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Development and analysis of eco-driving metrics for naturalistic
instrumented vehicles

Shams Tanvira,b, R.T. Chasea, and N. M. Roupahilc

aInstitute for Transportation Research and Education, North Carolina State University, Raleigh, North Carolina, USA; bCenter for
Environmental Research & Technology, University of California-Riverside, Riverside, California, USA; cDepartment of Civil, Construction,
& Environmental Engineering, North Carolina State University, Raleigh, North Carolina, USA

ABSTRACT
This article is concerned with the development of eco-driving metrics for instrumented
vehicles in a longitudinal study environment. Motivations for developing such metrics
include an ability to distill driving style effects on fuel use from other confounding factors,
to contrast and benchmark driving styles for a cohort of drivers and to ascertain the effects
of information and/or incentives on fuel use both in the short and long term. High reso-
lution (1Hz) trip data were collected for a local sample of 35 drivers over a period of 2
years, yielding over 20 million second by second observations. To account for the difference
in vehicle type choice, a standard vehicle was used to model fuel consumption based on
instantaneous vehicle activity. Difference in route choice was accounted for using speed-bin
dependent metrics. Two metrics were developed: a trip-based measure called the fuel effi-
ciency score (FES), and a difference in fuel use metric that uses the second by second obser-
vations called the fuel use difference (FUD). FES varies from 20 to 100 while FUD covers
positive and negative percentage differences from a speed-bin dependent mean value. Both
measures passed the test of consistency so that, at the driver level, both revealed no tem-
poral trend in the scores from month to month across a period of 2 years. Moreover, the
FES metric passed the heterogeneity test. It was able to identify four distinct clusters of driv-
ing styles.
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Introduction

The transportation sector accounts for more than 25%
of the total energy supply of the United States. In
2015, petroleum fuels provided about 92% of the total
energy used by the transportation sector totaling
about 25,000 trillion BTU (USEIA, 2016). Personal
transportation contributed to 26% of total carbon
dioxide (CO2) emissions (USEPA, 2016). Any policy
and operational improvement in reduction of personal
transportation petroleum fuel consumption can sig-
nificantly reduce emissions of greenhouse gases and
save millions of dollars in energy import cost.
Improvements of vehicle and fuel technologies have
significantly increased fuel efficiencies of modern
vehicles. Diversified energy sources such as bio-fuels
and electric cars have provided means to reduce over-
all transportation fuel consumption. However, the
penetration of improved technologies in the market is
gradual due to prohibitive cost of new vehicles; only

about 7% of vehicles replaced in a single year (ORNL,
2015). An alternative option is to reduce the vehicle
miles traveled that involves either making fewer trips
or reducing trip lengths. Unfortunately, any travel
demand reduction policy suffers from low acceptance
and attainment rates except in densely populated
urban areas where commuters have more opportuni-
ties for transit and carpooling. Another promising
approach is to alter the drivers’ current driving style
to improve fuel efficiency. This relatively newer
approach, termed eco-driving, is more feasible now
than ever before. High resolution driving style can be
observed at real-time with the advancements in sensor
and communication technologies and information can
be provided to the driver through real time wireless
communication or internet with advanced analytics at
the back-end (Jariyasunant et al., 2015). As opposed
to static eco-driving where instructions to improve
driving style is given beforehand and instructions do
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not change depending on a driver’s current driving
style, dynamic eco-driving is changing instructions to
better suit a particular driver at specific conditions
(Xia, Boriboonsomsin, & Barth, 2013). This article will
focus on dynamic eco-driving capabilities in naturalis-
tic driving.

Effectiveness of an eco-driving scheme depends on
how often a driver is following the instruction and to
what extent the benefits from saving fuel consumption
is important to the driver (Barkenbus, 2010).
Advanced eco-driving control algorithms have shown
energy consumption improvement up to 16.9% (Hu
et al., 2016). Drivers may be too accustomed to their
usual driving styles. Short-term fuel efficiency can be
improved by 25% (Ford, 2015), however, without
feedback can go down to 5% or no improvements at
all. A solution to improve long-term fuel efficiency is
to provide feedback and incentives (either monetary
or non-monetary) to the drivers. Non-punitive finan-
cial controls such as coupons, tax relief, etc. can pro-
vide personal incentive to reduce fuel consumption.
However, such personal incentive delivery requires a
universal tracking method of driving style which is
not impacted by the vehicle type and route chosen by
the driver. Incentives can be provided when a driver’s
driving style has improved from a previous time
period or when a driver is maintaining an optimal
driving style. Therefore, there is a need to develop an
unbiased metric of driving style which can be tracked
over time and applied similarly to all the drivers par-
ticipating in an eco-driving scheme.

