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ARTICLE

Multiple Hepatic Regulatory Variants
at the GALNT2 GWAS Locus Associated
with High-Density Lipoprotein Cholesterol

Tamara S. Roman,1,2 Amanda F. Marvelle,1 Marie P. Fogarty,1 Swarooparani Vadlamudi,1

Arlene J. Gonzalez,1 Martin L. Buchkovich,1 Jeroen R. Huyghe,3 Christian Fuchsberger,3

Anne U. Jackson,3 Ying Wu,1 Mete Civelek,4,5 Aldons J. Lusis,4,6,7 Kyle J. Gaulton,1,8

Praveen Sethupathy,1 Antti J. Kangas,9 Pasi Soininen,9,10 Mika Ala-Korpela,9,10,11,12 Johanna Kuusisto,13

Francis S. Collins,14 Markku Laakso,13 Michael Boehnke,3 and Karen L. Mohlke1,*

Genome-wide association studies (GWASs) have identified more than 150 loci associated with blood lipid and cholesterol levels; how-

ever, the functional and molecular mechanisms for many associations are unknown. We examined the functional regulatory effects of

candidate variants at the GALNT2 locus associated with high-density lipoprotein cholesterol (HDL-C). Fine-mapping and conditional

analyses in the METSIM study identified a single locus harboring 25 noncoding variants (r2 > 0.7 with the lead GWAS variants) strongly

associated with total cholesterol in medium-sized HDL (e.g., rs17315646, p ¼ 3.53 10�12). We used luciferase reporter assays in HepG2

cells to test all 25 variants for allelic differences in regulatory enhancer activity. rs2281721 showed allelic differences in transcriptional

activity (75-fold [T] versus 27-fold [C] more than the empty-vector control), as did a separate 780-bp segment containing rs4846913,

rs2144300, and rs6143660 (49-fold [AT– haplotype] versus 16-fold [CCþ haplotype] more). Using electrophoretic mobility shift assays,

we observed differential CEBPB binding to rs4846913, andwe confirmed this binding in a native chromatin context by performing chro-

matin-immunoprecipitation (ChIP) assays in HepG2 and Huh-7 cell lines of differing genotypes. Additionally, sequence reads in HepG2

DNase-I-hypersensitivity and CEBPB ChIP-seq signals spanning rs4846913 showed significant allelic imbalance. Allelic-expression-

imbalance assays performed with RNA from primary human hepatocyte samples and expression-quantitative-trait-locus (eQTL) data

in human subcutaneous adipose tissue samples confirmed that alleles associated with increased HDL-C are associated with a modest in-

crease in GALNT2 expression. Together, these data suggest that at least rs4846913 and rs2281721 play key roles in influencing GALNT2

expression at this HDL-C locus.
Introduction

Genome-wide association studies (GWASs) have identified

more than 150 loci associated with blood lipid and choles-

terol levels.1–5 One of the first novel GWAS signals for

high-density lipoprotein cholesterol (HDL-C) levels in

Europeans was reported for variants rs2144300 and

rs4846914, located within intron 1 of GALNT26,7(MIM:

602274). These two lead GWAS variants are in perfect link-

age disequilibrium (LD; r2 ¼ 1). The association signal for

rs4846914 has been replicated (n ¼ 187,000 individuals,

p ¼ 4 3 10�41) in subsequent studies with larger sample

sizes2,4 and in Japanese and Mexican populations.8,9

HDL-C-associated variant rs4846914 is also associated

(n ¼ 178,000, p¼ 73 10�31) with triglycerides4 and nomi-

nally associated (n¼ 2,744–3,481, p< 0.05) with largeHDL

concentration, low-density lipoprotein (LDL) size, HDL
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size, HDL-2 subfraction, and the ratio of total cholesterol

to HDL-C.10 The alleles associated with increased HDL-C

are also nominally associated (n ¼ 84,068, p ¼ 0.04) with

decreased risk of coronary artery disease.4

According to 1000 Genomes phase 1 version 3 European

(EUR) data,11 24 variants exhibit strong LD (r2 > 0.7) with

the lead GALNT2 HDL-C-associated SNP, rs4846914, and

all 25 variants are noncoding. According to available chro-

matin data from the ENCODE Project12 and Human Epige-

nome Atlas,13 these variants overlap many candidate regu-

latory regions. Therefore,wehypothesized that oneormore

of these variants regulate gene expression. Many variants

identified through GWASs are located within noncoding

or intergenic regions,14,15 and variants at theGALNT2 locus

might also alter regulatory elements.

GALNT2, encoding UDP-N-acetylgalactosamine:poly-

peptide N-acetylgalactosaminyltransferase (GALNT2), is a
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reasonable positional candidate within the HDL-C associa-

tion signal. GALNT2 is an enzyme that transfers an N-ace-

tylgalactosamine to serine or threonine residues in target

proteins in the initial step of O-linked glycosylation.16

GALNT2 is expressed inmany tissues, including liver, heart,

lung, muscle, pancreas, ovary, and colon.17–19 GALNT2

might influence HDL-C levels by catalyzing O-glycosyla-

tion on target proteins that play a role in lipid metabolism.

In vitro,GALNT2has been shown toO-glycosylate lecithin-

cholesterol acyltransferase (LCAT), phospholipid transfer

protein (PLTP), and angiopoietin-like protein3 (ANGPTL3),

and O-glycosylation of ANGPTL3 was shown to inhibit

activation of this protein.20 Individuals heterozygous for

a GALNT2 missense variant (c.941A>C [p.Asp314Ala])

shown to decrease GALNT2 function in vitro exhibit

decreased glycosylation of apoC-III and high (>95th

percentile for age and gender) plasma HDL levels.21 In

mice, liver-specific Galnt2 overexpression and knockdown

have been shown to decrease and increase HDL-C levels,

respectively.2

We aimed to identify the functional regulatory variant(s)

responsible for the GALNT2 HDL-C GWAS signal by fine

mapping the association with lipoprotein traits in the

METSIM (Metabolic Syndrome in Men) study22 and by

examining a comprehensive set of candidate variants for

evidence of allelic differences in enhancer function. We

identified a single signal driven by at least two regulatory

variants, rs4846913 and rs2281721, that exhibited binding

of transcription factors and allelic differences in enhancer

activity, as well as additional variants thatmight contribute

to enhancer function. In human hepatocyte and subcu-

taneous adipose tissue samples, we observed an association

between this GWAS signal and GALNT2 expression.

Together, these data show a consistent direction of regula-

tory effect in which increased expression of GALNT2 is

implicated in increased HDL-C.
Material and Methods

Defining the Candidate Set of Variants
We used the 1000 Genomes Project Phase 1 version 3 EUR data-

set,11 including 24 variants in strong LD (r2 > 0.7) with the lead

HDL-C GWAS SNP rs4846914, to calculate LD. We used ENCODE

data12 available through the UCSC Genome Browser to determine

which of the 25 total variants overlapped open-chromatin peaks

and chromatin-immunoprecipitation-sequencing (ChIP-seq)

peaks of histone modifications H3K4me1, H3K4me2, H3K4me3,

H3K9ac, and H3K27ac and transcription factors in liver cell types

(HepG2 cells, Huh-7 cells, and primary human hepatocytes) and

ChromHMM chromatin states23 in multiple cell types. We used

the Human Epigenome Atlas13 to determine overlap with peaks

of H3K4me1 and H3K9ac in primary adult liver and with

ChromHMM chromatin states in multiple cell types and tissues.
Genotyping and Imputation
We used the Illumina HumanOmniExpress and HumanCoreEx-

ome24 Beadchips to genotype 10,134 Finnish men from the MET-
802 The American Journal of Human Genetics 97, 801–815, Decemb
SIM study.22 Sample-level and SNP-level quality control included

detecting sample contamination,25 confirming sex and relation-

ships, andusingprincipal-component analysis to detect population

outliers. After we filtered SNPs to retain those with a call rate of

>95% and Hardy-Weinberg Equilibrium p > 10�6, we successfully

analyzed 10,082 individuals and 681,803 SNPs. TheMETSIM study

was approved by the ethics committee of the University of Kuopio

and Kuopio University Hospital, and informed consent was ob-

tained from all study participants. To impute ungenotyped SNPs,

weused a panel of 5,474 referencehaplotypes derived fromgenome

sequences of 2,737 central-northern European individuals

sequenced as part of the Genetics of Type 2 Diabetes study (C.F., J.

