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Multiple mammalian lineages independently evolved a definitive mammalian

middle ear (DMME) through breakdown of Meckel’s cartilage (MC).

However, the cellular and molecular drivers of this evolutionary transition

remain unknown for most mammal groups. Here, we identify such drivers

in the living marsupial opossum Monodelphis domestica, whose MC trans-

formation during development anatomically mirrors the evolutionary

transformation observed in fossils. Specifically, we link increases in cellular

apoptosis and TGF-BR2 signalling to MC breakdown in opossums. We

demonstrate that a simple change in TGF-b signalling is sufficient to inhibit

MC breakdown during opossum development, indicating that changes in

TGF-b signalling might be key during mammalian evolution. Furthermore,

the apoptosis that we observe during opossum MC breakdown does not see-

mingly occur in mouse, consistent with homoplastic DMME evolution in the

marsupial and placental lineages.
1. Introduction
The evolutionary origin of the definitive mammalian middle ear (DMME) is often

cited as a textbook example of evolutionary transformation [1–3]. Reptiles and

pre-mammalian synapsids possess multiple bones in the jaw but only a single

bone (stapes) in the middle ear. By comparison, all mammals possess a single den-

tary bone in the jaw, and multiple bones in the middle ear, namely the malleus,

incus and ectotympanic, in addition to the stapes. The incorporation of multiple

bony elements into the middle ear increased the hearing sensitivity of mammals,

most notably to high-frequency sounds, a trait that is thought to have benefited

the mammalian lineage [4,5]. In addition, the DMME is one of the few, key

bony hallmarks for the origins of Mammalia in the fossil record [2,6,7].

Significant developmental and palaeontological evidence suggests that the mal-

leus and incus of the mammalian ear evolved from the articular and quadrate of the

reptilian jaw, respectively. Beautiful fossils encompassing the reptile to mammal

transition document the transformation of the reptilian jaw elements into mamma-

lian middle ear ossicles (for an overview, see [3]). A similar transformation occurs

during mammalian development, and has been documented in the embryos of

multiple mammal species [1–3,8–10]. Furthermore, developmental genetic evi-

dence from mouse [9,11] and chick [12] has confirmed that the articular and

quadrate (malleus and incus, respectively) initially form as a single cartilaginous

condensation that expresses Bapx1 and is physically linked to Meckel’s cartilage

(MC) of the jaw. However, while the fact that jaw elements transform into middle

ear ossicles over developmental and evolutionary time is generally accepted, the

specific developmental processes driving this transformation remain largely
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unknown. This gap in knowledge significantly impairs our

understanding of processes that have fundamentally shaped

the course of mammalian evolution.

In this study, we investigate the cellular and molecular pro-

cesses driving a crucial first step in the evolution of the

mammalian middle ear ossicles (i.e. malleus, incus)—their dis-

connection from the jaw. This occurred ancestrally in at least

three lineages of Mesozoic mammals (monotremes, multituber-

culates and therians (marsupialsþ placentals)) [13,14], and

occurs early in the development of extant mammals, through

the breakdown of the part of MC connecting the malleus and

ectotympanic to the dentary [15–18]. Although it was once

suggested that the physical process of brain expansion separ-

ated mammalian middle ear elements from the dentary [19],

this claim has since been refuted [16,20–22]. To explore the dis-

connection of the middle ear elements from the jaw, we thus

investigated the processes driving MC breakdown by taking

advantage of the unique development of a living marsupial

mammal, the grey, short-tailed opossum Monodelphis domestica.

Like other marsupials, opossums are born in a premature

state [23]. Of most relevance to DMME development, the mal-

leus and incus of newborn opossums remain attached to the

jaw in a reptile-like morphology. The malleus remains physically

connected to the jaw for a few weeks after birth. At that point,

MC breaks down, and the malleus and incus detach from the

jaw. The squamosal-dentary joint then becomes dominant and

the malleus and incus become part of the DMME [15,17,18].

The malleus and incus are also initially attached to the jaw and

detach through MC breakdown in placentals, such as mice.