The purpose of this article is to develop eco-driving
metrics for naturalistic driving where there is no con-
trol over the drivers’ choice of vehicle and route. An
eco-driving metric needs to serve as a benchmark of
driving styles. In addition to scoring, the metric needs
to enable ranking and grading drivers. Previously,
empirical fuel consumption was monitored to serve as
an indicator of fuel efficiency and comparison of driv-
ers’ fuel efficiency was only possible if vehicle type
and route characteristics were controlled. Such con-
trolled experiments are suitable for understanding the
effect of vehicle, route, or drivers separately. However,
fuel consumption alone without any adjustments for
other choices cannot serve as a metric for naturalistic
eco-driving schemes.

In the next section, the related literature is
reviewed to understand factors influencing actual fuel
consumption. Later, data and methodology are
described. Results and discussions followed by conclu-
sions are described in the last two sections.

Literature review

Actual fuel consumption of a vehicle is affected by
multiple factors – vehicle type, roadway factors,
meteorological conditions, traffic factors, and driving
styles. Vehicle type has the highest impact among all
others; EPA reported fuel economy can be as high as
107 miles per gallon for small electric vehicles and as
low as 12 miles per gallon (USDOE, 2016). Roadway
factors such as road grade and pavement condition
have significant effect on fuel economy. Fuel economy
of a flat route was found 15% to 20% higher than that
of a hilly route (Boriboonsomsin & Barth, 2009).
Meteorological conditions such as wind, barometric
pressure, and ambient temperature has small impact
on the fuel economy. For a specific vehicle type, traf-
fic related factors such as speed and variability of
speed due to facility conditions or traffic control devi-
ces have significantly greater effect on fuel economy
than driving styles (Boriboonsomsin, Vu, & Barth,
2010). At urban conditions, average speed can explain
more than 70% variability in fuel consumption
(Evans, Herman, & Lam, 1976). Many later researches
argued for the inclusion of acceleration and different
functional forms of speed and acceleration to better
estimate fuel consumption (Ahn, Rakha, Trani, & Van
Aerde, 2002; Jimenez-Palacios, 1998). However, there
are small differences between the factors to be consid-
ered as traffic stream related and driving style factors.
Average speed can be considered as a traffic stream
factor for a congested road as drivers need to follow
preceding vehicle. In contrast, amount and frequency
of acceleration and deceleration is a part of the driv-
ing style.

Most previous eco-driving experiments in the lit-
erature have, for the most part, included controls on
vehicle type and route selection. In controlled experi-
ments a small group of participants are instructed to
drive along fixed routes using a pre-defined and simi-
lar vehicle (Ishiguro, 1997; Lenner, 1995); comparison
among driving styles is made using actual fuel con-
sumption. Barth and Boriboonsomsin used real-time
information as speed advisories at different level of
services (Barth & Boriboonsomsin, 2009). However,
the study was limited to freeways and comparison was
done for the same vehicle type and same route. A
handful of previous studies explored naturalistic data
for vehicle fuel consumption analysis (LeBlanc, Sivak,
& Bogard, 2010, Berry, 2010, Bandeira, Almeida,
Khattak, Rouphail, & Coelho, 2013). However, no pre-
vious study focused on the eco-driving aspect in terms
of isolating the effect of driving style from other fac-
tors. Beusen et al. used on-board logging devices to
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track the long-term impact of a static eco-driving
scheme using actual fuel savings (Beusen et al., 2009).
Rolim et al. used similar devices to track the effective-
ness of an eco-driving program; however, they used
frequency and level of excessive acceleration and dec-
laration to quantify the improvement (Rolim, Baptista,
Duarte, & Farias, 2014). Song and Yu normalized
average fuel consumption rates with the idling rate to
eliminate the effects of engine size, fuel type, and
vehicle mass (Song & Yu, 2009). The normalized fuel
consumption rate was suitable for estimation of
vehicle type independent fuel economy, however,
lacked the quality to serve as a benchmark in compar-
ing trips of different route choice by the same driver.
There is a lack of generalizable and transferrable driv-
ing style metric in the literature which can control for
both route and vehicle type choice.

Dynamic eco-driving metrics needs to allow not only
delivery of information but also delivery of incentives.
Information delivery as done by Barth and
Boriboonsomsin (2009) is a two-stage process where
driving style is observed and information is delivered. In
contrast, incentive delivery requires an additional feed-
back stage where the driver performance is observed
after information delivery and based on the perform-
ance incentive is provided. An eco-driving metric needs
to serve as a performance indicator in that case.
Performance indicators such as speed and braking are
used by an insurance company, Progressive Casualty
Insurance Co. (McQueen, 2008), to provide incentives
for safety in naturalistic driving. However, there is no
reported performance indicator for eco-driving applica-
tions that can be used for delivery of incentives.

