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ABSTRACT OF THE DISSERTATION 

 

Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-

induced iron-dependent oxidative stress 

 

 

by 

Jennifer Tsoi 

 

Doctor of Philosophy in Molecular and Medical Pharmacology 

University of California, Los Angeles, 2017 

Professor Thomas G. Graeber, Chair 

 

 

Malignant transformation can result in melanoma cells that resemble different stages of 

their embryonic development. Our analysis of gene expression profiles from a large panel of 

human melanoma cell lines and patient tumors revealed that melanoma follows a two-

dimensional differentiation trajectory that can be sub-classified into four progressive subtypes. 

This differentiation model is associated with subtype-specific sensitivity to iron dependent 

oxidative stress and cell death known as ferroptosis. Receptor tyrosine kinase mediated 

resistance to MAPK targeted therapies and activation of the inflammatory signaling associated 

with immune therapy involves transitions along this differentiation trajectory, which lead to 

increased sensitivity to ferroptosis. Therefore, ferroptosis-inducing drugs presents an orthogonal 

therapeutic approach to target the differentiation plasticity of melanoma cells to increase the 

efficacy of targeted and immune therapies. Melanoma cells are present at different 

differentiation states and have the ability to dedifferentiate under cellular stress. This has 
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important therapeutic implications as dedifferentiation contributes to intrinsic and acquired 

resistance to MAPK pathway inhibitors, and occurs as a response to inflammatory signaling 

during immunotherapy. Therefore, targeting dedifferentiation is a logical approach to strengthen 

these current therapeutic strategies. Here we categorize melanoma differentiation as four 

distinct stepwise stages and identify a heightened sensitivity to ferroptosis induction with the 

degree of differentiation. Our results further define tumor differentiation as an important 

parameter for patient stratification, and propose a new and highly orthogonal component to add 

to existing therapeutics, namely enhancing targeted signaling inhibition and immune therapies 

by synthetic lethal induction of ferroptosis. 
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INTRODUCTION 
 
Melanoma 

Cutaneous melanoma is an aggressive and deadly form of skin cancer that arises from 

melanocytes, a pigment cell type of neural crest origin that function to protect the skin from 

ultraviolet radiation by production of melanin. In 2017, it is estimated that there will be 87,11 

new cases of melanoma and 9,730 deaths in the US (Howlader et al., 2015). Overall, the 5-year 

survival rate of melanoma is over 90%, due to the majority of cases detected early and localized 

to the primary site of the skin. In this case, surgical resection is highly successful and curative 

with a 5-year survival rate of 98.5%. However, melanoma is a highly aggressive in nature and 

when left undetected can metastasize to distant areas in the body. Surgical resection is less 

successful in these cases, and the 5-year survival drops significantly to 62.9% and 19.9% when 

the tumor has spread to regional lymph nodes and distant sites respectively (Howlader et al., 

2015). Melanoma can metastasizes to distant organs such brain, lung, liver, gastrointestinal 

tract, soft tissue, and bone. In patients where the cancer has metastasized to non-pulmonary 

visceral organs, the average survival is less than a year (Balch et al., 2009), demonstrating the 

urgent need for effective systemic therapy to treat metastatic disease. 

 

Melanocyte development  

The developmental history of melanocytes as progenitors from neural crest could 

potentially provide an explanation for the aggressive and invasive nature of melanoma. Neural 

crest cells are a transient, multi-potent, and highly migratory population of cells that arises from 

the neural tube during embryonic development (Mort et al., 2015; Sauka-Spengler and Bronner-

Fraser, 2008; Thomas and Erickson, 2008). Neural crest cells are programmed to undergo an 

epithelial to mesenchymal-like transition to delaminate from the neural tube and migrate 

extensively to various regions throughout the embryo where they differentiate into multiple cell 
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lineages in addition to melanocytes, such as neurons, glia, bone, and cartilage derivatives. 

Melanocyte precursors, melanoblasts, migrate primarily dorsolaterally along ectoderm and must 

then invade into the ectoderm where they complete differentiation to melanocytes. The lineage 

switch from neural crest to melanoblasts and melanocytes is regulated through microphthalmia-

associated transcription factor (MITF), the master regulator of melanocyte development and 

survival. MITF is expressed early in fate specification to melanoblasts via neural crest lineage 

transcription factors, paired-box transcription factor PAX3, and the SRY-related HMG-box 

transcription factor SOX10. MITF then activates the expression of genes involved in melanocytic 

properties and melanogenesis such as tyrosinase (TYR), tyrosinase-related protein 1 (TYRP-1), 

dopachrome tautomerase (DCT), and MART-1 (MLANA). Other signaling pathways are also 

proposed to be involved in the induction of MITF and its target genes such as β-catenin/Wnt 

and endothelin receptor B signaling (Hou et al., 2004; Schepsky et al., 2006; Takeda et al., 

2000).  

 

Role of MAPK/ERK pathway in melanoma 

The majority of melanomas are driven through genomic alterations that result in the 

hyper-activation of the mitogen-activated protein kinase (MAPK) extracellular signal-regulated 

kinase (ERK) pathway. The MAPK/ERK pathway transmits extracellular signals through RAS, 

RAF, MEK and ERK proteins. The RAS protein is a small membrane GTPase that in its inactive 

state is GDP-bound. Ligand-mediated activation of receptor tyrosine kinases (RTK) promotes 

the loading of GTP and switches RAS to an “on” conformational state. In its active state RAS-

GTP recruits RAF to the membrane, promoting RAF homodimerization or heterodimerization, 

and activation of the RAF kinases. Activated RAF phosphorylates MEK, which in turn 

phosphorylates ERK, and activated ERK phosphorylates other targets to promote survival and 

proliferation (Dhillon et al., 2007; Santarpia et al., 2012; Sullivan and Flaherty, 2013). 

Approximately 15-30% of driver mutations occur in NRAS and another 40-60% of 
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mutations occur in BRAF (Akbani et al., 2015; Davies et al., 2002; Goel et al., 2006; Hodis et al., 

2012). In NRAS, these mutations commonly work by stabilizing the binding and preventing 

hydrolysis of GTP, which maintains NRAS in the active conformation (Santarpia et al., 2012; 

Sullivan and Flaherty, 2013). While potentially a promising target, the structure of RAS and the 

high affinity for GTP has made development of RAS inhibitors challenging (Samatar and 

Poulikakos, 2014). Targeting BRAF has been more successful, as the most common BRAF 

mutation is from a valine to glutamic acid substitution in codon 600 (V600E, earlier misreported 

as V599E) and comprises about 90% of all BRAF-mutant cancers in general. This mutation 

reside in the kinase activation segment and acts as a phosphomimetic that renders BRAF 

constitutively active, functional as a monomer, and RAS-independent (Davies et al., 2002; Wan 

et al., 2004). This finding has led to the development of targeted therapies selectively against 

mutant BRAFV600E such as vemurafenib and dabrafenib that demonstrate impressive initial 

clinical response rates (Chapman et al., 2011; Flaherty et al., 2012; Hauschild et al., 2012). 

However, resistance generally develops in less than a year for these patients, while there still 

remain some patients intrinsically resistant to therapy. 

 The major route of resistance to mutant BRAF inhibitors is through reactivation of MAPK 

signaling (Samatar and Poulikakos, 2014). Genomic amplification of BRAFV600E leading to BRAF 

overexpression (Shi et al., 2012), and alternative splicing of BRAFV600E have both been 

observed in patients. The alternative splice variants encode a truncated BRAF protein that lacks 

a RAS-binding domain, resulting in enhanced dimerization capability and reduced sensitivity to 

RAF inhibitors (Poulikakos et al., 2011). Overexpression of another RAS isoform CRAF or other 

MAPK kinases such as TPL2/COT, in addition to mutations in MEK have also been proposed as 

resistance mechanisms (Emery et al., 2009; Johannessen et al., 2010; Montagut et al., 2008; 

Wagle et al., 2014). RAS-mediated mechanisms of re-activation can also promote resistance 

such as through acquisition of activating NRAS mutations (Nazarian et al., 2010) or by loss of 

RAS negative regulator neurofibromin (NF1), which facilitates the hydrolysis of GTP to GDP 
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(Nissan et al., 2014; Whittaker et al., 2013).  

Combination of BRAF mutant inhibitors with inhibitors of its downstream target MEK 

have been effective in restoring sensitivity from MAPK reactivation and prolonging patient 

response (Eroglu and Ribas, 2016; Flaherty et al., 2012). This combination also helps reduce 

the occurrence of secondary skin lesions caused by paradoxical activation of MAPK signaling 

and hyper-proliferation in cells with wild-type BRAF protein (Su et al., 2012). With the improved 

patient response rates and survival compared to BRAF inhibitor monotherapy, the BRAF and 

MEK inhibitor combination therapy is the standard-of-care for targeted therapy treatment in 

BRAF mutant melanomas (Eroglu and Ribas, 2016; Luke et al., 2017).  

