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ClASSICAL S-MATRIX THEORY OF REACTIVE TUNNELING: 

LINEAR H + H2 COLLISIONS* 

Thomas F. George and William H. Miller t 

Inorganic Materials Research Division, Lawrence Berkeley Laboratory 
and Department of Chemistry; University of California 

Berkeley, California 94720 

ABSTRACT 

Complex-valued classical trajectories (computed by direct numerical 

integration of Hamilton's equations) are found for linear reaction 

collisions of H + H2 ~ H2 + H (on the Porter-Karplus potential surface) 

at collision energies for which all ordinary real trajectories are non-

reactive, and from such trajectories classical S-matrix elements are 

constructed. This analytically continued classical-limit theory is seen 

to be an accurate description of reactive tunneling ~or the H + H2 system. 

At each collision energy there is only one classical trajectory that 

contributes to the reaction, so that various features of the reaction 

dynamics are easily illucidated by looking specifically at this one 

trajectory. It is also shown how a Boltzmann average of the reaction 

probability can be carried out semiclassically, and this leads to an 

interesting relation between the imaginary part of the time increment of 

the complex-valued trajectory at a given energy and the absolute tempera-

ture at which this is the dominant energy in the Boltzmann average: 

Im(t2-t1) = -~/(kT). It is seen, for example, that for T ~ 1000°K the 

dominant energy region is below the classical threshold, i.e., in the 

tunneling regione 
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I. INTRODUCTION 

The utility of classical trajectory methods for describing the 

dynamics of molecular collisions (such as A + BC, the simplest non-trivial 

example) is well-known, reactive and non-reactive (energy transfer) 

processes having been studied1• The usefulness of a classical (as 

opposed to quantum) description lies in the fact that, given the inter-

molecular potential, the dynamics can then always be treated exactly 

(i.e., numerically) by integration of the classical equations of motion 

(e.g., Hamilton's equations). The shortcoming of such classical treat-

ments is, of course, that real molecules obey quantum, not classical 

mechanics. 

2-4 In the last few years, however, it has been shown , both formally 

and with specific examples, how numerically computed5 classical trajec-

tories for a complex collision system can be used semiclassically to 

construct the classical limit approximation to probability amplitudes for 

transitions between individual quantum states of the collision partners. 

Since classical mechanics is used to construct probability amplitudes 

(i.e., S-matrix elements) rather than probabilities themselves, the 

quantum superposition princip~e is properly incorporated in the theory, 

and it appears that this is often the chief contribution of .quantum 

mechanics to the dynamics of molecular collisions; i.e., although 

quantum effects can be quite prominent, they are all essentially a 

consequence of quantum superposition. 

A particularly interesting and important aspect of this "classical 

S-matrix" theory is the ability to extend (i.e., analytically continue) 

classical mechanics in such a way as to describe classically forbidden 

li' 

• 
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collision phenomena. By "classically forbidden" one does not mean that 

the transition is forbidden by any conservation law or selection rule, 

but simply that ordinary classical mechanics does not lead to the transi-

tion. The most familiar example of such a process is one-dimensional 

tunneling of a particle through a potential energy barrier, the WKB 

approximation for the tunneling being the analytic continuation of 

classical mechanics
6• The importance of this aspect of classical S-matrix 

theory is due to the fact that thermal energy kinetic phenomena often 

have significant, and sometimes dominant contributions from classically 

forbidden transitions, and ordinary trajectory methods are obviously not 

capable of describing such processes. This is in contrast to the case 

of classically allowed processes for which ordinary trajectory methods 

give average collision properties quite well, with classical S-matrix 

theory primarily adding an oscillatory interference structure that is 

largely quenched out by any averaging over initial or final quantum 

states7. The ability to describe classically forbidden phenomena, there-

fore, may actually be the most important practical contribution of 

classical S-matrix theory. 

2f 
Quite recently it has been shown how this analytic continuation 

of classical mechanics for systems with several degrees of freedom can 

actually be accomplished by direct numerical integration of the classical 

equations of motion through classically inaccessible regions of phase 

space; the coordinates and momenta, and the time also, become complex-valued 

for these analytically continued trajectories, but this is seen to be com-

pletely consistent with the semiclassical description. Application to linear 

non-reactive A + BC collisions (vibrational excitation) gave excellent 

agreement with exact quantum 
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mechanical transition probabilities, and there seemed to be no limit to 

the ":forbiddenness" of a transition that could be accurately described. 

This paper presents results of analytically continued classical 

S-matrix theory applied to l,inear reactive H + H2 collisions below the 

classical threshold; i.e., complex-valued classical trajectories are found 

which go from H + H2 to H2 + H at collision energies for which all 

ordinary (i.e., real) trajectories are non-reactive, and from such 

traj~ctories classical S-matrix elements are constructed
8. Since the 

quantum nature of the H + H2 reaction should be as prominent as for any 

chemical reaction, it is of considerable interest to see how well a 

semiclassical theory is able to describe it. It is collision energies 

in the vicinity of the classical threshold, too, that are most important 

for thermal energy kinetics and for which ordinary trajectory methods are 

poorest9'
10• 

Section II first summarizes the general results of classical S-matrix 

theory as they pertain to the present system and discusses some of the 

details of how the appropriate complex-valued trajectories are found. 