Flannick,K.J.G.,H.Kang, and theGoT2DConsortium,unpublished

data). The minimum MaCH imputation quality score for the

imputed variants was R2 ¼ 0.971. We used a two-step imputation

strategy wherein individuals were pre-phased with ShapeIT version

2 before imputation usingMinimac.26,27We also used these data to

verify LD proxies for allelic-expression-imbalance (AEI) assays.
Fine-Mapping and Conditional Analyses
We analyzed 72 measures of lipid and lipoprotein particle-serum

concentration obtained via nuclear-magnetic-resonance (NMR)me-

tabolomics (65 traits) or enzymatic assays (7 traits) in up to 10,079

Finnishmen. The NMRplatformhas been described previously.28,29

The methodology for measuring lipoprotein subclasses has been

described previously,30 and subclasses are defined in Table S1. Trait

values with skewed distributions were log transformed, and all traits

were Winsorized at 5 SDs from the mean. After adjustment for age,

squared age, smoking status, and lipid-lowering-medication status,

we transformed residuals to a standard normal. We tested for asso-

ciation between normalized residuals and SNPs with a minor allele

frequency (MAF) > 0.0005 (minor allele count > 10) by assuming

an additive genetic model and using a linear mixed model with

an empirical kinship matrix to account for relatedness, as imple-

mented in EMMAX.31 We repeated the analysis while excluding

individuals on lipid-lowering medication (2,844 participants), indi-

viduals with type 1 or 2 diabetes (1,420 participants), or both (3,560

participants) to assess sensitivity to these exclusions, and in each

instance we obtained qualitatively similar results. To identify any

additional independent signals in the region, we performed a con-

ditional analysis by using the rs17315646 allele count as an addi-

tional covariate in the model. LocusZoom32 plots were generated

to include 2,079 variants in a 350-kb region surrounding the lead

variant rs17315646 and spanning GALNT2.
Cell Culture
Human HepG2 hepatocellular carcinoma cells (ATCC, HB-8065)

were grown in Eagle’s minimum essential medium (MEM) alpha

supplemented with 10% fetal bovine serum (FBS) and 1 mM so-

dium pyruvate at 37�C and 5%CO2. HumanHuh-7 hepatocellular

carcinoma cell lines (JCRB0403, Japanese Collection of Research

Bioresources Cell Bank, National Institute of Biomedical Innova-

tion) were grown in DMEM supplemented with 10% FBS, 1 mM

sodium pyruvate, 13 MEM non-essential amino acids, and

2 mM L-glutamine. HepG2 and Huh-7 cells were seeded into

24-well plates (100,000 cells per well) 1 day prior to transfection

experiments.
Transcriptional Reporter Assays
To test candidate variants and haplotypes for allele-specific effects

on transcriptional activity, we amplified segments of 109–262 bp
er 3, 2015



(for single variants) and 349–780 bp (for multiple variants) from

DNA of individuals homozygous for each allele or haplotype.

Segment size was chosen to include the ~147 nucleotides of

DNA spanning one nucleosome. However, because of the prox-

imity of other candidate variants, larger segments of 349–780 bp

were designed to include multiple variants. Primer sequences are

listed in Table S2. Amplicons were cloned into the KpnI and

XhoI restriction sites of the firefly luciferase transcriptional re-

porter vector pGL4.23 in both forward and reverse orientations

with respect to the minimal promoter (Promega). Three to seven

independent plasmids for each allele or haplotype were isolated

and confirmed by sequencing. When additional variants were

identified, we selected clones for which the alleles matched at

these variants. For simplicity of presentation, Figures 3 and S2

do not show the differing alleles of rs1555290; these data are pro-

vided in Figures 4 and S5. We then transfected each purified clone

into HepG2 or Huh-7 cells in duplicate (720 ng in each well) by us-

ing FuGENE 6 (Promega) and Opti-MEM (Life Technologies). To

control for transfection efficiency, we co-transfected a phRL-TK Re-

nilla luciferase reporter vector (80 ng in each well) into cells. For

empty-vector controls, two independent preparations of empty

vector were each transfected into HepG2 or Huh-7 cells in dupli-

cate. After 48 hr, cell-lysate luciferase activity was measured with

the Dual-Luciferase Reporter Assay System (Promega), normalized,

and compared to readings for empty-vector controls. These con-

trol readings were very similar for the two independent prepara-

tions. We performed two-tailed t tests to compare the luciferase ac-

tivities between variant alleles. For comparisons of multiple

haplotypes, we performed ANOVA and Tukey’s post hoc tests by

using JMP 10.0.1 software (SAS Institute). We also assessed the

transcriptional activity of the 780-bp segment by cloning the

haplotype into the promoterless pGL4.10 firefly luciferase reporter

vector (Promega). To examine individual variant effects within the

780-bp segment, we altered alleles by using the QuikChange Site-

Directed Mutagenesis Kit (Agilent Technologies) and confirmed

them by sequencing.

Electrophoretic Mobility Shift Assays
Complementary DNA oligonucleotides (17–19 bp) centered on

variant alleles (Table S2) were synthesized by Integrated DNATech-

nologies. The rs6143660 insertion allele consisted of 39-bp comple-

mentary oligonucleotides containing the 21-bp insertion (9 bp

flanking each side of the insertion), and the rs6143660 deletion

allele consisted of 18-bp complementary oligonucleotides (9 bp

flanking each side of the deleted sequence). Labeled oligonucleo-

tides included biotin on the 50 end. We performed assays as

previously described33 by using 3.5–6 mg of HepG2 nuclear lysate

and30- to300-fold excessunlabeledprobe. For supershift reactions,

4–8 mg CEBPB antibody (sc-150X), USF1 antibody (sc-229X), and

FOXO3 antibody (sc-34895X), all from Santa Cruz Biotechnology,

were incubated with binding buffer, poly(dI$dC), and HepG2 nu-

clear lysate for 20 min at room temperature before the addition of

labeled DNA probes and incubation. Additional control antibodies

(4–6 mg, all fromSantaCruz Biotechnology) were chosen on the ba-

sis of transcription-factorbindingmotifs, ENCODEChIP-seqpeaks,

expression of transcription factors in liver, or plausible roles of the

factors in cholesterol metabolism. These included antibodies to

ARNT (sc-271801X), SF1 (sc-10976X), HNF4A (sc-6556X), RXRA

(sc-553X), CEBPA (sc-61X), CEBPB (sc-150X), NR1H3 (sc-1202X),

andMAX (sc-765X). Reactions were loaded into a 6%DNA retarda-

tion gel (Life Technologies), subjected to electrophoresis, trans-

ferred to Biodyne B nylon membranes (Life Technologies), and
The American
UV crosslinked. Wash and detection steps were performed accord-

ing to instructions in the Chemiluminescent Nucleic Acid Detec-

tion Module (Life Technologies). Experiments involving electro-

phoretic mobility shift assays (EMSAs) were repeated on 2–7

separate days, and all had consistent results.

To predict transcription-factor binding sites, we searched data-

bases for transcription-factor binding-site motifs in 17- to 21-bp

genomic sequences containing each allele of candidate variants.