 

Melanoma dedifferentiation in MAPK inhibitor cross-resistance 

Resistance can also occur through MAPK pathway independent mechanism through 

upregulation of receptor tyrosine kinases (RTKs), which result in broad pathway inhibition 

resistance. RTKs such as the epidermal growth factor receptor (EGFR), platelet-derived growth 

factor receptor β (PDGFRβ), and insulin-like growth factor receptor (IGFR) (Girotti et al., 2013; 

Nazarian et al., 2010; Paraiso et al., 2014; Villanueva et al., 2010) have been found to be 

upregulated in resistance. High levels of RTKs are also indicative of a dedifferentiated 

melanoma transcriptional state, characterized by low levels of MITF and melanocytic genes 

(Konieczkowski et al., 2014a; Müller et al., 2014). As with acquired resistance, this 

dedifferentiation transcriptional state is associated with intrinsic cross-resistance to multiple 

MAPK pathway inhibitors targeting BRAF, MEK, and ERK (MAPKi). Accordingly, MITF loss and 

RTK upregulation has been observed in patient tumors during disease progression on MAPKi 

therapy (Konieczkowski et al., 2014a; Müller et al., 2014; Tirosh et al., 2016). Dedifferentiation 

was also found to be associated with an NF-κB high transcriptional state, observed in both cell 

lines and patient tumors (Konieczkowski et al., 2014a). Induction of NF-κB signaling by 

treatment with TNFα was able to promote dedifferentiation and MAPKi resistance. This therapy 
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resistance was specific for the MAPK pathway as it does not rescue other cytotoxic drugs 

(Gray-Schopfer et al., 2007; Konieczkowski et al., 2014a). The receptor tyrosine kinase AXL 

was identified to be one of the best predictive markers for this dedifferentiated MAPKi resistant 

state and exhibited expression patterns highly inversely correlated with MITF. AXL over-

expression itself was sufficient to confer resistance, however there is mixed reports on the 

efficacy of combinatorial therapy with AXL inhibitors (Konieczkowski et al., 2014a; Müller et al., 

2014).  

 

Melanoma dedifferentiation in immunotherapy resistance 

The dedifferentiation response of melanoma to inflammatory signaling also has 

implications in immunotherapy. Melanoma is among the most highly mutated cancers, likely due 

to the accumulation of UV-induced DNA damage from sun exposure of the skin (Alexandrov et 

al., 2013). The increased immunogenicity through mutated antigens provides an explanation for 

the immune infiltrates commonly found within tumors by histopathological analysis (Thomas et 

al., 2013). The presence of immune infiltration is significantly associated with improved outcome 

in patients, which underscores the therapeutic value of an active immune response (Akbani et 

al., 2015; Bogunovic et al., 2009; Fridman et al., 2012; Jönsson et al., 2010; Thomas et al., 

2013). The importance of the immune response and formation of “memory” is especially evident 

in the long-lasting results that can be achieved by immunotherapy (Hodi et al., 2010; Larkin et 

al., 2015; Robert et al., 2015; Rosenberg et al., 2011). Immunotherapies that restore anti-tumor 

T cell immunity such as adoptive cell transfer of exogenously re-activated T cells (Rosenberg et 

al., 2011) and immune checkpoint blockade inhibitors targeting CTLA-4 and PD-1/PD-L1 have 

been able to remarkably achieve durable responses in patients (Hodi et al., 2010; Larkin et al., 

2015; Robert et al., 2015). 

Analysis of epitopes recognized by tumor-infiltrated lymphocytes isolated from patient 

tumors had identified that melanocyte lineage antigens were those frequently recognized 
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(Brichard et al., 1993; Kawakami et al., 2000). Therefore, dedifferentiation of melanoma cells 

could provide a means of immune evasion by down-regulating the expression of melanocytic 

antigens recognized by CD8+ T cells. This has been demonstrated in a mouse model of 

melanoma with tumors expressing the melanocytic antigen gp100, and adoptive cell transfer 

(ACT) of CD8+ T cells from transgenic pmel-1 mice expressing a gp100 specific T-cell receptor 

(Landsberg et al., 2012). In this model, there was an initial strong tumor regression 

demonstrating the immune response and efficacy of ACT therapy. However, the tumors 

relapsed with hypomelanotic areas, pro-inflammatory cytokine expression, and loss of the 

gp100 antigen. Thus, dedifferentiation was able to promote immunotherapy resistance by 

altering the antigenic landscape to avoid immune recognition. Furthermore, inflammatory MITF-

low melanomas were shown to have greater recruitment of myeloid cells (Riesenberg et al., 

2015), which could support tumor growth or immune suppression (Hugo et al., 2015; Soudja et 

al., 2010). 

 

Discussion 

Advances in the field of tumor biology and immunology have led to new treatment 

approaches that significantly prolong survival and improve patient outcome. However, 

melanoma cells are highly plastic, with the ability to switch differentiation states during 

resistance to both targeted and immune therapies. Low baseline levels of MITF and high levels 

of AXL arise from acquired resistance and are predictive of intrinsic resistance to broad MAPK 

pathway inhibition (MAPKi). A high MITF differentiated state is also important for immune 

recognition as melanocytic lineage proteins can serve as tumor-associated antigens recognized 

by CD8+ T cells (Kawakami et al., 2000). This collective impact of differentiation state and 

plasticity on current melanoma therapies highlights the importance of further understanding 

melanoma differentiation. In this study, we propose that melanoma cells span a differentiation 

spectrum that can be divided into four subtypes and include a transient neural crest 
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transcriptional program. This refinement of the differentiation program combined with 

pharmacogenomics analyses guided us in the discovery of vulnerability to iron-dependent 

oxidative stress associated with dedifferentiation than can be used to overcome resistance. 
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CHAPTER 1: 

Melanoma subtypes based on multi-stage differentiation 

 

INTRODUCTION 

Analysis of tumor transcriptional profiles has enabled the discovery of shared molecular 

features and tissue cell type-based classification defining subtypes predictive of survival, 

response to therapy, and such work has aided in guiding rational treatment strategies (Alizadeh 

et al., 2000; Perou et al., 2000; Sotiriou and Pusztai, 2009; Verhaak et al., 2010). In melanoma, 

molecular classification of cell lines revealed two dominant phenotypes that were predictive of 

metastatic potential and independent of mutation status (Hoek et al., 2006). The “proliferative” 

phenotype expressed higher levels of the melanocyte lineage transcription factor MITF and 

differentiation markers. The “invasive” phenotype is less differentiated with slower proliferation 

but demonstrates greater motility. Subsequent studies have found that these phenotypic 

classifications have significant prognostic value in terms of the response to MAPK pathway 

inhibitors (MAPKi). The low MITF invasive phenotype cells were generally more resistant to 

MAPKi, consistently expressed high levels of the receptor tyrosine kinase (RTK) AXL, and were 

associated with an inflammatory transcriptional state (Konieczkowski et al., 2014b; Müller et al., 

2014). 

Multiple studies have shown that these transcriptional states are not fixed, as melanoma 

cells are also known to exhibit dynamic plasticity with the capacity to dedifferentiate and switch 

between phenotypes with therapy resistance and pro-inflammatory signaling (Landsberg et al., 

2012; Müller et al., 2014). The differentiation plasticity of melanoma could have its origins from 

the embryonic history of melanocytes, which are derived from the neural crest, a transient, 

migratory, and multi-potent population of cells that can differentiate into diverse cell types 

(Sauka-Spengler and Bronner-Fraser, 2008). With dedifferentiation, neural crest markers such 

as the neural growth factor receptor NGFR has been found to be upregulated in therapy 
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resistance (Fallahi‐Sichani et al., 2017; Landsberg et al., 2012; Titz et al., 2016).  

In this study, we take advantage of the relative purity of a cohort of equivalently derived 

melanoma cell lines to refine the melanoma classification and to relate them to stages of 

melanocyte differentiation. As cell lines do recapitulate much of the gene expression patterns in 

patient tumors, a cell line guided analyses enables identification of  specific melanoma intrinsic 

subtypes. Our approach reveals that melanoma cells span a two-dimensional spectrum of four 

differentiation-related subtypes and this spectrum also reflect a cellular trajectory that cells 

traverse through during phenotype switching in therapy resistance. 
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RESULTS 
 
Melanoma Cell Line and Tumor Gene Expression is Highly Concordant 

To test the similarity between melanoma cell lines and bulk tumors, we compared the 

maximum expression of each gene within skin cutaneous melanoma (SKCM) tumors (n=470) 

from The Cancer Genome Atlas (TCGA) against that from a panel of 53 human melanoma cell 

lines, including paired acquired resistance sub-lines, established from patient biopsies. There 

was a strong concordance (R=0.87) between bulk tumor and cell line gene expression, 

demonstrating how well cell lines retain tumor expression patterns (Figure 1-1). The residual 

disparity is mostly from genes expressed higher in tumors than in cell lines. Included within 

these genes were highly immune-specific CD markers and response genes encoding cytokines, 

cytotoxic molecules, and complement components, reflecting immune infiltration within at least a 

subset of tumors. Additionally, a number of keratinocyte-type stratified epithelial keratin genes 

such as keratin pairs KRT1/KRT10, and KRT5/KRT14 (Moll et al., 2008) were found highly 

expressed in tumors, demonstrating the presence of normal skin-associated tissue from the 

biopsy site of origin in some cases.  
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Figure 1-1. Melanoma cell line and tumor expression profiles are highly concordant. 
Scatterplot of maximum gene expression in the melanoma bulk tumors and cell lines show 
strong concordance. Maximum expression was defined as the 95th percentile value to reduce 
the effects of outliers. Dashed lines represent two standard deviations from the diagonal. 

R= 0.87 

Figure 1-1 
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Melanoma Subtypes Reflect Four Progressive Differentiation States 

Consensus hierarchal clustering (Monti et al., 2003) of the expression profiles from the 

panel of 53 human melanoma cell lines revealed that cell lines fall robustly into four clusters 

numbered C1-C4 with no appreciable gain in cluster stability when increasing to higher numbers 

of clusters (Figure 1-2A, Figure 1-2B). We next evaluated every combination of cluster pairs 

using SigClust (Liu et al., 2008) and found each cluster to be significantly different from one 

another (Figure 1-2C). Additionally, all of the clusters arranged into distinct groups by principal 

component analysis (PCA) (Figure 1-2D). The cell lines and their respective annotations can be 

found in Table 1-1 and Table 1-2. 

