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ARTICLE

Earthquake transformer—an attentive deep-
learning model for simultaneous earthquake
detection and phase picking
S. Mostafa Mousavi 1✉, William L. Ellsworth 1, Weiqiang Zhu 1, Lindsay Y. Chuang2 & Gregory C. Beroza1

Earthquake signal detection and seismic phase picking are challenging tasks in the processing

of noisy data and the monitoring of microearthquakes. Here we present a global deep-

learning model for simultaneous earthquake detection and phase picking. Performing these

two related tasks in tandem improves model performance in each individual task by com-

bining information in phases and in the full waveform of earthquake signals by using a

hierarchical attention mechanism. We show that our model outperforms previous deep-

learning and traditional phase-picking and detection algorithms. Applying our model to

5 weeks of continuous data recorded during 2000 Tottori earthquakes in Japan, we were able

to detect and locate two times more earthquakes using only a portion (less than 1/3) of

seismic stations. Our model picks P and S phases with precision close to manual picks by

human analysts; however, its high efficiency and higher sensitivity can result in detecting and

characterizing more and smaller events.

https://doi.org/10.1038/s41467-020-17591-w OPEN
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Deep learning is a widely applied and effective method for a
broad range of applications1. Earthquake monitoring has
a growing need for more efficient and robust tools for

processing of increasingly large data volumes, is conceptually
straightforward, and has a large quantity of available labeled data,
which make earthquake detection and phase picking attractive
targets for the new wave of machine learning applications in
seismology. To date, earthquake signal detection and phase-
picking form the largest portion of this relatively young sub-
field2–10. Despite the differences in approaches and results, most
of these studies find important advantages to deep-learning-based
methods compared with traditional approaches11,12.

Earthquake signal detection and phase picking are challenging
problems in earthquake monitoring. Detection refers to identifi-
cation of earthquake signals among a wide variety of non-
earthquake signals and noise recorded by a seismic sensor. Phase
picking is the measurement of arrival times of distinct seismic
phases (P-wave and S-wave phases) within an earthquake signal
that are used to estimate the location of an earthquake. Although
these two tasks share some similarities, their objectives are not
quite the same. Minimizing the false negative and false positive
rates are the main goals in detection; however, in phase picking
the focus is on increasing the temporal accuracy of arrival-time
picks. This is due to the extreme sensitivity of earthquake location
estimates to earthquake arrival time measurements - 0.01 second
of error in determining P-wave arrivals can translate to tens of
meters of error in location. Although both detection and picking
can be viewed as identifying distinct variations in time-series
data, phase picking is a local problem compared to detection,
which uses a more global view of the full waveform and consists
of information from multiple seismic phases including scattered
waves. Because of this, previous machine-learning studies have
approached these tasks individually using separate networks;
however, these tasks are closely related to each other. In practice,
analysts first look at the entire waveform on multiple stations to
identify consistent elements of an earthquake signal (e.g. P, S,
coda and surface waves) with a specific ordering (P-wave always
arrives before S-wave, higher frequency body waves always pre-
cede dispersive surface waves etc.) to determine whether or not a
signal is from an earthquake. Then they focus on each phase to
pick the arrival times precisely. This practice indicates the
interconnection of these two tasks and the importance of con-
textual information in earthquake signal modeling.

Deep-learning detection/picking models work by learning
general characteristics of earthquake waveforms and seismic
phases from high-level representations. Here we test the
hypothesis that better representations obtained by incorporating
the contextual information in earthquake waveforms will result in
better models. Our expectation is that not all parts of a seismic
signal are equally relevant for a specific classification task. Hence,
it is beneficial to determine the relevant sections for modeling the
interaction of local (narrow windows around specific phase
arrivals) and global (full waveform) seismic features. We achieve
this by incorporating an attention mechanism13 into our network.
Attention mechanisms in Neural Networks are inspired by
human visual attention. Humans focus on a certain region of an
image with high resolution while perceiving the surrounding
image at low resolution and then adjusting the focal point over
time. Our model emulates this through two levels of attention
mechanism, one at the global level for identifying an earthquake
signal in the input time series, and one at the local level for
identifying different seismic phases within that earthquake signal.

We introduce a new deep-learing model (EQTransformer1) for
the simultaneous detection of earthquake signals and picking first
P and S phases on single-station data recorded at local epicentral
distances (<300 km) based on attention mechanism. Here we

present our approach and compare its performance with multiple
deep-learning and traditional pickers and detectors. Our trained
model is applied on 5 weeks of continuous waveforms recorded in
Japan. The events we detect are located to demonstrate the gen-
eralization of the model to other regions and its ability to improve
earthquake source characterization.

Results
Network architecture. Our neural network has a multi-task
structure consisting of one very-deep encoder and three separate
decoders composed of 1D convolutions, bi-directional and uni-
directional long-short-term memories (LSTM), Network-in-Net-
work, residual connections, feed-forward layers, transformer, and
self-attentive layers (Fig. 1). More details are provided in the
method section. The encoder consumes the seismic signals in the
time domain and generates a high-level representation and con-
textual information on their temporal dependencies. Decoders
then use this information to map the high-level features to three
sequences of probabilities associated with: existence of an earth-
quake signal, P-phase, and S-phase, for each time point.