For JASPAR,34 we searched all available matrix models with a rela-

tive profile-score threshold of 80%. We also searched positional-

weight matrices (PWMs) from vertebrates in TRANSFAC by using

default parameters in the TRANSFAC Professional’s Match tool

and by using PWM-SCAN.35
ChIP Assays
We used a TaqMan SNP Genotyping Assay (Life Technologies) to

genotype HepG2 and Huh-7 cells at rs4846913. Cells were cross-

linked with 1% formaldehyde, and glycine was added to stop fix-

ation. Fixed cells were resuspended in SDS lysis buffer (1% SDS,

10 mM EDTA, and 50 mMTris [pH 8.1]), diluted with immunopre-

cipitation (IP) buffer (0.01% SDS, 1.1% Triton X-100, 1.2 mM

EDTA, 16.7 mM Tris [pH 8.1], and 167 mM NaCl), and sonicated

on ice with a Branson sonifier for the generation of 100- to

500-bp DNA fragments. Each CEBPB IP or immunoglobulin G

(IgG) reaction used two to three million cells. After preclearing

with Protein A Agarose beads (sc-2001, Santa Cruz Biotechnology),

10 mg of CEBPB antibody (sc-150X, Santa Cruz Biotechnology) or

10 mg of normal rabbit IgG (sc-2027, Santa Cruz Biotechnology)

was added to HepG2 and Huh-7 cell lysates and incubated over-

night. Protein A Agarose beads were then added for 3 hr and

washed separately with low-salt buffer, high-salt buffer, LiCl

buffer, 10 mM Tris-EDTA, and elution buffer (1% SDS and 0.1 M

NaHCO3). The crosslinks were then reversed by the addition of

5 M NaCl and overnight incubation. Samples were incubated

with 20 ml 1M Tris, 10 ml 0.5 M EDTA, and 0.03 mg proteinase K.

DNA was purified by phenol-chloroform extraction and ethanol

precipitation. For qPCR, a 120-bp region spanning rs4846913

was amplified with FAST SYBR Green Master Mix (Life Technolo-

gies). qPCRwas performed in triplicate and quantifiedwith respect

to a standard curve generated from sonicated HepG2 DNA stan-

dards. The mean quantities of CEBPB IP and IgG control sample

were normalized to input HepG2 or Huh-7 DNA. CEBPB and IgG

ChIP experiments with HepG2 and Huh-7 cells were each per-

formed twice and had similar results. We used two-tailed t tests

to compare CEBPB enrichment of the rs4846913 region in

HepG2 and Huh-7 cells.

We performed USF1 ChIP assays similarly, except that we used a

Diagenode Bioruptor Standard sonicator. We used 10 mg of USF1

antibody (sc-229X, Santa Cruz Biotechnology) or 10 mg IgG

(sc-2027, Santa Cruz Biotechnology) and purified DNA with the

QIAquick PCR Purification Kit (QIAGEN) to amplify and quantify

a 164-bp region spanning rs2281721.We performed USF1 and IgG

ChIP experiments with HepG2 and Huh-7 cells twice each, and

they had similar results.
Allelic-Imbalance Analysis of Sequence Reads from

CEBPB ChIP-Seq and DNase-Seq
Sequence reads from HepG2 for DNase-I-hypersensitivity-site

sequencing (DNase-seq) and CEBPb ChIP-seq experiments gener-

ated by the ENCODE Consortium12 were aligned to UCSC

Genome Browser build hg19 with AA-ALIGNER.36 In brief, HepG2
Journal of Human Genetics 97, 801–815, December 3, 2015 803



genotypes were obtained from the Illumina Human-1M-Duo Bead-

Chip array genotyped at HusdonAlpha Institute of Biotechnology,

and imputation was performed with the 1000 Genomes Phase 1

EUR reference panel.11 Using this data, we verified that HepG2 is

diploid in the chromosome 1 region containing GALNT2, and

we created a personalized HepG2 reference genome containing

non-reference alleles for sites at which HepG2 is homozygous

for the non-reference allele. We aligned sequence reads to the

personalized genome by using HepG2 heterozygous sites identified

by imputationandGSNAP37with the followingparameters: -m1, -k

11, –basesize ¼ 11, -sampling ¼ 1, -terminal-threshold ¼ 10, -n

1, -query-unk-mismatch ¼ 1, -genome-unk-mismatch ¼ 1, -trim-

mismatch-score ¼ 0, -t 7, and –A sam. We filtered the alignments

to remove sequences aligned to more than one genomic location,

sequences aligned to regions underrepresented in the reference

sequence (ENCODE blacklisted12 regions), and duplicate reads

that might represent PCR artifacts. We determined the significance

of allelic imbalance at rs4846913 by using an exact binomial test,

based on the number of reads containing the reference allele and

the total number of reads at the heterozygous site. For the HepG2

DNase-seq data and USF1 HepG2 ChIP-seq data, insufficient reads

were available for allelic imbalance analysis at rs2281721.

Preparation of cDNA for GALNT2 mRNA-Expression

and AEI Assays
RNA and DNA were isolated from hepatocyte samples of 50 indi-

viduals as described previously.38 RNA for each sample was treated

with DNase I with the DNA-free Kit (Life Technologies) and added

to a final concentration of 24 ng/ml in an RT-PCR reaction in the

SuperScript III First-Strand Synthesis System (Life Technologies),

which includes both oligo(dT)20 and random hexamer primers.

The synthesized cDNA for each sample was then diluted with di-

ethylpyrocarbonate (DEPC)-treated water for use inmRNA-expres-

sion and AEI assays.

AEI Assays
We used a TaqMan SNP genotyping assay (Life Technologies) to ge-

notype human hepatocyte genomic DNA (gDNA) from ADMET

Technologies for the HDL-C index SNP rs4846914. To quantify

allele-specific expression, we diluted hepatocyte cDNA and gDNA

from36 individualsheterozygous for rs4846914andperformedsub-

sequent qPCR reactions in triplicate. To generate a standard curve,

we mixed gDNAs from samples homozygous for each rs4846914

allele in the following ratios: 95:5, 72.5:27.5, 61.25:38.75, 50:50,

38.75:61.25, 27.5:72.5, and 5:95. We generated a standard curve

by plotting the quantity of one allele against the difference between

the cycle-threshold (Ct) values of the two alleles. For each heterozy-

gous sample,weestimated theexpressionpercentageofonealleleby

using the difference between the mean Ct values of the alleles and

the standard curve.38 We used two-tailed t tests to compare gDNA

and cDNA values and used F-tests to determine equal or unequal

variance between gDNA and cDNA samples.38,39

GALNT2 Hepatocyte mRNA Expression
We measured expression of GALNT2 in 50 human hepatocyte

samples by qPCR with a standard curve and FAST SYBR Green

Master Mix (Life Technologies). We performed triplicate qPCR

reactions including 9 ng of total cDNA in each well, Taqman

Gene Expression Master Mix (Life Technologies), and primer-set

sequences within GALNT2 exons (Table S2). GALNT2 expression

values were normalized to the expression of beta-2-microglobulin
804 The American Journal of Human Genetics 97, 801–815, Decemb
(B2M [MIM: 109700]), natural-log transformed, and plotted ac-

cording to the rs4846914 genotype (AA, AG, andGG). Using linear

regression and an additive model including sex, ancestry, and age

as covariates, we tested for association between the level of

GALNT2 mRNA and the rs4846914 genotype.

Lookup of Expression Quantitative Trait Loci in

Subcutaneous Adipose Tissue
We looked for evidence of association between the HDL-C GWAS

variant region and gene expression by using preliminary microar-

ray expression data from subcutaneous adipose tissue from the

METSIM study. In brief, we used EPACTS-multi (with EMMAX im-

plemented to account for family relatedness) Affymetrix Human

Genome U219 Array data for 1381 individuals was adjusted for

40 confounding factors,40 inverse-normal transformed, and tested

for association with variants. We analyzed variants within 1Mb of

rs4846914 and identified one probe set for GALNT2 and other

genes located in this region. Subsequent reciprocal conditional

analyses included two variants in each model.

siRNA-Mediated Knockdown of CEBPB
HepG2 cells (80,000 per well) were plated into 24-well collagen-

coated plates and then treated with 50 nM CEBPB Silencer Select

small interfering RNA (siRNA; s2893, Thermo Fisher Scientific)

or Silencer Select Negative Control No. 1 siRNA (4390843, Thermo

Fisher Scientific) with Opti-MEM (Life Technologies) and Dharma-

FECT1 transfection reagent (GE Healthcare Life Sciences) on the

following day. Cells were incubated at 37�C with 5% CO2 for

48 hr, and HepG2 medium was changed the day following siRNA

transfection. RNA was harvested with the RNeasy Plus Mini Kit

(QIAGEN), and cDNA was prepared with the SuperScript III First-

Strand Synthesis System (Life Technologies). CEBPB and GALNT2

expression was measured by qPCR with a standard curve. Raw

expression values were normalized to the expression of B2M,

and expression percentages were calculated by comparison to

expression values in HepG2 cells transfected with the negative

control siRNA. Primers for gene expression are listed in Table S2.