 We next investigated how our four melanoma clusters were related by differentiation. We 

performed a comparative analysis to a human in vitro model of melanocyte differentiation (Mica 

et al., 2013) where human embryonic stem (ES) cells were induced to differentiate sequentially 

to neural crest, melanoblast, and melanocyte stages. PCA of these differentiation stage gene 

expression profiles, which included primary melanocytes as a reference control, showed that 

each stage segregated progressively along a two-dimensional arc-like trajectory with 

differentiation. Projection of the melanoma cell lines onto the same melanocyte differentiation 

stage-defined PCA space similarly separated out the four identified melanoma clusters, 

indicating a progressive four-stage differentiation relationship (Figure 1-3A). 

Enrichment analysis of the gene expression signal-to-noise ratios for each cluster 

compared with the remaining three clusters showed a progressive pattern of differentiation-

related enrichment of Gene Ontology biological process terms and guided the naming of the 

subtypes (Figure 1-3B). C1 was defined as the undifferentiated subtype due to enrichment for 

invasive phenotype gene sets such as those involving cell adhesion and migration, in addition to 

inflammation-related gene sets as observed previously in dedifferentiated low MITF melanoma 

cells (Hoek et al., 2006; Konieczkowski et al., 2014b). C2 was defined as the neural crest-like 

subtype due to enrichment for neural crest-related gene sets. As a generally dedifferentiated 
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subtype, the neural crest-like subtype shared enrichment for the characteristic 

invasive/inflammation-related gene sets. C3 was defined as the transitory subtype, due to 

concurrent enrichment of neural crest and pigmentation associated gene sets, suggesting a 

transitional or mixed neural crest to melanocytic state. Finally, C4 is the most differentiated and 

was defined as the melanocytic subtype, due to loss of a neural crest signature and a strong 

enrichment for pigmentation-associated gene sets.  

We next explored the expression patterns of transcription factors and RTK genes across 

the identified melanoma subtypes  (Figure 1-4A). As expected, the undifferentiated and neural 

crest-like subtypes both had low levels of MITF and high levels of AXL. In addition, SMAD3 was 

elevated in these two subtypes, suggesting a role for TGFβ signaling with the invasive 

phenotype as previously described (Hoek et al., 2006; Rodeck et al., 1999). These two subtypes 

do have some notable differences. In the undifferentiated subtype, we observed significantly 

lower levels of ERBB3, neural crest marker NGFR, and transcription factor SOX10. As SOX10 

is a critical neural crest lineage specifying transcription factor essential for melanocyte 

development (Sauka-Spengler and Bronner-Fraser, 2008), its absence is further supportive of 

an even less differentiated state. Genes upregulated in the undifferentiated subtype include 

SOX9 and EGFR, both of which have been shown to be promoted by SOX10 loss (Shakhova et 

al., 2012; Sun et al., 2014) . The transitory and melanocytic subtypes are a refinement of the 

previously reported differentiated proliferative phenotype, characterized by higher expression of 

MITF and lower expression of AXL. Wnt/beta-catenin signaling has been implicated in 

enhancing MITF target gene expression, and an increased expression of beta-catenin 

(CTNNB1) is observed across these two subtypes in support of a more mature melanocyte 

signature (Schepsky et al., 2006). To evaluate the differential MITF activity between these two 

subtypes, we performed enrichment analysis using previously described MITF target genes to 

infer activity (Hoek et al., 2008a). The melanocytic subtype showed stronger enrichment of 

these MITF target genes (Figure 1-4B), supportive of greater differentiation within this subtype. 
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Figure 1-2. Identification of four melanoma subtypes. (A) Consensus hierarchical clustering 
of melanoma cell lines identifies four robust clusters. (B) Cumulative distribution function (CDF) 
plot reflecting four as the optimal number of clusters. (C) Pairwise comparisons using SigClust 
showing that the cluster delineations are statistically significant. (D) PCA of melanoma cell line 
expression profiles annotated by identified clusters.  
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Figure 1-3. Melanoma subtypes are related by progressive differentiation. (A) PCA of gene 
expression profiles from an in vitro embryonic stem cell (ESC) to melanocyte multi-stage 
differentiation system (top) and projection of melanoma cell line expression profiles into 
melanocyte differentiation stage PCA space show progressive separation of clusters (bottom). 
(B) Heatmap of rank-based enrichment analysis p-values of each individual cluster vs. the 
remaining clusters showing progressive enrichment patterns of differentiation-associated gene 
ontology (GO) gene sets. 
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Figure 1-4. Expression patterns of transcription factors and receptor tyrosine kinases 
across melanoma subtypes. (A) Boxplots of select transcription factors and receptor tyrosine 
kinase (RTK) genes in cell line expression profiles showing their subtype-specific patterns. (U: 
Undifferentiated, N: Neural crest-like, T: Transitory, M: Melanocytic; number in each group: 
U=10, N=42, T=12, M=17; Kruskal-Wallis ANOVA and Dunn's post hoc test p-values: * % 0.05, 
** % 0.01, *** % 0.001). (B) Enrichment analysis of Melanocytic vs. Transitory subtypes to infer 
MITF activity in cell lines using an independently identified list of MITF target genes. 
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Melanoma differentiation subtypes are consistent with and unify other independent cell 

line classifications 

We next looked for commonality between our clusters to other independently identified 

melanoma cell line classifications (Hoek et al., 2006; Dugo et al., 2015) using the tool SubMap 

subtype comparison tool (Hoshida et al., 2007). In the classification by Hoek et al, three cohorts 

A, B, and C were consistently observed by hierarchical clustering but the strongest 

transcriptional signatures were found in Cohort A and Cohort C, which defined the “proliferative” 

and “invasive” phenotype respectively. Comparison of these cohorts with our identified subtypes 

shows informative mapping relationships for all cohorts, with the melanocytic subtype (C4) 

mapped to Cohort A, the transitory subtype (C3) mapped to both Cohort A and B, and both the 

undifferentiated and neural crest-like subtype mapped (C1-C2) mapped to Cohort C (Figure 1-

5A). In an independent set of melanoma cell lines, Dugo et al identified three subtypes that also 

refined the invasive phenotype into two subclasses with differential ERBB3 and EGFR levels. 

Our subtypes again map informatively to all three subtypes, with the transitory and melanocytic 

(C3-C4) mapping to the Proliferative EGFRLOWERBB3HIGH, the neural crest-like subtype 

mapping to the Invasive EGFRLOWERBB3HIGH, and the undifferentiated subtype mapping to the 

Invasive EGFRHIGHERBB3LOW (Figure 1-5B). These results show that our clusters are consistent 

with independent analysis from the literature and importantly unify other subtype reports, which 

were previously not fully concordant or not understood in a differentiation context.  
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Figure 1-5. Comparison to independent datasets show subtype-specific overlap with 
previous classifications and MITF signatures. (A-B) Submap analysis comparing the four 
identified melanoma subtypes to the Hoek et al. cohorts (A) and Dugo et al. subtypes (B).  
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Four-Stage Differentiation Model Reflects Treatment-Induced Step-wise Dedifferentiation 

Our results demonstrate that melanoma cells can exist at distinct baseline differentiation 

states. As melanoma cells are highly plastic and can dedifferentiate in response to MAPK 

pathway inhibition and pro-inflammatory signaling from immunotherapy, we sought to relate 

these treatment-induced differentiation transitions to our subtypes. We first defined 

transcriptional signatures that would allow us to distinguish each subtype. For each signature, 

differentially upregulated genes specific to each subtype were determined using a log2 fold 

change threshold of 1.5 and 5% false discovery rate. Additionally, since our subtypes were 

related by progressive differentiation states as proposed above, we tested the extent of shared 

differentially expressed genes between ‘adjacent’ subtypes compared to other subtype pairings. 

Highly consistent with our interpretation of the subtypes as four progressive differentiation 

states, the only cluster pairings that generated an appreciable signature were between 

sequential clusters in the two-dimensional arc-like trajectory model (Figure 1-6).  

We applied these signatures to investigate RTK-upregulated, dedifferentiation-

associated acquired resistance to MAPK pathway inhibitors (Müller et al., 2014). To quantify the 

degree of treatment-induced dedifferentiation, we calculated a differentiation trajectory position 

score for each sample using a “center of mass” approach that reflects the relative position along 

the differentiation trajectory where the sample has the strongest gene expression signature 

match. The difference between each sample from its respective control in the calculated score 

thus represents the magnitude and direction of change in differentiation. In the BRAF mutant 

cell lines M229P and M238P, we observed that cell lines begin with different initial differentiation 

stages as defined by their subtype signatures, but shift notably towards the undifferentiated 

signature upon acquired resistance to vemurafenib (M229R, M238R) (Figure 1-7). As a negative 

control, resistance mediated by genomic alterations that directly reactivate the MAPK pathway, 

such as through NRAS mutation (M249R) or BRAF alternative splicing (M395R, M397R) do not 

show differentiation changes (Nazarian et al., 2010). 
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To evaluate the temporal changes that occur with the acquisition of resistance, we 

performed a vemurafenib treatment time-course study using the M229 parental cell line, which 

starts as a transitory subtype but switches to an undifferentiated subtype in M229R. Supportive 

of our differentiation model, treatment with vemurafenib produced gene expression changes 

with time that marked progressive dedifferentiation through our subtype signatures towards the 

undifferentiated subtype (Figure 1-8). We also observed similar temporal changes of 

dedifferentiation in an additional melanoma cell line, M397, which has an acquired resistant 

subline through MAPK pathway re-activation by BRAF alternative splicing (M397R) (Figure 1-7, 

Figure 1-8A). These routes of acquired resistance are not mutually exclusive, as 

dedifferentiation can be a transient response of adaptive resistance as previously observed by 

us and others (Fallahi‐Sichani et al., 2017; Ravindran Menon et al., 2014; Sun et al., 2014; Titz 

et al., 2016). Thus, an adaptive phase could allow evolution of resistant clones with genetic 

mechanisms that enable return to the parental differentiation signature. Alternately, the 

dedifferentiation signature can be stabilized, such as through loss SOX10 by epigenetic 

reprogramming in BRAF inhibition resistant clones (Shaffer et al., 2017).  