In Section III it is shown how a Boltzmann average of the reaction 

probability over translational energy can be carried out semiclassically, 

and from this steepest descent approximation there emerges an interesting 

relation between the imaginary time increment of the trajectory and the 

temperature: = - 1 ( )-1 ~' ~ = kT • In the Appendix it is shown 

that this approximation for the temperature dependent reaction probability ~. 

also has an interesting interpretation in terms of a transition state-like 

expression; i.e., it is possible to identify the imaginary part of the 

classical action with an "entropy of activation". 
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Numerical results for the ground state to ground state reactive 

transition are presented and discussed in Section IV; agreement with 

quantum mechanical values calculated for this same Porter-Karplus
11 

potential surface is seen to be quite good. Also interesting is the fact 

that there is just ~ complex-valued trajectory that contributes to the 

reaction at each energy and that it is symmetric about the symmetric 

H-H-H configuration; some of these trajectories are shown in Section IV 

for different collision energies. 

It should be clear intuitively that the classically forbidden process 

being described in this paper is what one means by the term "reactive 

tunneling". The description of reactive tunneling that results from classical 

· S-matrix theory, however, is quite different from the usual treatments12 

that rely on an approximate reduction of' the A + BC -+ AB + C reaction to 

one-dimensional motion in some effective potential, with the tunneling 

aspect of the problem then being handled by one-dimensional tunneling 

formulas. Any such reduction of' the problem to one-dimensional motion is 

an inherent dynamical approximation to which the concept of' reactive 

tunneling should not be.tied; i.e., in such a treatment one can never be 

sure what features of the result are due to tunneling and which are due 

to the dynamical approximations necessary to reduce the problem to a 

one-dimensional one. Classical S-matrix theory thus allows one to 

define the concept of' reactive tunneling precisely, within the t.ramework 

of exact dynamics. This question of' "what is turmeling" in systems with 

more than one degree of freedom is discussed more fully in Section v. 
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II. SUMMARY OF CLASSICAL S-MATRIX THEORY FOR ClASSICALLY FORBIDDEN 

REARRANGEMENT PROCESSES. 

A. General Formulation 

The expressions for the classical S-matrix that pertain to the linear 

:r;eactive systems 

A + BC-+ AB + C 

have been given in detail by Rankin and Miller
2
e. Since the Porter-

Karplus11 potential surface being employed for H + H2 is such that the 

asymptotic vibra~ional potential for the diatomic molecule is a Morse 

potential, even these details of the formulation in reference 2e can be 

carried over directly to the present case. All equations below are 

written for the present situation for which there is just one internal 

(quantized) degree of freedom, but the more general expressions are 

obvious generalizations. 

To summarize the general formulation briefly, let (Ra, Pa) and 

(ra., pa) denote the Cartesian coordinates and momenta for the translational 

and vibrational degrees of f'reedom, r~spectively, for arrangement a 

(A+ BC), and (Rc, Pc) and (rc, pc) the similar variables for arrangement 

c (AB + C); a simple linear transformation~e relates the variables in 

the two arrangements. It is also necessary to introduce the action­

angle variables13 (na, qa) for the vibrational degree of freedom of 

( c c) arrangement a, and the analogous variables n , q for arrangement c; 

a a "bl 2e a a . n and q are express~ e in terms of r and p , and vice-versa, and 

14 similarly for the variables of arrangement c. The F2-type generato! 

for the (ra, pa) ~ (na, qa) canonical transformation is denoted by 

f 2 (ra, na), an explicit e:A.--pression for "'Nhich is given in reference 2e 

• • 

•• 
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for the case of a Morse vibrational potential. 

In the asymptotic regions before and after collision the,action 

variable of the vibrational degree of freedom (the classical analog 

of the vibrational quantum number) is required by the semiclassical 

quantum condition to be an integer. The transition probability for the , 

a c n1 ~ n2 reactive transition is then given by 

(2.1) 

where the classical S-matrix element is 

I 

4>(n2c,n
1

a) being the ctassical action integral along the reactive tra­

jectory determined by the double-ended boundary conditions na(t) = n
1
a, 

t ~- ~, and n2c(t) = n2c, t ~ + ~. (The boundary conditions are 

discussed in more detail in Section IIB.), The action integral~ is given 

explicitly by2e 

4>(n2c'nla) = pl~la + f2(rla'nla) 

t2 
+ f dt 2T , 

tl 
(2.3) 

where T is the kinetic energy, expressed in the variables of arrangement a 

or equivalently
2

e in the variables of arrangement c 

i' 
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If there is more than one trajectory which satisfies the appropriate 

double-ended boundary conditions, then Equation (2.2) is a sum of terms, 

one for each such trajectory. 

