12], though neither made sensitive enough mea-
surements to be sure that foregrounds are sufficiently
suppressed inside the EoR window to make a detection
without subtracting them. Considerable work has already
been done on methods of estimating the power spectrum
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FIG. 1 (color online). The EoR window is a region of Fourier
space believed to be essentially foreground free and thus
represents a major opportunity for detecting the 21 cm signal.
Along the horizontal axis, the window is limited by the field of
view, which sets the largest accessible modes, and the angular
resolution of the instrument, which sets the smallest. Along the
vertical axis, the window is limited by the spectral resolution of
the instrument and by the intrinsic spectral structure of galactic
and extragalactic foregrounds, which dominate the spectrally
smooth modes. The EoR window is further limited by the
wedge, which results from the modulation of spectrally smooth
foregrounds by the instrument’s frequency-dependent and
spatially varying point spread function. Much of the power
in the wedge should fall below the wedge line associated with
the primary beam while the horizon line serves as a hard cutoff
for flat-spectrum foregrounds [34]. Limited “suprahorizon”
emission has been observed and can be attributed to intrinsic
spectral structure of the foregrounds [22], so it is possible we
need a small buffer beyond the horizon to be certain that the
window is foreground free. Without foreground subtraction,
foregrounds are expected to dominate over the cosmological
signal throughout the wedge.

1Points in cylindrical or “2D” Fourier space are denoted by k∥,
modes along the light of sight, and k⊥, modes perpendicular to
the line of sight. Cylindrical Fourier space takes advantage of
isotropy perpendicular to the line of sight while keeping modes
along the line of sight separate, since they are measured in a
fundamentally different way.
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that minimize foreground contamination from the wedge
into the window [12,40].
Foreground avoidance, however, comes at a significant

cost to sensitivity. The more aggressive alternative is
“foreground subtraction,” a strategy that tries to remove
power associated with foregrounds and expand the EoR
window. The idea behind foreground subtraction is two-
fold. First, we remove our best guess as to which part of the
data is due to foreground contamination. Second, we treat
residual foregrounds as a form of correlated “noise,”
downweighting appropriately in the power spectrum esti-
mator and taking into account biases introduced. In the
limiting case where we know very little about the fore-
grounds, foreground subtraction becomes foreground
avoidance.
For the upcoming Hydrogen Epoch of Reionization

Array (HERA), Pober et al. [41] compared the effects of
foreground avoidance to foreground subtraction. If the
window can be expanded from delay modes associated
with the horizon to delay modes associated with the full
width at half maximum of the primary beam, the sensitivity
to the EoR signal improves dramatically. Over one observ-
ing season with a 547-element HERA, the detection
significance of a fiducial EoR signal improves from 38
to 122σ. For smaller telescopes, this might mean the
difference between an upper limit and a solid detection.
More importantly, the errors on the measurements of
parameters that describe reionization from the power
spectrum improve from about 5% to less than 1% when
employing extensive foreground subtraction. That would
be the most sensitive measurement ever made of the direct
effect of the first stars and galaxies on the IGM. Simply put,
there is much that might be gained by an aggressive
foreground subtraction approach.
That said, it will not be easy. In order to expand the EoR

window and reduce the effect of foregrounds, one must
model them very carefully. Likely we will want to use
outside information like high-resolution surveys to try to
measure source fluxes to be much better than a percent.
Even more importantly, one must take our own uncertainty
about these models into account. If we do not, we risk
mistakenly claiming a detection. We must propagate both
our best estimates for the foregrounds and our uncertainty
in our models through the instrument, which is the source
of the wedge itself.
Both galactic and extragalactic foregrounds have com-

plex spatial structure. Any precise model for their emission
is direction dependent. More importantly, our model for the
statistics of our uncertainty about their emission is also
direction dependent. The covariance of residual fore-
grounds, especially of bright sources, is most simply and
compactly expressed in real space [30].
We can now finally answer the question of why we

should make maps if we are ultimately interested in
power spectra. We need maps as an intermediate data

product because they allow us to prepare our data in a
highly compressed form that puts us in a natural position
to carefully pick apart the signal from the foregrounds
and the noise. Forming power spectra directly with
visibilities, by comparison, requires treating each local
sidereal time separately and vastly increases the data
volume. In Fig. 2 we put mapmaking into the larger
context of data reduction all the way from calibrated
visibilities to cosmological and astrophysical constraints.
The goal of each step is to reduce the volume of data
while keeping as much cosmological information as
possible, allowing for quantification of errors, and
making the next step easier.

FIG. 2 (color online). Mapmaking is the first in a series of steps
that reduce the volume of data while trying not to lose any
astrophysical or cosmological information. The goal of this work
is to address that first data-compressional step—turning cali-
brated visibilities into a stack of dirty maps or a data cube—with
any eye toward the next step—power spectum estimation in the
presence of dominant astrophysical foregrounds. This data
compression is achieved by combining together different obser-
vations into a single, relatively small set of maps. Power spectra
represent the cosmological signal even more compactly by taking
advantage of homogeneity and isotropy and serve as the natural
data product to connect to simulations and theory and thus
constrain cosmological and astrophysical parameters.
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The science requirements of our maps are very different
from those that motivated most interferometric mapmaking
in radio astronomy to date. Usually, radio astronomers are
interested in the astrophysics of what we call “foregrounds”
and focus on detailed images and spectra. For us it is
especially important to understand how our maps are
related statistically to the true sky, whose underlying
statistics we would like to characterize using the power
spectrum. Because interferometers do not uniformly or
completely sample the Fourier plane, the relationship
between our maps and the true sky is complicated. The
PSFs of our maps depend both on frequency and on
position on the sky. In order to estimate power spectra
from maps accurately, we need to know precisely both the
relationship of our dirty maps to the true sky and the
covariance of our dirty maps that relates every pixel at
every frequency to every other.2 Current imaging tech-
niques do not compute these quantities. It is the main point
of this paper to show why and how that must be done.
Both [39] and [40] focused on a similar point about the

important effect of the instrument on the power spectrum.
There, the authors derived a framework for rigorously
quantifying the errors and error correlations associated with
instrument-convolved data and showed how the wedge
feature arose even in a rigorous and optimal framework.
However, because they formed power spectra directly from
visibilities without using maps as an intermediate data-
compression step, their tools are impractical for use with
large data sets.
In this work, we have two main goals. First, we would

like to mathematically understand how the instrument gives
rise to a complicated PSF and how that PSF can be self-
consistently incorporated into the inverse-covariance-
weighted power spectrum estimation techniques (e.g.
[29] and [30]). In Sec. II, we discuss the theory of
mapmaking as an intermediate step between observation
and power spectrum estimation. Then, in Sec. III, we
investigate how to put that theory into practice. We use
HERA as a case study in carrying out the calculation of
dirty maps and their statistics. Although the computational
cost of performing those calculations is naively quite large,
we develop and analyze three main ways of reducing it
dramatically:

(i) We explore how restricting our maps to independent
facets on the sky lets us reduce the number of

elements in our PSF matrices and the difficulty of
calculating them (Sec. III D).

(ii) We show how individual time steps can be combined
and analyzed simultaneously, approximately ac-
counting for the rotation of the sky over the instru-
ment (Sec. III E).

(iii) We show how the point spread functions, while not
translationally invariant, vary smoothly enough spa-
tially that the associated matrix operations can take
advantage of certain symmetries for a computational
speedup (Sec. III F).

We will show how each of these approximations works and
analyze them to understand the trade-off between speed and
accuracy in each case.

II. PRECISION MAPMAKING AND MAP
STATISTICS IN THEORY

Making maps from interferometric data has a long
history and a great number of techniques have been
developed with different science goals in mind [42].
Most focus on deconvolution, the removal of point source
side lobes (or the side lobes of extended sources repre-
sented as multiple components) after their convolution with
the synthesized beam. This is the basic idea behind the
CLEAN algorithm [43] and its many descendants, includ-
ing [44–55]. Some of these, notably that of Sullivan et al.
[54], take inspiration from [56], in that they use the
framework of “optimal mapmaking” for forming dirty
maps without losing any cosmological information con-
tained in the visibilities. Additionally [57] and [58], which
use the optimal mapmaking formalism in them-mode basis
to exploit the observational symmetries of a drift scanning
interferometer, are also closely related to the work pre-
sented here.
A notable exception is [59], which develops a method of

Bayesian deconvolution via Gibbs sampling in the rela-
tively simplified case of a gridded uv-plane, which can then
be used for power spectrum estimation [60]. This method
not only calculates a map but also gives error estimates on
each pixel in that map. This is an especially promising
technique for finding sources and quantifying the errors on
our measurements of their fluxes and spectral indices. We
take a different tack and do not focus on deconvolution
at all.
In this work, we are interested not just in a dirty map but

also in the statistical properties of that map. As in previous
work, we want to know how sources are convolved with the
instrument. But we also want to know how that instru-
mental convolution affects our covariance models for
everything in the map, including signal, noise, and fore-
grounds. A complete understanding of the relationship
between the true sky and our dirty maps will allow us to
comprehensively model these important statistical quan-
tities. Current imaging methods simply do not compute that
relationship and the resulting noise covariance matrix.

2It is worth mentioning that the techniques developed here do
not apply only to 21 cm tomography. Any power spectrum made
with maps produced from interferometric data needs to take into
account the effects of the frequency-dependent and spatially
varying PSF on both the signal and the contaminants. This
includes intensity mapping of carbon monoxide and ionized
carbon and interferometric measurements of the cosmic micro-
wave background. Higher-order statistics, like the bispectrum and
trispectrum, also need precise knowledge of the relationship
between the true sky and the dirty maps.
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However, these are required for methods of power spectrum
estimation in order to properly weight data in the presence
of correlated noise and foregrounds and to account for
missing modes. The importance of this was realized by
[61], though wewill use a different computational approach
to speed up the calculations.
We begin this section by summarizing the relevant

physics behind interferometry in Sec. II A. We then review
the optimal mapmaking formalism in Sec. II B. Finally, in
Sec. II C we work out the consequences of proper map
statistics for the inverse-covariance-weighted quadratic
power spectrum estimation formalism, including how they
affect the models of the covariance of cosmological signal,
noise, and foreground residuals.