Since current treatment strategies for targeted therapy includes both BRAF and MEK 

kinase inhibition, we applied our four-stage differentiation model to an independent study of 

RTK-driven single and double drug (BRAFi and MEKi) resistant cell lines (Figure 1-9).  We 

again find similar dedifferentiation patterns towards the undifferentiated subtype signature in 

both single and double drug resistance. In patient tumor biopsies, there are multiple 

mechanisms of multiple resistance mechanisms that contribute to heterogeneous responses in 

patient samples. This diversity has been reported in tumors, where different resistance 

mechanisms were found within the same patient and even within the same lesion (Allen et al., 

2014; Hugo et al., 2015; Shi et al., 2014). Additionally, both low and high MITF cells can be 

present in the same patient tumors at varying degrees (Eichhoff et al., 2010; Hoek et al., 2008b; 

Tirosh et al., 2016). Therefore, patient tumor-based results will tend to reflect the overall 
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heterogeneity of melanoma therapeutic response. Nevertheless, within the heterogeneity of 

patient tumors, our subtype signatures were also able detect dedifferentiation in patient biopsies 

on-treatment (Figure 1-10) or upon disease progression (Figure 1-11A) on double drug MAPK 

therapy (Hugo et al., 2015; Kwong et al., 2015; Tirosh et al., 2016). As expected, in a 

comparison across a panel of patient biopsies at disease progression, tumors with established 

MAPK re-activation resistance mechanisms do not exhibit dedifferentiation changes from 

baseline at relapse (Figure 1-11B). 

We next applied our subtype signatures to investigate immunotherapy resistance 

occurring through inflammation-induced dedifferentiation. Such dedifferentiation has been 

shown to occur in vivo in a mouse model of adoptive cell transfer (ACT) using transgenic 

cytotoxic T cells targeting the melanocytic antigen gp100 (Landsberg et al., 2012). 

Dedifferentiation decreased tumor antigen presentation, as scored by loss of melanocytic 

biomarkers (gp100, TRP2), and resulted in tumor progression. As expected, we observed 

greater expression of dedifferentiation signatures within the relapse group compared to the 

control both in the tumors and in tumor-derived cell lines (Figure 1-12). Collectively, these 

results demonstrate that our differentiation framework is consistent with and can semi-

quantitatively reflect dedifferentiation associated with current melanoma therapy resistance. 
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Figure 1-6. Identification of subtype signatures for scoring and visualization of treatment-
induced dedifferentiation. (A) Numbers of differentially upregulated genes in each individual 
subtype or shared between pairs of subtypes when compared to the remaining subtypes (log2 
fold change ≥ 1.5, 5% false discovery rate). (B) Heatmap of subtype gene signatures in cell line 
gene expression profiles. Average of each subtype signature z-score are shown at the bottom.  
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Figure 1-7. RTK upregulation mechanism of BRAFi acquired resistance show subtype 
transitions towards dedifferentiation. Heatmap of signature genes (top), average signature z-
scores (middle), and differentiation trajectory position changes (bottom) in matched parental and 
resistant cell lines with different indicated mechanisms of vemurafenib acquired resistance. 
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Figure 1-8. BRAF inhibition induces step-wise dedifferentiation towards acquired 
resistance. (A) Heatmap of signature genes (top), average signature z-scores (middle), and 
differentiation trajectory position changes (bottom) in a time-course of M229 and M397 
melanoma cell line treated with vemurafenib compared to DMSO vehicle control. (B) Schematic 
representing progressive dedifferentiation along our two-dimensional trajectory model with 
increased treatment time with vemurafenib.  
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Figure 1-9. Single and double drug MAPKi acquired resistance show subtype signature 
transitions towards dedifferentiation. Heatmap of signature genes (top), average signature z-
scores (middle), and differentiation trajectory position changes (bottom) in matched parental (P) 
or single drug resistant (DR) or double drug resistant (DDR) samples of the three indicated cell 
lines. DR: vemurafenib (BRAFi); DDR: vemurafenib + selumetinib (MEKi).  
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Figure 1-10. Tumor biopsies of patients on MAPKi treatment show dedifferentiation 
transitions. Heatmap of signature genes (top), average signature z-scores (middle), and 
differentiation trajectory position changes (bottom) in tumors from 11 patients (Pt) at baseline, 
on-treatment, or disease progression (B, OT, DP). Patients were on double drug (dabrafenib + 
trametinib (BRAFi+MEKi)) therapy with the exception of Pt2 on single drug therapy 
(vemurafenib (BRAFi)). On treatment samples are 12 ± 5 days. 
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Figure 1-11. Tumor biopsies of patients at disease progression on MAPKi show 
dedifferentiation transitions. (A) Heatmap of signature genes (top), average signature z-
scores (middle), and differentiation trajectory position changes (bottom) in 4 reported post-
relapse tumors at baseline with statistically significant dedifferentiation at disease progression 
on double drug therapy (B: baseline, DD-DP: dabrafenib and trametinib therapy) (B) 
Comparison of changes in differentiation trajectory score of patient tumors with dedifferentiation, 
MAPK re-activation, or mixed dedifferentiation and MAPK reactivation markers upon disease 
progression on therapeutic RAF and/or MEK inhibition. Pairwise p-values: * % 0.05, ** % 0.01, 
overall Kruskal-Wallis p-value 0.002. For all panels, negative differentiation trajectory position 
changes reflect dedifferentiation. 
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Figure 1-12. Immunotherapy-induced dedifferentiation in the context of the four-stage 
differentiation model. Heatmap of signature genes, average signature z-scores, and 
differentiation trajectory position changes for murine HCmel3 tumors or cell lines with treatment 
control or relapse from adoptive transfer of antigen specific T cells. Dark grey arrows represent 
increased differentiation state and the light grey arrow indicates the treatment induced 
dedifferentiation direction. 
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TABLE 1-1. Undifferentiated and Neural-crest like subtype cell lines 
 

Cell Line Mutation Status Subtype 
M407 BRAF mutant Undifferentiated 
M410 BRAF mutant Undifferentiated 
M257 Wild-type Undifferentiated 
M244 NRAS mutant Undifferentiated 
M296 NRAS mutant Undifferentiated 
M318 NRAS mutant Undifferentiated 
M381 BRAF mutant Undifferentiated 
M406 BRAF mutant Undifferentiated 

M229AR BRAF mutant Undifferentiated 
Sbcl2 NRAS mutant Undifferentiated 
M233 BRAF mutant Neural crest like 
M243 NRAS mutant Neural crest like 
M245 NRAS mutant Neural crest like 
M238 BRAF mutant Neural crest like 
M370 BRAF mutant Neural crest like 
M409 BRAF mutant Neural crest like 
M423 NA Neural crest like 
M418 Wild-type Neural crest like 
M402 BRAF mutant Neural crest like 
M411 BRAF mutant Neural crest like 

M238AR BRAF mutant Neural crest like 
M255 BRAF mutant Neural crest like 

M409AR BRAF mutant Neural crest like 
M420 BRAF mutant Neural crest like 
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TABLE 1-2. Transitory and Melanocytic subtype cell lines 
 

Cell Line Mutation Status Subtype 
M395 BRAF mutant Transitory 
M308 BRAF mutant Transitory 
M229 BRAF mutant Transitory 
M263 BRAF mutant Transitory 
M297 BRAF mutant Transitory 
M376 BRAF/NRAS double mutant Transitory 
M398 BRAF/NRAS double mutant Transitory 
M375 Wild-type Transitory 
M399 BRAF mutant Transitory 

M395AR BRAF mutant Transitory 
M397 BRAF mutant Transitory 

M397AR BRAF mutant Transitory 
M202 NRAS mutant Melanocytic 
M207 NRAS mutant Melanocytic 
M230 Wild-type Melanocytic 
M249 BRAF mutant Melanocytic 
M262 BRAF mutant Melanocytic 
M285 Wild-type Melanocytic 
M311 NRAS mutant Melanocytic 
M417 BRAF mutant Melanocytic 
M416 BRAF mutant Melanocytic 
M421 BRAF mutant Melanocytic 
M368 Wild-type Melanocytic 
M403 BRAF mutant Melanocytic 
M408 NRAS mutant Melanocytic 

M249AR BRAF/NRAS double mutant Melanocytic 
M412a NRAS mutant Melanocytic 
M412b NRAS mutant Melanocytic 

PB Wild-type Melanocytic 
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DISCUSSION 

Multiple studies have shown that melanoma cell lines and tumors can consistently be 

categorized into two phenotypic states based on differential levels of the transcription factor 

MITF. Classification of bulk tumors had identified subtypes that take into account the cells 

present in the microenvironment, however, our study is distinct in that we focused on identifying 

melanoma cell autonomous subtypes. We achieved this by taking a large cohort cell line 

approach, owing to the more homogeneous population and supported by the high concordance 

in gene expression observed between cell lines and tumors. There was published evidence of 

additional subtypes beyond the MITF-low and MITF-high phenotypes in cell lines (Dugo et al., 

2015; Hoek et al., 2006), and importantly our results organize these findings into a unified 

description of four transcriptional subtypes that span a set of progressive differentiation states. 

Further supportive of this two-dimensional differentiation trajectory is the observation that 

melanoma cells de-differentiate progressively through these states with elapsed time under 

BRAF inhibitor treatment and accompanying acquisition of BRAFi resistance. We propose that 

changes in melanoma differentiation follow a progression through these four states in a two 

dimensional arc like trajectory. 