However, the mouse malleus and incus achieve their adult pos-

itions by birth, and MC breakdown occurs shortly thereafter

(between P1 and P2) [8]. The malleus and incus are therefore

never a part of the postnatal mouse jaw. Furthermore, while

the gestational times are not equal (mice approx. 20 days, opos-

sums approx. 14 days), the separation of MC from the jaw is still

distinctly delayed in opossums, equivalent to occurring after two

weeks of postnatal age in mice. As the development of the opos-

sum DMME anatomically mirrors the progression of DMME

evolution in the mammalian fossil record, the opossum provides

an exceptional, living model system for MC breakdown.

In this report, we use anatomical, cellular, gene

expression and functional assays to provide the first evidence

for the cellular and molecular basis for MC breakdown in

opossum. Specifically, we produce evidence correlating

increases in apoptotic cell death and functionally linking

changes in TGF-b signalling to the breakdown of MC, and

the associated freeing of the middle ear ossicles from the

jaw, in opossums. Given the similarity between opossum

development and mammalian evolution, it is possible that

similar processes contributed to at least some instances of

MC breakdown and the associated formation of the DMME

during the reptile to mammal transition.
2. Material and methods
(a) Sample collection
Opossum (M. domestica) pups were collected from a breeding

colony maintained by the Sears Lab at the University of Illinois

at Urbana-Champaign (UIUC) [24], in accordance with fully

approved IACUC procedures. Specimens were euthanized via

carbon dioxide inhalation, followed by cervical dislocation, and

heads were severed at approximately the third cervical vertebrae.
(b) Micro-CT
Opossum pups were first collected on postnatal day 1 and at

5-day intervals thereafter (day 5, 10, 15. . .), up to postnatal day

35 (N ¼minimum of three per stage), and heads were skinned

and fixed in 4% paraformaldehyde overnight at 48C. On the fol-

lowing day, specimens were dehydrated in a methanol series into

100% MeOH, and stored at 2208C. X-ray absorption in cartilage

is similar to that of soft tissue and can be difficult to differentiate.

To account for this, we dried the heads using a Tousimis 931

Series Critical Point Dryer with a critical point set more than

1072 psi and more than 318C for 15–20 min depending upon

head size to increase the visualization of cartilage tissues. Critical

point drying allows the tissue to dry rapidly at high pressure

and thereby preserves size and shape. Imaging of the heads was

conducted on an Xradia Bio MicroCT (MicroXCT-400). X-ray spe-

cifications were set to source voltage 20–40 kV, power 4.0–8.0 W

and current 200 mA, depending upon the extent of ossification

for each specimen. We used a 0.5� lens with 1� binning, and cap-

tured approximately 800–900 images per sample. The developing

cartilage elements of the middle ear and jaw were hand-traced for

every individual MicroCT image to insure correct placement of all

relevant cartilaginous structures (as cartilage structures are often

difficult to visualize using auto-reconstructions), and the tracings

incorporated into overall skull reconstructions. Three-dimensional

reconstruction and analysis was conducted using Amira 5.6.0

software (FEI Visualization Sciences Group, Bordeaux, France).
(c) Immunofluorescence
In total, 16, 18 and 20-day old opossums were cryosectioned, and

put through immunofluorescence (IF) staining to highlight apop-

tosis (using EMD Millipore ApopTag Fluorescein In Situ

Apoptosis Detection Kit (S7110), an indirect TUNEL method),

autophagy (using Anit-LC3B antibody (ab51520 from Abcam),

and cellular proliferation (using Phosphohistone H3 (Ser10) anti-

body from Cell Signaling Technology) [25,26]. More detailed IF

methods can be found in the electronic supplementary Materials

and Methods.
(d) Gene expression assays
Additional samples were cryosectioned to collect tissue for RNA-

Seq. N ¼ 3 specimens were collected for each stage (16, 18 and 20

day) and an Arcturus Veritas Microdissection Instrument was

used to laser capture microdissect (LCM) the MC and malleus

(with minimal surrounding perichondrium) focusing on their con-

nection area. RNA isolation was completed using an Arcturus

PicoPure RNA Isolation Kit, and the Clontech SMARTer Ultra

Low Input RNA Kit for RNA amplification. RNA-Seq Libraries

were constructed using a Nextera XT DNA Sample Preparation

Kit. High-throughput sequencing was conducted on an Illumina

HiSeq 2500, at the W.M. Keck Center for Comparative and Func-

tional Genomics at the University of Illinois [27]. RNA-Seq

analysis was conducted on the UIUC Web-based Galaxy [28] plat-

form (galaxy.illinois.edu), using the Tuxedo protocol [29,30]. The

Database for Annotation, Visualization and Integrative Discovery

(DAVID) Bioinformatics Resource (david.ncifcrf.gov) [31] was also

used to identify Gene Ontology (GO) terms. Resulting datasets

will be deposited and made freely available in NCBI upon accep-

tance and publication. For more details about RNA-Seq methods,

see electronic supplementary Materials and Methods.