We used two-tailed t tests to compare normalized GALNT2 expres-

sion between HepG2 cells treated with CEBPB siRNA and HepG2

cells treated with negative control siRNA.
Results

Fine Mapping Shows Evidence of a Single Association

Signal Strongest for Total Cholesterol in Medium HDL

We tested one of the HDL-C-associated lead GWAS vari-

ants, rs2144300 (r2 ¼ 1 with rs4846914), for association

with 72 lipid and cholesterol traits in up to 10,079 Finnish

men from theMETSIM study. The strongest evidence of as-

sociation across all 72 traits was with total cholesterol in

medium HDL (n ¼ 9,810, b ¼ 0.10, p ¼ 5.3 3 10�12; Table

S3). Using this trait and variants that were directly geno-

typed or imputed from a reference panel of 2,737 genomes

of central-northern European individuals, we performed

fine-mapping association and conditional analyses.

Among 2,079 total variants in the region spanning 350

kb surrounding the lead variant, the strongest evidence

of association was observed for rs17315646 (n ¼ 9,810,

p ¼ 3.5 3 10�12), which is in perfect LD (r2 ¼ 1) with
er 3, 2015



Figure 1. Non-coding Variants at
GALNT2 Are Associated with Total Choles-
terol in MediumHDL in theMETSIM Study
The entire initial association signal (upper
panel) was reduced after conditioning on
lead SNP rs17315646 (lower panel). Circles
represent genotyped and imputed DNA
variants and their LD r2 values with
rs17315646 in the METSIM study (2,079
variants are shown). Chromosome coordi-
nates correspond to UCSC Genome
Browser build hg19. The left y axis indi-
cates the �log10(p value), the right y axis
indicates the recombination rate (cM/
Mb), and the x axis indicates position on
chromosome 1 (Mb).
HDL-C GWAS lead SNPs rs4846914 (n ¼ 9,810, p ¼ 5.3 3

10�12) and rs2144300 (n ¼ 9,810, p ¼ 5.33 10�12). Condi-

tioning on rs17315646 attenuated the 13.7-kb association

signal (all p> 0.01; Figure 1 and Table S4). The new lead var-

iants after conditional analysis (pcond ~ 10�4–10�6) showed

weak initial evidence of association (p ~ 10�2–10�4) and

have a MAF < 0.04 (Table S4). These data provide evidence

that common variants in strong LD with rs4846914 and

rs17315646 are most likely responsible for the HDL-C asso-

ciation signal. All 25 candidate variants (r2 > 0.7 with

HDL-C GWAS lead variant rs4846914) are located within

intron 1 of GALNT2. These variants all exhibited strong

evidence of association with total cholesterol in medium

HDL (p % 1.45 3 10�9; Table S4).

Open-Chromatin, Histone-Modification, and

Transcription-Factor Marks Indicate Potential

Regulatory Elements Overlapping the GALNT2

Association Signal

We hypothesized that one or more of the 25 HDL-C-associ-

ated non-coding variants affect transcriptional activity. We
The American Journal of Human Gen
asked whether regulatory datasets

from the ENCODEProject andHuman

Epigenome Atlas could help us iden-

tify variants that exhibit regulatory ac-

tivity.Wecompared the locationof the

25 candidate variants to regions of

open chromatin depicted by DNase I

hypersensitivity and formaldehyde-

assisted isolation of regulatory ele-

ments (FAIRE); histone-modification

ChIP-seq peaks H3K4me1, H3K4me2,

H3K4me3, H3K9ac, and H3K27ac,

which often mark enhancer or pro-

moter elements; and transcription-

factor ChIP-seq peaks. On the basis of

the liver’s key role in HDL synthesis

and transport, and the enrichment of

lipid GWAS signals in liver,4 we

focused on datasets from human liver

cell lines, primary human hepato-

cytes, and human adult liver cells. All 25 variants overlap

broad patterns of H3K4me1-enriched domains in HepG2

cells (Table S5), and 13 overlap narrower H3K4me1-en-

riched peaks.41 Sixteen variants overlap two or more his-

tone-modification peaks, and six variants (rs4631704,

rs4846913, rs2144300, rs6143660, rs2281721, and

rs11122453) overlap at least one transcription-factor

ChIP-seq peak (Figure 2 and Table S5). Three variants

(rs4846913, rs2144300, and rs6143660) overlap the most

marks of potential regulatory function (at least 22 peaks,

including open-chromatin, histone-modification, and

transcription-factor peaks). According to ChromHMM

data23 from ENCODE12 and the Roadmap Epigenomics

Project,13 all 25 variants are located within predicted

enhancer or transcribed-region chromatin states in

HepG2 cells and primary liver cells (Figure S1). The

regulatory peaks are not specific to liver cells, given that

open-chromatin, histone-modification, and transcription-

factor peaks were also observed in GM12878 lymphoblas-

toid cells, human umbilical-vein endothelial cells

(HUVECs), K562 leukemia cells, CD20þ B cells, CD14þ
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Figure 2. HDL-C-Associated Variants Overlap Open Chromatin and HistoneModifications Indicating Potential Regulatory Regions in
GALNT2 Intron 1
A 13.7-kb region includes all 24 variants in strong LD (r2 > 0.7) with the HDL-C-associated index SNP rs4846914 (25 total candidate
variants). Selected Human Epigenome Atlas and ENCODE open-chromatin and histone-modification tracks are shown. Rectangular
bars represent elements containing the variant(s) that were tested in luciferase reporter assays.
monocytes, human skeletal-muscle myoblasts (HSMMs),

normal human astrocytes (NHAs), normal human lung fi-

broblasts (NHLFs), and osteoblasts (Figure S1).

All 25 Candidate Regulatory Variants Were Evaluated

for Allelic Differences in Luciferase Activity

Given the limited resolution of open-chromatin peaks and

histone-modification and transcription-factor ChIP-seq

peaks, and the knowledge that these marks do not predict

allelic differences in regulatory activity, we tested all 25

variants in transcriptional reporter assays in luciferase vec-

tors containing a minimal promoter (Figures S2 and S3).

Tested elements contained one to four variants, and three

to seven independent clones for each allele or haplotype in

the element were tested. We considered elements exhibit-

ing >1.5-fold more activity than empty-vector controls

as enhancers. We focused on elements whose enhancer

activity in both forward and reverse orientations was

>1.5-fold higher than that in the luciferase reporter gene

alone, as well as differences (p < 0.05) between the alleles

or haplotypes in both orientations.

rs2281721 Exhibits Allelic Differences in

Transcriptional Activity

Among all the segments tested, a 174-bp DNA segment

containing rs2281721 showed the strongest enhancement

of luciferase activity, and this activity also differed between

the alleles (Figure 3A). In the forward orientation, the DNA

segment containing the rs2281721 Tallele, associated with
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increased HDL-C, showed 75-fold more luciferase activity

than the empty-vector control, whereas the segment con-

taining the rs2281721 C allele showed 27-fold more, and

significant differences were observed between the alleles

(p ¼ 2.4 3 10�6). In the reverse orientation, the T and C

alleles exhibited 37-fold and 14-fold, respectively, more

luciferase activity than did the control, and there were sig-

nificant differences between the alleles (p ¼ 5.8 3 10�5).

The rs2281721 T allele also showed stronger enhancer ac-

tivity than did the rs2281721 C allele in both forward

(205-fold versus 59-fold more than in the control) and

reverse (49-fold versus 19-fold more than in the control)

orientations in a second hepatocellular carcinoma cell

line, Huh-7 (both p < 3 3 10�4; Figure S4A). The segment

and the position of rs2281721 overlaps H3K4me1 peaks

in HepG2 cells and adult liver; H3K4me2, H3K9ac, and

H3K27ac peaks in HepG2 cells; and a USF1 transcription-

factor ChIP-seq peak in HepG2 cells (Figure 2 and Table S5).

