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Identification and Control of Nonlinear Harmonic Coupling for Pulsed
Jet Injection

Cory Hendrickson and Robert M’Closkey, Member, IEEE,

Abstract— This paper describes an approach to periodic
reference tracking in a fundamental pulsed jet injection ex-
perimental study. The objective is to match the jet’s temporal
velocity profile to a periodic reference for purposes of studying
the mixing dynamics between the jet and surrounding fluid.
The challenge lies in controlling the highly nonlinear and poorly
understood dynamics associated with the jet velocity. Although
the actuator maintains good authority over the jet velocity, the
nonlinear jet dynamics creates a high degree of coupling among
neighboring harmonics that depends on the forcing level. We
approach the problem by demodulating the jet velocity mea-
surement at harmonic frequencies represented in the desired
waveform into baseband components. In a neighborhood of a
desired operating point, an empirical relationship is developed
by perturbing the baseband components and measuring their
effect on neighboring harmonics. We demonstrate that this
relationship can be reasonably modeled as a linear MIMO gain
for nearby operating points. This knowledge is exploited to
create a stabilizing feedback control that asymptotically drives
the jet velocity to its reference.

I. INTRODUCTION

The control of a jet injected into quiescent surroundings or
into a crossflow is a fundamental problem with application
to a wide range of engineering systems, particularly those
for propulsion and energy generation [1], [2]. In turbine
engines, for example, active control of the jet in crossflow has
been shown to improve the spread and penetration of the jet
into the crossflow for dilution jet injection [3] and improve
boundary layer attachment at low turbine inlet Reynolds
numbers for turbine blade cooling [4]. Control of the jet
in crossflow is typically accomplished through temporal ex-
citation of the jet fluid using flowrate modulation or acoustic
forcing [5], [6], [7], [8]. The excitation is periodic, usually
with the goal of forming either sinusoidal or pulse-like jet
velocity profiles.

In practice, feedback control is required to shape the jet
velocity since open-loop methods show significant amount of
ringing and asymmetry compared to the reference waveforms
[7], [8]. The error is a result of both disturbances and
unmodeled system dynamics. The field of repetitive control,
which addresses asymptotic disturbance rejection and refer-
ence tracking of periodic signals, provides a framework for
pulsed jet reference tracking. Systems based on repetitive
control commonly use a time delay in the feedback loop to
place an infinite number of poles on the imaginary axis at
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the fundamental frequency and harmonics of the periodic
disturbance or reference [9], [10]. In practice, the plant
has a finite bandwidth, therefore, only a finite number of
internal models are required for asymptotic tracking. In
this case, modulated-demodulated control can be used as
an alternative to time delay repetitive control [11], [12].
Modulated-demodulated control, also referred to as adaptive
feedforward control or adaptive feedforward cancellation
[13], demodulates the spectrum of “high” frequency oscil-
lations to baseband signals, operates at baseband, and then
modulates the baseband spectrum back to high frequency.

In the pulsed jet experiment, the plant represents the
dynamic system from the actuator command to the hotwire
anemometer measurement at the jet exit. At high forcing
amplitudes (more than 10% of mean jet velocity -see [14])
the jet velocity, if following a periodic reference, exhibits
nontrivial coupling between harmonics that can destabilize
the closed-loop system with a controller designed for more
moderate forcing amplitudes. We show that identification of
the plant dynamics in the baseband coordinates provides key
insight into the nonlinearity that couples adjacent frequency
“channels” and provides a convenient means for compen-
sating the coupling. In fact, the nonlinear coupling can be
modeled in the baseband coordinates as a MIMO constant
gain. This control strategy achieves asymptotic tracking of
the jet velocity within the bandwidth of control.