A. Interferometric measurements

When we make maps from interferometric data, we are
interested in computing a map estimator or dirty map,
which we call x̂, and understanding its relationship to x, the
true, discretized sky.3 We do not have access to x directly;
we can only make inferences about it by making a set of
complex “visibility” measurements which we call y. Each
measurement made with our instrument is a linear combi-
nation of the true sky added to instrumental noise.
Therefore, we can represent all our measurements with

y ¼ Axþ n; ð1Þ
where A represents the interferometric response of our
instrument over all times, frequencies, and baselines and
where each ni is the instrumental noise on the ith visibility.
The matrix A has the dimensions of the number of
measured visibilities (for every baseline, frequency, and
integration) by the number of voxels in the 3D sky (all
pixels at all frequencies).
The statistics of n are fairly simple. It has zero mean and

the noise on each visibility is generally treated as inde-
pendent of that on every other visibility. Therefore,

hnii ¼ 0 ð2Þ

Nij ≡ hnin�ji ¼ σ2i δij: ð3Þ

The form of A is considerably more complicated, it can be
written in the form of Eq. (1) because a visibility is a
weighted integral over the whole sky which can be
approximated to any desired precision by a finite matrix
operation.
The visibility measured by a noise-free instrument with

arbitrarily fine frequency resolution at frequency ν and
baseline bm in response to a sky specific intensity Iðr̂; νÞ
defined continuously over all points on the sky r̂ is

Vðbm;νÞ¼
Z

Bmðr̂;νÞIðr̂;νÞexp
�
−2πi

ν

c
bm · r̂

�
dΩ: ð4Þ

Here Bmðr̂; νÞ is the product of the complex primary beams
of the two antenna elements that form the mth baseline. In
this equation and in the rest of this section, we will ignore
the polarization of the sky and the fact that there are
different beams for each polarization, assuming homog-
enous antenna elements. We do this for simplicity; the
results are straightforwardly generalizable to a complete
treatment of polarization, which we will explore in
Appendix A. In that appendix, we will also look at how
heterogenous arrays are straightforwardly incorporated into
our framework as well.
Given a finite number of measurements, we are inter-

ested in the relationship between visibilities and a dis-
cretized true sky, x. In frequency, that discretization comes
from the spectral response of our instrument—we can only
measure a limited number of frequency channels. Spatially,
we need to choose our pixelization of the sky. Let us define
a 3D pixelization function ψ iðr̂; νÞ that incorporates both
these kinds of pixelization. It is defined so that,

xi ¼
Z

ψ iðr̂; νÞ
c2

2kBν2
Iðr̂; νÞdΩdν; ð5Þ

where the extra factor of c2=2kBν2 converts from units of
specific intensity to brightness temperature. For simplicity,
we define ψ iðr̂; νÞ to be the unitless top-hat function,
normalized such that

Z
ψ iðr̂; νÞ

dΩ
ΔΩ

dν
Δν

¼ 1 ð6Þ

where Δν is the frequency resolution of the instrument and
ΔΩ is the angular size of the pixels. Other choices of
ψ iðr̂; νÞ are perfectly acceptable, in which case Δν and ΔΩ
become characteristic spectral and spatial sizes of pixels.
Therefore we can rewrite Eq. (4) as a sum:

Vðbm; νnÞ ≈
X
k

ΔΩ
2kBν2n
c2

xkðνnÞ

× Bmðr̂k; νnÞ exp
�
−2πi

νn
c
bm · r̂k

�
: ð7Þ

Here we have chosen to break apart the index i into a spatial
subindex, k, and a spectral subindex, n. The sum is over all
spatial pixels. This approximation relies on choosing a
frequency and angular resolution small enough that Bðr̂; νÞ
and exp ½−2πiðν=cÞbm · r̂� can be approximated as con-
stants inside of a single spatial pixel and frequency channel.
Since Vðbm; νnÞ is an entry in y, Eq. (7) gives us the
elements ofA by relating y to x for a single observation and
a single baseline. Of course, the full matrix A that goes into
Eq. (1) gives us a relationship between the true sky and every

3We write these quantities as vectors as a compact way of
combining indices over both angular dimensions on the sky and
over frequency.
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visibility at every frequency and at every local sidereal time.
The basic physics, however, is captured by Eq. (7).

B. The optimal mapmaking formalism

Given a set of visibilities (or any time-ordered data) of
the form in Eq. (1), there is a well-known technique for
forming estimators of the true sky without losing any
information about the discretized sky contained in the time-
ordered data [56]. Those estimators, known as optimal
mapmaking estimators, take the general form

x̂ ¼ DA†N−1y ð8Þ
where D can be any invertible normalization matrix.
Especially for long observations, y is a much larger vector
than x̂. Mapmaking represents a major data-compression
step.
The expected value of the estimator is

hx̂i ¼ hDA†N−1ðAxþ nÞi
¼ DA†N−1ðAxþ hniÞ
¼ DA†N−1Ax: ð9Þ

In general, the expected value of x̂ is not the same as the
true sky but is rather some complicated linear combination
of pixels on the true sky. We define

P≡DA†N−1A ð10Þ
to be the matrix of point spread functions. Each column of
the matrix tells us how each pixel on the true sky gets
mapped to all the pixels of the dirty map. If we want to
normalize the PSF to always have a central value of 1, we
can achieve that by a judicious choice ofD. In this work, we
make that choice of PSF normalization. Recall that D can be
any invertible matrix. Sincewe are not trying to make images
that look as much as possible like the true sky but rather just
to keep track of exactly how our dirty maps are related to the
true sky, making a very simple choice for D is sensible.4

Therefore, we use our freedom in choosing D to make it a
diagonal matrix—effectively a per-pixel normalization. In
Fig. 3 we plot an example of the central portions of two
different rows of P at three different frequencies.

C. Connecting maps to power spectra

As we discussed earlier, we are interested in mapmaking
in order to reduce the volume of our data without losing any
sky information or the ability to remove foregrounds. From
the map, the next step is to further compress the data by
calculating a power spectrum, which can be directly

compared with theoretical predictions. To connect the
mapmaking formalism to 21 cm power spectrum estima-
tion, we will review the statistical estimator formalism for
calculating power spectra while not losing any cosmologi-
cal information. In the process, we will enumerate the
quantities that we need to calculate in order to estimate a
power spectrum from x̂. Then we will show the form that
those quantities take in terms of x̂, P, and D.

1. Power spectrum estimation review

Fundamentally, a power spectrum estimate is a quadratic
combination of the data. To calculate a power spectrum,
roughly speaking, one simply Fourier transforms real-space
data, squares, and then averages in discrete bins to form
“band powers.” In a real-world measurement with noise and
foreground contamination, we need a more sophisticated
technique.
Because we have a finite amount of data, we must

discretize the power spectrum we estimate by approximat-
ing PðkÞ as a piecewise-constant function described by a
set of band powers p using

PðkÞ ≈
X
α

pαχαðkÞ: ð11Þ

Here χαðkÞ is a characteristic function which equals 1
inside the region described by the band power pα and
vanishes elsewhere.
Since the power spectrum is a quadratic quantity in the

data, an estimator p̂ of the band power spectrum p (which is
discretized by approximating the power spectrum as piece-
wise constant) takes the form

p̂α ¼ ðx̂ − μÞTEαðx̂ − μÞ − bα: ð12Þ

Here Eα very generally represents the operations we want
to perform on the data and μ≡ hx̂i is the ensemble average
over many realizations of the same exact observation, each
with different noise, and b removes additive bias from
noise and residual foregrounds in the power spectrum.
Just as estimators of the form in Eq. (8) do not lose any

information about the true sky contained in the visibilities,
there exists an optimal quadratic estimator for power
spectra that does not lose cosmological information
[31].5 Those estimators take the form

4The choice of D ¼ ½A†N−1A�−1 was used by WMAP [62]
because it makes P ¼ I, but that matrix is generally not invertible
in radio interferometry. Whenever one cannot make that choice of
D, P is not the identity and one must keep track of its effects.

5This entails certain assumptions, most notably that the noise,
residual foregrounds, and signal are all completely described by
their means and covariances—in other words that they are
Gaussian. We know that this is not exactly true in the case of
residual foregrounds and signal, though it is generally assumed to
be a pretty good approximation for the purposes of the first
generation of 21 cm measurements [29].
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p̂α ¼
1

2
Mαβðx̂ − μÞTC−1C;β C−1ðx̂ − μÞ − bα: ð13Þ

In this equation, M is an invertible normalization matrix,
analogous toD, andC is the covariance of x̂ (not of the true
sky x) and is defined as

C≡ hx̂x̂Ti − hx̂ihx̂iT: ð14Þ

Each C;β matrix, which encodes the Fourier transforming
and binning steps of the power spectrum, is defined such
that

C ¼ Ccontaminants þ
X
β

pβC;β : ð15Þ

Here Ccontaminants represents the covariance of anything
that appears in x̂ that is not the 21 cm cosmological signal.
In other words, the set of C;β matrices tells us how the
covariance of x̂ responds to changes in the underlying
band powers, p. We will explain the precise form of C;β
shortly.

2. The statistics of the mapmaking estimator

All of the quantities we are interested in calculating
when estimating the power spectrum, including the bias
term, the errors on our band powers, the error covariance
between band powers, and the “window functions” that
encode the relationship between p̂ and p, are derived from
our models of μ and C (see e.g. [12,29–31] for the exact
forms of these quantities). In this section, we will see how
those quantities depend on the mapmaking algorithm and
are inextricably linked to the response of the interferometer.
We have already shown that hx̂i ¼ Px in Eq. (9) and

(10). When we are making a map, this is sufficient—there
is a “true” sky and we are trying to estimate a quantity
related to it from noisy data in a well-understood way. In
the context of power spectrum estimation, simply averaging
down instrumental noise is not enough. Because we are
interested in the statistical properties of the Universe as a
whole, we are trying to use multiple independent spatial
modes to learn about at the underlying statistics of x, taking
advantage of homogeneity and isotropy. Though there is
only one true sky, we treat it as a random field with
Gaussian statistics. Therefore,

FIG. 3 (color online). The point spread function (or equivalently, the synthesized beam) of a dirty map varies both as a function of
position on the sky and as a function of frequency. In the top row, we show the point spread functions at three frequencies corresponding
to the center of the primary beam calculated for HERA. They exhibit clear diffraction rings and fairly strong side lobes due to the fact
that the minimum separation between antennas is significantly longer than the wavelength. The hexagonal pattern is due to the geometry
of the array. In the bottom row, we look at off-center point spread functions. These also have side lobes, though they are asymmetric due
to the primary beam and the projected layout of the array and thus a clear example of the translational variation of the PSF. All six can be
thought of as single rows of different frequency blocks of the full matrix of point spread functions, P. Each PSF peaks at 1, but we have
saturated the color scale to show detail. In Sec. III, we will explain in detail how these PSFs are calculated.
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μ ¼ hx̂i ¼ Phxi
¼ P½hxSi þ hxNi þ hxFGi� ¼ PhxFGi: ð16Þ

Here we have explicitly separated our model for the sky
into three statistically independent parts: the 21 cm signal,
the noise, and the foregrounds. Only the foregrounds have
nonzero mean.6 Because they are statistically independent,
the covariance can be separated into the sum of three
matrices.7 Hence,

C ¼ CS þ CN þ CFG: ð17Þ

We will now show how all of these are calculated in the
context of optimal mapmaking.