A Segment Containing rs4846913, rs2144300, and

rs6143660 Shows Haplotype Differences in

Transcriptional Activity

A780-bpDNA segment containing three variants exhibited

significant haplotype differences in luciferase activity

(Figure 3B). We analyzed two haplotypes of rs4846913,

rs2144300, and rs6143660 (a 21-bp indel): AT� (containing

the alleles associated with increased HDL-C) and CCþ (con-

taining the alleles associatedwith decreasedHDL-C). In the

forward orientation, the AT� and CCþ haplotypes showed
er 3, 2015



Figure 3. Haplotype and Allelic Differ-
ences in Transcriptional Activity at the
GALNT2 Locus
Segments containing each haplotype or
allele were cloned into a pGL4.23 luciferase
reporter vector upstream of the minimal
promoter in both orientations. The vectors
were transfected into HepG2 cells, and
luciferase expression normalized to that
of an empty vector control is shown. Error
bars represent the pairwise SD of three to
six independent clones per allele or haplo-
type (t tests). Abbreviations are as follows:
P, promoter; and luc, luciferase.
(A) Luciferase activity of 174-bp DNA seg-
ments containing rs2281721 alleles.
(B) Luciferase activity of 780-bp DNA
segments of two different haplotypes. The
haplotypes contained three candidate vari-
ants in strong LD: rs4846913, rs2144300,
and 21-bp indel, rs6143660. An additional
variant, rs1555290, was detected in the
segment, as shown in Figures 4 and S5.
49-fold and 16-fold, respectively, more luciferase activity

than did the empty-vector control, and significant differ-

ences were observed between the haplotypes (p ¼ 1.8 3

10�5). In the reverse orientation, the AT� and CCþ haplo-

types exhibited 11-fold and 4-fold, respectively, more

luciferase activity than did the empty-vector control,

and significant differences were observed between the

haplotypes (p ¼ 2.0 3 10�4). The three HDL-C-associated

variants rs4846913, rs2144300, and rs6143660 (a 21-bp

indel) each overlapped R22 open-chromatin, histone-

modification, and transcription-factor peaks (Figure 2

and Table S5).

Haplotype effects on transcriptional activity were

similar in Huh-7 cells. In the forward orientation, haplo-

types AT� and CCþ showed 36-fold and 13-fold, respec-

tively, more luciferase activity than did the empty-vector

control; the differences observed between the haplotypes

were significant (p ¼ 1.4 3 10�5 Figure S4B). In the reverse

orientation, haplotypes AT� and CCþ showed 12-fold and

6-fold, respectively, more luciferase activity than did the

empty-vector control (p ¼ 0.08, Figure S4B). The direction

of effect was the same as that of rs2281721; alleles associ-

ated with increased HDL-C showed increased luciferase

activity.

Taken together, our data show consistent haplotype dif-

ferences in luciferase activity for a 780-bp segment consist-

ing of rs4846913, rs2144300, and rs6143600. The results

suggest that these variants are located within an enhancer

element that can affect transcription and that one or

more of themmight have an allelic effect on transcriptional

activity.

The Haplotype Variants Act Together to Regulate

Enhancer Activity

We then created additional haplotypes of the 780-bp

segment by performing site-directed mutagenesis to inves-
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tigate the variant responsible for allelic differences in tran-

scriptional activity. In addition to including the candidate

variants rs4846913, rs2144300, and rs6143660, the

segment included an additional common variant,

rs1555290, in moderate LD with rs4846914 (D0 ¼ 1, r2 ¼
0.26). We analyzed and tested natural haplotypes of

rs4846913, rs2144300, rs1555290, and rs6143660 (ATA�,
CCCþ, and CCAþ), as well as constructed haplotypes

CTA�, ACA�, CCA�, and CCC�. These seven haplotypes

were then tested separately in luciferase assays (Figure 4).

ATA�, CTA�, ACA�, and CCA� haplotypes showed

44-fold, 38-fold, 31-fold, and 23-fold, respectively, more

luciferase activity than did the empty-vector control, sug-

gesting that both of the first two variants, rs4846913 and

rs2144300, contribute to haplotype differences in tran-

scriptional activity. Specifically, significant differences

were observed between the ATA� and ACA� haplotypes

(p ¼ 0.04), between the CTA� and CCA� haplotypes (p ¼
0.04), and between the ATA� versus CCA� haplotypes

(p ¼ 0.001), supporting a contribution from both

rs4846913 and rs2144300 to haplotype differences in lucif-

erase activity. Compared to the control, the CCAþ, CCC�,
and CCCþ haplotypes showed similar 12- to 14-fold in-

creases in luciferase activity (p > 0.05; an intermediate

between the CCA� haplotype and the empty vector),

suggesting that rs1555290 and/or rs6143660 might also

contribute to increased transcriptional activity. We

observed similar results in Huh-7 cells: the ATA�, ACA�,
and CCA� haplotypes showed 36-fold, 30-fold, and

27-fold, respectively, more luciferase activity than did

the empty-vector control, and significant differences

were observed between the ATA� and CCC� haplotypes

(p ¼ 0.0001). Compared to the empty-vector control,

the CCAþ, CCC�, and CCCþ haplotypes showed similar

(p > 0.05) 13- to 15-fold increases in luciferase activity

(Figure S5). Taken together, these data suggest a role for
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Figure 4. Haplotype Variants Act Together to Increase Tran-
scriptional Activity
Additional haplotypes were created by site-directed mutagenesis
of haplotypes cloned into a pGL4.23 luciferase vector in the for-
ward orientation. All constructs were transfected separately into
HepG2 cells, and this experiment was performed separately from
the experiment presented in Figure 3. Luciferase activity was
measured and normalized to that of an empty vector control. Error
bars represent the pairwise SD of three to four independent clones
per haplotype (ANOVA and Tukey’s post hoc tests). Abbreviations
are as follows: P, promoter; and luc, luciferase.
at least two variants, rs4846913 and rs2144300, in haplo-

type differences in enhancer activity.

Because the SNPs in the 780-bp segment overlap

H3K1me1 and H3K4me2 peaks, which are frequently pre-

sent in enhancer regions, as well as a H3K4me3 peak,

which is often found at promoters, we also evaluated the

haplotypes in a promoterless vector (Figure S6). In the for-

ward orientation, haplotypes ATA�, CCAþ, and CCCþ

showed 44-fold, 27-fold, 16-fold, respectively, more lucif-

erase activity than did the empty-vector control, and sig-

nificant differences were observed between all haplotype

comparisons (p< 0.001). In the reverse orientation, haplo-

types ATA�, CCAþ, and CCCþ exhibited 12-fold, 9-fold,

and 5-fold, respectively, more luciferase activity than did

the empty-vector control, and significant differences

were observed between all the haplotype comparisons

(p < 0.04).

We subsequently analyzed the four variants individually

in 100- to 200-bpDNA segments.Of the four variants tested

individually, only the element containing rs2144300 ex-

hibited enhanced luciferase activity (average 6.5-fold

more than in the empty-vector control). Almost none

of these segments showed allelic differences (p > 0.1;

Figure S7), but rs4846913 did show allelic differences in

only the forward orientation (p¼ 0.03). These data suggest

that the larger segment is necessary for observing allelic dif-

ferences in enhancer activity in this assay.

USF1 Binds to rs2281721

To investigate whether transcription factors bind differen-

tially to rs2281721, rs4846913, rs2144300, rs1555290, and

rs6143660, we performed EMSAs with HepG2 nuclear

lysate. The rs2281721 C probe showed stronger protein

binding than the rs2281721 T probe (lane 2 versus 7, ar-

row, Figure 5). The addition of 40-fold excess unlabeled

rs2281721 C probe competed away the signal more effec-

tively than did unlabeled rs2281721 T probe (lane 3 versus

4). rs2281721 overlaps a USF1 ChIP-seq peak from
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ENCODE data in HepG2 cells, as well as a predicted USF1

motif. In EMSAs, the addition of a USF1 antibody resulted

in a disruption of the band observed with the C allele

(lane 5). As negative controls, we tested ARNT and SF1 an-

tibodies; we did not observe disruption of the rs2281721

C allele band (Figure S8). These data provide evidence sup-

porting USF1 binding to the C allele of rs2281721.

To validate the USF1 binding in a native chromatin

context, we performed ChIP assays in both HepG2

(rs2281721 genotype T/C) and Huh-7 (rs2281721 geno-

type C/C) cells. The ChIP assays provided evidence sup-

porting USF1 binding to a 164-bp DNA region spanning

rs2281721; however, this binding was not allele specific

(Figure 5B).