The differential expression of select RNA-Seq genes, namely

TGFbr2 and WISP1, was confirmed using fluorescence in situ
hybridization (FISH, probes from Molecular Instruments,

XM_007505215 accession number for TGFBR2, XM_007488362.2

accession number for WISP1) [32] on cryosectioned slides from

16, 18 and 20 day specimens. For details, see the electronic

supplementary Materials and Methods.
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Figure 1. Middle ear sections of opossum postnatal day (P) 18 (d,i,k) and P20 (a – c,e,f,j,l ), and mouse P1 (g) and P2 (h) in dorsal view, showing the MC and
malleus (Mal) separation. All except (a) are counterstained with DAPI (nuclear stain, blue cells). (a) Haematoxylin and eosin stain for anatomical reference, showing
MC on the left and Mal on the right. (b) Proliferation IF (green cells) shows few proliferating cells, and none near MC breakdown. (c) Similarly, autophagy IF (green
cells) shows no autophagy near MC breakdown. (d – f ) Apoptosis TUNEL (green cells) shows significant death in the anterior malleus (asterisks in d – f ), that is
associated with ossification rather than MC breakdown. However, a distinct apoptotic line is present along the MC’s posterior edge at P20 (white arrows in e,f ).
(g,h) Apoptosis TUNEL (green cells) in mice shows no apoptosis associated with MC breakdown. (i – l ) FISH for TGFBR2 (i,j ) and WISP1 (k,l ) (green cells, circled with
broken white lines) shows gene expression during MC breakdown at P20 ( j,l ), but not before (i,k). Scale bars, 100 mm.
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(e) TGF-b knockdown
We performed intraperitoneal injections of TGF-b neutralizing-

antibody (TNA; TGFb1,2,3—MAB1835 from R&D Systems) or

control solution (TGF-b vehicle) into opossum pups every day

from P16 to P22 [33]. The antibody was administered at

10 ng kg21. Pups were euthanized on postnatal day 22. To con-

firm the knockdown of TGF-b signalling, we cryosectioned the

middle ear regions of TNA and control pups at P22, and per-

formed IF for anti-p-Smad2 (Cell Signaling Technology) [34].

pSMAD is a downstream protein of TGF-b signalling [34–36].

MC morphology was visualized using micro-CT scanning and

clearing and staining [34], and apoptotic cells (Cell Signaling

Technology) using TUNEL on cryosectioned middle ear sections.
The length and width of the skull and ectotympanic was

measured in triplicate and averaged for each micro-CT scanned

TNA and control pup, and statistically compared using the

Wilcoxon–Mann–Whitney rank sum test [26]. For details, see

the electronic supplementary Materials and Methods.
3. Results
To provide a reference time point for further assays, we first

sought to confirm the timing of the separation of MC and the

malleus during opossum development. Using refined micro-

CT scanning, we found that the first separation between MC
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and the malleus appears at P20 (electronic supplementary

material, figure S1).

We next performed IFon middle ear sections to assess the cel-

lular processes of apoptosis, autophagy and proliferation in the

opossum MC during its breakdown at P20. We observed no

change in the levels of cellular proliferation or autophagy in

tandem with MC separation at P20 in opossum (figure 1; elec-

tronic supplementary material, figure S3). By contrast, TUNEL

staining reveals a clear line of apoptotic cells along MC’s pos-

terior edge at this time (figure 1). The line of cell death

traverses cell layers, always adheres to the posterior edge of the

degrading MC, and is not present before P20 (figure 1). The

line of cell death is also definitively distinct from ossification-

related apoptosis occurring in the malleus, and the portion of

MC adjacent to the line of cell death does not ossify in extant

mammals [37]. To facilitate comparison of our cell death results

from opossum with those from mouse, we also performed

TUNEL on middle ear sections of P1 and P2 mice (the time of

MC breakdown in mouse [8]). Unlike the situation in opossum,

we did not observe any apoptotic cells in the mouse MC

during its breakdown (figure 1, note that apoptosis is not

observed in the mouse malleus, as in opossum, as MC break-

down in mouse occurs before the onset of malleus ossification).