II. PULSED JET EXPERIMENT

A. Actuation System

A schematic of the experimental pulsed jet injection
apparatus is shown in Fig. 1. Compressed air, regulated to
maintain a constant mean jet velocity of 8ms−1 , flows into
a plenum then through a smoothly contracted nozzle into
quiescent surroundings. The jet velocity is perturbed about
its 8ms−1 mean value by a lightweight piston positioned
at the bottom of the plenum. The piston is driven in-
line with the jet by a modal shaker. The shaker voice
coil current is proportional to the shaker amplifier input
signal. The amplifier input signal is the plant input. The jet
velocity is measured using a hotwire anemometer (Dantec
54T30) placed in the center of the jet at the nozzle exit.
Additionally, the apparatus is equipped with a microphone
(PCB Piezotronics 378C01) located at the top of the plenum.
The controllers are implemented in Matlab’s XPC Target
application with a 25kHz sampling rate. Two, 8-pole low-
pass Chebyshev filters with 10kHz corner frequencies filter
the microphone and hotwire signals prior to sampling. We



demonstrate our control technique without crossflow, how-
ever, the entire system can be placed beneath a wind tunnel
with the nozzle exit flush with the test section floor if a
crossflow is desired.
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Fig. 1. Pulsed jet injection experimental setup using a piston to actively
control the temporal velocity waveform of a jet at the nozzle exit.

B. Motivation: nonlinear coupling between harmonics

Linear models of the pulsed jet can be developed from
data generated with low amplitude test inputs. Controllers
developed using the models are then adequate for low
amplitude reference tracking [14], [15]. At RMS amplitudes
exceeding 0.5ms−1 RMS, though, the nonlinear response
of the velocity measurement (the regulated variable) can
destabilize the closed-loop system with these controllers.
The desired velocity perturbation is periodic so the nonlinear
response can be studied from the point of view of coupling
among harmonics in the periodic waveform. The magnitude
and character of the harmonic coupling is dependent upon
the desired velocity reference and the mean jet velocity. In
general, the velocity output at given harmonic is a function
of the input energy at all harmonics. For example, the
velocity “frequency response”, shown in Fig. 2, is measured
using band-limited white noise inputs with amplitudes set
to perturb the jet velocity by 0.15ms−1 RMS (solid line)
and 0.80ms−1 RMS (dashed line). The frequency response
is determined from averaging the cross-spectra of the input-
output data. It is evident that the frequency response derived
from the case with harder forcing deviates from the nominal,
or low amplitude, frequency response. Additionally, the jet
velocity coherence, shown in Fig. 3, decreases with the
larger amplitude forcing compared to the nominal case. The
coherence is reduced because a greater portion of the velocity
output is determined by nonlinear dynamics at the larger
forcing amplitude. In contrast, the frequency responses with
the pressure measurement are nearly identical for both test
amplitudes and, furthermore, Fig. 3 shows the pressure co-
herence increases with harder forcing (the expected response
of a linear plant with an additive fixed disturbance/noise
spectrum).

The harmonic coupling in the jet velocity is clearly illus-
trated by the spectra in Fig. 4a produced in response to dual
tone forcing. Input tones at 1800Hz and 1900Hz creating a
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Fig. 2. Velocity frequency responses obtained with a white noise iden-
tification input which perturbs the jet velocity by Vrms = 0.15ms−1

(solid) and Vrms = 0.80ms−1 (dashed). The velocity frequency response
is dependent on the forcing condition whereas the pressure measurement is
independent of the forcing condition.
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Fig. 3. Coherence of the empirical velocity frequency response data in
Figures 2 and the empirical microphone frequency response (not shown).
The 0.80ms−1 RMS microphone coherence (thin dahsed line) increases
from the 0.15ms−1 RMS microphone coherence (thin solid line) due
to improved signal-to-noise ratio while the the 0.80ms−1 RMS velocity
coherence (thick dashed line) mostly decreases from the 0.15ms−1 RMS
velocity coherence (thick solid line) due to nonlinear distortion.

0.50ms−1 RMS perturbation produce strong super- and sub-
harmonics. On the other hand, Fig. 4b shows the microphone
spectrum in response to the same dual tone input as above
– the microphone measurement is dominated by tones at
1800Hz and 1900Hz.

