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ABSTRACT OF THE DISSERTATION

Mathematical models for assessment of human health risk of pathogens in the environment

By

Srikiran Chandrasekaran

Doctor of Philosophy in Mathematical, Computational and Systems Biology

University of California, Irvine, 2019

Professor Sunny Jiang, Chair

Microbial pathogens in the environment present a growing threat to human health. They are

found in waters used for recreation, irrigation etc., which present a multitude of pathways

in which a person may be exposed to them. Moreover, the increasing interest in reusing

treated wastewater raises questions of water quality and associated public health risks. The

overarching goal of my dissertation is to develop quantitative tools to improve the accuracy

of methods used to assess this risk and provide insights into disease development. I hypoth-

esize that mathematical models rooted in well-grounded theory and data can augment the

overall understanding of microbial risk and steer experiments in the most productive direc-

tion. My specific aims are: 1) To quantify the health risk posed by norovirus-contaminated

water used for lettuce irrigation, by means of a dynamic transport model 2) To develop

a dose-response framework applicable for antibiotic resistant bacteria, specifically the hu-

man enteric pathogen, Escherichia coli 3) To develop a modeling framework to probe the

importance of cooperativity in helping Staphylococcus aureus establish skin infections. In

my research, I have constructed a transport model using ordinary differential equations to

predict the norovirus load in lettuce at harvest given the load in the irrigation water. By

fitting this model to published experimental data, I found that attachment of the virus to

the growth medium strongly influences the amount of virus in lettuce at harvest. Towards

the second aim, I have used stochastic processes to develop an analytical expression for E.

xi



coli dose-response. I then fitted this to clinical data and extended the model to predict,

for the first time, the risk posed by a mixture of antibiotic sensitive and antibiotic resistant

strains. Towards the third aim, I have developed a two-compartment stochastic model with

cooperativity between cells to predict S. aureus dose-response. Using experimental data to

reject the hypothesis of absence of cooperativity, I show the possible role of quorum sensing

in S. aureus establishing skin infections. The outcomes of this research will enable better

understanding of microbial risk associated with environmental exposure and improve human

health protection.
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Chapter 1

Introduction

1.1 Background

With the growing population and limited freshwater resources, there is increased interest

in water conservation practices like using recycled wastewater and hydroponic agriculture.

The presence of pathogens in the associated environmental compartments exposes a large

fraction of the general populace to infection risks. Therefore, a need of the hour is ensuring

that our infrastructure meets the safety requirements designed to protect human health.

Proper disposal and treatment of wastes generated at hospitals, industries and residences

help meet this goal by reducing the pathogen loads in the environment. However, complete

elimination of pathogens is not an option [33]. Therefore, a framework to quantify the

threat to human health is desired. The popularly adopted framework is called Quantitative

Microbial Risk Assessment or QMRA [57].

With the growing population and limited freshwater resources, there is increased interest in

water conservation practices like using recycled wastewater and hydroponic agriculture. The

presence of pathogens in the associated environmental compartments exposes a significant
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fraction of the general populace to infection risks. Therefore, a need of the hour is ensuring

that our infrastructure meets the safety requirements designed to protect human health.

Proper disposal and treatment of wastes generated at hospitals, industries, and residences

help achieve this goal by reducing the pathogen loads in the environment. However, complete

elimination of pathogens is not an option [33]. Therefore, a framework to quantify the

threat to human health is desired. The popularly adopted framework is called Quantitative

Microbial Risk Assessment or QMRA [57].

The main tenets of QMRA are as follows [57]: 1) hazard identification; 2) exposure assess-

ment; 3) dose-response modeling; 4) risk characterization, and 5) risk management. Hazard

identification constitutes deciding on the system of interest and listing out the pathogens

present/expected in that system. After identifying the hazard, the interaction of people with

the system are modeled to quantify exposure to the pathogen(s). Suppose the system of in-

terest is a particular lake used for recreation, and the hazard identified is E. coli. Exposure

assessment would entail enumerating the E. coli finally ingested by the person (or the dose).

These processes have a lot of associated variability and uncertainty. Therefore, quantities are

stratified by groups (age of swimmers, seasonal changes in pathogen concentration) or rep-

resented by distributions rather than point estimates. Estimating the risk while accounting

for these variabilities and uncertainties is done by Monte Carlo sampling.

Dose-response models (DRMs) relate the number of the pathogen (dose) to the probability

of a person falling ill (response or risk). They are constructed with data from clinical

trials in which a predetermined dose of pathogens is administered to a cohort of subjects

and the number falling ill counted. The latter is then divided by the total number of

subjects to reflect the probability of a single person falling ill. This process is repeated for

different pathogen doses to generate data for the models. While these clinical trials may

use animals, datasets generated from human trials are preferred since they better reflect the

human situation. Popular DRMs are the exponential and beta-Poisson models [57]. DRMs

2



for different pathogens may share the same functional form but differ in the numerical values

of model parameters as a consequence of the biological differences between the pathogens.

Risk characterization involves calculating the risk posed by the hazard by integrating the

output of the exposure assessment (dose) with the DRM of choice for that pathogen. One

then compares these estimates with guidelines established by the U.S. Environmental Protec-

tion Agency (EPA) or the World Health Organization (WHO). Based on these comparisons,

risk management measures can be investigated in an iterative process by computing the risk

posed by the intervention measures.

1.2 Hypothesis

The larger topic of my interest is in building mathematical models to augment our under-

standing of microbial risk assessment. The system encompassing pathogens in the environ-

ment, and their interaction with humans is complex. Important variables like the weather,

the habits/demographics of the people under consideration, and the pathogen’s health ef-

fects must be accounted for when making decisions to safeguard human health. Experiments

spanning this entire scale are not feasible on accounts of the size of the system and the vari-

ability at each step. Mathematical modeling becomes indispensable in deriving insights and

is the cornerstone of microbial risk analyses.

Nevertheless, I believe that the models in this field abstract away important details and

favor simplified computational approaches for their parsimony and ease of use. Examples in-

clude the DRMs, such as exponential or beta-Poisson DRMs discussed above. I hypothesize

that mathematical models that account for these details and leverage sophisticated compu-

tational techniques open up new avenues of scientific inquiry and bring existing paradigms

into question. Besides, they can increase the accuracy of risk estimates and help generate

3



experimentally testable hypotheses that aid risk management.

1.3 Objectives

I aim to investigate this hypothesis by attempting to answer the following three specific

questions: 1) if the viral load in the water used to irrigate agricultural produce is known,

can the safety of consuming the resulting produce be determined? 2) can we use existing

data on dose-response to develop a predictive understanding of dose-response of antibiotic-

resistant bacteria (ARB)? and, 3) how do we mathematically investigate the presence or

absence of cooperativity between individual bacteria in establishing infection? I motivate

these questions below.

Limited freshwater supplies coupled with the increasing demand for it exert stress on the

water security of the populace. Using recycled wastewater for irrigating agricultural produce

is a sustainable way forward that has received much attention. However, this alternative

is not without risk. Pathogens present in the irrigation water can enter the food supply,

causing outbreaks of different diseases when contaminated produce is consumed uncooked.

When pathogens adhere to the surfaces of the plant, they can be washed off or treated

with UV radiation. However, viruses sometimes find their way into the vasculature of the

produce where they are shielded from treatment and can thus cause disease. The question

then is to find the relationship between viral loads in the input irrigation water (which is

easily measured) and the viral loads in the produce to understand its safety for consumption.

Using a simple output to input ratio may suffice to predict the risk but does not provide any

room for investigation of the factors influencing this ratio and evaluating the effectiveness

of risk management measures. Hence there is a need for a first principle driven transport

model of viruses (and potentially other pathogens) to understand their internalization in the

vasculature of plants.

4



Understanding the risk posed by ARB has been stymied by the absence of DRMs parame-

terized for ARB. This difficulty arises from the clinical trials used to parameterize current

DRMs, which were performed using antibiotic sensitive bacteria (ASB). While we have in-

vitro kinetic information relating ARB to ASB, the biophysical/kinetic interpretation of

the parameters of the popular exponential and beta-Poisson DRMs is not straightforward.

Moreover, the dose-response outcome is potentially complicated by the other processes at

play, such as horizontal gene transfer and the differential influence of antibiotics on ASB and

ARB death rates. The resulting illness may or may not respond to antibiotic treatment if the

ARB subpopulation persists. These challenges require a mathematical framework capable

of handling the underlying processes, which can then be used to perform risk assessments of

ARB and determine the best course of action.

A point of longstanding debate in QMRA, and broadly the topic of disease progression, is the

hypothesis of independent action[57, 117, 93]. It proposes that pathogens act independently

of one another, and each has a probability p of initiating infection. The alternative hypothesis

is one of cooperation where infection is expected when more than one organism survives

to overwhelm the host’s defenses collectively. DRMs assuming independent action (also

called single hit models) have wider acceptance than DRMs which assume cooperativity (also

called multi-hit) [57]. However, DRMs with cooperativity consider the cumulative effects of

bacteria but not the potential synergistic interactions between bacterial cells or quorum

sensing. I believe that incorporating cell-cell interaction in dose-response is an essential step

to developing a better understanding of the development of disease and its treatment.

5



Chapter 2

A transport model for quantifying

norovirus internalization in lettuce

The contents of this chapter appear in the journal Science of the Total Environment [25].

2.1 Background

The growth of the human population places an ever-increasing demand on freshwater re-

sources and food supply. The nexus of water and food is now well recognized. One promising

strategy to sustain food production in the face of competing water demands is to increase

the reuse of treated human wastewater. Municipal wastewater reuse for food production

has been successfully adopted in some regions of the world. For example, Israel uses 84%

treated wastewater in agriculture production [113]. However, Southern California, a region

that suffers from a similar degree of water shortage, currently uses less than 3% of municipal

wastewater in agriculture, while discharging 1.5 million acre-feet effluent per year into the

Pacific Ocean [59, 60]. Secondary municipal wastewater effluent for ocean discharge is often

6



sufficient to support both the nutrient and water needs for food production. Water reuse in

agriculture can bring municipal water reclamation effluent to nearby farms within the city

limit, thus promoting local agriculture and also reducing the rate of farmland loss to urban

development.

While the use of reclaimed water in agriculture offers a multitude of societal and agronomical

benefits, broader adoption faces great challenges. One of the important challenges is ensuring

the safety of food products in light of a plethora of human pathogens that may be present in

recycled wastewater. Past studies have identified risks associated with irrigating food with

recycled wastewater through the retention of the irrigation water on edible plant surfaces

during overhead irrigation [11, 58, 84, 89, 96, 119]. With the emphasis on water conservation

and reduction of transevaporation, subsurface drip irrigation is gaining popularity [132].

Since there is lesser contact between water and the plant surface, the chance of surface

contamination of pathogens is reduced. However, this new practice presents risk of uptake

of microbial pathogens into plants. Such internalized pathogens are of greater concerns as

washing, even with disinfectants, may not affect pathogens sheltered in the vasculature.

Although pathogen transport through root uptake and subsequent internalization into the

plant has been a growing research area, results vary due to differences in experimental design,

systems tested, and pathogens and crops examined [22, 35, 37, 62, 71, 111, 134, 141, 150].

Among the array of pathogens causing foodborne illness that may be carried by treated

wastewater, viruses are of the greatest concern but least studied. According to the CDC, 60%

of U.S. foodborne outbreaks associated with eating leafy greens were caused by noroviruses

(NoV), while Salmonella and E. coli only accounted for 10% of the outbreaks (http://www.

cdc.gov/features/norovirus/). Estimates of global foodborne illness prevalence associ-

ated with NoV ( 124 million) surpass all other pathogens considered [61]. Viruses are also

of concern because they persist in secondary wastewater effluents in high concentrations

[32, 42]. They do not settle well in sedimentation basins and are also more resistant to

7
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degradation than bacteria [145]. Therefore, in the absence of solid scientific understanding

of the risks involved, the public are likely less receptive to adopting treated wastewater for

agricultural irrigation.

NoV internalization in hydroponic systems has been quantified by [37]. Internalization in

crops grown in soil is considered lesser [141] but nevertheless occurs. However, the only risk

assessment [119] that considered the possibility of NoV internalization in plants assumed a

simple ratio of viruses in the feed water over viruses in produce at harvest to account for

internalization. The time dependence of viral loads in lettuce was not explored and such an

approach did not permit insights into the key factors influencing viral uptake in plants.

In this study, I introduce a viral transport model to predict the viral load in crisphead lettuce

at harvest given the viral load in the feed water. It is parameterized for both hydroponic and

soil systems. I demonstrate its utility by performing a quantitative microbial risk assessment

(QMRA). I explore strategies to reduce risk enabled by such a model, and use a sensitivity

analysis to identify influential factors that affect risk. (2.1)

# Description Equation Reference
Rate of change in viral conc (count cm−3 day−1)

2.1
Growth medium
(first-order
decay)

dC

dt
=

ηgrF (t)Cg(t)

Vg(t)
− kdecfCg(t) −

Cg(t)

Vg(t)

dVg(t)

dt

This work

2.2

Growth medium
(first-order
decay with
att-det)

dC

dt
=
ηgrF (t)Cg(t)

Vg(t)
− Cg(t)

Vg(t)

dVg(t)

dt
− (katt +

kdec)Cg(t) +
kdetNatt(t)

Vg(t)

"

2.3a Surface attached
dNatt(t)

dt
= kattCg(t)Vg(t)−(kdec+kdet)Natt(t) "

2.4 Root

dCro(t)

dt
=

ηgrF (t)Cg(t)

Vro(t)
− ηrsF (t)Cro(t)

Vro(t)
−

kpCro(t)−
Cro(t)

Vro(t)

dVro(t)

dt

"
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2.5 Shoot

dCsh(t)

dt
=

ηrsF (t)Cro(t)

Vsh(t)
− kpCsh(t) −

Csh(t)

Vsh(t)

dVsh(t)

dt

2.6h
Hydroponic
viral transport
rate (cm3 day−1)

F (t) = at + bt

(
ρshootdshoot,h

dVsh(t)

dt

)
[28]

Growth rates (cm−3 day−1)

2.7h Root, hydro-
ponic

dVro(t)

dt
=

exp(r1 + r2t+ r3t
2)

ρrootdroot,h
[17]

2.8h Shoot, hydro-
ponic

dVsh(t)

dt
=

exp(s1 + s2t+ s3t
2)

ρshootdshoot,h
"

2.9s Shoot, soil dVsh(t)

dt
= rgVsh(t)

(
1− Vsh(t)ρshoot

wf

)
[129]

Others

2.10 Daily consump-
tion λk = B × L× Csh(t)(tht)× ρ−1shoot This work

2.11 Approximate
Beta Poisson Pinf,k = 1−

(
1 +

λk
βB

)−αB

[136]

2.12 1F1 Hypergeo-
metric Pinf,k = 1−1 F1(αH , αH + βH ,−λk) "

2.13 Fractional Pois-
son Pinf,k = PF

(
1− exp(−λk

µa
)

))
"

2.14 Annual infection
Risk Pinf,ann = 1−

∏365
k=1(1− Pinf,k) [74]

2.15 Annual illness
Risk Pill,ann = Pill|infPinf,ann [89]

2.16 Annual disease
burden Dannual = Pill|infPill,annDp "

2.17
Volume of
growth medium
(soil)

Vg,s = Veθ [29]

Table 2.1: Equations used in this study

a Units of (count day−1), h Specific to hydroponic model, s Specific to soil model

9



Figure 2.1: Overview of model components (panel A) and information flow (panel B). Here
φ represents the null species. Symbols are defined in Table 2.2.

2.2 Methods

2.2.1 Model structure

To understand viral transport from treated human sewage to lettuce through internalization,

and the final viral concentration in the plant tissue at the time of consumption, I developed

a conceptual transport model (Fig. 2.1, symbols in Table 2.2).