In self-attentive models the amount of memory grows with
respect to the sequence length; hence, we add a down-sampling
section composed of convolutional and max-pooling layers to the
front of the encoder. These down-sampled features are trans-
formed to high-level representations through a series of residual
convolution and LSTM blocks. A global attention section at the
end of the encoder aims at directing the attention of the network
to the parts associated with the earthquake signal. These high-
level features are then directly mapped to a vector of probabilities
representing the existence of an earthquake signal (detection)
using one decoder branch. Two other decoder branches are
associated with the P-phase and the S-phase respectively in which
an LSTM/local attention unit is placed at the beginning. This local
attention will further direct the attention of the network into local
features within the earthquake waveform that are associated with
individual seismic phases. Residual connections within each block
and techniques such as network-in-networks help to expand the
depth of the network while keeping the error rate and training
speed manageable. As a result, our very deep network with 56
layers has only about 372 K trainable parameters. The network
architecture design is based on domain expertise. Optimization
and hyperparameter selection are based on experiments on a
large number of prototype networks.

Data and labeling. We used STanford EArthquake Dataset
(STEAD)13 to train the network. STEAD is a large-scale global
dataset of labeled earthquake and non-earthquake signals. Here
we used 1 M earthquake and 300 K noise waveforms (including
both ambient and cultural noise) recorded by seismic stations at
epicentral distances up to 300 km. Earthquake waveforms are
associated with about 450 K earthquakes with a diverse geo-
graphical distribution (Fig. 2). The majority of these earthquakes
are smaller than M 2.5 and have been recorded within 100 km
from the epicenter. A full description of properties of the dataset
can be found in13. Although STEAD contains earthquake wave-
forms from a variety of geographical regions and tectonic settings,
it does not have any earthquake seismograms from Japan. We
split the data into training (85%), validation (5%), and test (10%)
sets randomly. Waveforms are 1 minute long with a sampling rate
of 100 Hz and are causally band-passed filtered from 1.0–45.0 Hz.
A box-shaped label is used as ground truth for the detection. In
this binary vector, corresponding samples from the P arrival to
the S arrival + 1.4 × (S - P time) are set to 1 and the rest to 0. We
tested three different forms of: box, Gaussian, and triangular, to
label phase arrivals. Triangular labeling resulted in a lower loss
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and higher F-score during our hyperparameter selection proce-
dure and is used for the final model. In this form, probabilities of
P and S are set to 1 at the first arriving P and S wave and linearly
decrease to 0 within 20 samples before and 20 samples after each
phase arrival.

Training. For both convolutional and LSTM units, all the weight
and filter matrices were initialized with a Xavier normal initiali-
zer14 and bias vectors set to zeros. We used ADAM15 with
varying learning rates for optimization while the learning rate
varied during training. The model took O(89) hours to complete
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Fig. 1 Network architecture. Our network architecture. Full details of each block are provided in the method section. The convolutional layers read as
(number of kernels) kr (kernel size).
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the training using 4 parallel Tesla-V100 GPUs under the ten-
sorflow framework16. Training stopped when validation loss did
not improve for 12 consecutive epochs.The data was augmented
by adding a secondary earthquake signal into the empty part of
the trace, adding a random level of Gaussian noise into earth-
quake waveform, randomly shifting the event within the trace -
through array rotation, randomly adding gaps (zeroing a short
time span) in noise waveforms, and randomly dropping one or
two channels (zeroing values of one or two channels) with 0.3,
0.5, 0.99, 0.2 and 0.3 probability respectively. Half of the data in
each batch are augmented versions of the waveforms in the other
half. Data augmentation and normalization (by standard devia-
tion) are done simultaneously during the training on 24 CPUs in
parallel. We used a dropout rate of 0.1 for all dropout layers both
at training and test time.

Exploring the network’s attention. The attention weights define
how much of each input state should be considered for predicting
each output and can be interpreted as a vector of importance
weights. By explicitly visualizing these attention weights we can
see on what parts of the input sequence the neural network has
learned to focus.

Figure 3 presents the output of each of these attention layers
(summation of hidden states at all other time steps, weighted by
their scoring) for one specific event from the evaluation set. We
can see that the network has learned to focus on different parts of
the waveform at different attention levels. This highlights the
most useful parts of the input waveform for each task. The shorter
path through the detection decoder and its higher loss (due to
longer length of label) naturally force the network to first learn to
distinguish the earthquake signal within a time series. We can see
this from the learning curves as well (Supplementary Fig. 2). This
mimics a seismic analyst’s decision-making workflow. The second
transformer (I in Fig. 1), at the end of encoder section, mainly
passes the information corresponding to the earthquake signal to
the subsequent decoders. This means that the encoder learns to
select what parts of the signal holds the most important
information for detection and phase picking. This information
is directly used by the detection decoder to predict the existence
of an earthquake signal in the time series. The local attention
layers at the beginning of P and S decoders further focus on

smaller sections, within the earthquake waveform, to make their
predictions. The alignment scores are normalized and can be
thought of as probability distributions. So we can interpret the
hierarchical attention mechanisms in our network as conditional
probabilities: P(earthquakesignal∣inputwaveform) = encoder
(inputwaveform), and P(P_phase∣inputwaveform) = P_decoder(P
(earthquakesignal∣inputwaveform)).