3. The signal covariance

First, let us turn to the signal covariance, CS. To
understand what this really means, we need to first explain
what we mean by xS. Imagine a continuous 21 cm temper-
ature field as a function of position in comoving coor-
dinates, xSðrÞ. Each element of the vector xS is given by

xSi ≡
Z

ψ iðrÞxSðrÞ
d3r
ΔV

; ð18Þ

where ψ iðrÞ encloses exactly the same volume as ψ iðr̂; νÞ
and ΔV ≡ R

ψ iðrÞd3r is the comoving volume of a
voxel. The continuous 21 cm power spectrum, PðkÞ, is
defined by

h½~xSðkÞ�� ~xSðk0Þi≡ ð2πÞ3δðk − k0ÞPðkÞ; ð19Þ

where ~xSðkÞ is the Fourier transform of xSðrÞ. It follows
then that

hxSi xSj i − hxSi ihxSj i ¼
Z

~ψ iðkÞ ~ψ�
jðkÞPðkÞ

d3k
ð2πÞ3 : ð20Þ

By combining Eq. (20) and (11), we can write down the
covariance of xS:

hxSi xSj i − hxSi ihxSj i ≈
X
α

pαQα
ij; ð21Þ

where

Qα
ij ≡

Z
~ψ iðkÞ ~ψ�

jðkÞχαðkÞ
d3k
ð2πÞ3 : ð22Þ

Finally, using the fact that hx̂i ¼ Px determines also the
relationship between the cosmological components of x
and x̂, we find that

CS ≈ P

�X
α

pαQα

�
PT ð23Þ

and therefore that

C;α ≈PQαPT: ð24Þ

4. The noise covariance

While hx̂Ni ¼ hxNi ¼ 0, the instrumental noise still
contributes to the covariance. Our mapmaking formalism
makes it straightforward to track how the noise on
individual visibilities, σ2i , translates into correlated noise
between pixels in a dirty map, which is described by CN.
Let us imagine that x ¼ 0 and our instrument measured just
noise for each visibility. If we compute the covariance of x̂
in this case we will have CN , since CS and CFG represent
our knowledge about the sky. This is true because there are
no cross terms that correlate noise with foregrounds or
signal.
Therefore, since our usual inverse covariance weighted

map estimator now gives us

x̂N ¼ DA†N−1n; ð25Þ
it follows that

CN ¼ hx̂Nðx̂NÞTi ¼ hDA†N−1nn†N−1ADTi
¼ DA†N−1hnn†iN−1ADT

¼ DA†N−1ADT ¼ PDT: ð26Þ

This is a gratifyingly simple result; calculating P yields CN

virtually for free. It also allows us to avoid the common
assumption (made for example by [12,29] and, [30]) that
instrumental noise is uncorrelated between pixels in a
gridded uv-plane. Correlations between uv pixels intro-
duced by the primary beam are fully taken into account in
our framework because, like in [39], CN contains all the
relevant information about the instrument and the mapmak-
ing process.

5. The foreground covariance

Finally, we come to the statistics of the foregrounds. The
reason that we treat xFG as a random field even though
there is really only one set of true foregrounds is that we
want to represent both our best guess at the foregrounds and
our uncertainty about that guess. When we write hxFGi in

6The mean of the cosmological signal is zero only because it is
usually defined as the fluctuations from the mean brightness
temperature of the global 21 cm signal. For our purposes, the
global signal is a contaminant and can be treated as part of the
diffuse foregrounds without loss of generality.

7It should be noted that each of these covariance matrices is the
covariance of the instrument-convolved sky and not the true sky,
in contrast to the notation in [30] which, by treating an idealized
scenario, ignored the distinction.
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Eq. (16), we really mean our best guess as to the true
foregrounds—the average of our incomplete knowledge
about their positions, fluxes, spectral indices, and angular
extents. Therefore we need to calculate

μ ¼ hx̂FGi ¼ PhxFGi ¼ PxFG
model ð27Þ

to use in our quadratic estimator in Eq. (13).
Previous work (e.g. [29,30]) built explicit models of the

foreground uncertainty by looking at the first and second
moments of xFG and not at x̂FG. We can take that work and
generalize it straightforwardly. If CFG

model is a model of
foregrounds that takes into account our uncertainties about
fluxes, spectral indices, and angular correlations, like the
one developed in [29] and [30], then the foreground
covariance of the estimator is

CFG ¼ PCFG
modelP

T: ð28Þ

This equation compactly illustrates a key difference
between the analysis methods developed by Liu and
Tegmark [29] and Dillon et al. [30] and any future work
that takes into account the inherent frequency dependence
of foregrounds in dirty maps—the focus of this work.
Intrinsic foregrounds are believed to be dominated by only
a few Fourier modes [63]. That means that the expression of
our uncertainty about the level of foreground contamination
and thus our ability to subtract foreground, CFG

model, should
also be dominated by a few Fourier modes. However the
PSF’s spectral and spatial structure moves power from
those low k∥ modes up into the wedge. In Fig. 4, we plot a
few representative lines of sight of a field-centered PSF of a
zenith-pointed instrument at different distances from field
center. Even a flat-spectrum source would see considerable
structure introduced on many spatial scales along the line of
sight, especially far from the zenith. This is the origin of the
wedge [36] and, as [39] pointed out, it can be fully
understood as a consequence of the fact that frequency
appears in the exponent of Eq. (4). An interferometer is an
inherently chromatic instrument.
To summarize, in order to optimally estimate a 21 cm

power spectrum from the results of an optimal mapmaking
routine, we must properly take into account the relationship
between the dirty map and the true sky. To do this, we
will need:
(1) Our estimated dirty map, x̂.
(2) The normalization matrix for that map, D, and the

matrix of point spread functions, P. Those require
knowledge of the instrument, the observing strategy,
and the noise in our measurements.

(3) A model for the cosmological signal, which will
allow us to properly account for sample variance.

(4) A “best guess” for the foregrounds and a model for
our uncertainty about that best guess.

With all these components, we can go from visibilities,
through the data-compressing mapping step, and all the
way to band powers in a self-consistent way while
minimizing the loss of cosmological information and
maintaining a full understanding of the error properties
of our measurements.

III. PRECISION MAPMAKING IN PRACTICE:
METHODS, TRADE-OFFS, AND RESULTS

The theoretically optimal mapmaking method outlined in
Sec. II poses immense computational challenges. To make
it useful for real-world application, we need to find and
assess ways of simplifying it while maintaining its pre-
cision and statistical rigor.
Because this work serves in large part to generalize the

work of [30], it is essential to continue to assess that the
proposed algorithms are computationally feasible, despite
the large size of these data sets and the potentially cost-
prohibitive matrix operations involved. That work showed
that as long asC could be decently preconditioned and then
multiplied by a vector quickly, we could estimate the power
spectrum in a way that scaled favorably with the data
volume—between OðN logNÞ and OðN5=3Þ, where N is
the number of voxels in a data volume. This was accom-
plished using various numerical tricks, taking advantage of
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FIG. 4 (color online). The position and frequency dependence
of the synthesized beam is the origin of the wedge feature and
plays a key role in determining which Fourier modes are
foreground dominated in any power spectrum estimate. Here
we show four different example lines of sight through a single
frequency-dependent PSF, namely the one we showed for HERA
in the top row of Fig. 3. The structure we see means that
intrinsically flat spectrum sources will appear far more compli-
cated in a dirty map. We can also see that emission further from
the zenith has a more complicated spectral structure—an ob-
servation that helps explain the wedge. Any attempt at foreground
subtraction will require detailed knowledge of this spectral
behavior, both for our models for foregrounds and for our models
of our uncertainty about foreground fluxes and spectral indices.
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translational invariance, the fast Fourier transform, various
symmetries, and the flat-sky approximation.
Without any approximations, the vectors and matrices

we introduced in Sec. II are very big. P, for example, relates
the whole true sky to the whole dirty map—for every
frequency, it has as many entries as the number of pixels
squared. The time-ordered data vector is very big too—it
has entries for every baseline, at every frequency, for every
integration. That means that A is enormous, since it maps
from x to y. We quantify exactly the exact scale of the
problem of data volume and computational difficulty in
Sec. III C, but it is clear that calculating every vector and
matrix quantity we have enumerated in Sec. II is not
feasible.
When making maps, there are at least six ways to make x̂

and P smaller or easier to calculate or use. Three have to do
with the geometry of x̂; three have to do with approximate
methods of calculating x̂ or P:
(1) We can make faceted maps of only very small parts

of the sky at a time.
(2) We can pixelize the sky more coarsely.
(3) We can average together neighboring frequencies,

lowering the frequency resolution.
(4) We can average together neighboring time steps

before computing P.
(5) We can make P smaller by taking advantage of the

finite sizes of the primary and synthesized beams.
(6) We can make P sparser by approximately fitting it in

some basis.
Roughly speaking, the first three approaches affect the kind
of maps we want to make and the information content in
them. The last three affect the quality of the maps we make
or the fidelity with which an approximate version of P
represents the relationship between x̂ and x. The exact
properties of the desired maps depends upon the power
spectrum estimation technique used. For example, if we
want to measure high k⊥ modes, we need high angular
resolution and therefore a lot of pixels.
In this work, we take a specific case of the first three—

choices motivated by the particular array we assess and the
desire not to lose much cosmological information. We then
evaluate quantitatively the trade-offs inherent in approaches
that affect the quality of x̂ and any approximation to P. We
begin by specifying both the array (Sec. III A) and the sky
model (Sec. III B) that we use for the case study we present.
In that context, we can quantify the computational chal-
lenges involved in mapmaking in Sec. III C.
From there, we examine the three ways of making the

mapmaking problem easier for a given kind of map. In
Sec. III D we look at truncating P and how that affects our
understanding of the relationship between the dirty map
and the true sky. In Sec. III E we look at the optimal way to
perform time averaging and the trade-offs involved. Then
we look at finding a sparse approximation to P in Sec. III F,
which is important because multiplication by all three parts

of C also requires multiplication by P. We discuss a way of
accomplishing that in the spirit of [30].8 All of these
speedups require small approximations and we assess the
effect of those approximations quantitatively. Finally, in
Sec. III G we summarize those results and what we can
confidently say so far about the accuracy requirements for
approximating x̂ and P for the purposes of 21 cm power
spectrum estimation.

A. HERA: A mapmaking case study

To test our mapmaking method and our techniques for
speeding it up, we need to simulate the visibilities that a
real instrument would see. We choose the planned design
of the recently commenced HERA as a particularly
timely and relevant case study. HERA will have 331
parabolic dishes, each 14 m in diameter. They will be
fixed to a point at the zenith with crossed dipole antennas
suspended at prime focus. They will be arranged into a
maximally dense hexagonal packing (see Fig. 5), both to
maximize sensitivity to cosmological modes [18,41] and
for ease and precision of calibration [64–66].9 In this
work, our calculations assume perfect calibration of the
instrument and (unless otherwise stated) perfect antenna
placement.
HERA also has two advantages that make our algo-

rithms easier to carry out on a relatively small number of
computers. First, although it has 331 elements, it only has
630 unique baselines. That is because a highly redundant
array with N baselines has OðNÞ unique baselines, as
opposed to minimally redundant arrays, which have
OðN2Þ baselines. That is why the MWA has an order
of magnitude more baselines than HERA, even though it
has only 128 elements. Second, it has a relatively small
primary beam, in contrast to both MWA and PAPER. In
this work, we model it fairly accurately as a Gaussian
beam with a full width at half maximum of 10° at
150 MHz. It should be noted that the method described
in this work is independent of the interferometric design.
HERA happens to be both a particularly convenient and a
relevant example.

