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Abstract of the Dissertation

Modeling and Optimization for Irrigation

Control Using Wireless Sensor Networks

by

Daniel A. Winkler

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Merced, 2019

Professor Alberto E. Cerpa, Chair

Lawns, also known as turf, cover an estimated 128,000km2 [nas] in North Amer-

ica, consuming an estimated 7 billion gallons of freshwater each day. Despite

recent developments in irrigation control and sprinkler technology, state-of-the-

art irrigation systems are unable to consider localized water requirements across

the irrigation system and deliver localized control, preventing efficient irrigation.

Inspired by preliminary results in simulation, we introduce a distributed irriga-

tion controller, allowing us to sense moisture data across the space, actuate each

sprinkler independently, and perform computation in a distributed way. To ef-

ficiently schedule irrigation for these distributed devices, we introduce modeling

techniques allowing us to predict future water movement through the space caused

by runoff, leaching, and weather effects that will affect the moisture in the system.

These models are then used as constraints in optimization to choose schedules

for the distributed valves that minimize system water consumption while main-

taining optimal plant health. Finally, we show through extensive deployment

side by side with state-of-the-art control strategies that our proposed systems are

capable of providing significant water savings while simultaneously providing a

xx



higher quality of service to the turf compared to the baselines. Furthermore, we

find that through clever system design we can achieve a perpetual system lifetime

and virtually eliminate manual system configuration requirements, allowing us to

bridge the technology gap to the end user to vastly improve system adoptability.

In this way, we demonstrate the feasibility of wireless sensor use in turf irrigation

systems.
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CHAPTER 1

Introduction

Public and private lawns, also known as turf, make up the single largest irrigated

crop by surface area in North America, covering approximately 128,000 km2[nas].

In 2015, it was estimated that lawns consumed 9 billion gallons of fresh water each

day for irrigation [epac]. As only 1% of water on the planet’s surface is estimated

to be fresh and available for our use [fre], there is significant environmental,

economical, and political motivation to improve the efficiency of the irrigation

systems.

We wish to improve the efficiency of turf irrigation systems, but as the primary

purpose of turf installations is to be aesthetically pleasing, we must maintain a

high quality of service to the plant. If we do not deliver sufficient water to the

plant, it will eventually wilt and die. However, over-irrigation also has conse-

quences. In addition to wasted water, over-irrigation over time will cause discol-

oration of the plant, erosion of the soil, and in extreme cases can carry fertilizer

chemicals beyond the root zone of the plant and into the drinking water supply,

as occurred in California’s Salinas Valley and Tulare Lake Basin, investigated

by [HL12]. To achieve our goal of reducing water consumption and maintaining a

high quality of service, we must apply irrigation exactly where it is needed across

the irrigated space.

To apply the correct amount of water to the surface, our irrigation controller

must meet three requirements. (1) We must be able to track soil water conditions
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across the irrigated space for system monitoring and as feedback for control. (2)

We must be able to irrigate water where it is needed, not possible in standard

irrigation systems due to centralized valve locations. (3) As water moves across

and through the soil, we must be able to model and predict this movement

beforehand, in order to apply it to the surface efficiently.

1.1 Proposed Contributions

In my thesis, I intend to demonstrate that use of wireless sensor networks can

solve the ongoing limitations of turf irrigation systems, feasible not only in a

research context but also as a potentially commercialized system. The primary

contributions are as follows:

• We investigate the weaknesses of centralized actuation in standard turf

irrigation systems, and introduce a wireless distributed sensor/actuator to

allow significantly finer granularity of control for more efficient and higher-

quality service to the turf.

• To prepare for or take advantage of future weather conditions when mak-

ing control decision, we develop a method of predicting evapotranspiration

losses in the near future using commonly-available weather predictions and

historical data trends.

• We introduce and evaluate three methods of computing valve scheduling for

distributed actuation by coupling fluid movement modeling techniques and

optimization to find schedules that minimize system water consumption

while maintaining quality of service constraints for the plant.

• Finally, we design a fully distributed irrigation controller, allowing the sys-
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tem to control irrigation systems at any scale with robust system operation.

In doing so, we design a distributed node which takes advantage of a co-

processor architecture to enable significant computation and storage capa-

bilities with the best-case energy consumption of a standard WSN device,

and leverage energy harvesting to allow the system to operate indefinitely.

1.2 Proposal Organization

Chapter 2 discusses related work in the fields of irrigation control in Section 2.1,

methods of plant health monitoring in Section 2.2, techniques for fluid modeling

in Section 2.3, and others.

Chapter 3 investigates the weaknesses of the standard centrally-actuated irri-

gation system architecture, and hypothesizes the benefits of controlling at a much

finer spatial granularity using distributed wireless sensor network actuators, the

first work to do so. To quantify the effect such a system would have on system

operation, we develop a model of water movement through the irrigated space us-

ing a cellular automata model that considers sprinkler fluid distribution, downhill

surface runoff and infiltration subject to estimated soil flow rate, available soil

storage, etc. This model is then used as a black-box for an optimization problem

to find schedules for the distributed actuators that minimize system water con-

sumption while maintaining minimum soil water levels across the space required

for plant health. While the optimization of the proposed model was found to

be too slow to control a large-scale irrigation system, results in simulation sug-

gest that the proposed distributed actuation significantly reduce system water

consumption in comparison to the centrally-controlled system.

Based on the promising results in Chapter 3, Chapter 4 introduces the DIC-
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TUM system, aiming to improve the modeling and optimization techniques and

put the system into practice to control a large-scale irrigation system. First,

we describe the development of the wireless sensor/actuator node to be installed

on each sprinkler. These devices have a solenoid to control a flow of water to

each sprinkler, a soil moisture sensor to monitor moisture levels across the space,

and wireless communication capabilities to transmit data with sister nodes and a

basestation. We then propose a PDE model of water movement, built from first

principles to be significantly more representative of the physical space than the

cellular automata model of Chapter 3. This model describes all of the short-term

water movement effects that occur during irrigation; application of sprinklers,

surface runoff and diffusion, absorption into the soil, and sub-surface downhill

flow and diffusion. Whereas the model in Chapter 3 was used as a black box

in optimization, the DICTUM system uses the PDE model as constraints to an

optimization problem to improve optimization performance. As using the non-

linear PDE model as constraints will cause our optimization to be non-convex

and introduce local optima as well as increasing time to solve optimization, we

choose to first simplify this model by discretizing and linearizing it, resulting in

a linear program that will be easier to solve in practice. Optimized schedules

are then transmitted to their respective actuator device to be run. To test this

system, we launch two side-by-side irrigation systems covering a total area of

∼10,000 ft2 for 4 weeks, and find that water savings in the order of 10-25% are

possible compared to existing control strategies, while simultaneously improving

quality of service significantly.

Although the DICTUM system introduced in Chapter 4 had significant im-

provements on our primary metrics of success, it had practical limitations as an

irrigation control strategy at scale. The proposed PDE model required manual

parameter definition, which either requires broad assumptions in the homogene-
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ity of the space which reduces model accuracy, or requires significant time and

expense to measure these parameters across the space. In addition, we recognize

that while the PDE model provides valuable information about water movement

during irrigation, performance limitations prevent it from being useful to pre-

dict movement across the full 24-hour cycle, which can potentially cause reduced

quality of service to the turf. In response to these limitations, Chapter 5 pro-

poses data-driven modeling techniques across two time horizons, short-term and

long-term. The long-term model describes how each individual location across

the space tends to lose its moisture between irrigation cycles, and is used in con-

junction with a weather prediction method we introduce to choose a goal state of

moisture that should be reached by the end of irrigation to satisfy plant moisture

requirements across the full 24-hour cycle. In addition, we employ a short-term

model to describe how actuation of sprinklers will affect the soil moisture across

the entire space. The short-term model is then used in optimization to choose

sprinkler schedules to guide soil moisture towards our goal-state of moisture,

computed using the long-term model, in the most efficient way possible. We

find across two large deployments that while the proposed OPTICS system only

slightly reduces water consumption in comparison to the DICTUM system, its

ability to better estimate long-term losses between irrigation cycles allows the

OPTICS system to provide improved quality of service. At the same time, the

OPTICS data-driven system requires virtually no human input, automatically ad-

justs in response to changing and heterogeneous environmental conditions, and

is capable of scaling to control very large irrigation systems.

Finally, Chapter 6 considers the limitations of the centralized decision-making

of the previous chapters. Under centralized control, data for model generation

and decision-making must be constantly moved across the network to and from

a single controller, causing increased radio consumption across the network and
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a single point-of-failure as discussed in Chapter 5. In addition, as the OPTICS

model for short-term water movement is global, considering the effect of every

sprinkler in the space on every sensor in the space, significant processing time

is needlessly performed due to each sprinkler’s limited area of influence. We

recognize that these limitations make this application a prime candidate for a

distributed control system system that we call WISDOM, in which different re-

gions of the irrigation systems are able to make their own control decisions based

on the conditions within a local neighborhood. As all low-power platforms within

the WSN domain are severely restricted in terms of memory and computation, we

design a wireless sensor node with a co-processor architecture that allows truly

low-power operation when the system is sitting idle, and significant computation

and storage capabilities during irrigation, allowing model training, optimization,

and any future system requirements. To ameliorate the additional power con-

sumption of the distributed device, we recognize that each node is collocated

with a sprinkler, and equip each with a micro hydro turbine and charge con-

troller to allow battery recharge during irrigation. To determine the WISDOM

system operation on our end-to-end metrics introduced in previous chapters, we

launch a 4-week system deployment and compare to the evapotranspiration and

OPTICS systems to find that while we provide the added benefits of scalability,

robustness, and perpetual operation, our system loses no performance in compar-

ison to the OPTICS system. To determine whether the use of localized models

results in less efficient schedules, we simulate an extremely large-scale irrigation

system in several configurations to compare the schedules produced using global

and local modeling, and demonstrate that in ordinary irrigation system and en-

vironmental characteristics, the WISDOM system will find identical schedules to

the OPTICS system, despite drastic reduction in communication energy costs in

the network.
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CHAPTER 2

Related Work

2.1 Irrigation control strategies

In recent years, several advancements in irrigation control strategies have come

forth to improve the operation of turf irrigation systems, but the vast majority of

irrigation systems remain under antiquated control, with manually-defined valve

scheduling, for which best practices are suggested by the Environmental Protec-

tion Agency [epaa, epab, epad]. These industry-standard irrigation systems suffer

from two primary limitations, in the architecture of the irrigation system itself

and in the control routine used to generate schedules for it.

The fundamental limitation of irrigation system architecture is in their use of

centrally-located water valves. In these systems, it is common for a single valve

to control tens of sprinklers, meaning if the valve is enabled, water will flow to

all of the attached sprinklers. In practice, however, the irrigation needs of the

soil are highly heterogeneous across an irrigation system. Changes in surface to-

pography and solar exposure will affect how much of the irrigated water is lost to

evaporation or runoff, and differences in soil type and depth will affect how much

water must be absorbed to reach a particular level of moisture, all of which can

vary significantly across an irrigated space. With centrally-located water valves,

a single area within the turf requiring more water will force the entire irrigation

system to be actuated extra. This commonly results in substantial overwatering
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of the space, even with the most intelligent control strategy deciding the sched-

ules run by the irrigation valves. The EPA best-practices guides recommend

that in large deployments where more than one valve is required due to system

pressure constraints, the individual valve schedules should be tailored to suit the

different requirements of the irrigated regions. However, these systems are still

highly centralized limiting the potential water savings, and this level configura-

tion requirement is often ignored due to the additional burden it puts on the

groundskeeper.

In addition to the physical limitations of the irrigation system, the majority

of these systems employ a basic trial-and-error control strategy based on static

schedule configuration. A groundskeeper will make an initial guess as to the

irrigation needs of the space in length of irrigation time required, and set the

irrigation system to irrigate for this length of time periodically. As time passes,

the groundskeeper will visually inspect the health of the turf that has resulted

from this irrigation. Any indication of dryness due to browning of the plant or

wetness due to puddling or discoloration will be noted, and the irrigation period

will be adjusted accordingly. This technique has 4 primary disadvantages: (1)

As the groundskeeper’s primary concern is the aesthetic quality of the turf and

the worst aesthetic penalties occur when the grass does not receive enough wa-

ter, the groundskeeper will almost always over-water intentionally to maintain

sufficient moisture, resulting in the irrigation system consuming more water than

necessary. (2) This manual re-configuration of irrigation schedules is highly im-

precise and subjective as slow plant reaction to moisture conditions makes a poor

visual feedback loop. (3) As these groundskeepers are often responsible for many

irrigated areas and/or busy performing other duties, in practice this adjustment

occurs rarely if at all. (4) Finally, due to long periods between adjustment, the

trial-and-error method causes the statically-defined irrigation schedules to remain
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unchanged across seasonal weather changes. Depending on the time of year, this

often results in diminished quality of service due to underwatering or efficiency

due to overwatering. The EPA best-practices guides all recommend that these

systems be replaced with more sophisticated weather-based controllers so that

manual scheduling is not required, but the simplicity, low cost and start-up time

of these simple controllers make them the most commonly-used strategies to this

day.

Both of these limitations affect the operation of these systems, so work has

been done to correct these weaknesses. Although the physical limitations of these

irrigation systems had not been addressed prior to our work, control techniques

seeking to improve the operation of existing systems are discussed here.

2.1.1 Weather-based strategies

It is well understood that weather is a primary water source or sink in irrigation

systems, and the most obvious water contributor is precipitation. In the trial-

and-error control strategy mentioned above, the system has no understanding of

weather, and will continue with its periodic irrigation even if rain is occurring,

potentially causing significant waste of water. To prevent this source of waste,

irrigation system manufacturers such as Hunter [raia] and Rain Bird [raic] have

developed precipitation sensors that wire into the irrigation controller. Rain

gathers within a sensor, and once it reaches a particular threshold, a signal is

sent to the irrigation controller to disable irrigation until the moisture within

the sensor has dried out. These systems do a good job to prevent the irrigation

system from wasting water during precipitation, but the sensor itself still requires

the user to manually calibrate the precipitation threshold at which irrigation is

disabled. Set too low, the irrigation system may be disabled when irrigation is still
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required, and set too high and water waste will occur. Although this system has

clear benefits to system efficiency during precipitation, having a human directly

in the loop is not desirable for these control strategies.

In addition to precipitation, there are other environmental factors that will

influence the amount of water available within the soil for the turf to use. These

factors are generally broken into two categories, evaporation and plant transpi-

ration. Evaporation is the process in which the surface water is vaporized due

to environmental conditions and transported away from the soil. Although it

has the strongest effect on standing surface water, evaporation can also extract

moisture from the soil that lies close to the boundary on the surface. Plant tran-

spiration is the process in which plant roots extract water from the soil for use in

its biological processes, and the amount of water uptake depends on how active

the plant is. When a plant is young, the primary loss is caused by evaporation

from solar radiance directly hitting the soil. As the plant grows taller and thicker

and shades the soil, the majority of losses are from plant transpiration. Both

evaporation and plant transpiration are directly affected by weather conditions,

and so with the ability to estimate these losses based on measurable weather

conditions, irrigation can then be scheduled in response.

To this end, work done in [JBA90] and [APR98] strived to find the rela-

tionship between weather conditions and the loss of water from the soil, with

the latter known as the FAO-56 method now representing the standard. They

develop a formulation that takes measured values of solar radiation, air tempera-

ture, humidity, and wind speed collected in controlled conditions, and outputs an

estimated reference evapotranspiration value estimating the amount of water that

has been lost subject to these environmental conditions. As evapotranspiration

has become a common weather metric, many weather stations report the reference
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evapotranspiration metric directly. For instance, the California Irrigation Man-

agement Information System [cim] provides an API for the retrieval of California

weather data at 255 measuring sites across the state, many of which are available

with evapotranspiration. In regions with no publicly-available weather station,

an off-the-shelf evapotranspiration sensor such as Hunter’s ET Sensor [hunb] or

Weathermatic’s weather sensors for the SmartLine irrigation controller [wea] can

be locally installed.

An evapotranspiration irrigation controller begins operation by contacting

the local weather station, which will provide the reference evapotranspiration

losses. In our locale these losses are available at hourly, daily, monthly, or yearly

intervals. Depending on the irrigation frequency configured into the irrigation

controller, the losses will be summed since the time of last irrigation. As dif-

ferent types of plant provide different amounts of shade to the soil and require

different amounts of water, they will result in different soil water losses even in

identical environmental conditions. To correct for these variations, the reference

evapotranspiration losses is then multiplied by a crop-specific evapotranspiration

coefficient, enumerated for most standard crops including turf in [APR98]. This

crop-specific estimate of water losses since the last irrigation period, in inches

of water, can then be re-irrigated in a direct water replacement. Based on the

known application rate of the sprinklers installed across the irrigation system in

inches of water per minute, the lost water can be used to calculate the amount

of time of irrigation required to replace the losses, and the irrigation system is

activated.

Evapotranspiration controllers overcome some of the biggest weaknesses of the

standard irrigation control, as they automatically adjust in response to changing

weather conditions and require significantly less manual configuration of irriga-
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tion schedules in comparison. Furthermore, as over-estimation is not needed, the

marketing literature of these technologies boast a potential 30% of water savings

in comparison to the standard trial-and-error irrigation control technique. As

such, these systems are considered to be the best industry controllers available,

and so we use the evapotransporation control strategy to compare to our pro-

posed systems in Chapters 4 and 5. Despite the huge benefit of these controllers,

this technique still has limitations. Although these controllers have knowledge of

recent local weather patterns, they have no understanding of local environmental

conditions causing surface runoff, leeching, site-specific changes in solar exposure

due to tree occlusion or sloped land, etc. Without details of these conditions,

the controller will be unable to take advantage of distributed sensing/actuating

devices across the space, and will suffer from the efficiency and quality of service

limitations of centralized valve control. Furthermore, as there is no sensor feed-

back in these systems to make adjustments, in practice these controllers irrigate

an extra safety margin of water to ensure a high quality of service is provided

across the space, causing additional water losses.

2.1.2 Sensor-based strategies

With recent improvements in soil moisture sensing technologies, some have sug-

gested the use of sensors as primary input to an irrigation controller. These

systems monitor the soil moisture levels in the soil over time, and when the soil

is sensed to be too dry, irrigation is applied to raise moisture levels. In gen-

eral, in systems such as that used by [ugm], the system is installed with a small

number of buried soil moisture sensors in representative locations. However, this

means the irrigation schedules for the entire space are dictated by the moisture

conditions in specific soil regions, which in general are very heterogeneous. Over
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time, this means that although the controller may be applying perfect irrigation

to the region near the sensor burial, the rest of the system may be suffering due

to differences in soil type and depth, solar coverage, and surface topography. If

the controller performs no modeling to learn how moisture is lost over time, these

systems may need to provide an extra safety margin of irrigated water as well

to ensure healthy moisture levels are maintained, which may lead to inefficien-

cies over time. Or, alternatively, a sensor-based system may reactively actuate

at any time during the day when moisture levels fall beneath the predescribed

threshold, which can lead to plant sunburn and increased evaporation, wasting

water. Finally, these systems are still under the physical limitation of centralized

valve locations, which fundamentally limits the feasible efficiency of the irrigation

system. Despite these limitations, the ability to sense the soil moisture condi-

tions across the space is critical to provide efficient control, and so we choose to

leverage spatially-dense soil moisture sensing in our system.

In [CDM08], the authors performed a side-by-side comparison of a sensor-

based control strategy with timer-based controllers with and without rain sensors.

The purpose of the study was to determine if control based on sensor input was

sufficient to maintain a high irrigation quality to the plant, and determine what

effect such a control strategy would have on system efficiency. The quality of

irrigation was judged on a visual scale from 1-9, with 9 indicating the highest

possible quality of health. The irrigation controllers using sensor input were

configured to irrigate when moisture levels fell beneath a threshold representing

the permanent wilting point, the minimum moisture level at which the plant will

remain healthy. The study found that significant water savings were possible,

from 8-56%. However, at the same time, the results found that some of the

sensor-based systems that had the highest amount of savings also had slight

reduction in plant quality, and would require a manual adjustment in control to
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regain the plant health and appearance. Interestingly, as the study also tested

the effect of irrigation frequency on system efficiency, it was found that irrigating

every day, the maximum frequency tested, resulted in the most efficient irrigation

operation.

As sensing of soil moisture conditions is crucial, we employ this into our

system. We install soil moisture sensors at the same granularity as actuators,

one per sprinkler. This gives our system the best understanding of the moisture

conditions across the space, and minimizes the chance at miscalibration due to

a misplaced sensor. By combining this feature with the ability to actuate the

sprinklers independently across the space, our system can apply irrigation exactly

where it is required. Finally, by modeling how water will move spatially and

temporally, our system can work to irrigate not only to provide high quality of

service at irrigation time, but at all time between irrigation cycles.

2.2 Quality of Service Metrics

The primary purpose of most turf installations is that it is aesthetically pleasant.

Although we wish to reduce the water consumption of these turf irrigation sys-

tems, their primary purpose is to maintain the visual appeal of the plant. When

searching for optimal schedules for valves in the irrigation system, we require

the ability to monitor the plant to ensure we are providing a high quality of

service. Some work has used the visual appeal of the plant [CDM08] as directly

observed by humans to determine the effectiveness of various irrigation control

strategies. However, this technique is highly subjective, as two humans are un-

likely to provide aesthetic ratings that agree 100% of the time. Furthermore, if

we wish to use this feedback as basis for control decisions, it is impractical to rely

on humans constantly checking turf installations. A more quantitative option is
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through the use of emerging optical solutions, such as those in [CS01, pho, cer].

By using an optical filter to isolate the wavelength region outside of the visible

spectrum where plant reflectance changes the quickest upon plant stress, such

systems are capable of identifying plants that are not healthy before it results

in visible change. These techniques have started being used in large-scale aerial

crop management by being fitted to airplanes. Although these visual techniques

respond too slowly to irrigation changes to be used to make control decisions,

in the future they may prove to be useful in verifying plant health at scale as a

secondary sensor input to the control system.

Directly monitoring the plant aesthetics may be too slow to be used as feed-

back in a control system, but by maintaining the highest quality of health in

the plant, we will be maximizing the plant’s chance to achieve maximum visual

appeal. Turf requires many things to stay healthy - an adequate level of solar

exposure, the correct soil nutrients in appropriate amounts, and a sufficient level

of moisture in the soil. Although we have no control over the solar exposure or

soil nutrients, our irrigation system has direct control over the amount of mois-

ture present in the soil. Furthermore, this soil moisture data is easily collected

in our wireless sensor network, and will change quickly in response to irrigation

that is applied to the surface, making it ideal as feedback for control. In plant

physiology and soil physics, the moisture level where the capillary forces between

the soil particles and water molecules overcomes the suction capabilities of the

plant is known as the permanent wilting point [MD17, usd, Kir04]. Allowing the

soil moisture to fall beneath this threshold will prevent the plant from collecting

the moisture it requires from the soil, and will lead to degraded health of the

plant. To maintain health then, our primary metric of quality of service is chosen

to be the amount of time spent beneath this moisture threshold, which we wish

to minimize. In practice, we choose to square this metric, as it indicates that
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the farther beneath the minimum moisture threshold we allow the soil to go, the

worse the penalty on plant health.

2.3 Modeling strategies

2.3.1 Industry

To choose optimal schedules, we must know how fluid will move across and

through the soil. The first method of calculating soil water movement was through

the use of Darcy’s Law [Dar56], which describes flow of water through porous

media at saturation using pressure differences within the soil. However, as soil

behaves differently when it is unsaturated, this was later generalized in Richard’s

equation [Ric31] by considering the additional pressure produced by matric suc-

tion that occurs between soil particles and the water. These two formulations for

fluid flow through porous media are still commonly used and serve as the basis

for the following modeling tools, which solve these equations at various spatial

and temporal discretization levels.

At a large scale, the water cycle can be modeled using SWAP (soil, water, at-

mosphere, and plant)[KDB17]. SWAP considers not only water movement within

the unsaturated soil, but also the water uptake into the plant and environment,

and can be configured to track the transport of nutrients or pesticides through

the system. These factors make SWAP a useful tool in tracking the water bal-

ance across a large geographic area, allowing simulation of pesticide leaching,

water drainage, salinity effects on plant growth, and other hydrological effects

to be examined at large scale. Similarly, the SWAT (soil and water assessment

tool) [swa] co-developed by the USDA Agricultural Research Service models river

basin models water movement at a hydrological level for such applications as sed-
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iment management modeling [BMG11], nutrient retention in Finland’s Vantaan-

joki watershed [GBG03], and modeling hydrological factors such as river discharge

and nitrate transport of the entire European continent [ARV15]. However, due

to the large scale of simulation in these tools, there is insufficient detail required

to make irrigation control decisions at a smaller scale of each sprinkler.

Spanning between the large and small scale is the ParFlow hydrological mod-

eling tool [JW01, AF96, KM06, Max13]. At the small scale, ParFlow models 3D

unsaturated water flow through soil down to the ground water table and surface

water flow using the shallow water equations at high precision. At the same

time, ParFlow is capable of modeling weather conditions such as evapotranspi-

ration and snow, and the coupling between surface and sub-surface flow. As this

model is all-encompassing, it is designed to be run on very powerful machines

that can take advantage of parallelization. As providing significant processing

capabilities to an irrigation system controller will significantly raise the price of

our system, such a system is not ideal for our use.

At the small scale, simulators are available that simulate water movement

through soil using Richard’s equation. Commonly used in the field of soil physics,

Hydrus [hyd] includes finite element models for simulating saturated and unsat-

urated water flow, as well as solute and heat transport in 2- and 3-D. Similarly,

the Comsol modeling suite has available a Subsurface Flow Module [com] which

allows a physical model of the terrain to be built, and then fluid transport is

simulated through the soil. The primary drawback of these systems is that they

only model movement of water through the soil that already exists within the

space, meaning there is no good way to simulate the application of irrigation onto

the surface of the soil following an irrigation schedule. Furthermore, even if it

were possible to configure the input of water onto the surface of the soil following
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an irrigation schedule, these models do not track surface flow, so the effects of

runoff can not be considered within the system. Finally, as these finite element

models are calculating soil movement at very fine granularities, these models take

significant time to solve.

In our use, we require the ability to manipulate an irrigation schedule at the

sprinkler level, and track its effect on the movement of water through the soil.

This model must be used in optimization, requiring many such irrigation sched-

ules to be run through simulation. In addition to the details mentioned above,

in general these modeling tools are designed to be as accurate as possible for

simulations to be manually run. For this reason, they generally do not have a

programmable interface that allows them to be tied in to an optimization library,

and they tend to be very slow to solve each simulation, making optimization

difficult. To overcome these limitations of performance and customization, we

instead produce our own model that includes movement of water on the surface

and within the sub-surface, allowing us to simulate sprinkler-specific irrigation

schedules, distributing water onto the surface as would occur in reality. Further-

more, our model’s improved performance and flexibility to accept any combina-

tion of soil parameters, topography, and irrigation system architecture allows it

to be used in schedule optimization.

2.3.2 Academia

In [APN94], the authors develop a model describing water content at various

soil depths at a single location in the field. This model follows the traditional

loss balance function that accepts irrigation, rainfall and capillary rise as water

inputs, and deep percolation, surface runoff/drainage, and evapotranspiration

as water losses. These moisture changes subject to environmental and irrigation
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factors will travel up and down the column as time progresses, and it is suggested

that this information can be used to provide irrigation in such a way that the

water is efficiently applied to the surface without excessive waste. The proposed

model has the benefit of simplicity and intuition, and is surely useful to provide

a rough estimate of how much water will be required to re-hydrate lost moisture.

However, the proposed system has some limitations. Firstly, one of the most

important environmental factors that would allow efficient localized irrigation

scheduling is the prediction of runoff. Although the authors acknowledge that

runoff is one of the required losses to accurately model water movement, they

offer no strategy to predict it. Second, this model must make the assumption

that the field is spatially homogeneous in water needs soil type and depth, etc.,

which will affect the model accuracy in many irrigated spaces at scale. For these

reasons, it would be difficult to adapt such a system to provide sprinkler-specific

irrigation schedules.

To optimize irrigation schedules, we must have a way to predict how water

will move through the system in a computationally-efficient manner. For this

reason, very complicated fluid movement models are difficult to integrate into a

system such as ours, so alternative methods are considered to simplify complex

systems. For instance, one could use moisture movement predicted by a compli-

cated, accepted fluid flow model to train a simplified model through the use of

Data Assimilation. Used to predict states of advanced systems given a particular

input such as weather forecasting [Kal03] and large-scale hydrological patterns

from satellite images [RME02], data assimilation is often used to create approx-

imated system models, which can then be used for optimization. However, due

to the immense size and discontinuity of the solution space in models such as

one predicting fluid flow through soil can lead to an approximated model that

is unable to reasonably predict outcomes of the system. Another option, called
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Lumped Element Modeling, is a method of breaking complex problems into sim-

pler “lumped” sub-components. This method has been used to create a simplified

model of fluid jets for prototype analysis [GHN03], and to model aortic blood flow

from arterial pressure in humans [WJS93] among other applications. Although

such simplifications sacrifice accuracy, these approximations can greatly improve

performance.