CEBPB Binds Differentially to the Alleles of rs4846913

We also observed more protein binding to the A allele

than to the C allele of rs4846913 (lane 2 versus 7, arrow,

Figures 6A and S9). We observed a greater decrease in

band intensity upon addition of 63-fold excess unlabeled

rs4846913 A probe than upon addition of 63-fold excess

unlabeled rs4846913 C probe, suggesting that competi-

tion of the lane 2 band with unlabeled rs4846913 A

probe is more effective than competition with the unla-

beled rs4846913 C probe (lane 3 versus 4). rs4846913

overlaps CEBPB ChIP-seq peaks from ENCODE data in

HepG2 cells and a predicted CEBPB binding motif. Incu-

bation of the EMSA reactions with a CEBPB antibody

generated a strong supershift band for the A allele and

a detectable supershift band for the C allele (lane 5 versus

10, Figure 6A). As negative controls, we tested HNF4A or

RXRA antibodies; we did not observe evidence of super-

shifts (Figure S8).

To validate the differential CEBPB binding in a native

chromatin context, we performed ChIP assays in both

HepG2 (rs4846913 genotype A/C) and Huh-7 (rs4846913

genotype C/C) cells. A 120-bp region of DNA containing

rs4846913 showed 31-fold more CEBPB binding in

HepG2 cells than in Huh-7 cells (p ¼ 0.006; Figure 6B).

These results are consistent with the EMSA result of

increased CEBPB binding to rs4846913 A.

The CEBPB ChIP-seq signal at rs4846913 was sufficiently

strong to permit an analysis of allelic imbalance reflecting

in vivo CEBPB binding.We re-aligned HepG2 CEBPB ChIP-

seq reads and HepG2 DNase-seq reads by using an allele-

aware approach to avoid reference-allele bias (see Material

and Methods). Among CEBPB reads spanning rs4846913,

57 of 78 (73%) contained the rs4846913 A allele (binomial

p ¼ 5.6 3 10�5; Figure 6C). Among DNase-seq reads span-

ning rs4846913, 31 of 83 (37%) contained the rs4846913 A

allele (binomial p ¼ 0.03; Figure 6C), suggesting that

CEBPB might help protect the DNA sequence containing

the A allele from being accessible to the DNase I enzyme.

Taken together, the EMSA, ChIP, and allelic imbalance in

ChIP-seq and DNase-seq reads all show consistent evi-

dence suggesting stronger CEBPB binding to the A allele

of rs4846913.
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Figure 5. The rs2281721 C Allele Shows
Binding to USF1
(A) EMSAs with biotin-labeled probes con-
taining either the Tor C allele of rs2281721
and incubated with 5 mg HepG2 nuclear
lysate. The arrow indicates an allele-spe-
cific band (lanes 2 and 7), and the asterisk
indicates the C-allele-specific band that
was disrupted upon incubation with USF1
antibody (lane 5). For competition reac-
tions, 40-fold excess unlabeled probe was
added.
(B) ChIP experiments were performed in
HepG2 cells (T/C at rs2281721) and Huh-
7 cells (C/C at rs2281721) with USF1 anti-
body or rabbit IgG control, and a 164-bp
DNA region containing rs2281721 was
amplified via qPCR and quantified with a

standard curve. Results are shown as percentages of input DNA. Error bars represent the SEM of two independent USF1 and IgG ChIP
experiments each in HepG2 and Huh-7 cells.
rs2144300, rs1555290, and rs6143660 Also Show

Suggestive Evidence of Protein Binding

EMSAs using HepG2 nuclear lysate for the other variants in

the four-variant haplotype (rs2144300, rs1555290, and

rs6143660) showed suggestive evidence of differential

allelic protein binding (Figures S10–S12). The rs1555290

C probe showed a reproducible band (arrow, Figure S10),

and the addition of 30-fold excess unlabeled rs1555290 C

probe competed away the signal (lane 7) more effectively

than did the addition of 30-fold excess unlabeled

rs1555290 A probe (lane 8). The rs6143660 deletion allele

showedmultiple protein-binding bands (lane 2, Figure S11)

that were altered by incubation with FOXO3 antibody

(Figure S13), although it is challenging to interpret results

when using EMSA probes of different sequence lengths to

compare the 21-bp-insertion and 21-bp-deletion alleles.

However, we did not observe any disruption of the band

corresponding to the rs6143660 deletion allele when we

tested additional antibodies CEBPA, CEBPB, HR1H3,

MAX, and RXRA (Figure S13). A weak, reproducible,

allele-specific band for rs2144300 C was observed, but it

was not fully competed away with excess unlabeled

rs2144300 C probe (Figure S12). Overall, these EMSA

data suggest that these other three variants in the haplo-

type might exhibit differential transcription-factor

binding.

Variants Associated with GALNT2 Expression

On the basis of the location of the HDL-C-associated vari-

ants within GALNT2 intron 1, we hypothesized that these

variants might be acting in cis to regulate GALNT2 expres-

sion. We assessed GALNT2 expression stratified by geno-

type of rs4846914 (r2 ¼ 1 with rs4846913) in 50 primary

human hepatocyte samples, and we observed a trend to-

ward association between genotype and GALNT2 expres-

sion (p ¼ 0.08; Figure S14). To increase the sensitivity by

removing the sample-specific contribution of environ-

mental factors, we performed AEI assays in 36 human

hepatocyte samples heterozygous for rs4846914. Of 142

variants in r2 > 0.2 with rs4846914 in METSIM, none are
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transcribed, so we used qPCR to measure relative allelic

cDNA levels from GALNT2 pre-mRNA at rs4846914. Previ-

ous studies have similarly used intronic SNPs in unspliced

RNA to measure allelic expression.42,43 The rs4846914

A allele, which is associated with increased HDL-C, showed

higher GALNT2 cDNA expression (p ¼ 5.4 3 10�7;

Figure 7A). When normalized to the allelic difference de-

tected in heterozygous genomic DNA, the A allele of

rs4846914 showed a 7.4% increase in expression. Finally,

we examined rs4846914 in preliminary expression-quanti-

tative-trait-locus (eQTL) data from subcutaneous adipose

tissue from 1,381 individuals in the METSIM study (M.C.

and Y.W., unpublished data) and observed consistent asso-

ciation between the rs4846914 A allele and increased

expression of GALNT2 (p ¼ 2.2 3 10�14; Figure 7B),

but not expression of 16 other potential target genes

(p > 0.05/17 ¼ 0.003 on the basis of 17 tests; Figure S15

and Table S6). Conditioning on the lead eQTL variant,

rs4846922, attenuated the association signal withGALNT2

expression (p > 0.2; Figure S15 and Table S7).
Discussion

We identified multiple functional regulatory variants that

contribute to the single strong HDL-C GWAS signal

at GALNT2. Variants rs2281721 and rs4846913, located

2 kb apart, showed strong and consistent allelic and haplo-

type differences in enhancer activity and exhibited tran-

scription-factor binding of USF1 and CEBPB, respectively.

Variants rs2144300 and rs6143660 showed moderate

effects on transcriptional activity and suggestive allelic

differences in binding of nuclear proteins, although we

did not confirm the identity of these potential regulatory

proteins. In addition, rs1555290, in moderate LD (r2 ¼
0.26) with the GWAS variants, also showed suggestive

haplotype differences in enhancer activity and allelic dif-

ferences in binding of a nuclear protein. For all of these var-

iants, the alleles associated with increased HDL-C showed

higher transcriptional activity in reporter assays and were
Journal of Human Genetics 97, 801–815, December 3, 2015 809



Figure 6. CEBPB Binds Differentially to
the Alleles of rs4846913
(A) EMSAs with biotin-labeled probes
containing either the A or C allele of
rs4846913 and incubated with 6 mg
HepG2 nuclear lysate. The arrow indicates
increased protein binding to the A allele
(lanes 2 versus 7). The asterisk indicates ev-
idence of a CEBPB supershift. For competi-
tion reactions, 63-fold excess unlabeled
probe was added.
(B) ChIP experiments were performed in
HepG2 cells (A/C at rs4846913) and Huh-
7 cells (C/C at rs4846913) with CEBPB anti-
body or rabbit IgG control, and a 120-bp
DNA region containing rs4846913 was
amplified via qPCR and quantified with a
standard curve. Results are shown as per-
centages of input DNA. Error bars represent
the SEM of two independent CEBPB and
IgG ChIP experiments each in HepG2
and Huh-7 cells.
(C) CEBPB ChIP-seq reads and DNase-seq
reads from ENCODE data in a region
containing rs4846913 (UCSC Genome
Browser hg19 chromosome coordinates).
Blue indicates reads that contain the A
allele of rs4846913, red indicates reads
that contain the C allele of rs4846913,
and gray indicates reads that do not over-
lap rs4846913 in the peak.
associatedwithhigher expression ofGALNT2 in humanhe-

patocyte and human subcutaneous adipose tissue samples.