Results and comparison with other methods. We used more
than 113 k test waveforms (both earthquake and noise examples)
to evaluate and to compare the detection and picking perfor-
mance of EQTransformer with other deep-learning and tradi-
tional methods. Deep-learning models used here for the
comparisons are pre-trained models based on different training
sets and all are applied to a common test set from STEAD. The
test set data contains 1-min long 3C-waveforms. All the tests are
performed without additional filtering of the test data. Figure 4
illustrates the network predictions for 4 representative samples
from the test set (Fig. 4a–d). The model works very well for
earthquakes with different waveform shapes. The model is able to
retain a global view for the detection while picking distinct arrival
times with high temporal resolution. This can be seen clearly
from the example in Fig. 4b, where two strong and apparently
separate waves are detected as parts of a single event rather than
two individual events. The very deep structure of the network
makes it less sensitive to the noise level and it works well for small
events with a high background noise (Fig. 4c, d). Moreover, the
provided uncertainties can be useful to identify unreliable pre-
dictions even when the output probabilities are high (Fig. 4c).

We also applied the model to continuous data. The only
reprocessing steps that need to be done prior to the test/
prediction are: filling the gaps, removing the trend, band-pass
filtering, and re-sampling the data to 100 Hz. Augmentations are
applied only during the training process. After pre-processing, the
continuous data can be sliced into 1-min windows (preferentially
with some overlap). The model can be applied on a single or a
batch of these 1-min slices. The normalization is done during
feeding the data to the model. Figure 4e–h presents the results of
application of the model to continuous data recorded in
Ridgecrest, California and Tottori, Japan.

Fig. 2 The training and test dataset. Geographic distribution of station locations recording 300 k noise and 1 M earthquake seismograms in STanford
EArthquake Dataset (STEAD) used in this study.
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The augmentations used during the training process were
essential in the performance of the final model. P arrival times are
clustered at the first quarter of the windows in the training data
and each trace only contains 1 event. However, Fig. 4e, f shows
that regardless of these characteristics in the training set, the
model works well when more than one event exists in a 1-min
window and at various time points. The model can detect/pick
events that occur on the edges (Fig. 4e) as long as 0.2 s of P and S
exist within the window. Augmentations prevent the model from
producing false positives at abrupt changes due filling the gaps in
continuous data (Fig. 3e). Our model works for single channel
data (Fig. 3h) or when other channels are broken or dominated
by noise (Fig. 3g). More examples of the model performance on a
variety of cases are provided in the supplementary materials
(Supplementary Fig. 3–6).

We present the detection performance on the test set with a
confusion matrix (Supplementary Fig. 7). Our method resulted in
only 1 false positive with 0 false negatives (no missing events) out of
113 K test samples using a threshold value of 0.5 (Supplementary
Fig. 8). To compare the performances, we applied three deep-
learning (DetNet5, Yews4, and CRED7) detectors and one traditional
(STA/LTA11) detector to the same test set (Table 1). We should
acknowledge that there is a level of tuning involved in each of these
approaches (traditional and deep-learning detectors/pickers), and
that the performance can vary based on this tuning. Our proposed
model outperforms the other methods in terms of F1-score. CRED
also contains both convolutional and recurrent units and was
trained on the same data set (STEAD); however, its performance did
not reach that of EQTransformer. This points to the beneficial
effects of the incorporated attention mechanism and the use of a
deeper network for earthquake signal detection. DetNet was trained
on a much smaller dataset compare to Yews, but it has a better
performance; however, neither DetNet nor Yews reach the STA/
LTA results in terms of F-score, and STA/LTA requires no training.

We now compare the picking performance with five
deep-learning (PhaseNet8, GPD10, PpkNet5, Yews4, PickNet2)

(Supplementary Fig. 9) and three traditional (Kurtosis17, Filter-
Picker18, and AIC19) (Supplementary Fig. 10) auto pickers. We
did not find a well-documented code or trained model for other
deep-learning pickers mentioned in section 2. These are pre-
trained models based on datasets of different sizes and from
different regions to evaluate their generalization. The list of these
training sets are given in Tables 2 and 3 for P and S picks. We
assess the performance of each picker using 7 scores (standard
deviation of error, mean error, precision, recall, F1-score, mean
absolute error, and mean absolute percentage error). A pick was
considered as a true positive when its absolute distance from the
ground truth was less than 0.5 second. EQTransformer increases
the F-scores of both P and S picking. The improvement in P-wave
picks are more significant than for S-wave picks. This may be due
the fact that picking S-waves is more difficult and prone to more
errors, which can lead to higher labeling error in the training set.
The error distributions for some of the deep-learning pickers are
not uniform and cluster at sporadic times perhaps due to their
moving-window scheme. All of these models (GPD10, PpkNet5,
and Yews4) use wider labels compared to the other models
(PhaseNet8, PickNet2, and EQTransformer). However, it is
difficult to narrow down the exact reason behind their non-
normal error distributions.