With use of automated irrigation systems, people maintaining the systems can

fall victim to a set-and-forget mentality, which can lead to mis-configuration of ir-

rigation systems and reduction of irrigation quality and/or efficiency. Researchers

in [DMD13] build a one-dimensional soil water balance model to simulate the

vertical movement of moisture in an irrigated space based on soil characteristics,

irrigation schedule, real-time weather data, and irrigation infrastructure. With

this simple model of moisture movement, an interactive tool was designed for

homeowners and landscapists to allow quick evaluation of an installed system

and provides key metrics such as expected occurrence of underwatering, amount

of overwatering, and provide access to resources that may help configuration.

The proposed feedback system provides some key insight on moisture changes,

such as evapotranspiration that take place on a daily timescale, but over-simplify

short-term effects like runoff, that can provide key insight into the movement

of water across the surface. Although the tool provides projected evaluation

of a particular irrigation schedule, the authors offer no strategies for schedule

improvement.

2.4 Evapotranspiration prediction

In order to control intelligently, we must take into account future temperature

shifts, precipitation, and other effects that affect irrigation requirements as later
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discussed in Section 5.2.1. The standard weather metric for irrigation control has

become evapotranspiration (ET), a measure of how much water is lost from the

soil due to solar radiation, temperature, humidity, and wind. In [Oli97], a patent

describes an irrigation controller that predicts future ET losses, but the main

contribution is the combination of a reference ET estimate offset by predicted

precipitation, to produce a system that will not over-irrigate with rain in the

near future. Although the author recognizes the potential to use other forecasted

weather metrics to predict future ET, they offer no implementation of this feature.

An extensive study in [CLL07] finds that exceptional prediction of ET is possible

when predictions for all four ET variables (solar radiation, temperature, humidity,

and wind) are available in local data sources. The authors recognize that this

is often not the case, and this holds true in our work, as wind speed and solar

irradiance predictions are unavailable for our locale. As no suitable ET prediction

could be found, we design our own.

The authors evaluate the effectiveness of two predictive methods for weekly

evapotranspiration data based on recent historical weather trends for the use of

planning and water resource management for agricultural use. The first is an

autoregressive integrated moving average (ARIMA) model, and the second is an

artificial neural net (ANN) approach. Both methods consider the recent evap-

otranspiration losses based on the FAO 56 use of the Penman-Monteith equa-

tion [APR98] equation for evapotranspiration, and predict the expected losses

across the next week. These two methods are then compared to a “mean year

model”, where the evapotranspiration losses for week n of the year is estimated

as the average of historical evapotranspiration losses for week n of all years of

historical data. It is found that both ANN and ARIMA techniques have lower

predictive error and variability of prediction than the “mean year model”. As the

predictions performed are at a weekly granularity, there is significantly less vari-
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ance in weather trends in comparison to our application, where we must predict

evapotranspiration losses across a 24-hour period. For this reason, it is unclear

how using only past weather data will affect accuracy of prediction on the 24-hour

time horizon, even using a more advanced model such as an ANN. For this rea-

son, in our work we chose to use as input to our predictive models future weather

trends, which are more likely to be indicative of the future environmental state.

A similar operation can be found here [MTT93], but for monthly evapotran-

spiration trends. This work considers 3 models for use in pre-emptive space

planning; the first assumes the ET this month is the same as last year in this

month. The second assumes the average of this month across all years in the his-

torical record. The third is a time-series model, which will consider the statistical

behavior or the system across the historical record. Similar to the previously-

mentioned work, the prediction of weather across a monthly time horizon signif-

icantly reduces the variance of the weather patterns, making a time-series model

particularly suitable. Surprisingly, the results of this study found that even on

the month time-horizon, the averaged monthly model performed nearly as well

as the more complicated time-series model. With this in mind, it is unlikely that

such a model would work well on a daily time horizon, but future work is required

to confirm this.

In [LTL15], 10 years of historical meteorological data is used to train four

ANNs of different types (LR, PNN, MLP, GFF), with daily min, max, and mean

temperature as input and resulting evapotranspiration losses as output. At the

location of the study, forecasting provided min/max and average temperature

values for up to 7 days into the future. These forecasted temperature values

are fed into the ANNs trained on historical temp, and the predictive error is

evaluated to determine the potential sources of error. It was found that primary
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sources of error were in the forecasted temperature values provided by the public

sources, and the lack of other environmental factors such as wind, humidity, and

solar irradiance. The authors concluded that the ANNs provided ET predictions

accurate enough for use by irrigation controllers, but as of yet the system has not

been integrated into an irrigation controller. The methods presented are similar

to those proposed in Section 5.2.1, in that forecasted weather trends are used as

input to a predictive model. However, the forecasted data available in our locale

was significantly more descriptive, as it contained both temperature and humidity,

at hourly intervals. For this reason, we made the design decision to perform our

predictions by finding the most similar daily weather trend in historical data

using a k-nearest-neighbors regressor, but further analysis is required to consider

the use of a more complicated model such as an ANN using the available data.

2.5 Co-processor architecture

As the devices used in wireless sensor networks are generally incapable of per-

forming heavy computation, several approaches have been used to overcome these

limitations. Firstly, it has become common for distributed applications to be con-

figured for use on mobile [MPT17, JAC16, GLR14] or embedded [edi] devices with

on the order of GBs of memory and storage, but they are both very energy-hungry

and expensive at the scale of our application. Another approach is to reduce the

required memory and computation by simplifying the models used, for instance

in deep neural nets [YZZ17, BL16, YZS18]. However, in cases like ours where

mobile phones are too expensive and power hungry and the problem can’t be

adequately simplified, the use of a co-processor comes to mind. Used in off-

the-shelf devices like the iPhone [iPh] and Samsung Galaxy [gal], a co-processor

can handle background tasks such as motion sensor querying with low power, or

23



highly specific tasks such as neural net computation for image processing and

facial recognition without burdening the primary processor on the device. While

co-processor architectures have been used in the WSN domain for chip repro-

gramming [HC02] and security-specific applications [POT10, WSC13, LKS10],

no standard co-processor architecture has been developed allowing for low-power

operation AND computational capabilities for model training and optimization

as required in our application, so we design our own.

2.6 Miscellany

Work done in [BL94] seeks to investigate the effect of water droplet kinetic energy

on the surface pooling that is allowed to occur. If water is allowed to pool on

the surface, it will tend to run off a sloped surface, and can also be subject to

evaporation. To prevent pooling from occurring, it is important to make sure the

irrigated fluid is not applied more quickly than it can be absorbed by the soil.

Additionally, the way the droplets strike the surface can affect infiltration rate,

as high droplet kinetic energy has the potential to cause the soil surface to seal,

preventing additional irrigation from infiltrating. To test this effect, the authors

consider 45 samples of soil, and apply irrigation via carefully-measured droplets

at various heights. The water application rates were chosen to emulate that of

a center-pivot irrigation system, and the soil surface was arranged at a fixed

angle to emulate a sloping hillside. The study revealed a correlation between the

kinetic energy of the irrigated droplets and the amount of pooling that occurs,

suggesting that reduced application rates are beneficial to the system and that

water applied intermittently can improve the soil’s ability to absorb surface water

and reduce pooling.

These findings agree with the market emergence of low-flow sprinkler heads
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such as the MP Rotator [hunc]. Traditional sprinklers throw water uniformly in

all directions at the same time, with surface application rate decreasing linearly

from its max right next to the sprinkler head to a minimum application rate

of zero at the end of the sprinkler’s reach. As the sprinkler must throw water

in all directions, a relatively high water flow rate is required, and the radius

of the sprinkler is relatively small. In contrast, the MP Rotator throws several

thin streams of water in several directions at once, and the entire fixture rotates

slowly to provide a fairly even coverage over time. In this way, the MP Rotator

has a longer radius and a lower required flow rate than the traditional sprinkler,

while the inherent intermittency of coverage improves the overall efficiency of the

system by reducing the effect of pooling. For this reason, the MP Rotator has

been used in all of our system deployments, as they represent the state of the art.

Work done in [PSL13] identify potential improvements to agriculture irriga-

tion systems. On-site and remote control systems are discussed, as well as their

learning curves, which may prevent unskilled farmers from adopting them. Bot-

tlenecks are recognized in system development, standardization of technology,

and business models, that must advance before control system alternatives be-

come accepted. Although it is not tested, the authors propose a control strategy

that seeks to bridge the learning gap for members in the farming community.

The proposed strategy, with access to weather sensor inputs and expected soil

behavior using simulate models, is able to provide a flexible control strategy

that considers the environmental details to automate irrigation, while leaving the

farmer in control via over-ride capabilities. In this way, the system will seek to

minimize water consumption and water pump energy costs, with the ability to

temporarily disable irrigation if faced with unfavorable environmental conditions

such as high wind. This work goes to show that automation and simplicity is key

to the adoption of new irrigation control equipment and strategies, and highly
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sought-after.
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CHAPTER 3

Distributed Independent Actuation

for Irrigation Control

Improper irrigation of lawns can lead to many problems. Too little water can

lead to the death of the lawn and instability of the soil, and too much water can

cause the roots of the plant to rot, leading to unattractive lawn coloration and

death. Over-watering also leads to surface runoff causing evaporation and over-

saturation, which can leech fertilizer chemicals into the surrounding soil. [HL12]

investigates increasing nitrate levels in the water supply of California’s Salinas

Valley and Tulare Lake Basin. The authors attribute these levels, deemed “un-

safe” by the California Department of Public Health, to agricultural fertilizers

carried through heavily-saturated soils beyond the root zone into the groundwa-

ter. We identify the source of these problems as excessive moisture applied to the

soil surface, and investigate the potential improvement of deploying an irrigation

system that can perform distributed independent actuation to account for local

variabilities in an irrigated area.

As an intuitive example, Figure 3.1a depicts a line of 3 sprinklers controlled

by one central valve. As all sprinklers are activated for the same amount of time,

a roughly uniform distribution of water across the surface is seen at the time of

irrigation. However, as the diffusion of water into soil occurs much more slowly

than surface water flow, the surface water flows across the non-homogeneous sur-
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(a) Uniform, t = 0 (b) Uniform, t = ∞

(c) Non-Uniform, t = 0 (d) Non-Uniform, t = ∞

Figure 3.1: Expected results from various irrigation distributions

face causing an uneven surface coverage, as seen in Figure 3.1b. This uneven

coverage will then be absorbed, causing a non-homogeneous sub-surface mois-

ture distribution. In contrast, Figure 3.1c depicts an irrigation system where

actuation is performed on each individual sprinkler. A schedule for each sprin-

kler is created that will provide optimal moisture distribution across the entire

space. This schedule actuates the two uphill sprinklers for a longer period of

time, and the downhill sprinkler for less. After irrigation, the surface water flows

from areas of higher concentration and elevation, and so the runoff corrects for

uneven coverage, seen in Figure 3.1d, where it will subsequently be absorbed as

a more homogeneous sub-surface moisture distribution. Although the amounts

of water used in both examples are similar, the centralized uniform actuation so-

lution results in some locations receiving insufficient moisture content, requiring

additional watering to ensure sufficent water is received.

In this chapter, we develop a water flow model that is computationally light

enough to be evaluated by standard optimization techniques. This water flow

model is then used to create optimal scheduling for different valve configurations.

These schedules are then used in simulation with a physical model of a univer-
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sity lawn to demonstrate the benefits of distributed independent actuation in

irrigation systems.

3.1 Problem Formulation

An irrigation system that is capable of sprinkler-level actuation must be tested

to see if it is a viable option as a control system. As such, we must have the

ability to produce an optimal schedule such that the following is satisfied.

min
∑

i

~Si s.t. ∃ t > 0 ∀~x ∈ ~X a(~x, t, ~S) ≥ θpwp (3.1)

In this formula, a is the fluid flow model, which depends on the location

within the space, timestep, and ~S, the binary matrix of size K × T that defines

the activation of each sprinkler k at each discreet time t. As ~S defines sprinkler

activation across time,
∑ ~S is proportional to system water consumption. This

value is minimized such that at a future time, sub-surface moisture at each po-

sition in the space is above θpwp, a constant known in hydrology as the humidity

level where plants can no longer absorb water from the soil. With these con-

ditions satisfied, ~S contains the activation schedule for each sprinkler that will

provide adequate moisture levels across the space with minimal system water

consumption.

3.2 Water Flow Model

To accomplish the minimization described in Eq. 3.1, we must know how fluid

moves across and through soil. This is well-studied in the field of soil physics;

very accurate models including Hydrus[hyd] and Comsol Multiphysics’ Subsurface
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Flow Module[com] exist, which solve partial differential equations for pressures

that exist between soil and water particles in the porous media. Although highly

accurate, solving for these particle interactions require heavy processing, and take

a tremendous amount of time to complete.

An overly-complicated fluid model makes optimization unreasonable, and so

alternative methods are considered to simplify this complex system. One such

method is to use data assimilation to simplify one of the accepted fluid flow

models. Used to predict states of advanced systems given a particular input

such as weather forecasting [Kal03] and large-scale hydrological patterns from

satellite images[RME02], data assimilation is often used to create approximated

system models, often for optimization. However, the size and discontinuity of the

solution space can lead to an approximated model that is unable to reasonably

predict outcomes of the system. Another technique, called Lumped Element

Modeling, allows us to break a complex problems into simpler “lumped” sub-

components. This method is used to create simplified models of fluid jets for

prototype analysis[GHN03], and to model aortic blood flow from arterial pressure

in humans [WJS93]. Although this simplification sacrifices accuracy, this method

is more fitted to our problem, as it will allow an optimizer to explore a simplified

solution space more quickly.

3.2.1 Water Flow Model Formulation

To approximate the behavior of moisture within an irrigated space, we define

characteristics of the soil and expected flow patterns. These include soil absorp-

tion rate, soil depth, maximum flow rates, etc. The constants defined in Table

3.1 were chosen to resemble irrigated spaces at our university, but parameters

can be found for any given space.
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Table 3.1: Constants used in model

Constant Shorthand Value Units

Max Absorbance Rate MAR 1 mm/second

Max Storage MS 300 mm

Max Slope Smax 45 ◦

Min Slope Smin 0 ◦

Max Water Movement Fraction Cmax 1 1

Min Water Movement Fraction Cmin 0.1 1

ssf(x, y, t) = ssf(x, y, t− 1) + fa(x, y, t)

The sub-surface fluid, ssf , is defined as the sum of the sub-surface moisture

at the previous timestep and fluid absorbed, fa at this time.

sf(x, y, t) = sf(x, y, t− 1) + fs + fri − fro − fa(x, y, t)

Likewise, the surface fluid is defined as the sum of the surface fluid, sf , at the

previous timestep, direct moisture contribution from sprinklers within range, fs,

incoming runoff, fri, minus lost water due to runoff, fro, and moisture absorbed

into the soil.

fa(x, y, t) = min







sf(x, y, t− 1)

MAR ∗ (1− ssf(x, y, t− 1)/MS)

To simplify the process of fluid absorption, we treat each patch of soil as a

single storage unit with maximum storageMS, a reasonable simplification in irri-

gated spaces with thin sod layers. The rate of absorbance is defined between zero
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and maximum absorption rate MAR, based on the moisture already contained

in the soil. The amount absorbed is either the entire amount that lies on the

surface, or the maximum amount the soil can absorb.

fs =
K
∑

k=1







0 if dist(sloc(k), (x, y)) > MSR

~S(k, t) ∗MF ∗ (1− dist(sloc(k), (x, y))/MSR) otherwise

At each timestep, each location (x, y) on the surface receives fs units of water,

the sum of contributions from all K sprinklers. Resembling water distribution of

commercial sprinklers, each sprinkler contributes an amount scaled from MF ,

the maximum fluid application rate, at the sprinkler’s location, to zero, at a

distance of MSR, the maximum sprinkler radius or greater from the sprinkler.

As university irrigation systems are professionally installed, we assume that no

irrigated water will be delivered out of the irrigated space.

fri = C ∗
∑

neighbors

dh(xn, yn) == (x, y) ∗ sf(xn, yn, t− 1)

−fa(xn, yn, t)

Each neighbor with its steepest downhill neighbor, or dh(xn, yn), matching

our location adds a fraction C of their previous moisture content to our location.

fro =







C ∗ (sf(x, y, t− 1)− fa(x, y, t)) if ∃ dh(x,y)

0 otherwise

If a downhill neighbor, dh(x,y), exists, meaning we have at least one downhill

neighbor, a fraction C of our surface moisture is lost to that neighbor.

C = Cmin + (Cmax − Cmin)
(slope((xd, yd), (x, y))− Smin)

(Smax − Smin)
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(a) Fully-independent valve optimization

XY

(b) Single-valve optimization

Figure 3.2: Sub-surface moisture distribution
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In order to simplify our water flow model, we make the assumption that mois-

ture moving across the surface moves in the direction of steepest descent, from

(x, y) to location (xd, yd). To approximate this surface flow, we define bounds on

surface slope, Smin & Smax, and on C as Cmax & Cmin, defined in Table 3.1. It

should be noted that Cmin is non-zero to ensure that surface flow does not slow

to zero as the topography approaches a local minimum. Any slope between Smin

& Smax is then linearly interpolated between Cmax & Cmin.

3.3 Optimization Solution

As the input to the simulation is a schedule of binary integers and the formu-

lation is linear with respect to the schedule, the optimization problem is a non-

continuous integer linear programming problem. Limitations in integer linear

programming solvers found the Pattern-Search algorithm to be the best choice,

as it does not require the function to be continuous or convex. Although it is

incapable of solving integer problems, we were able to apply it by rounding all

float inputs within [0,1] to the nearest integer. This is not optimal, as turning a

discrete problem into a continuous one could harm our results, and in the future

we will go into greater depth exploring further optimization routes.

min
∑

i

~Si + ssfunsatisfied/ssftotal ∗ ǫ

To improve on the objective funtion defined in Eq. 3.1, the constraints en-

suring that moisture levels are sufficiently high in all locations are converted to a

single slack variable penalty function, which harshly punishes the objective func-

tion by a factor ǫ multiplied by the percentage of the sub-surface area that did

not receive adequate irrigation. The reasons for using a slack variable penalty
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Figure 3.3: System efficiency of multiple configurations with varying control

timesteps

function are two fold. For one, it allows the optimizer to explore the solution

space where constraints would be exceeded. In addition, in the case that a solu-

tion that satisfies the constraints can not be found, a slack variable ensures that

we will still return the best schedule possible, even if imperfect.

To make the calculation of optimal schedules feasible, each schedule is dis-

cretized in blocks of irrigation timesteps. These timesteps are varied and the

effect on system efficiency is described in Section 3.4. Of course, this discretiza-

tion limits the potential improvement of the optimized schedule, and so in future

work improved optimization strategies will be used to more thoroughly solve the

problem.

3.4 Results

To determine the viability of an irrigation system with distributed independent

actuation, we compare its efficiency to that of a uniformly actuated irrigation
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system. The system used in simulation has 8-sprinklers and covers an area of

1600 ft2 with a non-homogeneous topography. Tests are run using a single valve

with a constant watering time, chosen in an ad-hoc manner to closely match those

used on our campus, as baseline. The 8 sprinklers are split evenly into 1, 4, and

8 valves for variable spatial granularity, and optimized schedules are found with

control timesteps from 600 seconds to 130 seconds, to vary temporal granularity.

Simulations were run using these optimized schedules, and the resulting system

water consumption is plotted in Figure 3.3.

The time-independent constant watering strategy can be seen to consume

significantly more water than all but the least granular optimization strategies.

This schedule replicates irrigation timing chosen in an ad-hoc manner by the

greenskeepers at our university. A large amount of savings seen with the other

systems is due to the ability to water intermittently, which allows the soil to

absorb the water before more is applied. The efficiency is shown to improve as

the number of valves used increases, and generally as the timestep decreases. In

this proof-of-concept experiment, the optimized schedule with a fully distributed

independent actuation system provided sufficient water to the entire space, while

using 64% less water than the constant watering schedule. As our university

consumes approximately 32.5 M gallons each year on irrigation alone, these results

suggest that using a distributed independent actuation system could save about

20 M gallons of water per year, costing $112,000.

The final sub-surface moisture distribution of different valve configurations

with optimized scheduling can be seen in Figures 3.2a and 3.2b. The plots demon-

strate the activation schedules chosen to be applied at the respective sprinkler

locations. In Figure 3.2b, where the optimized schedule is calculated for a single

valve, the schedule for each sprinkler is equivalent, and the coverage distributed
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is fairly uniform. In the 8-valve configuration of Figure 3.2a, the optimized sched-

ule delivers more water to the upper region of the figure, but less water to the

lower region of the figure. Although this results in a distribution that is less uni-

form, the total water consumption has been improved by 13.6%. It should also

be noted that the optimizer converged on valve schedules that take advantage of

intermittent watering. Although surface flow causes the majority of flow in non-

homogeneous terrain, this intermittent watering will reduce pooling even in level

terrain, reducing the effects of evaporation to water loss. In future work, we will

introduce an additional slack variable penalty function to weigh the optimizer to-

wards solutions with more uniform moisture distribution, even if the total water

consumption is slightly higher, and measure the benefits of intermittent watering

on homogeneous terrain.

3.5 Conclusions

In this chapter, we developed a fluid flow model to determine if distributed in-

dependent actuation could benefit the efficiency of an irrigation system. In sim-

ulation, we determined that by moving from a system with one valve using a

schedule chosen in an ad-hoc manner to a system with fully distributed indepen-

dent actuation capabilities, savings of up to 64% can be realized. In addition, the

water consumption of this new actuation system consumes 13.6% less water than

a system with half the number of valves, suggesting that a fully distributed sys-

tem can be maximally efficient. In the next chapter, we apply this knowledge to

create a distributed independent actuation system to demonstrate that irrigation

systems can be made much more efficiently.
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CHAPTER 4

DICTUM: Distributed Irrigation Control with

Turf hUmidity Modeling

As discussed in the previous chapter, inefficiencies in turf irrigation stem from

the system’s inability to properly apply irrigation where it is needed. Great im-

provements in irrigation system design have been made recently; new sprinkler

heads apply water much more slowly to avoid runoff and leeching [hunc], and

new irrigation controllers schedule irrigation using weather data to take into ac-

count the water lost each day due to evaporation and plant transpiration, known

coupled as evapotranspiration. Even the best control strategies still behave as

though all turf requires the same amount of water, when in fact there often exist

large variations in soil type and depth, topography, and direct sunlight. If this

information were utilized, every location throughout the irrigated space could be

given the amount of water it needs. However, as the infrastructure of traditional

irrigation systems is usually configured for each valve to actuate many sprinklers,

such a system could not even make proper use of fine-grained water requirement

information as all sprinklers must be actuated for the same amount of time.

Our contributions in this chapter address both of these limitations. First, we

develop a computationally-light model that uses characteristics of the irrigated

space to analyze the fundamental causes of fluid movement. This model is then

integrated into an optimization framework to allow for optimal valve scheduling
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Figure 4.1: DICTUM System Architecture

to be computed. The second contribution is the development of the DICTUM

sprinkler node, capable of actuating its attached sprinkler, sensing the moisture in

its surrounding environment, and communicating wirelessly with its sister nodes

in the environment. With our experience of two large-scale irrigation system

deployments over a total of 7 weeks, with 4 weeks of fine-grained data collection

and monitoring, we demonstrate that the model-based DICTUM system can help

provide more precise irrigation control to turf areas, reducing water usage and

substantially improving the quality of service over common-practice and state-

of-the-art control strategies.

4.1 System Overview

Figure 4.1 shows an overview of the DICTUM system architecture. Our irrigation

control system uses multiple modules to provide control to the space. To explain

how these modules work together to create a fluid processing pipeline, we first

describe their roles. This processing pipeline is described at irrigation time each

day, when schedule generation occurs.
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Our deployment consists of a distributed network of sensing and actuation

(DICTUM) nodes, integrated into the plumbing infrastructure of the irrigation

system. Each DICTUM node is equipped with a soil moisture sensor, a solenoid

to control the flow of water, and a mote, to provide radio communication capa-

bilities. To allow the DICTUM system to react to changing soil conditions, an

attached volumetric water content (VWC) sensor is periodically sampled from

the environment by each sprinkler node in the space. This collected data is

then routed through the wireless sensor network to the Basestation, interfacing

between the 802.15.4 network and another communication medium such as an

ethernet or 4G network. Once received, this data is then incorporated with the

sensor readings collected from other nodes to create a “snapshot” of the soil

moisture across the entire space.

Once the current state of VWC in the soil is determined, it is fed into the

Moisture Model for integration. The Moisture Model, described in detail in Sec-

tion 4.2, contains a mathematical formulation for moisture movement throughout

the system. This model is all-inclusive, modeling the characteristics of the irriga-

tion system and soil characteristics within the space, providing means to calculate

the conductivity through the soil. With the VWC collected, the model is passed

to the Irrigation Schedule Optimizer for analysis.

The Irrigation Schedule Optimizer sets up and solves the following constrained

optimization problem. The fluid flow model is incorporated as equality con-

straints at each spatial location and time, which must be satisfied for an optimal

solution to result in a valid flow. To ensure adequate moisture levels across the

space and thus a high quality of service, a goal water saturation level provides

inequality constraints at each spatial location at the end of irrigation. Although

in principle the PDEs defining the model are nonlinear, we linearize them in order
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to make the optimization problem convex, without local optima, and easier to

solve computationally. The final result is a linear program that, although large

(due to the discretization), can be solved accurately in a reasonable time. As the

objective function minimizes the total water consumption of the irrigation sys-

tem, the solution provides optimal activation schedules for each actuation node

in the space, while maintaining minimum moisture levels.

Once the schedules are received by the Basestation, they are disseminated

through the wireless sensor network to their respective DICTUM node. Upon

reception of a schedule, the Distributed Control System routes power to the at-

tached solenoid following the received schedule, allowing water to flow to the

sprinkler.

4.2 Model Development

We wish to model a particular irrigation system, and use this information to find

improved control techniques. This two-dimensional model incorporates water

movement from the sprinkler heads to the ground, across the surface, through

the sub-surface, as well as absorption into the soil. Although many models exist

that describe one or more of these components, we present here the first model

that efficiently combines them together.

4.2.1 Soil Characteristics

We first emphasize the differences between soil and typical porous media. Gener-

ally, a porous medium maintains constant characteristics across its entire range

of saturation. However, in soils, two functional relationships govern the retention

and movement of water through soil. First, an attraction exists between water
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Table 4.1: Model Variable Reference

Variable Usage Variable Usage

fk Actuation function of sprinkler k ρ Fluid density

ck Coverage of sprinkler k ζ Sub-surface boundary constant

θ Volumetric soil moisture content µ Surface boundary constant

h Surface fluid height αh Surface flow parameter

~u Velocity of water in soil K(θ) Hydraulic conductivity

~v Velocity of water on surface ψ(θ) Matric suction

κ Soil permeability Fs Fluid from sprinklers

κg Grass permeability ~τ Tangential component of gravity

η Fluid viscosity θpwp Minimum θ for Healthy Plants

L Thickness of soil (m) φs Porosity of soil layer

and the soil particles, known as matric suction. When the soil experiences very

low levels of saturation, the matrix exerts a strong suction, trying to pull water

from the surrounding environment. The relationship between tension head and

volumetric water content is known as the “water retention curve” a characteristic

equation of the soil type as defined in [Gen80]. This relationship, as shown on the

left axis of Figure 4.2, strongly impacts the movement of water through the soil,

as dry soil will act as a sink, until increased saturation is reached. Second, the

hydraulic conductivity of soil is dependent on the local volumetric water content.

Due to the matric suction, the soil will increasingly resist the movement of mois-

ture as the volumetric water content decreases. A typical relation for hydraulic

conductivity is also given in [Gen80] and is shown on the right axis of Figure 4.2.
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Figure 4.2: Sample Retention & Hydraulic Conductivity

4.2.2 Fluid Flow Model

We model water displacement above the soil surface and through the subsurface

of the soil as flow through two different porous media. Fluid flow through porous

media is well-studied, dating back to the work of Henry Darcy [Dar56], now

known as Darcy’s Law. To model the movement through the soil we use Darcy’s

Law for isotropic porous media (Eq. 4.1),

~u =
κ

η
(−∇P + ~τ) (4.1)

where P is the pressure, ~τ is the tangential component of gravity along the surface

of the porous media, ~u is the fluid velocity averaged over the thickness of the soil,

and other quantities as defined in Table 4.1. This model assumes that the porous

media everywhere has the same dependence on water content. As our model

tracks soil moisture at small scales, such a simplification is more practical than

the alternative of collecting and analyzing samples across the entire space.

Darcy’s Equation requires the determination of the pressure, which is gen-

erally linearly related to the amount of water above the point in question. In

our model, see Figure 4.3, we compute the depth-averaged subsurface flow, by
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Figure 4.3: Physical Model Unit Diagram

considering a soil depth L. In this case the mean pressure driving flow includes

the weight of water in the subsurface above a point, ρgLθ, the weight of water

on the surface, ρgh, where h is the height of water above the soil surface, and

the matric suction of the soil ρgψ(θ). We thus express the mean pressure in soil

as P = ρg(h + Lθ + ψ(θ)). We can therefore express the liquid velocity in the

subsurface as

~u = −K(θ)∇h+
K(θ)~τ

ρg
−K(θ)(L+ ψ′(θ))∇θ (4.2)

where we defined the hydraulic conductivity as K(θ) = ρgκ(θ)/η.