8The question of preconditioning for rapid conjugate gradient
convergence, which was addressed in [30] in the context of
estimators based on x rather than x̂, is left for future work. That
question cannot be answered until the exact form of the x̂ is
chosen. We may choose estimators with a tapering function, such
as those suggested by [39] and [40]. We may also choose to
project out certain modes from the dirty map, as we discuss in
Appendix B.

9Plans for HERA also include outrigger antennas at much
greater distances from the hexagonal core to enable low signal-to-
noise, high angular resolution imaging. Though they will be
useful for making high-resolution maps and modeling astro-
physical foregrounds, they do not add significantly to the
cosmological sensitivity of the instrument. Since we are focused
on maps as a data-compression step between visibilities and
power spectra, we ignore them in this analysis.
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B. Testing mapmaking with a specific sky model

As we find ways to compute mapmaking statistics
quickly and accurately, we need to answer a key question:
do we understand the relationship between our dirty map x̂
and the input sky model from which we simulated
visibilities? It is not important how much our dirty maps
look like the sky itself. We just want to make sure that we
keep track of everything the instrument and our mapmaking
algorithm has done to the data so we can take it into account
properly when we start estimating power spectra.
We therefore need an input sky model for two reasons.

First, we need to be able to use Eq. (4) to compute
visibilities and thus x̂. Next, we also want to compute
the matrix of point spread functions P corresponding to the
same set of observations and multiply it by our true sky
model x. The error metric we use therefore is

ε ¼ jx̂exact − x̂approxj
jx̂exactj

: ð29Þ

To be clear, this does not measure the difference between
our dirty map and the true sky. It is merely a measure of the

discrepancy between what the instrument and our map-
making routine did to the sky in order to form the dirty map
(x̂exact) and what we think we know about those effects
(x̂approx) when we write down μ and C.
One advantage to this metric is that it is often relatively

easy to calculate x̂exact, at least up to Dwhich we can factor
out of the numerator of Eq. (29), compared to calculating P.
That is because calculating A†N−1y is as computationally
difficult as calculating a single row of P. In the following
sections, we will be examining ways of computing P faster.
Sometimes (e.g. in Sec. III D and III F) that means an
approximate P but an exact x̂, in which case
x̂approx ¼ Papproxx. Other times (e.g. in Sec. III E) that
means a method for computing x̂ that also makes P easier
to compute. In that case, Eq. (29) compares the approxi-
mate method for computing x̂ with the exact one.
We have chosen a sky model with two components:

(1) bright point sources and (2) diffuse emission from our
Galaxy and other dim, confusion-limited galaxies. Since
each frequency is measured and analyzed independently
(meaning that A is sparse and can be written compactly in
blocks), we will perform all the simulations at a represen-
tative frequency of 150 MHz. While the simulations
properly weight visibilities based on how many times each
unique baseline was measured, we do not include any noise
in our calculation of the quantities in Eq. (29). We also
assume that all baselines at a given frequency have the same
noise properties, though that assumption can be straight-
forwardly relaxed.

1. Point sources

Our sky model includes bright point sources above 1 Jy
with specified positions, fluxes, and spectral indices. These
are taken from the MWA Commissioning Survey Catalog
[67], which is complete to below 1 Jy for a large fraction of
the sky. The included spectral indices are used to extrapo-
late their fluxes at 150 MHz down from the survey
frequency of 180 MHz. For the calculation of visibilities
using Eq. (4), they are treated as true point sources with
Dirac delta function spatial extent. In Fig. 6, we show a
representative sample of those point sources and what they
look like in the dirty map, x̂.
The sky model for point sources is completely indepen-

dent of our pixelization. Since we know the location of all
the point sources, we can think of x as having a discretized
component covering the whole sky in pixels—which we
will use for analyzing diffuse emission—and a set of Dirac
delta function fluxes at the positions of the point sources.
The sky model for point sources is completely independent
of our pixelization. This is completely compatible with the
definition of our pixelization in Sec. II A, it is just that some
pixels have finite area and some have infinitesimal area. It
is the pixels with finite volume that we care about for 21 cm
power spectrum estimation, but the infinitesimal “pixels”
matter for foreground subtraction. Likewise, P has two
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FIG. 5 (color online). We test our method on simulated
visibilities from the planned Hydrogen Epoch of Reionization
Array (HERA). The array, seeen schematically in the top panel,
consists of 331 14 m parabolic dishes, arranged in a close-packed
hexagonal configuration. In the bottom panel, we show a
rendering of the final array, which will feature more than
0.05 km2 of collecting area (a standard shipping container, on
the right side of the image, is shown for comparison.)
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blocks: one that maps pixels on the true sky to pixels on the
dirty map and one that maps points on the true sky to pixels
on the dirty map.

2. Diffuse emission

In the case of point sources, we might hope to use
precise locations on the sky to refine our models of μ
and C and do a better job of separating foregrounds
from the 21 cm signal. That is simply not possible with
diffuse synchrotron emission from our Galaxy and/or
with the confusion-limited emission from relatively dim
radio galaxies. Fundamentally, our best guess at that
emission and its statistics will have to be discretized and
pixelized. Uncertainty about how many confusion-limited
point sources appear in a single pixel introduces shot
noise, which can be modeled [29,30].
In this work, we are interested in errors caused by

assumptions and approximations in our mapmaking routine
whose effects are not taken into account when estimating

power spectra. In order to write down a vector x that we can
use to compute x̂ and thus ε with Eq. (29), we can either
treat the emission as constant in the pixel or we can treat the
emission as a “point source” at the center of each pixel. For
computational simplicity, we choose the latter. With rela-
tively small pixels, there is no practical difference between
the two. Since we are concerned about translating our
models for foreground residuals in the true sky into models
in the dirty map, the pixelization here is not an approxi-
mation so much as a consequence of the discretized models
for foreground residuals we need for power spectrum
estimation. It is possible to construct P to have different
angular resolutions of x and x̂, if one would like to
incorporate a high-resolution diffuse foreground covariance
model. The more information we can incorporate about the
foregrounds, the smaller our uncertainties get and the better
foreground subtraction works.
We use the popular HEALPIX software package [68] for

discretizing the celestial sphere into regularly spaced,
equal-area pixels. As a model for the emission itself, we
use the Global Sky Model of de Oliveira-Costa et al. [69]
(see Fig. 7). The precise model we choose for this work
matters only insofar as it is relatively realistic and repre-
sentative of the true sky. That said, building good fore-
ground models is an important ongoing endeavor relevant
to power spectrum estimation and foreground subtraction
[22–24,70,71].

C. Computational challenges of mapmaking

We already alluded to the fact that we need to investigate
various simplifications and approximations to make the
calculation of x̂ and P tractable. Let us take the time to see
exactly where the problem lies.
Consider the matrix A where y ¼ Axþ n. A maps a

discretized sky into time-ordered data. If we want to
slightly over-resolve the sky with HERA, we might choose
a HEALPIX map with Nside ¼ 256, which gives an angular
resolution of about 0.2°. That is almost 106 pixels at each of
about 1000 different frequencies (assuming 100 kHz res-
olution and 100 MHz of simultaneous bandwidth). If we
measure all our visibilities every two seconds for 1000 total
hours at all 1000 frequencies, that is 1014 visibilities, so
naively, A is a 1014 × 109 matrix. That is a problem.
Of course, there are many standard simplifications. Each

frequency is treated completely independently during
mapmaking, so we can treat A as either block diagonal
or as a family of 1000 much smaller matrices, AðfÞ.
Redundant baselines measure the same sky, so their
visibilities can be combined together, reducing both instru-
mental noise and the number of visibilities by a factor of
almost 100 in the case of HERA. Getting 1000 hours of
nighttime observation takes about 100 days, so we can in
local sidereal time, reducing both noise variance and data
volume by another 2 orders of magnitude. Since each time

FIG. 6 (color online). To test our mapmaking method and our
approximate techniques for making it much faster, we need a
fiducial sky model. One component of that model is bright point
sources, which are taken from the MWA Commisioning Survey
Catalog [67]. In the top panel, we show the spatial distribution
and intrinsic flux of all point sources whose primary-beam-
weighted fluxes are above 1 Jy. In the bottom panel, we show
x̂ ¼ Px, the PSF-convolved and discretized dirty map with
HEALPIX Nside ¼ 128. Since the point spread functions are
computed at the locations corresponding to each point source,
the bottom panel is exact.
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step is independent of all others, we can further break A
into about 10,000 pieces for each integration.
We still have 107 different A matrices, each 103 × 106.

This size is challenging but acceptable for either simulating
visibilities or calculatingA†N−1y. However, it is simply too
big for the calculation of P, which would require the
computationally infeasible task of multiplying together two
matrices of this size 107 times, each multiplication taking
roughly 1015 operations. In the following sections, we will
look at ways of reducing the number of AðfÞ matrices and
making each AðfÞ smaller, especially during the calcu-
lation of P.

D. Faceting and first mapmaking results

The matrix of point spread functions P is defined by the
relation hx̂i ¼ Px. It can be thought of as a transformation

from one pixelized real space—that of the true sky—to
another—that of the dirty map. For even a modest angular
resolution, that is an enormous matrix. Do we really need to
know the relationship between every pixel in the sky and
every pixel in the dirty map?

1. Why we facet

Breaking up the field of view into a number of smaller
facets is a standard technique in radio astronomy, especially
when one wants to minimize the effects of noncoplanar
baselines [72]. For purposes of 21 cm cosmology, there are
two good reasons to consider relatively small regions of the
sky one at a time. The first is HERA’s observing strategy.
Because it statically points at the zenith, HERA scans a
fixed stripe in declination about 10° wide. It seems
reasonable that we can analyze parts of the stripe inde-
pendently, making maps and computing power spectra for
each small facet. In Fig. 8, we show an example of what
that faceting might look like.
The only significant disadvantage to faceting is that we

lose the ability to measure modes in the power spectrum
with wavelengths perpendicular to the line of sight that are
larger than the facet. Doing so properly and with precisely
quantified error properties would require calculating
covariance between facets, which is effectively the same
as not faceting at all. This is not such a great hardship. Due
to the survey geometry, only the long modes oriented along
the HERA stripe could have been measured at all. They are
longer than the shortest baseline, meaning that they can
only be sampled after considerable sky rotation. The same
jkj modes can also be accessed along the line of sight,
except those at very low spectral wave numbers, which are
bound to be foreground dominated.