Application to other regions. STEAD, the dataset used for
training of our model, does not contain any waveform data from
Japan. This makes Japan an ideal place to test the performance
and generalization of our model. We select the aftershock region
of the 2000 Mw 6.6 western Tottori earthquake for this test. Our
detector/phase-picker model was applied to continuous data of 18
HiNet stations from 6 October to 17 November 2000. These are a
portion of stations (57) originally used for studying this sequence
by the Japan Meteorological Agency (JMA). The prediction
module in EQTransformer code outputs the results when at least
one phase (P or S) with a probability above a specified threshold
values exists over a time period with high probability of being an
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earthquake. Here we used threshold values of 0.5, 0.3, and 0.3 for
detection, P-picking, and S-picking respectively. A batch size of
500 and 30% overlapping is used during the pre-processing. We
associated phase picks to individual events based on detection
times. Hypoinverse20 and HypoDD21 are used to locate and
relocate the associated events. Both travel time differences and
cross-correlation were used for the relocation.

We detected and located 21,092 events within this time period
(Fig. 5). This is more than a 2 fold increase in the number of
events compared to Fukuyama et al.22 who relocated 8521 events
during the same time period with hand-picked phases provided
by the JMA. Our catalog includes almost all of the events reported
by JMA. We also note that our results were obtained using only a
subset of the stations that were used by Fukuyama et al.22. About
15 % of the associated events did not end up in the final catalog;
however, this could be due to our simplistic association approach,
and it is hard to assign them as false detections.

We used a local magnitude relationship23 calibrated using
reported magnitudes by JMA to estimated magnitudes of
relocated events. The majority of newly detected and located
events in our catalog are smaller earthquakes—with noisier
waveforms- compared to those previously reported by JMA
(Fig. 6a). We estimate the magnitudes of completeness (Mc) for
JMA and our catalog as 1.82 and 1.50 respectively using the
maximum curvature method24. While the frequency-magnitude
distribution result (Fig. 6a) indicates that our deep-learning
approach is effective in detecting and characterizing up to 20
times smaller microearthquakes, other factors such as better
network coverage and smaller station spacing are required to
decrease the overall magnitude of completeness25,26.

In total, JMA’s analysts picked 279,104 P and S arrival times on
57 stations, while EQTransformer was able to pick 401,566 P and
S arrival time on 18 of those stations (due to unavailability of data
for other stations). To compare the manual picks by JMA with

Table 1 Detection performance.

Model Pr Re F1 Training data Training size Ref.

EQTransformer 1.0 1.0 1.0 Global 1.2M This study
CRED 1.0 0.96 0.98 Global 1.2M 7

DetNet 1.0 0.89 0.94 China 30K 5

Yews 0.84 0.85 0.85 Taiwan 1.4M 4

STA/LTA 0.91 1.0 0.95 — — 11

Pr, Re, and F1 are precision, recall, and F1-score respectively. EQTransformer and CRED have been trained on STEAD dataset while DetNet and Yews results are based on pre-trained models on different
datasets. Recursive STA/LTA algorithm is used here.
Bold values represent the best performance.

Table 2 P-phase picking.

Model μ σ Pr Re F1 MAE MAPE Training data Training size Ref.

EQTransformer 0.00 0.03 0.99 0.99 0.99 0.01 0.00 Global 1.2M This study
PhaseNet −0.02 0.08 0.96 0.96 0.96 0.07 0.01 North California 780K 8

GPD 0.03 0.10 0.81 0.80 0.81 0.08 0.01 South California 4.5M 10

PickNet 0.00 0.09 0.81 0.49 0.61 0.07 0.02 Japan 740K 2

PpkNet −0.01 0.15 0.90 0.90 0.90 0.10 1.90 Japan 30K 5

Yews 0.07 0.13 0.54 0.72 0.61 0.09 0.02 Taiwan 1.4M 4

Kurtosis −0.03 0.09 0.94 0.79 0.86 0.08 0.01 — — 17

FilterPicker −0.01 0.08 0.95 0.82 0.88 0.14 0.02 — — 18

AIC −0.04 0.09 0.92 0.83 0.87 0.09 0.01 — — 19

μ and σ are mean and standard deviation of errors (ground truth—prediction) in seconds respectively. Pr, Re, and F1 are precision, recall, and F1-score respectively. MAEand MAPE are mean absolute
error and mean absolute percent error respectively. Note Yews and PpkNet models used here are trained based on different datasets mentioned in the related work section.
Bold values represent the best performance.