Observation of long-term eco-driving behavior can
provide better insight into driver consistency. af
Wåhlberg (2007) monitored fuel consumption of
buses during 12months after an eco-driving training
and found drivers returned to their previous habits
within a small time period. Beusen et al. observed 10
drivers over the course of 10months (Beusen et al.,
2009) including before and after eco-driving training.
They found scatter of average weekly fuel consump-
tions in both stages; making it difficult to measure
any significant effect of driving styles. Therefore, it is
important to understand usual randomness in driving
styles of individual drivers through long-term studies.

On the basis of the review of literature presented
above, three main limitations can be gleaned:

1. There is no agreed upon metric which can distin-
guish the effect of driving styles on fuel consump-
tion from other confounding factors.

2. There is no comparative benchmark of driver
behavior that can support the application of eco-
driving incentives.

3. Few long-term longitudinal studies of individual
driver’s driving style were found that can assess
the consistency of driving styles over an extended
period of time.

Based on the identified gaps in literature, this study
attempts at addressing the following
research questions:

1. How to develop eco-driving metrics that consider
heterogeneity among driving styles only?

2. Are the developed metrics consistent and reason-
able as benchmarks?

3. Can the developed metrics be used to rank or
grade drivers for incentive development purposes?

Methodology

Methods of this study includes (a) a description of
study data (b) method for benchmarking driving
styles (c) method for development of eco-driving met-
rics (d) methods for characterization of heterogeneity
and consistency in driving styles.

Data source

Naturalistic driving data for this study are collected
using an on-board logging system called “i2D.” The
system consists of an on-board unit (OBU), a mobile
communications network (via M2M protocols), and a
secure cloud database. The OBU connects to the
vehicle’s OBD-II interface, and includes a GPS sensor
along with a 3D accelerometer and a barometric
altimeter (Kim et al., 2016). Multiple engine and
vehicle dynamics measures are acquired from the
OBU at high resolution (1Hz) and transmitted to the
cloud database using mobile communications every
23 seconds. An illustration of the device is shown in
Figure 1.

Participation in this study was completely voluntary
and 35 drivers were recruited randomly in Raleigh
NC. The study participants were anonymized and
were not provided with any specific instructions dur-
ing the study. All the vehicles used in this study were
personal vehicles of the participants and participants
were not required to disclose their vehicle specific
information to maintain anonymity. Participants were
mostly university staff and students with age ranging
from 20 years to 68 years with mean age of 36 years.

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS 3



Out of the 35 participants 25 were male and 10 were
female. A total of 24months of data were collected.
Data collection started in April 2014 and ended in
March 2016. A total of 34,425,572 seconds of data
were collected. The total driving distance was 289,064
miles with the least active driver driving 315 miles
and the most active driver driving 3,163 miles. Table
1 shows descriptive statistics of some key variables for
the 41,217 trips collected for this study.

The system assigned a unique trip ID every time
drivers started their vehicles. All second-by-second
data for a particular trip was tagged with that trip ID.
The second-by-second data included engine informa-
tion such as revolution per minute, intake air tem-
perature, manifold pressure and vehicle dynamics
information such as vehicle speed. The drivers
required to provide their vehicle information such as
vehicle model, gross vehicle mass, fuel type at the
time of recruitment. Integration of vehicle and engine
information enabled the real-world instantaneous fuel

consumption during a trip. Previous studies have
reported that estimation of fuel consumption using
internally observed variables can explain 99% of the
variability in empirical measurements (Frey, Zhang, &
Rouphail, 2008).

In contrast to estimating fuel consumption using
internally observed variables, instantaneous fuel con-
sumption can be estimated using vehicle speed, accel-
eration, and road grade with previous knowledge of
the vehicle specification. The latter approach is more
suitable for observing driver behavior since the actual
fuel consumption is governed by the type of vehicle
driven. In the next section, the methodology for
benchmarking driving style is discussed based on esti-
mated fuel consumption using instantaneous
vehicle speed.

Benchmarking driving styles through standardized
fuel use

Driving style of a driver can be observed through the
driver’s actions. Actions which can possibly affect fuel
consumption are speed, acceleration, and braking of
the vehicle. The effect of vehicle type on driving style
was studied in a previous paper (Tanvir, Frey, &
Rouphail, 2018). The paper concluded that the choice
of vehicle does not significantly alter the natural driv-
ing style of a driver. Therefore, a benchmark of driving
style and consequent fuel consumption needs to be
standardized by the actions. Comparing two driver’s
empirical fuel consumption without standardization is
only possible when they are driving the same vehicle
type and driving in similar operating conditions.