FIG. 8 (color online). The faceted approach we use to speed up
optimal mapmaking and power spectrum estimation will be
especially useful for HERA because it is limited to only observe
an approximately 10° stripe of constant declination, centered on
the array’s latitude of approximately −30.7°. It is fairly natural to
split up the observation into roughly 10° × 10° facets, each
analyzed separately. This makes P much easier to compute
and lets us use the flat-sky approximation, a requirement for
implementing the power spectrum methods of Dillon et al. [30].
Very little cosmological information is lost in this process; only
the longest spatial modes are thrown out and they should be
dominated by galactic emission.

FIG. 7 (color online). The sky model we use to evaluate our
mapmaking algorithm and the accuracy of the approximations we
make also includes diffuse emission from our Galaxy and faint
radio galaxies. For our model of diffuse emission, we use the
Global Sky Model of [69]. In the top panel, we show a small part
of our model for the true diffuse emission. Since we are not trying
to model fine spatial information or the precise locations of point
sources with our diffuse models, we pixelize the emission
identically to the pixelization of our dirty map. In the bottom
panel, we show that dirty map. It looks fairly different from the
true sky, largely because of the appearance of a side lobe from a
bright object outside the field. This occurs because the P maps a
very large region of the sky to a small one shown here. The effects
of faceting and side lobes will be explored further in Sec. III D.
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The other major upside to faceting is that, if we want
to use the fast power spectrum techniques developed in
[30], we need to take our maps and chop them up into
facets anyway. That is because any fast algorithm that
takes advantage of the fast Fourier transform (e.g. that in
[30]) and translational invariance relies on rectilinear data
cubes, which is only an accurate approximation for small
fields where the flat-sky approximation holds. Happily,
that rough size is also about 10°. For other instruments,
the choice of facet size is less obvious and depends
on the computational demands of both mapmaking and
power spectrum estimation. Bigger facets preserve more
information, but they can be more computationally
expensive than they are cosmologically useful. The exact
right choice for other interferometers is a matter for
future work.

2. Faceted mapmaking method and results

So, instead of using DA†N−1y to calculate x̂, we instead
redefine x̂ using

x̂ ¼ DKfacetA†N−1y; ð30Þ

where Kfacet maps the full sky to a small portion of the
sky, thus making P asymmetric. Doing this for every
facet basically amounts to only mapping the parts of the
sky that are ever near the center of the primary beam. This
provides a computational simplification by a factor of
4π=ðΩfacetNfacetsÞ, which for HERA is about an order of
magnitude. An instrument that can see the whole sky would
see no computational benefit just from breaking the sky
in facets.
The real computationally limiting step is the calculation

of P. Since we are only interested in the dirty map of a
facet, we care only about source flux that could have
contributed to that dirty map. That means that we can
truncate each point spread function some distance from the
facet center. Flux outside that truncation radius is assumed
not to contribute significantly. In other words,

P ¼ DKfacetA†N−1AKT
PSF ð31Þ

where KPSF is the same as Kfacet except that it cuts off at
some larger radius than the facet size. We get to choose
exactly what radius we want to assume that no outside flux

FIG. 9 (color online). In order to accurately reproduce dirty maps, we must include in our P matrix the effect flux from outside the
facet that appears in the side lobes of off-facet sources. Here we demonstrate that effect by looking at how the approximate
PSF-convolved sky, Papproxx, evolves as we expand the distance from the center of the facet at which the point spread function is
approximated to not contribute. In the top row, we plot Papproxx while on the bottom row we plot Papproxx − x̂exact. (Pexactx ¼ x̂exact is
shown in the bottom panel of Fig. 7.) Since the visibilities that go into computing x̂ derive from a full-sky calculation, side lobes are
automatically included. The bright spot we see on the top right panel, which appears as a dark spot on the bottom left and bottom middle
panels, is a prominent side lobe from a very bright source outside the facet, but within 15° of the facet center. This explains what we saw
in Fig. 7 and the dramatic improvement in the error we see in the right-hand panels.
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contributes to the facet. This is a completely tunable
approximation and it becomes exact in the limit that that
radius encompasses the whole sky.
Therefore, instead of mapping the whole sky to the

whole sky, the matrix of point spread functions now maps
some moderate portion of the sky to a somewhat smaller
part of the sky. Since N is diagonal, both the time it takes to
calculate P and the memory it takes to store it are reduced
by a very large factor. If the truncation region is four times
the 10° facet size, for example, then that savings is a factor
of about 104.
This new definition of x̂ means that D is now a much,

much smaller matrix—it has only as many elements as
there are pixels in the facet. And since we are only
interested in the correlation between pixels in the map,
the noise covariance is now

CN ¼ PKT
facetD

T; ð32Þ

which is much smaller and still quite simple.
We illustrate the effect of the PSF truncation radius in

Fig. 9, showing the large impact that increasing the
truncation radius has on our calculations of x̂approx ¼
Papproxx and therefore of ε. We find that once the PSF
includes both the central peak of the synthesized beam and
the first major side lobes, the convergence of x̂approx to
x̂exact is very quick.
We further tested the expected convergence of the

algorithm for a fixed facet size and variable KPSF using
the sky model from Sec. III B. Our results, which we show
in Fig. 10, again demonstrate that the PSF truncation radius
does not need to be much larger than the facet, if the facet is
comparable in size to the primary beam. The exact level of
error introduced by faceting will, in general, depend upon
the compactness of both the primary and the synthesized
beams. The approximation that the point spread function
is Gaussian might make the plotted relative error a bit
optimistic, though the side lobes in the real HERA primary
beam are quite small.
In summary, faceting allows us to decrease the time it

takes to calculate the P and the memory required to store it
by a factor of ð4πÞ2=ðΩfacetΩPSFÞ, whereΩPSF is the angular
size of the region left by KPSF. In the case of HERA, that
works out to about 10,000 times faster and smaller.

3. Mitigating nonredundancy

Making maps in facets also has one extra advantage
useful in addressing a common complication presented by
real-world arrays. If we assume in our analysis that every
baseline of a given designed separation actually has that
separation, we will be ignoring errors that can be a decent
fraction of a wavelength. And though HERA is a zenith-
pointed array for which noncoplanar effects are small, they
are not zero and can be quite large for other instruments like
the MWA. Noncoplanarity creates nonredundancy.

However, as long as we know precise positions of all of
our antennas (which is far easier than making the array
perfectly redundant) we can use the fact that we are only
mapping a single facet at a time to reduce those phase errors
near the center of our map. We can think of each baseline
corresponding to some unique baseline b as

bm ¼ bþ Δbm; ð33Þ

where the residuals are caused by inexact antenna place-
ment. That means that Eq. (7) becomes

Vðbm; νnÞ ≈
X
k

ΔΩ
2kBν2n
c2

xkðνnÞBðr̂k; νnÞ

×exp

�
−2πi

νn
c
ðbþ ΔbmÞ · r̂k

�
: ð34Þ

We need the right-hand side of this equation to be the
same for all bm corresponding to the unique baseline b,
otherwise we lose the redundancy bonus we discussed in
Sec. III C.
We can achieve this approximately for small Δbm

because our facets are relatively small. Let us define Δr̂k ≡
r̂k − r̂0 where r̂0 points to the center of the facet and Δr̂k is
generally not a unit vector. We can expand the exponent of
Eq. (34) as

5° 10° 15° 20° 25° 30° 35° 40°
10

−15

10
−10

10
−5

10
0

PSF Truncation Radius

R
el

at
iv

e 
M

ap
pi

ng
 E

rr
or

 ε
 (

U
ni

tle
ss

)

10
2

10
3

10
4

10
5

N
um

be
r 

of
 P

ix
el

s 
In

cl
ud

ed
 in

 th
e 

P
S

F

FIG. 10 (color online). The error introduced by the approxi-
mation that the PSF can be truncated past a certain distance from
the facet center gets very small very quickly. Here we show
quantitatively how the duration of snapshots always a multiple of
the 10 second integration time used in our simulation introduces
small errors. The number of pixels, and thus the computational
difficulty of computing the matrix of point spread functions, P,
scales as the truncation radius squared—there are simply more
pixel values to calculate. In general, the approximation works
because the point spread functions are relatively compact.
HERA’s design is especially helpful here with its dense grid
of baselines and its relatively small primary beam. Other arrays
may need larger truncation radii to acheive the same accuracy.
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ðbþ ΔbmÞ · ðr̂0 þ Δr̂kÞ
¼ b · r̂0 þ b · Δr̂k þ Δbm · r̂0 þ Δbm · Δr̂k: ð35Þ

The first two terms in the expansion are b · r̂k and normally
appear in A. The last term, which is second order in this
expansion, is approximated to be zero. Even if b · r̂0 is
small, the last term is in general much smaller than the
second term. We can, however, correct for the middle term
by multiplying both sides of Eq. (34) by a constant phase
factor, since

Vðb; νnÞ ≈ exp

�
2πi

νn
c
Δbm · r̂0

�
Vðbm; νnÞ: ð36Þ

As was our goal, the P matrix that results from taking the
above equation to be exactly true is the same as if we had
not had any antenna placement errors or noncoplanarity.
Rephasing lets us mitigate the effect of known errors
without having to calculate a vastly more complicated P,
which treats all baselines completely independently, even if
they are supposed to be redundant.
Effectively, our approximate correction cancels out the

phase error at the exact center of the facet and thus
minimizes its effect throughout the facet. For example,
for 10° facets at 150 MHz, a 4 cm antenna placement error
(roughly the level seen in [66]) leaves only a 0.63° phase
error in the visibility after rephasing. The error might be a
bit worse when calculating the parts of P near the truncation
radius. For very large fields, as [72] addressed, this
becomes a bigger problem and we may need to break
each set of baselines that was supposed to be redundant into
a few groups, each closer to exactly redundant, and treat
each group separately. The exact effect on the accuracy of
the dirty maps from this small correction is left to future
work when the exact antenna placement of HERA or a
similar array is known.