To find the trajectory (or trajectories) that satisfies this non-
. 

linear boundary value problem it is convient to introduce the classical trajec-

(cf. the classical deflection function of elastic scattering15) 

the final vibrational quantum number in arrangement c for 

the classical trajectory which begins in arrangement a with initial 

d ·t· a d a con ~ ~ons q1 an n1 • (Initial values for the translational coordinate 

and momentum are always determined implicitly by those of the internal 

degrees of freedom, energy conservation, and the scattering boundary 
1 

condition: R1 a = large, P1 a = - { a.,t a[E- Ea (n1 a) J} 2 
, where E is the 

total energy, ea(n1a) is the semiclassical eigenvalue function for the 

vibrational degree of freedom, and f.l is the translational r.educed mass 
a 

for arrangement a.) a c The trajectory related to the n
1 

~ n2 transition 

is thus found by finding the root of the equation. 

(2.4) 

[To keep the rotation concise we use the same symbol for the integer 

vibrational quantum number n2c and the classical trajectory function 

c( a a) n2 q1 , n1 • Written without arguments, n
1

a and n
2

c denote integer 

vibrational quantum numbers; written with · c a a 
arguments, n2 (q1 ,n1 ) is 

the final quantum number in arrangement c, not necessarily integral, 

that results from the classical trajectory beginning in arrangement a 

with initial conditions q1a and n
1

a. For the ground state to gro~d 

state reactive transitiot;l, for example, Equation (2.4) is an equation for 
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a c( a 1 q1 and reads: n2 q1 , 0) = 0~ Also, the pre-exponential factor in 

Equation (2.2) is more conveniently (and equivalently) expressed in 

terms of the classical trajectory function: 

= ' (2.5) 

a with q1 evaluated at the root of Equation (2.4). 
a c 

The n
1 

~ n2 transition is classically forbidden if there is no 

value of q
1

a (at the given total energy) in its entire (o,~) interval 

.for which Equation (2.4) is sat.isfied; e.g., it might be that all the 

trajectories at this energy and in this initial vibrational state are 

non-reactive. a There will in general, however, be complex values of q
1 

for which Equation (2.4) is satisfied. Along such a trajectory with 

complex initial conditions all the coordinates and momenta become complex-

valued, and the action integral in Equation (2.3) thus acquires an 

imaginary part. If there is just one trajectory that contributes 

significantly to the n
1

a ~ n
2

c transition (as is true for the present 

case), then Equations (2.1)-(2.5) give the reactive transition probability 

as 

= 

. i.e., the transition probability is, apart from the classical Jacobian 

factor, an exponentially decreaslng function of the imaginary part of the 

classical action along that trajectory which leads to the transition. 

This exponential damping ;of the transition probab~lity is the characteristic 
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feature of classically forbidden processes and the reason for use of the 

term "tunneling"; i.e., Equation (2.6) is the appropriate generalization 

of the one dimensional WKB tunneling formula
6 

(which is also an exponential 

fUnction of the imaginary part of the clas·sical action along the tunneling 

trajectory) to systems of several interacting degrees of freedom. 

Except for the fact that we are now considering a rearrangement 

process, the situation is essentially the same as in our previous study2f 

of classically forbidden transitions in non-reactive A + BC collisions16• 

One significant difference is that it is now not possible (even in principle) 

to find the complex roots of Equation (2.4) by extrapolating the function 

from its classically allowed region (for such a region does not exist), 

so that it is imperative that one be able to numerically integrate the 

equations of motion with complex initial conditions. 

B. Calculational Procedure 

More specifically, for the n
1

a ~ n
2

c reactive transition one seeks 

a classical trajectory with initial conditions in arrangement a (A + BC) 

a specified integer nl = (2.7a) 

a anything ql = 

1 

P a 
1 = -{ ~a[E-€a(nla)]} 2 (2.7c) 

R a = real and large 
' 1 (2.7d) 

and final conditions in arrangement c (AB + C) 

c 
specified integer n2 = (2.8a) 

i' 
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c 
~ 

p c 
2 

R c 
2 

. 
' .... 

= anything 

= + {~c[E-€c(n2c)J} 

= real and large 

.. 
,.) 
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(2.8b) 

1 
2 (2.8c) 

(2.8d) 

For a classically forbidden process: q
1

a and q2c will be complex, and in. addi-

tion the time increment (t2-t
1

) must also be complex; i.e., one has 

Re(t2-t
1

) -+ +co, but Im(t2-t
1

) is some finite value that is determined by 

the boundary conditions in Equations (2.7) and (2.8). 