Benchmarking of a driver’s driving style requires
standardization for choice of vehicle type and choice
of route. This article deals with standardization for
vehicle type choice by assuming all drivers are

Table 1. Descriptive statistics of key variables in the collected trip data-
base (n¼ 41,217).
Variable Mean Standard Deviation Minimum Maximum

Trip Travel Time (minute) 13.9 17.4 0.01 383.4
Trip Distance (miles) 8.55 17.86 0.11 397.05
Maximum Acceleration (ft/s2) 11.56 9.68 4.4 118.8
Maximum Deceleration (ft/s2) �12.23 5.31 �2.2 �107.07
Start Delay (seconds)1 27.3 72.9 0 2614
End Delay (seconds)1 26.9 80.7 0 7445
Number of Stops2 7.07 5.18 0 129
Percent of Time in Freeway3 5.3 14.7 0 100
Percent of Time in Positive Jerk4 24.1 5.8 0.02 45.5
Percent of Time in Negative Jerk4 22.2 5.5 0 44.7
1Both start and end delay time is calculated considering consecutive seconds of zero speeds at
the beginning and end of a recorded trip, respectively.

2Stops are assumed when consecutive zero speeds are observed for at least 5 seconds.
3Freeway points are identified though map-matching of GPS locations.
4Jerk is rate of change of acceleration. Positive jerk represents acceleration build-up or deceler-
ation ramp-down. Negative jerk represents acceleration ramp-down or deceleration build-up.

Figure 1. (Left) On-board data logging device connected to
the vehicle. (Right) I. the device II. Antenna III. OBD-II con-
nector cable.
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operating a standard car as their vehicle. The standard
car in this study is a 2007 Honda Accord with 2.4 L 4-
cylinder, 160 hp gasoline engine and a 3100 lb curb
weight. Specifications of the standard car along with
instantaneous speed, acceleration, and road grade can
be combined to get estimate of vehicle specific power
(VSP). VSP is a function of vehicle speed, acceleration,
and road grade and expresses a vehicle’s engine power
demand. VSP has been found as an excellent predictor
of vehicle fuel use (Jimenez-Palacios, 1998). VSP can
be expressed by Equation 1. The coefficients in
Equation 1 depend on the type of vehicle and for this
article specifications of the standard vehicle
(A¼ 0.1565 kW-sec/m, B¼ 2.002� 10�3 kW-sec2/m2,
C¼ 4.926� 10�4 kW-sec3/m3, and m¼ 1.479 tonne)
were used to estimate all second-by-second VSP values
for all drivers. Instantaneous VSP values were mapped
into 23 operating mode bins, which is a combination
of VSP and speed. The mapping in to operating mode
bins was done to better represent nonlinearities in the
relationship between VSP and fuel consumption, espe-
cially, at higher speed ranges. There is one operating
mode bin for braking, one for idling, 6 bins for speeds
from 1 to 25mph, 9 bins for speeds 25–50mph, and 6
bins for speeds above 50mph. Corresponding instant-
aneous fuel consumption values (ft) were estimated
from a previously established relationship between
operating modes and fuel consumption for the stand-
ard car (Frey & Liu, 2014).

VSP ¼ A � vt þ B � v2t þ C � v3t þm � vt � at
� �

=m

(1)

where VSP is vehicle specific power, kW/tonne; vt is
speed at time t, m/s; at is acceleration at time t, m/s2;
A is rolling resistance coefficient, kW-sec/m; B is rota-
tional resistance coefficient, kW-sec2/m2; C is aero-
dynamic drag coefficient, kW-sec3/m3; m is vehicle
mass, tonne.

This article used instantaneous or trip average
vehicle speed as a surrogate to express route charac-
teristics. The main route characteristics which change
by driver’s choice are sequence of facility type (free-
way vs. arterial), departure time (pre-peak, peak, or
off-peak), and operating conditions of the route (con-
gested vs. uncongested or signalized vs. roundabout).
In most cases, average speed for a given trip is con-
trolled by the route characteristics, not by driver’s
driving style. Standardization of fuel consumption for
route choice is possible through fitting multiple
expected fuel consumption models at different speed
levels. In the next section, two different eco-driving
metrics are introduced which incorporates successive

standardization of fuel consumption; first for vehicle
type choice and then for route choice.

Eco-driving metrics development

The purpose of an eco-driving metric is to compare
driving styles across multiple drivers in a naturalistic
driving study. The metric is required to reflect
changes in driving styles only, not changes in vehicle
type choice and route choice. The metric needs to be
consistent over time for a given driver if no changes
were made in the driver’s driving style. Also, the met-
ric needs to be sensitive to the heterogeneity in driv-
ing styles among drivers. Variation in the metric is
required to be small enough for a given driver to
identify significant changes in driving styles across
reporting periods.