Our identification of melanoma specific subtypes may also have important roles in 

immunohistochemical (IHC) diagnosis of melanoma. Poorly differentiated melanoma 

stain negative for melanocytic markers such as tyrosinase and MART-1, and thus have 

been a challenge to distinguish from other less differentiated cancer types. SOX10 has 

been used as a specific marker of cancers that arise from neural crest derived cells such 

as melanocytes (Ordóñez, 2014). NGFR, while not a melanocytic marker, has also been 

used to stain de-differentiated or desmoplastic melanomas that are negative for 

melanocytic antigens (Lazova et al., 2010). However, our refinement of de-differentiated 

“invasive” phenotype melanomas into two subtypes reveals that staining with SOX10 or 
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NGFR could result in lack of detection of melanoma cells from the more fully 

undifferentiated subtype. Therefore, our identification of the more fully undifferentiated 

subtype will guide the development of improved markers for this extreme de-

differentiated phenotype. 

Microenvironmental stresses such as inflammation, hypoxia, and treatment with MAPK 

inhibitors have been shown to induce de-differentiation and increase cell invasiveness 

(Landsberg et al., 2012; O’Connell et al., 2013). In the case of MAPK inhibition, it is possible 

that de-differentiation is an early adaptive mechanism for cells to survive, before genomic 

alterations such as NRAS mutations or BRAF amplifications take precedence, which can take a 

longer time to develop but provide a greater growth advantage under treatment. Our definition of 

four phenotypical subgroups of melanomas, matched with melanocyte development stages as 

well as associated with adaptation mechanisms of survival in melanoma, can guide discovery of 

combinatorial strategies to target dedifferentiation to overcome therapy resistance. 
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CHAPTER 2: 

Melanoma differentiation subtype classifier identifies consistent subtypes  

in cell lines and tumors 

INTRODUCTION 

 In the previous study, we refined the two “proliferative” and “invasive” differentiation 

phenotypes into a four-stage differentiation model. The melanoma cell intrinsic classifications of 

the MITF high “proliferative” and MITF low “invasive” phenotypes are very strong transcriptional 

signatures and have been detected in melanoma bulk tumor classification (Akbani et al., 2015; 

Verfaillie et al., 2015). However, it remains unexplored whether tumors can be reclassified into 

our four-group model that contains the more subtle transitional differentiation signatures.  

In the past, direct molecular classification of melanoma tumor gene expression profiles 

have yielded subtypes that were inclusive of the non-melanoma cells within the bulk tumor 

such as immune and normal skin cells. (Akbani et al., 2015; Jönsson et al., 2010). These cells 

can be highly informative as investigating their roles in the microenvironment is important in 

understanding broad effects of therapy, immune function, and factors promoting metastasis. 

However, this can also mask more subtle differences in underlying cancer cell autonomous 

tumor biology. Since cancer cell lines still retain many of the properties of the original tumors 

(Masters, 2000), our molecular classification based on cell lines is a more homogeneous way 

to identify tumor-specific subtypes in the absence of cells in the microenvironment.  

In this study, we apply a cell line-guided approach to classify melanoma tumors in the 

context of our differentiation framework. We build a predictive model to identify the 

differentiation subtypes in other cell line expression datasets and verify these subtype patterns 

among tumors. Finally, as an advantage of building this classifier, we harnessed matching 

methylation data paired with these datasets to evaluate methylation patterns that may be 

involved in regulating differentiation. 
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RESULTS 

Melanoma Classifier Identifies Consistent Subtypes in Cell Lines 

We first built a predictive model (Figure 2-1) trained on our cell line expression profiles to 

determine if we could predict differentiation subtypes in other cell line datasets. The predictive 

model was built using a support vector machine (SVM) classifier combined with the “top-scoring 

pairs” (TSP)-based method (Shi et al., 2011) to capture the relative expression relationship 

between genes. This approach ensured that different data sources, processing methods, and 

normalization strategies are compatible with our prediction model while minimizing test-set bias. 

We applied our prediction model to the Cancer Cell Line Encyclopedia (CCLE) and Genomics of 

Drug Sensitivity in Cancer (GDSC) independent datasets. Within the 29 cell lines shared 

between these two datasets, 27 were identically predicted (93.1%) and the other two only 

shifted by 1 stepwise differentiation state. PCA of each dataset annotated by the subtype 

prediction reveals a similar two-dimensional differentiation trajectory clustering pattern 

previously observed in the original analysis (Figure 2-2). Subtype-specific expression patterns of 

RTKs, transcription factors, and inferred MITF activity were also similar to that of the original cell 

line training data in the CCLE (Figure 2-3) and GDSC (Figure 2-4) datasets. Collectively, these 

results observed across independent melanoma cell line datasets further support the 

robustness of our classification model. 
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Figure 2-1. Schematic of the melanoma subtype classifier pipeline.	
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Figure 2-2. Subtype prediction of independent cell line datasets show similar 
differentiation-related arc-like clustering patterns. (A-B) PCA of CCLE (A) and GDSC (B) 
dataset annotated by the predicted cluster assignment. 
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Figure 2-3. Subtype prediction of CCLE dataset show similar subtype-specific 
transcription factor and RTK expression patterns. (A) Boxplots of select transcription factors 
and RTK gene expression from the CCLE dataset showing subtype-specific expression 
patterns. (B) Enrichment analysis of Melanocytic vs. Transitory subtypes to infer MITF activity 
(U: Undifferentiated, N: Neural crest-like, T: Transitory, M: Melanocytic; number in each group: 
U=12, N=8, T=22, M=19; Kruskal-Wallis ANOVA and Dunn's post hoc test p-values: * % 0.05, ** 
% 0.01, *** % 0.001). 
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Figure 2-4. Subtype prediction of GDSC dataset show similar subtype-specific 
transcription factor and RTK expression patterns. (A) Boxplots of select transcription factors 
and RTK gene expression from the GDSC dataset showing subtype-specific expression 
patterns. (B) Enrichment analysis of Melanocytic vs. Transitory subtypes to infer MITF activity. 
(U: Undifferentiated, N: Neural crest-like, T: Transitory, M: Melanocytic; number in each group: 
U=6, N=4, T=19, M=23; Kruskal-Wallis ANOVA and Dunn's post hoc test p-values: * % 0.05, ** % 
0.01, *** % 0.001). 
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Melanoma Classifier Identifies Consistent Subtypes in Tumors 

To evaluate the relevance of the subtypes in patient tumors, we extended our cell line-

trained classifier to the TCGA skin cutaneous melanoma (SKCM) bulk tumor expression profiles 

for melanoma-specific sub-classification. As in the cell line cases, subtype-specific expression 

patterns of RTKs, transcription factors, and inferred MITF activity were also similar to that of the 

original cell line training data (Figure 2-5). However, PCA on the tumor gene expression profiles 

and annotated by its predicted subtype showed that while tumors in the same predicted 

subtypes generally cluster together, the overall patterns were distinct from the cell line cases 

(Figure 2-6A). This is likely due to the non-melanoma cells that contribute to the PCA-based 

summary of bulk tumor variance, as we observed a strong effect of immune infiltration using the 

T cell gene CD3E expression as a surrogate marker (Figure 2-6B). When we project the bulk 

tumor expression onto the PCA space rotations defined by the more controlled melanoma cell 

line training set, which now focuses on genes important to melanoma cell biology and 

decreases the bias from immune infiltration, we observed differentiation-related clustering 

patterns highly similar to that of cell line cases (Figure 2-7).  

We next investigated if removal of confounding signatures could yield results similar to 

those seen in the cell line-guided PCA projections approach. Previously we had identified the 

source of the disparity between the melanoma cell line and bulk tumor gene expression was 

from immune cells and normal adjacent skin tissue within the tumor bulk. This was evident by 

high expression of immune-specific CD markers and cytokines indicative of immune infiltration 

and high expression of keratinocyte-type keratin pairs (KRT1/KRT10 and KRT5/KRT14), which 

is found almost exclusively in stratified epithelia such as the epidermis (Moll et al., 2008).  We 

first removed a set of immune reference genes previously annotated to be highly expressed in 

immune cells. We calculated an “immune score” across all tumors, which consisted of a 

dimension reduction of the set of immune reference genes, and removed additional genes that 

were correlated to this score. This approach helps further remove genes that could be 
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confounded by the presence of immune cells. PCA of the bulk tumor global gene expression 

profiles after removal of the immune-confounded genes re-oriented the clustering patterns of the 

subtypes (Figure 2-8A) by reducing the bias from immune infiltration (Figure 2-8B). Namely, 

tumors were now clustering together more similarly based on predicted subtype rather than 

level of immune infiltration. However, we now uncovered a secondary level of bias observed on 

PC2 from stratified epithelial signatures as measured by averaged expression levels of keratin 

pairs KRT5/14 (Figure 2-8C). Expression of KRT5/14 coincided with primary tumors as the 

source, suggesting that this high level of keratin gene expression is from adjacent skin (Figure 

2-8D). 

As in the immune case, we next removed skin-confounded genes using a starting 

reference set of keratin genes, generating a PCA-based keratin score, and then removing those 

genes correlated to the keratin score. PCA of the bulk tumor global gene expression profiles 

after removal of both the immune and keratin-confounded genes now markedly resembles the 

differentiation-related clustering patterns similar to that of the cell line guided PCA (Figure 2-9A). 