In this system, I assumed that the treated wastewater used for cultivating lettuce is secondary

sewage effluent that contains Ceff of NoV/ml. Viral concentrations in the growth medium

(Cg,h(t) and Cg,s(t) for hydroponic and soil, respectively) at any given time are related

to the volume of the growth medium (Vg(t)) and the viral removal. Viral removal in the

hydroponic growth medium may be modeled simply as a first-order decay (eq. (2.1)) or also

to include attachment-detachment (AD) of viruses onto the walls of the hydroponic tank

(tank effects, eq. (2.2-2.3)). Similarly, I considered AD to soil particles as an important

process determining the fraction of viruses transferred from the soil to the plant roots. To
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avoid making assumptions on the tank geometry, I expressed the attached viral load in

viral numbers (Natt(t)), which does not depend on the volume or surface area. The viral

concentrations in the root (Cro(t)) and shoot (Csh(t)) depend on: 1) the viral transport rate

(F (t)) from the growth medium to the plant, 2) the volumes of these compartments (Vro(t)

and Vsh(t)), which change with time as the plant grows, and 3) the natural decay of viruses

in plant tissues. In addition, I included two viral transfer efficiencies (ηgr between growth

medium and root and ηrs between root and shoot) to simulate the potential “barrier” of viral

transfer between each compartment (Fig. 2.1).

Consequently, I modeled the viral transport from the growth medium to the root and shoot

through internalization as mass transport through three (growth medium, root and shoot)

well-mixed reactors (n − 1,n and n + 1) in series with changing volume. Thus, the generic

equation governing viral concentration (Cn(t)) in the reactor n at time t is:

Vn(t)
dCn(t)

dt
+ Cn(t)

dVn(t)

dt
= ηn−1,nF (t)Cn−1(t)− ηn,n+1F (t)Cn(t)− Removal(Cn(t))

where ηn,n+1 is the efficiency of viral transfer between reactors n and n+ 1. The full model

equations specific to individual model components are given by eq. (2.1-2.9) in Table 2.1

and used for both soil and hydroponic systems. Finally, I estimated the health risk from the

consumption of shoot of lettuce irrigated by recycled wastewater (Fig. 2.1).

2.2.2 Model parameters to estimate viral transport in lettuce

I obtained some parameters to complete the conceptual viral transport model from the

literature. I estimated the remaining by fitting the model to published data from experiments

using NoV seeded feed water to grow crisphead lettuces in a hydroponic system [37]. I

adopted the initial volume of 800 mL for the hydroponic growth medium (Vg,h(0)) based

on these experiments. I also assumed that the volume reduction over time equivalent to
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the plant transpiration rate [28] between refills. For the soil system, the volume of the

growth medium (Vg,s) equals the volume of water contained in the soil interstitial spaces in

an envelope around the roots. I assumed that this envelope is a region (of volume Ve) around

the roots that the plant to interact with. Vg,sis given by eq. 17, where θ is the volumetric

water content obtained from [29]. Estimates for Ve spanned a large range (section A.2.1)

and I adopted a middle value of Ve = 80000 cm3 and assumed it to be constant over the

lettuce growth period. I also verified that this assumed value wasto have minimal impact on

the model outcome (see section 2.2.5 and section 2.3.2).

I adopted the plant transpiration rate as the viral transport rate (F (t)) based on: 1) previ-

ous reports of passive bacterial transport in plants [13, 138, 146], 2) the significantly smaller

size of viruses compared to bacteria, and 3) the lack of known specific interactions between

human viruses and plant hosts (section A.1.1). Accordingly, I determined the viral transport

rate in hydroponically grown lettuce (eq. (2.6)) from the previously reported transpiration

model [28], in which the transpiration rate is proportional to the lettuce growth rate and

is influenced by cultivar specific factors (at,bt). I predicted these cultivar specific factors

using the hydroponic crisphead lettuce growth experiment carried out by [37] described in

section 2.2.3 (and section A.1.4). Since the transpiration rate in soil grown lettuce is signifi-

cantly higher than that in the hydroponic system, I obtained the viral transport rate in soil

grown lettuce from the graphs published by [45] using WebPlotDigitizer [115] section A.2.3

for details).

I estimated the growth rates of lettuce root (dVro(t)/dt) and shoot (Vsh(t)/dt) in hydroponic

systems using eq. (2.7-2.8) (parameters in Table 2.2; details and assumptions in section A.1.2

and section A.1.3). For soil grown lettuce, I determined the the shoot growth rate (in terms

of fresh volume) using eq. (2.9) (parameters in Table 2.2; details in section A.2.2). In the

absence of a published root growth model for lettuce in soil, I used a fixed root volume of

100 cm3.
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Parameter Symbol Value/Distribution (Units) Reference
Common (soil+hydroponic)
Body weight+ B [67.0 (10.7, 113.9)] (kg

person−1)
[73]

Viral load in effluent+ Ceff [4.13 (0.04, 624.32)] (count
mL−1)

[85]

Concentration of virus
in growth medium (root,
shoot) *

Cg(t)
(Cro(t),
Csh(t))

Cg,s(0) = Cg,h(0) = Ceff

(count mL−1)

DALYs per case of NoV
GE

Dp 9× 10−4 (person−1year−1) [75]

Volumetric flow rate* F (t) Fh(t) from eq. (2.6), Fs(t)
from plot (mL day−1)

[16, 45]

Growth medium viral at-
tachment rate*

katt katt,s(S1,S2)=4.1,0.8; katt,h
[f] (day −1)

[121]

Growth medium vi-
ral decay rate (with
attachment-detachment)
*

kdec kdec,s=0.15; kdec,h [f] (day
−1)

[114]

Growth medium viral de-
cay rate (only first-order
decay)

kdecf(t) [f] (day−1)

Growth medium viral de-
tachment rate*

kdet kdet,s(t) (S1,S2)= 8.7 ×
10−4, 3.0× 10−3; kdet,h(t) [f]
(day−1)

[121]

Viral decay constant in
plant (root, shoot)

kp [f] (day−1)

Consumption of lettuce
per kg bodyweight+

L [0.38, (0.04, 2.08)] (g lettuce
kg−1person−1day−1)

[135]

Number of viruses at-
tached to growth medium

Natt(t) Model intermediate (count)

Probability of illness if in-
fected

Pill|inf 0.8 [95]

Last irrigation time* tli tli,h = 21tli,s = 56 (days) [16, 45]
Harvest time* tht tht,h = 35, tht,s = 70 (days) "
Volume of growth medium
(root, shoot) *

Vg(t)
(Vro(t),
Vsh(t))

Vg,h(0)=800 mL Vro,s=100

Fractional Poisson risk
model parameters

PF, µa 0.72, 1 [136]

Beta Poisson risk model
parameters

αB, βB 0.104, 32.3

Hypergeometric risk
model parameters

αH, βH 0.46, 1.20
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Shoot density ρshoot 0.35 (g cm−3) [72]
Hydroponic specific
Rate parameters for viral
transport by plant

at,bt [f] (mL day−1, mL)

Ratio of dry to fresh
weight of lettuce root

droot,h 0.057 Estimated
from [152]

Ratio of dry to fresh
weight of lettuce shoot

dshoot,h 0.045 [16, 28]

Root growth constants r1 -8.482 "
r2 0.4586 (day−1) "
r3 −6.472× 10−3 (day−2) "

Shoot growth constants s1 -7.414 "
s2 0.406 (day−1) "
s3 −5.579× 10−3 (day−2) "

Root density ρroot 0.2 g cm−3 Assumed
Soil specific
Shoot growth constant rg 0.2056 (day−1) [128]
Envelope volume Ve 80000 (cm3) Assumed
Final weight of lettuce wf 550 (gm) [72]
Volumetric water content
of soil

θ 0.435 [29]

Table 2.2: Summary of symbols and parameter values

*: These are represented by their subscripts (h: hydroponic, s: soil) where required; +:

Empirical distributions, values presented are median (95% interval); [f]: Fitted values, pre-

sented in Table 2.3

Additionally, I used a viral transfer efficiency (η) to account for the potential “barrier”

between each compartment (i.e. root and shoot). The existence of such a “barrier” is evident

from field experiments where some microbial pathogens were internalized in the root but not

in the shoot of plants [102]. In addition, viral transfer efficiencies (ranging from 0 – 1) also

account for differing observations in pathogen internalization due to the type of pathogen or

lettuce. For example, [37] reported the internalization of NoV into lettuce, while [134] did

not detect any NoV in another type of lettuce grown in feed water seeded with viruses. I
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determined the values of ηgr and ηrs by fitting the model to experimental data reported by

[37] (details in section 2.2.3). I assumed that the values of ηgr and ηrs for the soil case was

the same as predicted for the hydroponic lettuce.

I included both die-off and AD for viral removal in the growth medium, but only natural

die-off in the lettuce root and shoot. I obtained the AD kinetic constants (katt, kdet) as

well as the growth medium viral decay constant (kdec) in the hydroponic case by fitting the

model to the data from DiCaprio et al. (2012). Viral AD in soil has been investigated

in both lab scale soil columns and field studies (Schijven and Hassanizadeh, 2000). In my

model, I obtained viral AD constants (katt,s , kdet,s) in soil from the experiments of [121], who

investigated MS2 phage kinetics in sandy soil in field experiments. As the MS2 phage was

transported with the water in soil, the AD rates changed with the distance from the source

of viruses. To capture the range of AD rates, I investigated two scenarios of viral behavior

in soils. Scenario 1 (Sc1) used the AD rates estimated at the site closest to the viral source

(well 1), while scenario 2 (Sc2) used data from the farthest site (well 6). In contrast to

lab scale soil column studies, field studies provide more realistic viral removal rates [120]. I

used the surrogate phage MS2 for NoV as it provided conservative risk estimates, since MS2

attached to a lesser extent than NoV in several soil types [91]. I adopted the viral decay rate

in the soil (kdec,s(t)) determined by [114] because the experimental temperature (20-30 0C)

and soil type (clay loam) are more relevant to lettuce growing conditions compared to the

other decay study [121]. I used the decay rates in the root and shoot from the hydroponic

system predictions.

2.2.3 Fitting model of viral transport in hydroponic grown lettuce

I fitted the transport model to log10 viral concentration data from [37], extracted from graphs

therein using WebPlotDigitizer [115]. In these experiments, NoV of a known concentration
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Parameter Units Search bounds Median (95% Credible Interval)
at cm3 day−1 (0,100) 19.82 (0.71,39.92)
bt cm3 g−1 (0,300) 40.10 (1.19,96.96)
ηgr - (0,1) 0.48 (0.07,0.97)
ηrs - (0,1) 0.74 (0.24,0.99)
katt day−1 (0,20) 10.66 (0.62,19.55)
kdet day−1 (0,10) 5.19 (0.65,9.76)
kdec day−1 (0,100) 0.25 (0.03,0.54)
kp day−1 (0,20) 0.54 (0.02,6.29)

Table 2.3: Parameter values predicted from fitting model to data from hydroponic experi-
ments

was spiked in the feed water (growth medium) of hydroponic lettuce and was monitored in

the feed water, the root and shoot over time. While fitting the model, I adopted an initial

feed volume of 800 mL (as used in the experiments) and rejected parameters producing final

volumes of <200 mL.

To fit the model while accounting for uncertainty in the data, I used a Bayesian approach to

maximize the likelihood of the data given the parameters. I obtained a posterior distribution

of the parameters by the differential evolution Markov chain (DE-MC) [130] algorithm, which

can be parallelized and can handle multimodality of the posteriors distribution without fine

tuning the jumping distribution. I carried out the computation on the High Performance

Computing facility at UC Irvine, using MATLAB R2016a (Mathworks) and its ParComp-

Tool.

Table 2.3 lists the parameters estimated by model fitting and their search bounds. Fitting

data from [37] without including viral AD to the tank walls was attempted but the results

were not used in the risk estimates due to the poor fit of model to the data. The rationale

behind the model fitting procedure and diagnostics are discussed in section A.2.4.
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2.2.4 Estimating risk of consumption of lettuce

I used an empirical distribution for NoV in activated sludge treated secondary effluent [85]

to obtain the viral concentration (Ceff) in the irrigation water. As justified by [85], I used

the sum of the concentrations of two genotypes known to cause illness to construct the

distribution. I then estimated the NoV concentrations in lettuce shoot at typical harvest

times: tht,h(t)=35 days in the hydroponic system and tht,s(t)=70 days in soil. I also assumed

that the last irrigation with recycled water occurred on tli,h(t)=21 days for hydroponic and

tli,s(t)=56 days for soil grown lettuce. I used these values together with parameters in

Table 2.2 and Table 2.3 in eq. (2.1-2.9) (Table 2.1) to generate the probability distribution

of NoV concentration for hydroponic or soil grown lettuce.

To estimate the risk from consumption of lettuce, I computed the daily viral dose using

eq. (2.10) (Table 2.1) for the kthday. I sampled the body weight (B) from an empirical

distribution for all ages and genders in the United States, which I constructed from a report

of the percentile data of body weight. I sampled the lettuce consumption rate (L) from

an empirical distribution which I constructed from data reported by the Continuing Survey

of Food Intakes by Individuals (CSFII). I used the ‘consumer only’ data for all ages and

genders, and hence the reported risk is only for those who consume lettuce. It is important

to note that the daily viral dose was computed in (count g−1) from the model output (in

count mL−1) using the shoot density ρshoot(eq. (2.10)) to be consistent with the consumption

rate reported in CSFII.

Several different NoV dose-response models have been proposed based on limited clinical

data. The validity of these models is a matter of much debate [122, 136], which is beyond

the scope of this study. These models differ in their assumptions resulting in large variability

of predicted risk outcomes. To cover the range of potential outcomes of human exposure to

NoV, I estimated and compared risk outcomes using three models: 1) Approximate Beta-
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Poisson (BP) [131, 136]; 2) Hypergeometric (1F1) [4, 10, 131] ; and 3) Fractional Poisson (FP)

[92]. In the risk estimation, I considered NoV in the lettuce tissue exists as individual viral

particles (disaggregated form) and used the disaggregated NoV models. The model equations

are given by eq. (2.11-2.13), Table 2.1. I calculated ten thousand samples of the daily

infectious risks from BP and FP models using MATLAB R2016a. Wolfram Mathematica

11.1 (Wolfram Research) was used for the (1F1) model estimation as it was faster.

Using a random set of 365 daily risk estimates of (Pinf,k for day k), I calculated the annual

infection risk (Pinf,ann) according to the Gold Standard estimator [74] using eq. (2.14),

Table 2.1. While there appears to be some dose dependence for illness resulting from infection

Pill|inf[10, 131], this has not been clearly elucidated for the different dose-response models.

Hence, I adopted the procedure used in [89] and calculated annual illness risk with eq. (2.15).

The annual disease burden in terms of DALY (disability adjusted life years) lost per case

(Dp) was set to 9× 10−4 pppy for each case of NoV disease [75]. The annual disease burden

(Dannual) is given by eq. 16 in Table 2.1. As part of the risk characterization process, I

compared risk outcomes of this study to the acceptable risk benchmarks established by the

U.S. EPA and WHO and the estimates by [119].

2.2.5 Sensitivity analysis

I determined the global sensitivity of the log10(Pinf) (daily risk) to input parameters using

the SCSA method [83] since it accounts for correlation in input parameters (not handled by

Sobol’s method [125]). This method produces three sensitivity indices for each parameter,

the structural (Sstruct), correlative (Scorr) and total (Stot) sensitivities. Fitted parameters

were used as is, maintaining the observed correlation structures. Parameters drawn from

distributions were varied within their 95% credible intervals while other parameters spanned

ranges obtained from literature (section A.2.5). The MATLAB implementation of SCSA by
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Figure 2.2: Fit of the model to data from [37] for lettuce grown in hydroponic system. Top
panel shows model fitting using first-order viral decay only; bottom panel shows model fitting
using first-order viral decay and viral attachment/detachment (AD) to cultivation tank wall
in growth medium (water). Error bars indicate standard deviations of 3 samples.