Table 3 S-phase picking.

Model μ σ Pr Re F1 MAE MAPE Training data Training size Ref.

EQTransformer 0.00 0.11 0.99 0.96 0.98 0.01 0.00 Global 1.2M This Study
PhaseNet −0.02 0.11 0.96 0.93 0.94 0.09 0.01 North California 780K 8

GPD 0.03 0.14 0.81 0.83 0.82 0.10 0.01 South California 4.5M 10

PickNet 0.08 0.17 0.75 0.75 0.75 0.10 0.03 Japan 740K 2

PpkNet 0.02 0.15 1.00 0.91 0.95 0.10 1.85 Japan 30K 5

Yews −0.02 0.13 0.83 0.55 0.66 0.11 0.01 Taiwan 1.4M 4

Kurtosis −0.10 0.13 0.89 0.39 0.55 0.11 0.01 — — 17

FilterPicker −0.05 0.13 0.61 0.41 0.49 0.10 0.01 — — 18

AIC −0.07 0.15 0.87 0.51 0.64 0.12 0.02 — — 19

μ and σ are mean and standard deviation of errors (ground truth—prediction) in seconds respectively. Pr, Re, and F1 are precision, recall, and F1-score respectively. MAEand MAPE are mean absolute
error and mean absolute percent error respectively.
Bold values represent the best performance.
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our automatic picks we used about 42,000 picks on the common
stations and calculated the arrival time differences. The distribu-
tions of these arrival time differences between the manual and
deep-learning picks for P and S waves are shown in Fig. 6b. The
standard deviation of differences between picks are around
0.08 second with mean absolute error of around 0.06 second or
6 samples. Results are slightly better for S picks. The mean error is
only 1 sample (0.01 s).

Discussion
The better performance of the proposed method for phase
picking could be due to several factors (e.g., quality and quantity
of training set, architecture design, attention mechanism, depth of
the network, the augmentations used during training process,
etc). The attention mechanism helps to incorporate global and
local scale features within the full waveform. A deeper network
might result in more discriminatory power through learning of a
more nonlinear mapping function.

Based on the test set results for our picker, errors seem to
correlate with noise level (Supplementary Fig. 11). A similar
correlation is seen between the variations in the predictionsand
background noise level (Supplementary Fig. 12). We did not find
a clear correlation between the estimated epistemic uncertainties
(variations in the output probabilities) and picking errors. Alea-
tory uncertainties might provide better estimates for picking
confidence intervals; however, such estimation of aleatory
uncertainty for classification tasks is difficult27. Even so, knowl-
edge of epistemic uncertainties and variability in the output
probabilities can be useful to reduce the false positive rate.

Supplementary Fig. 13 presents examples of cultural noise
recorded in Western Texas resulting in a false positive. The
impulsive nature and frequency range of these arrivals makes it
hard to differentiate them from an earthquake wave especially
when a short window around the arrival is used. This can result in
predicting a high probability for P or S picks. However, detection
probabilities based on longer windows exhibit a higher variations/
uncertainties that can be used to eliminate the false defections.
Including a large variety of anthropogenic and atmospheric noise
into a training set would be an effective way to reduce such false
positives; however, reliable labeling of such noise is itself a chal-
lenging task. Incorporating the spectral characteristics of the
waveforms during the training process7 might be another solution.

Picking P waves tends to be more uncertain for waveforms
recorded at larger epicentral distances (Supplementary Fig. 12).
These higher uncertainties could be due to having fewer long-
distance waveforms in the training set and the fact that P waves
can be more difficult to pick when the first arrival is emergent or
is the diving wave Pn. The 1.0 Hz high-pass filtering of the data
can also contribute to difficulty in picking the initial onset. As
expected, we observe higher uncertainties in picking smaller
events (Supplementary Fig. 12). We also note that lower predic-
tion probabilities exhibit a higher uncertainty level and that the
model outputs lower probabilities for P-wave picks with lower
SNR, larger event-station distance, or smaller magnitude. Such
tendencies are not as strong for the S-picks (Supplementary
Fig. 14).

The geographical location and the size of training data do not
seem to be the main factor controlling performance. PhaseNet
has very good performance even thought it was trained on data
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only from the Northern California. This indicates that deep-
learning models trained by data set in specific region can gen-
eralize well to other regions and that deep-learning pickers for
most purposes can be used off the shelf without retraining.
PpkNet5 that was trained by 30 K waveforms resulted in higher F-
scores for both P and S waves compared to the other models that
were built using much larger training sets. This suggests other
factors such as the network type (e.g., recurrent vs convolutional),
training process (e.g. the use of augmentation), or/and quality of a
training set can play a more important role than the size of the
training set.

The precision of picking seems to be influenced more by the
labeling and training procedure. For instance, the sporadic error
distributions for P-picks in the Yews4, GPD10, and PpkNet5

results may be due to their training procedure that render them
sensitive to arrival times clustered at particular time points.
Compared to the traditional pickers, deep-learning-based meth-
ods perform better for noisier waveforms - especially for the S
waves (Fig. 7).