III. IDENTIFICATION OF HARMONIC COUPLING

The frequency responses in Fig. 2 show that the mag-
nitudes roll off after a plenum mode near 1.8 kHz. This
limits the actuation bandwidth to approximately 2.0kHz. As
such, we specify the periodic reference to be truncated at or
below 2 kHz to avoid saturation of the actuator amplifier.
Throughout this paper the reference waveforms are periodic
square pulses with a 100 Hz fundamental frequency so the
modulation-demodulation is centered in narrow bands around
the N = 20 harmonics within the 2 kHz actuation bandwidth.
Although the disturbance spectrum will only be attenuated
in neighborhood of each harmonic, the primary reason for
using feedback to shape the jet velocity is the uncertainty
associated with the plant dynamics. Thus, feedback is used
to force the jet velocity to asymptotically track the periodic
reference within the actuator bandwidth, even in the presence
of the significant coupling noted in Fig. 4. The physical
mechanism causing the nonlinear harmonic coupling is not
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Fig. 4. (Top) Velocity response to dual tone forcing at 1800Hz and 1900Hz.
The harmonic coupling appears at harmonics of 100Hz, the difference
between 1800Hz and 1900Hz. (Bottom) Pressure response to dual tone
forcing at 1800Hz and 1900Hz. The output is dominated by the linear
response at 1800Hz and 1900Hz.

well understood, however, an empirical model can be built
that is quite suitable for analysis and controller synthesis. We
identify a model which characterizes the harmonic coupling
in the neighborhood of a particular periodic jet velocity op-
erating point which is close to the desired periodic reference.

At a given operating point, though, the main challenge in
modeling the system is quantifying the nonlinear coupling
that occurs between the N frequency “channels” of the
hotwire signal. The identification is facilitated by shifting
the spectrum of the plant’s input and output in the neighbor-
hood of each harmonic to “baseband” via modulation and
demodulation. The architecture is shown in Fig. 5, in which
both plants, Pmic(s) and Pvel, are transformed into “demod-
ulated” plants represented as 2N×2N MIMO systems. Since
the plant based on the microphone measurement is well-
modeled as a linear system, we use the transfer function
notion with argument s, whereas, the plant with hotwire
measurement is genuinely nonlinear and must be analyzed as
such. The demodulated plants with microphone measurement
and hotwire measurement are denoted P̃mic(s) and P̃vel,
respectively. Each of the N frequency channels possesses
an in-phase and quadrature input, denoted uin(t) and uqn(t),
and an in-phase and quadrature output, denoted yin(t) and
yqn(t). The low-pass filter, denoted by the Hlp block, restricts
the demodulated plant bandwidth. The low-pass filter corner
frequency, denoted ωc, is chosen to be ωc <

ωf

2 since
this prevents any direct overlap of, and interaction between,
adjacent channels.

The demodulated microphone plant, P̃mic(s), is 2×2 block
diagonal and independent of the operating point since Pmic

is essentially linear. In contrast, the demodulated plant, P̃vel,
is, in general, full and dependent upon the system operating
point. Interestingly, though, in a neighborhood of an operat-
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Fig. 5. Diagram of the “demodulated” plant in which narrow band control
in a neighborhood of the N harmonics yields a 2N input-2N output
system of low bandwidth dynamic systems. If the plant is linear then the
demodulated plant is 2× 2 block diagonal.

ing point P̃vel can be modeled as an affine function of the
input. The transformation to baseband coordinates allows us
to characterize the nonlinear harmonic coupling phenomenon
in a linear framework which simplifies identification and
control.