By testing all variants in strong LD (r2 > 0.7) with lead

HDL-C GWAS variant rs4846914 in luciferase reporter as-

says in both forward and reverse orientations, we identified

the most likely functional regulatory candidates. Although

we used a threshold of r2 > 0.7 to identify the most likely

functional candidates, we cannot rule out the possibility

that we could have missed additional functional variants

in weaker LD with the lead HDL-C-associated variant. Of

14 DNA segments tested, we observed that a segment con-

taining four variants and a separate segment containing

rs2281721 showed up to 49-fold and 75-fold, respectively,

more enhancer activity than did the empty-vector control.

One additional element containing one SNP, rs10864726,

showed more-moderate allelic differences in enhancer ac-

tivity (2.5-fold [T allele] versus 1.8-fold [C allele] more

than the empty vector, p ¼ 0.003) in only the forward

orientation (Figure S16). Compared to a vector control,

the remaining 11 segments did not exhibit enhancer activ-

ity in both orientations, nor did they exhibit significant

differences between alleles. These 11 segments included

one of the lead GWAS SNPs, rs4846914, and the lead SNP

from our fine-mapping analysis, rs17315646. These two

SNPs are located in regions containing H3K4me1,

H3K4me2, H3K4me3, H3K9ac, and H3K27ac peaks in

HepG2 cells and H3K4me1 peaks in adult liver cells,

demonstrating that not all GWAS variants located in regu-

latory elements contribute to regulatory function.

Open-chromatin peaks and histone-modification and

transcription-factor ChIP-seq data in liver cell types
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partially predicted the variants that showed regulatory ac-

tivity. Variants rs4846913, rs2144300, rs1555290, and

rs6143660 overlapped the most peaks (R22 each) of any

candidate variant, but rs2281721 did not overlap any

DNase or FAIRE peaks; instead, it overlapped only four his-

tone-modification peaks (H3K4me1, H3K4me2, H3K9ac,

and H3K27ac) and one transcription-factor ChIP-seq

peak (USF1). We compared our results to the Probabilistic

Identification of Causal SNPs (PICS) algorithm’s44 predic-

tion of candidate causal variants in this region. The vari-

ants that overlapped the most marks of open chromatin

and histone modification in liver cell types (rs4846914,

rs10127775, rs4846913, rs2144300, rs17315646, and

rs10864726) showed the highest prediction scores,

whereas the remaining 19 variants (including rs2281721)

showed a prediction score of 0. Thus, testing many candi-

date variants in experimental assays was necessary for

identifying all variants that showed strong allelic differ-

ences in enhancer activity. We also conclude that testing

all candidate variants in strong LD in combination with

regulatory datasets provides the best chance of identifying

regulatory variants that exhibit allelic differences in

enhancer activity.

One or more of these regulatory variants might also in-

fluence gene expression in other cell types. In addition to

being present in HepG2 cells, rs4846913, rs2144300,

rs1555290, rs6143660, and rs2281721 are also located

within predicted ChromHMM23 strong enhancer chro-

matin states in K562 leukemia cells from ENCODE data12

and ChromHMMactive enhancer chromatin states inmul-

tiple cell types and tissues from Roadmap Epigenomics
er 3, 2015



Figure 7. The rs4846914 A Allele Associ-
ated with Increased HDL-C Is Associated
with Higher GALNT2 RNA Expression in
Primary Human Hepatocytes and Subcu-
taneous Adipose Tissue
(A) AEI assays were performed in primary
human hepatocytes from 36 individuals
heterozygous for the intronicHDL-C-associ-
ated lead SNP rs4846914 (p ¼ 5.4 3 10�7).
rs4846914 was used as a proxy for SNP
rs4846913. DNA results from genomic
DNA are shown as a control, and cDNA
results in this intronic region represent
pre-mRNA.
(B) eQTL queries were performed for the
noncoding GALNT2 variants and GALNT2
expression in subcutaneous adipose tissue

samples from 1,381 individuals from the METSIM study. Circles represent genotyped and imputed DNA variants and the LD r2 values
with lead eQTL variant rs4846922. LD was calculated fromMETSIM genotypes imputed from 1000 Genomes Phase 1 EUR dataset. Chro-
mosomecoordinates correspond toUCSCGenomeBrowserbuildhg19.The lefty axis indicates the�log10(pvalue), the rightyaxis indicates
the recombination rate (cM/Mb), and the x axis indicates position on chromosome 1 (Mb).
data,13 including adipose nuclei, CD34 cells, brain,

pancreas, and skeletal muscle (Figure S1).

One or more of the 21 candidate variants that did not

show haplotype or allelic differences in enhancer activity

in both orientations, especially those variants tested indi-

vidually in smaller segments, might also contribute to

the GALNT2 regulatory mechanism. Testing smaller seg-

ments (~100–200 bp) in reporter assays can help with

focusing on individual variants; however, these segments

might fail to capture full regulatory elements. Testing

larger segments can be beneficial because they could

encompass a regulatory element, although segment size

must be balanced with the fact that larger elements might

contain both enhancer and repressor regions and mask

modest allelic effects.

The observation that the 780-bp segment showed similar

haplotype differences in enhancer activity in both a lucif-

erase vector with a minimal promoter and a promoterless

luciferase vector further confirms that rs4846913,

rs2144300, rs1555290, and rs6143660 are located within

a regulatory element that drives expression. We did not

find annotated evidence of an alternative promoter or alter-

native splicing in this region; however, we cannot rule out

alternate mechanisms. Using qRT-PCR and strand-specific

primers, we detected hepatocyte and HepG2 RNA tran-

scribed from both strands within GALNT2 intron 1 (T.R.,

unpublished data). This result is not unexpected, given

that transcription initiation has been found to occur in

both directions at both promoters and enhancers.45

The functional regulatory variants at this locus might

bind multiple transcription factors and act together in a

complex to influence transcriptional enhancer activity.

Increased binding of CEBPB to the rs4846913 A allele, asso-

ciated with increased HDL-C, is consistent with the fact

that CEBPB acts as a transcriptional activator.46 CEBPB is

a CCAAT/enhancer binding transcription factor that plays

diverse roles in cell proliferation, development, adipocyte

differentiation, immune response, and liver gene expres-

sion.47–51 Knockdown of CEBPB (71% of negative control)
The American
by siRNA in HepG2 cells resulted in a modest 22% decrease

in GALNT2 expression (p ¼ 0.058; Figure S17), suggesting

that other transcription factors within a complex might

bind to rs4846913 and be sufficient to preserve substantial

enhancer activity and GALNT2 expression in HepG2 cells.

Nonetheless, our data suggest that differential binding of

CEBPB to rs4846913 is one potential molecular mecha-

nism underlying the HDL-C association.

The other candidate regulatory variants, rs2281721,

rs2144300, rs1555290, and rs6143660, might also bind

one or more transcription factors. Binding of USF1 to

rs2281721 was allele specific in EMSAs; however, ChIP

assays in HepG2 (C/T at rs2281721) and Huh-7 (C/C at

rs2281721) cells suggest that USF1 binds to both alleles

of rs2281721 in a native chromatin context. Therefore,

USF1 might not drive the allelic differences observed in

EMSAs and in HepG2 and Huh-7 cell transcriptional re-

porter assays. USF1 is an upstream stimulatory factor and

has been shown to bind to lipid- and glucose-meta-

bolism-related genes52–54 and affect cholesterol home-

ostasis, insulin sensitivity, and body-fat mass.55 The other

three potential regulatory variants, rs2144300, rs1555290,

and rs6143660, each overlap R13 transcription-factor

ChIP-seq peaks in HepG2 cells. Future experiments will

be valuable for confirming the role of CEBPB and USF1

in GALNT2 expression, identifying other transcription fac-

tors contributing to the haplotype differences in transcrip-

tional enhancer activity, detecting physical interactions of

this enhancer region, and fully characterizing this com-

plex molecular mechanism at GALNT2.