As confirmation, we observed a decreased bias from expression of normal adjacent skin 

(KRT5/14) (Figure 2-9B) and the tissue biopsy site on the PCA summary of variance (Figure 2-

9C). Comparable results were also observed with an analogous approach of excluding primary 

tumor samples from the analysis, which further supports that the source of the keratin-

confounded signature is from adjacent skin tissue (Figure 2-10). Taken together, our results 

demonstrate the consistency of these subtype relationships detectable in both melanoma cell 

line and tumor cohorts independently. Concordant subtype signatures could also be observed 

across all datasets, although with some heterogeneity in the patient tumors as expected (Figure 

2-11). 

To allow users to visualize other gene expression trends among the subtypes and within 

the bulk tumors in PCA space, we have created an interactive web-interface resource available 

at http://systems.crump.ucla.edu/dediff/ (username: melanoma_subtypes, password: 
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web_resource).  

 

Figure 2-5. Subtype prediction of TCGA bulk tumor dataset show similar subtype-specific 
transcription factor and RTK expression patterns as cell lines. 
(A) Boxplots of select transcription factors and RTK gene expression showing their subtype-
specific patterns. (B) Enrichment analysis of Melanocytic vs. Transitory subtypes to infer MITF 
activity for CCLE. (U: Undifferentiated, N: Neural crest-like, T: Transitory, M: Melanocytic; 
number in each group, U=6, N=4, T=17, M=23; Kruskal-Wallis ANOVA and Dunn's post hoc test 
p-values: * % 0.05, ** % 0.01, *** % 0.001). 
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Figure 2-6. PCA of bulk tumor expression is influenced by immune infiltration. (A) PCA of 
bulk tumor global gene expression profiles annotated by predicted subtype for the original 
unfiltered dataset (B) PCA figure colored by CD3E expression to show the influence of immune 
infiltration. 
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Figure 2-7. Cell line guided PCA projection of bulk tumor expression recapitulates 
differentiation-related arc-like clustering patterns.  (A) Projection of bulk tumor expression 
profiles into melanoma cell line-based PCA space. (B) PCA figure colored by CD3E expression 
to show decreased influence of immune infiltration. 
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Figure 2-8. Removal of immune-confounded genes from bulk tumor analysis reveals an 
underlying keratin signature associated with primary samples.  (A) PCA of bulk tumor 
global gene expression profiles after removal of confounding immune genes, and annotated by 
predicted subtype. (B-C) PCA figures colored by CD3E (B) expression to show the decreased 
influence of immune infiltration and KRT5/14 averaged expression (C) to show the influence of 
normal adjacent skin. (D) PCA figure annotated by tissue biopsy source. 
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Figure 2-9. Removal of both immune and keratin-confounded genes from bulk tumor 
analysis reveals similar differentiation-related arc-like clustering patterns as cell lines.  
(A) PCA of bulk tumor global gene expression profiles after removal of both immune and keratin 
confounded genes, annotated by predicted subtype. (B) PCA figures colored by KRT5/14 
averaged expression to show the decreased bias from stratified epithelial keratins. (C) PCA 
figure annotated by tissue biopsy source. 
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Figure 2-10. Exclusion of primary tumor samples from bulk tumor analysis yields similar 
results as removal of keratin-confounded genes.  (A) PCA of only metastatic bulk tumor 
global gene expression profiles after removal of confounding immune genes, annotated by 
predicted subtype. (B) PCA figures colored by KRT5/14 averaged expression to show the 
decreased bias from stratified epithelial keratins. (C) PCA figure annotated by tissue biopsy 
source. 
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Figure 2-11. Validation of 4-stage differentiation signature genes in 3 independent 
datasets. (A) Heatmap of subtype signature genes (top) and average signature score (bottom) 
for each cell line or patient tumor samples in 3 independent datasets. (B) Heatmap of 
corresponding total averaged subtype scores across subtypes. To calculate the strength of each 
subtype signature, we calculated a score by averaging the subtype signature gene expression 
and then averaging all samples within a subtype set, where the average is weighted by the 
square root of number of samples to stabilize the variance of the mean. 
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Epigenetic changes in DNA methylation mirror the transcriptional programs of 

differentiation.  

Through building a prediction model to classify melanoma subtypes in other data sets, 

we could harness additional paired resources to further characterize these melanoma subtypes. 

Since both the TCGA tumor and GDSC cell line profiles have matching methylation data, we 

looked to see to what extent global expression differences between differentiation stages could 

be regulated at the promoter methylation level. Evidence for the importance of epigenetic 

regulation in differentiation has been observed in genome-wide methylation analysis of 

melanoma that had showed hyper-methylation in regulating MITF gene expression (Lauss et al., 

2015).   

Similar to the gene expression data, PCA of the methylation beta values of the GDSC 

cell lines separates the subtypes into distinct groups following an arc-like trajectory (Figure 2-

12A). Across the aforementioned transcription factors, we observed subtype-specific differences 

in their promoter methylation beta values that are inversely correlated with expression in both 

GDSC cell lines (Figure 2-12B) and TCGA tumors (Figure 2-12C). Specific examples include, 

lower beta values of MITF and CTNNB1 corresponding to higher expression in the transitory 

and melanocytic subtypes; lower beta values for SMAD3 corresponding to higher SMAD3 

expression in the undifferentiated and neural crest like subtypes; and substantially higher beta 

values of SOX10 in the undifferentiated subtype, showing that the low expression of SOX10 

could be due to promoter hyper-methylation. In addition to transcription factors, the AXL kinase 

appears to be regulated at the methylation level with higher beta values in the transitory and 

melanocytic subtypes corresponding to decreased expression in these subtypes.  
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Figure 2-12. Epigenetic changes in DNA methylation mirror the transcriptional programs 
of differentiation. (A) PCA based on methylation beta values from the GDSC cell line dataset 
and annotated by predicted subtype. Plot of PC2 vs. PC3 shows subtype patterns similar to the 
arc-like differentiation trajectory observed with the gene expression PCA. Ellipses mark 80% 
confidence interval based on multivariate t-distribution. PC1 reflects other methylation signal not 
explained by the subtypes. (B-C) Beta values of select genes from the GDSC cell lines (A) or 
TCGA bulk tumors (B) grouped by predicted subtype. (U: Undifferentiated, N: Neural crest-like, 
T: Transitory, M: Melanocytic; number in each group, GDSC: U=6, N=4, T=17, M=23; TCGA: 
U=6, N=4, T=17, M=23; Kruskal-Wallis ANOVA and Dunn's post hoc test p-values: * % 0.05, ** % 
0.01, *** % 0.001).  
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DISCUSSION 

Previously, we had identified four differentiation-related melanoma subtypes within our 

panel of cell lines. To evaluate these subtypes in the context of other datasets, we constructed 

an independently trained classifier that successfully predicted our subtypes across multiple 

datasets. PCA of each dataset when annotated by their predicted subtype consistently 

demonstrated inter-subtype relationships that follow our proposed differentiation progression. 

These findings illustrate that across melanoma datasets, the major melanoma-specific 

variances are related by differentiation state and can be summarized by two major components. 

The PC1 x-axis represents the previously appreciated linear melanocytic differentiation trend 

(Hoek et al., 2006). The PC2 y-axis represents acquisition of and then reversal from neural 

crest-related intermediate states, an on-off pattern that is reminiscent of the transient nature of 

neural crest cells and the transient nature of other developmental transcription programs (Spitz 

and Furlong, 2012; Telley et al., 2016). 

Molecular classification strategies typically involve a variability measurement filter and 

variance arising from non-melanoma cells in the tumor microenvironment or adjacent normal 

tissue may overshadow true melanoma cell variance and therefore mask underlying melanoma 

cell autonomous biology. Problematic samples could be excluded based on purity estimates 

(Carter et al., 2012; Yoshihara et al., 2013), but this has the disadvantages of requiring a 

threshold, not benefiting from the full dataset, and not fully obtaining useful characterization of 

the less pure samples. Our analysis demonstrates how cell line-guided approaches can remove 

influences from non-melanoma cell contaminants to illuminate underlying cancer cell-

autonomous biology trends. By training our classifier using cell line expression profiles, we were 

able to identify melanoma-specific subtypes within bulk tumors by features shared with cell 

lines, which increases the confidence of tumor specificity. Supporting this approach is the high 

concordance in gene expression observed between melanoma cell lines and tumors, and 

similar patterns observed when we systematically removed confounding signatures from the 
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bulk tumor expression profiles. 

The universal nature of these subtypes and the ability to classify them across datasets 

enabled us to integrate our expression-based subtypes to additional matched datasets. Both 

GDSC and TCGA have paired methylation profiles, which enabled identification of subtype 

methylation differences congruent with gene expression, and consistent between cell lines and 

tumors. These results match the generally expected trend for methylated promoters to inhibit 

transcription and are supportive of epigenetic regulation of differentiation as previously 

appreciated (Cheng et al., 2015; Lauss et al., 2015; Shaffer et al., 2017).  

In sum, our classification model identifies consistent differentiation-related subtypes in 

independent cell line and tumor datasets. Integration of the melanoma subtypes in areas that 

may have been previously unexplored in a differentiation context can guide future studies to 

discover novel relationships between melanoma differentiation state, cellular phenotypes, and 

therapy response. 
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CHAPTER 3: 

Melanoma dedifferentiation status is a predictive marker of sensitivity to  

ferroptosis inducing drugs 

INTRODUCTION 

The dedifferentiation response to MAPK pathway inhibition and to pro-inflammatory 

signaling suggests that targeting the differentiation state could be a viable approach to 

overcome therapy resistance. Cell line pharmacogenomics databases combining genomic 

information with pharmacological response profiles have helped uncover associations between 

drug mechanisms of action and molecular subtypes (Barretina et al., 2012; Iorio et al., 2016; 

Seashore-Ludlow et al., 2015). Dedifferentiated melanomas are fundamentally different cells 

with divergent transcriptional profiles and phenotype (Hoek et al., 2006). Thus, these 

differences from its more differentiated counterparts could render cells more sensitive to new 

actionable pharmacological targets. 