To investigate the molecular drivers of MC breakdown in

opossums, we used LCM to excise MC and its perichondrium

immediately anterior to the malleus from P16 and P18 (before

breakdown), and P20 (breakdown initiation), and performed

RNA-seq on the collected tissues (electronic supplementary

material, figure S2). We identified fewer than 300 genes (less

than 3%; electronic supplementary material, table S1) that are

differentially expressed by a log-fold change of greater than

or equal to 2 at and before P20. Our GO term analysis identified

significantly upregulated genes with roles in processes includ-

ing apoptosis, including TGFBR2 [38] and WISP1 [39,40], as

well as roles in bone breakdown and cartilage resorption,

such as MMP9 [41,42], ACP5 [43,44] and CTSK [45]. Given

our cellular results, we chose to further investigate the ident-

ified genes with roles in processes including apoptosis.

We performed FISH for TGFBR2 and WISP1 on opossum

middle ear sections from P16, P18 and P20. We found that

both genes are either not expressed or are expressed at very

low levels in the MC region at P16. However, both genes

are strongly expressed in the MC region at P20 (figure 1).

The upregulation of these genes during MC breakdown is

consistent with them having a role in this process.

To further test the hypothesis that TGF-b signalling con-

tributes to MC breakdown in opossum, we injected a TNA

or control solution (TGF-b vehicle) into opossum pups and

assessed the impact on phenotype [33]. Consistent with

TGF-b signalling inhibition, significantly more pSMAD-

positive cells are present in control than TNA treated pups

( p ¼ 0.0001, electronic supplementary material, figure S3).

Control pups also display a line of TUNEL-positive apoptotic

cell death at the leading edge of MC breakdown, while apop-

totic cells are absent from TNA pups (figure 2). In addition,

micro-CT (figure 2) and clearing and staining (electronic

supplementary material, figure S4) results show that MC

and the malleus of TNA remain connected at P22, while

those of controls have separated. All other DMME com-

ponents have similar structures in control and TNA pups

(figure 2; electronic supplementary material, figure S4). For

example, the lengths and heights of the ectotympanic and

skull overlap for TNA and control pups, and do not
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significantly differ between the two (skull length, p-value ¼

0.15; skull height, p-value ¼ 0.57; ectotympanic length,

p-value ¼ 0.15; ectotympanic height, p-value ¼ 0.15).
4. Discussion
Our results suggest that MC breakdown begins at P20 in

opossums, consistent with prior studies which found that:

MC and malleus are separated by the end of the third week
of postnatal development [19], and that by P20 the middle

ear ossicles are no longer connected to the dentary [46].

Our IF studies of developing opossums at this stage are con-

sistent with an increase in apoptotic cell death, but not

changes in cellular autophagy or proliferation, contributing

to the initiation of MC breakdown and the separation of the

middle ear ossicles and jaw during opossum development.

In contrast to these findings, past studies have suggested a

role in MC breakdown for cellular autophagy but not apop-

tosis in mice [11,47,48], and one concurrent study a role for
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clast-activity in mice and opossums in MC breakdown [49].

Our own TUNEL assays on mice middle ear regions confirm

the absence of apoptotic cells during MC breakdown in this

species, and our RNA-Seq results are consistent with an

increase in the expression of clast-activity genes during opos-

sum MC breakdown. Taken together, these findings suggest

that while some cellular processes associated with MC break-

down may be conserved in mice and opossums (e.g. clast

activity), others are likely distinct (e.g. apoptosis).

The differences between clast-mediated MC breakdown in

mice, and apoptosis- and clast-mediated breakdown in opos-

sums, are consistent with developmental systems drift [50]

and/or independent DMME acquisition in placental and mar-

supial lineages. Both hypotheses are intriguing, and the latter

is supported by fossil evidence from the Meckel’s sulcus.