To track the time-rate of change of the volumetric soil moisture content, θ,

we use the divergence of the moisture flux, ~uθ, and the inflow from surface water,

ζhK(θ), where ζ = 1/(L2φs) is a proportionality constant mapping surface water

height to volumetric content in the subsurface based on soil porosity and depth,

calculated by balancing the pressure gradient with the soil permeability. We thus

have

∂θ

∂t
= −∇ · (θ~u) + ζhK(θ) (4.3)

As the velocity, ~u, is itself the gradient of the volumetric soil moisture content,
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the movement of water will effectively behave as a diffusive process, moving sub-

surface moisture towards areas of lower concentration. With the inclusion of a

gravity term, ~τ , in the velocity equation, water will tend to move in the direction

of steepest descent. Lastly, by allowing water to move through the boundary from

the surface into the sub-surface, we allow irrigation on the surface of the soil to

positively affect the amount of water moving through the sub-surface. Together,

these terms result in sub-surface water movement that realistically depends on

volumetric water content, local topography, and surface conditions.

In addition to tracking the soil moisture, we need to determine the height of

the surface water, h. Depending on the species of lawn chosen to model, a square

inch of turf can have tens to hundreds of blades of grass, each of which will impede

the movement of water across the surface of the soil. By comparing the inertia

of the fluid and the drag forces caused by the blades of turf, we find that for

surface water velocities less than 1cm/s, the surface flow through the turf can be

modeled as fluid flow through a (very) porous medium. Additional information

and the calculations that support this approach can be found in Appendix A.1.

The velocity of water through the turf averaged over the height h, denoted by ~v,

is therefore computed using Darcy’s Equation for isotropic porous media, as was

done for the sub-surface velocity in Equation 4.2:

~v =
κg
η
(−ρg∇h− ~τ) = −αh∇h− κg

η
~τ (4.4)

where the fluid density, permeability, and gravity terms have been absorbed into

αh. Similarly to sub-surface movement, the velocity through the layer of grass

is dependent on the orientation of the surrounding topography, as well as the

viscosity and density of the fluid.

The permeability used in Equation 4.4, κg, is not as well-defined as that

of the sub-surface fluid flow. The shape, size, and density of the grass layer
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is dependent on the species of grass, as well as its health. Research has been

conducted [Cos06, RGV04] for the application of filter design that defines the

permeability of a fibrous media based on its overall porosity and the size of the

fibers. Using the proposed method, we find an approximate permeability of 10−5m

, a value similar to that of well-sorted gravel. This completes the description of

the velocity of surface water, and we may use this velocity to keep track of the

height of water on the surface:

∂h

∂t
= −∇ · (h~v) + Fs − µhK(θ)

Fs =
n

∑

k=1

ckfk(t)
(4.5)

where Fs is the rate of irrigation, determined using the activation fk(t) of sprinkler

k at time t and coverage ck of sprinkler k. The amount of water lost to soil is the

same as that added to soil moisture, converted from soil moisture to pure water,

where µ = ζLφs/φg, with φs, φg as the porosities of soil and grass and L is the

soil depth. We note that evaporation and leeching terms were not included in

our formulation, due to the way our case study was conducted. At the request

of campus authorities, all irrigation was performed in late evening, providing

ample time to absorb into the soil, and allowing only minimal evaporation to

occur. Although these terms are omitted in the present study, they could easily

be introduced for an application that requires them.

4.2.3 Boundary and Initial Conditions

In order for the PDE-based model to accurately represent the movement of mois-

ture through the turf and soil, we must also specify boundary conditions. Pri-

marily, these boundary conditions must capture how moisture moves in and out

of our domain on the sides and on the bottom. In our deployment location, the
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turf is a sod layer with a thickness of approximately 1.5 inches. Below this sod

layer lies a thick layer of clay. As the hydraulic conductivity of clay is 60–3700×
smaller than the conductivity of a loamy soil [Gen80] and our optimization only

includes movement of water within the first couple of hours following the start

of irrigation, we consider that leeching into deeper soil is negligible, and thus

omitted. The boundary conditions on the sides of the surface assume an expanse

of identical surface, without fluid so that h = 0. With this constraint, any water

on the surface located directly adjacent to the boundary will begin to lose mois-

ture in the direction of the boundary subject to gravity. Likewise, the boundary

conditions for the sides within the soil layer assume a surround of soil with a

fixed volumetric water content of θ = θpwp, the minimum volumetric content to

maintain turf health. Any moisture within the soil adjacent to the boundary

will lose or gain moisture in the direction of the boundary subject to gravity or

suction effects.

In addition to those boundary conditions, we must also provide an initial

state of the system as a starting configuration. As we irrigate once daily, it is

assumed that there is ample time for all surface water to be absorbed into the

soil. As such, the initial condition for surface moisture is set to zero. The soil

moisture content, however, must be measured from the soil to provide an accurate

snapshot of the moisture distribution prior to irrigation. To provide this, current

data from each sensing node is referenced and fed into the model. As the sensors

are coarsely-distributed spatially throughout the area, the data is upsampled to

the same granularity as the optimization problem using a bilinear interpolation.
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4.2.4 Fluid Flow Model Simplification

We simplify the model in two ways for reasons of computational efficiency. Firstly,

we linearize the model PDEs. Although this is not necessary if one only wants

to solve the PDEs to obtain the flow over time given a schedule, it consider-

ably facilitates the numerical optimization over the schedule. Nonlinear equality

constraints make the feasible set nonconvex and give rise to local optima, which

complicate finding a good optimum. They also require nonlinear optimization,

which is slower. Second, we discretize the spatial and temporal domains and

approximate the derivatives using finite differences. With these simplifications,

since the objective function and inequalities are already linear in our application,

the resulting optimization problem is a linear program, for which efficient solvers

that can handle millions of variables and constraints are available. As seen later,

this allows us to obtain a valid schedule in a relatively small amount of time.

4.2.4.1 Fluid Flow Model Linearization

The goal of the linearization is to characterize each equation in the model in

terms of linear combinations of optimization variables. To remove non-linearities

arising from optimization variables multiplied by each other, we make reasonable

assumptions about the behavior of the system to substitute these non-linearities

with linear counterparts.

We break each optimization variable into a base value, with subindex 0, and

a small deviation, denoted with a hat. For example, the volumetric moisture

content, θ, is rewritten in the form θ = θ0+θ̂. Each occurrence of the original four

optimization variables is replaced with a similar representation, and simplified to

achieve the following four linear equations, where we define a function ϕ(θ) =
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K(θ)(L+ ψ′(θ)) to simplify notation:

∂h

∂t
=−∇ · (ĥ~̂v + ĥ~v0 + h0~̂v + h0~v0) + Fs − η

(

h0K(θ0) + h0K
′(θ0)θ̂ + ĥK(θ0) + ĥK ′(θ0)θ̂

)

(4.6)

∂θ

∂t
=−∇ · (θ̂~̂u+ θ̂~u0 + θ0~̂u+ θ0~u0) + ζ

(

h0K(θ0) + h0K
′(θ0)θ̂ + ĥK(θ0) + ĥK ′(θ0)θ̂

)

(4.7)

~̂u =−K(θ0)∇ĥ−K(θ0)∇h0 −K ′(θ0)θ̂∇h0 −K ′(θ0)θ̂∇ĥ+
K(θ)~τ

ρg
− ϕ(θ0)∇θ0 (4.8)

− ϕ(θ0)∇θ̂ − ϕ′(θ0)θ̂∇θ0 − ϕ′(θ0)θ̂∇θ̂ − ~u0

~̂v =− αh∇h+
κg

η
~τ − ~v0 (4.9)

As we assume that the deviations are small relative to the base value, the

underlined terms that represent the nonlinearities of the original formulation

should be much smaller than other terms appearing in the equations, and are

ignored. As h0~v0 in Equation 4.6 and θ0~u0 in Equation 4.7 do not change spatially,

the divergence of these terms is zero as well, so they are omitted.

4.2.4.2 Fluid Flow Model Discretization

The derivatives appearing in our modeling equations are approximated with finite

differences. We use forward differences for the time derivatives for θ and h, for

example dθ/dt ≈ θi,j,t+1−θi,j,t
∆t

, where ∆t is the time interval size and t is the

temporal index, with t = 0,. . . ,Nt. We use centered differences for the spatial

derivatives for θ and h, for example dθ/dx ≈ θi+1,j,t−θi−1,j,t

2∆x
, where ∆x is the

spatial grid size and i,j are the indices of a spatial cell, for i=0,. . . ,Nx and

j=0,. . . ,Ny . Consider the discretization on a continuous range [0, Lx] where

length Lx = Nx ∗ ∆x in the x direction. The entire range is broken into Nx

segments of length ∆x. This discretization is performed on all variables of our

linear model equations, resulting in the 6 equations found in Appendix A.2.
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4.2.5 Model Accuracy

Across four weeks of DICTUM system deployment, we track the evolution of soil

moisture in the system in response to the valve actuations chosen by the model-

based optimization of the DICTUM system. As later described in Section 4.3,

each day an optimization problem is solved that finds valve schedules that will

minimize system water consumption while maintaining adequate moisture lev-

els everywhere in the space. In addition to the optimized valve schedules, this

optimization also produces the predicted sequence of soil moisture levels that

will occur during irrigation using the PDE model. To determine the accuracy

of the PDE model, each day we compare the final moisture level predicted by

the model in optimization to the true final moisture levels experienced across the

space after irrigation following the optimized schedules. Each day, we track the

root mean square error (RMSE) between the predicted and true final moisture

values, and normalize it across the range of moisture levels experienced in this

dataset, a range of 17% volumetric content in this particular experiment. These

errors, tracked each day, can be seen in Figure 4.4, where we can see the error

in the first days of the deployment can reach as high as 25%. This is in part due

to the coarseness of the initial moisture distribution measurements. Moreover,

as we show in Section 4.5, the first days of an experiment tend to be where the

control strategy must correct for poor initial moisture conditions of the space,

and in this case, we suspect that these atypical initial conditions tend to reduce

the accuracy of the model. This is supported by the fact that as the system runs

and guides moisture conditions into a more typical range, the daily model error

reduces to the order of ∼10% in the last several days of Figure 4.4.

In its current operation, the DICTUM system is used once at irrigation-time

to optimize valve schedules for the day’s irrigation. However, if the optimization
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performance allows for it, it would be preferable for the system to also perform

intermediate schedule optimization using freshly-sensed moisture values across

the space in the middle of irrigation, to correct for error in the PDE model. To

determine the effect this re-correction would have on model accuracy, on the same

historical data as the previous error analysis, we consider a system that uses fresh

data and re-computes optimization at every 60 second control timestep. Then,

considering the same metric as before, we compute the average model error that

is able to occur within this 60 second interval for each day in the experiment.

Figure 4.5 shows that the average error tends to be between 1-2% of the true

value indicating that using re-correction in the DICTUM system, on average, the

predicted moisture level will be no more than 2% away from the true moisture

level in the space, a significant accuracy improvement in comparison to the 10-

25% error possible when no re-correction is done as shown in Figure 4.4.

As we discuss at length in Section 2.3, there are no existing models that

have the features required for a model-based optimization in irrigation control;
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for optimization we require a programmatic interface, the ability to model both

sub-surface and surface fluid as well as the movement between the two, and

relatively high performance to make schedule optimization tractable. Although

the model used in the DICTUM system has some error in operation, it meets

all the requirements for the system to function. Despite these imperfections, we

later demonstrate in Section 4.5 that the DICTUM system is able to achieve

significant system benefits in both efficiency and quality of service.

4.3 Optimization Over the Schedule

For use as an irrigation control system, we must now use our model from Sec-

tion 4.2 to produce optimal sprinkler scheduling for the system. The objective of

this optimization is to produce a schedule that provides enough moisture at all

points in the space to maintain health, while minimizing system water consump-

tion.
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Table 4.2: Optimization Variables

Variable Description

i, j Spatial index ∈ {0, . . . , Nx}, {0, . . . , Ny}
t Temporal index ∈ {0, . . . , Nt}
k Sprinkler location index ∈ {1, . . . , K}
fkt Sprinkler k actuation at time t ∈ {0, 1}
h(ijt) Height of water on surface

θ(ijt) Soil volumetric water content

θinitial(ij) Sensed moisture at t = 0, upsampled to PDE grid Nx ×NY

ux(ijt) uy(ijt) Soil water velocity, x, y direction

vx(ijt) vy(ijt) Surface water velocity, x, y direction

Our optimization problem is the following linear program (LP) with variables

defined in Table 4.2: The objective function is total water spent over a period

Nt of time. We define fk(t) as a binary function that equals 0 if sprinkler k

is off at time t and 1 otherwise, then the water spending is proportional to
∑K

k=1

∫ Nt

0
fk(t)dt. Discretizing over time gives as objective function

∑K,Nt

k,t=0 fkt,

where fkt are K ×Nt optimization variables (the sprinklers’ schedule).

We have as additional optimization variables the values of h, θ, ux, uy, vx, vy, (6

variables) at each spatiotemporal cell, with a total ofNt×Nx×Ny×6 variables. So

the complete set of optimization variables is {fkt, hijt, θijt, uxijt, uyijt, vxijt, vyijt}
Nx,Ny ,Nt

i,j,t=0 .

The equality constraints arise from the necessity of the joint values of these

variables to satisfy the fluid flow PDEs everywhere in time and space. There

are 6 PDEs, hence we have 6 equality constraints for each spatiotemporal cell.

They are given by the linearized, discretized PDEs of Appendix A.2. As each

constraint involves only 4 variables because of the spatial neighborhood relation
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induced by the finite differences, the matrix of equality constraints is sparse.

As discussed in Section 4.2.3, we initialize our soil fluid levels at time t =

0 with the most recent soil moisture levels sampled across the space with our

distributed sensors, upsampled to the spatial discretization level of our PDE

model with a bilinear interpolation. This upsampled soil moisture snapshot is

defined in Table 4.2 as θinitial and is used to constrain the soil moisture levels

at time t = 0 as shown in Equation 4.10e. Similarly, we constrain the surface

water height to be zero at all locations at the beginning of irrigation as shown in

Equation 4.10f, as irrigated moisture will have been absorbed into the soil well

before the next irrigation is to occur.

The inequality constraints define the goal state of the system, namely a sched-

ule must provide volumetric water content in the soil exceeding the minimum

water content plants need, θpwp, and be within prescribed lower and upper lim-

its θl and θu. These constraints are of the bound type, i.e., they have the form

“variable ≤ constant” for each variable. The LP is defined as follows:

min
{fkt,hijt,θijt,u

x
ijt,u

y
ijt,v

x
ijt,v

y
ijt}

Nx,Ny,Nt
i,j,t=0

K
∑

k=1

Nt
∑

t=0

fkt s.t. (4.10a)

0 ≤ fkt ≤ 1 k=1,...,K, t=0,...,Nt (4.10b)

θl ≤ θijt ≤ θu i=0,...,Nx, j=0,...,Ny , t=0,...,Nt (4.10c)

θpwp ≤ θijNt
i=0,...,Nx, j=0,...,Ny (4.10d)

θij0 = θinitial,ij i=0,...,Nx, j=0,...,Ny (4.10e)

hij0 = 0 i=0,...,Nx, j=0,...,Ny (4.10f)

PDE model equations (A.2)–(A.7)

The PDE model equations are as calculated in Section 4.2.4.2, and can be

found in Appendix A.2.
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The optimization variables fkt represent the binary actuation of a physical

water valve, which makes the problem an integer linear program (ILP). ILPs are

NP-complete and must be approximated in practice. Here, we simply relax them

to the continuous LP by letting each variable be real in [0,1] and then rounding

them to integer values for use in the physical system. Although other approaches

exist that can give better approximations (such as branch-and-bound), they are

impractical for the size of our problem. We found across our two deployments

that the optimal schedules tend to leave the sprinklers on for long periods of time,

with optimal values of fkt on the 0/1 boundary. Figure 4.6 shows the percent of

fkt values that do NOT lie on the 0/1 boundary, and thus require rounding; it can

be seen that on the worst day, just over 1% of actuations requiring rounding. By

then comparing the optimal schedules before and after their values are rounded,

we can determine the effect this rounding has on the schedules used for irrigation.

Figure 4.7 shows that on the worst day of our experiments, this rounding caused

less than 1 second of deviation in our schedules, which is insignificant as irrigation

takes nearly an hour each day. Interestingly, a higher percent of actuations require

rounding in the first deployment, but does not lead to an increased effect on the

sprinkler on-time.

The discretization in space and time results in a large number of variables and

constraints. For example, using a coarse spatial grid of 10×10 with 100 timesteps

results in 10000 cells and so 60000 variables (plus 100×K schedule variables for

K sprinklers), 60000 equality constraints and 10000 inequality constraints. For-

tunately, the equality constraints are sparse and the inequality constraints are

simple bounds. In the initial use of this system [WWB16], Stanford’s CVX con-

vex optimization library [GBY08] was used to solve the LP due to its convenient

programmatic interface. However, we quickly realized that its performance suf-

fered for large optimization problems such as ours, taking on the order of an hour
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Figure 4.8: Sensing and Actuation Node Locations

to find optimal schedules even at a very low spatial/temporal discretization level.

Most of this runtime was spent setting up the constraints and variables. The op-

timization codebase was later ported to the Julia programming language [BEK14]

for its similar ease of use and much improved speed (both in setting up the data

and in solving the actual LP). A performance comparison between these two tools

can be found in Section 4.3.2.

4.3.1 Proof-of-concept Simulation

As the model is integrated into the optimization framework, we can perform

a proof-of-concept experiment to ensure optimization produces schedules that

follow intuition. Figure 4.8 shows the topography used to test and node locations,

made to resemble the hillside used in our case study, as shown in Figure 4.11. The

hillside was modeled with soil characteristics as would be found in the deployment
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location, and the optimization was performed. The schedule produced can be

seen in Figure 4.9a, where the dark blocks correspond to active sprinklers as time

progresses on the x axis. As this is an example problem, the time is purposefully

unitless as it does not represent a real scenario. This schedule can be observed

to favor irrigation at the top of the hill, and favor Nodes 1 and 7 least, as they

are located in the bottom corners. This follows intuition, as any unused water at

the top of the hill will move away as runoff, and benefit the downhill turf.

To continue the example, the soil was adjusted to mimic a less-absorbant

clay, and reduce its thickness. The thin soil requires less water, but as the clay is

less absorbant, watering all at once would cause most water to be lost as runoff.

The schedule produced in response to this environmental change is shown in Fig-

ure 4.9b, with the dark blocks corresponding to active sprinklers. The optimizer

finds a solution that causes actuation to occur intermittently, making irrigation

non-continuous. As the less-absorbant soil causes runoff to occur much more

dramatically, the optimal solution prevents the lower sprinklers from actuating

at all, allowing the runoff from above to provide adequate moisture to the region

below.

4.3.2 Effect of Model Granularity

As discussed in Section 4.2.4.2, we must select both a temporal and spatial dis-

cretization level for our discretized moisture movement model, which will affect

both the tractability of the problem and the accuracy of the model. Although

the use of the slower CVX during our physical deployments prevented a thorough

analysis, with the initial moisture conditions of each day of our deployments we

can re-create the identical optimization problem that would have been run on

each day of our deployment in the new Julia optimization framework and vary
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Figure 4.10: Discretization effects across first (left of red line) and second (right

of red line) deployments. Lower is better for all metrics.
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the discretization. The resulting schedule could then be run using the maximum

spatial-temporal granularity model available as ground truth, to see the effect

of using a lower granularity model when solving the optimization problem and

corresponding solution schedule.

To consider the effect granularity has on performance, optimization is run

for each day of the deployment using several temporal and spatial discretization

levels, and the run-time is recorded as shown in Figures 4.10a and 4.10b, respec-

tively. When varying the spatial discretization, we fix the temporal discretization

to a very fine level, and likewise when varying the temporal discretization we fix

spatial discretization to a very fine level. As we expect, a very fine discretization

level in both time and space results in the highest run-time of just a couple of

minutes, with reduced granularity allowing the problem to be solved much faster,

as a rougher discretization reduces the number of optimization variables and con-

straints that must be evaluated by the optimizer. In addition, we consider the

run-time of the CVX framework used in our deployments in comparison to the

Julia framework; we find that at the standard spatial and temporal discretiza-

tion level used in our deployments, CVX takes around 40 minutes to optimize the

schedules. In comparison, we found Julia is able to solve the same optimization

problem in just under 1 second, a performance improvement of about 2400x. Us-

ing the Julia optimization framework, we found that we could solve optimization

problems with significantly more constraints and optimization variables much

faster, but as the problems grow very large, the limiting factor eventually be-

comes system memory on the machine running the optimization. For instance,

considering optimization of our schedules with spatial granularity of .1m and

temporal granularity of 15 seconds, the number of optimization variables exceeds

28M, with a similar number of equality and inequality constraints. While this

LP can be solved within tens of minutes using Julia, reasonable as optimization
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takes place only once per day, the Julia process solving this optimization reports

that around 12G of system memory is required.

It is clear that using a model with a coarse granularity has performance ben-

efits, but we also want to see how this sacrifice will affect model accuracy. The

best way to determine this effect would be vary the temporal/spatial granularities

and re-run the experiments. However, as each experiment takes weeks, this would

severely limit our ability to thoroughly search the full range of discretization in-

tervals. Instead, for each day of experimentation, we solve the optimization at

varying temporal and spatial granularities, and then run the resulting schedule

through our model at the highest granularity to act as a simulated ground-truth

model. By comparing the computed schedule to one computed with the ground-

truth model we can see the effect it has on system efficiency, and by finding on

average how much each simulated location falls beneath our desired moisture

level at the end of irrigation we can see its effect on quality of service.

The change in irrigation water consumption as the temporal discretization is

varied can be seen in Figure 4.10c, and the change in quality of service can be seen

in Figure 4.10e. We can see that as the temporal granularity is made more coarse,

the resulting schedules consume slightly more water but on average, we see that

the quality of service slightly degrades as well. As the causes of water movement

in the space occur at different timescales, the timing of water application to the

soil can have a strong effect on the final distribution of soil moisture. This is an

effect described in Section 4.3.1, where variations in environmental characteristics

can make it necessary to utilize more advanced irrigation schedules, for instance

through intermittent actuation. However, as the model used in optimization

becomes more and more temporally coarse, it becomes more difficult to accurately

anticipate the timing requirements of irrigation, and can result in a decreased

62



quality of service, despite using slightly more water. As neither increased water

consumption or degraded quality of service is desired, it is clear that the finer

the temporal granularity used to compute schedules, the better.

In comparison, varying the spatial granularity has a more profound effect; the

simulated change in system efficiency can be seen in Figure 4.10d, and quality

of service can be seen in Figure 4.10f. Reduction in spatial granularity removes

spatial locations from the moisture movement model, meaning their moisture

requirements are no longer considered when optimizing schedules. As shown

in Figure 4.10f, this results in a significantly decreased quality of service, with

locations across the space missing their required moisture levels by an average of

almost 10%. However, by underestimating water needs in the irrigation system,

the system also requires less water to reach the perceived (although incorrect)

moisture requirements. As Figure 4.10d shows, this leads to significant water

savings in the system, with as much as 25% less water consumed with the roughest

spatial granularity. A sacrifice in the model’s spatial granularity causes a clear

tradeoff between quality of service and system water consumption. It is difficult to

estimate the long-term effects of this degraded quality of service on the health of

the plant, and it is possible that very hardy grass species may survive, potentially

resulting in water savings in the system. In general, however, maintaining the

high quality of service is absolutely necessary in maintaining plant health, and

this is achieved by using a model with the finest spatial granularity.

4.4 Case Study: Live Deployment

In many applications, it is possible to compare a newly-developed model to other

accepted models. However, as an all-inclusive model for our application does not

exist, we compare to reality by evaluating the performance of an irrigation system
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Figure 4.11: Deployment side-view

using the control modifications we have proposed.

We chose to deploy two systems side-by-side once a suitable location is found.

Ideally, the two systems will cover similar soil and turf, face the same direction so

that sun exposure will be equivalent, and have completely independent irrigation

to avoid cross-contamination. In addition, to ensure all sprinkler coverage is the

same, the same water source is used to power both systems, and actuation is

provided to both sides with the installation of our DICTUM nodes. The only

difference between the systems are the control schedules sent to each side.

In the beginning of our project, we intended to use an existing irrigation

system to perform our deployment. In looking for a suitable location, we came to

realize that the granularity of irrigation control on our University’s campus was

less than ideal. Locations spanning more than ten thousand square feet across

heterogeneous terrain were actuated by a single control valve. As such, it would

not be feasible to show the benefits of higher-granularity actuation using the

existing system, so we began planning a custom irrigation system.
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4.4.1 Seeking a Suitable Location

With the help of University personnel, a suitable location was found on a stepped

hillside (see Figure 4.11) far away from the nearest foot-traffic. The hill, rising

about 9 feet over a distance of 70 feet, acted as an elevated surround for a

University soccer field, the hill stretching more than 200 feet. To take advantage

of this topography, it was decided to place two irrigation systems side by side,

each spanning a 70’x70’ area along the hillside. Between the two systems were

5 feet of unirrigated space, to prevent any spray from one system to enter the

other side. As a whole, the two irrigation systems spanned an area of 70’x145’,

approximately 10,150ft2.

4.4.2 System Development and Deployment

The underground irrigation system used by groundskeepers to maintain the hill-

side we deployed on was plumbed with high-flow PVC water lines leading to each

of their sprinklers. As it would be risky to tap into this permanent infrastructure

to test our temporary system, we used lower-flow quick-couplers, fitted with stan-

dard hose spigots. We discovered that the nearest quick-coupler could provide

enough water flow to activate one of our side-by-side irrigation systems, but not

both simultaneously. Throughout our case study, irrigation of the two systems is

performed one immediately after the other to avoid this issue.

To choose the type and number of sprinklers for our side-by-side deployment,

we consulted sprinkler manufacturer specifications; a general rule of thumb for

system planning is that the coverage of one sprinkler should reach 75-100% of the

distance to the next closest sprinkler, to avoid uncovered areas on the diagonal.

To cover one of the two proposed areas covering 70’×70’ with these recommenda-

tions, we would require four sprinklers in a 2×2 grid, each with a reach exceeding

65



52 feet, or 9 sprinklers in a 3×3 grid, each with a reach exceeding 26 feet. Sprin-

klers that can exceed 52 feet are generally of the “rotor” variety, pointing in only

one direction and rotating slowly to cover the region. The flow required by these

larger rotors is typically more than our quick-coupler water source could provide.

It was found the the low-flow MP-Rotator 3000 sprinkler [hunc], a new rotor that

is known to be remarkably efficient, could reach up to 30’, 9 of which can be easily

powered by our quick-coupler water source. As the MP-Rotator is quickly replac-

ing older sprinkler technologies at our University for their slow-application and

minimum runoff, we decided they would be the best choice for our deployment.

As the deployment was meant to be temporary, we designed it such that it

could be removed in a reasonable amount of time. Although a commercialized

version of DICTUM would be installed in the ground, our temporary system was

placed on the surface for ease of access to our prototype. The nodes themselves

were placed on the ground just next to the sprinklers, while the solenoid providing

actuation was fixed to the sprinkler riser. By placing our system on the surface,

we are able to avoid damage to the lawn that installing into the ground would

cause.

Lastly, our deployment included a central basestation fitted with power, a

small Sheeva Plug computer [she], an elevated 802.15.4 mote to receive data

from the sensing nodes, and a 4G hotspot, to allow us to communicate with the

wireless sensor network from a remote location. Although our basestation was

overbuilt to facilitate ease of debugging and close monitoring of the prototype

system, a commercialized system may have only the mote to interface with the

sensor network, and an interface to any external service (local, cloud, etc).
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Figure 4.12: Example safety mechanism for latching solenoids

4.4.3 Node Development

In our first deployment, our device was fitted with an ordinary solenoid designed

to regulate the flow of high-pressure water. This solenoid was found to work very

reliably, and as it defaults to an off state when power is cut, it is also a safe

choice. However, its weakness was in its high power requirement, as it must pull

a constant 350mA to hold the valve open. Later discussed in Section 4.5.4, this

dominates the power profile of the device and caused the node lifetime in our first

deployment to fall under 1 week. Additionally, as the power supply in our first

hardware version was unregulated, the collected sensor data would begin to sag

at the end of battery life as the sensor’s supply voltage would drop. We mitigated

these weaknesses during our first deployment with frequent battery changes to

prevent this sensor sag from occurring.

These problems are addressed in the hardware version used for our second

deployment, where we chose to use a latching solenoid for sprinkler actuation

to extend system lifetime. Whereas a normal solenoid requires constant power

to stay in an open position, a latching solenoid requires only a 50ms pulse of

either positive or negative voltage to switch between an open or closed state.

One advantage to a non-latching solenoid is the inherent safety; a loss of power
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in the control board will automatically deactivate water flow. To provide this

safety in a latching solenoid, a simple circuit can be built into the control board

that will close the solenoid if the board fails, as shown in Figure 4.12. A pin is

maintained on the microcontroller that changes from 0 to 1 in event of failure

(or from 1 to 0, a NOT gate can be used to invert it). Once this pin is active

it immediately brings the top pin of an XOR logic gate to 1, allowing current to

flow through while the capacitor on the bottom pin charges. Once the capacitor

charges, the second pin of the XOR logic gate activates, terminating the current.

This pulse, generated while the capacitor charges, is for a period tp ∝ CR, where

C and R are the capacitance and resistance values used in the circuit. This pulse

will deactivate the solenoid, preventing additional water consumption after node

failure. With this configuration, the control node will benefit from the extremely

low-power operation of a latching solenoid without sacrificing safety.