Another consideration for an eco-driving metric is
to demonstrate improvement in driving style when a
specific behavior is targeted. In the case of overall
driving style improvement, a trip perspective of fuel
usage is appropriate to track overall driver behavior
change. However, studies exploring trip-level fuel con-
sumption differences when only targeting behavior
during parts of the trip (such as braking events), may
lack the power to identify change when all driving
events are aggregated into trips. A metric based on
trajectory level analysis provides for the ability to seg-
ment trips into unique events in order to perform
paired comparisons solely on the events of interest.

Standardized fuel consumption cannot be used as
eco-driving metrics for several reasons – (a) it has no
practical meaning to the driver; therefore, it is prone
to misinterpretation, (b) it does not consider factors
such as congestion and route type which is out of
driver’s control, and (c) it has a very low variability
within the corresponding trip average speed bin
(Figure 2b). Therefore, there is a need to adjust the
standardized fuel consumption.

Aggregation of instantaneous standard fuel con-
sumption at different resolutions leads to multiple
approaches for adjustments by speeds. In each report-
ing interval (week or month) for an individual driver,
adjustments can either be applied to each trip accord-
ing to trip average speed or at trajectory level accord-
ing to driver’s behavior for each instantaneous speed
level across all the trips made by that driver. In this
article two different eco-driving metrics for naturalis-
tic driving are introduced: one based on summary trip
characteristics and another based on overall trajectory
characteristics.

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS 5



Fuel efficiency score (FES)

For this study, information from about 42,000 trips
was collected. Only trips over 1mile in length and
1minute in duration are selected for computing the

metric. Trip average speed (vik) can be calculated as
average of OBD based instantaneous speeds for all the
seconds of a trip. Miles per gallon of standard fuel
consumption (Fik) was chosen as the indicator of fuel
efficiency for the trip.

vik ¼
PT

t vtik
N

(2)

Fik ¼ 2800 T
3600

PT
t vtikPT
t ftik

(3)

where vik is average speed for trip i for driver k,
miles/hour; vtik is instantaneous speed for trip i at
time t by driver k, miles/hour; Fik is standard vehicle
fuel economy for trip i by driver k, miles per gallon
(MPG); ftik is instantaneous standard vehicle fuel con-
sumption for trip i at time t, grams/sec; T is duration
of trip i in seconds.

The relationship between trip average speed (vi)
and standard MPG (Fi) is shown in Figure 2a. The
blue line is a quadratic function (LM) fit to the plot
which shows a dip down in MPG at higher trip aver-
age speed. However, when a generalized additive
model (GAM) was fit with a smooth on average speed
as a predictor (considering dimension of basis func-
tion as 3), the fit stayed close to an optimal value of
standard MPG. Summary statistics for the two differ-
ent fits are shown in Table 2. Although both models
were significant overall, the LM had slightly better
adjusted-R2 compared to the GAM. The shape of the
fit suggests that there are separate distributions for
standard MPG values at different speed levels.
Cumulative distributions for standard MPG at 10mph
speed bins are shown in Figure 2b. The shape of all
the distributions followed similar pattern with long
tails on both sides. The median MPG values increased
with increase in trip average speed. However, for the
last (highest) two speed bins the distributions overlap.

The trip based eco-driving metric FES is developed
from the insight gained from Figure 2b. Since the dis-
tributions shown in Figure 2b are Gaussian and non-
skewed it is safe to assume FES changing linearly

Table 2. Summary statistics for fits between average trip speed (�v) and standardized MPG (F).
Models Model Parameters Estimate p value Adjusted- R2 Overall p value

Linear Model (LM):
F ¼ b0 þ b1 � �vþ
b2 � �vð Þ2 þ e

b0 �1535 <0.0005 0.140 <0.0005
b1 107.4 <0.0005
b2; �1.477 <0.0005

Generalized Additive
Model (GAM):
F¼ b0

0 þ P2
i¼1 fi �vð Þ �

b=i þ e
0
Where, f is

splines in Gaussian family
with “identity”
link function

b0 �147.1 <0.0005 0.118 <0.0005
fið�vÞ b1

0 ¼1811.7, b2
' ¼71.3 <0.0005

Figure 2. (a) Standardized MPG vs trip average speed (b)
Cumulative distribution for standardized MPG at 10mph trip
average speed bins.
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between two extreme values. The relative fuel effi-
ciency of the trip with respect to all other trips can be
assessed if the trip average speed and trip standar-
dized MPG are known. FES for an individual trip
(FESi) is scaled to vary from 20 to 100, with the min-
imum value occurring when trip standardized MPG
(Fik) is lower than the 10 percentile MPG value (lj)
for the speed bin and maximum value occurring when
Fi is greater than 90 percentile MPG value (uj) for the
corresponding speed bin. Minimum FES of 20 is
chosen because displayed score under 20 may discour-
age drivers from following the e. Combined FES for
all the trips (1, 2, 3,… … ., I) made during a report-
ing period (s) is the trip length weighted summation
of FESik:

FESik ¼ 100 ; if Fik > uj
FESik ¼ 20 ; if Fik < lj

FESik ¼ 20þ Fik�lj
uj � lj

� 100�20ð Þ ; else uj � Fik � lj

(4)

FESk ¼
PI

i
FESik�Lik
P

Lik
(5)

where FESik is fuel efficiency score for trip i for driver
k; Fik is standard vehicle fuel economy for trip i for
driver k, miles per gallon (MPG); lj is 10th percentile
standardized MPG at speed bin j, interval 10mph; uj
is 90th percentile standardized MPG at speed bin j,
interval 10mph; Lik is trip length for trip i for driver
k, miles; FESk is fuel efficiency score for I trips made
during reporting period s by driver k

Fuel use difference (FUD)

The same trips used in calculating FES were also ana-
lyzed at the trajectory level. Observations of speed,
acceleration, and instantaneous fuel consumption
along with other information on vehicle performance
are collected in 1 second intervals. A total of
20,947,617 observations were used in the following
analysis after removing all trips shorter than one mile
in distance or one minute in travel time. The trajec-
tory level analysis aims to identify trends in standar-
dized fuel consumption among drivers that can be
aggregated at the trip or event level in order to track
improvements in driver behavior.

The proposed metric for trajectory level analysis is
the FUD, which is calculated as the percentage of
instantaneous standard vehicle fuel consumption
above or below the estimated fuel consumption at a
given instantaneous speed. Fuel consumption was

modeled using a segmented quadratic regression on
driver average fuel consumption for a given speed
range (fit in 2mph speed bins). Figure 3a shows the
observations of driver average fuel usage (in g/s) for
each 2mph speed bin, meaning that the maximum
number of observations in each speed bin is equal to
the number of drivers in the sample. Model fitting
was performed using a weighted least squares regres-
sion on a segmented quadratic model that provides
for equal value and slope at the breakpoint. Each
driver average fuel usage observation was weighted by
the number of seconds of data included in the averag-
ing. The best fit model is described in Equation 6,
resulting in a standard error of 0.035 g/s.

y ¼ � 0:000802v2 þ 0:0498vþ 0:266 ; if v < 30 mph

y ¼ � 0:000432v2 þ 0:0243vþ 1:377 ; else (6)

where y is Estimated standardized instantaneous fuel
consumption in grams per second; v is Speed bin
median (mph)

While the non-linear regression method used does
not lend itself to direct measurement of individual
parameter significance, reduced model forms were
compared using the standard error of the regression;
and the model shown in Equation (6) performed best.
The individual co-efficient estimates meet the expecta-
tions of lower speeds as it shows a concave down
shape while approaching the most fuel-efficient speed.
In contrast, fuel use at higher speeds shows a concave
up shape.

Using the model fit to driver average fuel usage,
FUD is then calculated for each observation of speed
according to Equation 7. This value can be averaged
for a driver’s individual trips or across any subset of a
trip depending on the comparison of interest.

yt ¼ � 0:000802vtk
2 þ 0:0498vtk þ 0:266 ; if v < 30 mph

y ¼ � 0:000432vtk
2 þ 0:0243vtk þ 1:377 ; else (7)

FUDtk ¼ ftk� yt
yt

�100 (8)

where FUDtk is Fuel use difference at time t for driver
k; yt is Estimated standardized instantaneous fuel con-
sumption in grams per second at time t; ftk is Actual
standardized instantaneous fuel consumption in grams
per second at time, t for driver k; vtk is Instantaneous
speed in mph at time t for driver k.

Figure 3b shows the distribution of overall driver
average FUD across the entire study period. It is
important to note that as FUD is aggregated across
larger time spans, the values will tend towards the
mean according to the law of large numbers, so these
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values do not necessarily explain the full range of fuel
use differences between drivers.

Characterizing heterogeneity and consistency in
driving style

The essence of eco-driving lies in the ability for
improving a driver’s driving style to reduce fuel use.
This infers that at least some drivers in the population
are following an optimal style and some drivers are
significantly lacking in fuel economy due to their inef-
ficient style. Therefore, an eco-driving metric needs to
identify this significant heterogeneity among drivers’
styles. This article uses the Tukey’s honest significant
difference (HSD) to test whether the monthly scores
of a pair of drivers are significantly different. The
choice of month as reporting interval as opposed to
week may cause a metric to be more centered on the
driver mean.