Performing comparative analyses on models with different
properties is a very challenging task. Different models have
adopted different labeling approaches and incorporated different
network designs. This results in different sets of hyperparameters
that can affect the model performance extensively. Quality of a
training set and the training procedure are other important fac-
tors that are hard to quantify and measure their influence. On the
other hand, setting up a fair environment for the comparison and

utilizing a reliable and independent benchmark are important for
a more unbiased assessment. Despite all these deficiencies, we
hope to initiate such efforts and encourage our colleagues in the
seismological community to pursue more rigorous testing and
comparative analyses to learn from and build on previous
attempts.

Traditional pickers do relatively well in the accuracy of arrival-
time picking while their main disadvantage is generally lower
recall and poorer performance in picking S phases (Tables 2 and
3). Non-symmetric error distributions of traditional pickers
(Supplementary Figs. 9 and 10) are primarily due to skew
introduced by their systematic delay in picking the arrival times,
which is more significant for S waves; however, their comparable
performance to some of the deep-learning models indicates their
effectiveness even though they do not require training. We also
note that the traditional pickers are not necessarily faster. For
instance, on a machine with a 2.7 GHz Intel Core i7 processor
and 16 GB of memory it takes 62 hr and 12 min, 3 hr and 25 min,
and 31 hr and 18 min for Kurtosis, FilterPicker, and AIC pickers
(based on the python implementation in PhasePApy28) respec-
tively to pick the entire test set, while EQTransformer finished the
detection/picking in 2 hr and 28 min (on the same machine).

Our applications of EQTransformer to Japanese data indicates
high generalization and accuracy of the model. The precision of
arrival time picks by EQTransformer are comparable to manual
picks, and its higher sensitivity results in more than twice the
number of detected events. The newly detected events are not
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limited to the two main faults active in the Tottori sequence, and
include sparse seismicity under the eastern flank of Mt. Daisen.
This result was attained using only a portion (less than 1/3) of the
seismic stations, with relatively large station spacing, and a simple
association method h. Using more advanced phase association
algorithms (e.g., Glass329) would likely further increase the
number of events. The effectiveness of the method together with
its high efficiency (the processing time for 1 month of continuous
data at 1 station is 23 minutes on a single CPU without uncer-
tainty estimation) highlight the potential of the proposed method
for improving the earthquake monitoring.

In this paper, we present a multi-task network for simultaneous
earthquake detection and phase picking based on a hierarchical
attentive model. Our network consists of one deep encoder and
three separate decoders. Two levels of self-attention (global and
local) are embedded into the network in a hierarchical structure
that helps the neural network capture and exploit dependencies
between local and global features within an earthquake waveform.
Our model has several distinctive characteristics: (1) it is the first
hierarchical-attentive model of earthquake signal; (2) with 56
activation layers, it is the deepest network that has been trained
for seismic signal processing; (3) it has a multi-task architecture
that simultaneously performs the detection and phase picking
while modeling the dependency of these tasks on each other
through a hierarchical structure; (4) in addition to the prediction
probabilities, it provides output variations based on Bayesian
inference; (5) it is the first model trained using a globally dis-
tributed training set of 1.2 M local earthquake observations.

Methods
Related work. Perol et al.30 used a network of 8 convolutional and one fully
connected layers to detect and cluster events based on three component waveforms.
They trained their network using ~2700 earthquake and ~700,00 noise waveform
recorded in Oklahoma and tested it on 209 events and ~131,000 noise waveform
from the same region. They mainly compared their approach with similarity search
methods and concluded that a deep neural network can achieve superior perfor-
mance in less computational time. Wu et al.31 applied a densely connected network
of 7 fully convolutional layers to detect laboratory earthquakes (1000 samples) of
different sizes. Ross et al.10 trained a network of 4 convolutional and 2 fully
connected layers using 4.5 Million seismograms recorded in Southern California to
detect short windows of P-waves, S-waves, and noise. They applied the trained
network to 24 h of continuous data recorded at a single station in Bombay Beach,
California and a single event recorded by multiple stations in Japan and showed
that deep neural networks are capable of detecting events with different waveform
shapes than those used for the training without sacrificing detection sensitivity.
Ross et al.9 adopted a similar approach (3 convolutional and 2 fully connected
layers) for picking P arrival times. Zhu and Beroza8 used U-Net, a fully convolu-
tional encoder-decoder network with skip connections, for an end-to-end picking
of P and S phases. They trained their network using 780 K seismograms and tested
it using 78 K seismograms recorded in Northern California. Mousavi et al.7 pro-
posed a residual network of convolutional, bidirectional Long Short Term Memory
units, and fully connected layers for detecting earthquake signals in the time-
frequency domain. They used 500 K 3-component records of noise and tectonic
earthquakes from North California for training the network and tested the per-
formance of the final model by applying it to semi-synthetic data and one month of
continuous seismograms recorded during a sequence of induced seismicity in
Central Arkansas. This study showed deep-learning-based models can generalize
well to seismic events with substantially different characteristics that are recorded
in different tectonic settings and still achieve high precision even in the presence of
high background noise levels with low computational cost. Pardo et al.6 also used
~774 K seismograms form Northern California to train their two-stage phase
picker. They used a convolutional network for a rough segmentaion of phases first,
and then in a second stage performed a regression to pick the arrival times. Zhou
et al.5 (~136 K augmented P and S waveforms) and Zhu et al.4 (~30 K) used seismic
data from the 2007 Wenchuan aftershock sequence in Sichuan, China to train
deep-leaning -based detectors and pickers. While Zhou et al.5 used two separate
networks of an 8-layer convolutional networks and a two-layers of bidirectional
Gated Recurrent Units for detection and picking respectively, Zhu et al.4 used the
same network (11 convolutional and 1 fully connected layers) in a recursive
manner for both detection and at the cost of larger computational time. Dokht
et al.3 trained two separate networks each consisting of 4 convolutional and 2 fully
connected layers for detection and a rough estimation of P and S arrival times in
the time-frequency domain. They used ~162 K waveforms recorded in Western
Canada for training. Wang et al.2 built two separate models based on modification
of VGG-16 network and ~740 K seismograms recorded in Japan for picking P and
S arrival times respectively. Their models work for short time windows that are
roughly centered around the S phase arrival. This centering is done using the
theoretical arrival times, which in practice are unknown without information about
the earthquake locations.