The main challenge in the development of the DICTUM node was the organi-

zation of multiple input/output connections from the mote. To address this, we

manufactured custom printed circuit boards that would organize the connections

from the tmote sky. This interface board, shown with the rest of our prototype de-

vice in Figure 4.13, has connections for battery power, sensor (right) and solenoid

(left). The different voltages required by the mote and solenoid were provided by

voltage regulators built into the board. As the chosen latching solenoid requires

the board to produce a positive (opening) and negative (closing) voltage for op-

eration, the board was equipped with an h-bridge. Commonly used in robotics to

drive a motor forwards and backwards from a single dc power source, an h-bridge

is designed for applications like ours that require bi-directional current.

The other key feature of the DICTUM node is the ability to measure the

volumetric water content in the surrounding soil. We opted to purchase research-
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Figure 4.13: Sensing/actuation (DICTUM) node
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Figure 4.14: Daily soil moisture cycle
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quality Decagon EC-5 [dec] sensors, with a reported accuracy of ±3%. The

Decagon sensors cost roughly $110, but data fidelity in our model verification was

paramount. Raw sensor readings collected over a period of one day with a high

sampling frequency can be seen in Figure 4.14. The sensors report the dielectric

constant of the soil, an electrical property highly dependent on the volumetric

water content. A linear calibration function provided by the sensor manufacturer

is used to convert the raw readings to volumetric water content. An attentive

reader will notice the sharp increase in the late afternoon due to irrigation, stable

readings throughout the night, with sensor fall beginning as the sun comes up at

7:45am. This decrease steepens as the sun rises and faces the deployment directly

after 10am. In a sensor-dense environment, a more economical alternative to the

EC-5 may be chosen, such as the 35$ Watermark sensor [SB92], which can be

calibrated to ±5% accuracy.

4.4.4 System Comparison

In this study, we compare the operation of the DICTUM system against two

baseline control systems. The first baseline, evaluated across 2 weeks of fine-

grained data collection, employs a trial-and-error control strategy used widely in

practice (including our campus). In this technique, a greenskeeper will monitor

an irrigation system for days or weeks; if an excess of runoff provides evidence

of over-watering, or if brown patches provide evidence of under-watering, they

will adjust the system accordingly. This irrigation scheduling, often remaining

unchanged through entire seasons, leads to a misuse of water as it does not

account for changing weather or soil requirements. We emulate this strategy by

matching exactly the amount of water coverage as would be provided by the

greenskeepers of our campus.
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Figure 4.15: Deployment sensor trends for all Campus (top) and DICTUM (bot-

tom) systems as collected by the installed DICTUM nodes
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Figure 4.16: Deployment sensor trends for all Evapotranspiration (top) and DIC-

TUM (bottom) systems as collected by the installed DICTUM nodes
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The second baseline control strategy, evaluated in a 2-week deployment, em-

ploys a state-of-the-art evapotranspiration (ET) control strategy. As described

in Section 2.1.1, these systems use weather forecasting to estimate the amount

of water lost by the soil due to evaporation and plant transpiration. Irrigation

controllers that use ET technology typically irrigate every 1-3 days, replacing

water lost over that period. To emulate an ET system, we query a local weather

station that computes hourly ET loss, and compute the previous day’s water

losses. With our sprinklers’ surface coverage rate, we create daily valve schedules

to do exact replacement of these losses.

4.5 Experimental Results

Through 4 weeks of fine-grained data collection, we ran two irrigation systems

side-by-side on identical patches of turf, periodically collecting soil moisture data

from each. In the first deployment, our campus’ control strategy was tested

and for the second deployment, state-of-the-art evapotranspiration (ET) control

was used. In both deployments, these systems were compared against schedules

computed by our model-based optimization, actuated using our custom-made

independent actuation/sensing platform (DICTUM) nodes. The goal of these

case-studies was to determine if a system could be made that reduced the amount

of water used, while maintaining a satisfactory level of moisture in the soil for

the turf to remain healthy.

4.5.1 Quality of Service

The primary objective of an irrigation system is to maintain plant health. A very

efficient system that is unable to meet this objective will be replaced with a less-
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Figure 4.17: Daily quality of service vs Campus strategy (lower is better)

efficient system that provides satisfactory water coverage to the turf. To remain

healthy, turf needs proper soil nutrients in the appropriate amounts, adequate

solar irradiation to power biological processes, and an adequate level of moisture

in the soil near the plant roots. Although the irrigation system has no control over

solar exposure or soil nutrients, we have direct control of soil moisture through

actuation of the sprinklers. In plant physiology, the level of soil moisture at which

plants can no longer extract water from the soil is known as the permanent wilting

point (θpwp) [MD17, usd, Kir04]. Long-term exposure to soil with moisture below

this level will cause the turf to wilt and die, so we aim to minimize the amount of

time spent beneath this threshold as it will ensure a better opportunity for the

plant to thrive.

The permanent wilting point (θpwp) for loamy soils like that found in our de-

ployment is typically between 10-15% [pwp], so we assume the worst case and

assign θpwp to be 15%. We expect that if DICTUM were to distribute moisture in

a smarter way by targeting areas that would otherwise receive inadequate water,

the DICTUM sensor readings will spend less time underneath the θpwp thresh-
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Figure 4.18: Daily quality of service vs evapotranspiration strategy (lower is

better)

old than the compared baseline. The sensor data collected by the distributed

DICTUM nodes from the collection period and the minimum healthy satura-

tion θpwp=.15 (black line) are shown for our first deployment against the campus

control strategy and our second deployment against the ET control strategy in

Figures 4.15 and 4.16, respectively.

We can see that in both deployments, sensors in the DICTUM system spend

significantly less time beneath the minimum moisture threshold than the com-

pared baseline. Interestingly, we can see that seasonal rain was experienced once

during each deployment, on day 10 in Figure 4.15 and on day 11 in Figure 4.16.

In both cases, this resulted in a steep increase in all moisture sensor values which

continued into the following two days. In our first deployment, the Campus and

DICTUM control strategies spend a total of 56.9 hours and 16.3 hours beneath

θpwp, respectively, indicating a 3.5x improvement in quality of service. Similarly,

in our second deployment, the Evapotranspiration system spends a combined

68.1 hours beneath the θpwp across the entire deployment, over 4x more than the
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16.7 hours experienced by the DICTUM system.

Interestingly, we can see in both side-by-side deployments that there were

occasional periods of data loss, on days 2, 6, 7, and 9 in Figure 4.15 and days

2 and 11 in Figure 4.16. Our system included a basestation Sheeva Plug [she]

computer that acted as a bridge between the public internet and our wireless

sensor network, with data forwarded over a usb connection to an attached telosb.

Occasionally, this USB connection would fail at night, resulting in corrupted data

transmission between the two devices; we noted that this particularly occurred

when the basestation was exposed to cold ambient temperatures at night, but

further investigation is required to determine the exact cause of this failure. Im-

portant to note is that as the data connection would re-establish itself when

conditions improved and a snapshot of data is only required as initial conditions

to optimization once per day, these lapses in data had no effect on the operation

of the DICTUM system.

Although the amount of time spent beneath the minimum moisture thresh-

old gives a good indication of quality of service, it signifies that all time spent

beneath the threshold is equal. In reality, the further under the minimum mois-

ture threshold, the worse the health of the plant will become. To take this into

account, we consider the sum squared amount of time spent beneath θpwp. In

this way, the system will be punished more the further below the minimum mois-

ture threshold. The sum squared time beneath θpwp can be seen across our first

deployment in Figure 4.17, where the campus control strategy is significantly

worse than the DICTUM system until day 11, when the seasonal rain pushes

the soil moisture levels into the acceptable range. In total, the campus control

strategy is 8.17x worse than the DICTUM system in this metric. Likewise, we

evaluate our second deployment as shown in Figure 4.18. On day 3, we can see
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that the DICTUM system quality of service dips temporarily, but on all other

days provides significant improvement in comparison to the evapotranspiration

system. We can also see on day 12 than the rain on the previous day pushes

the soil moisture levels to acceptable levels across the space. Across this deploy-

ment, the evapotranspiration system is 6.28x worse than the DICTUM system

with respect to this metric. Although these analyses shows that DICTUM is not

perfect, it also demonstrates that more precise watering strategies can provide a

significantly improved quality of service, despite using less water, as we will see

in the following section.

4.5.2 Water Consumption Analysis

Throughout the deployment, the total on-time for each sprinkler was recorded in

both systems. With knowledge of each sprinkler’s distribution angle and the reg-

ulated water pressure, we can accurately estimate the amount of water consumed

under any given schedule.

In comparison to the campus irrigation system, DICTUM is consistently more

efficient as shown in Figure 4.19, due to the campus irrigation system using a fixed

schedule. We can see, however, that as our campus irrigation system is equipped

with a rain detection sensor, the 11th day of irrigation is completely disabled

in response to that day’s precipitation. Irrigation is also disabled here in the

DICTUM system, but this is in response to significantly higher soil moisture levels

removing the need for irrigation. We can see that whereas the campus strategy

continues providing full irrigation on the following days, the DICTUM system

is able to significantly reduce the amount of irrigation in response to continued

elevation in soil moisture levels for the last 3 days of system deployment.

A side-by-side comparison can also be seen for the deployment against the
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Figure 4.19: Daily water consumption of Campus and DICTUM systems
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evapotranpiration controller in Figure 4.20. The variation of water consumption

of the Evapotranspiration system indicates changes in local weather. Low water

consumption of both systems on days 9, 10, and 11 is due to cooler local weather,

where the ET side consumed significantly less water. However, we can see in

Figures 4.16 and 4.18 that these days of reduced water consumption also result in

the worst days of quality of service, meaning the ET controller was too aggressive

in its water savings on these days. Interestingly, a similar effect can be seen on

day 6; the ET controller reduces water use in response to weather conditions, but

at the cost of a reduction in quality of service as shown in Figure 4.18. Rain on

the 12th day caused both systems to cease irrigation until two days later, when

the soil became dry enough to require it.

Across the two deployments, the DICTUM system consumed 12.3% less wa-

ter than the evapotranspiration strategy, and 23.4% less in comparison to our

campus’ control strategy. Schedules created by the DICTUM system were shown

to consume as much as 651 gallons and as little as 280 gallons, a 371 gallon

variation in response to the state of soil moisture. The reason our system is able

to save water while providing a higher quality of service to the space is due to

our ability to pinpoint regions within the irrigated space with varying moisture

requirements. Using our model-driven approach, we can optimize actuation to

send more water to areas that would otherwise receive insufficient moisture, while

sending less water to the areas that would otherwise be over-watered.

Sensor readings through rain during our first deployment can be seen in Fig-

ure 4.21. To respond to such weather events, the weather stations used for evap-

otranspiration monitoring are generally equipped with a precipitation sensor.

These sensors deactivate the irrigation system when rain is first experienced [raia],

or when a measured amount of rain has fallen. In the case that the rain is suffi-
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cient to irrigate the turf, this is satisfactory, but if the rain is very light, DICTUM

might choose to provide additional irrigation.

4.5.3 Moisture Uniformity

An interesting pattern recognized throughout the two deployments was the emer-

gence of moisture uniformity. The optimization performed by DICTUM will cre-

ate schedules that compensate for any areas of high or low moisture levels using

soil moisture and topographical information. However, due to lack of moisture

information and the physical limitations of the irrigation system (inability to

actuate individual sprinklers), the ET and our campus’ systems are unable to

correct for uneven moisture. These artifacts can be seen in Figure 4.22, which

shows a spatially-interpolated view of the average moisture level of the three

considered systems across our two deployments.

In this figure, the top of the image aligns with the uphill region depicted in

Figure 4.8. We can see that as the irrigated water tends to flow downhill, the

Campus and ET systems end up with inadequate soil moisture at the top of

the hill, and in the Campus system we can see extra water building up at the

bottom of the hill. In comparison, the topographical effects are accounted for in

the schedule creation of the DICTUM system, as more uniform moisture can be

seen across the space with exception of a small spot on the right hand side where

a bit of extra water can be seen to accumulate. Although variation in seasonal

weather patterns between these two separate deployments makes a true side-by-

side comparison difficult to make, these results demonstrate DICTUM’s ability to

produce schedules that correct for heterogeneities to provide homogeneous water

coverage by taking advantage of distributed actuation.
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Figure 4.23: Example energy trace of the sensing/actuation node with non-latch-

ing solenoid as used in the first deployment. Note that the high power con-

sumption associated with solenoid activation will continue until the sprinkler is

deactivated, potentially as long as an hour into the future.

4.5.4 Energy Consumption Analysis

From a wireless sensor network standpoint, the ability of a system to operate

for a long period of time without user intervention is fundamental. Irrigation

control devices are no different, especially if they are meant to be buried in the

ground. The first version of the devices used a non-latching solenoid, which

requires constant power to allow water to flow at irrigation-time, dominating

the power profile of the device as shown in Figure 4.23. As a solenoid can be

active for as much as an hour each day for irrigation, we found that during our

first deployment we had to constantly change batteries, once or twice per week.

Our second version greatly improved with the use of a latching solenoid, which

required only a short pulse of power to throw the valve between the off and on

positions. This allows the device to be truly low-power, as this on-off cycle will

only occur a few times per day in the worst case, with a clearly improved power
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Figure 4.24: Example energy trace of the sensing/actuation node with latching

solenoid

profile as shown in Figure 4.24.

For additional energy savings, the radio in each node is duty-cycled, activating

for only a 10 second period every 10 minutes. It was computed that using this

duty-cycle, the 4 D cell batteries providing power to our nodes could run for

over 2 years without requiring change. However, we note that collected data is

only required in our processing pipeline just before irrigation each day as initial

conditions to optimization. In practice, a much more energy-efficient solution

would be to continue sampling the onboard sensors but to store all this data

on the mote’s flash storage, and send the entire dataset in batch just before

irrigation. As these data samples are small, a day’s data can be easily sent within

a minute of radio on-time each day, allowing our prototype irrigation system to

run uninterrupted in excess of 14 years, while still performing its daily irrigation

and data collection. The power effect of these peripheral devices on our latest

prototype can be seen in Figure 4.24, where radio, solenoid, and sensor power

consumption is shown over background cpu usage.
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4.6 Return on Investment Analysis

Installing a system such as ours has many health, political, and environmental

benefits that are difficult to quantify, but the economic benefits are crucial when

deciding whether or not to install such a system. In particular we must consider

the return on investment, or the time it takes a system to save enough money to

cover the cost of installation and usage. To calculate the return on investment,

we take into account the initial cost of the replacement system and the monetary

savings expected from the increased efficiency of the replacement system.

Here we consider the cost to develop a single DICTUM node in bulk for

return on investment analysis. The primary components can be readily found; the

sensor, solenoid, batteries, and waterproof enclosure are all possible to purchase

from other manufacturers. In our prototype the communication module used was

a tmote sky [tmo]. However, as our application requires very specific circuitry to

provide power to the various modules, commercialization of the DICTUM node

would involve the manufacture of a stripped-down communication module, with

the inclusion of the additional components described in Section 4.4.3. The pricing
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of a barebones tmote sky replacement, as well as the other various DICTUM

components, can be found in Table 4.3.

To evaluate the expected return of investment, we compute the cost of the

system and calculated the net investment as time progresses. The factor that

most influences system pay-back is price of water. As this value is constantly

changing, we perform the analysis using the current price for our campus, $5.60

per thousand gallons, and incorporate a deviation of 10% to account for changing

water market prices. Although the unit itself carries a high initial cost, return of

investment can be expected to occur in 16-18 months, as shown in Figure 4.25.

Considering the immense political pressure for irrigation water to be more ex-

pensive [calb, cala], it is a good bet that the savings from an irrigation system

such as ours will be on the rise in the near future.

It is difficult to directly extend the savings seen in our prototype to all irri-

gated space on a University’s campus due to the heterogeneity of the installed

system architectures. However, with slight modifications, the independent actu-

ation control platform can be easily extended to control sprinklers of any type,

delivering site-specific actuation for small-large scale systems. For example, on

a campus such as ours, the majority of irrigated spaces use rotor sprinklers. As

the rotors use substantially more water, independent actuation could provide an

even greater positive environmental and financial impact, to be investigated in

future work.

4.7 Limitations and Future Work

To simplify the placement of irrigation infrastructure, sprinklers are almost always

installed in a grid pattern. However, it might be possible to use the developed
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Table 4.3: Sprinkler Node Manufacture Cost

Component Price

Mote $37.57

Moisture Sensor $110

Batteries $4

Solenoid $15

Waterproof Enclosure $10

Manufacture & Assembly $10

$186.57

model to optimize sprinkler locations to compensate for natural topological char-

acteristics for a system that has not yet been installed. In future work, we hope

to evaluate further potential for water savings by also finding optimal sprinkler

positions.

In optimization, we wish for our schedules to guide soil moisture into healthy

levels, i.e. above θpwp. Although we use a value of θpwp as physically measured

and reported in plant physiology literature, in practice it may be better to tune

this value by hand. Although θpwp may have been correct in the original model

described in Section 4.2, it will not be correct in the model we optimize due to

the approximations we introduce in Section 4.2.4. The method of tuning this

parameter and the effect of this choice is left for future work.

To correct for PDE model error, it is possible to perform intermediate sched-

ule optimization using fresher soil moisture data in the middle of the irrigation

period. However, with the CVX optimization library used during our experi-

ments, the 40 minute optimization time would be substantially disruptive in the

middle of irrigation, as it would cause a long pause for computation in irriga-
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tion that the optimization did not find necessary. Furthermore, due to system

pressure limitations, groundskeepers often assign a maximum irrigation time to

allow different areas to be scheduled in series, in our system chosen to be 3 hours.

However, with the more recent port to the Julia programming language, subse-

quent optimizations can be performed in around 1 second, making this a very

reasonable feature for future implementations of the DICTUM system. By reduc-

ing the persistent model error through this re-correction, the DICTUM system

will be able to more effectively meet its primary goal of maintaining adequate

moisture levels, while doing its best to minimize water consumption. Depending

on the nature of the model error, it is possible that this re-correction may cause

a penalty to the system efficiency in order to further improve quality of service,

but as the DICTUM system already has substantially improved quality of service,

we expect any penalty to be slight. As further experiments would be required

to quantify these potential improvements by adding this feature, we leave it to

future work.

As initial conditions of soil moisture are collected at only a finite number of

sensing locations and upsampled by interpolation to the spatial granularity of the

PDE grid, it is possible that conditions between the sensed locations may deviate

from those expected by the model. Unfortunately this can be caused by several

anomalous conditions such as differing soil depth, soil type, faulty or incorrectly-

installed sprinklers, which will cause model disagreement to the true conditions

in the space and may be difficult to notice and correct in the model. However,

there are several emerging aerial imaging technologies [CS01, pho] that allow the

plant health to be monitored at a significantly higher spatial resolution than our

distribution of soil moisture sensors. While they do not allow the soil moisture to

be directly measured, necessary for short-term control decisions during irrigation,

they will allow the control system to identify regions of the space that have
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unhealthy plants. If this plant health data shows regions between sensors that are

experiencing poor plant health, it can be used to expose a local anomaly, which

can then be incorporated into the PDE model for improved control, or trigger

an alert for local groundskeepers to search for a physical system fault. This will

allow our system to provide quality guarantees at all locations throughout the

space.

Due to the computational requirements of optimizing the schedule, the model

only considers moisture movement that occurs during irrigation, and as such does

not include long-term effects such as leeching and weather which cause the fluid

to be lost throughout the rest of the day. This is limiting, as it forces us to

assume that all locations in the space lose water in the same way, which may not

be true in practice. Future work is necessary to consider these losses across the

full 24-hour cycle and include this information when finding irrigation schedules

to ensure satisfactory water levels at all times.

4.8 Conclusions

In this chapter, we seek to improve the efficiency of turf irrigation systems by an-

alyzing heterogeneous water needs across a span of turf. To this end, we develop

a computationally-light moisture movement model to be used as constraints in

an optimization problem, which is then used to produce optimal valve scheduling

within an irrigation system to minimize water consumption while maintaining

healthy levels of moisture everywhere. To test its effectiveness we produce the

DICTUM sprinkler node, with the ability to actuate, sense local soil conditions,

and communicate wirelessly with sister nodes in the network. Through two sepa-

rate deployments spanning a total of 4 weeks, we find that the DICTUM system

can reduce system water consumption by 23.4% over our campus’ control strat-
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egy, and by 12.3% over a state-of-the-art evapotranspiration system. Despite

this reduced water usage, DICTUM was also found to reduce turf exposure to

unhealthy levels of moisture by a factor of 3.5 over the campus’ control, and

a factor of 4.08 over the evapotranspiration control. The DICTUM system is

expected to return its investment in 16-18 months based on water savings alone.
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CHAPTER 5

OPTICS: OPTimizing Irrigation Control at

Scale

Chapters 3 and 4 discuss the development of the distributed sensor/actuator

node that allows the irrigation system to be actuated at significantly finer gran-

ularity than standard irrigation systems. In order to optimize schedules for the

distributed actuation system, Chapter 4 introduces a PDE model that predicts

the movement of water through the irrigated space subject to surface topogra-

phy, soil type and depth, and other parameters, and found that the optimized

schedules result in both improved efficiency and quality of service. However, due

to the cost and difficulty of sampling soil type, soil depth, direct solar irradiance,

and other key factors across an irrigated space, in practice an installer can only

take a small set of collected values, and make assumptions this it is represen-

tative of the conditions across the space, whereas in practice these factors tend

to be very heterogeneous. In addition to requiring this manual model genera-

tion, the DICTUM control framework offers no model correction over time and

does not incorporate future weather prediction, potentially causing reduced ac-

curacy in prediction. Furthermore, the size and complexity of the model and

optimization problem resulted in it requiring simplification via linearization and

spatio-temporal discretization to make it tractable. Even with these simplifica-

tions that sacrifice model accuracy, significant processing was still required and
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could only guarantee satisfactory moisture levels for the immediate hours after

irrigation, not the full 24-hour cycle.

As all other control strategies are designed for the centrally-located water

valve that is industry standard, they are unable to control in such a way that

all locations in the space are adequately irrigated, while also minimizing water

consumption. In response to these system limitations, we introduce OPTICS, a

control system that tailors itself to the space in a data-driven way that requires

no human intervention. This allows us to not only deploy the system with ease

and minimal configuration, but perhaps more importantly, it allows us to learn

and adapt to the dynamic local conditions experienced in the field. OPTICS

does not require cumbersome measurements of soil type, topography, direct solar

irradiance, but rather adapts to the conditions measured from the moisture data,

even if the conditions are heterogeneous accross the field.

In this chapter, OPTICS uses this alternate approach to solve this very com-

plex problem. We argue that a model adaptively trained from data will react to

unforeseen conditions better than a system using a mechanistic model with ap-

proximated parameters and fixed assumptions. The contributions of this chapter

are as follows: (1) As no manual input is required of the installer, OPTICS is a

truly plug-and-play system, avoiding costly expertise to determine environmen-

tal characteristics (e.g. soil characteristics, topography, solar exposure) which

can be difficult or infeasible to measure accurately at scale; (2) Constant model

re-training with fresh data allows OPTICS to automatically adapt to unfore-

seen/changing environmental conditions and seasonal variations, and weather

forecasting allows OPTICS control to react to future weather conditions; (3) To

improve system scalability, OPTICS decouples short- and long-term models, al-

lowing the latter to become spatially independent; (4) As OPTICS closes the loop,
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the lightweight learning model reduces the computational complexity, allowing

us to compute optimal schedules in a timely manner without significant compu-

tational resources while maintaining overall accuracy. In 4 weeks of deployment

during the summer and fall, we demonstrate that in addition to these significant

improvements to ease-of-use and scalability, OPTICS reduces water consumption

against all baselines, while simultaneously improving quality of irrigation.

5.1 System Overview

Our system takes advantage of a distributed irrigation control system, with sens-

ing/actuation nodes installed beneath each sprinkler. Each node is equipped

with a wireless sensing mote [tmo] providing minor computational capability and

wireless communications, a volumetric water content (VWC) sensor to sense lo-

cal conditions, and a solenoid, allowing the opening and closing of water to the

sprinkler on command. These devices form a mesh network, and are accessible

through a border router, a special node physically connected to a nearby internet-

accessible computer. Sprinkler schedules are sent outbound along this link, and

real-time data from the sensing nodes are sent inbound along this link, allowing

us to automate the system with any strategy we like.

The goal of our irrigation system is to keep the turf healthy and in order to

do so, a number of requirements must be satisfied. Adequate solar exposure must

be provided, the soil must contain the correct types of nutrients in appropriate

amounts, and an adequate amount of moisture must be provided to the soil to

be absorbed by the plant roots. Although our irrigation system has no control

over solar exposure and soil nutrient composition, it has direct control on the ap-

plication of water onto the surface of the soil. In plant physiology, two primary

thresholds of volumetric water content (VWC) will determine the happiness of
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Figure 5.1: Sample fluid curve across the 24-hour cycle

the plant. The first represents the level where the plant will no longer be able

to extract water from the soil, and is known as the Permanent Wilting Point,

or θpwp [MD17, usd, Kir04]; if a plant spends an extended period of time in soil

beneath this moisture level, it will begin to wilt and die. The second threshold

more conservatively describes the level of moisture below which the plant starts

feeling stressed, and is a fraction p of the total available water in the soil, where

p is tailored to the particular crop type in question [APR98]. While the more

conservative no-stress threshold is certainly more applicable in the installation of

a more decorative turfgrass, we chose the more restrictive θpwp moisture thresh-

old in this work, as it will better demonstrate the OPTICS system’s ability to

maintain even the most challenging moisture levels. While this threshold can be

easily modified in the system depending on needs, the goal of the OPTICS sys-

tem is the same under any of them; to minimize the amount of time the system

spends beneath the chosen minimum threshold, as verified in our system with the

installation of VWC sensors to constantly monitor soil moisture levels. By doing

so, we will be minimizing the plant’s exposure to unhealthy moisture conditions,
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Figure 5.2: OPTICS System Architecture

giving it the best possible chance to thrive.

Figure 5.1 shows an example 24-hour irrigation cycle. After day 1’s irrigation

ends at tf,1, the water begins discharging from the soil subject to the effects of

diffusion, leaching, and weather effects, which occur very slowly relative to ef-

fects during irrigation. After hours of these losses, the soil VWC will reach its

minimum value just before the start of irrigation at day 2, ts,2. The effects of dif-

fusion, leaching, and weather are not homogeneous; differences in environmental

factors such as soil type, soil depth, and solar irradiance change the rate at which

moisture is lost across the space. Over time, we use the historical loss trends to

build a long-term model (LTM) that characterizes the way water is lost between

irrigation cycles for each individual sensing node. With knowledge of the desired

minimum moisture threshold θpwp we wish to maintain in the soil and our long-

term model describing losses that are expected to occur, we can work backwards

to intelligently choose a Goal State of moisture that we wish to reach by the end

of irrigation. By reaching this Goal State, we ensure we will stay above minimum

VWC θpwp across the full 24-hour cycle without wasting water.

Between day 1’s start of irrigation ts,1 and finish of irrigation tf,1 as shown in

Figure 5.1, the water applied to the space gradually increases VWC within the

soil. tf,1, the time that irrigation ends is not known beforehand, but occurs when
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VWC has reached the pre-computed Goal State for this sensor node. During

this irrigation time, we utilize a data-driven short-term model (STM) describing

how the actuation of one or more sprinklers affects the moisture in the soil at

all sensor locations, and solve an optimization problem to find the most efficient

irrigation schedule to reach the Goal State at each sensor location, allowing us to

save water by utilizing sprinkler overlap, soil runoff, and schedule intermittency

to our advantage. The de-coupling of these two models allows this technique to

scale to control very large irrigation systems. The two are intertwined, as one

produces the Goal State used by the other. In the short-term, the model and

optimization takes into account the effects of all nodes’ sprinkler coverage jointed

spatially and temporally, but once irrigation ends, the models describing losses

across the field become spatially independent.

Figure 5.2 shows the data processing required to achieve these goals at irrigation-

time (daily irrigation at dusk, by request of campus groundskeepers). First occurs

model generation. The freshest data from the irrigated space is used to build the

long- and short-term models for use in loss prediction and irrigation schedule

optimization. The short-term model describes the direct in-flow of moisture as

sprinkler moisture lands above the sensor, and takes into account sprinkler over-

lap and water runoff effects. The long-term model shows how the moisture tends

to move across the full 24-hour cycle due to soil transport effects such as diffusion

and leaching [Chi69], and a separate weather prediction module predicts future

weather trends in the form of reference evapotranspiration [JBA90].

Next, using the long-term model, the Expected Losses module computes a

Goal State for each node in the space as shown in Equation 5.1. This state

is computed by taking the minimum acceptable VWC and adding the node’s

expected moisture losses between irrigation cycles. As later explained in Sec-
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Figure 5.3: Data communication across irrigation system with distributed actu-

ation

tion 5.2.2, future weather predictions are decoupled from the long-term model,

so forecasted evapotranspiration losses are also added at this stage, computed as

described in Section 5.2.1. In this way, the minimum moisture, experienced right

before the next irrigation will begin, should be at or just above the minimum

VWC threshold. This Goal State is later used by the optimization module.