Meckel’s sulci are structurally associated with an MC–

middle ear connection in many Mesozoic mammals [3,22,51].

Two stem eutherians, Prokennalestes [51] and Eomaia [52],

which are related to modern placentals, have clearly preserved

Meckel’s sulci (figure 3) [55]. Similarly, the stem metatherian

Kokopellia also has a distinctive Meckel’s sulcus (figure 3)

[56]. Enlarged Meckel’s sulci are also present in the immediate

outgroups of the metatherian–eutherian clade, such as the cla-

dotherians Peramus [57] and Palaexonodon [53]. Independent

studies of these stem eutherians, metatherians and their out-

groups have all determined that the Meckel’s sulci in these

forms are for the MC, not other soft-tissue structures [51–

53,55–57], which is corroborated by our own survey of the

mandibles of other extant therians [49]. Thus, it can be inferred

that the MC and ear were connected in basal eutherians and

metatherians, and that MC breakdown occurred separately in

the eutherian-placental and metatherian-marsupial lineages

through at least partially distinct cellular patterns (figure 3,

for an alternative scenario see the electronic supplementary

material, figure S5).

This study also identified several genes that are signifi-

cantly upregulated during MC breakdown in opossums,

including TGFBR2. This is of note, as TGF-b signalling,

through its receptor TGFBR2, has been shown to significantly

impact MC and middle ear development in mouse [58,59]. In

mouse, TGF-b signalling contributes to MC patterning, and

null mutations in the pathway can cause premature MC ossifi-

cation such that the jaw and middle ear ossicles remain

connected [34,58,59]. In fact, the phenotype of the ossified

MC in Tgfbr2fl/fl;Wnt1-Cre mutant mice is similar to the ossified

MC in some early mammals [57]. This led to the hypothesis

[3,60] that changes in TGF-b signalling had been involved in

the repeated evolution of the DMME from the ancestral jaw

structure of pre-mammalian synapsids and reptiles.

To test the hypothesis that TGF-b signalling contributes to

MC breakdown in developing opossums, we experimentally

reduced TGF-b signalling levels and observed the impact on

the opossum phenotype. The phenotype of the resulting

opossums is particularly striking and is reminiscent of that

of ancestral mammals. By reducing TGF-b signalling by
protein knockdown, we eliminated the cellular apoptosis

that normally marks the leading edge of MC breakdown in

developing opossums, and the MC breakdown that normally

separates the MC and malleus. All other DMME components

have similar structures in control pups and pups in which

TGF-b signalling has been experimentally reduced, suggesting

that the reduction of TGF-b signalling does not significantly

impact the overall rate or pattern of development. Taken

together, these results suggest that TGF-b signalling in opos-

sums is sufficient to drive MC apoptosis and breakdown,

and the disconnection of the middle ear ossicles and jaw,

with almost no obvious pleiotropic phenotypic effects on

surrounding middle ear structures.

Given the striking anatomical similarities between opos-

sum middle ear development and mammalian middle ear

evolution [3,19], it is possible that similar changes in TGF-b
signalling and apoptosis contributed to DMME evolution in

at least some mammalian lineages. Furthermore, our results

demonstrate that even a small change in a single signalling

pathway (e.g. TGF-b) can trigger MC retention, and can do

so without disrupting the development of other jaw and ear

structures (electronic supplementary material, figure S4). The

apparent ease of this transformation provides a possible

explanation for the frequent gains and losses of an ossified

MC in mammalian lineages proposed from study of the

fossil record (figure 3; electronic supplementary material,

figure S5). A recent study of tympanic membrane (TM) devel-

opment shows that the TM attached to the ectotympanic and

the malleus is transformed in embryogenesis by shifting of

the TM precursor to the lower jaw components in mammals,

in contrast to non-mammalian extant diapsids in which the

TM precursor shifts its attachment to upper jaw components

in embryogenesis [61]. Thus, TM development is convergent

in these amniote clades. New evidence that the disconnection

of the ectotympanic and malleus from the MC occurred

perhaps as many as four times in mammalian evolution

(figure 3), or at least three times (electronic supplementary

material, figure S5), is consistent with the wider evolutionary

homoplasies of the middle ears of extant amniotes.
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