The practical problem, therefore, is to find the trajectory with 

these double-ended boundary conditions. The first method employed was, 

2f r, as before , to integrate from the initial asymptotic region lwith the 

initial conditions in Equation (2.7D forward in time, and from the 

tinal asymptotic region [with the final conditions in Equation (2.8~ 
backward in time, choosing q1a and ~ c iteratively so that all the 

coordinates and momenta are equal at some intermediate point. 

For the initial branch, for example, the time is first incremented 

• . 
' 

(2.9) 

just as before2f, this time increment is taken to make q : q (t1 ) real, a a 

so that the oscillator is more locaJ_ized in configuration space. The 

time is then incremented in the purely real direction until the trans-

lational turning point (the time at which Re P = 0) is passed; from a 

here the time increment is chosen complex in order to "pull" the 

trajectory to the symmetric line r = r • To see how this can be 
a c 

accomplished, let 
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f(t) = r (t) - r (t) a c 
. 
' 

(2.10) 

f(t) is thus complex, and one wishes to integrate to that time at which 

f(t) = 0. For t near tK ~ 

' 
(2.ll) 

where fK = f(tK) and fK = f(tK)' so that the time increment 

(2.12) 

would make fK+l ~ 0 provided the RHS of Equation (2.12) is not so large 

as to invalidate the linear approximation to f(t) in Equation (2.11); in 

addition the magnitude of the complex time increment must not be larger 

than that allowed by the accuracy requirement of the numerical integrater17. 

If l~tjis.the magrltudeoftime increment allowed by the numerical integrater 

(l~tl is chosen automatically17), therefore, one chooses the complex time 

increment as 

(2.13) 

This algorithm , in conj~ction with our variable step-size numerical 

integrater17, very efficiently integrates to the time at which f(t) = 0. 

One preceeds analogously for the final branch of the trajectory, 

integrating to its translational turning-point and then "pulling" it to 

the symmetric r = r line as above, by choice of the complex time 
a c 

increment. One linear combination of the four coordinates and momenta 

from the initial and final branches is thus continuou~ at this intermediate 

. t a c 1" po~n , q1 and ~ are adjusted iteratively to make two other ~near 

combination of the coordinates and momenta continuous1 and energy 

I' 

{ 
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conservation then insures that the fourth linear combination is con-

tinuous, so that the two branches form one complete trajectory. 

Although the above double-ended procedure worked quite well, we 

found that it was actually possible to integrate "straight through" from 

the initial to final asymptotic regions. One begins the initial branch 

of the trajectory as described above, integrates with real time increments 

to the translational turning point, and then instead of simply "pulling" 

the trajectory to the symmetric line, one "pulls" it all the way into 

arrangement c; i.e., one integrates to the time at which Re r = r , 
c 0 

the equilibrium H2 value. From here one then increments the time in the 

real direction. At the end of the trajectory in the final asymptotic 

region the-translational coordinate R will not necessarily be real, but 
c 

can be made so by a final pure imaginary time increment 

. 
' 

it is this condition (i.e., R1a, R2c real) that uniquely fixes Im(t2-t
1

). 18 

This latter "straight through" procedure considerably simplifies 

the calculation, for there is only the ~ variable q1 a to adjust 

iteratively to satisfy the boundary conditions of Equations (2.7)-(2.8), 

whereas the double-ended method of integration requires that one adjust 

a c both q1 and q2 iteratively; i.e., the number of variables in the non-

linear "matching equations" is cut in half by the "straight through" 

procedure. The classical S-matrix i~ of course, invariant to how one 

goes about finding the appropriate trajectory; to provide numerical 

checks, in fact, the transition probabilities presented in Section IV 

were calculated both ways, with identical results. 
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Numerical accuracy of the results was checked by successively 

increasing R (the value of the translational coordinate at which the 
m~ . 

trajectories were begun and terminated) and decreasing the error parameter 

for the numerical integrater until the transition probabilities were 

unchanged to the number of significant figures reported. Only an ordinary 

error parameter (€ ~ 10-5) was hecessary to achieve this level of accuracy. 

C. Symmetry of the Trajectory 

There is one particularly interesting feature that arises for a 

symmetrical reactive system suchas H + H2; the following remarks also 

apply to the more general system.A + BA ~ AB + A for A ~ B. If there is 

only one trajectory that contributes significantly to a particular 

symmetric transition (i.e., n
1

a = n2c), then this trajectory must itself 

be symmetric; i.e., the trajectory from the initial asymptotic region to 

the symmetric A-B-A configuration is related to the trajectory from the 

symmetric configuration to the final asymptotic region simply by time 

reversal. 

To see that this must be true, suppose there exists an unsymmetric 

trajectory that satisfies the boundary conditions in Equations (2.7) and 

(2.8) with n1a = n2c. Since the trajectory is not symmetric, the time 

reversed trajectory is different from the original one but still satisfies 

the boundary conditions of Equations (2.7) and (2.8). (This is because 

arrangements a (A + BA) and c (AB + A) are dynamically equivalent.) 