Goal State = θpwp + Expected Losses + ETforecasted (5.1)

Once these initial conditions are defined for irrigation, the control loop is

entered, which will fetch the freshest data snapshot from all nodes across the

space. This data is used as the initial moisture conditions for an optimization

problem that computes the optimal actuation sequence for each individual node

in the space, such that each node’s Goal State VWC will be reached by the end of

the irrigation period. If our short-term model used in optimization is accurate, we

can perform this control loop only once at the beginning of irrigation. However,

for safety and for accuracy, it is advantageous to occasionally re-run this control

loop during the irrigation period using the most current VWC data across the

space to help correct for drift caused by errors in the short-term model. This

prevents schedules from over- or under-watering due to stale starting conditions,
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and will allow the optimizer to re-search for more efficient schedules from the

freshest starting point.

In our deployment, the model generation and optimization takes place on a

computationally-weak Raspberry Pi [rasa] that is collocated with our irrigation

system. Attached to the Raspberry Pi via USB is a TMote Sky [tmo], through

which schedules can be sent and data can be received. Once optimization is com-

plete, the schedules produced by the optimizer are sent over USB and through the

wireless sensor network to their respective sensing/actuation node. The schedule

is run, and if desired, a fresher data snapshot will be obtained and optimization

will occur again.

To maintain a fresh snapshot of the soil moisture content at all times, the

distributed sensor/actuator devices are constantly polling their attached sensors.

During irrigation time, when fresh data is crucial, the sampling frequency is set

to be equal to the Control Timestep of the actuator, chosen in our system to

be 1 minute. When irrigation is complete, the sampling period is reduced to

once every 10 minutes to maintain a long battery life. Sampling across the full

24-hour cycle is useful for us to evaluate the control strategies we are testing,

but in a commercial system it may only be necessary to collect data during

irrigation, consuming less sensing and radio transmission energy and extending

system lifetime. When sensing is occurring at a 10-minute timestep, we later post-

process by linear interpolation to ensure we have a consistent sampling period

throughout the entire day. This data is routed from the sensing nodes across

the wireless sensor network to the basestation as shown in Figure 5.3 for use

in modeling, visualization, etc. Due to the relatively small distances of our test

irrigation system, only a single-hop wireless network was required to communicate

from sensing nodes to the basestation, as later discussed in Sections 5.5.4 and
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5.8.

Control on the distributed sensor/actuator devices also operates at the same

Control Timestep, chosen in our system to be 1 minute. Individualized valve

schedules are routed from the basestation across the wireless sensor network as

shown in Figure 5.3, each containing a control timestep and a binary sequence

of actuations for a particular sensor/actuator node. Once received, the sens-

ing/actuation node will then route a pulse of either forward or reverse current

to enable or disable the connected solenoid, following the provided schedule. If

a schedule is received while another is already running, the first is cancelled and

overwritten by the fresher one.

5.2 System Modeling

The purpose of the control system is to decide how much moisture must be

applied to the surface by the sprinklers. Whereas standard irrigation controllers

use weather-only or rule-of-thumb techniques to make this decision, we hope to

leverage the rich, spatially-distributed data collected by our sensing/actuation

nodes to make this process more efficient. Towards this goal, we generate data-

driven models that help us understand how moisture tends to move in the short-

and long-term.

The water used for irrigation moves through the space subject to many factors,

which all tend to occur within two different time horizons. In the short term,

during irrigation, factors such as sprinkler distribution and water runoff on the

surface of the soil cause water movement that will occur for seconds or minutes,

movement that tends to comes to an end when irrigation is completed or soon

thereafter. Once this moisture infiltrates fully into the soil, much slower effects
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continue to take place in the long term between irrigation periods. For instance,

depending on the type of soil, leaching of water beyond the root zone and diffusion

can occur on the order of 10−2 − 10−3 cm/s [Bea72], and will continue to move

for hours or days.

Previous work [WWB16] combines all of these moisture movement factors

together in one large mathematical model based on first principles. However,

the size of the resulting models have performance repercussions, and the lack

of model correction could potentially cause it to deviate from reality. In this

chapter, we solve these problems by modeling water movement using a lighter

data-driven approach based on machine learning techniques. The implicit advan-

tage of this approach is that it is based on moisture data measured locally, being

able to cope with heterogeneous conditions like soil type, topography, and solar

exposures that vary across the field. To reduce the computational complexity of

the model-based optimization problem to minimize water consumption subject

to quality constraints, we chose to use a two-model approach, each of which rep-

resent one of the distinct time horizons. The long-term model, which learns how

water tends to be lost between irrigation cycles, is used to compute a Goal State,

the required moisture level that must be reached at each location in the field so

that moisture levels will not be depleted below our minimum moisture threshold

before the next irrigation period. The short-term model is used by the Schedule

Optimization Module to determine the best schedules that will take advantage

of runoff, overlapping sprinkler coverage, and other short-term effects to com-

pute schedules that bring moisture to the Goal State while consuming minimal

water. With a cleverly-chosen Goal State, we will maintain adequate moisture

levels across the full 24-hour cycle, while only requiring optimization during the

irrigation period, allowing optimization to be run on very computationally-weak

machines.
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Figure 5.4: Water inputs and outputs to reactive irrigation system

5.2.1 Weather Forecasting

A large portion of losses on the 24-hour cycle is expected to be caused by the

combined environmental effects of evaporation and plant transpiration, referred

to together as evapotranspiration [JBA90] (ET). The industry-standard ET esti-

mation uses four environmental factors, temperature, humidity, wind, and solar

irradiance to estimate ET losses, or the water that has been removed from the

soil due to weather conditions.

Evapotranspiration-based irrigation controllers are becoming industry stan-

dard, and the control strategy follows intuition. Weather stations in the region

take periodic measurements of the four environmental factors, and make a calcu-

lation of evapotranspiration (ET) losses. The ET irrigation controller communi-

cates with the weather station for an estimate of total losses that have occurred

since the last irrigation. With knowledge of the sprinklers’ water application

rates, these losses are then used to decide the irrigation schedule to replace the

losses that have occurred. However, this technique has a fundamental limita-

tion, as the control can only react to past weather losses, and cannot prepare
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Figure 5.5: Net change in soil moisture content under reactive system
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Figure 5.6: Water inputs and outputs to predictive irrigation system
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Figure 5.7: Net change in soil moisture content under predictive system

for future weather losses. Figure 5.4 shows example water inputs and outputs

in an irrigation system with a strategy that reacts to the previous day’s weather

trends, where irrigation each day is chosen to match the losses of the previous

day. Here, the water applied and lost is displayed in inches of water, the standard

unit used to describe irrigation and precipitation inputs, and evapotranspiration

losses. This unit describes a column of water on the surface, and when describing

irrigation amount is a function of the sprinkler’s distribution pattern and on-

time. The resulting net change in water can be seen in Figure 5.5, where it can

be seen that performing a direct water replacement results in the soil in general

receiving a net loss in water content due to the system’s inability to prepare for

future losses. In practice, to ensure the plant receives enough water, commercial

ET irrigation controllers provide a direct replacement of past losses plus a safety

margin of extra water to guide the soil moisture towards adequate levels over

time. This inexact method of overwatering by design leads to unnecessary water

waste or reduced quality of service.

In contrast, if we have the ability to predict the losses before they occur, we
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can pre-irrigate to ensure net moisture change is always positive or zero, without

requiring an arbitrary safety band of extra irrigation. The loss/irrigation inputs

and outputs of such a system can be seen in Figure 5.6, and the resulting net

moisture change in the soil can be seen in Figure 5.7. Each day, the amount

of irrigation is chosen based on the next day’s predicted losses rather than past

losses, which allows us to allocate the water ahead of time to prepare for or take

advantage of weather that is expected to occur. In addition to avoiding unhealthy

moisture levels in the soil, prediction will allow the system to save water if rain is

forecasted in the near future, whereas a reactive system will continue to irrigate

as usual. If more rain occurs than was predicted, the OPTICS system will sense

this through soil conditions and prevent wasteful irrigation from being applied

to the space. If less rain occurs than was predicted, the system will recuperate

these losses after-the-fact in the same way a standard ET controller would.

Although prediction of future ET losses will allow an irrigation system to pro-

vide better quality of control and system efficiency, this data is not available in

practice. However, we found that 15 years of historical data trends [cim] of the

4 ET factors (temperature, humidity, wind, and solar irradiance) were available

at hourly intervals at our location, as well as the daily ET losses that occurred

on those days. Additionally, we consider the fact that in most locations, it is

possible to find forecasted hourly weather trends (for at least temperature) for at

least 24 hours into the future. To use the data we have available to provide fu-

ture ET prediction, we trained a k-nearest-neighbors regression model to accept

as input the hourly vectors of all (or a subset, depending on forecast availability

at the system’s location) of the 4 ET factors, and as output the resulting ET

losses for the entire day. For instance, in our locale we found that the Wunder-

ground API [wun] has hourly forecasting of both temperature and humidity. If

the deployed system is not located near a weather station, the National Oceanic
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Figure 5.8: Sources of water movement between daily irrigation (Long-term)

and Atmospheric Administration (NOAA) provides temperature, humidity, wind

speed and cloud cover prediction at hourly intervals for any point in the United

States [noa]. Using our 15 years of historical data with approximately 5475 data

samples, we step through each day and create a 48-element feature vector com-

posed of 24 hourly temperature readings and 24 hourly humidity readings, and as

output the cumulative ET losses from this 24-hour period as a single value. We

train our KNN on these features and outputs with a k-value of 5, so in prediction

the regressor will use the 5 historical days with the most similar hourly weather

trends to choose the evapotranspiration value that is likely to occur. Finally, each

day we query Wunderground to get tomorrow’s forecasted hourly temperature

and humidity readings, which are then passed to the KNN regressor to predict the

ET losses that are expected to occur tomorrow based on those trends, which is

then used by the OPTICS controller to optimize irrigation schedules. Evaluation

of the accuracy of this technique can be found in Section 5.6.1.
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Figure 5.9: Sample moisture decay fit between irrigation

5.2.2 Long-term Model

To provide the highest quality of control, we wish to maintain at least a minimum

level of moisture in the soil, θpwp, as discussed in Section 5.1. Although industry-

standard irrigation systems choose a target on-time for the irrigation system, our

rich coverage of soil moisture sensors allow us to instead set a Goal State of soil

moisture. This Goal State is unique for each node in the space, acting as a target

volumetric water content (VWC) for the Schedule Optimization Module to reach

as shown in Figure 5.1. In order to choose a useful Goal State, we must consider

both future predicted losses due to weather patterns (evapotranspiration) as dis-

cussed in Section 5.2.1 and environmental loss data trends from previous data for

each individual node.

Once irrigation is complete and the irrigated moisture has infiltrated into the

soil, it begins to move more slowly through the processes of diffusion, leaching,

and weather patterns as shown in Figure 5.8. Diffusion is the tendency of moisture

in the soil to move from areas of higher to lower concentration due to differences

in hydrostatic pressure caused by intermolecular forces in the soil, and leaching is
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the tendency of water to eventually move beyond the root zone of the plant due

to the force of gravity. Movement under either of these forces tends to be very

slow, as hydraulic conductivity of water through certain soils can be on the order

of 10−2−10−3 cm/s [Bea72]. Losses due to evapotranspiration (ET) occur slowly

as well, as they are primarily caused by solar radiation and high air temperature

which occur during daylight hours, or windy conditions.

Figure 5.9 shows how moisture losses occur at one selected sensor site across

three consecutive days. This example curve is unique at this location due to its

specific soil characteristics. In this figure, t = 0 is time-aligned to the end of

irrigation where moisture losses start to occur, and t = 21 hours corresponds

to the beginning of irrigation on the following day. By tracking these losses

using our deployed VWC sensors, we found that the discharge of water from

the soil medium tends to occur as an exponential decay when irrigation ends

as shown in the figure. In our system, we use these historical loss trends to fit

an exponential decay curve as our “LTM”, or Long-term model, as shown in

Figure 5.9. In addition, for each day d ∈ {1, . . . , D}, we record the measured

evapotranspiration that occurred, ETd. With this fitted model, the expected loss

of this node is computed by taking the difference of the curve at t = 0 and at

t = ts,d+1 − tf,d, the expected delay between irrigation of today and tomorrow,

e.g. 21 hours. This computed loss is finally offset by the average of the daily

evapotranspiration levels measured during the training period.

Expected Losses = (LTM(0)− LTM(ts,d+1 − tf,d)−
1

D

D
∑

d=1

ETd (5.2)

We subtract the weather to ensure that the weather experienced when the

training trends were recorded do not impact the expected losses for future ir-

rigation. Before use as the Goal State for optimization, the predicted ET for

the following day will be re-added as shown in Equation 5.1. We decouple these
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Figure 5.10: Sources of water movement during irrigation (Short-term)

weather effects to prevent learning past weather trends into our model. In a cli-

mate where the weather changes very little from day-to-day, it may be reasonable

to assume that past weather trends will continue into the future, but to allow

OPTICS to be more generalizable and reactive we choose to utilize local weather

forecasting separately.

When the system is first turned on, the model has no understanding of ex-

pected losses. It is not until after the first day of irrigation, in our case a fixed

schedule to train the short-term model as discussed in Section 5.2.3, that the

long-term model can be trained. In our experiments, the model is retrained each

day before irrigation using the loss data from all of the preceding days. That is

to say, on day d, we re-train the model using d−1 days of data. This worked well

in our experiment, but in a very long-term installation, re-training the model on

just the most recent N days of data may allow the system to be more responsive

to changing seasonal conditions. We have not investigated the optimal choice of

N , and we leave this for future work.
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5.2.3 Short-term Model

As our system was designed to require no manual configuration from the in-

staller, at install-time the OPTICS system does not understand which sprinklers

and sensors are within range of each other. For later use in optimization in Sec-

tion 5.3, we must understand how the actuation of the sprinklers in the system

will influence the moisture in the soil as shown in Figure 5.1. For this task, we

employ a Short-Term Model, which captures the moisture movement effects dur-

ing irrigation. An example irrigated space is shown in Figure 5.10; differences

in sprinkler overlap affect the amount of water that lands on the surface of the

soil, surface topography affects how quickly runoff will occur, and heterogeneous

soil composition and depth will affect the rate of infiltration. As it is difficult

and error-prone to manually measure these effects, we wish to learn them in an

automated, data-driven way.

We choose to use a linear regressor to model these effects using the variables

enumerated in Table 5.1. As input, we provide the current VWC at each of the

K sensor locations as vector st, and the current binary actuation of each of the K

sprinklers as vector ft. The output of the linear model is the predicted VWC for

each of the K sensor locations at some time ∆t in the future, as vector st+∆t. In

practice, as this model will be later used to compute optimal irrigation schedules,

the length of ∆t is chosen to be the same as the control actuation period, 1 minute

in our experiments. The linear function g defines the following relationship:

g(st, ft) = st+∆t (5.3)

Ideally, we would train our model by running all possible combinations of

sprinkler actuations and measuring the sensor response. However, as this would

require an immense amount of time and potentially wasteful irrigation actuation
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Figure 5.11: Sensor data from selected nodes during Short-term model training

period

Table 5.1: Short-Term Model Variables

Variable Description

t ∈ {0, . . . , T} Temporal index

K Number of sensing/actuating nodes in system

st ∈ R
K Vector of moisture levels at time t, size K

ft ∈ {0, 1}K Vector of binary sprinkler actuation at time t, size K
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to achieve, we instead chose to actuate each sprinkler one-by-one for model train-

ing, which can be done much more quickly. While the resulting model will have

some error in moisture estimation when many sprinklers are active at once, the

OPTICS system will continuously re-train this model as more complex schedules

are used in irrigation, improving prediction over time.

In this way, each sprinkler is triggered one-by-one for a fixed time (1 hour in

our case) and the resulting soil moisture is measured at all locations. Moisture

levels during our training cycle can be seen for 4 selected devices in Figure 5.11

with rises caused by the activation of the nearest sprinkler, and although each

sprinkler is active for the same amount of time, it can be seen that the amounts

of increase are different for each device due to spatial heterogeneity of runoff,

sprinkler coverage, and soil characteristics. Furthermore, as sprinkler overlap

would cause multiple sensors to rise simultaneously as a single sprinkler is active,

it can be seen that this irrigation system has minimal sprinkler overlap, as only

one sensor rises at a time. In a system with more sprinkler overlap, the methods

of data collection and processing would be identical.

The data from our deployment training period is parsed into ∼850 training

pairs of [st, ft] vectors as inputs, and [st+∆t] vectors as outputs, and the regressor

is trained. As sensor data is inevitably noisy it is important to choose a ∆t that

is not too big, which would result in increased predictive error or too small, where

noise dominates the state signal. Our choice of one minute seemed to work well

in practice, and further evaluation of this choice can be found in Section 5.6.2.
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Table 5.2: Optimization Variables

Variable Description

t ∈ {0, . . . , T} Temporal index

k ∈ {1, . . . ,K} Sprinkler location index

st ∈ R
K Vector of moisture levels at time t, size K

ft ∈ {0, 1}K Vector of binary sprinkler actuation at time t, size K

skt ∈ R Volumetric water content (VWC) of location k at time t

fkt ∈ {0, 1} Sprinkler k actuation at time t

ck ∈ R Consumption of sprinkler k (Constant, known beforehand)

θk ∈ R Measured VWC of sensor k (Constant, known beforehand)

5.3 Optimization Over the Schedule

We wish to use our models as described in Section 5.2 to compute irrigation

schedules that will allow us to reach our goal volumetric water content (VWC)

on each sensor/actuator node while minimizing system water consumption. With

a goal state, θgoal,k and recently measured VWC θk for each node index k ∈
{1, . . . , K}, we construct the following optimization problem using optimization

variables as defined in Table 5.2.

min
{fkt,skt}

K,T

k=1,t=0

K
∑

k=1

T
∑

t=0

ckfkt s.t. (5.4a)

0 ≤fkt ≤ 1 k = 1, . . . , K t = 0, . . . , T (5.4b)

skt ≥ θpwp k = 1, . . . , K t = 0, . . . , T − 1 (5.4c)

skT ≥ θgoal,k k = 1, . . . , K (5.4d)

sk0 = θk k = 1, . . . , K (5.4e)

st = g(st−1, ft−1) t = 1, . . . , T (5.4f)
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We define fkt to be the binary actuation of sprinkler k at discrete time index

t ∈ {0, . . . , T}, relaxed to [0, 1] in the optimization. The objective function in

Eq. 5.4a is the sum of fkt for all k ∈ {1, . . . , K}, t ∈ {0, . . . , T}, weighted by the

water consumption rate of each sprinkler k, ck, a function of the sprinkler’s angle

of coverage as defined in the sprinkler datasheet. With pressure-regulated sprin-

klers, this weighted sum represents the total system water consumption under

schedule F, which we are trying to minimize. The VWC at each discrete sensor

location k at temporal index t is defined as skt. This moisture level is constrained

to remain above the minimum acceptable moisture threshold, θpwp at all times in

Eq. 5.4c, and above the goal state at final time index t = T in Eq. 5.4d. Eq. 5.4e

assigns this state variable the most recently measured sensor value θk at starting

time index t = 0. Changes in moisture level as a result of sprinkler actuation is

modeled by the linear function g in Eq. 5.4f, representing our Short-term Model

as defined in Section 5.2.

As sprinkler valves can physically be either on or off, sprinkler actuation fkt

is a binary variable in practice. This makes the defined problem an integer linear

program (ILP), which is NP-Complete. We have found that solving this problem

with reasonable values of K and T can take as long as several minutes on our

computationally-weak basestation. As this optimization may be required to run

as often as once per control timestep, chosen in our system to be 1 minute, we find

an approximated solution more quickly by treating fkt as a real number within

[0, 1] as shown in Eq. 5.4b, and then rounding the computed optimal value to

the closest binary value. This simplification makes the resulting problem a linear

program (LP), which is much simpler to solve in practice. Evaluation of this

choice can be found in Section 5.6.3.

We found that with our irrigation system architecture and environmental
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Figure 5.12: Side-by-side experimental layout

characteristics, our irrigated space generally requires 30-60 minutes of irrigation

to be sufficiently watered. To give our optimization time to find schedules that are

as efficient as possible, we give the optimizer an irrigation window of 2 hours, well

above the required time of a simple schedule. With a control timestep of 1 minute,

this 2 hour irrigation window is converted to T = 120. By allowing a larger

irrigation window, the optimizer may find schedules that are more efficient, but

due to University water pressure limitations, irrigation in different regions of the

campus must operate within slots, making very large time windows impractical.

We chose to use the Julia programming language [BEK14] as an interface to

the GNU Linear Programming Kit (GLPK) [glp] solver. We chose these tools for

their ease of use and sufficient performance. Our linear program has 2K(T + 1)

variables and 4K(T + 1) constraints. In our deployment, solving for a schedule

with a selected setup of K = 9 and T = 120 takes less than a second on our

computationally-weak basestation.
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5.4 Case Study: Live Deployment

To perform a fair comparison of our OPTICS system against a baseline, we in-

stalled two identical irrigation systems that allow us to run two control strategies

side-by-side. As shown in Figure 5.12, the two systems were oriented next to each

other with a gap purposefully left in-between to prevent cross-contamination be-

tween the two systems. An alternate technique to ensure fair comparison between

two control strategies would be to periodically alternate the strategies between

the two irrigation systems to ensure results aren’t skewed by environmental vari-

ations. However, this would require us to wait for soil moisture to settle between

each alternation, causing all experimentation to take significantly longer. In-

stead, we chose this side-by-side arrangement, so that each system would have

as homogeneous solar exposure, slope characteristic, and soil characteristics as

possible.

5.4.1 Environmental Description

The two irrigation systems were installed side-by-side, and were designed to be

identical in hardware, sprinkler coverage, etc. Each irrigation system measured

60’x60’, with sprinklers arranged in a 3x3 grid, each 30’ from the next. The

sprinklers chosen were MP Rotators by Hunter Industries [hunc], which are cur-

rently considered state-of-the-art in sprinkler technology. In these devices, the

water pressure is focused through many rotating nozzles on the sprinkler head

which allow much greater range at lower water flow rates, applying water more

efficiently than their rotor counterparts. The MP Rotators can be adjusted to a

range of 15’-30’, making them ideally suited for our system.

The deployment area was located on a sloped area that drops 3’ from the
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Figure 5.13: Sensing and actuation node

highest to the lowest point. During installation of the sprinkler system, we noted

that the topsoil was a “Clay Loam” type, approximately 10” deep. Beneath this

layer sat a thick clay layer that went beyond 3’ deep. The grass growing in the

installation area is a natural field grass and not the type found on a sports field

or in university landscaping, but the goal of irrigation is identical; providing a

satisfactory amount of moisture to sustain healthy turf.

5.4.2 Hardware Description

The hardware used in our experiments stemmed from the design introduced

in [WWB16], with battery life and system safety as primary concerns. Con-

trol was provided by a latching solenoid, which requires a 50ms pulse of power

in either the positive or negative direction to open or close the valve. The sen-

sor chosen was the Decagon EC-5 [dec], commonly used in research for its high

accuracy of ±3% and power consumption of just 10mA for 10ms to take each

sample. Although the EC-5 outputs a raw voltage, Decagon provides a linear
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function that maps this voltage to Volumetric Water Content (VWC) for our

use. Each sensor is inserted into the soil at the expected depth of the root zone

for the turf on site, within the first 6 inches of soil in the case of our experimen-

tal system. A standalone board was developed to sit on the General Purpose

Input/Output (GPIO) pins of the Tmote Sky, whose purpose is to route power

from the attached 4xAA battery source to the peripheral devices. With these

peripherals installed, our devices could communicate with each other, monitor

the local soil moisture conditions, and control the flow of water to the attached

sprinkler. These primary hardware components in their waterproof case can be

seen in Figure 5.13.

Collocated with the irrigation system was a basestation module, consisting of

a Raspberry pi with a Tmote Sky attached via USB, and a wifi hotspot to allow

the system to be accessible remotely. The data processing pipeline as described

in Section 5.1 and the optimization as described in Section 5.3 was all run on this

device. Schedules computed by the Schedule Optimization Module were forwarded

over USB to the Tmote Sky for wireless distribution, and incoming data was

pushed by the Raspberry Pi to an off-site database for remote monitoring and

analysis. Later explained in Section 5.5, the only equipment failure that occurred

in our deployment was a failed USB connection between the Tmote and the

Raspberry Pi, likely due to environmental factors. However, firmware running on

the sensing/actuation devices is designed to handle such a failure by automatically

returning to the default “Off” state, preventing significant water loss.

5.4.3 Baseline Strategies

To allow the two side-by-side irrigation systems to operate independently, all

sprinklers are installed with a sensing/actuation node. In this way, the only dif-
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ference between the two systems are the schedules sent to the sensing/actuation

nodes. In this chapter, we compare the OPTICS system to two baseline systems,

an Evapotranspiration control strategy, the current industry leader in system effi-

ciency, and DICTUM, the current state-of-the-art in academia. As the University

irrigation systems operate on a daily schedule, all baseline systems and OPTICS

was configured to irrigate daily as well. The OPTICS system would operate

identically on a different irrigation cycle with no reconfiguration necessary.

5.4.3.1 Evapotranspiration

Many weather stations are available to the public that provide ET estimates based

on measurements of the other weather factors. To mimic an ET controller, we

query a local weather station for the previous day’s ET losses, provided in units of

surface water height. With this data, we use our sprinkler’s surface application

rate to compute how many minutes the system must activate to replace the

previous day’s losses. In a commercial evapotranspiration controller, this amount

is then the amount irrigated, plus a safety margin of water. However, despite

contacting two of the largest providers of ET controllers, Hunter [huna] and Rain

Bird [raib], we were unable to find the safety margin they use in practice, so

we assumed NO safety margin. This means two things - it means a commercial

system using a safety margin may provide better quality of service than what we

see in our deployment, but at the cost of increased water consumption. Please

note that the OPTICS system is able to achieve both goals, water savings and

improved quality of service.
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5.4.3.2 DICTUM

The DICTUM control framework requires that the installer pre-defines key irri-

gation and field characteristics before use. The irrigation system characteristics

including coverage of sprinklers, application rates, angles, and positions are de-

fined as described in Section 5.4.1 to match the physical deployment. Likewise,

the topography was modeled to reflect the 3’ elevation drop of the field, and the

estimated soil type was chosen as observed to be a “Clay Loam” of depth 10”,

sitting atop a deep clay layer. To allow fair comparison to the OPTICS system,

the DICTUM optimization was defined with a 2-hour irrigation evening window,

to match the campus’ irrigation scheduling policy to avoid over-use of the system

pressure.

5.4.4 End-to-end Performance Metrics

As previously discussed in Sections 5.1, 5.2.2, and 5.3, we have chosen a mini-

mum acceptable moisture threshold for all systems that will ensure the system is

maintaining satisfactory water levels to keep the plant healthy. As maintaining

plant health is the primary goal of an irrigation system, our primary metric for

irrigation quality is the system’s ability to maintain soil moisture levels above the

chosen threshold at all times across the space. By doing so, we are guaranteeing

that the plant has sufficient moisture to be healthy. In this paper, we call this

the quality of service provided by the irrigation system.

Although we must maintain moisture above a minimum threshold, it is also

detrimental to over-water the space. In addition to the environmental and finan-

cial impact, an over-abundance of water in the soil can, over time, lead to the

rotting of the plant roots, discoloration of the plant (aesthetic penalty), and in ex-

treme cases excess irrigation has been linked to the leaching of fertilizer chemicals
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into human drinking water supplies. As each sprinkler uses a pressure-regulated

water supply and we directly control the times at which each sprinkler is active,

we can monitor the amount of water consumed by both systems at all times to

determine the efficiency of each system. Thus another metric that is relevant is

the water consumption, which we would like to minimize subject to the quality

of service constraints.

Finally, an aesthetic side-effect of uneven moisture distribution is the appear-

ance of “hotspots” where not enough water is received and oversaturated regions

where standing water remains on the surface. These can be identified by a differ-

ence in color, and detract from the appearance of the space. Although they can

take a long time to develop, with our sensing/actuation platform, we can inves-

tigate the long-term moisture trends under our comparative control strategies; a

more even moisture distribution prevents these localized effects from happening,

and uniformity can be monitored through the deployment’s sensor data.

5.5 Experimental Results

In this section, we discuss the experimental results of OPTICS when compared

to both the ET and the DICTUM systems side-by-side. These tests are per-

formed under the same conditions as explained in Section 5.4.1, analyzing the

quality of service, water consumption, and moisture uniformity metrics discussed

in Section 5.4.4.

5.5.1 Quality of Service

Irrigation systems are installed to maintain health in the planted turf. However,

these systems often fall short of their quality goals. As such, a potential replace-
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Figure 5.14: Collected VWC data across deployment for all Evapotranspiration

(top) and OPTICS (bottom) nodes
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Figure 5.16: DICTUM vs OPTICS quality of service results (lower is better)
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ment system must either maintain or improve the quality of service. Figure 5.14

shows the raw moisture data for each sprinkler in the field for both ET and OP-

TICS. The black horizontal line in the center shows the permanent wilting point

(pwp), representing the minimum moisture level we with to always maintain. We

can see that the ET system spends more time and in some cases it is well below

that mininum threshold for many of the moisture sensors. In order to quantify

how much below the minimum moisture threshold (pwp) each system spends over

time, we plot the sum of the squared amount below the minimum moisture level

over time in Figures 5.15 and 5.16 for the experiments comparing OPTICS with

ET and DICTUM respectively. We used the squared amount to emphasize that

the larger the amount below the pwp, the worst the quality of service provided.