Sahin and Vrugt [118] was used.

2.3 Results

2.3.1 Model fitting and parameter prediction

Fig. 2.4 shows a summary of the model fitting exercise for viral transport in hydroponic

grown lettuce. Under the assumption of first-order viral decay, NoV loads in water (growth

medium) at two time-points did not fall in the credible region of model predictions, indicating

that mere first-order decay was unsuitable to capture the observed viral concentration data.
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Figure 2.3: Illustration of joint distributions of posterior samples from fitting the model
with AD of viruses to hydroponic tank walls. The shaded gradients (light to dark) indicate
the localization of parameters in sub-regions of the initial search space, illustrating coupling
between the parameters.

The addition of the AD factor into the model addressed this inadequacy and importantly

supported the curvature observed in the experimental data. This result indicates the AD of

viruses to hydroponic tank wall is an important factor to include in predicting viral concen-

tration in all three compartments (water, root, shoot). Credible and prediction intervals in

the shoot at harvest were similar for both models.

The credible intervals of the predicted parameters also show the adequacy of fit for the model

with AD (Table 2.3). Four of the predicted parameters: at,bt,kdec,s and kp, were restricted

to a smaller subset of the search bounds, indicating that they were identifiable. In contrast,

the viral transfer efficiency η and the kinetic parameters (katt,kdet) spanned the entirety of

their search space and were poorly identifiable. However, this does not suggest that each

parameter can independently take any value in its range because the joint distributions of

the parameters (Fig. 2.3) indicate how fixing one parameter (e.g. ηgr=0.9) influences the

likelihood of another parameter (ηrs most likely to be closer to 1). Hence, despite the large

range of an individual parameter, the coordination between the parameters constrained the

model predictions to produce reliable outcomes (section 2.4.1, Fig. A.5). Hence, I consider the

20



Figure 2.4: Annual risk (top panel) and disease burden (bottom panel) of norovirus in-
fection through consumption of lettuce grown hydroponically or in soil (scenario 1 and 2
explained in section 2.2.2) using treated sewage effluent. The dashed lines indicate existing
risk benchmarks or the mean plotted from a previous study by [119].
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Figure 2.5: Top 10 most significant SCSA sensitivity indices (mean±s.d., 100 bootstrapped
samples) for hydroponic (top panel) and soil (bottom panel) grown lettuce. Sstruct, Scorr and
Stot correspond to Sa, Sb and S in [83]. A comma denotes second order sensitivity terms for
pairs of parameters.

performance of the model with AD adequate for estimating parameters used it for predicting

risk.

2.3.2 Health risks from lettuce consumption

Risk estimates for lettuce grown in the hydroponic tank or soil are presented in Fig. 2.4.

Across these systems, the FP model predicted the highest risk while the 1F1 model predicted

the lowest risk. For a given risk model, higher risk was predicted in the hydroponic system

than in the soil. This is a consequence of the very low detachment rates in soil compared to

the attachment rates. Comparison of results from Sc1 and Sc2 (section 2.2.2) of soil grown

lettuce indicated lower risks and disease burdens under Sc1 (Fig. 2.4).

Comparing with the safety guidelines, the lowest risk predicted in the hydroponic system is

higher than the U.S. EPA defined acceptable annual drinking water risk of 10−4 (Environ-
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mental Protection Agency, 2010) for each risk model. The annual burdens are also above the

10−6 benchmark recommended by the WHO [143]. In the case of soil grown lettuce, neither

Sc1 nor Sc2 met the U.S. EPA safety benchmark. Two risk models predicted borderline

disease burden according to the WHO benchmark, for soil grown lettuce in Sc1, but under

Sc2 the risk still did not meet the safety guideline. I found that neither increasing holding

time of the lettuce to two days after harvesting nor using bigger tanks significantly altered

the predicted risk (Fig. A.1). In comparison, the risk estimates of [119] are higher than range

of soil grown lettuce outcomes presented here (Fig. 2.4) for 2 of 3 models.

The SCSA sensitivity indices are presented in Fig. 2.5. For hydroponically grown lettuce, the

top 3 factors (by Stot) influencing daily risk are amount of lettuce consumed, time since last

irrigation and the term involving consumption and ρshoot. Also, the risk estimates are robust

to the fitted parameters (Table 2.3) despite low identifiability of some model parameters (at,

bt, katt,h and kdet,h ). For soil grown lettuce, kp appears to be the major influential parameter,

followed by the input viral concentration in irrigation water and the lettuce harvest time.

Scorr is near zero, suggesting lesser influence of correlation in the input parameters.

2.4 Discussion

In this study, I modeled the internalization and transport of NoV from irrigation water to

the lettuce using ordinary differential equations to capture the dynamic processes of viral

transport in lettuce. This first attempt is aimed at underscoring the importance of the

effect of time in determining the final risk outcome. The modeling approach from this study

may be customized for other scenarios for the management of water reuse practices and for

developing new guidelines for food safety. Moreover, this study identifies critical gaps in the

current knowledge of pathogen transport in plants and calls for further lab and field studies

to better understand risk of water reuse.
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2.4.1 Fitting model to data

To predict viral transport in plant tissue, it is necessary to couple mathematical assumptions

with an understanding of the underlying biogeochemical processes governing virus removal,

plant growth, growth conditions and virus-plant interactions. For example, although a simple

transport model without AD could predict the viral load in the lettuce at harvest, it failed to

capture the initial curvature in the viral load in the growth medium (water). An alternative

to the AD hypothesis that could capture this curvature is the existence of two populations

of viruses as used in [104], one decaying slower than the other. However, I did not adopt this

approach as the double exponential model is not time invariant. This means that the time

taken to decay from a concentration C1 to C2 is not unique and depends on the history of the

events that occurred (Fig. A.2). Other viral models, such as the ones used in [103] faced the

same issues. Incorporating AD made the model time invariant and always provided the same

time for decay between two given concentrations. This model fitting experience showcases

how mathematics can guide the understanding of biological mechanisms. The hypothesis of

two different NoV populations is less plausible than that of viral attachment and detachment

to the hydroponic tank. While it appears that incorporating the AD mechanism does not

significantly improve the accuracy of viral load predictions in the lettuce shoot at harvest, this

is a consequence of force fitting the model to data under the given conditions. Changing the

conditions, for example, by reducing viral attachment rate to the tank wall, underestimates

the viral load in the lettuce shoot in the absence of AD (Fig. A.3). I believe that the model

can be improved significantly with new insights on virus-plant interactions.

A potential cause for concern in the model fit is the wide credible and prediction intervals.

However, there is significant uncertainty in the data as well (e.g. root day 3, shoot day 1,

Fig. 2.4) suggesting that the transport process itself is noise prone. Moreover, from the per-

spective of risk assessment, the variability between dose-response models is higher than the

within dose-response model variability (Fig. A.5). Since within dose-response model variabil-

24



ity stems from uncertainty in viral loads at harvest among other factors, the wide intervals

do not exert a bigger effect than the discordance from different dose-response models.

2.4.2 Model parameter estimates

Some parameters (i.e., kdec,h, kp) are identifiable to a reasonable degree through model fitting,

but there is a large degree of uncertainty in the viral transport efficiencies and the AD kinetic

parameters. While this could be a consequence of fitting a limited number of data points with

several parameters, the viral load at harvest and risk estimates were well constrained. This

large variation in parameters and ‘usefully tight quantitative predictions’ (Fig. A.5) is termed

the sloppiness of parameter sensitivities, and has been observed in physics and systems

biology [55, 139]. Well-designed experiments may simultaneously reduce uncertainty in the

parameters as well as predictions [6, 24] and therefore increasing confidence in predictions.

One possible experiment to reduce parameter uncertainty is recording the transpiration and

growth rate to fit eq. (2.6) independently to get at and bt.

2.4.3 Risk estimates

An interesting outcome of my analysis is the strong association of risk with plant growth

conditions. The health risks from consuming lettuce irrigated with recycled wastewater

are highest in hydroponic grown lettuce, followed by soil grown lettuce under Sc2 and the

least in soil grown lettuce under Sc1 (Fig. 2.4 and section 2.2.2). This difference in risk

estimates stems to a large degree from the difference in AD kinetic constants (katt,s, kdet,s)

(Fig. A.4). Increasing katt,s (holding kdet,s constant) will decrease risk as more viruses will

get attached to the growth medium, while increasing kdet,s (holding katt,s constant) will have

the opposite effect (Fig. A.4), as more detached viruses are available for uptake by the plant.

The combined effect of the AD parameters depends on their magnitudes and is portrayed
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in Fig. A.4. This result indicates that a better understanding of the virus interaction with

the growth environment can lead to an improved understanding of risk. More importantly,

this outcome indicates that soil plays a vital role in the removal of viruses from irrigation

water through the adsorption of viral particles. An investigation focused on understanding

the influence of soil composition on viral attachment will help refine the transport model.

The risk predicted by this dynamic transport model is higher than the EPA annual infection

risk as well as the WHO annual disease burden benchmark. The reasons for this outcome are

many-fold. First, there is a significant variability in the reported internalization of viruses

in plants. In research of data for modeling NoV transport in plant, I filtered the existing

data using the following criteria: 1) human NoV used as the seed agent, 2) presence of

quantitative viral results in the growth medium and different locations of the plant. Based

on these criteria, the data from [37] represent the best available data on viral internalization

and transport in lettuce. However, it is also important to note that a similar study by [134]

did not observe human NoV internalization in lettuce. This discrepancy could be due to the

specific subspecies of the plant and growth conditions used in the studies. Besides, minor

changes such as damages in roots or decrease in humidity of the growing environment can

promote pathogen internalization [62, 137]. Alternatively, tracking viral transport through

the growth medium and the plant is challenging, which may yield false results due to reaction

inhibitions in genome amplification and inferior detection limit.

The risk outcome of this study is conservative because it assumes an individual consumes

the wastewater irrigated lettuce daily for an entire year. This assumption and the corre-

sponding higher risk estimates are only applicable to a small portion of consumers, while

most consumers in the U.S. are likely to have a more diverse diet. While the model outcomes

presented here represent the best attempt given the available data, it is also possible that the

internalization observed by [37] is an extreme case and and typically internalization occurs

to a lesser extent.
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As previously discussed by others ([122, 136]), risk estimates by different NoV dose-response

models differed by orders of magnitude. This study primarily aims to introduce a viral

transport model without advocating any one dose-response model. The future refinement of

pathogen dose-response models will reduce variability in risk estimates.

The risk of consuming lettuce grown in soil as predicted by [119] is higher than my pre-

dictions, although I used the results of [37] in both studies. This is a consequence of con-

sidering the greater adsorption capability of soil, which is not reflected when assuming a

simple input:output ratio. Using different inoculating concentrations of NoV, body weight

and consumption rate distributions also contributed to the difference in the outcomes but

to a lesser extent.

I obtained parameters for crisphead lettuce from several different sources, each possibly

using a different sub-variety of crisphead. Nevertheless, global sensitivity analysis showed

insensitivity of risk estimates to several assumed and fitted parameters (at, bt, droot,h,Ve),

lending confidence to the approaches taken to parametrize the model. The sensitivity to tli,h

in hydroponic and tht,s in soil cases underscores the importance of considering the dynamics

of viral transport. This suggests that given no change in lettuce consumption, changes

in irrigation schedule can affect risk outcomes. Such arguments are not possible with the

approach of [119]. In soil-grown lettuce, the high sensitivity to kp indicates the role of

plant-specific processes in mediating risk outcomes.

2.4.4 Contribution and future directions

In addition to a transport model predicting the NoV load in lettuce, I explored strategies to

reduce the risk of NoV gastroenteritis (Fig. A.1) by increasing holding time of the produce

after harvesting or using larger hydroponic culture volumes. Although neither strategy

could significantly alleviate the risks, the process highlights two strengths of modeling: 1)
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It provides analytical support for arguments that would otherwise be less convincing; 2) It

predicts outcomes of experiments without the physical resources required to perform them.

For instance, the model can be used to explore alternate irrigation schedules to reduce the

NoV internalization risk.

Modeling also helps encapsulate our understanding of the system and generate hypotheses.

For example, simple first-order decay did not produce the trend observed in the water,

which suggests that additional mechanisms are at play. I postulated the attachment of virus

particles on the walls of the hydroponic system as one possible mechanism and examined the

fit of the model. Although viral attachment to glass or other materials has been observed

before [15], here it stands as a hypothesis that can be tested. In addition to generating

and testing hypotheses, some of my model assumptions raise broader questions for future

research. For example, I assumed that viruses are transported at the transpiration rate from

the growth medium to the roots. However, not much is known regarding the role of roots

in the internalization of viruses. Investigating the defense mechanisms of plants’ roots to

passive viral transport, i.e., through rhizosphere microbiome interactions, may shed light on

the broad understanding of plant and microbe interactions.

The question of extending this model to other pathogen and plant systems draws attention

to the dearth of data in enabling such efforts. While modeling another virus may not require

changes to the model, understanding transport in other plants can be challenging. Data

required includes models for growth rate and transpiration, plant growth characteristics

including density, water content, as well as internalization studies to determine transport

efficiencies. However, from the perspective of risk management, lettuce may be used as

the worst-case scenario estimate of risk in water reuse owing to its high consumption with

minimal pathogen inactivation by cooking. This worst-case scenario can be used to set

water quality standards for irrigation water for the production of fresh produce eaten raw.

The models can also be extended to include pathogen transport to the plant tissue from
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manure/biosolids that are used as organic fertilizer.

2.5 Conclusion

I developed a dynamic viral transport model to predict the viral load in the lettuce at harvest,

given the viral load in the recycled water used for irrigation. Integrating the viral load with

the exposure model and NoV dose-response models, I estimated the annual infection risk

and disease burden through the consumption of lettuce irrigated with recycled wastewater.

My conclusions are:

1. Viral transport in the plant depends on its interaction with the growth medium and

the plant tissue to a large extent.

2. The experimental data reported in literature are best explained by the incorporation

of attachment and detachment of the viruses to the cultivation tank.

3. Kinetic rates for attachment and detachment, as well as transport efficiencies between

plant compartments, were loosely constrained in their search bounds (low identifiabil-

ity). However, the joint distributions of the parameters and the final risk predictions

were well constrained, highlighting the sloppy parameter sensitivities.

4. The overall risk estimates from the model are higher than the commonly accepted infec-

tion risk benchmark and annual disease burden. However, there are large uncertainties

in the experimental data of viral transport through plants.

5. The model provides a foundation to incorporate new data on pathogen transport and

plant-microbe interactions to develop a holistic understanding of pathogen internaliza-

tion.

29



Chapter 3

Quantifying the infection risk of

antibiotic-resistant bacteria

The contents of this chapter appear in the journal Scientific Reports [26].

3.1 Background

The rise of antibiotic resistance in bacteria, coupled with the slowdown of drug discovery,

presents a growing threat to public health [144]. The Centre for Disease Control and Pre-

vention (CDC) attributes at least 2 million illnesses and 23,000 deaths a year in the US to

antimicrobial resistance. The economic burden in the US is estimated to be on the order of

US $21 to $34 billion [23].

Quantifying the human health risk associated with antibiotic resistance presents several

challenges [8, 14, 43, 65, 108, 101, 88]. The human health outcome (e.g., illness not responding

to a specific antibiotic or ‘resistant’ illness) is influenced by antibiotic-resistant bacteria

(ARB), antibiotics (ABs), antibiotic-resistant genes (ARG) and their carriers. ARB cause
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antibiotic-resistant illness and present the most direct threat. Antibiotics and other selective

pressures (e.g., heavy metals) in the environment promote enrichment of ARB and induce

de-novo resistance mutations in antibiotic susceptible bacteria (ASB) or the uptake of ARG

which is known as horizontal gene transfer (HGT). The ARG can come from direct contact

with bacteria harboring ARG (conjugation), from phages harboring ARG (transduction)

or from free-floating mobile genetic elements (MGEs) in the environment (transformation).