Furthermore, the contribution to the classical S-matrix of this trajectory 

is identical to the original one. 

If an unsymmetric trajectory contributes to the transition, therefore, 

then there must be a second trajectory (the time-reversed trajectory of 
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the original) that contributes equally. Thus if only one trajectory is 

found (as is the case for the ground state to ground state H + H2 

reaction), it means that the time reversed trajectory is identical to 

the original one, i.e., that the trajectory is symmetric. QED. 

A direct quantitative check on the symmetry of the trajectory is 

possible by noting that time reversal implies the replacement R ~ R, 

P -+ -P, r .... r, p .... -p for the Cartesian variables, but it is easy to show 

from the expressions in Reference 2e that the replacement for the action-

angle variables is n-+ n, q-+ -q. Since the final values of the original 

trajectory are the initial values of the time-reversed trajectory, which 

by symmetry is identical to the original trajectory, one sees that the 

initial and final angle variables of the original trajectory must be 

related by 

where N is any integer. This was indeed observed to be true for the 

present case. 

III. TEMPERATURE AVERAGING AND ITS RElATION TO IMAGINARY T:rnE · 

Before discussing the numerical results for H + H
2 

collisions, 

it is interesting to see how a Boltzmann temperature average over 

translational energy is related to certain features of the dynamics. 

With the usual definition ~ = (kT)-l the thermally averaged transition 

probability is 

co 

P(T) = p f dE exp (-~E) P(E) 
' 

(3.1) 
0 
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where here E denotes the initial translational energy and P(E) is a 

transition probability of the form in Equation (2.6), i.e., 

P(E) = J(E) exp[-2rmci>(E)/.fl.] ' (3.2) 

J(E) being the square root of a Jacobian factor; the quantum number 

indices for P(E) have been omitted since they are not involved in the 

present discussion, but it should be understood that we are considering 

a c the average over initial translational energy of a specific n1 ~ n2 

transition. Since Equation (3.2) is being used for the transition 

probability, it is also clear that we are assuming the transition to be 

classically forbidden in the energy region of interest. 

Equation (3.1) thus becomes 

00 

P(T) = ~ { dE J(E) exp r-~E - 2 Imcp(E)/~] ' (3-3) 

which is precisely of the form for which a steepest descent approximation19 

to the integral is useful. This approximation gives the following 

approximate expression 
1 

fdx g(x) e -~(x)/-11 "' ~qxJ 2 
g(x

0
) e -~(><r,)/fl 

' (3.4) 

where x
0 

is the position of a local minimum of f(x), i.e., 

f'(x) = 0 (3.5) 
0 

[Equations (3.4) and (3.5) will also be recognized as the method of 

stationary phase for the case that the "phase" is pure imaginary.] 

Applying this approximation to Equation (3.3) gives 

1 

P(T) = P(E) ~[rm~(E)]
2 

exp(-[3E) ' 

·-
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where E = E(~) is the particular value defined implicitly by the equation 

- J ~ = Imct>' (E) (3-7) 

20 It is well-known , however, that the energy derivative of the 

classical action integral gives the time increment for the trajectory, 

so that if ~(E) is the imaginary part of the total time increment of the 

trajectory, 

' 

then Equation (3.7) becomes 

~(E) = - ~~ (3-9) 

The imaginary part of the time increment for the appropriate complex-

valued trajectory at a particul~ energy is thus seen to be directly 

related to the temperature at which this energy makes the dominate 

contribution to the temperature average. A similar relation between 

imaginary time and ~~ has been seen to arise in other applications of 

21 classical-limit theory • 

Using Equations (3. 7) and (3. 8) and replacing ~ by (kTf1 it follows 

that 

Imct>" (E) = ~(kT) -2 [ dE . J -1 2 d(kT) ' 

so that the thermally averaged transition probability takes the simple 

form 

1 

P(1') = P(E) [21Td~T) J 2 
exp( -E/kT) ' 

(3.10) 
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E = E(T) being determined by Equation (3.7). 

In the course of calculating P(E) for a sequence of energies E it is 

thus possible to generate P(T) simultaneously with essentially no increase 

in labor. This is true because at each energy E one had at hand T(E), 

the imaginary past of the time increment for the appropriate trajectory. 

As E is varied in calculating P(E), the following parametric equationsthus 

map out P(T) simultaneously: 

1 

P = P(E) [ 27r/ d~T)] 2 
exp ( -E/kT) ' 

(3.11) 

for the temperature 

kT = ~/ IT(E) I (3·12) 

The Appendix discusses some other implications of this semiclassical 

treatment of thetemperature averaged reaction probability. 