A. Inner loop with microphone feedback

Although it is possible to use the jet velocity exclusively
for feedback, the large variation in plant gain (two orders of
magnitude over the usable bandwidth vis à vis Fig. 2) implies
that P̃vel will have a large condition number since the 2× 2
block diagonal terms will follow the trend in the estimated
frequency response. The large condition number makes the
inversion-based compensator described in Section IV suscep-
tible to errors in the identified models. This can be overcome
by using an inner microphone loop which equalizes the gain
from the microphone references to the jet velocity. The block
diagram is shown in Fig. 6 where r̃mic represents the vector
of reference signals for the demodulated microphone plant
and ũ represents the output of the microphone controller
C̃mic. The transfer function from r̃mic to ũ approximately
inverts P̃mic in a neighborhood of the harmonics . When this
inverse is cascaded with P̃vel, the relationship between ỹvel
and r̃mic does not suffer from the large gain variations in
the block diagonal terms.
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Fig. 6. a) Open-loop plant. b) Block diagram for identification of harmonic
coupling. The inner control loop establishes an operating point which
drives yvel,d close to the desired waveform. The microphone and velocity
demodulated plants are denoted P̃mic(s) and P̃vel, respectively.

The inner loop is closed around P̃mic(s) using the
modulated-demodulated control method described in [14].
The inner loop controller is 2×2 block diagonal like P̃mic(s).
Fig. 7 shows the nth channel of C̃mic(s). The integrators
provide zero steady state error in tracking each reference



and the constant gains Rn and In invert the phase of P̃mic at
frequency ωn, i.e. Rn+jIn = Pmic(jωn)

‖Pmic(jωn)‖ . Detailed analysis
of the dynamics of the inner loop from both the measurement
and the baseband perspectives are given in [14], [15] so
details are not provided due to space constraints, however,
it should be noted that the inner loop can be represented as
a set of N uncoupled linear time-invariant subsystems, each
with loop transfer function

Lmic,n(s) = gmicPmic(s)

[
Hlp(s− jωn)(Rn − jIn)

s− jωn

+
Hlp(s+ jωn)(Rn + jIn)

s+ jωn
] (1)

where gmic is an adjustable gain that controls the time
constant of the nth channel.
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The coupling between channels in P̃vel is a function of
the operating point so it is necessary to specify a constant
pressure reference vector r̄mic such that the elements of
ỹvel are close to the values associated with the Fourier
series of the desired periodic jet velocity waveform. The
coupling is identified about the operating condition by adding
a time varying perturbation to the constant reference. In other
words, the reference input in Fig. 6 is specified to be r̃mic =
r̄mic + δmic, where δmic is the perturbation employed for
identification in a neighborhood of the operating condition
established by r̄mic.

If we treat Pvel as a linear system, then the in-phase
and quadrature components of r̄mic associated with the nth
frequency are chosen to be

r̄imic,n + jr̄qmic,n = Pmic(jωn)P̄−1vel (jωn)rvel,n (2)

where rvel,n is the Fourier coefficient of the desired jet
velocity signal at frequency ωn, and where P̄vel(jωn) is
chosen from the “linear” jet response in Fig 2. This method
does not compensate for the nonlinear dynamics of Pvel and,
therefore, yvel does not actually track the desired periodic
jet velocity waveform. For example, Fig. 8 compares the
measured velocity waveform taken with the microphone
reference selected in this manner (solid line) to its 20%
duty cycle, Vrms = 0.9ms−1 desired reference (dashed
line). Although the measured waveform does not track the
velocity reference, it is close enough to identify a model of
the harmonic coupling which is then employed to design a
stabilizing “outer” loop using feedback from the hotwire.
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Fig. 8. Jet velocity for a Vrms = 0.9ms−1, 20% duty cycle velocity
reference using only microphone feedback with the microphone reference
chosen using Eq. (2). The measured waveform is shown in the solid line
and the velocity reference is shown in the dashed line.