These studies not only differ in network architecture and overall approach, they
also employ different data pre-processing, augmentation techniques, use datasets of
different sizes, magnitude range, epicentral distances, event types, noise levels,
geographical locations, and report the results using different matrices (e.g.
accuracy, precision, recall, F1-score, average precision, hit rates, absolute error,
picking error, etc.) that make it difficult to determine the relative performance,
strengths, and weaknesses of each method. This prevents the community from
adopting and building on the most effective approach. This is due in part to the
lack of a standard benchmark dataset with high quality labels to facilitate rigorous
comparisons. The data set used in this study (STanford EArthquake Dateset13) is a
candidate standard benchmark for developing and comparing detection and phase
picking algorithms for local earthquakes.

Network design. Seismic signals are sequential time series consisting of different
local (individual seismic phases) and more global (e.g. packages of body and sur-
face waves and scattered waves) features. Hence, it is useful to retain the complex
interaction between the local and global dependencies in an end-to-end deep
learning model of seismic signals. Traditionally, recurrent neural networks have
been used for such sequence modeling; however, relatively long duration seismic
signals require some down sampling prior to the recurrent layers to manage the
computational complexity. Hence, a combination of recurrent and convolutional
layers has been shown to be an effective architecture for sequential modeling of
seismic signals7. Building upon our previous work7, we introduce a multi-task
network of recurrent and convolutional layers that incorporates attention
mechanism as well. Attention mechanism is a method of encoding sequence data in
which elements within a sequence will be highlighted or down-weighted based on
their importance or irrelevance to a task32–35. The overall structure of our network
includes one encoder and three separate decoders. The encoder consumes the
seismic signal in the time domain and generates a high-level representation and

8000

7000

6000

5000

4000

Fr
eq

ue
nc

y

3000

2000

1000

0

0 20 40

SNR db

P-picks

EQTransformer

PhaseNet

GDP

Kurtosis

FilterBank

AIC

60 80 100

6000

5000

4000

Fr
eq

ue
nc

y

3000

2000

1000

0

0 20 40

SNR db

S-picks

EQTransformer

PhaseNet

GDP

Kurtosis

FilterBank

AIC

60 80 100

b

a

Fig. 7 Phase picking performance as a function of noise level. P (a) and S
(b) phase picks as a function of signal-to-noise ratio (SNR) for three deep-
learning and three traditional pickers.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17591-w

10 NATURE COMMUNICATIONS |         (2020) 11:3952 | https://doi.org/10.1038/s41467-020-17591-w | www.nature.com/naturecommunications

www.nature.com/naturecommunications


contextual information on their temporal dependencies. Decoders then use this
information to map the high-level features to three sequences of probabilities
associated with: existence of an earthquake signal, a P-phase, and an S-phase
respectively.

Very deep encoder. Several studies36–38 have shown in end-to-end learning from
raw waveforms that employing deeper networks can be beneficial for having more
expressive power, better generalization, and more robustness to noise in the
waveform. We build a very deep encoder, which is known to be important in
performance of a sequence-to-sequence model with attention.

In self-attentive models the amount of memory grows with the sequence length.
Hence, we add a down sampling section composed of convolutional and max-
pooling layers to the front end of the encoder. The encoder follows with several
blocks of residual convolution layers and recurrent blocks including network-in-
network connections.

Convolutional layers exploit local structure and provide the model with better
temporal invariance, thus typically yielding a better generalization. To be able to
extend the depth of the network without degradation we use blocks of
convolutional layers with residual connections39 as depicted in39 (Supplementary
Fig. 15).