The transcriptional reporter assays all exhibit the same

direction of effect; alleles associated with increased HDL-

C are also associated with increased enhancer activity. In

the assay of liver AEI (Figure 7A) and the study on adipose

eQTLs (Figure 7B and Figure S15), the rs4846914 A allele

associated with increased HDL-C was associated with

higher GALNT2 expression. Although the HDL-C GWAS

variants were not associated with GALNT2 expression

in an eQTL dataset of more than 400 liver samples
Journal of Human Genetics 97, 801–815, December 3, 2015 811



(p < 3.95 3 10�8)56 or in our eQTL analysis of primary

hepatocyte samples from 50 individuals (Figure S14),

significant associations were previously observed57 in

146 human liver biopsy samples (p ¼ 0.002) and 105 ca-

rotid-atherosclerotic-plaque biopsy samples (p ¼ 0.001),

consistent with our observed direction of effect. The evi-

dence of variant association with the level of GALNT2

expression in both liver and adipose tissue is consistent

with the frequent observation that eQTLs are shared

across multiple tissues.58 This direction of effect is oppo-

site to the effect on HDL-C of a previous study that

used adeno-associated viral vectors to overexpress and

knock down mouse Galnt22 and a study that observed a

rare GALNT2 missense variant in humans.21 Notably,

our observed direction of effect of the human GWAS var-

iants is consistent with recent unpublished studies

demonstrating that total loss of function of GALNT2 in

humans, mice, rats, and cynomolgus monkeys consis-

tently results in lower HDL-C (S. Khetarpal, D. Rader,

personal communication). GALNT2 remains a likely

candidate gene, considering the association between the

GWAS variants and GALNT2 expression, but not expres-

sion of 16 other potential target genes within 1 Mb in

samples of subcutaneous adipose tissue. However, the reg-

ulatory variants we identified might also act to increase

expression of other nearby genes that might contribute

to the HDL-C association signal. Identification of the

functional variants responsible for the human GWAS

signal can provide further understanding of the direction

of effect in humans and lead to a greater insight into the

molecular mechanisms of how these variants might influ-

ence gene expression and function.

In the METSIM cohort, the studied variants were most

strongly associated with traits correlated with total choles-

terol in medium HDL, including cholesterol esters in me-

dium HDL (r2 ¼ 1.0), concentrations of medium HDL par-

ticles (>0.9), phospholipids in medium HDL (>0.9), and

free cholesterol in medium HDL (>0.9). Sub-phenotype as-

sociations can provide additional insight into the function

of GWAS loci.59 GALNT2 might act during specific steps of

HDL-particle formation or remodeling by directly glycosy-

lating lipid modifiers or enzymes, such as ANGPTL320 or

LIPG, an enzyme that has been shown to hydrolyze phos-

pholipids in HDL60,61 and remodel HDL particles.62 More

work is necessary for determining the mechanism(s) by

which GALNT2 might influence the size of HDL particles.

Overall, this study demonstrates multiple lines of evi-

dence suggesting that at least two regulatory variants

might act to regulate expression of GALNT2, a gene

involved in HDL-C metabolism (Figure S18). The eQTL

and AEI data clarify the direction of effect by which the

GWAS variants act. Our study joins a growing set of studies

that implicate multiple functional regulatory variants at a

GWAS locus,63,64 highlighting the complexity of molecu-

lar mechanisms underlying GWAS loci, and emphasizes

that multiple common functional regulatory variants

might work in concert.
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P., Silander, K., et al. (2012). Genome-wide association study

identifies multiple loci influencing human serum metabolite

levels. Nat. Genet. 44, 269–276.

60. Jaye, M., Lynch, K.J., Krawiec, J., Marchadier, D., Maugeais, C.,

Doan, K., South, V., Amin, D., Perrone, M., and Rader, D.J.

(1999). A novel endothelial-derived lipase that modulates

HDL metabolism. Nat. Genet. 21, 424–428.

61. McCoy, M.G., Sun, G.S., Marchadier, D., Maugeais, C., Glick,

J.M., and Rader, D.J. (2002). Characterization of the lipolytic

activity of endothelial lipase. J. Lipid Res. 43, 921–929.
The American
62. Jahangiri, A., Rader, D.J., Marchadier, D., Curtiss, L.K., Bonnet,

D.J., and Rye, K.A. (2005). Evidence that endothelial lipase re-

models high density lipoproteins without mediating the

dissociation of apolipoprotein A-I. J. Lipid Res. 46, 896–903.

63. Corradin, O., Saiakhova, A., Akhtar-Zaidi, B., Myeroff, L., Wil-

lis, J., Cowper-Sal lari, R., Lupien, M., Markowitz, S., and Sca-

cheri, P.C. (2014). Combinatorial effects of multiple enhancer

variants in linkage disequilibrium dictate levels of gene

expression to confer susceptibility to common traits. Genome

Res. 24, 1–13.

64. He, H., Li, W., Liyanarachchi, S., Srinivas, M., Wang, Y., Akagi,

K., Wang, Y., Wu, D., Wang, Q., Jin, V., et al. (2015). Multiple

functional variants in long-range enhancer elements

contribute to the risk of SNP rs965513 in thyroid cancer.

Proc. Natl. Acad. Sci. USA 112, 6128–6133.
Journal of Human Genetics 97, 801–815, December 3, 2015 815

http://refhub.elsevier.com/S0002-9297(15)00442-5/sref58
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref58
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref58
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref59
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref59
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref59
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref59
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref59
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref60
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref60
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref60
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref60
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref61
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref61
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref61
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref62
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref62
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref62
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref62
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref63
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref63
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref63
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref63
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref63
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref63
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref64
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref64
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref64
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref64
http://refhub.elsevier.com/S0002-9297(15)00442-5/sref64

	Multiple Hepatic Regulatory Variants at the GALNT2 GWAS Locus Associated with High-Density Lipoprotein Cholesterol
	Introduction
	Material and Methods
	Defining the Candidate Set of Variants
	Genotyping and Imputation
	Fine-Mapping and Conditional Analyses
	Cell Culture
	Transcriptional Reporter Assays
	Electrophoretic Mobility Shift Assays
	ChIP Assays
	Allelic-Imbalance Analysis of Sequence Reads from CEBPB ChIP-Seq and DNase-Seq
	Preparation of cDNA for GALNT2 mRNA-Expression and AEI Assays
	AEI Assays
	GALNT2 Hepatocyte mRNA Expression
	Lookup of Expression Quantitative Trait Loci in Subcutaneous Adipose Tissue
	siRNA-Mediated Knockdown of CEBPB

	Results
	Fine Mapping Shows Evidence of a Single Association Signal Strongest for Total Cholesterol in Medium HDL
	Open-Chromatin, Histone-Modification, and Transcription-Factor Marks Indicate Potential Regulatory Elements Overlapping the ...
	All 25 Candidate Regulatory Variants Were Evaluated for Allelic Differences in Luciferase Activity
	rs2281721 Exhibits Allelic Differences in Transcriptional Activity
	A Segment Containing rs4846913, rs2144300, and rs6143660 Shows Haplotype Differences in Transcriptional Activity
	The Haplotype Variants Act Together to Regulate Enhancer Activity
	USF1 Binds to rs2281721
	CEBPB Binds Differentially to the Alleles of rs4846913
	rs2144300, rs1555290, and rs6143660 Also Show Suggestive Evidence of Protein Binding
	Variants Associated with GALNT2 Expression

	Discussion
	Supplemental Data
	Conflicts of Interest
	Acknowledgments
	Web Resources
	References