IV. DISCUSSION OF RESULTS 

A. Reaction Probabilities 

Figures 1 and 2 show the ground state to ground state (n1a ~ n2c = 0) 

reaction probability in the energy region below the classical threshold 

as a function of the relative collision energy E ; the corresponding 
0 

numerical values are given in Table I. Also listed in Table I are the 

imaginary part of the classical action for the appropriate trajectory at 

each energy, the absolute temperature T related to E by Equation (3.7), 
0 

and the Boltzmann averaged transition probability for this temperature. 

The calculations were carried out by the procedure described in Section II, 

and as evidenced by Figure 1, there is no difficulty at all in describing 

transitions that are "extremely forbidden". 
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Also shown in Figures 1 and 2 are the quantum mechanical reaction 

11 
probabilities calculated for this same Porter-Karplus potential surface 

by Diestler22 (crosses) and by Wu and Levine23 (circles). The strictly 

classical reaction probability
24 

is also included ih Figure 2, and it is 

seen that for E < 0.21 eV all ordinary trajectories are non-reactive. 
0 

The agreement with Diestler 1 s22 value far below the classical threshold 

is almost exact, but in the energy region just below the classical 

threshold (as best seen in Figure 2) the two quantum mechanical calcula-

tions differ somewhat, lying on either side of the classical S-matrix 

results. Although it is thus not possible to assess the precise degree 

of accuracy of the semicalssical values, it is clear nevertheless that 

the analytic continuation of classical mechanics within the framework 

of classical S-matrix theory correctly describes at least the major 

features of reactive tunneling in this system. It will be most interesting 

to see just how precise the semiclassical theory is, but this must await 

a resolution of the quantum discrepancy25 • 

B. Coordinate Trajectories 

As discussed in Section II, there is only one complex-valued 

trajectory that contributes to the ground state to ground state reaction 

probability at each energy, so that various features of the reaction 

dynamics can be illucidated by observing it. 2f As has been discussed before , 

however, for complex-valued trajectories of a system with more than one 

degree of freedom there is a certain degree of arbitrariness in the 

trajectory due to the arbitrariness of the path in the complex time plane 

along which one increments the time from t
1 

to t
2

, with Re(t2-t1 ) ~ + oo , 

Im(t2-t1 ) finite. For a system with only one degree offreedom a 
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"physically unique" trajectory is fairly obvious• one chooses the time 

path so that the coordinate is always real, and this choice determines a 

unique trajectory. With more than one degree of freedom, however, it is 

not possible to choose the time path to keep all coordinates real, and 

there thus appears to be no "physically unique" trajectory. One should 

keep in mind, of course, that the desirability of a "physically unique" 

coordinate trajectory is purely for interpretational convenience, for the 

classical S-matrix elements themselves are invariant to the choice of the 

26 
time path • 

Although the choice of time path described in Section II was for 

computational convenience} the coordinate trajectories that result appear 

to be quite physically reasonable; i.e., it appears that the coordinate 

trajectory does not change drastically with different "reasonable" 

choices of the time path. Figure 3 shows the real part of the coordinate 

trajectory for the ground state to ground state reaction attwo ·different 

collision energies. As discussed in Section II, these trajectories are 

rigorously symmetric with regard to reflection about the bisector of the 

angle between the two asymptotic channels of the potential surface. The 

"kink" in the low energy trajectory just as it begins to tunnel is 

obviously an artifact of the particular way the time path has been chosen, 

and it is clear that it could be eliminated by a modified choice of the 

time path. 

The most interesting feature of the reactive trajectories is the .• 

degree to which they "cut the corner", the higher energy (0.20 eV) 

trajectory passing the symmetric H-H-H point at an interatomic distance 

of 1.86 a0 , with the corresponding value for the lower energy (0.02 eV) 
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trajectory being 1.95 a ; for comparison the interatomic distance of the 
0 

saddle point is 1.70 a
0

• This observation that the appropriate reactive 

trajectory "cuts the corner" more as the collision energy is reduced is 

similar to that of other workers27- 30 who, in addition, observe typical 

trajectories to move inside the saddle point as the energy is increased 

above the classical threshold. 

c. Temperature Averaging 

As discussed in Section III, it is quite easy to obtain the 

temperature average over translational energy for a given n
1

a ~ n2c 

transition essentially simultaneously with the calculation of the energy 

dependent transition probability. 

Figure 4 shows the temperature-energy steepest descent relation of 

Equation (3.7); i.e., for a given temperature Figure lJ. shows the trans-

lational energy that is the dominate contributer to the average over 

translational energy. For T = 300°K, for example, the dominate energy 

region is near E = 0.15 eV. For temperatures below 1000°K, therefore, 
0 

Figure 4 shows that the dominate energy region is below the classical 

threshold, a fact that again points out the importance of classically 

forbidden processes to low energy kinetic phenomena. 