In our deployment of OPTICS against the evapotranspiration control strategy

in Figure 5.14, we see that at least two nodes in the ET system spend significant

time below the minimum moisture threshold we wish to maintain, causing the

ET system to provide reduced quality of service across the entire deployment

as shown in Figure 5.15. In addition, looking closely, we can see that there

are several nodes in the ET system that are significantly above our minimum

moisture threshold we wish to maintain as well. This emphasizes the limitations

of ET and the core of our work. The irrigated regions don’t receive moisture the

same way, and without learning these eccentricities, a system will often provide

unsatisfactory quality of service and/or consume more water than necessary, as

in our ET baseline system. This is a common problem in irrigation systems,

as uniform irrigation across the field, without understanding local variations will

result in moistures that can vary wildly. In order to make this uniformly-irrigating

system provide perfect quality of service, we would have to irrigate all sprinklers

enough to raise the driest area above our minimum moisture threshold. This

would be a significant waste of water, as the rest of the space would be severely
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over-watered.

It should be noted that before the OPTICS system was turned on, the ET

control strategy was used to irrigate both irrigation systems. This can be seen

in day 1 in Figure 5.14, where several sensors have moisture levels below our

threshold. However, in the first 4 days, the OPTICS system learns these increased

needs and applies tailored moisture to raise them above the threshold, resulting

in a steady improvement in quality of service as shown in Figure 5.15. In the

comparison against DICTUM in Figure 5.16, we can see that several days are

spent with a poorer quality of service in comparison to OPTICS. On days 1 and

4 in particular, it’s clear that DICTUM’s model believes it can afford to reduce

water consumption, causing decreased quality of service on the following days.

Likewise, although the DICTUM system attempts to send increased water on day

2, the mismatch between the model and the physical deployment does not send

enough to reach this goal.

Overall, OPTICS improved irrigation quality of service by an average factor

of 4.04 in comparison to the ET system, and if we ignore the first day, by a

factor of 24.7. When compared to DICTUM, OPTICS improved irrigation quality

of service by an average factor of 2.47. In all, our system provides significant

improvements with respect to quality of service than the other irrigation systems.

5.5.2 Water Consumption

When a new irrigation control system is considered, a primary concern is the

efficiency of the proposed system. The system’s ability to return its investment

based on increased efficiency will often dictate the acceptance of the technology.

In addition, the environmental benefits of reduced freshwater consumption are

clear and help promote system adoption.
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Figure 5.17: Consumption of ET vs OPTICS
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Figure 5.18: Consumption of DICTUM vs OPTICS
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In our experimental setup, the water source for each sprinkler is pressure-

regulated to the industry standard, 40psi. A pressure-regulated sprinkler head

distributing water at a known angle uses a clearly-defined amount of water per

unit time, as described in the sprinkler documentation. By tracking exactly

when each sprinkler is actuated by the system, we can determine very accurately

how much water has been consumed. In this way, we compute the daily system

consumptions for the ET vs OPTICS and DICTUM vs OPTICS, as shown in

Figures 5.17 and 5.18 respectively.

As discussed in Section 5.5.1, the experimental system started with moisture

levels significantly beneath our desired threshold. For this reason, the first 5

days of OPTICS control in our first deployment had steadily improving quality

of service as it learned its models and raised moisture to satisfactory levels, but

on days 2 and 4 this resulted in slightly higher water consumption than the ET

system. Day 8 saw slightly higher consumption than the ET system as well, but

these were some of the ET system’s worst days in terms of quality of service as

shown in Figure 5.15.

Day 11 of our first deployment saw increased water consumption as well,

caused by a hardware malfunction. A command telling 4 of the 9 OPTICS nodes

to “Stop irrigation” was lost due to a faulty USB connection to the basestation

mote, causing unintentional irrigation that was not corrected until failsafes in

the node’s firmware automatically disabled irrigation. This caused the OPTICS

system to consumed more water than intended, as shown on day 11 in Figure 5.14.

We can also see OPTICS’s ability to recover from such mistakes on days 5 and

12, where significantly less water is required due to the residual moisture from

the day before.

The water consumption of OPTICS when compared to DICTUM as seen in
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Figure 5.19: Spatial moisture variance over time, deployment 1 (lower is better)

Figure 5.18 was much closer, with some days using slightly less and others slightly

more water. However, on days 1 and 4, it is particularly evident that although

DICTUM saves significant water, the quality of service suffers immensely.

Across the two deployments, the OPTICS system reduced water consumption

by an average of 11.99% compared to the ET system, and 3.28% compared to

the DICTUM system.

5.5.3 Moisture Uniformity

Moisture uniformity is not considered a primary goal, but is a nice side-effect of

good irrigation control. If an irrigation system provides water coverage that is

not uniform, drier turf can turn brown and crispy, while wetter turf can turn a

different shade of green and become muddy, both affecting aesthetics and usability

of the space. With our learning model, a core assumption is that as losses occur

at different rates at different spatial locations, we are required to apply different

amounts of water across the space. However, if we apply the appropriate amount

of moisture across the space, the water in all sensing locations will settle towards
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Figure 5.20: Spatial moisture variance over time, deployment 2 (lower is better)

(a) ET (b) DICTUM (c) OPTICS

Figure 5.21: Average VWC (%) of compared systems across deployments
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a uniform distribution as the moisture levels approach the uniform minimum

moisture just before irrigation.

Throughout our deployments, we periodically recorded the soil moisture at

all sensor locations in both side-by-side irrigation systems. To determine the

moisture uniformity, we step temporally through these data traces and compute

at each timestep the variance in soil moisture readings for both irrigation systems.

This moving variance of soil moisture across the irrigation system can be seen for

deployment 1 in Figure 5.19 and for deployment 2 in Figure 5.20, where lower

values indicate a more uniform soil moisture level across the deployment. Each

day during watering, the variance for all systems is seen to spike, as different

areas will not receive water at the same rates. Then, as the soil moisture diffuses

across the space, the variance will decrease to a daily minimum before the next

irrigation occurs. It is clear in both deployments that the OPTICS system is

able to maintain a much lower moisture variance in general, indicating OPTICS’s

ability to learn the heterogeneous water needs across the space and apply water in

response. In the first deployment, the variance is seen to be higher on days 1 and

11, but these are due to OPTICS’s poor initial soil moisture conditions and the

hardware failure that resulted in unintentional excess water, as described in detail

in Section 5.5.2. Additionally, the two figures demonstrate that the DICTUM

system is able to maintain a tighter band of irrigation than the ET controller,

providing comparably low variance at times later in the second deployment.

Finally, we consider each individual sensing location and compute its average

volumetric water content (VWC) across the weeks of deployment and visualize

them as a heatmap in Figure 5.21 for each of the three compared systems. For

ease of visualization, a bilinear interpolation is used to produce the figure (a

more complex interpolation such as cubic may create artifacts between sampling
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Figure 5.22: Energy profile of the sensor node

points). We see that the ET control strategy results in the least uniform cov-

erage, with a heavily over-irrigated area around the center of the field, and an

under-irrigated area close to the lower right corner of the field. In contrast, both

DICTUM and OPTICS strategies result in a more uniform moisture distribu-

tion, with DICTUM being slightly above the minimum in a cross-like pattern,

and OPTICS being slightly above the minimum in the upper right and lower left

corners.

5.5.4 Energy Consumption

In our devices, the three peripherals that consume significant energy are the sen-

sor, solenoid, and the radio, as visualized in Figure 5.22. Each sensor sample

consumes 10mA of power for 10ms, and each flip of the latching solenoid requires

400-450mA of power for 50ms. In our system, to ensure we don’t cut power too

early, we add a safety band of 50% on the timing on both of these devices, power-

ing each for 15ms and 75ms for the sensor and solenoid, respectively. The tmote

sky [tmo] radio consumes 23mA max when in transmitting mode. With clever
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use of these peripherals, this system can achieve a substantial system lifetime

using our current power source of 4xAAs [l91].

In our 25 day deployment, we found that on average DICTUM flips the

solenoid of a node 12 times per day. Assuming we sample our sensor 1 time

per minute, flip the solenoid 12 times per day, and utilize a constant 1% radio

duty cycle ratio across the full 24 hours for communication using techniques such

as Low Power Listening [PHC04], even with our conservative timing of the pe-

ripherals, our system lifetime is estimated to be 1.7 years, with 95% of this energy

consumed by the radio. However, as fresh data is only required less than 3 hours

per day during irrigation, by simply leaving the radio off the other 21 hours each

day while storing sampled data in memory to be sent at the beginning of the

irrigation cycle, this lifetime is easily extended to ∼11.9 years. We note that the

DICTUM system achieved similar system lifetime, but required a 4 D-cell power

supply to do so, whereas the OPTICS system uses only a 4 AA-cell power supply.

This reduced system consumption is due to more efficient voltage regulation hard-

ware on our power supply board, and minor improvements in firmware solenoid

control routines, preventing the solenoid from receiving power to enable/disable

the valve when it is already in the desired state.

Due to the relatively small size of our irrigation system, radio communica-

tions between sensor nodes and basestation were observed to only require 1 or

2 hops using a simple, application-specific routing strategy. In a larger deploy-

ment, we would need to either provide more basestations to keep the number of

hops from each node to a basestation small, or employ a routing protocol such as

ORPL[DLV13], CTP[FGJ06], or ORW[GLS14] designed for low-power communi-

cation between sensor nodes and the basestation at large scale. Routing across a

very large irrigation system will surely lead to an increase in energy consumption
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Figure 5.23: ET prediction of KNN regressor using historical temperature and

humidity trends as features. Days that were particularly challenging to predict

are emphasized with an arrow and an oval.

across the network. Fortunately, our application’s low data rate and lax timing

requirements will allow the system to de-activate the radio for the majority of

the day, and duty-cycle the radio aggressively during irrigation when data com-

munication between sensing nodes and basestations is required. In Section 5.8,

we discuss techniques that will nearly completely eliminate data communication

requirements between the sensing nodes and the basestations.

5.6 Performance Analysis and Evaluation

5.6.1 Weather prediction evaluation

Our weather prediction method uses hourly readings of at least one of the 4

ET indicators, temperature, humidity, wind, and solar irradiance to predict the

resulting ET losses due to these weather conditions. When OPTICS is used to

control a live irrigation system, it uses forecasted hourly readings of these ET
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Figure 5.24: ET prediction of KNN regressor with all four features available.

Days that were particularly challenging to predict are emphasized with an arrow

and an oval.
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Figure 5.25: ET prediction of KNN regressor using forecasted temperature and

humidity features. Days that were particularly challenging to predict are empha-

sized with an arrow.
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indicators as input to our KNN regressor model, which then predicts the next

day’s ET losses. The use of these forecasted ET indicators incorporates some

error into our final prediction that is outside our control, as these forecasts are

provided by local weather stations or government sources that are imperfect.

Before determining the end-to-end predictive accuracy of our solution, we first

wish to remove the forecasting error that is out of our control to determine the

accuracy of our KNN predictor on its own. To do so, we refer to historical data

trends of the hourly ET indicators and the associated daily ET losses of the same

day to determine the accuracy of this mapping between indicators and resulting

ET. By doing so, we remove the error associated with the error forecasting the

hourly trends, and focus on best-case predictive power.

Figure 5.23 shows the daily ET as predicted using the same day’s hourly

vectors of temperature and humidity, as well as the ground truth ET that oc-

curred and a moving average of each. We can see that in general, the predicted

ET follows the trend of ground-truth ET, but on one day in mid-July (empha-

sized with an arrow) our system predicts a “normal” ET level when in fact an

abnormally-low ET value occurs. Additionally, on several days in early December

(emphasized with an oval) we can see that our system predicts more abnormal

ET when in reality the weather trends were closer to the previously-seen weather

trends. In contrast, Figure 5.24 demonstrates the ET prediction IF all four ET

indicators were available. We can see that our predicted ET levels are much

closer to the ground truth on the days in mid July and early December where

regression using only temperature and humidity did not provide enough infor-

mation in Figure 5.23. This indicates that days in Figure 5.23 with particularly

high error are caused by heavy influence due to solar and wind factors on these

days. In practice, the fit quality using temperature and humidity as features is

more indicative of the real-world accuracy of this prediction technique as these
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Data Used RMSE NRMSE Cumulative pred. ET Rel. error

All four indicators .0171 .0813 30.05” +0.9%

Temp/humidity .0325 .1547 30.64” +2.9%

Temp/humidity (Forecasted) .0348 .1655 29.29” -1.6%

Table 5.3: Prediction across 120-days of collection

features are the most likely to be available using forecasting. Table 5.3 shows

the root mean square error (RMSE) of prediction with these feature subsets, as

well as the RMSE normalized by the magnitude of the individual ground truth

values (NRMSE). We can see that availability of all four features results in half

the error as prediction using just temperature and humidity.

Next, to better understand the practical accuracy, we re-introduce the fore-

casting of hourly trends by using the forecasted temperature and humidity from

the day before as input to our KNN regressor using 120 days of collected forecast-

ing data around our period of deployment. Figure 5.25 shows the daily ground

truth ET, along with the predicted ET using forecasted hourly trends, along with

the associated error of each prediction. Here, we can see clearly that our chal-

lenging day in mid July (emphasized with an arrow) had the most error as it also

did without forecasting in Figure 5.23, as neither of these predictions had wind

and solar exposure information available as features. Whereas prediction using

these ground-truth features resulted in a root mean square error of .0325, we find

that using forecasted features increases this error metric to .0348. Put another

way, forecasting our hourly data trends increases our daily prediction error by

just 7% in comparison to performing regression using ground-truth trends.

The cumulative distribution function (CDF) of the individual daily errors in

forecasted ET prediction across our 120 days of data collection can be seen in

Figure 5.26. Here, we see that about 50% of our predictions are within 10% of the
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Figure 5.26: CDF of weather prediction errors

ground truth ET, and 90% of predictions are within 25%. To get a sense of the

overall performance, we consider that across these 120 days, ground truth data

shows that a total of 29.78 inches of ET losses occurred. Table 5.3 shows that the

cumulative losses of our predictive methods with and without prediction using

various features all fall within 3% of error across this period, which we believe is

more than adequate for our irrigation controller.

5.6.2 Short-term model analysis

One of the high-level system parameters that affects our modeling is the choice of

∆t, determining how far in the future our model must predict and the temporal

granularity of our control routines. The correct way to determine the optimal

choice for this parameter would be to repeatedly vary ∆t, launch a full irrigation

system deployment with modeling and control using the new choice of ∆t and

analyze the primary metrics of success (water consumption and quality of ser-

vice). However, due to the substantial effort required to repeatedly perform full
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Figure 5.27: Box and whisker plot of errors as model ∆t is varied. Crosses denote

outlier values.

experimentation makes this process impractical. Instead, we consider the effect

of this parameter choice just on the accuracy of our short-term model’s predictive

accuracy.

Across our irrigation system deployment, we store detailed records of the

schedules used and the sensor trends at all node locations over time. To de-

termine how model accuracy responds to changes in model ∆t, we take these

deployment data traces and step through temporally at changing values of ∆t,

building training pairs of [st, ft] vectors as inputs, and [st+∆t] vectors as outputs,

as described in detail in Section 5.2.3. We then train our linear regressor on a

random 90/10 train/test split of the dataset and note the model prediction ac-

curacy on the test set. As the random training/testing data split will change the

prediction accuracy, this is repeated many times for each value of ∆t, with the

error distribution box plot as shown in Figure 5.27, and the mean error shown

separately in Figure 5.28. The error shown in these figures is the root mean

squared error across the full dataset, averaged across all datapoints and across
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Figure 5.28: Mean error as model ∆t is varied

the K sprinklers. The change in moisture that occurs in ∆t units of time is very

small relative to the full range of moisture values that can occur, so we then

normalize this absolute error to the mean moisture change that occurred in ∆t

units of time. In this way, we show the relative error between the ground truth

moisture change and the predicted value for each individual sensor prediction ∆t

seconds in the future.

In these plots we can see that when ∆t is very small, the average prediction

error quickly increases as noise becomes a dominant factor in prediction. In our

experiments, our finest temporal granularity in soil moisture data is 30 seconds,

and using ∆t = 30s to build our linear model, we see a maximum outlier error

on the order of 25% in Figure 5.27. In addition, we see in Figure 5.28 that at

∆t > 800s, our error begins to increase again, with the lowest error experienced

around 600s < ∆t < 800s at around 4.5% mean relative error. It is important

to note that this range of optimal ∆t is specific to the environmental conditions

that exist in our irrigation system, and will be different if the system is installed
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Figure 5.29: Daily error of DICTUM, Learning (Re-learns each day w/new data),

and Learned (Trained once with all data)

elsewhere, due to differences in sprinkler type, soil parameters, topography, etc.

At the ∆t = 60s we chose to use in our experimentation, we can see that the

average error can be expected to be around 50% higher than at the optimal ∆t

value. This sub-optimal parameter was selected for our experiments as it would

allow us finer granularity of control, and as we frequently re-correct our moisture

conditions during optimization using the most recently collected moisture data,

we ensure that our model does not cause significant drift in the system.

In addition, to evaluate the OPTICS model, we consider the single-step pre-

dictive error as it changed across our 25-day dataset from our live deployment

in Figure 5.29. Here we consider the error of three different models: the first is

the PDE model used in the DICTUM system, as it was configured for our exper-

imentation in our deployment. The second is the OPTICS system, employing an

on-line model improvement ; this model is first trained using our training day of

data as described in Section 5.2.3, and then retrained on each day D using the

previous D − 1 days of data. This technique simulates a model that has been
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freshly-installed on a new irrigation system, and must learn its model adaptively

day-by-day. The third model is a pre-trained OPTICS model, where all data

from our pre-deployment AND our deployment were used to train a model be-

forehand that then does not change. This technique simulates a model that has

been trained over time on our irrigation system, and no longer requires updating.

As in the previous sections, the error shown is the average single-step predic-

tive error of a single sensor node, normalized to the average change in moisture

experienced in ∆t seconds, with ∆t = 60s as it was in our deployment.

As we can see in Figure 5.29, the OPTICS model that is constantly being

retrained has more variation in errors, with consistently lower error on days 4-14

and significantly higher error on days 3 and 16 where error spikes occur. These

periods of high error are caused when the model experiences moisture conditions

or valve scheduling that it has not experienced before in the data used for training.

We can see that these increases are temporary, and that once these conditions

are included into the model, the error decreases again quickly in the following

days. In all, we see that some days this model can have as little as 3% error, with

temporary spikes as high as 16.5%. In comparison, the DICTUM PDE model

tends to be more stable in its predictive error as the moisture predictions are

not data-driven, but made based on deterministic models that can still operate

reasonably when faced with unseen conditions. The accuracy of this model across

our deployments tends to lie between a minimum error of 7% on day 16 to a

maximum of 12.5% on day 21. Finally, we can see that the OPTICS model

that is pre-trained with all data is significantly more stable in its predictions,

with the exception of unusually-high error in the very first day. This technique

shows a minimum of about 4% error and a maximum peak of 12.5% error on

the first day, but provides an average predictive error of just 6.5% across the

deployments. In general, we find that the OPTICS model with on-line updating
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Figure 5.30: Percent of actuations requiring rounding across the two deployments

reduced predictive error by 26.0% compared to the DICTUM PDE model, and the

pre-trained OPTICS model reduced predictive error by 30.4% compared to the

DICTUM PDE model across our deployment dataset. The improved predictive

accuracy of OPTICS stems from its ability to learn the heterogeneous factors of

water movement that are assumed to be homogeneous in DICTUM’s PDE model.

The slight average accuracy improvement of the pre-trained model is expected,

as the more extensive dataset it had been trained with included the atypical

conditions that were difficult for the model that was doing on-line updates.

5.6.3 Effect of optimization simplification

As discussed in Section 5.3, we simplify an integer linear program (ILP) by re-

laxing the integer valve constraints to be continuous on [0, 1], and then rounding

the resulting values to be binary. Although this makes the optimization a linear

program (LP) that is easier to solve, it can potentially cause the resulting sched-

ule to deviate from the one chosen by the optimizer. To determine this effect, we
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Figure 5.31: Daily error in irrigation schedules due to rounding of LP solution

consider the individual valve actuations produced by the optimizer across our 4

weeks of deployment. As shown in Figure 5.30, we find that the resulting sched-

ules tend to lie on the 0/1 integer boundary, with fewer than 1% of actuations

requiring rounding. Figure 5.31 shows how the amount of irrigation deviates each

day due to this rounding, and we can see that the worst day (day 17) has a result-

ing schedule deviation of just over 1 second, negligible when the total irrigation

is on the order of an hour.

5.6.4 Performance and scalability of OPTICS

In the deployment of the OPTICS system, we chose to re-run the optimization

using the most up-to-date sensor readings every control timestep, chosen to be 1

minute. This has the benefit of preventing drift due to errors in the short-term

model by constantly re-correcting, but imposes an upper bound on optimization

time. To determine the effect this limitation has on the scalability of the sys-

tem, we train a short-term model using spatially-repeating trends of deployment
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Figure 5.32: Time required to optimize schedules

data to simulate an irrigation system that has an arbitrarily large number of

sprinklers (K), and track the time required to optimize schedules. This can be

seen broken into two discrete time intervals in Figure 5.32, where set-up time is

the time required of our chosen optimization tool to set up the constraints, and

solve-time is the time to solve the LP. Also shown as a dotted line is the 60s

maximum available time to solve optimization. We can see that as the number

of sprinklers in the system increases, the amount of time required to optimize

schedules increases as well, until solve-time exceeds our 60-second bound around

K = 225 sprinklers.

Appendix A.3 derives how to compute the spatial coverage area of an irriga-

tion system with K sprinklers of radius R arranged in a square grid in the three

possible irrigation system architecture arrangements. As shown in Figure 5.32,

enforcing our 1 minute maximum solve-time, the OPTICS system can provide

optimal schedules for an irrigation system of K ≈ 225 sprinklers. Estimating

using the third case of Equation A.9 which applies to our coverage conditions
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here, we find that for sprinklers such as those used in our deployment with radius

R = 30ft and assuming a conservative, dense sprinkler deployment where each

sprinkler can reach all the way to the next closest sprinkler in the grid, the OP-

TICS system can cover ≈ 5.2 acres of land using a single short-term model. With

sprinklers used more commonly in sports fields with radius R = 60ft, this cover-

age increases to ≈ 20.7 acres of land with a single model. Although the largest

irrigated sports fields, 18-hole golf courses, cover an average of 100 acres [gcs],

these irrigated spaces tend to be naturally partitioned with golf cart paths that

would prevent these areas from being continuous anyways. Furthermore, due to

the very slow speed of moisture movement through the soil, in practice moisture

has a relatively limited region of movement. Both of these characteristics of the

space allow us to break such a large irrigated space into smaller, more manage-

able models of water movement. By doing so, we facilitate superior performance

and scalability, as further discussed in Section 5.8.

In practice, although the OPTICS system is able to optimize schedules for an

irrigation system with hundreds of sprinklers, the training of a short-term model

at this scale becomes challenging. In our deployment, we simply stepped through

each sprinkler for a fixed period of irrigation of 1 hour, but scaling this technique

to a system with K sprinklers would take K hours. As discussed in Section 5.8,

however, in practice each sprinkler’s area of effect is limited by the sprinkler radius

and water movement speed across the surface and through the sub-surface. In the

most densely-configured lawn irrigation systems, the actuation of one sprinkler

may affect the soil moisture at the next closest node in the grid, but not the

next. Due to this limitation of movement, we can break an irrigation system’s

sprinkler grid into blocks of 3x3 sprinklers. Then during training we can actuate,

for instance, the sprinkler in the (1, 1) position of each 3x3 block simultaneously

across the entire space, and any sensing node will have at most 1 active sprinkler
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Figure 5.33: Return on investment curve

within range. At the end of the hour, we can activate the (1, 2) position in each

3x3 block, etc. until we have activated all 9 sprinklers in each block. In this way,

we can irrigate an arbitrarily large grid of sprinklers in at most 9 hours without

cross-contamination between active sprinklers.

5.7 Return on Investment Analysis

There are social and political motivations behind a project like this, but a pri-

mary consideration before the purchase and installation of a replacement control

system is the return on investment, or the time it takes a system to save enough

money to cover the cost of installation and usage. To calculate the return on

investment, we must take into account the initial cost of the replacement system

and the monetary savings expected from the increased efficiency of the replace-

ment system. In Table 5.4, we list the cost of production for one of our irrigation

control devices. Other than screwing these devices under each sprinkler head,

the original infrastructure does not need to be modified in any way.

Financial savings stem from the system’s ability to save water. In Figure 5.33,
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Table 5.4: Sprinkler Node Manufacture Cost

Component Price

Mote $37.57

Moisture Sensor $110

Batteries $4

Solenoid $15

Waterproof Enclosure $10

Manufacture & Assembly $10

$186.57

we show how OPTICS will return its own investment based on water savings

alone. As the return on investment will differ depending on the sprinkler heads

used, we consider OPTICS’s installation on a representative University sprinkler

head with 11.99% water efficiency improvement compared to industry best, and

the fact that our University pays $5.60 per thousand gallons for irrigation. Addi-

tionally shown in Figure 5.33 is a ±10% band in water pricing, to take variation

of water pricing into account. In this way, each unit device is estimated to return

its investment in 14-17 months. OPTICS’s improved efficiency and reduced need

for a powerful computation machine makes it even more financially attractive

than DICTUM, especially due to DICTUM’s potential additional setup costs in

parameter measurement that we are not including here.

5.8 Limitations and Future Work

As shown in Section 5.7, the unit cost of our control devices is dominated by our

soil moisture sensor, which was chosen in our experiments due to its very high

accuracy (±3%[dec]). As the size of the system scales up, the initial cost of the
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system may become impractically high. To scale to very large systems, then, we

must consider the use of significantly cheaper soil moisture sensors at the price

of slightly less accurate measurements. For instance, previous work [SB92] has

found that the Watermark line of soil moisture sensors can be calibrated to have

an accuracy of ±5%, and costs only 35$. By using these sensors instead, the

unit cost of our sensor/actuator devices would be reduced by 40%, with a similar

reduction in return on investment and increased adoptability.

As OPTICS is designed for turf irrigation, it is unlikely to provide benefit in

shrubbery or tree irrigation, where much simpler drip irrigation systems can be

used. In addition, some very different turf species may require varying minimum

moisture levels to maintain health. Therefore, in turf irrigation systems where the

system coversmultiple turf species such as a golf course irrigation system, minimal

configuration will be required beforehand to tell OPTICS where each grass type

is located. For instance, “Sprinklers 1-90 irrigate turf species A, Sprinklers 91-

100 irrigate turf species B”, so that differing minimum moisture constraints can

be spatially assigned based on the species. Assigning heterogenous minimum

moisture constraints will not require any modification to our processing pipeline.

As discussed in Section 5.2.2, we chose to fit our Long-term moisture losses as

an exponential decay function and re-train our model each day using all previous

data. However, the system may be more reactive to changing conditions by only

taking the latest N days of data in retraining or another weighted updating strat-

egy to put emphasis on the freshest data, representing the latest environmental

conditions. Furthermore, in some irrigation systems where the sprinklers do not

provide a uniform coverage onto the ground, this method may be sensitive to

delayed effects in moisture movement, and may benefit from another modeling

strategy that does not require the losses to occur precisely between the end and
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the start of irrigation, but rather follows the min/max moisture trends across the

daily cycle.

5.9 Conclusions

In this chapter, we seek to improve the efficiency of turf irrigation systems by

designing, implementing and evaluating OPTICS, a data-driven control strategy

that automatically adapts to local conditions and weather patterns, requiring

virtually no human input in both setup and maintenance. Our system reduces

the water consumption by an average of 12.0% against the industry best and 3.3%

against state-of-the-art research. Despite this reduced water use, OPTICS was

found to reduce turf exposure to unhealthy levels of moisture by a factor of 4.0x

and 2.5x with respect to the two systems mentioned above. The OPTICS system

is expected to return its investment in 14-17 months based on water savings alone.
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CHAPTER 6

WISDOM: Watering Intelligently at Scale with

Distributed Optimization and Modeling

Although the modeling techniques introduced in the previous chapter were found

to substantially improve the quality of service provided to the plant and the irri-

gation system efficiency, the proposed systems require a centralized controller to

process all data and make control decisions. This introduces significant compu-

tational bottlenecks in optimization due to the growth of the global models used

at scale, a single point of failure that can cripple the system, potentially caus-

ing massive water waste as experienced in OPTICS, and increases the overall

energy consumption of the sensor network as all data must be forwarded across

the network for processing. With the additional requirement of periodic battery

changes in these systems, it is unlikely these systems could be adopted for control

of irrigation systems at scale.

In this chapter, we recognize that nearly all of the aforementioned system

limitations are due to centralized architectures, prompting the development of

WISDOM, a distributed system for the control of truly large-scale irrigation sys-

tems whose primary intellectual contributions are as follows:

(1) Evaluating the mechanics of water movement in the space, we modify

existing modeling and optimization techniques for use in localized neighborhoods,

and introduce a processing pipeline for distributed irrigation decision making on
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the edge devices themselves. By operating within local neighborhoods, we remove

the point of failure, computational bottleneck, and energy penalties caused by

centralized control, making the system truly scalable.