E. Grouping visibilities into snapshots

Standard interferometric mapmaking techniques accu-
mulate visibilities in the uv-plane via sky rotation and
thereby combine minutes or even hours of visibilities
together [44–55,73]. We would like to find a way of
reducing the number of rows in A for the purpose of
calculating P by grouping integrations into “snapshots” that
are each analyzed as a single time step when we calculate
P. How can we average together multiple visibilities over a
range of times while approximating the P as having been
calculated at only the middle time step of each snapshot?
Once again, we can use our freedom to rephase both the

visibilities and the A matrix as we did in Sec. III D 3. The
idea is to try to remove, as much as possible, the effect of
sky rotation from the visibilities. Consider again Eq. (4),
now with explicit time dependence:

Vðb; ν; tÞ ¼
Z

Bðr̂; νÞIðr̂; ν; tÞ

× exp

�
−2πi

ν

c
b · r̂

�
dΩ: ð37Þ

While the sky rotates, the primary beam is fixed relative to
the ground.
By contrast, let us consider a new reference frame with

angle vector r̂0, which rotates with the sky:

Vðb; ν; tÞ ¼
Z

Bðr̂0; ν; tÞIðr̂0; νÞ

× exp

�
−2πi

ν

c
bðtÞ · r̂0

�
dΩ0: ð38Þ

Now the beam and the baseline vector have picked
up an explicit time dependence while the sky has lost
its time dependence. Let us assume that the primary
beam is varying very slowly spatially—generally a good
assumption since the primary beam is much larger than the
spatial scales probed by most baselines.
Let us think of Vðb; ν; tÞ as the visibility measured

for the middle integration of a snapshot. A visibility
measured a bit later during that snapshot would look
like

Vðb; ν; tþ ΔtÞ≈
Z

dΩ0Bðr̂0; ν; tÞIðr̂0; νÞ

× exp

�
−2πi

ν

c
ðbðtÞ þ ΔbÞ · r̂0

�
; ð39Þ

where Δb is the difference between bðtþ ΔtÞ and bðtÞ in
the primed coordinate system. The dot product is basis
independent, so

ðbðtÞ þ ΔbÞ · r̂0 ¼ b · ðr̂þ Δr̂ðr̂ÞÞ; ð40Þ

where the right-hand side is back in the frame that is
stationary relative to the Earth. Δr̂ðr̂Þ, which is not a unit
vector, is the amount of sky rotation between times t and
tþ Δt. It is approximately constant across the facet for
fairly short snapshots and moderately sized facets, meaning
that we can pull it out of the integral. We can therefore
undo much of the effect of sky rotation using the approxi-
mation that

Vðb; ν; tþ ΔtÞ ≈ eiΔϕVðb; ν; tÞ ð41Þ

where

Δϕ≡ −2π
ν

c
b · ðr̂0ðtþ ΔtÞ − r̂0ðtÞÞ ð42Þ

and where again, r̂0ðtÞ points to the facet center.
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We can therefore add together many visibilities taken
at different times and approximately treat them as if
there were all taken at the middle integration in the
snapshot by rephasing them. This is very similar to the
“fringe-stopping” technique from traditional radio
astronomy, which seeks to counteract the effect of the
rotation of the earth at the location of a source [42]. As
we saw in Sec. III D 3, the effect of rephasing visibilities
cancels out in P, since the extra term in A gets canceled
out in A†. That is why we only have to perform the
calculation of P once per snapshot rather than once per
integration. We show in Fig. 11 a marked improvement,
especially in the case of long snapshots, between
naively adding together visibilities as if the sky were
not rotating overhead and adding together rephased
visibilities.
In Fig. 12 we show quantitatively how the error increases

as snapshots get longer. Here we care how these approxi-
mate dirty maps compare to the exact dirty maps made
when each 10 s integration is treated completely separately.
We also found it important to rephase the visibilities to the
exact middle of the snapshot, which creates a first-order

cancellation that removes some of the error associated with
this approximation.
Based on the results we show in Fig. 12, it is likely

that we can cut another 1 to 2 orders of magnitude off
the total number of operations we need to perform to
calculate P, making that calculation considerably easier.
For a given accuracy goal, it is also possible to make
the calculation of P even simpler by forming snapshots
with different durations for baselines of different lengths,
keeping Δϕ small.

F. PSF fitting

Now that we have found accurate and well-understood
approximations that make computing P computationally
feasible, we need to worry about multiplying a vector by P.
This is a necessary step in any power spectrum estimation
scheme adapted from [30], since P appears in Eq. (23),
(24), (26), and (28). In general, the number of operations in
this calculation scales with the number of pixels in the
facet, the number of pixels in the PSF, and the number of
frequency channels, i.e. asOðNfacetNPSFNfÞ. This is slower

FIG. 11 (color online). One way to make the calculation of the matrix of point spread functions, P, faster is to combine many
consecutive integrations together into snapshots. When we compute P, we effectively assume that all the associated visibilities we have
grouped into one snapshot were taken exactly at the snapshot’s middle time. Usually, this is a poor approximation. As we can see from
the top row, where we have simply added together 10 second integrations to snapshots of increasing length, we are effectively spreading
out sources in right ascension as the sky rotates overhead. However, if we use our freedom to rephase visibilities individually, we can
dramatically reduce the error associated with forming snapshots. For example, the bottom right panel only exhibits error on the order of a
few percent compared to the exact single-integration dirty maps in the left-hand panels. The result is related to the traditional radio
astronomy technique of fringe stopping.
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than we would like, so we will endeavor to show how it can
be sped up.
If the point spread function were constant across the

field—if it looked the same in the top and bottom rows of
Fig. 3—then the solution would be simple. We could
calculate only one PSF and then use it to fill out all of P.
Then, if we approximate HEALPIX pixelization as a regular
grid—which is true in the flat sky approximation—
we can write P using Toeplitz matrices. A Toeplitz or
“constant-diagonal” matrix represents a translationally
invariant relationship.10 A Toeplitz matrix T has the
property that each element only depends on its distance
from the diagonal of the matrix, or in other words that

Tii0 ¼ ti−i0 : ð43Þ

We can imagine that, if any part of the PSF can be fully
represented by its displacement from the facet center, then
we can write P for each frequency and facet as a tensor
product of two matrices, each describing translational
invariance along one of the two principal axes of the

HEALPIX grid.11 If we index along those axes with i and j
in the dirty map and i0 and j0 in the true sky, then for a
single frequency the matrix of point spread functions can
be written as

Pii0jj0 ¼ ti−i0sj−j0 ð44Þ

or as

P ¼ T ⊗ S ð45Þ

where T and S are Toeplitz matrices.
And yet we can easily see from Fig. 3 that point

spread functions do not respect translational invariance.
In the bottom row where the PSFs are displaced from the
center of the facet, the side lobes nearer the edge of the
primary beam are downweighted relative to those nearer
the center. This is a consequence of optimal mapmaking,
which downweights the contribution from regions of the
sky that the telescope is less sensitive to. However, we
expect that the physical effects that lead to a transla-
tionally varying PSF, like the primary beam and the
projected array geometry, should change smoothly over
the field. So while the PSF is translationally varying,
perhaps its translational variation can be modeled with a
small number of parameters.
If we calculate P, the matrix of point spread functions

that maps every pixel in some extended facet to every pixel
on the facet of interest, we can model this translational
variation by reorganizing P. We have chosen our normali-
zation D so that the specific point spread function mapping
the sky onto a given pixel has a value of 1 at the center pixel
of its main lobe. But what about all the pixels displaced
exactly pixel northeast from the center of the main lobe in
all the PSFs? Or ten pixels?
We expect these all to be similar, but also to vary slowly

over the facet—though exactly how is not obvious a priori.
In the right-hand panel of Fig. 13 we plot the points on the
PSFs displaced exactly 15 pixels along one of the two
principal axes from the centers of their main lobes
(illustrated by the left-hand panel). The x and y axes of
the plot tell us which pixel a given PSF is centered on. As
we expected, the variation over the facet is very smooth and
is well approximated by a low-order polynomial. If we had
instead plotted a displacement of 0, the right-hand panel
would have been a perfectly flat plan of all ones because of
the definition of D.
How can we take advantage of the sparsity of

information needed to describe P to write it as the
sum of matrices that can be quickly multiplied by a
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FIG. 12 (color online). The error introduced by approximating
the observation as having taken place at only a few discrete times,
many seconds or minutes apart, can be mitigated by appropriately
rephasing visibilities before combining them. Here we show
quantitatively how the length of snapshots—all multiples of the
10 second integration time used in our simulation—introduces
small errors. We calculate the relative error ε between dirty maps
calculated with a given integration time and those calculated
exactly using only one integration per snapshot. We also show
how the computational difficulty of calculating P is affected,
since it scales linearly with the number of independent snapshots
considered.

10Toeplitz matrices have a number of nice properties, including
the fact that an N × N Toeplitz matrix can be multiplied by a
vector inOðN logNÞ operations. This is because the translational
invariance lets us use the fast Fourier transform. See [74] for a
review of these matrices and their properties or [30] for a previous
application to 21 cm cosmology of the same relevant properties.

11We define these axes by taking the center pixel and
computing the linearly independent vector directions towards
the nearest two pixels. It is not a problem that these two directions
are not orthogonal—the FFT can be performed along non-
orthogonal directions, as pointed out by [61].
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vector? Let us first consider the simpler, 1D case. Instead
of the translational invariance that leads to matrices of the
form in Eq. (43) where the main diagonal and all parallel
off diagonals are constant, instead we model them all as
polynomials:

P1D
ii0 ¼

X
n

tn;i−i0 ðiþ i0Þn: ð46Þ

This is a polynomial expansion in ðiþ i0Þ, the distance
along a diagonal, with coefficients tn;i−i0 that make up a
Toeplitz matrix. Again, primed indices tell us where on
the true sky and unprimed indices tell us where in the
faceted dirty map. The polynomial fit coefficients are a
function of specific displacement of the main lobe of the
PSF, hence the index i − i0. However, to fit all PSF
values for the same displacement, we need to multiply
those coefficients by the displacement from the center of
the facet to the correct polynomial power. Our hope is
that we can approximate P with a relatively low-order
polynomial.
Expanding this out and cutting off the series after the

second order in n, we get that

P1D ≈ T0 þ JT1 þ T1Jþ J2T2 þ 2JT2Jþ T2J2 ð47Þ

where each Tn is a Toeplitz matrix and J is a diagonal
matrix with integer indices centered on zero as its
entries:

J≡ diagð…;−4;−3;−2;−1; 0; 1; 2; 3; 4;…Þ: ð48Þ
Terms in the expansion that involve ði0Þn look like Jn to the
right of Tn, since they index into a vector multiplied by P1D

on the right, like the true pixelized sky. Likewise, terms that
involve in have a Jn matrix on the left.
In 2D, the situation is a bit more complicated. For clarity,

let us treat P as a 4-indexed object, mapping two spatial
dimensions to two other spatial dimensions. We approxi-
mate P as a polynomial sum of the form

Pii0jj0 ¼
X
n;m

tn;m;i−i0;j−j0 ðiþ i0Þnðjþ j0Þm: ð49Þ

Now Tn;m is a “block Toeplitz” matrix, essentially a
Toeplitz matrix of Toeplitz matrices. Thankfully, multiply-
ing by the matrix by a vector of sizeNPSF still only scales as

FIG. 13 (color online). Though our point spread functions are not translationally invariant—a fact we saw clearly in Figure 3—their
translational variation is fairly smooth and can be captured by a relatively low order polynomial. In this figure, we examine a typical
example consisting of all the entries in P displaced exactly 15 pixels along one of the two principal axes of the pixelization from the
center of the main lobe of the synthesized beam. This displacement is represented by the four identical white arrows on top of the point
spread functions in the lefthand panel. All such entries in P (white circles in the righthand planel) are plotted as a function of the
displacement of the corresponding main lobe from the facet center. The points indicated by the white arrows in panels (a) through (d) are
the same as the white circles indicated on the right hand plot. We then fit those points as a low-order 2D polynomial (in this case, as a
quartic), which we plot as a colored plane cutting through them. The fit on the right hand side is merely one in a family of fits to each
possible displacement vector from the main lobe of the PSF. Fitting the translational variation of the PSF in this way is potentially very
useful, since a sparse representation of P, the matrix of point spread functions, would allow us to quickly multiply it by a vector. Though
this is not important for mapmaking, it is important for estimating power spectra from the dirty maps and mapping statistics produced by
our method.