ABs in the environment can potentially modulate HGT. Thus the human health outcome

from ingesting ARB can be influenced by a complex network of factors.

Studies have found ARB in various sources across the globe, including wastewater treatment

plant effluent, recreational water, drinking water (see [101] for a list), and even lettuce at

harvest [64]. Nevertheless, microbial risk assessments involving ARB are rare [47, 124],

which is due to the lack of a dose-response model (DRM) and uncertainties at each step

in a traditional bottom-up risk assessment approach. Few past studies (e.g., [41, 148])

investigated the burden of ARB using a top-down approach by identifying the contribution

of veterinary AB use to the overall number of AB resistant disease instances [124]. However,

this top-down framework cannot be used to compute the risk posed by an exposure event

(such as swimming in the recreational waters discussed in [82]), nor can it be used to set

regulatory guidelines for acceptable levels of ARB or residual ABs in the environment.

Attempts to relate ARB concentrations to ARB caused diseases (bottom-up approach) were

made in several studies [5, 30, 68, 107]. Since DRMs tailored to ARB do not exist, these

studies draw on epidemiological data (e.g., annual illness cases where some AB fails) to

predict human health effects. However, there is a large variability of the estimates depending

on the scope and geographic region of the investigation. These past studies are useful to draw

inferences on the region that the data are based on but may not apply to other regions e.g.,

resource-limited countries where epidemiological data are not available. Moreover, even if

data are available, avoiding confounders to pinpoint the true cause of an antibiotic-resistant
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illness is non-trivial. Also, these approaches cannot account for the fraction (fr) of ARB in

a bacteria-contaminated sample or the effects of residual ABs in the environment. Hence,

there is a need for DRMs that can account for ARB [82, 101], their fraction (fr) in the dose

and residual ABs.

Obtaining data to develop a DRM for human illness involves infecting a cohort of people with

a known pathogen, including AB resistant ones. However, since inoculating people with ARB

would result in untreatable illnesses, such data are not available. An alternative approach

is to use the existing data collected from human studies involving ASB and assume that

in the absence of AB, the same DRM used for the ASB applies to ARB. This assumption

is conservative since AB resistance often confers a fitness cost [153]. Some studies have

identified mutations that lead to increased fitness have [12, 54]. While data from animal

models present a second alternative, usage of human data, where available, is preferred.

The development of DRM for ARB is further complicated when the person under considera-

tion is exposed to residual/sub-inhibitory levels of ABs. This exposure can stem from medi-

cation for a previous illness, prophylactic use for surgeries, receiving AB-releasing stents, AB

residues in food of animal origin, or even the environmental sources listed earlier. The source

of ARB could also contain AB, causing the host to get exposed to sub-inhibitory levels of

AB. In this case, the health outcome (not ill, AB treatable illness, or AB untreatable illness)

will depend on not only the initial dose (d) and fraction of ARB (fr), but also the amount

of residual AB. This is because the AB will affect the growth rates of the susceptible and

resistant subpopulations differently in a concentration-dependent manner. Popular/classical

microbial pathogen DRMs, such as the exponential or beta-Poisson models, are not readily

amenable to investigation of such changes in growth rates or conversion from ASB to ARB

due to mutation or HGT. Hence there is a need for DRMs based on growth processes, which

can set the stage for developing a holistic understanding of the dose-response of ARB.

The goal of this research is to quantify the risk posed by ARB and the effect of selection
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pressure exerted by sub-inhibitory concentrations of AB. Specifically, I introduce a new

DRM based on Simple Death processes. This DRM begins with the following assumptions:

1) a portion of ingested dose of d bacteria may die off (solid lines, Fig. 3.1a) when they

encounter the host’s defenses. This includes immune factors, gastric acids, and other fac-

tors. 2) At greater d, this death rate may not be enough to kill off all the bacteria. In

some cases, enough bacteria survive to initiate an infection (Trial 2, Fig. 3.1a), resulting

in growth (dotted line, Fig. 3.1a) of bacteria in human body (infection). I model these

two assumptions with continuous-time Markov chains (CTMCs) to capture stochastic bac-

terial kinetics. This differs from existing approaches which derive kinetics from classical

dose-response assumptions[67] or which use deterministic kinetics to inform dose-response

[90, 112]. My approach is similar to the approaches of [109, 147, 49] and other studies that

use CTMCs, but uses analytical solutions instead of simulations. Another study [18] explores

an analytical approach specific to anthrax and uses in vivo animal data to fit parameters.

However, it is not clear if the parameters found in animals apply to humans. Here, I show

that my approach integrates with classical DRMs and can hence extend to all pathogens

analyzed with the classical DRM framework.

Figure 3.1: Overview of simple death process. (a) Plots of two trials of a simple death
process. (b) The Markov chain of a simple death process.

33



This study is organized as follows. I introduce the new DRM and fit it to published dose-

response data of AB susceptible E. coli that causes diarrhea. I then identify a relationship

between the kinetic constants in the proposed model and the existing DRMs. I use this

relationship to predict the risk of illness and the illness subtype (AB treatable vs. AB

untreatable) for mixed doses of ARB and ASB in the presence of residual AB. Finally, I

highlight the limitations of this approach and the need for improved data collection comple-

menting this approach. Parameters and their symbols presented in this chapter are listed in

Table 3.1.

Symbol Units Description
C mg L−1 AB concentration
d CFU Dose of bacteria
Emax, EC50 day−1, mg L−1 AB-bacteria interaction parameters
fr - Fraction of ARB in initial dose
nill persons Number of ill subjects
ntot persons Total number of subjects
P (d, t) - Response probability for initial bacterial load of d at t
Pext(d, t) - Probability of extinction of initial bacterial load of d at t
P (d) - Response probability for initial bacterial load of d
r CFU−1 Exponential DRM parameter
t days Time
tfs days The latest time at which a first symptom is observed
α, β -, CFU beta-Poisson DRM parameters
µ day−1 Death rate of bacteria
µs,AB(C) day−1 Death rate of ASB in AB of concentration C
µr,AB(C) day−1 Death rate of ARB in AB of concentration C

Table 3.1: Parameters used in this study.
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3.2 Results

3.2.1 Dose-response expression

I model the initial die-off of the bacteria after they enter the host as a stochastic death

process, which is a kind of CTMC. In such a process, a single death is assumed to occur

at a random point in time (solid lines, Fig. 3.1a). The key assumption behind the Simple

Death (SD) process (Fig. 3.1b) is that in the short time interval (t, t + δt), each bacterium

dies with probability µδt. Hence, the probability of a death in the time interval (t, t + δt)

is N(t)µδt, where N(t) is the population size at time t. As time goes by, N(t) will reduce

as some bacteria begin to die, thus decreasing the probability of a death in the time interval

(t, t + δt). Assuming that the probability of observing a response (here illness) equals the

probability of not observing an extinction, I express the relation with eq. 3.1.

P (d, t) = 1− Pext(d, t) (3.1)

where P (d, t) is the probability of observing a response and Pext(d, t) is the probability of

extinction for initial dose d and time t. The expression for Pext(d, t) [3] is given by

Pext(d, t) = (1− exp(−µt))d (3.2)

Intuitively, 1−exp (−µt) is the probability of the death of one bacterium [3]. The probability

of d bacteria dying is the product of the probability of each bacterium dying, resulting in

eq. 3.2. Therefore, I express the time-dependent dose-response relationship or the time-

dependent SD DRM as:

P (d, t) = 1− (1− exp(−µt))d (3.3)
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I set t in the model (eq. 3.3) to the latest time that the first symptom is observed among all

subjects (tfs) in the clinical feeding study. This is because at t < tfs, the nill used to fit the

model is higher than the number of people ill at that time. At t > tfs, the die-off assumption

will not hold as the bacterial population will enter the growth phase in the human body,

which results in illness. Hence the time-independent dose-response relationship is given by

eq. 3.4.

P (d) = 1− (1− exp(−µtfs))d (3.4)

Here, d is the ingested dose of bacteria that, P (d) is the response probability, µ is the rate of

death, and tfs is the latest time at which the first symptom is observed among all subjects.

I refer to this model as the SD DRM through the remainder of this chapter unless specified

otherwise.

3.2.2 Relationship with the existing DRMs

The exponential DRM [57] is a widely used and best accepted model for dose-response of

pathogenic E. coli in humans. It is expressed as

P (d) = 1− exp(−rd) (3.5)

where r is the probability of the pathogen surviving to cause infection once it is ingested.

When comparing the SD DRM with the exponential DRM, it is clear that exponential DRM

is a special case of the time dependent SD DRM (eq. 3.3) where t = tfs.

(1− exp(−µtfs)) = exp(−r) (3.6)
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This result implies that SD DRM will fit any dataset that the exponential DRM fits. In

addition, the SD DRM establishes a link between an abstract parameter that is informed by

dose-response data (r) and a parameter that has a clear biophysical interpretation (µ). This

biophysical parameter becomes instrumental in accounting for the effect of the AB.

Similarly, the above approach can also be extended to the existing beta-Poisson DRM, if a

relationship between the beta-Poisson DRM parameters and the death rate (µ) of the SD

DRM is established. The beta-Poisson DRM is an approximation of the hypergeometric

DRM [57]. In other words, the hypergeometric DRM is a generalized case of the exponential

DRM, where the r value is assumed to be beta distributed. The classical beta-Poisson is

DRM given by:

P (d) = 1−
(
1 +

(d
β

))−α
(3.7)

where α and β are the parameters of beta-Poisson model. An analytical approach to finding

the required relationship was not tractable, and instead, I adopted a numerical approach

(see section 3.4). With this relationship, the beta-Poisson model can also be investigated

under AB loads. Thus, the results demonstrate that the SD approach provides a unified

framework to analyze the effect of ABs on dose-response.

3.2.3 Accounting for residual AB concentration

In addition to the dose of ARB (or the fr, the fraction of resistant bacteria in the dose),

the human health outcome also depends on C, the concentration of sub-lethal/residual AB

in human body. To account for the effect of AB, one can first adopt models that relate AB

concentration and E. coli death rate published in literature e.g. [100, 99, 20]). These death

rates can then be related to dose-response by using eq. 3.6.

37



AB causes a significant increase in the death rate of ASB but has less or no effect on ARB.

Hence, a simple conservative assumption is that the ARB death rate is not affected by the

presence of AB. This assumption is the worst-case scenario because it does not include the

fitness cost of AB resistance [153]. I illustrate this relationship with a case study in which

I investigate the effect of Gentamicin on a dose of E. coli. The increased death rate of the

susceptible strain in the presence of AB (µs,AB) is given by the sigmoidal model of [99] as

µs,AB(C) = µ+
EmaxC

EC50 + C
(3.8)

C is the concentration of AB. µ is the death rate of the ASB strain in the absence of AB.

It can be obtained from eq. 3.6. Emax (= 1224 day−1, the maximum killing rate) and EC50

(= 9.93 mg L−1, AB concentration at half maximum killing rate) are values that determine

how C affects µs,AB(C). I obtained numerical values for Emax and EC50 from [99], where the

effect of Gentamicin on E. coli death kinetics was studied. The death rate of the ARB in the

presence of AB (µr,AB) is µ as per the earlier assumption. The probability of illness of doses

consisting of purely ASB or purely ARB can thus be estimated by plugging the estimated

µs,AB(C) into eq. 3.4.

3.2.4 Accounting for fraction of ARB

I account for fr by first assuming, like in existing DRMs, that any two bacteria act indepen-

dently of each other. Scaling this up implies that the susceptible and resistant subpopulations

will also act independent of each other. Therefore, the joint probabilities concerning both

subpopulations can be written as the product of the probabilities of each subpopulation.

For example, the probability of both subpopulations going extinct (SextRext in Table 3.2) is

given by Pext,s(d|fr, C) × Pext,r(d|fr, C). Therefore the probability of response (P (d|fr, C))

is equal to the complement of the probability of both populations going extinct i.e,
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Ssur Sext

(1− Pext,s(d|fr, C)) (Pext,s(d|fr, C))
Rsur (SsurRsur) Illness (SextRsur) Illness
(1− Pext,r(d|fr, C)) AB Treatable AB Untreatable
Rext (SsurRext) Illness (SextRext) No illness
(Pext,r(d|fr, C)) AB Treatable

Table 3.2: Possible outcomes (S: susceptible, R: resistant, sur: survives and ext: goes extinct)

P (d|fr, C) = 1− Pext,s(d|fr, C)Pext,r(d|fr, C) (3.9)

where the extinction probability of the susceptible subpopulation is

Pext,s(d|fr, C) = (1− exp(−µs,AB(C)tfs))d×(1−fr) (3.10)

and the extinction probability of the resistant subpopulation is

Pext,r(d|fr, C) = (1− exp(−µr,ABtfs))d×fr (3.11)

3.2.5 Possible health outcomes

Two types of health outcomes are possible when a mixed dose of ARB and ASB are involved.

When the ASB strain out-competes the ARB strain (SsurRext, Table 3.2) to grow and infect

the host, the illness would likely be susceptible to the AB treatment under consideration.

However, when the ARB subpopulation continues to survive irrespective of what happens

to the ASB subpopulation (SsurRsur and SextRsur), the resulting illness may not be treatable

with the AB. I label these health outcomes as ‘AB Treatable’ and ‘AB Untreatable’ illness,

respectively (Fig. 3.2). To identify the type of health outcome given an illness occurs, I
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compare the probabilities of these two events and classify as follows:


AB Treatable, (1− Pext,s(d, t|fr, C))Pext,r(d, t|fr, C) > (1− Pext,r(d, t|fr, C))

AB Untreatable, otherwise

Figure 3.2: Effect of varying fr and C on illness outcomes. (a) Exponential DRM, DS1,
fr = 0.05. (b) Exponential DRM, DS1, C = 1% MIC. (c) beta-Poisson DRM, DS2, fr =
0.05. (d) beta-Poisson DRM, DS2, C = 1% MIC.

Taken together, the risk of infection due to mixed doses (consisting of ARB and ASB) can

be estimated as a function of C. I predict the host response to AB treatment based on the

subpopulation of the AB resistant E. coli ingested. The implementation of this approach
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differs from the currently used exponential and beta-Poisson DRMs.

3.2.6 Effect of ARB fraction fr and residual AB concentration C

To understand the effect of ARB fraction fr and residual AB concentration C, the first step

is identifying the death rate of the ASB population (µ in eq. 3.8). To this end, I fit the

existing exponential and beta-Poisson DRMs to the human clinical datasets (see Table B.1,

data obtained from QMRA Wiki [142]) under consideration. Dataset 1 (DS1) uses mild to

severe diarrhea as the endpoint to measure positive response, while dataset 2 (DS2) uses

diarrhea. Both datasets use oral route of exposure to E. coli and exhibit a significant trend

at the 0.05 level (one-tailed Cochran-Armitage test [57], n = 6 and P value = 1.91×10−4 for

DS1, n = 11 and P value = 1.11×10−5 for DS2).

Fig. 3.3 presents the DRM fits and Table 3.3 summarizes the DRM choice for each dataset

based on the χ2 test, which is used for model selection for DRMs [57]. The results show that

the exponential DRM fits DS1 better, while the beta-Poisson DRM fits DS2 better. The

fitted parameters allow one to determine µ, which can then be used to estimate the death

rate in the presence of AB (µs,AB) using eq. 3.8.

Fig. 3.2 shows the model behavior at different values of fr and C. For a given dose of bacteria

and a given fr, increasing the concentration of AB decreases the risk (Fig. 3.2a, c). This is

expected as the higher AB load kills off more of the bacteria. When fr = 0.05, increasing C

from 0 to 2.5% MIC decreases the risk by around 1.5 orders of magnitude. This decrease in

risk is more gradual for DS1 (Fig. 3.2a) compared to DS2 (Fig. 3.2c). Not much difference

is observed between 1% MIC and 2.5% MIC for DS2, suggesting that the antibiotic effect

saturates at small fractions of the MIC. However, increasing C also increases the likelihood

of the illness not treatable by the AB (Fig. 3.2a, c, ‘AB Untreatable’). This is attributed

to the higher survival capability (or lower death rate) of the ARB subpopulation compared
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Data Case Dev χ2 p-value Conclusion Model
DS1 Exp 3.19 11.07 0.67 Fail to reject

“Exp is a good
fit".