B. Harmonic coupling identification results
With the inner loop closed, the dynamics from r̃mic to the

demodulated jet velocity ỹvel can be identified in a neigh-
borhood of the operating point by applying independent,
low bandwidth, zero-mean random perturbations to the in-
phase components of r̃mic. In response to the microphone
reference, r̃mic = r̄mic + δmic, the demodulated velocity
components are recorded, ỹvel = ȳvel + δvel, where δvel is
the time-varying component of ỹvel. For example, Fig. 9
presents selected empirical frequency response estimates
from δmic to δvel at two operating points: the unforced
operating point and the 20% duty cycle, Vrms = 0.9ms−1

operating point. In particular, the figures show the identified
frequency response magnitudes when a test perturbation
is applied to the 15th and 16th input channels and the
subsequent response of the 15th and 16th demodulated jet
velocity output channels is measured. For the case where
the reference Fourier coefficients are zero, there is very little
cross channel coupling. In marked contrast to this result,
if non-zero reference coefficients are specified yielding an
operating condition in which Vrms = 0.9ms−1, then not
only have the “diagonal” transfer functions changed, but the
off-diagonal gains are now non-zero and in some cases as
large as the diagonal gains. This cross-channel coupling is
a nonlinear phenomenon because it shows that a sinusoidal
perturbation at one frequency produces responses across a
range of frequencies.

An efficient method is required for determining this cou-
pling due to the high channel count in the input and output
variables r̃mic and ỹvel. The measurements in Fig. 9 suggest
that if the bandwidth of the compensator using ỹvel for
feedback is sufficiently low, then only the DC gains of the
elements are required. This is in fact how we proceed so the
following model is used to relate δmic and δvel

δvel = Kδmic (3)

where K is a constant 2N × 2N real matrix. For example,
the outputs in channel n are related to the inputs in channel
p by [

δivel,n
δqvel,n

]
=

[
αi
n,p −αq

n,p

αq
n,p αi

n,p

] [
δimic,p

δqmic,p

]
(4)
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Fig. 9. System identification magnitude shown for the n = 15 and n = 16
input and output channel. The system is identified at the unforced operating
point (a-d) and the 20% duty cycle, Vrms = 0.9ms−1 operating point
(e-h). The transfer functions to the in-phase outputs are shown in the solid
lines and to the quadrature outputs in the dashed lines. Little cross channel
coupling occurs at Vrms = 0ms−1 in contrast to the large cross channel
coupling at Vrms = 0.9ms−1.

where coefficients αi
n,p and αq

n,p are constant and real. The
matrix K is composed of the identified α’s assembled in
2 × 2 blocks as shown in (4) where the αi

n,p coefficients
appear in the (2n− 1, 2p− 1) and (2n, 2p) elements of K.
Because of the structure of K, only N identification inputs
are needed to identify the α’s and so all identification inputs
are simultaneously applied to the δimic,k, k = 1, . . . , N ,
input variables with the bandwidth of each perturbation
constrained to 0.2Hz in order emphasize the low frequency
power. In other words,

δivel,n(t) = αi
1,nδ

i
mic,1(t) + · · · + αi

N,nδ
i
mic,N (t)

δqvel,n(t) = αq
1,nδ

i
mic,1(t) + · · · + αq

N,nδ
i
mic,N (t),

(5)

where n = 1, . . . , N . The α’s are chosen to minimize
the RMS of the residuals associated with each expression
in (5) using a given IO data set. Fig. 10 shows an example
comparing the predicted δvel to the measured value for the
in-phase n = 15 output.
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Fig. 10. Response of demodulated hotwire output yivel,15 to identification
at the 20% duty cycle, Vrms = 0.9ms−1 operating point. The measured
signal (solid line) is compared to the predicted output using (5) (dashed
line). The error is small in comparison to the measured perturbation.
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Fig. 11. Graphical representation of K at a) the unforced operating point
and b) at a 20% duty cycle, Vrms = 0.9ms−1 operating point

There is an graphical means to reveal the coupling between
frequency channels by computing the maximum singular
value of each 2 × 2 sub-block (4) of K and replacing the
subblock with a grayscale shade that denotes the value of
the norm. Fig. 11 illustrates two such maps, one at the
unforced operating point (a), and the other at the 20% duty
cycle, Vrms = 0.9ms−1 operating point (b). At the unforced
operating point, K is essentially block diagonal which in-
dicates little-to-no harmonic coupling. This is representative
of a linear response in which an input perturbation at one
frequency only effects that same frequency in the output.
In contrast, at the Vrms = 0.9ms−1 operating point, the
identified K shows a strong level of harmonic coupling
among frequencies above the n = 8 channel.