(2) As no existing system architecture provides the low-power operation of

the traditional embedded device and the processing capabilities required for

model training and optimization on the edge devices, we provide a low-power

embedded device with a relatively high-performance co-processor to meet these

requirements. With power duty-cycling by the low-power “master” device, the

co-processor vastly improves storage, memory, and processing power, while in-

curring a relatively small energy penalty during operation. As far as we know,

WISDOM is the first system to utilize a co-processor architecture for distributed

computation in data-driven modeling and control.

(3) Finally, recognizing that our devices are collocated with sprinklers through-

out the space, we take advantage of the available fluid energy flowing through

them with small water turbines installed underground that allow us to harvest

energy for battery recharge during irrigation. We show that even with the addi-

tional energy requirements of our co-processor, the energy harvesting capabilities

allow the WISDOM system to operate indefinitely with true energy indepen-

dence. In the wireless sensor network domain, WISDOM is the first to utilize

sprinkler water source for energy harvesting.

Across 4 weeks of deployment and extensive analysis in simulation, we demon-

strate that the WISDOM system is capable of achieving all of the quality of

service and efficiency benefits of existing systems while maintaining true energy

independence while controlling irrigation systems at any scale.
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(a) Centralized architecture (b) Distributed architecture

Figure 6.1: Comparison of OPTICS (left) and WISDOM (right) system architec-

tures

6.1 System Overview

WISDOM is a distributed control system for lawn irrigation at scale, made up of

a wireless network of sensor/actuator devices that sit below each sprinkler in the

irrigation system. Each device is managed by a low-power master device in the

form of an SAM R21 [sam] SoC, which can perform simple computational tasks,

speak wirelessly with sister nodes in the space with its 802.15.4 compliant radio,

and maintain device peripherals. These peripherals include a soil moisture sen-

sor to monitor the local soil moisture status near the device, a solenoid allowing

the master device to control the flow of water to the sprinkler independently of

the rest of the network, and an onboard co-processor (Raspberry Pi Zero [rasa]),

providing significant storage and computational capabilities directly on the edge

devices. With the inclusion of the co-processor, the end devices have the abil-

ity to make intelligent decisions for irrigation without the need for cross-network

data communication for centralized decision-making. To ameliorate energy costs

associated with co-processor operation, each device is equipped with its own en-

ergy harvesting capability using a water turbine that activates when the attached

sprinkler is activated, recharging the batteries. In sum, each device in the system

has the ability to monitor local conditions, communicate with the network to
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make sprinkler actuation decisions, and put those actuations into effect.

For a plant to remain healthy, three conditions must be met. There must be

adequate solar exposure, the soil must have the correct nutrients in appropriate

amounts, and sufficient water in the soil must be available near the roots for

uptake. Although an irrigation system has no control over solar exposure and

soil nutrient availability, its primary purpose is to distribute water where it is

required to maintain adequate moisture levels at all locations in the space. In

plant physiology literature, the level of soil moisture below which the plant can no

longer extract fluid through its roots is known as the Permanent Wilting Point

(θpwp), and as such serves as the lower bound of acceptable moisture levels in

our irrigation system. While more conservative moisture thresholds exist such

as the crop fraction for no stress [APR98] that may be more appropriate for

system installation on decorative turfgrass, we choose the more restrictive θpwp

as it serves as the most restrictive and difficult goal for the irrigation system,

and thus helps demonstrate the WISDOM system’s ability to meet even the

most strict requirements. Although the θpwp threshold may be constant across

the space, Chapters 4 and 5 have demonstrated across several irrigation system

deployments that uniform water application will not result in uniform soil water

levels, due to differences in the way water will move in different areas. To learn

these local variations, we learn models of water movement over time, trained by

data traces collected at each location, to be used to compute optimal irrigation

customized to the space.

As shown in Figure 6.1a, each device in the OPTICS system transmits its

data to a centralized controller for processing. The controller trains a global

water movement model, which is then used to optimize valve schedules. These

schedules are then re-distributed to the devices for actuation. With a large ir-
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rigation system, the global water movement model makes schedule optimization

time too slow as later discussed in Section 6.5, increasing network traffic causes

forwarding nodes to consume more energy, and any lapse in communication with

the controller can cripple the system.

Although we could break a very large centralized system into smaller cen-

tralized systems to help overcome the computational limitation, such a solution

does nothing to improve the other fundamental limitations, single point of fail-

ure and cross-network data communication. For these reasons, we design the

WISDOM system to be fully distributed as shown in Figure 6.1b to overcome all

of these issues. As the WISDOM system runs, its installed devices periodically

measure and log the state of moisture in the space, as well as the on/off status

of the solenoids. Each device shares this information with all devices in its lo-

cal neighborhood, which in practice is defined to include all nearby devices that

are within radio range. Over time, using these collected data traces, each device

learns localized models that describe the effect of actuation by all nodes within the

neighborhood on the soil moisture distribution across the neighborhood. Likewise

each device learns how its own local soil moisture will degrade over time after

irrigation has ended, in a two-model technique inspired by the OPTICS system.

These models, trained by the co-processor, are then used by the co-processor in

optimization to find schedules that minimize system water consumption while

maintaining adequate moisture levels everywhere in the system, our two primary

goals. By performing these tasks in a distributed way, we enable a system that

can robustly scale to control an irrigation system of any size, without sacrificing

system efficiency or quality of service, as later discussed in Sections 6.4 and 6.5.

To maintain a long system lifetime even during seasons when energy har-

vesting is unavailable, we must be cautious with our energy budget to prevent
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unnecessarily burning stored power with our co-processor when it isn’t required.

Each day, all master devices in the network wake up and distribute all buffered

data to the surrounding nodes within the local neighborhood. Once all data

is received, the master device will use the current moisture distribution in the

neighborhood to make a decision whether or not irrigation is necessary on this

day, returning to low power if it is not necessary. If irrigation is likely to be

required, the co-processor is activated and all recently-collected data from the

neighborhood is transmitted by wire to the co-processor to be integrated into

the data-driven models, and an on-board optimization problem is initiated that

computes valve scheduling within the local neighborhood to guide the moisture

levels in the soil towards adequate levels. Adequate levels are defined as the

daily Goal State of moisture as defined in Chapter 5, the soil moisture level to

be achieved by the end of irrigation that considers the minimum moisture level

θpwp we wish to maintain at all times, the local losses we have learned to expect

from historical data, and the forecasted weather. As internet access is required to

retrieve weather forecasts, weather prediction is the single parameter that must

be provided by a central source.

Goal State = θpwp + Expected Losses + ETforecasted (6.1)

Once optimization is complete, the schedules are sent from the co-processor to the

low-power master device to be actuated by the attached solenoid. As irrigation

continues, this optimization may be performed several times using the freshest

data from the neighborhood to correct for any deviation due to error in the data-

driven models used. When the daily operations are complete, the master devices

deactivates the co-processor and returns the device to a low-power state until the

next scheduled wakeup.
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Figure 6.2: Minimum local neighborhood definition (square dotted box) for mod-

eling and control

6.2 System Design

6.2.1 System Modeling

In an irrigation system, each sprinkler has a relatively limited area of fluid in-

fluence on the soil. Standard sprinkler installations use sprinklers that reach

75%-100% of the distance to the nearest sprinkler in the grid, to ensure that

water can also reach the diagonal region between the elements of the grid instal-

lation. Once the fluid is distributed onto the surface of the soil, the fluid will

flow through the grass layer due to diffusion or runoff effects, if the system is

installed on sloped land. The fluid will flow until it is absorbed by the soil, after

which it will move very slowly, on the order of 10−2 − 10−3 cm/s [Bea72]. Due

to fluid’s very slow movement through the space, the global modeling proposed

in Chapter 5 is computationally very wasteful, as it tracks each sprinkler’s effect

on the soil moisture at every location throughout the space. In a very large

system, a sprinkler will have no effect on soil moisture at a vast majority of loca-

tions, so modeling these interactions are very wasteful and causes optimization

to take more time. To improve on this technique and allow distributed operation

of the system, each device in the space instead maintains information of only its
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surrounding neighborhood of embedded devices. In practice this neighborhood

includes all devices within radio range; as radio range can be on the order of

100m and sprinklers are at most 30m apart, each node will maintain information

about its second or even third neighbor, with a neighborhood of tens of devices.

However, in this work we posit that even a minimum neighborhood including

only the nearest neighbors will provide sufficient information for the distributed

system to have equivalent performance to the centralized system using global

modeling, while making the system truly scalable and improving robustness of

operation. To test this hypothesis, the minimum neighborhood containing only

direct neighbors as shown as the square box in Figure 6.2 is used in both our live

deployment and evaluation in simulation.

To train the fluid movement model later used to optimize schedules, we collect

a training dataset in which each sprinkler is actuated one at a time. As the

sprinkler runs, all devices in the neighborhood record their sensor data along with

the neighborhood actuations. This data is then shared across all NK devices in

the neighborhood and used to train a linear regressor that takes as input current

moisture levels at all NK locations as vector st and current sprinkler actuations

at all NK locations as vector ft, with values as defined in Table 6.1. This regressor

then provides as output the predicted moisture levels at all NK locations at ∆t

seconds in the future as vector st+∆t, where ∆t is the control timestep, 60 seconds

in our system. The linear function g is defined as follows:

g(st, ft) = st+∆t (6.2)

The model, trained on local historical data within the node’s local neighborhood,

can then be used to predict future moisture changes as a function of sprinkler

actuation.
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Variable Description

t Temporal index ∈ {0, . . . , T}

NK Number of nodes in local neighborhood

st Vector of moisture levels at time t, size NK

ft Vector of sprinkler actuation at time t, size NK

Table 6.1: Model Variables

Variable Description

t Temporal index ∈ {0, . . . , T}

k Sprinkler location index ∈ {1, . . . , NK}

st Vector of moisture levels at time t, size NK

ft Vector of binary sprinkler actuation at time t, size NK

fk,t Sprinkler k actuation at time t, ∈ {0, 1}

sk,t Volumetric water content (VWC) of location k at time t

ck Flow rate of sprinkler k (Constant, known beforehand)

θk Measured VWC of sensor k (Constant, known beforehand)

Table 6.2: Optimization Variables
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6.2.2 Optimization Over the Schedule

Each day during irrigation time, each active irrigation device in the system will

use its locally-gathered information to find the best sprinkler scheduling to satisfy

the needs of the space; in using local models only in a distributed fashion, we are

solving relatively small optimization problems in parallel making the system truly

scalable. Using our model of neighborhood fluid movement during irrigation as

described in Section 6.2.1 and the goal state of moisture defined in Section 6.1,

we set up an optimization problem that will minimize water consumption in the

system subject to quality of service constraints. We define the binary sprinkler

actuation as fk,t for each sprinkler in local neighborhood k ∈ {1, . . . , NK} and

time index t ∈ {0, . . . , T}, soil moisture values as sk,t for each sprinkler in local

neighborhood k ∈ {1, . . . , NK} and time index t ∈ {0, . . . , T}, and other opti-

mization variables as shown in Table 6.2. The optimization problem is defined

as follows:

min
{fk,t,sk,t}

NK,T

k=1,t=0

NK
∑

k=1

T
∑

t=0

ckfk,t s.t. (6.3a)

0 ≤fk,t ≤ 1 k = 1, . . . , NK t = 0, . . . , T (6.3b)

sk,t ≥ θpwp k = 1, . . . , NK t = 0, . . . , T − 1 (6.3c)

sk,T ≥ θgoal,k k = 1, . . . , NK (6.3d)

sk,t=0 = θk k = 1, . . . , NK (6.3e)

st = g(st−1, ft−1) t = 1, . . . , T (6.3f)

As we wish to minimize the amount of water consumed by the irrigation system,

the objective function is defined by the sum of all fk,t, weighted by the water

flow rate of each sprinkler ck, which represents the total water consumed under
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schedule F. The quality of service is constrained in two discrete time horizons;

fluid levels during irrigation are constrained to remain above satisfactory levels,

but fluid levels are held in sufficient levels between irrigation cycles by constraining

that each device reach its Goal State of moisture by the end of irrigation, which

offsets for predicted losses to maintain adequate soil moisture at all times. The

soil moisture state at time t = 0 is defined to be the most recently measured

state of moisture by the WISDOM system sensors in the neighborhood, defined

as θk, and future moisture levels will evolve with respect to sprinkler actuations as

defined by our linear function trained in Section 6.2.1. As the sprinkler actuation

values fk,t are binary in the physical irrigation system, the defined problem is an

Integer Linear Program (ILP), making the problem NP-Complete. Solving this

original problem can take as long as several minutes, which can interfere with

our control cycle, as we may want to optimize schedules as often as our control

timestep, defined to be 1 minute. To instead find an approximate solution, we

allow the fk,t values to be real within [0,1] and then round the resulting actuations

to be binary, a simplification that has been found in previous chapters to have

minimal effect on the resulting schedules while making the optimization a Linear

Program (LP), which is much easier to solve.

As written, this LP has 2NK(T + 1) variables and 4NK(T + 1) constraints.

Although solving this optimization results in schedules for each device within our

local neighborhood, the device will only extract the schedule optimized for itself

to be actuated by the attached solenoid. By considering the initial conditions and

solving for optimal scheduling on our neighbors, we ensure our local schedules take

into account the likely actions of our neighbors to prepare for or take advantage

of any shared conditions such as sprinkler overlap or runoff effects that affect

neighbors. We solve this problem using the Julia programming language [BEK14]

to interface with the GNU Linear Programming Kit (GLPK) [glp] solver, and
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Figure 6.3: Prototype WISDOM device

later discuss the performance and scalability in Section 6.5.

6.2.3 Node design

In order to handle the computation required of the modeling and optimization of

Sections 6.2.1 and 6.2.2, we need significant improvements in system performance.

The simplest LP solvers such as Simplex [NM65] have a a storage complexity for

the problem matrix that is O(mn), where m is the number of constraints and n

is the number of optimization variables. Assuming a small neighborhood NK = 9

and 2 hours of irrigation T = 120, even our small LP introduced in Section 6.2.2

requires a matrix with 9M entries to store the problem, not feasible on embedded

devices with 32-48KB of system memory, let alone space to perform matrix oper-

ations. Training our linear model from Section 6.2.1 using ordinary least squares

requires the entire dataset be able to fit into system memory, and although gradi-

ent descent has significantly less memory requirements, the data points must still

be stored and retrieved, and both techniques require significant processing power.

In addition to system memory limitations, the standard embedded devices run

159



at relatively slow processor speeds on the order of 48MHz and typically do not

have a hardware floating point unit, requiring floating point to be approximated

using integer math which is much slower. Finally, these devices have very little

support for standard libraries, likely requiring us to port standard libraries our-

selves. Rather than trying to reinvent the wheel, we decide to export these tasks

to a separate co-processor that is capable of handling these tasks with ease.

To make this happen, we design our own system management chip to meet

the requirements of our application, as shown in Figure 6.3. The low-power

devices designed for use in embedded systems are unbeatable in their very low

power consumption for long system lifetime on a limited energy budget. For this

reason, we use the SAM R21 [sam] SoC, which combines the powerful cortex

m0+ microcontroller with the ATRF233 radio, as our system’s low-power master

device. While insufficient to perform our heavy computation, its 802.15.4 wireless

capabilities and basic computational performance makes it perfect for performing

regular background tasks such as data syncing and peripheral management while

maintaining a low power profile. Its 256KB of onboard flash storage allows it to

buffer data in the short-term until it can be transferred to the co-processor for

processing. The master device is wired to our latching solenoid via an H-Bridge,

which allows us to send of pulse with positive and negative voltage to open or

close the valve according to any schedule we choose. The master device is also

wired directly to an attached Decagon EC-5 sensor [dec], allowing the device to

monitor the local soil moisture conditions. Finally, the device is equipped with a

header that allows it to be directly connected to the co-processor, a Raspberry Pi

Zero [piz], a $5 device that provides the flexibility of storage and computation that

far exceeds the low-power master device. The Zero has a single core 1GHz Arm

processor, 512MB of system memory, and microsd external storage. Furthermore,

the Zero runs a flavor of Debian Linux with significant support for languages,
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platforms, and standard tools. The co-processor and master device are connected

via a bi-directional UART communication channel, allowing data and commands

to be sent between the two devices as required. Finally, the master device has

direct control over the power source to the co-processor, allowing the master

device to completely disable the co-processor’s power to prevent unnecessary

power draw when the co-processor is not required.

Use of our co-processor significantly increases peak power consumption. To

put its requirements into perspective, analysis later performed in Section 6.2.5

finds that our co-processor consumes an average of 165mA power to complete

its daily tasks, a draw about 12× higher than our master device with the radio

in a transmitting state at full power (13.8mA), its most energy-hungry activity.

To ameliorate this increased power draw, we recognize that as each device is

collocated with a periodically-active water source, there is substantial fluid energy

that can be harvested. In researching potential harvesting equipment, we found

that small water turbines that are capable of providing a steady 5 volt output

at up to 2 amps are available off the shelf. Furthermore, we found that charge

circuits such as the MCP73831[cha] are readily available that can charge a LiPo

battery at a rate up to 500mA. With the use of a 1Ah LiPo battery, this means

we can fully charge the battery from empty with 2 hours of irrigation. While 2

hours of irrigation is not typical in a single day of irrigation, we will later show

in Section 6.2.5 that by being cautious with our energy budget, this harvested

energy is more than sufficient to keep our system operating indefinitely.

6.2.4 Daily system operation

Each day, the low-power master devices in each WISDOM node will wake up at a

time scheduled by the installer or system administrator, likely to be either early
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morning or evening. Once awake, the following actions are performed:

(1) At wake-time, each master device goes into a low-power listening state [PHC04]

while the neighborhood wakes up. During this time, the basestation will use the

DRIP [TC05] dissemination protocol to distribute the single value that requires

internet from a centralized source, future weather prediction. This value is dis-

seminated during network wake-up, giving it plenty of time to cross the largest

networks without disrupting the processing pipeline.

(2) Once a device receives a status ping from all listed neighbors indicating the

neighborhood is awake, it will turn the radio into an all-on state and broadcast

all data single-hop from the previous day to their neighbors. In its current con-

figuration, the WISDOM system samples its sensor at a maximum granularity of

1 minute during irrigation, as this data is used to perform re-training of the data-

driven models, and reduces the sampling rate to 10 minutes for the rest of the day.

Considering that the maximum irrigation period is set as 3 hours, the maximum

period allowed with our campus water pressure requirements and regulation, each

device will have at most 306 data samples stored as 16-bit unsigned integers, or

612 bytes each day. We additionally package the node’s locally-actuated sched-

ules for model training; 3 hours of irrigation has at most 180 binary actuations

at a minute granularity, which can be encoded 8-per-byte in just 23 bytes. With

a radio packet payload of 100 bytes, supported by our hardware and software

platforms, this daily data is sent to all neighbors in at most 7 data packets.

(3) Once all data is received by the master device on each node, it will be

buffered in onboard flash storage. The master device will sample the most current

long-term model and use the weather forecast we have received to compute the

Goal State of moisture at its location, the amount of moisture we must reach by

the end of irrigation to maintain adequate moisture across the full 24-hour cycle.
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If the most recent moisture level measured by the sensor tells us that our current

moisture is already higher than our Goal State plus a safety margin that we define

to be 5% volumetric water content to account for any water losses that may occur

during irrigation, then the master device decides that irrigation is not required

today, and will put the device back into sleep mode, to wake up on the following

day. The ability for the master device to terminate the processing pipeline is

crucial for long system lifetime during the winter months, as there will be no

energy harvesting to recuperate the energy losses incurred by the co-processor.

(4) If the master device decides that irrigation is required, the co-processor

will be powered on by flipping a transistor activating the co-processor’s power

source. Once the co-processor boots, a wired serial communication channel al-

lows the master device to transfer all buffered soil moisture data and actuations

from the neighborhood and weather forecasts to the co-processor. Automatic

processes running on the co-processor receive these new data streams to re-build

the long-term and short-term models as discussed in Section 6.2.1, and then the

models and current data state are used to optimize schedules for all nodes in the

neighborhood. In this way, we will use all knowledge from our local neighborhood

to find optimal valve scheduling for our device, while respecting the likely actions

of our neighbors as well. The optimized valve schedule for our device is then com-

municated back to the master device along with the updated long-term model for

use in Step 3 above, and the schedule is applied using the attached solenoid. If

further irrigation is required today, the co-processor will remain active to perform

any additional optimization, as later discussed in Section 6.2.5.

To use as little energy consumption as possible, our co-processor has a discrete

set of tasks to perform to minimize on-time. These functions are enumerated in

Figure 6.4 along with their effect on the co-processor’s power consumpion. This
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current data is measured by tracking the voltage drop across a high accuracy

shunt resistor with an oscilloscope, and post-processing with a moving average

filter to reduce signal noise. Once power is provided by the master device, the

co-processor boots its “Raspbian” [rasb] operating system as shown in the figure

as (a). Once the operating system finishes its boot cycle, a local Julia HTTP

server is launched, which will handle all requests for schedule optimization until

the co-processor is powered down. The Julia initialization period is shown in the

figure at (b), taking approximately 25 seconds. During this initialization time,

all buffered data is transferred from the master device to the co-processor via a

wired connection and used to retrain the data driven models, operations that are

complete in seconds and do not seem to impact power consumption considerably.

Once Julia initialization is complete, a python process is launched that gath-

ers the freshest models and soil moisture readings from the neighborhood and

connects to the Julia server to initialize schedule optimization. Figure 6.4 shows

that schedule optimization, enumerated with (c), takes just over a minute to

complete. When finished, the optimized schedules are transfered back to the

master device to be actuated by the attached solenoid. At point (d) when the

optimization has completed, the co-processor will do one of two things; if the

optimized schedules show that no further irrigation is required on this day, the

co-processor will perform a graceful shutdown and the master device will cut off

its power entirely to return to low-power operation, and schedule wakeup for the

following day. If further irrigation is required and optimization is to be repeated,

the co-processor will return to an idle power level as shown in the figure, and the

Julia server will remain running to be re-used, amortizing its startup costs. In our

experience, although the initialization of the Julia server and first optimization

take on the order of 100 seconds, subsequent optimization problems are solved in

a fraction of a second. The power profile of subsequent optimization can be seen
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as a small blip in energy at (e) in the figure, 60 seconds after the first problem is

solved.

If the optimized schedule activates the attached sprinkler, the water turbine

will immediately begin charging the LiPo battery to recuperate the energy con-

sumed in steps (a)-(d), along with all communication, sensing, and actuation

costs incurred by the master device since the last battery recharge. As it is diffi-

cult to monitor energy harvested by a turbine in our live system deployment, we

perform a table-top test of the turbine’s power output, attached to a standard

hose spigot providing approximately 40psi of water pressure. The power output

of the turbine, nearly 700mA at 5v, is then plotted as the green dashed line in

Figure 6.4. As our battery charge circuit [cha] features a maximum charge rate

of 500mA, the thin blue line in the figure shows the effective system charge rate.

Although any power harvested above this rate is not used, the charge rate far

surpasses the consumption of our device, even at peak power load. In a long

irrigation cycle, the power consumption across repeated optimizations will be

similar to that shown between points (d) and (e) consuming around 100mA for

the majority of on-time, allowing a rapid battery recharge during irrigation.

6.2.5 Co-processor energy profile

In terms of energy, the worst-case scenario is for soil moisture values at irrigation

time to be just above the goal state so that optimization will still occur to be

cautious, but the optimized schedules do not require the attached sprinkler to be

activated. This is possible if the small amount of water required can be received

by the nearest sprinklers, or if the learned daily losses are small enough, such that

no irrigation is required to stay above the goal state. In this case, the energy costs

to start the co-processor and optimize schedules will not be recovered as water
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Figure 6.4: Node energy profile across (a) boot, (b) Julia initialization, (c) first

optimization solve, (d) completion and return to idle, and (e) subsequent opti-

mization

will not be flowing through the turbine. The energy that would be unrecovered

in this worst-case is shaded in blue in Figure 6.4, which we compute to be an

average current draw of 165mA at 5v for 110 seconds, a total power draw of

25.2mWh per day. As our 1Ah, 3.7v LiPo battery has a capacity of 3700mWh,

our system can handle this worst-case scenario each day for nearly 5 straight

months before the battery will be drained. In practice, this occurrence would

be next to impossible, as even a very minor change in weather (temperature,

humidity, or precipitation) can slightly raise soil moisture adequately such that

the master device can safely skip co-processor activation for optimization, or

slightly lower soil moisture such that irrigation is required, allowing the battery

to be recharged. To guarantee energy neutrality, WISDOM is configured to run

a short irrigation cycle (10 minutes) to force a battery recharge if the battery

is detected to be critically low. This would come at the expense of some water
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waste, but such a condition is expected to never occur.

6.3 Case Studies

6.3.1 Live Deployment

To test the WISDOM control strategy against existing systems, we launch two

side-by-side irrigation systems on our campus, covering a total of just under

10,000 ft2, purpose-built for irrigation system analysis. As closely identical as

possible, the two irrigation systems each cover an area of 60’ by 60’ along a

gently-sloping hillside that drops approximately 3 feet from the highest to lowest

end, and are each installed with a 3x3 grid of Hunter Pro-Spray [hund] sprinklers,

providing irrigation coverage to the area. By constructing these systems to be

as identical as possible, it allows us to compare two irrigation control strategies

simultaneously, such that they are both experiencing weather conditions, runoff

effects, sprinkler coverage, and soil conditions as similar as possible to allow a

true side-by-side comparison of their operation. In this way, we compare the

WISDOM system to the state-of-the-art evapotranspiration control strategy for

2 weeks, and to the OPTICS control strategy for 2 weeks.

As two systems run side-by-side, we monitor the soil moisture levels across

the space, as well as the schedules that are being run by the actuators. Using this

information, we compute and compare several metrics that indicate how well the

two systems are performing relative to one another. The first primary metric is

the quality of service provided to the plant, as indicated by the amount of time

the sensed locations spend in unhealthy levels of soil moisture. The second is the

amount of water consumed by the irrigation system, which can be easily computed

by considering the sprinkler flow rates as noted by the manufacturer and the
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amount of on-time each sprinkler spends, as indicated by the schedules that are

run. Finally, a secondary metric we consider is the spatial uniformity of moisture

across the irrigation system; a highly uniform moisture coverage will prevent the

occurrence of “hotspots”, where local areas of high or low moisture can cause

discoloration of the plant or the growth of fungus in the soil. By minimizing

water consumption, minimizing exposure to inadequate moisture levels in the

soil, and maximizing the spatial uniformity of soil moisture, we will be providing

the best irrigation possible.

6.3.2 Simulation

Although it is best to compare irrigation control strategies side-by-side in a live

deployment, our test deployment gives no indication of how well a control strat-

egy will perform on edge-case systems, such as those located on steep hillsides,

with unusual sprinkler system architectures, or at very large scale. Due to the

configuration of our local models to maintain information about the nearest de-

vices, any environment or irrigation system architecture in which water is able

to move beyond the reach of this local neighborhood will be unknown to our sys-

tem, making these edge-case systems more challenging for the WISDOM system

to control. In such systems, WISDOM may find schedules that are less efficient

as those produced using all information contained in a global model, such as in

the OPTICS system. Specifically, to confirm that the localized techniques of the

WISDOM system do not break down due to these effects, we wish to compare

WISDOM to the globally-modeled OPTICS system in conditions with challeng-

ing soil conditions, steep surface slope, and sprinkler installations with unusual

amounts of overlap, as these have the potential of causing water to move beyond

a device’s local neighborhood in the WISDOM system.
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To allow us the flexibility to test the effect of these changing environmental

and architectural features in an irrigated space, we develop an hybrid water

movement model using the nonlinear PDE model developed in Chapter 4 to

model water movement during irrigation actuation, and the long-term loss models

developed in Chapter 5 to model fluid loss between irrigation cycles. In doing

so, we can track water movement during irrigation subject to surface runoff,

sprinkler overlap, diffusion, and infiltration into the soil at any desired level of

spatial and temporal resolution. Then, once water enters the soil where it moves

very slowly, we model fluid flow as spatially-independent loss models, represented

by exponential decay functions. These loss functions are randomly generated at

each measuring location throughout the space to be similar in magnitude to those

experienced in reality, and then random noise is added to losses on each day of

simulation, providing losses that are noisy but consistent at each location, similar

to what we expect in reality. This hybrid simulator allows us to construct sample

irrigation systems from scratch under a wide variety of conditions and closely

monitor how the water is moving through it with respect schedules chosen by any

control strategy. Not only does a simulator’s use allow us to compare WISDOM’s

operation to another system across many environments, but it also allows us to

quantify the benefits of the WISDOM system at significantly larger scale than

our test irrigation system allows. A sample simulation of the WISDOM system

across a 14-day period can be seen in Figure 6.5, where the control strategy can

be seen to react to initially dry soil conditions across the first 4 days to surpass

a minimum level of moisture at all locations in the space.

In our side-by-side comparison with OPTICS in simulation, we consider three

primary metrics. The first is the water consumption of the irrigation system,

as this will be directly related to the optimized models used by the two control

strategies, and the second is the quality of service provided, as computed by the
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Figure 6.5: Example 14-day simulation of WISDOM control

amount of time our sensed points remain below θpwp, in unhealthy levels of mois-

ture. If the local models contain sufficient information about the environment,

we expect these metrics to be identical between the WISDOM and the OPTICS

systems, with any deviation indicating that the local models of WISDOM lack

information present in the global model of OPTICS. The third metric of compar-

ison is the time required by the two systems to optimize their schedules as the

scale of the irrigation system is increased.