Exp

beta-Poisson 0.95 9.49 0.92 Fail to reject
“beta-Poisson is
a good fit".

r = 1.07 ×
10−8

Compare 2.24* 3.84 0.13 Fail to re-
ject “Exp fits
better than
beta-Poisson".

(µ = 18.35
day−1)

DS2 Exp 57.82 18.31 9.36× 10−8 Reject “Exp is a
good fit".

beta-Poisson

beta-Poisson 14.44 16.92 0.11 Fail to reject
“beta-Poisson is
a good fit".

α = 0.16

Compare 43.38* 3.84 4.51× 10−11 Reject “Exp
fits better than
beta-Poisson".

β = 1.41×106

Table 3.3: Fit of the exponential and beta-Poisson DRMs. ‘Dev’ is the minimum deviance,
except the starred (*) values, which are the differences in minimum deviance between expo-
nential and beta-Poisson RMs. ‘Model’ represents the preferred DRM based on conclusions.
Best fit parameters are also shown.

to the ASB subpopulation. Further difference between DS1 and DS2 is observed, as the

concentration of Gentamicin that results in predominantly AB untreatable illness is > 1%

MIC for DS1 but < 1% for DS2.

For a given dose of bacteria and a given C, increasing fr also causes an increased risk and

greater likelihood of the AB untreatable illness (Fig. 3.2b, d). The higher risk is due to

the lower death rate of the ARB subpopulation. The greater likelihood of AB Untreatable

illness stems from the greater number of ARB in the initial load, meaning more ARB are

likely to survive with time. Specifically, changing fr appears to have little effect under DS1

when C is fixed to 1% MIC, indicating that antibiotic effect is near saturation. In contrast,

increasing fr from 0 to 0.1 under DS2 increases risk by two orders of magnitude, indicating

that antibiotic effect reaches saturation at > 1% MIC. The switch from AB Treatable occurs
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Figure 3.3: Model fits for (a) DS 1 and (b) DS 2. To avoid overlapping points in the plot,
noise is added along the horizontal axis.

at 0.05 < fr < 0.1 under DS1 but at fr < 0.01 under DS2.

The magnitude of the impact of fr and C depends on the DRM and the datasets used to

fit the DRM (Fig. 3.2). To better understand this dependence, I performed a sensitivity

analysis using the PAWN algorithm [105] (see section 3.4). The results show that the dose of

bacteria is the biggest determinant of risk for both the exponential and beta-Poisson DRMs

(Fig. 3.4a, b). When one fixes the dose of bacteria, C and fr play a bigger role in determining

risk than the dose-response parameters (Fig. 3.4c, d). The parameters capturing the effect

of the AB (Emax and EC50) play a smaller role than the dose-response parameters (Fig. 3.4c,

d). Further, I verified that setting t = tfs has a minimal effect on the final results since

sensitivity indices of tfs fall below the threshold value, indicating that tfs is non-influential

(Fig. 3.4).
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Figure 3.4: PAWN sensitivity index distributions, higher values are more influential param-
eters. The dashed line is the threshold value at level of significance = 0.05 (see section 3.4).
(a) Exponential DRM, along with dose of bacteria (d). (b) beta-Poisson DRM, along with
d.(c) Exponential DRM, fixed d.(d) beta-Poisson DRM, fixed d.

3.3 Discussion

While AB resistance is recognized as a growing problem, few studies have attempted devel-

oping a quantitative understanding of the risk posed by ARB and the associated sub-lethal

AB concentration. I propose a new approach to modeling the dose-response of ARB under

the Quantitative Microbial Risk Assessment (QMRA) framework. Under this framework,

once a pathogen is identified, human exposure to it is quantified. Exposure is coupled with

DRMs to estimate the risk of positive response, which is used to design risk management
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measures.

The crux of the proposed approach is the stochastic process known as the SD process. I

model the kinetics of the bacterial dose under the SD assumption, resulting in an analytical

expression for the extinction probability (Pext). Like in existing DRMs, response probability

is defined as 1 - Pext. The resulting expression establishes a link between the death rate, which

is an experimentally observable parameter, and dose-response parameters (eq. 3.6). Since

the relationship between AB concentration and death rates is known (eq. 3.8), we are also

able to relate AB load to dose-response. Further, treating the ASB and ARB subpopulations

independently, we can compute the odds of the successful treatment with AB in the infected

subpopulation.

A significant advantage of the proposed approach is that it meshes well with the existing

DRMs. An additional choice of DRM, which could complicate the decision of a practitioner, is

not necessary. Moreover, the proposed approach does not change the workflow of traditional

QMRAs. Instead, it provides additional capabilities relevant to antibiotic resistance. It can

be used to predict the dose-response of ARB if one has information on 1) the dose-response

of ASB, and 2) kinetics of ARB and how it relates to ASB (discussed below).

Additionally, if one suspects exposure to antibiotics in the risk assessment, its influence

on human health outcomes can be accounted for using eq. 3.8. Since I introduce a novel

approach to DRMs, I provide an outline of the steps, along with an example (see section B.4).

As shown, the approach works equally well with exponential and beta-Poisson models to

compute dose-response for a single exposure. The total risk from multiple exposures can be

calculated in the usual way by assuming independence between exposures [57]. For example,

the annual risk can be computed from daily risk estimates by assuming that one day’s risk

does not affect another day’s risk.

The conservative assumption enabling this approach is that the ARB and ASB subpopu-
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lation have the same death rate in the absence of AB. If there is evidence for significant

differences in death rates in the absence of AB (due to the absence of mutations to compen-

sate fitness loss), then this difference can be set to µ′ − µ. Here µ′ is the ‘base’ death rate

for the ARB, which will be higher than the death rate of ASB (µ). Then µr,AB = µ′ + f(C)

, where f(C) is the concentration-dependent effect of the AB on the death rate. Another

assumption made is that there are only two kinds of bacteria, ARB and ASB. However,

resistance may vary in degree in different subpopulations. If one suspects multiple subpopu-

lations (e.g., with different Emax values), one can assume their independence and adopt the

probabilistic framework easily. In fact, the framework presented here can also be used for

samples containing a mixture of different pathogens present in an environmental sample to

estimate the total risk due to all the pathogens.

As a proof of concept, I investigated the case study of E. coli and the AB Gentamicin. I

found that the AB concentration C and the fraction of ARB fr emerged as influential pa-

rameters affecting the health outcome from a global sensitivity analysis. A rigorous exposure

assessment to quantify C and fr would thus be necessary to get accurate results in a QMRA.

The AB-bacteria interaction parameters (Emax, EC50) seem less influential for Gentamicin.

This supports the use of these parameters, that were determined in-vitro [99], in a host sys-

tem. A similar analysis would need to be carried out for different AB-bacteria combinations

to draw generalized conclusions.

A critique of this approach is that it fails to account for the details in the biological system.

For example, the precise concentration of AB in the vicinity of the bacteria is difficult to

estimate and likely varies in time. The bacteria themselves translocate from the point of entry

to the site of infection (e.g., travel through the alimentary canal). A more detailed stochastic

model for dose-response (with compartments or spatial distributions) may better reflect the

underlying system but would be significantly harder to parameterize adequately. Analytical

expressions will also be harder to come by, and the approach may require dynamic simulations
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for dose-response. Hence, I believe that the proposed approach provides a framework as a

first step to solve the problem. For example, the range of variation in the outcome due to

the change in C with time can be captured by investigating the outcomes at several fixed

concentrations.

When assuming that the probability of observing a response (illness) equals the probability

of not observing an extinction (eq. 3.1), I am not accounting for the carrier population.

These are the individuals who harbor the pathogen but do not show any visible symptoms

(infected but not ill). One could gain insight into the probability of infection in addition to

the probability of illness if the dataset had information on the number infected. The proposed

approach can be used to compute the probability of observing the response (infection). The

probability of illness can then be computed by multiplying this quantity by the constant

probability of illness given infection (as is done for norovirus in [89]). However, if evidence

suggests that ARB are more virulent than the ASB, this approach will underestimate the

illness risk. Here I distinguish between virulence (observed in-vivo) and fitness or growth

rate, which can be observed in-vitro. The latter can be accounted for using the death rates,

as discussed above. In summary, although the approach discussed here does not explicitly

deal with illness and infection, the framework presented can be applied to this end if the

data are available.

HGT and spontaneous mutation can result in the creation of ARB, which can potentially

influence the type of health outcome. The SD DRM presented here can be modified to

investigate the importance of these processes. For example, conjugation is modeled as a

second-order reaction (first order in ASB population (d(1 − fr)) and first-order in ARB

population (dfr)) [86]. A conservative estimate of rate constant of conjugation for E. coli

is rconj = 2.4× 10−11mL cells−1day−1 [86]. Hence the observed rate of conjugation becomes

comparable to observed net death rates ( µ = 18.35 day−1 for DS1, Table 3.3) only if either

the ARB or ASB subpopulation number around 1010cells mL−1. This is extremely high
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and atypical of what is expected from environmental exposure, suggesting that conjugation

does not affect dose-response significantly. Judging the importance of transduction and

transformation is non-trivial as the numbers of phages and MGEs must be accounted for,

respectively. Nevertheless, if these quantities were known along with the associated rates,

the SD framework can be modified to account for them.

The SD framework can be applied to both the exponential and the beta-Poisson DRMs.

Hence, this framework can be used to understand the effect of antibiotics on other bacteria

for which these models are applicable. However, for a given organism, the best DRM relies

on the objective of the QMRA being pursued and the dataset chosen [142]. In this study,

the two different datasets for E. coli yield two different best fit models. Risk predictions also

depend to a large extent on the dataset chosen. Deciding on the ‘best’ dataset or DRM for

E. coli is beyond the scope of this chapter and is dicussed in the QMRA Wiki website [142].

Nevertheless, the SD framework accommodates both DRMs and provides the capability to

investigate antibiotic resistance.

One limitation of applying this approach is the paucity of experimental data at each step.

While in-vitro experiments [99] are used to capture the effect of the concentration of AB

on bacteria, most studies on AB-bacteria interactions do not model the concentration-rate

relationship, and instead report summary metrics of therapeutic importance [100]. While I

have worked only with human datasets in this study, animal experiments may provide better

quality data. Nevertheless, whether quantitative conclusions can transfer from animals to

humans is debatable, as even human datasets (such as DS1 and DS2) show variability.

Another area with insufficient data is the enumeration of ARB. Several studies reporting

ARB occurrence in the environment report binary results (presence/absence) for each sample.

Others report occurrence summaries such as ‘23% samples tested positive for ARB’ (e.g.,

[87]). Only a few studies (e.g., [46, 56]) report the fraction of resistant bacteria in a single

sample. Additional data collection at these stages will enable risk assessment case studies.
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3.4 Methods

3.4.1 Fitting the model to data

I fitted the model to two E.coli datasets which are listed in Table B.1 along with the corre-

sponding tfs. I placed a binomial likelihood on the data as follows:

nill ∼ Binomial(ntot, P (d, tfs)) (3.12)

This approach is commonly used in building DRMs and amounts to minimizing the deviance

presented in [57]. I used the differential evolution algorithm [126] from DEoptim package [98]

in the R[110] programming language to fit the data. The effect of varying ARB fr at constant

AB concentration C = 1% MIC (minimum inhibitory concentration = 2 µg/mL) and varying

C at constant fr = 0.05 are presented in Fig. 3.2. (The effect of antibiotic concentration C

is incorporated in the model by increasing the death rate according to eq. 3.8).

The analytical approach described above suffices to fit the exponential DRM. However,

this DRM fails to provide a satisfactory fit for some datasets, for which the beta-Poisson

DRM provides a better fit and is often used as an alternative. As seen in the case for DS2

(Table 3.3), the beta-Poisson DRM fits the data better. However, this model does not have

a ready r value that can be related to the death rate. A numerical simulation is necessary

to parameterize the model to include the individual death rate.

The beta-Poisson DRM assumes that the survival probability of the pathogen, r, follows a

Beta distribution (with parameters α and β). This is different from the exponential DRM,

where r is assumed to be the same for all pathogens. The exact probability of illness can be

challenging to compute, and I used the relationship in eq. 3.7. To relate α and β to the death

rate of the susceptible strain in the presence of AB (µs,AB), I used the following approach:
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1. Generate N random values of r (r1, r2, ...rN) from a Beta distribution with parameters

α and β.

2. Compute the corresponding µi values using eq. 3.6 for each ri.

3. For known values of C, Emax, EC50, and µi, compute µs,AB,i using eq. 3.8.

4. Compute the corresponding rs,i from µs,AB,i using eq. 3.6.

5. Fit a Beta distribution to theN samples of rs,i and obtain the distribution’s parameters,

αs and βs. These can then be plugged into eq. 3.7 to estimate P (d).

The approach outlined above is straightforward, but in practice, numerical issues are encoun-

tered due to the extremely small (≤ 1× 10−16) values of r. Hence I used the fitdistrplus

package [36] in R. I verified that this procedure produces satisfactory estimates (see Fig. B.1).

3.4.2 Sensitivity Analysis

A global sensitivity analysis was carried out using the PAWN algorithm[105] (algorithm name

formed from author names), which measures sensitivity from the entire probability density

of the output rather than just the variance of the output. Sensitivity is not characterized by

a point estimate, but a list of estimates (PAWN indices) to give a fuller picture, with higher

magnitudes representing more influential parameters. The algorithm parameters are n = 15,

Nu = Nc = 100. Both the exponential and beta-Poisson DRMs were considered separately.

The analysis was re-run after fixing the dose of bacteria to understand the effect of the

remaining parameters (Fig. 3.4). A threshold value was calculated at the 0.05 significance

level to identify non-influential parameters (dashed line, Fig. 3.4). Parameters with PAWN

indices entirely below the threshold line are non-influential parameters. The parameter

ranges in which sensitivity was investigated are described in Table B.2 and Table B.3.
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3.4.3 Data availability

Codes reproducing the results in this chapter are available on Github at https://github.

com/JiangLabUCI/AbResistantDoseResponse.
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Chapter 4

Role of quorum sensing in microbial

pathogensis

4.1 Background

Pathogens in the environment present a growing threat to human health. Understanding

and quantifying the health risk that they pose is critical to make decisions on risk manage-

ment. To this end, it is essential to quantify the relationship between the level of pathogens

a person is exposed to (dose) and the associated probability of an adverse event (response),

which is achieved by dose-response models (DRMs). A cornerstone of dose-response is the

independent action hypothesis, which assumes that the pathogens in the microbial exposure

load do not interact with one another to initiate infection. Making assumptions on distribu-

tions of the number of pathogens ingested from the exposure and the number of pathogens

that survive to cause disease leads to several different DRMs. Of these, the most common

are the exponential and beta-Poisson DRMs [57].

A fundamental assumption of the exponential and beta-Poisson models is the single-hit
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hypothesis [94, 57], which postulates that only one organism needs to survive to initiate

infection. Meynell and Stocker [94] draw an analogy to bullets fired at a target bottle, of

which only one hits the bottle and breaks it. In contrast, the multi-hit hypothesis relaxes

this criterion by assuming that at least kmin(> 1) organisms need to survive to initiate

infection [57]. In terms of the bullet-bottle analogy, each bullet hits the bottle, but its

cumulative effect of bullets that finally breaks the bottle. The multi-hit hypothesis has thus

been interpreted as one of cooperation between the organisms in achieving infection, as one

organism is incapable of initiating infection [57]. Nevertheless, the single-hit hypothesis is

more widely accepted [117], and the corresponding DRMs are more frequently used [57].