The thermally averaged ground state to ground state reaction prob-

ability as calculated from Equation (3.10) is shown in Figure 5· Since 

the development in Section III is strictly valid only if the dominant 

energy is below the classical threshold, the reaction probability in 

Figure 5 should only be valid for temperatures below about 1000°K. The 

extrapolation to a probability of 1 at oo temperature, however, appears to 

be quite smooth. One will note the lack of linearity of the log P(T) 
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versus 1/T plot in Figure 5 that shows the degree of departure from a 

pure Arrhenius form for temperatures below 1000°K; the limiting slope 

above T = 1000°K leads to an activation energy of about 0.27 eV. 

V. CONCWDING REMARKS: WHAT IS TUNNELING? 

In conclusion we would like to discuss briefly our thoughts on what 

should be meant by the terin "reactive tunneling", or even simply 

"tunneling", for dynamical systems of more than one degree of freedom. 

The term "tunneling" presumably originated in the treatment of one 

dimensional barrier penetration problems
6

; if the energy is less than the 

barrier height, then the reaction is said to proceed by tunneling. In 

one dimension, therefore, the energetic criterion is identical to the 

dynamic criterion; i.e., if the particle has sufficient energy to 

surmount the barrier, then classical dynamics will indeed carry the 

particle over the barrier, for in one dimension dynamics is completely 

determined by energy conservation. 

With more than one degree of freedom this ceases to be true; i.e., 

energy conservation alone does not determinethe dynamics, and certain 

processes may be energetically possible but dynamically impossible. For 

the linear H + H2 collision on the Porter-Karplus surface, for example, 

the barrier height is 0.396 eV, the vibrational energy of ground state 

H2 is 0.273 eV, so that the reaction is energetically possible classically 

for a collision energy above the classical energetic threshold 

E(energetic threshold) = 0.12 eV 

Classical dynamics, however, shows that there are no (real) reactive 

trajectories for collisioh energies below a dynamic threshold 
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E(dynamic threshold) ~ 0.21 eV 

i.e., the energetic and dynamic threshold, which are identical for one 

dimensional systems can be quite different for systems with several 

degrees of freedom, as they are for H·+ H2• 

Wu and Levine23 have implicitly used the energetic criterion in 

reference to tunneling, but our feeling is that tunneling relates to 

dynamics and that the dynamic criterion is the more meaningful one; i.e., 

tunneling is something that does not take place via classical dynamics. 

Thus Wu and Levine23 comment that since the reaction probability is very 

small for collision energies below the energetic threshold of 0.12 eV, 

there is no significant amount of tunneling in the linear H + H2 

reaction. According to classical dynamics, however, all reaction below 

the dyn_e;rJ~::. t.hr-eshold of 0. 21 eV is tunneling, so that there is a great 

deal of reactive tunneling for this system. 

Reactive tunneling, of course, emerges quite naturally in classical 

S-matrix theory as simply a particular kind of classically forbidden 

transition, i.e., a transition for which the action integral along the 

appropriate classical trajectory has an imaginary part. Indeed, it is 

this fact; that the resulting classical S-matrix element has an exponential 

damping factor due to the imaginary part of the classical action, that 

most strongly suggests this use of "tunneling" in relation to classical 

dynamics. 
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APPENDIX: TRANSITION STATE INTERPRETATION OF THE 

THERMALtY AVERAGED REACTION PROBABILITY 

The temperature dependent reaction probability given by Equation (3.10)· · 

of Section III has the form (omitting pre-exponential factors) 

P(T) ..... exp [ -E/kT - 2 nn<t>(E)/.fl J , (Al) 

where E = E(T) is the fUnction of temperature determined implicitly by 

(kT)-l =- 2Im<I>'(E)/~ 
' 

(A2) 

~(E) being the classical action for the appropriate classical trajectory. 

The transition state form for the thermally averaged reaction 

probability is31 

P(T) ...., exp(-A/kT) , (A3) 

where A is the "free energy of activation " and in general temperature 

dependent; from Equation (Al) one thus identifies A(T) as 

A(T) = E + 2kT Im<I>(E)/~ 
' 

(A4) 

with E = E(T) given by Equation (A2). S, the "entropy of activation", 

is defined by the thermodynamic relation32 

) oA S(T = -­aT ' 

and from Equation (A4) this is 

S(T) =- E'(T) - 2~T Im~'(E) E'(T) - 2k Im¢(E)/~ 

,{ 

(A5) 

. 
' 
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Equation (A2) shows that the first two terms cancel, giving 

S(T) = -2k~Im (E)/~ 
' (A6) 

with E = E(T) from Equation (A2). Taking advantage of Equation (A6), the 

"free energy" of Equation (A4) is also seen to be given by 

A(T) = E(T) - T S (T) 
' 

(A7) 

the standard thermodynamic relation32, where E(T) given by Equation (A2) 

is thus seen to be the "energy of activation". 

The temperature dependent reaction probability thus has the 

transition state form 

P(T) "' exp(S/k) exp( -E/kT) ' 

but where the "activation energy" E and "entropy of activation" S 

(A8) 

are temperature dependent, defined by Equations (A2) and (A6), respectively. 