6.4 Experimental Results

To test the operation of the WISDOM system, we perform two side-by-side system

deployments for two weeks each against the Evapotranspiration and OPTICS

control strategies. Although it is not necessary for the operation of the WISDOM

system at scale, to monitor the system we had all experimental devices forward a

copy of its operational data (soil moisture and schedules) to a centralized location

for visualization and analysis. The soil moisture data collected during the first
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Figure 6.6: Collected VWC data across deployment for all Evapotranspiration

(left) and WISDOM (right) nodes
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WISDOM (right) nodes
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Figure 6.8: Water consumption of ET vs WISDOM

deployment comparing Evapotranspiration and WISDOM systems can be seen

in Figure 6.6, and the soil moisture data collected during the second deployment

comparing OPTICS and WISDOM systems can be seen in Figure 6.7. Also shown

in these figures is the horizontal line indicating the soil moisture level θpwp, which

acts as the lower limit the system should allow at all times. As previous results

presented in Chapter 5 saw the data-driven modeling technique occasionally drop

below the threshold due to model error, in this system we included a 5% safety

band on the value of θpwp; in other words, although we want to maintain a 20%

volumetric water content (VWC) as shown, both data-driven systems are actually

trying to maintain a 21% VWC due to this safety band.

Each day on the ET controlled system, we can see that irrigation causes a

sharp increase in soil moisture at all measuring locationsas the irrigated fluid

reaches the system. On both the WISDOM and OPTICS systems, which are

utilizing sensed water distribution to optimize schedules, we can see this spike

in moisture levels only on the sensor values that are reaching near our minimum

allowed moisture level, as the data-driven systems feel that without irrigation

173



moisture levels will drop into dangerously low levels. Interestingly, in the WIS-

DOM and OPTICS systems, locations that are well above this level and require

no irrigation still see a steady rise and fall in sensor values each day. This is an

effect of the metric measured by our EC-5 sensors [dec]; the soil moisture rise is

due to increasing soil temperature, which has influence on the dielectric permit-

tivity [CGM12] which is being measured. With more expensive sensors that also

measure temperature, these deviations could be corrected for, but as our installed

sensors do not have this feature, we experience a daily soil moisture cycle even

when no irrigation is applied. Another interesting artifact was the occurrence of

rain on day 1 of the second deployment, leading to a great increase in soil mois-

ture levels. It can be seen that one region within the WISDOM system retained

a very large amount of water, with water levels staying high for the remainder

of the experiment preventing the requirement of irrigation in that area for the

entire deployment. Between days 4 and 7 in the first deployment we can see one

sensor exhibiting strange behavior. An animal had chewed a sensor cable, and on

these days irrigation was entering the damaged area and causing strange sensor

values until day 7, when the problem was diagnosed and corrected.

The primary goal of an irrigation system is to maintain healthy levels of

moisture everywhere, and previous chapters have defined the quality of service

metric as the amount of time the system spends in unhealthy levels of moisture.

In our experiments, shown in Figures 6.6 and 6.7, it is clear that all systems

tested maintained a healthy level of moisture (above our minimum level θpwp) at

all times. However, there is a clear tradeoff between quality of service provided

and system efficiency. While the evapotranspiration control strategy was able to

maintain healthy levels at all time, partially due to the very high initial moisture

conditions shown on day 1, we can see in Figure 6.8 that the ET system consumed

a very high amount of water in comparison to the WISDOM system for the entire
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Figure 6.9: Moving variance of ET vs WISDOM

experiment. Whereas the ET system responds only to recent weather conditions,

the WISDOM system also has knowledge of the changing soil moisture levels,

irrigating only when more water is required. For this reason, we can see over

the data in Figure 6.6 that the WISDOM system is able to avoid irrigating areas

with sufficient moisture already, saving an average of 61.4% of water. Looking at

the last 4 days of the first deployment, as all of the WISDOM devices enter the

moisture region where irrigation is required, we find that the system is saving an

average of 32.9%, which is more indicative of the potential savings of WISDOM

in steady state.

As shown in Figure 6.7, the WISDOM system has considerably higher soil

moisture values after the rain on the first day, preventing one device from re-

quiring irrigation for the entire deployment. Figure 6.10 shows that in the first

several days the OPTICS system consumes considerably more water than WIS-

DOM, with WISDOM saving an average of 46% of water across the two weeks of

deployment. However, we can see that as the deployment progresses and WIS-

DOM nodes drop into the range requiring irrigation, the consumption of the two
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Figure 6.10: Water consumption of OPTICS vs WISDOM

systems become more and more similar, until the last 7 days of deployment find

an average savings of 19.7%. Although the WISDOM systems found savings in

this deployment, we are confident that this is a result of the initial conditions

of the experiment, with WISDOM nodes having higher initial moisture levels,

and expect that a longer deployment would find these two systems approaching

equivalent performance in efficiency once all the devices fall into a steady state.

Their equivalence is expected as they are both maintaining data-driven modeling

techniques, and the sprinkler system architecture and environment do not facili-

tate enough water movement to make the local models a limiting factor, as later

verified in simulation in Section 6.5.

Finally, as a metric of moisture uniformity, we plot the spatial variance of

moisture in all systems as a function of time in Figures 6.9 and 6.11. Even

though the ET controller is applying water uniformly onto the surface, differences

in environment cause the water to settle in a non-uniform way, as seen by a large

spread of moisture levels in Figure 6.6 and high levels of variance in Figure 6.9. In

comparison, as the data-driven OPTICS and WISDOM systems learn the needs
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of the space over time, the variance can be seen to quickly decrease to very low

values across the system deployment, indicating that the system is learning the

needs of the space and distributing water exactly as required.

6.4.1 Local model disagreement

When local optimization occurs on each device, it computes the optimal valve

scheduling for itself and all other devices within its local neighborhood. On the

boundary of the local neighborhood, however, the local moisture movement in-

formation may be missing boundary effects that will influence moisture levels at

nodes on the edge of our neighborhood, resulting in a disagreement between the

edge node’s schedule we’ve computed and the schedule that edge node computed

for itself. To determine the magnitude of this error due to edge effects, we com-

pare the optimized schedule of each node for itself to the optimized schedule

by the node’s neighbors for the node, and collect the average error made by the

neighbors. If the error is very high, we will know that schedules are highly depen-

dent on the influence of neighbors’ irrigation in our test irrigation system, as this

could indicate that localized models will introduce significant error in the sched-

ules computed locally. On each day, we compare the on-time of the optimized

schedule as computed on a node to those computed by the node’s neighbors, and

report the average error in sprinkler on-time for each node’s neighbors in Fig-

ure 6.12. In this plot, the bar for node 5, for instance, is the average error in

sprinkler on-time of all of node 5’s neighbors in estimating node 5’s schedule.

We see in the figure that at worst, the average schedule deviation is less

than 5 seconds, indicating that the localized models make very good estimates

of neighboring actions. Interestingly, the resulting errors agree with intuition.

The neighborhoods of nodes 2, 5, and 4 as shown in Figure 6.13 will contain the
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entire neighborhood of node 1 shown as the red dotted box, so their predictions

will have zero error, and similar for all corner nodes 3, 7. and 9. Neighbors of

edge nodes 2, 4, 6, and 8 will be missing at most two nodes; for instance nodes

1 and 2 will be missing node 4’s neighbors 7 and 8, so these edge nodes will

have some error. Central node 5 should have the most error; if node 1 estimates

node 5’s schedule, it is missing nodes 3, 6, 9, 7, and 8, resulting in high error.

These expectations match the results of Figure 6.12 with the exception of node 8,

which shows zero error in its neighbors’ predictions. The cause for this is the fact

that node 8 is the node shown in Figure 6.7 that remains well above irrigation

levels. For this reason, regardless of neighbor influence, the optimal schedule is

to disable the sprinkler, which all neighbors correctly predict.

6.5 Results in simulation

To challenge the local models used in the WISDOM system, we use our simulator

introduced in Section 6.3.2 in 4 environmental and architectural scenarios. Each

experiment tracked water movement across a space of 65m × 65m, just over 1

acre, irrigated by a 7 × 7 grid of sprinklers, and run for a continuous period of 100
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days. The first was a typical environment across flat land with a typical “loam”

soil commonly found in standard irrigated spaces, with each sprinkler radius 75%

of the inter-sprinkler distance. The second introduces a soil with a higher clay

content, which reduces the water infiltration rate into the soil, increasing the

amount of fluid diffusion that occurs on the surface. The third uses the same soil

type as the second experiment, but sits on a hillside with a 15◦ angle, which will

lead to a higher amount of runoff, particularly with the lower infiltration rate of

the clay soil. A 15◦ slope was chosen, as it is the maximum slope supported by

most ride-on lawnmowers, making it the steepest slope likely on a large expanse

of lawn installation. Finally, to ensure an example where the fluid influence of

a sprinkler reachs beyond the neighborhood of the WISDOM local models, we

configure a system architecture similar to the first experiment, but with each

sprinkler reaching 2.5× the inter-sprinkler distance, which can be visualized as

the arching circle centered on the leftmost node in Figure 6.2. We strongly note

that standard irrigation system installation practices use sprinklers that reach

no more than 1× the inter-sprinkler distance, and that this is purely an exercise

to find the breaking point of the localized modeling techniques; such a system

would be prohibitively costly, and would likely consume significantly more water

than the source could provide. The results of these four independent experiments

are shown in Figure 6.14, with the positive y axis showing the over-all system

consumption across the period, and the negative y axis showing the total amount

of time spent below our desired moisture threshold at our sensing points in the

space.

We find that across the 100 days of simulation for the first experiment (bar 1

in the figure), both control strategies consume 520,000 gallons of water, spending

a total of 103,000 minutes beneath the desired level of moisture. Averaged across

the 49 nodes in the system, each node spends 35 hours beneath this level, but
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we can see in Figure 6.5 that this time stems from the first days after system

installation, when each node is learning its loss models. In the second experiment

(bar 2), we find that the installation of soil with a higher clay content increases the

system consumption by 18% across the experiment. This increased consumption

is caused by a higher loss to the boundaries of the space, as the fluid will sit

on the surface for a longer period where it has the tendency to leave the space

more quickly than if it were moving through the soil. The third experiment (bar

3) found an increased water consumption of 23% in comparison to experiment

1, and 7% increase in exposure to unhealthy levels of moisture. The additional

consumption is intuitive, as the slope will cause an additional amount of water

to flow out of the space on the boundaries over time, exacerbated by the clay

soil preventing infiltration of the fluid into the soil. The increased penalty to

quality of service is caused during the first days of experimentation, when the

uphill region in the space will lie in unhealthy levels of moisture during the first

few days to a greater extent, due to the slope carrying fluid away.

Finally, the fourth experiment shows a difference in result between the OP-

TICS and WISDOM systems with a sprinkler layout that reaches beyond the

neighborhood of the local modeling technique. This sprinkler coverage allows

the system to apply a significant amount of water on the first days to substan-

tially reduce the quality of service penalty that would otherwise occur, while

this increased coverage effectively doubles the water usage in comparison to the

system in experiment 1. However, we see that the schedules optimized with the

global model are able to find schedules that are roughly twice as good as the

locally-computed ones with respect to the quality of service metric, but also led

to an increase in system water consumption of 9%. The takeaway of these sim-

ulated results is that the control systems using global and local models tend to

be identical due to the limited rate of water movement in these irrigated spaces.

182



20 40 60 80 100 120 140
Number of Sprinklers

0

20

40

60

80

Se
co

nd
s

Optimization time vs number of sprinklers
Distributed optimization solve time
Centralized optimization solve time

Figure 6.15: Time required to optimize schedules using centralized (OPTICS)

and distributed (WISDOM) systems

While it is possible for schedules optimized using local models to find inferior

solutions to schedules optimized with global ones, it will not occur in even very

challenging scenarios (experiments 1-3), but require unrealistic irrigation system

architectures to occur (experiment 4).

In addition, to quantify the performance of the OPTICS and WISDOM sys-

tems side-by-side, we use our simulator to train local and global models on ir-

rigation systems of increasing sizes, and optimize schedules from a fixed initial

moisture state to a fixed goal moisture state, both interpolated to the size of

the irrigated space. The goal is to make the optimization problems as identical

as possible, with the only variable being the size of the irrigation system. The

resulting optimization time required of the two systems as a function of system

size can be seen in Figure 6.15. The WISDOM system is solving K optimiza-

tion problems, each using a model of a relatively small local neighborhood, in a

distributed way. While this makes the computation required of the WISDOM
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system linear on K, it is solved in parallel across K devices, making the optimiza-

tion solve time constant at all system scales. In contrast, the OPTICS system is

solving a centralized optimization problem using a single global model that grows

quadratically on K, as shown in the figure. We find that with a system with more

than 145 sprinklers, the centralized control strategy is unable to solve the opti-

mization within our control timestep. In practice, as irrigation systems found

in the largest sports fields can contain anywhere from 500-5000 sprinklers [gol],

the scalability of the centralized system is inadequate. While we could increase

the control timestep to allow a larger optimization problem to be solved, the

quadratic growth of the optimization solve-time will quickly overcome this time

cap, and an increased control timestep would cause less efficient schedules to be

found by making the temporal granularity of the model more coarse. Regardless,

no such sacrifice is required with the distributed system of the WISDOM system,

allowing it to operate at any scale.

6.6 Return on investment

To ensure system adoptability, we must be sure it is affordable as a system re-

placement. We consider the unit cost of each device as shown in Table 6.3, where

we list unit prices of our components but estimate manufacture and assembly

at the scale of 1000 units based on a quote from PCBWay [pcb]. We note that

even with the addition of the co-processor and energy harvesting, removing un-

necessary hardware through custom design increases the unit cost by just 1.3%

in comparison to the prototype proposed in Chapter 5. On our campus, water

for irrigation is billed at a price of $5.60 per 1000 gallons of water. Using the

water savings from the last 4 days of our first deployment against the ET control

strategy, we extrapolate a 32.9% water savings onto the larger-scale irrigation
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Figure 6.16: Device return on investment over time

systems used to irrigate our sports fields at our university, which are equipped

with Hunter I-40 rotor sprinkler heads. Figure 6.16 shows the evolution of the

investment over time, and we find that based on water savings alone, the WIS-

DOM devices will pay for themselves in approximately 5-7 months, considering

market variation of 10%. We do note, however, that Chapter 5 found that op-

timized scheduling using data-driven modeling saved a more conservative 12%,

due to seasonal and environmental differences in the experiments run. Even in

such an environment where these more conservative savings occur, our system is

still estimated to return its investment in 15-18 months.

6.7 Limitations and Future Work

The accuracy of the localized modeling techniques used in this section are sen-

sitive to the size of the local neighborhoods. Based on our results in our case

study and simulation, neighborhoods do not need to be large in general system
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Component Price

Mote (including manufacture) $25.00

Raspberry pi zero $5.00

Battery and charge circuit $21.00

Harvesting turbine $12.00

Sealed enclosure $13.00

Decagon EC-5 sensor $99.00

Echotech latching solenoid $14.00

$189.00

Table 6.3: Sprinkler Node Manufacture Cost

operation. However, it is possible that there exist edge cases where very large

neighborhoods are required to capture sufficient information to maintain the same

model accuracy of the globalized technique. In these cases, rather than choosing

a neighborhood size as large as possible and risking optimization exceeding the

available computation time, it may be useful to understand the relationship be-

tween model accuracy and neighborhood size, such that an optimal value of the

neighborhood size can be selected for the system’s operation. In a particularly

special case, if a neighborhood size of one (no neighbor data required) results in

minimal impact to model accuracy, it would allow the device to make decisions

completely independently, removing data communication entirely. We leave the

evaluation of these tradeoffs to future work.

In this chapter, we have introduced a method of using locally-collected data

to train local models of water movement. One key reason of partitioning the

problem is to reduce the time required in optimization using the global model.

However, an alternate approach would be to train the models of water movement

using all data in a centralized way, but then using the structure of the non-zero
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elements in the global linear model to prune it for use in localized optimization

within neighborhoods. While the model would need to be trained centrally, the

distributed linear program would have the performance improvements of a local-

ized model, and as the model was trained with all data, it would not be sensitive

to edge conditions of neighborhood boundaries. We leave a comparison of this

third technique to future work.

The distributed techniques introduced in this chapter address limitations of

energy and congestion with cross-network communication and global computa-

tion. However, in some long and thin irrigation system geometries such as small

golf courses, it may be possible that the primary limitation is the physical distance

between each device and the central controller. In such conditions, an alternate

communication technology such as LoRa [lor] may be more appropriate, as it

would enable each device to communicate over vastly larger distances than the

devices we have used in our study. We do not believe this would be helpful in

every case, as larger communication distances will greatly increase the number

of links in the network, exacerbating the issue of network congestion. We also

note that this technique will do nothing to help the single point of failure as it

will still rely on a centrally-located controller, but we leave the analysis of this

technology to future work.

6.8 Conclusions

Although the work of the previous chapters have realized substantial efficiency

improvements with the use of distributed actuation and model-based schedule

optimization, the proposed centralized processing architectures introduce sin-

gle points of failure, computational bottlenecks in data processing, and increase

network energy usage for cross-network data forwarding, which all prevent the
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technologies from being adoptable for control at large scale. In this chapter we

introduce WISDOM, a distributed system for control of irrigation systems at any

scale that utilizes energy harvesting to allow a perpetual system lifetime. Across

4 weeks of live system deployment, we find that up to 32.9% water savings is pos-

sible in comparison to industry-standard controllers, and demonstrate through

extensive comparison in simulation that the proposed distributed system can

provide all of the efficiency and quality of service benefits of the centralized one,

while allowing energy independence and the robust control of irrigation systems

of any size.
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CHAPTER 7

Conclusions

Across this body of work, the state-of-the-art of lawn irrigation has been moved

forward with several key contributions. Through the use of wireless sensor net-

working, we have developed a system allowing each sprinkler in the space to be

actuated independently, enabling location-specific irrigation for substantially im-

proved efficiency and quality of service to the turf. Additionally, through the

development of a co-processor architecture, these distributed devices are able to

perform local computation, avoiding the need for energy-expensive cross-network

data transfer and a single point of failure at the centrally-located controller. Rec-

ognizing energy budgeting as a primary concern in a distributed system at scale,

we introduce energy harvesting to the system as well as processing pipelines that

use the computational resources sparingly, guaranteeing energy-neutral operation

for a perpetual system lifetime. Due to the increased complexity of an irrigation

system with distributed actuation, we propose and implement data-driven mod-

eling strategies of fluid movement through the environment, which are then used

as constraints in optimization to find valve schedules that minimize water con-

sumption while maintaining suitable moisture levels across the space at all times.

In this way, the system will learn and adapt to changes in the local environment

through the sensed moisture conditions across the space and choose the best

possible schedules for the distributed actuators, allowing completely autonomous

operation with no required human input for installation or adjustment. Finally,
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these innovations are tested against competitive baseline strategies in real-life

deployments and simulation and are found that the introduced techniques can

lead to significant reductions in system water consumption (12-32.9%) allowing

a short return on investment of the devices while also significantly improving the

quality of service provided to the turf. In doing so, we have demonstrated that

turf irrigation systems are an ideal candidate for the robust and efficient control

of turf irrigation systems at any scale.

190



APPENDIX A

Appendices

A.1 Grass as Porous Media

Darcy’s law [Dar56] is applicable to systems where the drag due to the multiple

obstructions is the dominant fluid force. To determine when flow through turf

may be modeled as flow through a porous medium, we estimate and compare the

drag, viscous force, and inertial force per unit volume. Denoting a typical flow

velocity scale as U , a typical grass blade size as a, viscosity as µ, density as ρ,

the thickness of the liquid layer as h, and the porosity as φ, we estimate the drag

per volume, based on the low Reynolds number drag of an elongated obstruction

of length h and lateral size a, as

D ∼ 4πµUh(1− φ)

ha2
=

4πµU(1− φ)

a2
. (A.1)

Within the liquid, the viscous force per volume is estimated from the viscous

term in the Navier-Stokes equations, as Fv ∼ µU/h2. Finally, the inertial force

per volume is estimated, also from the Navier-Stokes equations, as Fi ∼ ρU2/h.

As typical values for water and grass blades, we use ρ = 1g/cm3, µ = 0.01g/cm

s, a = 0.1cm, h = 1cm, and φ = 0.9, and find Fv

D
∼ a2

4πh2

1
1−φ

∼ 1/100 showing that

the drag is dominant over viscous forces for any velocity of the flow. The ratio

of inertial forces to drag is Fi

D
∼ a2ρU

4πµh
1

1−φ
∼ U . The applicability of our model
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is therefore limited to systems where the water flows at velocities U < 1cm/s,

which corresponds to most intermittent irrigation regimes.

A.2 Discretized Model Formulation

The following 6 equations hold at each spatiotemporal cell (i, j, t) and represent

the discretized, linearized flow motion of Equations (4.6)–(4.9) over the variables

u and v (velocity of water in soil and surface, respectively, both horizontal com-

ponents x and y for each), h (surface fluid height) and theta (volumetric moisture

content). They also represent the equality constraints in our optimization prob-

lem.

hi,j,t+1−hi,j,t

∆t
= − 1

2∆x

(

(ĥvx0 + h0v̂
x)i+1,j,t − (ĥvx0 + h0v̂

x)i−1,j,t

+(ĥvy0 + h0v̂
y)i,j+1,t − (ĥvy0 + h0v̂

y)i,j−1,t

)

+ Fs

−η
(

h0K(θ0) + h0K
′(θ0)θ̂ + ĥK(θ0) + ĥK ′(θ0)θ̂

)

(A.2)

θi,j,t+1−θi,j,t
∆t

= − 1
2∆x

(

(θ̂ux0 + θ0û
x)i+1,j,t − (θ̂ux0 + θ0û

x)i−1,j,t

+(θ̂uy0 + θ0û
y)i,j+1,t − (θ̂uy0 + θ0û

y)i,j−1,t

)

+ζ
(

h0K(θ0) + h0K
′(θ0)θ̂ + ĥK(θ0) + ĥK ′(θ0)θ̂

)

(A.3)
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ûxi,j,t =− K(θ0i,j,t)
2∆x

(ĥi+1,j,t − ĥi−1,j,t + h0i+1,j,t − h0i−1,j,t)

−K ′(θ0i,j,t)θ̂i,j,t(h0i+1,j,t − h0i−1,j,t) +
K(θi,j,t)~τ

x

ρg

− ϕ(θ0i,j,t)
2∆x

(θ0i+1,j,t − θ0i−1,j,t + θ̂i+1,j,t − θ̂i−1,j,t)

− ϕ′(θ0i,j,t)(θ0i+1,j,t − θ0i−1,j,t)θ̂i,j,t − ux0 i,j,t (A.4)

û
y
i,j,t =− K(θ0i,j,t)

2∆x
(ĥi,j+1,t − ĥi,j−1,t + h0i,j+1,t − h0i,j−1,t)

−K ′(θ0i,j,t)θ̂i,j,t(h0i,j+1,t − h0i,j−1,t) +
K(θi,j,t)~τ

y

ρg

− ϕ(θ0i,j,t)
2∆x

(θ0i,j+1,t − θ0i,j−1,t + θ̂i,j+1,t − θ̂i,j−1,t)

− ϕ′(θ0i,j,t)(θ0i,j+1,t − θ0i,j−1,t)θ̂i,j,t − u
y
0i,j,t (A.5)

v̂xi,j,t =− αh

(

hi+1,j,t−hi−1,j,t

2∆x

)

+
κg

η
~τx − vx0 i,j,t (A.6)

v̂
y
i,j,t =− αh

(

hi,j+1,t−hi,j−1,t

2∆x

)

+
κg

η
~τy − v

y
0 i,j,t (A.7)

A.3 Spatial system coverage as a function of number of

sprinklers

To evaluate the scalability of our control strategy, it is useful to know how the

spatial coverage of the irrigation system will change as we increase the number

of sprinklers in the system. Here we consider this relationship on a theoretical

irrigation system in a grid of K sprinklers arranged in a square of k×k sprinklers.

Each sprinkler installed has a radius R and will be installed a distance d to the

next closest sprinkler in the grid. [Wei03] demonstrates that the area of overlap

between two circles of equal radius R with distance d between them as shown in

Figure A.1 can be written as:

193



Aintersection =











2R2cos−1
( d

2R

)

− d

2

√
4R2 − d2, if d ≤ 2R

0, if d > 2R

(A.8)

Using this identity, we derive irrigation system coverage in the three possible

irrigation system configurations to be:

coverage =






























KπR2, if
R

d
<

1

2

4
(

(2k − 1)
πR2

4
− (k − 1)

Aintersection

2

)

+ (k − 1)2
(

πR2 − 4
Aintersection

2

)

, if
1

2
≤ R

d
≤

√
2

2

4
(

(2k − 1)
πR2

4
− (k − 1)

Aintersection

2

)

+ (k − 1)2d2, if
R

d
>

√
2

2

(A.9)

Case 1:
R

d
<

1

2

In the first possible system architecture, none of the sprinklers in the irrigation

system will overlap each other as shown in Figure A.2. In this simple case, each

of the K sprinklers will have a spatial coverage of πR2, with a total irrigation

Figure A.1: Overlapping of circles
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Figure A.2: Case 1: No sprinkler overlap is present in the system

(a) Total system coverage

(b) Repeats 4 times on grid borders

(c) “Cell” repeats (k − 1)2 times within

grid

Figure A.3: Case 2: Sprinkler overlap is present, but is not sufficient to cover

the diagonals grid distance. This results in incomplete coverage within the grid

of sprinklers
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system coverage of KπR2.

Case 2:
1

2
≤ R

d
≤

√
2

2

In this system architecture, the sprinkler can sufficiently reach the next nearest

sprinkler in the grid, but can not reach the diagonal sprinklers in the grid, as

shown in Figure A.3. For this reason, there are areas that will not receive direct

irrigation in the center of the system. To compute the coverage of the system,

we break the space into two areas. The first area lies outside the grid, as shown

by four symmetrical regions surrounded by red dotted lines in Figure A.3a. The

second is the area within the sprinkler grid, shown in Figure A.3a surrounded by

a solid black line. Together, these two areas constitute the full coverage of the

irrigation system.

To compute the coverage of the irrigation system outside the grid, we consider

one of the 4 outer boundary areas as shown in Figure A.3b. As shown, the outer

area is composed of 2k−1 quarter-circles of coverage, for a coverage of πR2

4
(2k−1).

To remove the darker overlapping coverage appearing in Figure A.3b, we compute

the area of each of the k−1 overlapping areas, written as Aintersection using Eq. A.8,

noting that only half of each sprinkler’s overlap will fall in this border region with

the other half falling into the interior region. In this way, each of the four border

areas will have coverage:

(2k − 1)
πR2

4
− (k − 1)

Aintersection

2
(A.10)

To compute the sprinkler coverage within the sprinkler grid, we break the grid

into (k − 1)2 cells as shown in Figure A.3c. Within each grid cell, each of the

four sprinklers will provide a quarter-circle of coverage for a total area of πR2.
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(a) Total system coverage

(b) Repeats 4 times on grid borders

(c) “Cell” repeats (k − 1)2 times within

grid

Figure A.4: Case 3: Sprinkler overlap is sufficient to provide direct irrigation to

all regions within the irrigation system sprinkler grid

We will then remove the 4 areas of overlapping coverage that appear darker in

the figure written as Aintersection, again using Eq. A.8, noting that half of each

overlapping region will fall into the grid cell we are considering. Then, each grid

cell will have a coverage of:

πR2 − 4
Aintersection

2
(A.11)

In total, then, the irrigation system as shown in Figure A.3a with 4 symmet-

rical strips of coverage along the external boundary and (k − 1)2 internal grid

cells will cover an area of:

4
(

(2k − 1)
πR2

4
− (k − 1)

Aintersection

2

)

+ (k − 1)2
(

πR2 − 4
Aintersection

2

)

(A.12)
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Case 3:
R

d
>

√
2

2

Finally, in the system architecture that is found in all standard irrigation system,

all regions within the grid of sprinklers can receive direct sprinkler coverage, as

shown in Figure A.4. Similarly to Case 2, above, we break the irrigation system as

shown in Figure A.4a into 4 symmetrical boundary regions as shown surrounded

by red dotted lines and the region within the grid surrounded with a solid black

line.

Computing the coverage of each of the four surrounding boundary regions is

identical to the process introduced in Case 2, above. Considering the coverage of

the 2k − 1 quarter-circles and removing the overlap between the sprinklers, each

boundary strip as shown in Figure A.4b has a total coverage area of:

(2k − 1)
πR2

4
− (k − 1)

Aintersection

2
(A.13)

To compute the sprinkler coverage within the grid of sprinklers, we break the

system into (k − 1)2 grid cells, one of which is shown in Figure A.4c. As the

sprinkler radius R is sufficient in this architecture for complete coverage within

each grid cell, the coverage within each cell is simply d2, where d represents the

distance between the sprinklers as shown in Figure A.1. Then, the total coverage

of the irrigation system with 4 symmetrical boundary regions and (k−1)2 interior

grid cells of coverage can be written as:

4
(

(2k − 1)
πR2

4
− (k − 1)

Aintersection

2

)

+ (k − 1)2d2 (A.14)
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