The phrase ‘multi-hit’ has been used interchangeably with ‘cooperative’ in the literature,

even though classical multi-hit models stem from the independent action hypothesis [57]. I

resolve this seemingly counterintuitive relationship between cooperativity and independent

action by introducing the term ‘cooperativity in effect’. I use this term to describe the

situations resembling the bullet analogy: when the actions of agents are independent, but

the effect of their actions is cumulative. A fired bullet does not interact with any other fired

bullet, but the accumulated stress of their impacts breaks the bottle.

In contrast, I also introduce the term ‘cooperativity in action’, which I define as: when the

actions of agents are non-independent. This cooperativity is analogous to soccer (or other

team sports), where one individual may score a goal, but it would not have been possible

without help from the teammates. In the context of infectious diseases, cooperativity in

action occurs when there is quorum sensing, i.e., when signals from one microbe influence

the actions of another microbe. The role of quorum sensing in pathogenesis and establishing

disease has been observed for several bacteria e.g., Pseudomonas aeruginosa [81], Staphylo-

coccus aureus [77] and Streptococcus [31] (see [34] for other pathogens). Taking the soccer

analogy further, winning a match may be attributed to the goals scored by one or more

players.
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Similarly, infection may develop due to the survival (and subsequent replication) of one or

more clones. Classical dose-response does not account for cooperativity in action as the

associated models assume the independent action hypothesis. In this work, I introduce a

two-compartmental (2C) model of bacterial kinetics for dose-response. A single parameter

represents cooperativity in action, and I parameterize the model for the pathogenesis of S.

aureus on human skin.

Classical dose-response does not address another aspect, the carrier population. These are

the individuals who do not show symptoms when colonized, who form a not insignificant

proportion of the population in the case of S. aureus [19]. Sometimes, this population is

estimated when the response data on colonization is available. I show that the response data

on symptoms may suffice to predict the carrier population by assuming that response occurs

when pathogen load exceeds a threshold (called individual effective dose, [70]). Additionally,

being a kinetics based DRM, the 2C model can be used to probe 1) non-instantaneous

exposures [109] 2) environment-host transmission dynamics with multiple exposures, without

assuming independence between exposures 3) effect of antibiotics and antibiotic-resistant

strains [26].

4.2 Results

4.2.1 Deterministic model of kinetics

Studies have observed that pathogens transferred to a host sometimes undergo an initial

decay before growing in numbers to cause infection [44, 40, 123]. We hypothesize that this is

due to the existence of two distinct states of the pathogen, S1 and S2 (Fig. 4.1A). Bacteria

deposited in a new hostile environment (such as the host) are in S1. They can transition

to the state S2, which is well adjusted to the environment and exhibits density-dependent
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Figure 4.1: A) 2C model schematic B) Phase plot of 2C model C) Logistic process schematic
D) Variations in 2C stochastic simulation (each region bounds mean ± SD of 50 simulations)
E) Human health outcome classification according to SA dynamics

growth. Suppose h(t) and i(t) represent the density of pathogens in S1 and S2 respectively.

The differential equation representing S1-S2 dynamics is given by:

dh(t)

dt
= −r1h(t)− r2h(t) (4.1)

di(t)

dt
= r2h(t) + r3i(t)(imax − i(t)) (4.2)

Here, r1 is the rate of death of cells in S1. r2 is the S1-S2 transition rate. r3 is the logistic

growth rate of cells in S2, and imax is the logistic carrying capacity. I call this model the two-

compartment or 2C model (Fig. 4.1A). The model has two critical points at [0, 0] and [0, imax]

(Fig. 4.1B). The former is unstable, whereas the latter is asymptotically stable. In other

words, if the system is nudged away from the unstable critical point at [0, 0] (by addition
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of bacteria to the system), it will move towards the other critical point at [0, imax]. Note

that this system represents the density of pathogens and not their numbers, as differential

equations are not restricted to integer values.

4.2.2 Stochastic model of dose-response

The stochastic version of the 2C model is captured with continuous time Markov chains [3],

which restrict bacterial numbers to integer values. The first order reactions associated with

r1 and r2 (eq. 4.1) are easily represented in this framework by a simple death processes with

death rates r1 and r2 respectively. The r2 term in eq. 4.2 is represented by a simple birth

process with birth rate r2.

Interestingly, the logistic growth component in eq. 4.2 is more involved and the logistic growth

process [3] is used. In essence, the logistic growth process is equivalent to the deterministic

logistic equation. It is used when the system has a small number of entities being tracked.

It consists of two first and two second-order processes, given by the elementary reactions

defined in (Fig. 4.1C). The relationships between the rates of these processes (d1, b1, d2 and

b2) and the deterministic constants (r3 and imax) are given by [3]

b1 − d1 = r3imax (4.3)

b2 − d2 = 2(−r3)/A (4.4)

Here, I note that the factor 2/A stems from the size of the system (2D system with surface

area = A), which needs to be accounted for in second-order systems [50]. The first order

components (associated with d1 and b1) are density-independent and reflect the death and

division of cells independent of other cells. The second-order components (associated with

d1 and b2) are density-dependent and reflect the growth and death of cells as influenced by
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the number of cells in their neighborhood. d2 is the effect of competition of resources used

by the cells, creating an upper limit on the population size. I interpret b2 as the effect of

quorum sensing, where signals from the other cells enhance the division rate of a given cell.

This effect grows stronger with increasing cell numbers.

To understand the effect of these first and second-order processes on dynamics, I consider the

case where the deterministic rates (r3 and imax) are known. Eq. 4.3 constrains the first and

second-order processes, reducing the degrees of freedom to two. Picking values for d1 > 0

and b2 > 0 thus fully determines the behavior of the system (Fig. 4.1B). Setting b2 = d1 = 0

results in a small variance around the mean, where the mean is determined by the solving

the deterministic system (see Fig. 4.1D). Setting b1 to a nonzero value while holding b2 = 0

increases the variance. Interestingly, giving b2 a nonzero value and holding d1 = 0 increases

the variance dramatically. This increases the odds of the pathogen population going to 0

and causing no symptoms. Therefore, b2 serves as a knob that controls variance to influence

pathogenesis and dose-response outcomes.

I evaluated dose-response outcomes using the concept of individual effective dose or IED

[70]. Individuals with a total bacterial load (in states S1 + S2) above IED (represented by

ithresh), as done in other studies using CTMCs representing kinetics-based DRMs [147, 109]

(see Fig. 4.1E). Individuals in whom bacteria die out completely represent the unaffected.

Individuals who fit neither category, in whom the bacterial load takes an intermediate value,

represent the carrier population. We have assumed bacteria in the un-adapted S1 state

contribute to the threshold, which will not matter much if r1 > r2 as most of the bacteria in

the S1 state will die out before bacteria in S2 establish infection.
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Inoculation density (CFU/cm2) n̂res ntot P̂res

40 4 20 0.20
220 8 20 0.40
2000 13 20 0.65
105000 14 20 0.70
1600000 19 20 0.95
10000000 20 20 1.00

Table 4.1: Dose-response data from [123]. n̂res and ntot as defined in the text

4.2.3 Parameterizing the model

I parameterized the model with data from the Singh et al. study [123]. They performed a

clinical trial in which the participants’ hands were cleaned with alcohol before inoculation

with a known dose of SA. The area was covered immediately with a patch of polyethylene

film to distribute the inoculum underneath it uniformly. Bacterial densities in the covered

area was measured over six days (growth data). This was used to identify the parameters

r1, r2, r3 and imax by a procedure outlined in the Methods.

Singh et al. also counted the number of people who developed lesions by day 6 for a given

dose (dose-response data, Table 4.1). This data was used to identify the rate parameters (b2

or d1) and IED (ithresh). For this, the response probability (Pres) was estimated by counting

the fraction of stochastic simulations in which (h(t)+i(t))A ≥ ithresh. This predicted response

probability was used to minimize the deviance given by

∑
j

−2
(
n̂res,j log

(
Pres,j

P̂res,j

)
+ (ntot,j − n̂res,j) log

(
1− Pres,j

1− P̂res,j

))
(4.5)

and identify the unknown parameters. The dose-response data was verified to exhibit a trend

according to the Cochran-Armitage test with ZCA = 6.29, P=1.55×10−10 [57]. The fitting

procedure is outlined in the methods.

Some points of note are: 1) I compute the probabilities of unaffected and carrier outcomes by
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Model Min. dev. χ2
degrees,0.05 P Conclusion

2C(d1 = 0) 6.34 χ2
4,0.05 = 9.49 0.18 Fail to reject

2C(b2 = 0) 16.24 χ2
4,0.05 = 9.49 2.71×10−3 Reject

Beta-Poisson 6.40 χ2
4,0.05 = 9.49 0.17 Fail to reject

RH model 5.50 χ2
4,0.05 = 11.07 0.36 Fail to reject

Table 4.2: Summary of model fits. Min. dev. is the minimum deviance from best fit
obtained.

their corresponding fractions of simulations i.e, simulations with zero load and simulations

with intermediate load (0 < (h(t) + i(t))A < ithresh). 2) the b and d values discussed in this

study correspond to stochastic rate constants (cµ in [50]) and not the standard (determinis-

tic) rate constants. Stochastic rate constants are used for simulating numbers (CFU) with

continuous-time Markov chains, whereas standard rate constants are used for simulating

densities or concentrations (CFU/cm2) with differential equations. 3) imax, the carrying ca-

pacity, is interpreted as the mean of the SA densities observed in a population of individuals

in whom SA is not wiped out. It differs from the IED (ithresh), which is interpreted as the

SA load above which an individual from the population will show response.

4.2.4 Assessing the fit

I compared the quality of the dose-response fit with two baselines: 1) the beta-Poisson

model and 2) the quasi-mechanistic DRM of Rose and Haas (RH model) [116] with results

presented in Table 4.2. The 2C model, with d1 = 0 fits the data as well as the beta-Poisson

and RH models at the 0.05 significance level. Setting b2 = 0 fails to fit the data at the 0.05

significance level, and so I rejected this hypothesis.

Biologically speaking, these results mean the following: 1) Under the umbrella of the 2C

model and its assumptions (existence of 2 states S1 and S2, response predicted by IED),

cooperativity in action is necessary to explain SA dose-response 2) cooperativity in action

is an alternate hypothesis to independent action + constant infectivity (RH model) and
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independent action + variable infectivity (beta-Poisson model). However, neither the RH

model nor beta-Poisson model can explain the carrier population without additional data.

Therefore, I favor the 2C model with cooperativity in action (b2 = 0, d1 6= 0) and restrict

further discussion to its properties and capabilities.

The optimization algorithm used to fit the deterministic model (see Methods) provided a

single best-fit parameter set and additional less-optimal parameter sets of varying quality.

Using values (r1, r2, r3 and imax) from such sub-optimal solutions to fit eq. 4.5 improved the

fit to the dose-response objective function (eq. 4.5). An explanation for this observation is

that the best-fit to growth data overfits that data. This two-step optimization procedure

sheds light on parameter uncertainties and the trade-off between fitting the growth and dose-

response data. The trade-off and the rank one solutions (solutions with no other solution

better than them) are presented in Fig. 4.2A and Table C.1 respectively.

I chose two rank 1 solutions to illustrate the fit of the 2C model (colored in Fig. 4.2A). The

deterministic model is compared with the model of [116] (labeled RH model) in Fig. 4.2B.

The 2C model fits the data better than the RH model, as seen by the sum of squared errors

(SSE). The 2C model also predicts a more gradual decay compared to the RH model.

A visual comparison of the fit of the stochastic 2C model with other models is presented

in Fig. 4.2C. The better performance of RH and BP models compared to the 2C model is

visually less discernible. Compared with Fig. 4.2B, the solution with a lower SSE has a

higher deviance, indicating the trade-off between fitting growth and dose-response data.

Fig. 4.2D shows the probabilities of unaffected, response, and carrier outcomes across a range

of bacterial doses. The height of each color for a given dose is the probability of the outcome

associated with that color. The probability of the response outcome increases with increasing

dose, as expected. Carrier probability increases and then decreases with increasing dose.
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Figure 4.2: 2C model fit and predictions. (A) Plot of the dose-response objective function
value (deviance) vs. the growth objective (SSE). Pareto rank 1 solutions (with no solution
better than them) are connected by the Pareto front. Solutions at the extremes of the pareto
front are colored. (B) Best fits of the 2C and RH models to growth data. (C) Best fits of
the 2C and RH models to dose-response data. (D) Plot of the outcome probabilities as a
function of the dose. For a given dose, the height of a colored region is the probability of
the corresponding outcome, with the sum of the heights of each region totalling 1.

61



4.2.5 Parameters in absence of alcohol pre-treatment

As mentioned earlier, [123] treated their subjects with alcohol before administering SA,

effectively reducing the resident microflora load on the skin. In comparison, [116] report

an experiment similar to [123] wherein the subjects were inoculated with SA 24 hours after

using regular soap. We assume the skin resident microflora exerts a competitive pressure

that acts as a constant first-order death rate on SA. To determine the fit of the 2C model

to this more realistic scenario, I explore the model fit under the following two hypotheses:

The first hypothesis (which I call r1∗) assumes that only the un-adapted SA are affected by

the resident microflora. The model (eq. 4.1 & eq. 4.2) is modified to

dh(t)

dt
= −r∗1h(t)− r2h(t) (4.6)

di(t)

dt
= r2h(t) + r3i(t)(imax − i(t)) (4.7)

Here r∗1 reflects the increased r1, accounting for death by resident microflora. The second

hypothesis (which I call rmf) assumes that both un-adapted and adapted SA are affected by

resident microflora. The model (eq. 4.1 & eq. 4.2) is modified to

dh(t)

dt
= −r1h(t)− r2h(t)− rmfh(t) (4.8)

di(t)

dt
= r2h(t) + r3i(t)(imax − i(t))− rmfi(t) (4.9)

Other hypotheses may also fit the data from [116]. However, I only consider the hypotheses

that can be modeled with one additional parameter. This is because there are only four

data points, including the initial condition. Using two parameters to fit the three remain-

ing data points will result in over-fitting. For example, the corrected Akaike Information

Criterion (AICc, which corrects for small sample sizes) [69], for such a case (3 data points,
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Figure 4.3: 2C model in the absence of alcohol pre-treatment. Two different hypotheses
(r∗1 and rmf, described in text) were investigated. (A) Fit of the RH model and the two
hypotheses of the 2C model to data obtained in the absence of alcohol pre-treatment. (B
and C) Outcome probabilities for r∗1 and rmf hypothesis respectively.

2 parameters) will be infinity. The limited data also hindered testing of absolute goodness

of fit. Other hypotheses that can be captured by a single parameter change (e.g., resident

microbiota affecting r2) did not yield good fits (data not presented).

The fit of these two hypotheses, along with the approach of [116] are compared in Fig. 4.3A.

The RH model fits the data better because of the additional parameter. The r∗1 hypothesis

shows a sharper decline than the rmf hypothesis, but the available data does not strongly

support either hypothesis in favor of the other as indicated by their similar SSE values.

The difference between the hypotheses is striking when looking at their outcome probabilities

with increasing dose. The r∗1 hypothesis predicts a significant Pres at higher doses (Fig. 4.3B)

whereas the rmf hypothesis predicts almost zero Pres and carrier probability (Fig. 4.3C). This

is because the adapted SA also dies out from the inhibitory effect of the resident microflora.
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4.2.6 Parameters for MRSA

To see if the parameters found for MSSA could be used for MRSA, I looked at studies in

which both MSSA and MRSA were grown separately under similar conditions. Since the

growth curves for MSSA and MRSA were highly correlated across studies (see Table C.2), I

decided to use the MSSA parameters for MRSA.

4.2.7 Case study

To demonstrate the applicability of the model, I use it to predict the outcome probabilities

for patients in a hospital. As an example, I look at the bedside rails in a hospital as

an environmental reservoir of MRSA and the subsequent risk to a patient using that bed.