Long-short term memory (LSTM)40 are specific types of recurrent neural
networks commonly used for modeling longer sequences. The main element in a
LSTM unit is a memory cell. At each time step, an LSTM unit receives an input,
outputs a hidden state, and updates the memory cell based on a gate mechanism.
Here we expand the bidirectional LSTM blocks by including Network-in-
Network41 modules in each block to help increase the network’s depth without
increasing the number of learnable parameters (Supplementary Fig. 16). LSTM
layers prior to self-attentional layers, have been shown to be necessary for
incorporating positional information42–44.

Attention mechanism. We represent the output of an LSTM layer by H ¼ fhtg 2
Rn ´ dh as a sequence of vector elements (a high level representation of the original
input signal), where, n is the sequence length and dh is the dimension of the
representation. We calculate the self (internal) attention as follows45,46:

et;t0 ¼ σðWT
2 ½tan hðWT

1 ht þWT
1 ht0 þ b1Þ� þ b2Þ ; ð1Þ

αt;t0 ¼
expðet;t0 ÞP
t0 expðet;t0 Þ

; ð2Þ

ct ¼
Xdh

t0¼1
αt;t0 :ht0 ; ð3Þ

where ht and ht0 are hidden state representations at time steps t and t0 respectively.
W and b are weights matrices and bias vectors respectively. σ is the element-wise
sigmoid function. αt;t0 are scalar scores (also called alignment) indicating pairwise
similarities between the elements of the sequence. The attentive hidden state
representation, ct, at time step t is given by summation of hidden states at all other
time steps, ht0 , weighted by their similarities to the current hidden state, αt;t0 .

Vector ct 2 Rdh is a sequence of context-aware (with respect to surrounding ele-
ments) encoding that defines how much attention will be given to the features at
each time step based on their neighborhood context. This will be incorporated into
a downstream task as an additional contextual information to direct the focus to
the important parts of the sequence and discard the irrelevant parts.

We adopt the residual attention blocks introduced in the Transformer47,48. We
replace the multi-head scaled-dot product attention by above single-head additive
attention (Supplementary Fig. 17). The feed-forward layer consists of two linear
transformations with a ReLU activation in between,
FFðxÞ ¼ maxð0; xW1 þ b1ÞW2 þ b2, intended to introduce additional
nonlinearities.

Our goal is to implement two levels of attention mechanisms in a hierarchical
structure46,49,50 at both the earthquake full waveform, and individual phase levels.
A logical way to do this is to perform attention mechanisms at two levels with
different temporal resolutionsuch as: applying the detection attention at the high
level representation at the end of the encoder and the phase attention at the end of
associated decoders where higher temporal resolutions are available. With O(n2. d)
complexity of self-attention, however, this is not computationally feasible for the
long duration time series (6000 samples) used here. Hence, we applied attention
mechanisms with both global and local attentions at the bottleneck. The attention
block at the end of the encoder performs global attention, by attending to all the
positions in the sequence, to learn to identify the earthquake signals within the
input time series. The shortened path from this layer to the detection encoder and
the naturally higher detection loss make this learning easier.

Attention blocks at the beginning of phase-picker decoders perform additional
local attention by attending only to a small subset of the sequence45—aiming to
sharpen the focus to individual seismic phases within the earthquake waveform.
One LSTM layer with 16 units is applied before the first attention block at each
level to provide position information42,51.

Uncertainty estimation. Model uncertainty is important in applied deep-learning,
and for seismic monitoring; however, none of the previous deep-learning model for
earthquake detection/phase picking provides a probabilistic output with a measure
of model uncertainty. The predictive probabilities provided by these models are not
equivalent to model confidence. A model can be uncertain in its predictions even
with a high softmax output52.

In deep learning, the model uncertainty is usually estimated by inferring
distributions over the network weights. Due to the computational complexity, this
is done by approximating the model posterior using inference techniques. Gal and
Ghahramani52 showed that dropout53, a technique commonly used to prevent
overfitting, can be used for approximating Bayesian inference over the network’s
weights. This is done by using the dropout at test time to impose a Bernoulli
distribution over the network’s weights. This is equivalent to Monte Carlo
sampling from the posterior distribution over models. We implement a dropout
after every layer of our neural network and use it during both training and
prediction.

Data availability
STanford EArthquake Dataset (STEAD) used for the training, validation, and test is
available at: https://github.com/smousavi05/STEAD. The continuous data for the Totorri
region was downloaded from HiNet (http://www.hinet.bosai.go.jp/about_data/?
LANG=en). Maps and figures in this paper were generated using the Generic Mapping
Tools and Matplotlib54. Catalog of all events detected and relocated in our study are
provided in the supplementary materials. Source data are provided with this paper.

Code availability
Our source code and model are available at https://github.com/smousavi05/
EQTransformer and can be used to apply the model to continuous data or reproduce
results presented in the paper.
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