In this study, we integrated the predicted subtypes from our melanoma differentiation 

subtype classifier on a large panel of melanoma cell lines with the small molecule drug 

sensitivity profiled by the Cancer Therapeutics Response Portal (CTRP) (Seashore-Ludlow et 

al., 2015). Integration of our melanoma differentiation model with CTRP pharmacogenomic 

databases revealed a strong correlation between the degree of dedifferentiation and sensitivity 

to a type of cell death known as ferroptosis. Ferroptosis occurs through an iron-dependent 

accumulation of lethal lipid reactive oxygen species (ROS) and is regulated by GPX4, a 

glutathione-dependent enzyme that catalyzes the reduction of lipid ROS to lipid alcohols (Dixon 

et al., 2012; Yang et al., 2014).  Ferroptosis is a relatively recent discovery of programmed cell 

death distinct from apoptosis and our findings provide a differentiated-guided approach in which 

it can be harnessed to counter a melanoma therapy escape route. 

 



 53 

RESULTS 

Sensitivity to ferroptosis inducing drugs is inversely correlated with differentiation status 

Using our subtype classifier and refined framework of melanoma differentiation, we 

predicted differentiation-related subtypes from gene expression profiles of melanoma cell lines 

from the Cancer Cell Line Encyclopedia (CCLE) and Genomics of Drug Sensitivity in Cancer 

(GDSC) databases. Together, the predicted differentiation subtype and drug sensitivities of 

these cell lines previously characterized in the Cancer Therapeutics Response Portal (CTRP) 

enabled identification of new dedifferentiation-associated vulnerabilities (Seashore-Ludlow et 

al., 2015). To filter through the large number of small molecules characterized, we applied an 

ANOVA filter (P<0.01) to identify drugs that exhibited subtype-specific sensitivity. To increase 

the confidence of target specificity, we performed hierarchical clustering to identify drug clusters 

with a similar mechanism of action. An interrogation of the screened compounds revealed that 

with increased dedifferentiation status there was an increased sensitivity to all ferroptosis 

inducing drugs (n=4/4) irrespective of mutation status (Figure 3-1A-B). We applied our 

previously defined differentiation trajectory position scoring system to quantify the relative 

differentiation between samples and found the relationship between dedifferentiation and 

sensitivity was significantly correlated for all compounds (Figure 3-1C). The ferroptosis inducing 

compounds include erastin, (1S, 3R)-RSL3, ML162, and ML210. Small molecule compounds 

(1S, 3R)-RSL3 (hereafter referred to as RSL3), ML162, ML210 induce ferroptosis by direct 

inhibition of GPX4, while erastin indirectly inhibits GPX4 through depletion of glutathione by 

targeting the System Xc-  transporter (Dixon et al., 2012; Yang et al., 2014).  
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Figure 3-1. Integration of pharmacogenomics drug sensitivity profiles reveals 
dedifferentiation-related subtype-specific sensitivity to ferroptosis inducing drugs. (A) 
Hierarchical clustering of the CTRP pharmacogenomics database AUC values for small 
molecules pre-filtered for ANOVA P<0.01 across melanoma cell lines grouped by predicted 
subtype (B) Area under the curve (AUC) sensitivity values for the indicated ferroptosis inducing 
drugs grouped by predicted melanoma differentiation subtype. (U: Undifferentiated, N: Neural 
crest-like, T: Transitory, M: Melanocytic; Kruskal-Wallis ANOVA and Dunn's post hoc test p-
values: * % 0.05, ** % 0.01, *** % 0.001, lower AUC values indicate increased sensitivity) C) Plot 
of AUC values vs. the differentiation trajectory score for all ferroptosis inducing drugs from the 
CTRP show highly correlative relationship between sensitivity and dedifferentiation. Low AUC 
values indicate increased sensitivity. 
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Pharmacogenomics prediction of differentiation state sensitivity is reproducible in 

independent melanoma cell lines 

To validate the association between dedifferentiation and ferroptosis sensitivity observed 

from the CTRP, we experimentally tested the sensitivity of ferroptosis inducing drugs in the 

original set of cell lines used in our classification analysis (Figure 3-2A, Figure 3-3A). As 

predicted by the CTRP results, sensitivity to the ferroptosis inducing drugs erastin and RSL3 

was highly correlated to dedifferentiation score (Figure 3-2B, Figure 3-3B). In order of 

progressive dedifferentiation, the melanocytic subtype cell lines were more resistant to both 

drugs, the transitory and neural crest-like subtype lines were moderately sensitive, and the 

undifferentiated subtype cell lines were highly sensitive. Vemurafenib-induced dedifferentiation 

from the parental cell line with adaptive resistance or acquired resistance also resulted in an 

increase in ferroptosis sensitivity (Figure 3-2C, Figure 3-3C). As a negative control, M249R, 

which achieves resistance through acquisition of an NRAS mutation with no change in 

differentiation status, was equally insensitive to ferroptosis induction as the parental line. 

However, we acknowledge there may be other factors that affect sensitivity since there are 

some exceptions to undifferentiated subtype where some cell lines are only moderately 

sensitive to erastin or RSL3.  

Furthermore, the dedifferentiation-associated patterns of sensitivity to ROS inducing 

drugs are specific to those that promote ferroptosis. Other subclasses of drugs in the CTRP that 

modulate oxidative stress but do not induce ferroptosis do not show these patterns (Figure 3-

4A). Additionally, treatment with piperlongumine, a ROS inducing drug that triggers apoptosis 

(Raj et al., 2011), did not display any differentiation-associated trend in sensitivity in the subset 

of our evaluated cell lines (Figure 3-4B). 
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Figure 3-2. Experimental validation in independent cell lines demonstrates the 
reproducibility of dedifferentiation-related sensitivity to erastin. (A) Validation of erastin 
sensitivity patterns across indicated M series melanoma cell lines. Resistant variant curves are 
denoted by diamond shape with dashed lines. (B) Plot of log IC50 concentration values from 
dose-response curves of erastin treatment against the differentiation trajectory score showing 
strongly correlative relationship between dedifferentiation and sensitivity. (C) Increase in 
sensitivity to erastin with dedifferentiation from acquired or adaptive vemurafenib resistance  
(LT Vem = 44 days). 
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Figure 3-3. Experimental validation in independent cell lines demonstrates the 
reproducibility of dedifferentiation-related sensitivity to RSL3. (A) Validation of RSL3 
sensitivity patterns across indicated M series melanoma cell lines. Resistant variant curves are 
denoted by diamond shape with dashed lines. (B) Plot of log IC50 concentration values from 
dose-response curves of RSL3 treatment against the differentiation trajectory score showing 
strongly correlative relationship between dedifferentiation and sensitivity. (C) Increase in 
sensitivity to RSL3 with dedifferentiation from acquired or adaptive vemurafenib resistance  
(LT Vem = 44 days). 
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Figure 3-4. Dedifferentiation associated sensitivity to oxidative stress is limited to 
ferroptosis inducing drugs. (A) Boxplot of AUC values from the CTRP for other ROS 
generating drugs that do not induce ferroptosis do not show any distinguishable subtype trends. 
(U: Undifferentiated, N: Neural crest-like, T: Transitory, M: Melanocytic; Kruskal-Wallis ANOVA 
and Dunn's post hoc test p-values: * % 0.05, ** % 0.01, *** % 0.001) (B) Validation of no difference 
in sensitivity among subtypes and vemurafenib resistant lines when treated with the ROS-
inducing, but not ferroptosis-inducing, drug piperlongumine. 
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Erastin-induced cell death occurs through the ferroptosis mechanism 

Due to the increased levels of System Xc- observed across various cancer types that 

highlght its potential as a therapeutic target (Doxsee et al., 2007; Guo et al., 2011; Lo et al., 

2008; Timmerman et al., 2013), we focused on exploring the treatment of melanoma cells with 

erastin. While erastin was less well correlated than the other GPX4 inhibitors to differentiation in 

the CTRP pharmacogenomics dataset, the results were concordant within our own validation. 

This could likely be attributed to the different media and redox buffering components used in the 

cell lines from the CTRP, which can affect the inhibition of glutathione synthesis achieved by 

erastin.  

We first sought to confirm if the mechanism of cell death by erastin treatment in the 

dedifferentiated melanoma cells occurs through ferroptosis. Treatment with erastin resulted in a 

dose-dependent decrease in percent viable cells in the undifferentiated signature cell lines cell 

lines M296, M410 M229R, and M238R that can be almost completely rescued either by iron 

chelation using deferoxamine (DFO) or by the lipophilic antioxidant Trolox (Figure 3-5A), 

demonstrating that cell death is both iron and ROS dependent respectively. Furthermore, cell 

death occurred rapidly within 12 hours and completely prevented by DFO or Trolox treatment 

(Figure 3-5B). The mechanism of cell death induced by erastin is distinct from apoptosis, as 

treatment with the pan-caspase inhibitor Z-VAD-FMK could not rescue death induced by erastin 

treatment, but could rescue apoptosis induced by staurosporine as a positive control (Figure 3-

6). Furthermore, we observed a high induction of lipid ROS at a time preceding cell death (10 

hr) in the erastin sensitive cell lines, which was not present in the other non-sensitive lines 

tested (Figure 3-7). This increase in lipid ROS could be rescued by DFO treatment, further 

indicating that cell death occurs through the iron dependent accumulation of lipid ROS, a key 

characteristic of ferroptosis. At the same time-point post-treatment, erastin treatment also 

induces elevated levels of cytosolic ROS but at substantially higher levels in the undifferentiated 

signature cell lines. This increase in cytosolic ROS was also iron-dependent and was reduced 
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by DFO treatment (Figure 3-8).  