The patient’s exposure to MRSA is calculated as the product of the MRSA density/cm2

on bed-rails [78], area of hands [1], and the transfer efficiency from bed-rails to hands [2]

(see section 4.4). Exposure is assumed to randomly occur at a hand-bedside rail contact

frequency of 0.28 contacts/hour [27]. The environmental reservoir is assumed not to be

affected by contact events, which is possible if the patient touches different parts of the

bedside rails. In this way, I modeled the MRSA load in a patient staying in a hospital with

stochastics. I repeated this 1000 times to understand the probabilities of different outcomes.

Sample trajectories of the MRSA load on the patient over time are presented in Fig. 4.4A

(r∗1 hypothesis) and Fig. 4.4B (rmf hypothesis). The sudden increases in MRSA loads are

indicative of the random contact events. After this increase, the MRSA load encounters a

period of decay. In some cases, when the populations cross 104 CFU, the contact events are

not discernible from the general randomness in the simulation. Some trajectories under the

r∗1 hypothesis undergo an explosion while none of those under rmf do. The sharp increase at

the ends of the explosive trajectories (Fig. 4.4A, red lines) highlights the numerical difficulties

in simulating stochastic systems with a large number of entities.
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Figure 4.4: Case study (described in text) outcomes for the r∗1 and rmf hypotheses. (A
and B) Sample population trajectories of the case study for the two hypothesis. log10 (SA
population + 1) is plotted to avoid (negative) infinities. (C and D) Outcome probabilities
of the case study for the two hypotheses. Colors are as indicated in (A).

The distribution of outcome probabilities is given in Fig. 4.4C (r∗1) and Fig. 4.4D (rmf).

Initially, both hypotheses predict similar outcomes. At the end of day 1, they start to diverge

with r∗1 predicting an increasing likelihood of carrier outcomes and even predicting response

outcomes by day 6. On the other hand, rmf predicts a more or less constant probability

of carrier status and no response outcomes through day 6 (Fig. 4.4D). The corresponding

trajectories (Fig. 4.4B) explain this behavior, as MRSA loads from exposure events are not

large enough to overcome the decay and establish response. This is consistent with the trend

seen earlier (Fig. 4.2) of rmf predicting less adverse outcomes than r∗1.

4.3 Discussion

A two compartment model for SA dynamics on the human skin was developed and fitted

to data. By assuming that SA transitions from an un-adapted state to an adapted state,

the model is grounded in first principles. The stochastic aspect of dose-response emerges
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naturally from a stochastic simulation of the growth kinetics. In addition, the model predicts

carrier outcomes without additional data.

Armitage et al. [7] interpret results from several studies to posit that pathogens, including

bacteria, show an initial exponential increase in all individuals. We argue that this is not

inconsistent with the initial decrease assumption for three reasons. Firstly, the exponential

increase is observed in organs like the liver or spleen, and not the whole body or site of

inoculation (e.g., [66, 53]). This does not refute the possibility of an initial decrease at the

inoculation site or the whole body. Secondly, the posited decrease is transient, and samples

may not have been collected during this window. Thirdly, the magnitude of decrease is low

at higher inocula (e.g., Fig. 4.1B) and consequently less detectable. Further, compared to

the initial decrease observed when all bacteria are in the S1 state, one would expect 1) no

initial decrease if seeding with bacteria all in the S2 state, and 2) a smaller initial decrease if

seeding with a mixture of bacteria in the S1 and S2 state. These trends have been observed

when pathogens from in-vivo cultures were used for infecting the host [44, 151]. We note

that the transition from S1 to S2 is perhaps not instantaneous, and the pathogen population

may constitute a continuum of states between S1-S2.

When loads were measured in the whole body, a transient decrease was observed in some

cases (see Fig. 6 in Yamamura et al. [151]). Clumping of bacteria was offered as a possible

explanation [151], but this does not rule out an actual reduction in viable counts observed

in other systems (see [44, 123], Table 2 in [38]).

Armitage et al. [7] also note that non-responders show a subsequent decrease after the initial

exponential increase. These were substantiated by measurements from survivors who were

killed at later time points [63, 38]. This decrease is probably due to the activation of the

adaptive immune response inside the host, which could be incorporated in a within-host

variant of the 2C model.
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Using the concept of IED to evluate reponse, I am able to explain the data with a single

IED. It has been observed that the toxic dose of a chemical can vary between individual

subjects or with the season [133]. A similar stochasticity may be expected in IED between

individuals which can be attributed to differences in covariates such as body weight, sex,

immune history and biological noise. However, assuming this was not necessary to produce

an acceptable fit.

The model was fit to data by following a two step optimization procedure. Direct multi-

objective optimization was not pursued since the objective functions were very different from

each other. The deterministic ODE model was easy to evaluate and a global optimization

algorithm was employed to guard against local minima while fitting the growth data. Fit-

ting the dose-response data was computationally challenging for 3 reasons: a non-smooth

objective function, stochastic simulations have to be repeated many times, and the number

of stochastic entities being modeled is not small. Hence, a simple brute-force optimization

was adopted.

The RH model exhibits a sharp initial decline in SA density and predicts values lower than

the observed minimum for each initial load (Fig. 4.2B). The 2C model only goes as low as

the lowest load observed on the skin. Experiments similar to that of [116] with greater time

resolution are necessary to ascertain the time of true minimal SA density. The 2C model

stochastic model does not perform as well as the RH model (Fig. 4.2C). However, the 2C

model fit to dose-response data improves along the Pareto front (Fig. 4.2A). It is possible

that exploring solutions with a higher growth objective may yield a solution that fits as

well as, if not better than, the RH fit to the dose-response data. Moreover, the proposed

approach offers advantages over the existing approach in that 1) it is fully mechanistic, and

hence is more applicable in other scenarios (e.g. using MSSA parameters for MRSA, non-

instantaneous exposure, multiple exposure which is discussed here), and 2) in addition to

response outcomes, the proposed approach also accounts for carrier outcomes.
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Perhaps the most interesting outcome of this study is the incorporation of quorum sensing in

dose-response modeling. The rejection of the absence of cooperativity in SA pathogenesis and

the adequate fit of cooperativity make a strong case for the cooperativity in action hypothesis.

Experimental support for this hypothesis include the well studied Agr system of quorum

sensing [77, 80]. In the words of Le. et al, the Agr system “generally enhances pathogenesis

by increasing expression of aggressive virulence determinants such as toxins and degradative

enzymes" [80]. This system is activated when bacteria reach a certain density, which results in

a disease response such as a murine abscess [149]. However, the 2C model posits that quorum

sensing enhances bacterial growth rate, for which I propose two possible explanations. The

direct explanation is the existence of an as yet undiscovered signaling mechanism responsible

for density dependent growth enhancement. A second explanation relates to the events

initiating response in a host, which is the interaction of the toxins/enzymes produced by SA

with the host tissue. The 2C model captures these dynamics at a higher level of abstraction,

with the mathematical variable i(t) (or the S2 state) representing the amount QS signals

and toxins. We can interpret b2 as the rate of enhanced production of these factors. The 2C

model does not capture other observed dynamics, such as the down regulation of the Agr

system and its role in biofilm formation [80, 77].

The model was extended to more realistic situations where the SA inoculation area was not

alcohol treated by means of two competing hypotheses, r∗1 and rmf. These hypotheses predict

very different carrier and response probabilities. This is because the former assumes that the

adapted state is unaffected by resident microflora while the latter assumes that the adapted

and un-adapted states are equally affected. The truth is likely in the middle, i.e., SA in

the adapted state are affected by resident microflora to a lesser extent than SA in the un-

adapted state. Such an approach was not pursued in the spirit of avoiding over-fitting given

the limited data. We note that more data collected within the first day of inoculation will

help judge the quality of the hypotheses presented in this study, which need to be evaluated

on an absolute scale with a goodness of fit test. Confidence in the predictions of the model
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will improve as more data is gathered, either supporting or refuting the hypotheses.

The model’s applicability was demonstrated with a simple case study. The mechanistic

nature of the model enabled direct simulation of repeated exposures from the environment,

without having to assume independence between exposure events. This paves the way for

more involved modeling efforts such as accounting for healthcare workers and other hospital

surfaces that contain MRSA. Such efforts can be challenging for two reasons: the availability

of high quality data to model behaviors and the computational effort in simulating stochastic

systems. However, they can supplement our understanding of the environment as a source of

MRSA and help devise the most effective control measures in hospitals and the community.

4.4 Methods

4.4.1 Fitting kinetic data

The parameters r1, r2, r3 and imax were identified by minimizing the following objective

function:

∑
c

∑
j

(
log10

(
hc(tj) + ic(tj)

)
− log10

(
ŷc(tj)

))2

(4.10)

Here the subscript c denotes the 3 different initial conditions while tj is the jth observed

time point. ŷ is the measured SA density. Since initially none of the bacteria are adapted

to the environment, i(0) is set to 0. Hence, h(0) is set to the initial inoculating density i.e.,

h(0) = ŷc(0). Using this objective function assumes that both un-adapted and adapted cells

are picked up while taking measurements.

A global optimization algorithm, Differential Evolution Markov Chain (DE-MC, [130]), was

used to minimize the objective function. The algorithm was run for 40000 iterations and 16
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chains were evaluated in parallel. The first half of the solutions were discarded (burn-in). A

MATLAB implementation [25] was used.

4.4.2 Simulating the stochastic model

The adaptive τ leaping algorithm [21] specific to the model was implemented in Python.

Numba was used to speed up the code.

4.4.3 Fitting dose-response data

Running 1000 simulations of the stochastic model is computationally more expensive than

evaluating the deviance for a single value of ithresh with eq. 4.11.

Pres =
no. of sims with (h(t) + i(t))A ≥ ithresh

n
(4.11)

Hence, for a guessed value of b2, simulations were run and the best fitting ithresh was found.

When multiple threshold guesses gave the same lowest deviance, ithresh was set to the mini-

mum of these guesses. The best b2 was found by brute-force search in a hand-tuned interval.

Objective functions were evaluated in parallel using Python’s built-in multiprocessing

module on the High Performance Computing facility at UC Irvine.

4.4.4 Case study

Patients were assumed to occupy the same bed for the duration of 6 days. Exposure to

MRSA was modeled as a Poisson process and assumed to occur at random with a contact

frequency of 0.28 contacts/hour [27]. Hence, the time between two exposure events was

sampled from an exponential distribution with rate parameter = 0.28 contacts/hour.
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Each exposure event resulted in an increase in the number of SA in S1 (unadjusted state).

This inoculation load or increase was computed as the product of 1) MRSA density//cm2

on bed-rails ([78], sampled from a normal distribution with mean = 159.5 CFU/100 cm2,

std. dev. = 396.4 CFU/100 cm2, truncated at (0, 1620)) 2) area of hands ([1], women’s

hand size = 132.42 cm2) 3) transfer efficiency from bedside rails to hands ([2], sampled from

a uniform distribution with bounds [0.22, 0.38]). At each exposure time, the simulation was

halted and the number of SA in S1 was increased by the inoculation load.
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Chapter 5

Discussion

The broad questions I outlined in my dissertation, and the specific questions that I framed

and attempted to answer, concern kinetics of pathogens both outside and within the host. I

have developed mathematical models of these processes and parameterized them with data

from the literature, often relying on a strongly computational approach. I used these models

to make quantitative predictions, generate experimentally verifiable hypotheses, and ask new

questions. The data I used has been around for many years, lending support to the idea

that it is not always necessary to generate new data; sometimes, it suffices to reflect on what

we already know to make progress. Below, I use my work to support my hypothesis - that

mathematical models that account for details and leverage sophisticated techniques open up

new avenues of scientific inquiry and bring existing paradigms into question.

For my first objective (chapter 2), I focused on the safety of using treated wastewater for

agriculture, given that viruses may internalize in the vasculature of the produce. To this

end, I introduced a dynamic model for viral transport from the irrigation water to the final

produce. Specifically, I tracked the biggest cause of gastrointestinal illness in humans - the

human norovirus - in lettuce, which is often eaten uncooked. I modeled lettuce grown in
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soil and hydroponic systems from first principles, accounting for lettuce growth, transport

of virus within lettuce (internalization), natural viral decay, and the attachment of virus

particles to soil particles/walls of hydroponic tanks. I found parameters for the model in

the literature spanning several fields where possible. For the remaining parameters, I used

published data on norovirus internalization [37] to fit the model. In doing the latter, I

greatly benefitted from the computational power of the cluster at UCI, which helped me

simulate the system of ODEs repeatedly to identify good parameter sets. I found that

using treated wastewater (secondary effluent) for irrigating lettuce did not meet the safety

standards of the U.S. EPA nor the WHO. This conclusion was independent of the growth

medium (soil or hydroponics), despite the greater attachment of viruses to the soil. I verified

that the conclusions were robust to several model assumptions by a global sensitivity analysis

– another computationally intensive task. Factors such as the irrigation schedule and time

of harvest were deemed influential by this analysis, highlighting the utility of a dynamic

model. Changing these factors could reduce the risk of virus internalization, a hypothesis

which is experimentally verifiable. The investigation of these interventions would not have

been possible without a detailed model of the processes involved.

For my second objective (chapter 3), I focused on antibiotic-resistant bacteria (ARB), which

have been isolated in several environmental compartments. To meet this need, I modeled

the in-vivo kinetics of bacteria in a host as a simple death process. With this, I was able

to establish a link between the popular exponential and beta-Poisson DRMs and observable

parameters like death rates – in a framework I call the SD (simple death) framework. This

link was analytical for the exponential DRM. I designed an iterative computational procedure

for the beta-Poisson DRM, which is easily parallelized to speed up computation. Further, this

link enabled inquiries into possibilities that were out of reach of the classical framework. For

example, by assuming that ARB act like antibiotic sensitive bacteria (ASB) in the absence

of antibiotics, I was able to predict the probability of the resulting illness responding to

antibiotics. Additionally, I incorporated the effects of antibiotics on dose-response by using
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from in-vitro studies. By parameterizing the model for E. coli and its Gentamicin resistant

variant, I found that a minimal concentration of Gentamicin was sufficient to select for

the Gentamicin resistant strain and result in an illness where Gentamicin would not work.

Moreover, the SD framework can theoretically account for horizontal gene transfer, although

experimental determination of the associated rate constants is a challenge. I also identified

other gaps in data required for an accurate QMRA in the context of the SD framework.

These include the ARB fraction in environmental compartments and the relationship between

antibiotic concentration and death rates for different bacteria.

Towards the third objective (chapter 4), I proposed a two-compartment stochastic model of

bacterial kinetics with cooperativity in action captured by a single parameter. This model

differed from the existing approaches to dose-response modeling, which either adopted in-

dependent action or cooperativity in effect. By developing compiled code that is highly

parallelized and using an optimized tau-leaping simulating algorithm [21], I sped up the sim-

ulation of the stochastic model to fit it to data on S. aureus pathogenesis. Fitting the model

to the data would not have been possible without a cluster, as it was a multi-step proce-

dure involving repeated stochastic simulations of large numbers of species. Nevertheless, this

huge effort paid off when I found that the hypothesis of cooperativity in action cannot be

rejected. I was able to show, for the first time, that synergistic interaction between bacteria

(or quorum sensing) can account for their ability to initiate disease symptoms. This differs

from the traditional assumption of independent action in dose-response modeling, wherein

each bacterium is assumed to act independently.