Consistency of a metric requires it remain
unchanged for an individual driver if no significant
changes have been observed to his/her style. It also
infers robustness of a measure. In this study, it is
assumed that no changes have been made in drivers’
driving styles as no instructions or incentives were
given to them. Therefore, consistency of a metric
means that its value across the reporting period

should not be significantly different across reporting
periods for all drivers. Thus, the presence of any time
trend such as continuously increasing or decreasing
value of the metric would violate the consistency
requirement.

Results and discussion

FUD is plotted against FES scores at monthly report-
ing period levels in Figure 4a. Each point is colored
by the number of trips used to generate the metrics.
The linear fit suggests an inverse relation between the
two metrics; meaning the higher the FES, the lower is
the FUD (negative FUD implies improved driving
style). Such relation is expected as more fuel-efficient
drivers are; less fuel will be consumed relative to the
average fuel consumption. The statistics of fit between
FES and FUD are reported in Table 3.

Even though the overall trend in the relation
between FES and FUD matches expectations, the scat-
ter is very high; suggesting that calculating one metric
and converting them to the other may not provide
reliable estimate of the other.

Scatterplots of the two developed metrics against
averages of trip average speed and average trip length
at monthly reporting period level is shown in Figure
4c and d. Since FES was developed using adjustments

Figure 3. (a) Speed binned average fuel usage by driver vs. segmented model (b) Histogram of overall FUD by driver.
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for trip average speed, there is no systematic pattern
in monthly aggregated FES with average trip speed
observed in Figure 4a. However, there appears to be a
positive correlation of FUD with average of trip aver-
age speeds (Figure 4b). This suggests a collection of
higher average speed trips during a month will cause
FUD to increase; where in reality the same driver

could be using different facilities or the operating con-
ditions have changed. There is no significant effect of
average trip length on both metrics.

Monthly FES boxplots for each driver across the
study period is shown in Figure 5. In addition to the
1-minute trip duration and 1-mile trip length filter,
only driver-month combinations containing more
than 30 trips were selected to remove bias in sample.
Simple one-way analysis of variance (ANOVA) test
was done with driver as a factor to test if FES varied
significantly across drivers. Driver was found to be a
significant factor from ANOVA.

Table 3. Fit statistics of relationship between FES and FUD.

Model
Model

Parameters Estimate
p

value
Adjusted-

R2
Overall
p value

FES ¼ b0 þ b1�FUD b0 7.41 <0.0005 0.328 <0.0005
b1 �0.132 <0.0005
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Figure 4. (a) Relation between driver FES and FUD at monthly aggregation level (b) Relation of FES and FUD with number of trips.
(c) Monthly aggregated FES VS. average of trip average speeds (d) Monthly aggregated FUD VS. average of trip average speeds.
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The result from ANOVA was used to compute
Tukey’s HSD for pairwise comparison. Tukey’s HSD
of 8.6 was computed for the monthly FES. Based on
this, Table 4 was generated to group drivers into simi-
lar clusters. Only drivers having at least 10months of
FES score were included in this grouping. Drivers
with the same letter group are not significantly differ-
ent. The mean FES value for the drivers ranged from
73 to 49. Four categories of drivers can be found in
the data – 2 drivers with FES above 70, 8 drivers

having FES in 65–70 range, 5 drivers in FES 55–65
range, and 3 drivers with FES below 55. In summary,
this analysis has confirmed the hypothesis of the pres-
ence of heterogeneity across drivers based on their
driving style.

Consistency of the developed metrics was tested in
three steps – first the temporal progression of the
metric was modeled with month as a predictor using
one-way ANOVA. Second, individual driver time ser-
ies were tested for stationarity. Finally, the coefficient
of variation or standard deviation of a metric for an
individual driver was calculated as a measure
of dispersion.

FES progression for the selected group of drivers is
shown in Figure 6. In most cases driver FES scores
are scattered around the mean with a few outlier
months where their driving style deviated signifi-
cantly. FES modeled with one-way ANOVA resulted
in month as an insignificant predictor. The probability
that all monthly mean FESs are equal is 0.985.

A stationary time series is one whose statistical
properties such as mean, variance, autocorrelation are
all constant over time. Individual driver time series
are tested for stationarity using autocorrelation plots
and Dickey Fuller test (Dickey & Fuller, 1981) for a
unit root with drift and deterministic time trend. Both
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Figure 5. Boxplots of monthly FES for each driver across the study period. Number inside the box indicates total number of
months of data used to generate that boxplot.

Table 4. Grouping of drivers according to monthly FES.
Tukey’s HSD Groups Treatments (Driver ID) Means (FES)

A 82998 73
A B 66758 71
A B C 66881 69
A B C D 91184 68
A B C D 66807 68
A B C D 68258 68
A B C D E 66786 66
A B C D E 69049 66
A B C D E 50091 66
A B C D E 66824 65

B C D E 68275 63
C D E 77681 63
C D E 66843 63

D E F 63087 59
E F 69033 59

F G 107707 52
F G 29721 52

G 66906 49
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test results indicated that the times series for FES and
FUD are stationary across the months.