These definitions of E(T) a.nd S(T), too, are purely dynamical qua.l1.tities; 

it would be interesting to explore in detail the circumstances under 

which they can be adequately described by statistical approximations to 

dynamics. 

:' 
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TABLE I: Ground State to Ground State Reaction Probability for H + H2 

E (eV)a 
0 

p 
o,o 

R d < p R >e 
o,o 

--------------------------------~-------------------------------------

0.02 

0.03 

0.04 

0.05 

0.09 

0.11 

0.13 

0.14 

0.15 

0.16 

0.17 

0.18 

0.19 

0.20 

0.21 

0.22 

0.23 

11.84 

8.860 

7·794 

6.107 

4-798 

3-735 

2.850 

2.460 

2.102 

1.772 

1.468 

1-190 

0-9367 

0.7076 

0.5031 

0-3247 

0.1754 

32 

4ij 

51 

7b 

99 

134 

176 

230 

264 

303 

350 

408 

483 

579 

715 

917 

1269 

2009 

2.28 X 10-ll 

6. 59 X 10-lO 

8.98 X 10-9 

7.64 X 10-8 

...;6 
2.27 X 10 . 

3.20 X 10-5 

-4 2.75 X 10 

1.65 X 10- 3 

3.64 X 10-3 

7.52 X 10-3 

4 -2 
1. 7 X 10 

4 -2 2.7 X 10 

4.88 X 10-2 

8.43 X 10-2 

1.42 X 10-l 

2.36 X 10-l 

3·95 X 10-l 

6.76 X 10-l 

1.85 X 10-l2 

1.96 X 10-ll 

1.40 X 10-lO 

4.20 X 10-9 

8.14 X 10-8 

8 -6 1.0 X 10 

1.12 X 10-5 

3•47 X 10-5 

9•93 X 10- 5 

-4 2.73 X 10 

-4 7.22 X 10 

1.89 X 10-3 

4.70 X 10-3 

-2 1.15 X 10 

6 -2 
2. 9 X 10 

4 -2 
7•9 X 10. 

1.25 X 10-l 

--------------------------~---~---------------------------------------

a. T'he initial translatibnal energy . 

b. 'l'he J.maginary part. of the classical action integral of Eq. (2.3) along 

the approp~iate complex-valued trajectory. 
I 

c. 'l~he absolut'e temperature that is related to translational energy E, 
0 

by the steepest descent relation in Eq. (3.9); the graphical 
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TABLE I - continued 

-----------------------------------------------------------------------
representation of the E versus T relation is shown in Figure 4. 

0 

d. The ground state to ground state reaction probability as given by 

Eq. ( 2. 6) and shown in Figures 1 and 2. 

e. The Boltzmann average of the energy dependent reaction probability 

for the corresponding temperature T, as defined by Equation (3.1) 

and shown in Figure 5. 
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FIGURE CAPI'IONS 

1. Reaction probability for the ground state (i.e., vibrational quantum 

number equal to zero) to ground state H + H2 --. H2 + H reaction, as 

a fuhction of the relation collision energy E • Corresponding 
0 

. numerical values are given in Table I. The crosses and circles 

show the quantum mechanical values calculated by Diestler
22 

and Wu 

and Levine23, respectively, for this same Porter-Karplus11 potential 

surface. 

2. Same as Figure 1, but a more detailed picture of the energy region 

3· 

just below the classical threshold. The broken line is the purely 

classical reaction probability24 for the same potential~ surface. 

Coordinate trajectories for collision energies E = 0.20 eV (dotted 
0 

line) and E 0.02 eV (dash-dot line). For reference, the dashed 
0 

line is the "reaction coordinate" (i.e., the path of minimum 

potential energy) and the cross is the saddle point. R and r are a a 

the real parts of the complex translational and vibrational 

coordinate , respectively, of arrangement a (A + BC). As discussed 

in Section IVB, the "kink" in the lower energy trajectory (dash-dot line) 

is undoubtedly an artifact of the particular way the pathaf integration 

in the complex time plane was chosen. 

4. The energy-temperature relation determined by the steepest descent 

condition of Eq. (3.7) or (3.9); corresponding numerical values are 

given in Table I. For a given temperature the corresponding energy 

is the one that makes the dominant contribution to the Boltzmann 

average of the reaction probability for that temperature. For T = 300°K, 
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for example, collision energies in the vicinity of E ~ 0.15 eV make 
0 

the most significant contribution to the Boltzmann average. 

The temperature dependent reaction probability P(T) given by Eq. (3.10) 

for the ground state to ground state H + H2 reaction. The semi­

classical treatment of Section III is only valid in the present case 

for T ~ 1000°K, so that the dashed part of the curve is simply an 

extrapolation to unit probability at infinite temperature. 

Corresponding numerical values are given in Table I. 

( 
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