I believe that the arguments presented above stand in support of my hypothesis.
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Appendix A

A transport model for quantifying

norovirus internalization in lettuce

A.1 Hydroponic growth medium

A.1.1 Justifying the setting of rate of volume reduction to rate of

transpiration

Hydroponic tanks face water loss by two processes, evaporation and transpiration. [28] used

generalized linear models to fit the rate of evapotranspiration (ET) in hydroponically grown

lettuce. They found that the air temperature and vapor pressure deficit had the lowest

significance among the covariates considered. Taken together with the marked increase in

water usage as the lettuce grows, the evaporation component in ET is thought to be less

important in the hydroponic system. Hence, I made a simplifying assumption that the rate

of ET, rather than the rate of transpiration, drives viral transport. I equated the flow rate

to the rate of ET for these reasons.
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A.1.2 Volume of shoot

The growth model for the lettuce shoot dry weight (given below) was obtained from [28],

which was first introduced in [17]. I converted the dry weight to fresh weight using the

dry:fresh weight ratio dshoot,h=0.045 [16] and shoot density ρshoot=0.35 g/cm3 [72].

M ′
shoot(t) = exp(s1 + s2t+ s3t

2)

M ′
shoot(t) is the rate of accumulation of dry mass (g dry wt/ mL). s1, s2 and s3 are as defined

in Table 2.2. Volumetric growth rate is given by eq. (2.8), Table 2.1.

A.1.3 Volume of roots

I obtained the growth model for the lettuce root dry weight from [16]. I converted this to

fresh weight using the dry:fresh weight ratio (droot,h=0.057) estimated from [152] white LED

with no supplemental light). I assumed a density ρshoot=0.2 g/cm3.

M ′
root(t) = exp(r1 + r2t+ r3t

2)

M ′
root(t) is rate of accumulation of dry mass (g dry wt/ mL). r1, r2 and r3 are as defined in

Table 2.2. Volumetric growth rate is given by eq. (2.7), Table 2.1.

A.1.4 Water volume fitting considerations

While [28] found that the rate of dry mass accumulation had the highest significance, I could

not use the coefficients (at, bt) they provided. This is because the cumulative water usage

predicted by those coefficients in the monitored period is higher than the tank volume of

800 mL specified by [37]. To account for the lower water usage, I fitted the coefficients while
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maintaining the conclusion of the experiment that the rate of ET is a linear function of the

dry mass accumulation rate.

A.2 Soil growth medium

A.2.1 Volume of envelope

The reported soil envelope volume (Ve) in the lettuce Rainha De Maio in [106] for different

soil types varied from 3332 – 8568 cm3 although the growth stage is not reported. [140] used

a different cultivar (Early Prize Head) and very different estimates were obtained, especially

for the later stages of growth. Fitting a cone of radius 3.46 inches and height 6 inches in the

early stage gives a volume of 3706 cm3. Fitting a cone of radius 1.5 feet and height 5 feet

gives a volume of 3.336×105 cm3 for the mature stage. Using these numbers as guidelines, I

fixed the soil envelope volume (Ve) to 80000 cm3 and verified the low sensitivity of the risk

estimates to large variations in this parameter (Fig. 2.5).

A.2.2 Volume of shoot

[128] compared 3 lettuce growth models – the logistic, Gompertz [51] and the expolinear

[52] model. I chose the logistic model (eq. (2.8), Table 2.1), despite its higher root mean

squared error, because there are insufficient data to simulate the expolinear and Gompertz

models. This model predicts dry weight/area, and I extended it to fresh volume per unit

plant because: 1) The number of plants per unit area (np=17.6 plants/m2) remains constant

over the course of that experiment [129]; 2) The ratio of dry weight: fresh weight (dshoot,s)

remains constant over the lettuce growth phase [16] ; 3) The density of the shoot (ρshoot)

remains constant over the growth phase. The growth equation in dry weight/area (W (t))
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over time is given by:

dW (t)

dt
= rgW (t)

(
1− W (t)

Wf

)

where wf is the final dry weight per unit area. Substituting W (t) = Vsh(t)npdshoot,hρshoot

and Wf = wfnpdshoot,h (where wf is the final fresh weight per plant), eq. (2.8), Table 2.1 is

obtained. Hence the same growth rate constant r is applicable for the fresh volume model.

I took the final fresh weight (wf ) and density (ρshoot) from [72] for the Ithaca variety.

A.2.3 Flow rate

[45] used a model to predict the transpiration rate (in mm day−1) of lettuce over its growth

phase in soil. To get the volumetric flow rate, I multiplied by an arbitrary area and divided

by the number of plants in that area:

F (mL plant−1day−1) = ROT (mm day−1)× area
no. plants in that area

where F is the flow rate and ROT is the rate of transpiration. Since lettuce was reportedly to

occupy three fourths of the total area at harvest time (the rest occupied by soil), I computed

the per plant transpiration rate by considering an area of 1m2 using:

F (mL plant−1day−1) =
ROT (cm day−1)

10
× 1m2

0.75m2 ÷ area of fully grown lettuce

I obtained the ROT from figure 3 in [45] using WebPlotDigitizer [115] and converted it to

flow rate using the method described above.
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A.2.4 Model fitting and diagnostics

I fitted log10 of the viral concentration because viral concentrations at different time points

differed by orders of magnitude. Fitting concentrations resulted in a good fit for early time

points but inaccurate estimates for later timepoints used in estimating the risk. While max-

imizing the likelihood of the log10 concentration, I did not weight by the standard deviations

as these estimates were from small sample numbers [97]. I did not pursue multiobjective

approaches to simultaneously maximize the individual likelihoods of water, root, and shoot

concentrations due to the similar orders of magnitude of the likelihoods. For the same reason,

I did not weight likelihoods differently.

I also investigated convergence diagnostics. I discarded the first half of the 20000 iterations

of DE-MC (burn-in). I identified outlier chains by their characteristic higher mean objective

function value compared to other chains and discarded them. The R̂ values [48] of the

remaining chains were close to 1 (data not shown). I randomly subsampled the samples

from these chains (after burn-in and outlier removal) and used them for further analysis.

A.2.5 Sensitivity analysis

Parameter Fixed
value

Lower
bound

Upper
bound Source

ρshoot 0.35 0.27 0.35 Other lettuce densities in

droot,h(t) 0.057 0.0444 0.071 95% quantile by assuming normal
distributed root weights [152]

dshoot,h 0.045 0.04 0.05 From [16]

ρroot,h 0.2 0.1 1 Assumed to span one order of
magnitude.

tht,h 14 12 16 Assumed two-day difference

tg,h (0) 800 600 6000 Assumed from experiment, span
one order of magnitude

tli,h 21 19 23 Assumed two-day difference

Ve 80000 8000 80000 Assumed to span one order of
magnitude
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θ 0.435 0.435 0.476
Ranging from sandy loam to clay
loam (no loamy sand or sand)
from [29]

kdec,s 0.15 0.15 0.199 Surface applied, PBS, 2 soil types
from Roberts.et al 2016

Vroot,s(t) 100 30 300 Assumed to span one order of
magnitude

rg 0.2056 0.203 0.2082 From standard error in [128]
wf 550 335 550 From [72]
katt,s 4.1, 0.8 0.8 4.1 From [121]

kdet,s
0.00087,
0.003 0.00087 0.003

tht,s(t) 14 12 16 Assumed two-day difference

Table A.1: Sensitivity analysis parameters

A.3 Figures

Figure A.1: Comparison of risks by increasing holding time of lettuce after harvesting from
soil (A) or increasing tank volume of hydroponic grown lettuce (B). Both strategies failed to
reduce risk below the acceptable limits.
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Figure A.2: Illustration of the difference in response to delay input for a time invariant vs.
a time variant system. An input pulse at t = 0 produces the response in the top right panel
for time invariant and time variant systems. Shifting the input pulse to t = 10 produces
a shifted (but same shape of blue lines) response in the time invariant case but a different
characteristic response (different shape of orange lines) in the time variant case. Time to
reach a response of 0.4 remains in the same relative position (tinvar) for the time invariant
system whereas it shifts (tvar to tvar,2) for the time variant system, showing non-unique times
for reaching the same response.
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Figure A.3: Comparison of the viral concentration in the growth medium (water) and lettuce
shoot using models with and without incorporation of AD of viruses to hydroponic tank walls.
In this simulation, a lower katt,s value (one tenth of the best fit parameter from the) was
used. The model without AD underestimates the viral load in the lettuce.

Figure A.4: Illustration of median(log10(risk)) as a function of AD kinetic parameters for
soil grown lettuce, β Poisson risk model. Simply replacing katt,s and kdet,s with the medians
of katt,h and kdet,h in the soil model drastically reduces the median(log10(risk)). Comparing
numerical values of median(log10(risk)) listed above (see Table 2.3) with Fig. 2.4 (top panel,
median of β Poisson boxes) shows that a change in AD kinetic parameters exerts a major
influence in determining the magnitude of risk.
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Figure A.5: Histograms of the pairwise distances of annual risk estimates (Sc1), Pill,ann for
the different dose-response models. Pairwise distance is a measure of variability with lower
distances indicative of less variability. The within dose-response model variability (solid
lines) are lesser than between dose-response model variability (dashed lines).
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Appendix B

Quantifying the infection risk of

antibiotic-resistant bacteria

B.1 Datasets used
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ID [Ref] Dose nill ntot tfs(days)

DS1 [127]

1.00e+04 0 5

1

1.00e+04 0 5
1.00e+06 0 5
1.00e+06 1 9
1.00e+08 5 8
1.00e+08 3 5

DS2 [127]

1.00e+06 0 4

2.625

1.00e+06 1 5
1.00e+08 1 5
5.00e+08 3 5
2.50e+09 6 6
1.00e+10 9 10
1.00e+10 9 14
1.00e+10 3 5
1.00e+10 5 5
2.00e+10 2 2
2.30e+10 14 19

Table B.1: Datasets used in chapter 3.

B.2 Parameter ranges for sensitivity analysis

Parameter Units Lower bound Upper bound
C mg L−1 0.00 0.05
fr - 0.00 0.10

log10(d) - 1.00 4.00
Emax* day−1 612.00 1836.00
EC50* mg L−1 4.96 14.89
r* CFU−1 5.33×10−9 1.59×10−8
tfs days 1.50 2.50

Table B.2: Parameter ranges for exponential model. Parameters with * are increased and
decreased by 50% of the values used in Fig. 3.2.
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Parameter Units Lower bound Upper bound
C mg L−1 0.00 0.05
fr - 0.00 0.10

log10(d) - 1.00 4.00
Emax* day−1 612.00 1836.00
EC50* mg L−1 4.96 14.89
α* - 0.08 0.24
β* - 7.07×106 2.12×107
tfs days 2 3

Table B.3: Parameter ranges for beta-Poisson model. Parameters with * are increased and
decreased by 50% of the values used in Fig. 3.2.
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B.3 beta-Poisson procedure verification

Figure B.1: Verify conversion procedure for beta-Poisson model. (A) Plot of µ at various
concentration. (B) Comparison of empirical CDF of the sampled r values and the CDF from
the fitted Beta distributions. The analytical CDF at 0% MIC is also shown for comparison.
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B.4 Methods

B.4.1 Using the Simple Death DRM

Suppose one is interested in calculating the response for a pathogen. It is present in an

exposure case with d = 1000, with 20% of the pathogen being resistant to an antibiotic, and

the concentration of antibiotic is C = 0.025×MIC (2µg mL−1) = 0.05µg mL−1.

• Identify dose-response data for the pathogen. This can be like DS1 or DS2 listed in
Table B.1.

• Identify tfs. This is the latest time at which some subject shows the first symptom.
Suppose tfs = 1 day

• Identify Emax and EC50 for the antibiotic-pathogen combination of interest. Suppose
Emax = = 1224 day−1and EC50 = 9.93 mg L−1= 9.93 µg mL−1.

• Fit both exponential and beta-Poisson models to this dataset and identify the best
fitting model, using methods outlined in [57].

• If best fitting model is exponential, go to section B.4.2. If best fitting model is
beta-Poisson, go to section B.4.3.

The sensitivity analyses indicate that getting approximate values for tfs is sufficient to predict

response. However, it’s value is critical to accurately estimate death rate (µ) if using the

exponential DRM.

B.4.2 Using exponential DRM

The exponential model is given by:

P (d) = 1− exp (−rd)
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Suppose the best fit for r is given by r̂ = 1.07× 10−8.

• Compute µ by solving
(1− exp(−µtfs)) = exp(−r̂)

to get
µ = − log(1− exp(−r̂))/tfs = 7.97 day−1

• Compute µs,AB(C) using

µs,AB(C) = µ+
EmaxC

EC50 + C
= 7.97day−1 +

1224 day−1 × 0.05µg mL−1

(9.93 + 0.05)µg mL−1
= 14.10 day−1

• Set µr,AB = µ = 7.97 day−1

• Compute extinction probabilities for the susceptible and resistant subpopulations using

Pext,s(d|fr, C) = (1− exp(−µs,AB(C)tfs))d×(1−fr) ≈ 0.999400822

and
Pext,r(d|fr, C) = (1− exp(−µr,ABtfs))d×fr ≈ 0.933317727

• Compute total response probability with

P (d|fr, C) = 1− Pext,s(d|fr, C)Pext,r(d|fr, C) ≈ 0.067241497

• If
(
1−Pext,s(d, t|fr, C)

)
Pext,r(d, t|fr, C) > (1−Pext,r(d, t|fr, C)), illness is AB treatable.

If not, illness is not AB treatable. In this case, this condition evaluates to False and
hence the illness is likely not AB treatable.

B.4.3 Using beta-Poisson DRM

The beta-Poisson DRM is given by

P (d) = 1−
(
1 +

(d
β

))−α

Suppose the best fit parameters are α̂ ≈ 0.1615058 and β̂ = 1414958. Computing response

probabilities is more involved and requires access to a function that can fit a beta distribution,

such as the fitdistrplus package in R [36].
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• From the values of α̂, β̂, Emax, EC50 and C, compute αs and βs for the susceptible
subpopulation. For this, use the algorithm outlined in the Methods section. We get
αs = 0.1613020 and βs = 1.295420× 1013.

• Set αr = α̂ and βr = β̂ for the resistant subpopulation.

• Compute extinction probabilities for the susceptible and resistant subpopulations using

Pext,s(d|fr, C) =
(
1 +

(d× (1− fr)
βs

))−αs

= 1

and

Pext,r(d|fr, C) =
(
1 +

(d× fr
βr

))−αr

≈ 0.999977202

• Compute total response probability with

P (d|fr, C) = 1− Pext,s(d|fr, C)Pext,r(d|fr, C) ≈ 2.28× 10−5

• If
(
1−Pext,s(d, t|fr, C)

)
Pext,r(d, t|fr, C) > (1−Pext,r(d, t|fr, C)), illness is AB treatable.

If not, illness is not AB treatable. In this case, this condition evaluates to False and
hence the illness is likely AB untreatble.
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Appendix C

Role of quorum sensing in microbial

pathogensis

C.1 Fitted parameter values

r1 r2 r3 imax b2 ithresh Fgr Fdr

(/day) (/day) (cm2/ (CFU day)) (CFU/cm2) (/day) (1/(CFU day))
1.94 1.47e-02 2.71e-07 1.18e+07 1.70 7.34e+06 0.57 8.67
1.90 1.55e-02 3.56e-07 8.93e+06 2.00 4.81e+06 0.60 8.01
2.10 2.68e-02 2.92e-07 1.05e+07 0.70 2.04e+07 0.61 7.46
2.19 1.95e-02 3.53e-07 9.09e+06 1.80 6.88e+06 0.64 6.83
1.69 1.02e-02 3.91e-07 8.70e+06 1.70 7.97e+06 0.68 6.34

Table C.1: Rank 1 solutions in increasing order of Fgr, the growth-objective (eq. 4.10). Fdr

is the dose-response objective (eq. 4.5). Remaining parameters are defined in chapter 4.

C.2 Comparing MRSA and MSSA growth
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Study MSSA strain MRSA strain ρ
[79] 1999 494 0.8505
[9] O9 P22 0.9461
[39]* 1492 211 0.9843
[76]* 29213 43300 0.9995

Table C.2: Pearson correlation coefficients (represented by ρ) for growth curves of vari-
ous strains of MSSA and MRSA. * represents median of the several correlation coefficients
computed
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