The coefficient of variation (standard deviation/
mean �100) for monthly FES values for the selected
drivers were calculated across the 2-year study.
Coefficient of variation for FES varied from 6.2 to
13.9 with the mean value around 9.6. Since the mean
value of FUD lies around 0 (due to presence of both
positive and negative values), using the coefficient of
variation for FUD is misleading to judge dispersion.
Instead the standard deviation of FUD was calculated.
Standard deviation of FUD varied from 0.50 to 1.84
with the median value at 0.98. In sum, considering all
three consistency tests for both eco-driving metrics, it
is reasonable to assume that they both are consistent
individually. However, internal consistency of the two
metrics is required to be tested. All drivers at a par-
ticular reporting period were ranked according to the
values of their monthly metrics. Ranking of two driv-
ers is shown in Figure 7. Driver ID 66758 had the
second highest overall mean FES value and driver
66906 has the lowest overall mean FES. Even though
both were consistently making the same number of
trips across the months, their scores fluctuated and so
did their ranking. However, their ranking fluctuated
within a certain range. Ranking of the intermediate

drivers fluctuated more frequently and their relative
position changed. This infers that slight fluctuations
in FES for intermediate drivers could result in large
shifts in their ranking. This finding is consistent with
the results in Table 4; intermediate drivers have over-
all FES that is not significantly different from
each other.

Conclusions and future work

The purpose of an eco-driving metric that bench-
marks driving style is to remove the impacts of vehicle
and route choice from fuel use while still identifying
heterogeneity among drivers. Effects of vehicle type
choice are standardized using instantaneous driving
activity for a standard car. Average speed is used to
standardize the differences in fuel consumption from
route choice.

Studies of eco-driving may alternatively focus on
complete trips or discrete events, and an eco-driving
metric must be tailored to the study need. Based on
the two perspectives of eco-driving analysis this study
developed two metrics: a trip-based metric (FES)
designed to analyze overall trip fuel efficiency while
accounting for trip average speed; the second based

69033 69049 77681 91184

66881 66906 68258 68275

29721 66758 66824 66843
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Figure 6. Progression of FES for individual drivers. Blue line indicates the mean FES and the gray ribbon shows 80% confi-
dence interval.
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on trajectory level FUD from estimated usage
accounting for instantaneous speed.

Both FES and FUD were found to be capable of
distinguishing heterogeneous driving styles. Individual
drivers’ scores on both metrics are consistent over
time – there is no trend or level shifts in their behav-
ior without any intervention. However, dispersion of
metrics around the mean may cause confusions in
judging effectiveness on an intervention. In that case,
Tukey’s HSD for pairwise comparison between before
and after eco-driving interventions can be used to
detect significance of differences. Incentive tracking
and delivery can be done by grading the drivers
according to eco-driving metrics.

FES can be implemented by eco-driving schemes
where aggregate trip-based measures are available. In
contrast, FUD can be implemented at sub-trip level
where improvements during certain behaviors such
as braking, accelerating-from-rest, cruising, etc. can
be tracked separately. FES is more geared to post
hoc delivery of eco-driving advisory and performance
tracking; whereas FUD is suitable at microscopic
level even when the trip is not yet completed.
Calculation of FES is less data intensive compared
to FUD.

FES and FUD have a significant inverse relation-
ship with a lot of scatter. Conversion between two
metrics is possible at an aggregate level, however, will
not be reliable at a trip level. Since FES is already
standardized by average trip speed, it does not show a
trend against trip average speed. However, FUD was

standardized by instantaneous speed and has slight
positive slope with trip speed. FES and FUD are very
different from one trip to another and aggregation at
weekly or monthly level causes it to center. According
to law of large numbers variability in either metric is
reduced at higher aggregation levels. Reduced variabil-
ity at higher aggregation level causes heterogeneity
among drivers less distinguishable. However, the stat-
istical analysis shows presence of groups of drivers
with different fuel efficiency levels. Therefore, grading
the drivers at discrete groups can be significant in
order to communicate improvements immediately to
the driver.

This research has provided a footing to benchmark
the driving styles for a vehicle fleet. The researchers
are currently acquiring additional naturalistic driving
data in the DC-Baltimore region to verify robustness
of the model parameters. Future research will be
directed towards finding out the specific associations
between trip level driving behaviors such as braking,
accelerating, speeding, and the developed eco-driving
metrics. Personalized recommendations thus devel-
oped along with personalized incentives will serve as a
basis for “nudging” drivers to choose optimized driv-
ing styles.
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