MAPMAKING FOR PRECISION 21 CM COSMOLOGY PHYSICAL REVIEW D 91, 023002 (2015)

023002-19



OðNPSF logNPSFÞ [75]. Expanding this to second order
yields quite a few more terms:

P ≈ T0;0

z}|{0th Order

þ T1;0ðJ ⊗ IÞ þ ðJ ⊗ IÞT1;0

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{1st Order

þ
T0;1ðI ⊗ JÞ þ ðI ⊗ JÞT0;1þ

T2;0ðJ2 ⊗ IÞ þ 2ðJ ⊗ IÞT2;0ðJ ⊗ IÞ þ ðJ2 ⊗ IÞT2;0

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{2nd Order

þ
T1;1ðJ ⊗ JÞ þ ðJ ⊗ IÞT1;1ðI ⊗ JÞþ
ðI ⊗ JÞT1;1ðJ ⊗ IÞ þ ðJ ⊗ JÞT1;1þ
T0;2ðI ⊗ J2Þ þ 2ðI ⊗ JÞT0;2ðI ⊗ JÞ þ ðJ2 ⊗ IÞT0;2:

ð50Þ

Here, we adopt the convention that all tensor products have
the matrices in the i or i0 dimension on the left-hand side of
the ⊗ symbol and j or j0 matrices on the right-hand side.
In fact, it turns out that the exact number of polynomial
terms is

Npoly ¼
1

24
ð24þ 50ωþ 35ω2 þ 10ω3 þ ω4Þ; ð51Þ

where ω≡maxðnþmÞ is the highest order polynomial
considered.
The good news is that this fitting works pretty well at

relatively low order, such as cubic or quartic. In Fig. 14 we
calculate the relative error between a dirty map computed
by convolving the pixelized true sky with a very accurate P
(one computed with a large truncation radius and no
snapshotting) and one computed with a polynomial fit to
the translationally varying component of P. We find that the
method outlined above can faithfully reproduce the dirty
map to high precision.
Increasingaccuracy, however, comesat a steepcost.While

multiplication of P by a vector for a single frequency can be
performed in OðNfacetNPSFÞ, multiplication of a polyno-
mially approximated P takesOðNpolyNPSF logNPSFÞ. Since
Npoly scales with the fourth power of the maximum order, it
gets expensivevery quickly. Thus themethod outlined above
is especially useful when∼1% to 0.1% errors are acceptable
or when facets are exceptionally big or of exceptionally high
resolution.
It is possible to reduce that cost by attacking the problem

with a hybrid approach. We find that the biggest fitting
errors come far from the facet center, especially in the
brightest side lobes. This makes sense, since it is where
the notion of a fixed “displacement” from the main lobe of
the PSF runs up against the limits of the flat-sky approxi-
mation. One could use this technique to incorporate the
effects of most of P, zeroing out the contributions from side

lobe displacements. Then we could take the remainder of
the P into account by simple matrix multiplication, achiev-
ing the same error with many fewer polynomial terms.
With big facets or at high resolution, PSF fitting serves

another function. If the computational cost of mapmaking
and power spectrum estimation is dominated by the matrix
multiplication A†N−1A in the calculation of P, we can
choose to calculate only a representative sample of the
entries in P (i.e. only some of the points on the right-hand
side of Fig. 13). Then we would rely on the fact that the
polynomial fit is overdetermined to back out the missing
entries.12

Whether or not to use the polynomial approximation to
the P will depend on the exact telescope configuration and
the nature of the mapmaking and power spectrum estima-
tion problems at hand. If we want to try to precisely sub-
tract foregrounds and work deep within the wedge, the
polynomial approximation might not be good enough.
However, if instead our power spectrum estimation strategy
is to focus on isolating the EoR window and projecting out
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FIG. 14 (color online). Approximating the translational varia-
tion of the point spread function with a low-order polynomial can
produce fairly small errors at a relatively low accuracy cost. Here
we show the accuracy of multiplying a polynomially approxi-
mated P with the true sky compares to a direct calculation (using
a large PSF truncation radius and no snapshotting). The errors are
not negligible and the use of this approximation requires a careful
examination of the accuracy requirements of the dirty maps. This
technique saves time when the total number of terms in a
polynomial/Toeplitz expansion of P is considerably smaller than
the number of pixels in a facet. Unfortunately, that number of
terms grows quartically with the polynomial order, meaning that
very high orders and thus very high accuracy are not computa-
tionally useful.

12It is worth noting that although a large number of terms
might be needed to multiply P by a vector, there are not nearly so
many free parameters in the fits. The number of free parameters
needed to find a best-fit surface like that in Fig. 13 only scales like
the square of the highest polynomial order.
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foreground-dominated modes entirely, it is less important
that we very precisely understand the effect of the instru-
ment. In that case, it is more likely that the polynomial PSF
fitting approach outlined above will be useful. We explore
these two approaches in the context of the mapmaking
formalism in Appendix B.

G. Computational methods summary

In the previous three sections, we explored three
different ways of speeding up either the calculation of P
or the multiplication of P by a vector. In Table I we
summarize those results. In general, we find that PSF
truncation and snapshotting have the most utility for
HERA. PSF fitting, in the fiducial scenario we considered,
is the least helpful. However, for a telescope with much
higher angular resolution than HERA, PSF fitting is likely
to be more useful, since multiplication of a vector by P
scales quadratically with the number of pixels in the facet.
While these results are specific to HERA, we can draw a

few general conclusions. For HERA at 150 MHz, the first
side lobes are about 13° from the main lobe of the
synthesized beam. At 13° from the zenith, the primary
beam is down by 20 dB. In general, it is likely we will only
be able to truncate the PSF in regions where the primary
beam is small, meaning that a telescope with a broader
primary beam will benefit less from cropping in a way that
scales quadratically with the PSF truncation radius and
therefore also the PSF’s full width at half maximum. By
contrast, larger primary beams are more slowly varying
spatially, meaning that longer snapshots are likely to
achieve the same error. If the primary beam is relatively
smooth, that benefit scales inverse linearly with the size of
the primary beam.
Though we used 1% as a somewhat arbitrary point of

comparison in Table I, it remains an open question how
good our models of the P have to be. The only compre-
hensive way to answer this question is through a full end-
to-end simulation of the signal, noise, and foregrounds all

passed through a simulated instrument, a mapmaking code,
and then power spectrum estimation. That sort of quanti-
tative answer is outside the scope of this paper. However, it
is worthwhile to enumerate the ways in which we need to
use P to make maps and estimate power spectra and to
examine the accuracy requirements for those tasks. By our
count, P appears in six key places in the power spectrum
estimation process:
(1) When we calculate x̂, we need P to define D.

However, looking closely at Eq. (13) shows that
D actually cancels out—the factor ofD in each x̂ and
the two in C;β are canceled by the two in each C−1.
Therefore, it does not matter whether we get D right
or not, as long as we are consistent about what we
use for it. This makes sense, D was supposed to be
an arbitrary choice, so as long as it is invertible, there
is no way to get it “wrong” per se.

(2) P also appears in our models for the parts of μ and
CFG corresponding to bright point sources in CFG.
Accounting properly for bright point sources has the
highest bang for the buck, in the sense that it is
relatively straightforward to model both their means
and covariances in the dirty map. In Sec. III B, we
discussed how we could account for bright point
sources with well-characterized positions, fluxes,
and spectral indices by calculating a column in P
that maps the point source to the entire facet in the
dirty map. For that calculation, the PSF truncation
radius is irrelevant because we account for the
brightest sources in a separate part of the PSF
independent of the HEALPIX grid. Since we calculate
only a moderate number of columns of P, we do not
even have to combine integrations into the snapshot.
For bright point sources, it is not much extra effort to
get P almost exactly right.

(3) By contrast, diffuse emission from confusion-lim-
ited and galactic synchrotron emission in μ and CFG

depends, as we have argued, on knowing how P
maps a large part of the true sky onto the facet. It is

TABLE I. Summary of the techniques we use to approximate the calculation of multiplication by the matrix of point spread functions,
P, in order to dramatically improve the speed of those operations. Faceting alone makes calculating P faster by a factor of 500 in our
fiducial scenario. Combining PSF truncation and snapshotting brings the calculation of Pwell within the realm of feasibility. The benefit
to fitting the PSF with polynomials and Toeplitz matrices is relatively small for our scenario, but it gets much better for higher resolution
instruments.

Approximation Parameter PSF Truncation Radius Snapshot Time PSF Fitting Order

Improves Size of P Steps in computing P Multiplying by P
More exact when … larger smaller larger
Cost scaling Quadratic Inverse linear Quartic
Acheives 1% errora for HERA at 5° orb 15° 10 minutes Third order
Speedup at 1% error ∼60 or ∼500 ∼300 ∼5

aThis assumes HEALPIX Nside ¼ 256, 2 s integrations, and 10° diameter facets.
bThis depends on whether point sources are included, since they are mostly inside the facet in our simulations, depressing the error at

small truncation radius.
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in this context that approximate versions of P are the
most useful, but also where they are potentially the
most worrisome. Galactic and confusion-limited
foregrounds are still orders of magnitude stronger
than the cosmological signal and understanding
them precisely is very important. Forming μ from
these foregrounds should be comparatively easy—
all we need to do is take our sky model, compute
visibilities, and then pass it through our mapmaking
routine. We do not even need to calculate the full P
matrix. Writing down CFG is substantially more
difficult, since CFG ¼ PCFG

modelP
T. Exactly how well

we need to know P in order for CFG to accurately
reflect the foreground uncertainty depends on the
specific instrument, the foreground model, and our
uncertainty about that model. A quantitative answer
requires detailed covariance modeling outside the
scope of this work and is therefore left for future
investigation.

(4) Modeling noise properly is extremely important
since inside the EoR window only noise and signal
should matter. A slight mismodeling of noise due to
an error in the calculation of CN could lead to an
erroneous detection. If however we perform map-
making twice from a cross power spectrum of
interleaved time steps, we can eliminate noise bias
[12,13]. If we do that, it is acceptable (albeit not
optimal) to be very conservative in our model of the
instrumental noise, effectively increasing the error
bars due to noise without biasing our measurement.
If we adopt this conservative stance, then we can
confidently use an approximate form of P when
calculating CN .

(5) Modeling CS is mostly important for the calculation
of a sample variance. In any foreseeable experiment,
this is a small contribution to the error. Getting CS

slightly wrong is unlikely to be the dominant error
associated with approximating P.