IV. COMPENSATION OF HARMONIC COUPLING

At a particular operating point asymptotic tracking of the
desired periodic reference is implemented as shown in the
block diagram of Fig. 12. Feedback of the demodulated
hotwire signals tracks the Fourier series of the periodic
reference, arranged in the 2N vector r̃vel as

r̃vel =
[
rivel,1 rqvel,1 . . . rivel,N rqvel,N

]T
. (6)

The controller, denoted Cvel(s), is 2N×2N and, in general,
full. The system in the dashed box, identified using the
procedure outlined in the previous section, is modeled as a
2N × 2N static map for the purpose of controller synthesis.

We use an integral based controller to compensate the
identified harmonic coupling and asymptotically track a
periodic reference. A model inverse controller with

Cvel(s) = gvelK
−1 1

s
I (7)
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where gvel is a positive gain used to control the outer
loop convergence rate, is a straightforward approach for
velocity regulation in the neighborhood of a single operating
point. In general, K must be well conditioned to use (7).
The microphone feedback loop is needed to decrease the
condition number of the identified static map by “equalizing”
the identified system’s frequency response magnitude from
the SISO perspective. The condition number of K is κ = 2.7
at the unforced operating point and κ = 8.3 at Vrms =
0.9ms−1.

The modeled system’s closed-loop eigenvalues simplify to
the eigenvalues of −gvelI at the operating point, indicating
the closed-loop system has equal convergence at all frequen-
cies of control with a closed loop time constant τvel =
1/gvel. In practice, the harmonic coupling with the system
converged to the reference slightly differs from the harmonic
coupling at the operating point. The converged closed-loop
system dynamics, therefore, can only be approximated by
the static model.

Experimental results for asymptotic tracking of a 20% duty
cycle, Vrms = 0.9ms−1 RMS square wave are presented in
Fig. 13. This figure demonstrates that the empirical waveform
with microphone and hotwire feedback (solid line) closely
matches the 20% duty cycle, Vrms = 0.9ms−1 velocity
reference (dashed line), the same reference as in Fig. 8 for
microphone-only feedback. A hotwire feedback controller
is synthesized using (7) and the static map visualized in
Fig. 11b. The outer feedback loop asymptotically converges
the hotwire Fourier coefficients to the reference waveform
coefficients appearing in (6). There are small periodic devia-
tions evident in the time series, however, which are the result
of harmonics excited beyond 2.0kHz. As these harmonics
lie beyond the bandwidth of the actuation system, they are
uncontrollable.

V. CONCLUSION

In this paper we presented a strategy to identify and
control nonlinear coupling for periodic reference tracking
in a pulsed jet injection experimental study. A data-driven
approach is needed, whereby the nonlinear coupling is iden-
tified in the neighborhood of a particular forcing condition.
A static linear model accurately characterizes the nonlinear
coupling in the neighborhood of the operating point after a
change of coordinates to baseband. In this reference frame,
a stabilizing feedback can be synthesized from a static map
that captures the coupling between frequency channels and
is shown to asymptotically track a periodic reference at its
first 20 harmonics at an operating condition with significant
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Fig. 13. Jet velocity with a Vrms = 0.9ms−1, 20% duty cycle velocity
reference with the outer loop closed around the hotwire measurement.
The Fourier coefficients of the jet velocity asymptotically converge to the
reference waveform coefficients. The dashed line is the reference waveform.

nonlinear harmonic coupling.
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