(6) TheC;β family of matrices is necessary for telling us
how to translate properly weighted dirty maps into
power spectra. We need P to be as accurate as the
precision with which we would like to measure the
power spectrum.

In general, the question of exactly how accurately we need
to know P—and by extension, exactly how well we need to
understand our instruments—is an open question for future
investigation.

IV. SUMMARY AND FUTURE DIRECTIONS

In this work, we showed how to make precise maps
with well-understood statistics specifically for 21 cm power
spectrum estimation. We investigated how to connect
the framework of optimal mapmaking to that of inverse-
variance-weighted quadratic power spectrum estimation in
order to understand what sort of maps and map statistics we

need for power spectrum estimation. We showed that in
addition to the dirty map estimator x̂, we need the matrix of
point spread functions, P, and the noise covariance matrix
which takes a gratifyingly simple form: CN ¼ PDT where
D is an invertible normalization matrix that we can choose
to be diagonal.
This analysis technology will allow us to consistently

integrate our best understanding of an instrument with our
best models for noise, foregrounds, and the cosmological
signal. Not only does this approach help prevent the loss of
cosmological information, but it will allow for a precise
measurement of the 21 cm power spectrum and for the
confident and robust description of the errors in our
estimates.
In the main part of this work, we focused on the matrix of

point spread functions, P, which relates the true sky to our
dirty maps. We calculated simulated dirty maps and PSFs for
HERA, the upcoming Hydrogen Epoch of Reionization
Array. While calculating P exactly is computationally
prohibitive, we explored three methods for approximating
P. First, we explored how making maps in facets with
truncated PSFs can dramatically reduce the computational
cost of calculationP for only a small hit to accuracy. Next we
showed how to combine consecutive integrations while
controlling for the errors introduced by the process. It turns
out that observations many minutes apart can be combined
with minimal error. Lastly, we showed how the multiplica-
tion of P by a vector—a necessary step for power spectrum
estimation—might be sped up by approximating its trans-
lational variance as slowly varying. Though the cost scaling
of this approximation is steep, we find this technique
especially promising when moderate errors are tolerable
or for instruments with high angular resolution.
Just as importantly, all these methods have tunable

knobs—they can be made more accurate at the cost of
speed or memory. Though our specific, quantitative results
are only applicable to HERA, the accuracy trade-offs and
the computational scalings we find should be quite general.
In that sense, we hope that this work serves as a versatile
guide to mapmaking in the context of 21 cm cosmology.
Much work remains to be done to develop a clear and

computationally tractable pathway from visibilities all the
way to power spectra with rigorous errors and error
correlations. Even after connecting this work to an appro-
priately updated version of the Dillon et al. [30] algorithm,
one still needs to assess the effect of our approximations, as
well as a number of important data analysis choices, on
power spectrum estimates and ultimately on cosmological
parameter constraints. Though the errors incurred by each
can be made arbitrarily small, it is difficult to say yet what
level of approximation is tolerable. This is an open question
for future work.
We would like to see a full end-to-end simulation,

starting with the 21 cm signal, passing through the instru-
ment, and ending with power spectra and their statistics.
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Such a full-scale test could prove the effectiveness of these
techniques and clarify exactly what the approximations
utilized both in this work and in Dillon et al. [30] do to our
measured power spectra. A power spectrum estimation
technique that passes such a test with realistic foregrounds
and noise will be the one to produce trustworthy cosmo-
logical measurements.
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APPENDIX A: POLARIZATION AND
HETEROGENOUS PRIMARY BEAMS

In Sec. II A, we worked out the relationship between
visibilities and the true sky in terms of the matrixA. For the
sake of simplicity, we made two assumptions that, in this
appendix, we would like to relax.
First, we ignored the effect of polarization. Though the

21 cm signal is unpolarized, astrophysical foregrounds are
generally polarized. And because the primary beams of the
two orthogonal polarizations measured by a single element
are different, the polarization of sources is important. This
is especially important for sources with high rotation
measures [76]. Second, we ignored the possibility that
not every element has the same primary beam. It is possible
that an array is intentionally constructed with multiple
kinds of elements. It is also generally true that different
elements will behave slightly differently, just due to the
variations in their construction. If we are able to measure
that variation—which is no small task—we would like to
take it into account.
Let us begin with polarization. There are a number of

different conventions for expressing polarization [77], but
one relatively straightforward one is to replace Iðr̂; νÞ with a
four-element vector Iðr̂; νÞ containing Stokes I, Q, U, and V
parameters. Instead of one visibility per baseline and
frequency, we now measure four, one for each of the pairs
of polarizations of antennas, xx, xy, yx, and yy. In this case,
Bðr̂; νÞ becomes a Bðr̂; νÞ, 4 × 4 matrix that describes the
response of each type of visibility to each polarization and
direction.

Otherwise, not much changes. The sky vector we are
estimating gets four times bigger and the number of
visibilities also gets four times bigger (though there are
simplifications in practice, since xy and yx visibilities are
just complex conjugates of one another and can be
averaged together to reduce noise). The A matrix is not
fundamentally different. Though it may seem like this
makes the problem of computing P 64 times harder, that is
fortunately not the case.
Fundamentally, we want to estimate the cosmological

signal from our best guess at the Stokes I map. Foregrounds
can have I, Q, and U components—astrophysical sources
are not circularly polarized. So what we really want is a P
matrix that maps I, Q, and U on the true sky, through xx
and yy visibilities, to a dirty map of Stokes I. That is only
six times more difficult than the calculations outlined
above. If we do not want to model our foreground residual
as polarized, then P is only twice as complicated as
before—we just need to calculate μ through a more
complicated mapmaking procedure involving the expanded
definition of A.
The issue with polarization is in many ways similar to the

problem of heterogeneous primary beams. After all, the two
polarization’s dipoles generally have two different primary
beams. Since the calculation of A†N−1A is the computa-
tionally limiting step in our method, it is not significantly
more difficult to treat multiple kinds of primary beam
products Bðr̂; νÞ when calculating A, each row having a
potentially different Bðr̂; νÞ. This gives us a straightforward
way to account for arrays that include multiple types of
antenna elements.
Of greater concern is the fact that every element in a real

array has a slightly different beam—even if it was designed
to be homogenous. For a minimally redundant array, this
does not matter. If we know the correct primary beam for
every antenna, we can write down A exactly. For a highly
redundant array like HERA, antenna heterogeneity breaks
the redundancy of baselines. If we want to include all
measured visibilities in our maps, we may need to treat
visibilities involving themost discrepant antennas separately.
If we had to go further and treat every visibility separately,
that would make P 2 orders of magnitude more difficult to
calculate for HERA. If we can measure primary beams for all
of our antennas, it would be worthwhile to simulate the error
associated with the approximation that they are all the same.
This is left to future work. Fortunately, it is theoretically
possible to take into account slight variations between
elements in the framework we have outlined.

APPENDIX B: A FOREGROUND AVOIDANCE
APPROACH TO POWER SPECTRUM

ESTIMATION

The power spectrum estimation method we outlined in
Sec. II C is a promising way to enlarge the EoR window
and gain the additional sensitivity forecasted by [41].
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However, it is not the simplest approach. Instead of directly
modeling foregrounds, we could choose to simply throw
out all the modes that we believe to be foreground
contaminated. The foreground avoidance approach was
pioneered by [34] and used to produce the best current
limits on the 21 cm power spectrum by [13] and [11]. This
choice should be more robust to foreground mismodeling
than subtraction, since we are merely trying to isolate
foreground-free regions of Fourier space from the effects of
regions we have given up on. Where exactly we draw the
line between wedge and window is a question that deserves
further investigation with both simulations and real data.
One might ask why foreground avoidance estimators are

interesting when the whole point of making maps like ours
was to compress the data in a space where foregrounds
were most naturally subtracted. There are a few reasons.
First, foreground avoidance is simpler than foreground
subtraction. If we are going to try to subtract foregrounds, it
is worthwhile to first perform the simpler, more robust
procedure so we have a baseline for comparison. Second,
even if we are only interested in mitigating the effect of
foregrounds by avoiding them, this method gives a proper
accounting for CN, CS, and C;α, without making any of
the approximations previously relied upon about there
being no correlations between uv cells or that uniform
weighted maps have no PSF. Third, the technique is fairly
directly comparable to that of [34] without the additional
assumption that delay modes for a given visibility map
neatly to band powers or the computational challenges of
[39,40]. And finally, we may also want to implement a
hybrid approach, similar in spirit to [13], where we project
out modes deep into the wedge but try to subtract fore-
grounds nearer the edge of the wedge.13

Therefore, it is worthwhile to write down the general
framework for foreground avoidance in the context of
optimal mapmaking. The idea is relatively simple. Let us
define a new dirty map estimator, x̂0, defined as

x̂0 ≡ Πx̂ ðB1Þ

whereΠ is a projection matrix that has eigenvalues of 0 or 1
only. As with all projection matrices, Π ¼ ΠT ¼ Π2. The

matrix Π Fourier transforms the data cube, sets all modes
outside the EoR window to zero, and Fourier transforms
back. It also means that we need to replaceCwithC0 where

C0 ¼ ΠCΠ: ðB2Þ
By construction, the projection eliminates the fore-

grounds in μ, meaning that

Πhx̂i ¼ Πμ ≈ 0: ðB3Þ
Likewise, the part of the covariance associated with the
foregrounds should also go to zero. Hence,

ΠCFGΠ ≈ 0; ðB4Þ
which means that

C0 ¼ Π½CS þ CN �Π: ðB5Þ
This also changes C;α which now takes the form

C;α
0 ¼ ΠC;αΠ ¼ ΠPQαPTΠ: ðB6Þ

Of course, the new covariance has many zero eigenval-
ues, which means that it is not invertible. That is not a
problem since we can replace ðC0Þ−1 by its “pseudoinverse”
[32], defined as

ðC0Þ−1psuedo ¼ Π½ΠC0Πþ γðI − ΠÞ�−1Π ðB7Þ

where γ can be any (numerically reasonable) nonzero
number without changing the result. The pseudoinverse
reflects the idea that we want to completely throw out any
power in possibly foreground-contaminated modes but also
that we want to express infinite uncertainty in the modes—
in other words, to give them no weight. This will accurately
account for the fact that we have no information about
these modes.
Putting all that together, our new quadratic estimator p̂ is

p̂α ¼
1

2
Mαβx̂TðC0Þ−1psuedoPQβPTðC0Þ−1psuedox̂ − bα; ðB8Þ

where we have used the fact that Π2 ¼ Π. The estimator is
not lossless, but it can still be unbiased in the region of
Fourier space not projected out and have rigorously defined
and calculable error properties.

13This is similar in spirit to what WMAP did [78]. They first
masked out the Galaxy and the brightest point sources, then they
performed foreground subtraction in the map and foreground
residual bias subtraction in the angular power spectrum. For us,
the major difference is that we do both.
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