 

Differential sensitivity to ferroptosis is attributed to basal glutathione levels 

To test if the differences in ROS levels in the less sensitive cells were due to the inability 

of erastin to deplete glutathione, we measured glutathione by mass spectrometry in isogenic 

sub-lines M229P and M229R, and M238P and M238R. Erastin treatment significantly depleted 

both reduced glutathione (GSH) and oxidized glutathione (GSSG) across all the cell lines 

(Figure 3-8A-B). However, M229R and M238R had lower basal levels and also exhibited a 

greater fold change decrease with treatment compared to their respective parental lines in both 

GSH and GSSG. We confirmed the basal levels of reduced glutathione in the vemurafenib-

resistant cell lines were significantly lower than parental cell lines through quantification using 

Ellman’s reagent (Figure 3-9C). Furthermore, levels of reduced glutathione were significantly 

correlated to the degree of dedifferentiation, providing a mechanistic link between sensitivity to 

ferroptosis inducing drugs and differentiation state (Figure 3-9C). The lower levels of reduced 

glutathione could account for the differences in ferroptosis sensitivity, as supplementation of the 

culture medium with GSH substantially rescued both erastin and RSL3 cell death (Figure 3-10). 
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Figure 3-5. Erastin treatment induces canonical features of ferroptosis in dedifferentiated 
melanoma cells. (A) Measurement of percent viable cells compared to DMSO control with 
erastin treatment alone or in combination with DFO or Trolox.  (B) Cytotoxicity assay using the 
Incucyte Cytotox Red reagent showing rapid cell death with erastin treatment that can be 
prevented with DFO or Trolox.  
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Figure 3-6. Erastin treatment induces non-apoptotic cell death in dedifferentiated 
melanoma cells. Trypan blue exclusion assay of 24 hr erastin or staurosporine treatment with 
or without caspase inhibitor Z-VAD-FMK pre-treatment for 1 hr. 
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Figure 3-7. Erastin treatment induces lipid ROS in ferroptosis-sensitive cells. (A) ROS 
measurements after 10 hr erastin treatment across cell lines by flow cytometry using BODIPY-
C11 probe to measure lipid ROS. (B) Barplot of mean fluorescence intensity of BODIPY-C11 
after 10 hr erastin treatment across cell lines. Data represents mean ± sem of three 
independent experiments. 
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Figure 3-8. Erastin treatment induces higher levels of cytosolic ROS in ferroptosis-
sensitive cells. (A) ROS measurements after 10 hr erastin treatment across cell lines by flow 
cytometry using CM-H2DCFDA probe to measure cytosolic ROS. (B) Barplot of mean 
fluorescence intensity of CM-H2DCFDA after 10 hr erastin treatment across cell lines. Data 
represents mean ± sem of three independent experiments. 
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Figure 3-9. Sensitivity to ferroptosis induction is associated with low basal levels of 
glutathione. (A-B) Relative amounts of reduced glutathione GSH (A) and oxidized GSSG (B) 
after 8 hr erastin treatment compared to untreated parental control for the indicated isogenic cell 
lines. (P: Erastin-insensitive parental cell lines; R: erastin-sensitive BRAFi-resistant cell lines.) 
Data shown in barplots represent mean ± sem of three replicates. (C) Plot of reduced 
glutathione (GSH) levels measured by Ellman’s reagent vs. the differentiation trajectory score in 
melanoma cell lines, with means of each subtype group indicated by black dashes (left). Barplot 
of GSH levels of the isogenic cell line pairs (right). 
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Figure 3-10. Ferroptotic cell death is rescued by addition of reduced glutathione. Trypan 
blue exclusion assay of 24 hr erastin or RSL3 treatment with or without supplementation of 5mM 
GSH in the culture medium. Data shown in barplots represent mean ± sem of three independent 
experiments; t-test p-values: * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001. 
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Combination treatment with ferroptosis inducing drugs is effective against BRAF 

inhibition-induced dedifferentiation and resistance 

Erastin and other ferroptosis inducing drugs were initially discovered from a RAS 

synthetic lethal screen and studies have shown a dependence on MAPK signaling for 

ferroptosis in some contexts (Dolma et al., 2003; Yang and Stockwell, 2008; Yagoda et al., 

2007). Therefore, to evaluate the feasibility of combination treatment to overcome BRAF 

inhibitor resistance, we first confirmed that the presence of vemurafenib does not reduce the 

high lethality observed with erastin treatment in dedifferentiated, vemurafenib-resistant cell 

lines. As expected, vemurafenib treatment alone was effective in reducing the viability of 

parental cell lines M229P and M238P, but had little effect on vemurafenib-resistant lines M229R 

and M238R. On the other hand, treatment with erastin in the dedifferentiated M229R and 

M238R lines resulted in a substantial loss of viable cells that was not attenuated even in the 

presence of high concentrations of vemurafenib (Figure 3-11A). Moreover, there was no 

consistent difference between ERK signaling levels between the isogenic cell line pairs or 

among the subtypes that associated with ferroptosis sensitivity (Figure 3-11B). Taken together, 

these results indicate MAPK-ERK signaling may not regulate ferroptosis in melanoma, and that 

there is no drug antagonism between BRAF inhibition and erastin in these dedifferentiated 

melanoma cells.  

 Erastin and BRAF inhibitors optimally target melanoma cells at distinct differentiation 

stages. Since dedifferentiation is an adaptive response to BRAFi, we sought to directly test the 

efficacy of combining erastin with BRAF inhibition against a cohort of BRAF mutant melanomas. 

We evaluated the effects of combination treatment on three melanoma cell lines that are initially 

BRAFi sensitive but eventually become resistant due to dedifferentiation. Biomarker evaluation 

of persisting cells after long-term vemurafenib treatment showed upregulation of AXL and 

NGFR, and downregulation of MITF or its target gene MART-1, confirming their inhibitor-

induced dedifferentiation (Figure 3-12A). Of note, at this prolonged treatment time-point, pERK 
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levels have rebounded likely due to signaling feedback mechanisms as previously observed to 

begin within a few days of MAPK inhibition (Figure 3-12B) (Lito et al., 2012; Paraiso et al., 

2010). Inclusion of erastin with vemurafenib in the treatment protocol resulted in a substantial 

decrease in long-term persisting cells (16-24 days), supporting this dual targeting therapeutic 

approach (Figure 3-13A). Similar results were also observed with RSL3 treatment, supporting 

the dual targeting therapeutic approach with ferroptosis inducing drugs (Figure 3-13B). 
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Figure 3-11. MAPK pathway inhibitors do not antagonize erastin-induced loss of viability. 
(A) Measurement of percent viable cells compared to vehicle control (DMSO) of erastin 
treatment combined with increasing concentration of BRAFi vemurafenib for 72 hours. Data 
shown in barplots represent mean ± sem of three replicates. (B) Immunoblot of phospho-ERK 
(T202/Y204) levels across melanoma grouped cell lines by subtype. 
 
 
 
 
  

C 1 2.5 5 100

50

100

%
 V

ia
bl

e 
C

el
ls

 M229P

C 1 2.5 5 100

50

100

%
Vi

ab
le

 C
el

ls

M238P

C 1 2.5 5 100

50

100

%
 V

ia
bl

e 
C

el
ls

M229R

C 1 2.5 5 100

50

100
%

Vi
ab

le
 C

el
ls

M238R
C 1 2.5 5 100

50

100

%
 V

ia
bl

e 
C

el
ls

 M229P

C 1 2.5 5 100

50

100

%
Vi

ab
le

 C
el

ls

M238P

C 1 2.5 5 100

50

100

%
 V

ia
bl

e 
C

el
ls

M229R

C 1 2.5 5 100

50

100
%

Vi
ab

le
 C

el
ls

M238R

Vemurafenib (µM) Vemurafenib (µM) 

Vemurafenib (µM) Vemurafenib (µM) 

Figure 3-11 

DMSO 
5µM Erastin 

A 

B 

M
20

2 

M
24

9 

M
39

7 

M
22

9P
 

M
22

9R
 

M
23

3 

M
23

8P
 

M
23

8R
 

M
29

6 

M
41

0 

pERK 

Total ERK 
 

Tubulin 

!
!

!
!
!
!
!
!

!
!
!

Undifferentiated 
Neural crest-like 
Transitory 
Melanocytic 

Subtype 



 70 

 

 
Figure 3-12. Long-term vemurafenib treatment induces dedifferentiation in melanoma. (A) 
Increases in the AXL and NGFR biomarkers, and decreases in the MITF and MART-1 
biomarkers (immunoblot) confirming dedifferentiation of cell lines treated with long-term (21 
days) vemurafenib treatment. (B) Immunoblot of phospho-ERK (T202/Y204) at vemurafenib 
treatment (1 µM) for the indicated time-points. 
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Figure 3-13. Reduction in persistent vemurafenib-induced dedifferentiated melanoma 
cells upon combination treatment with erastin or RSL3. (A-B) Crystal violet staining assays 
of long-term combination treatment of erastin (A) or RSL3 (B). For erastin: cells were treated 
with erastin (E= 2 µM for M229/M397, 5 µM for M249) and/or vemurafenib (V= 1 µM) for 16 
days (M229), 24 days (M397), or 21 days (M249). For RSL3: cells were treated with RSL3 (R= 
150 nM for M229, 40nM for M397, and 500 nM for M249) and/or vemurafenib (V= 1 µM) for 21 
days. DMSO treated cells were stained when confluent at 7 days.  
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Inflammation-induced dedifferentiation increases sensitivity of melanoma cells to 

ferroptosis inducing drugs 

An inflammatory microenvironment from elevated immune activity can also promote 

dedifferentiation of melanoma cells. Therefore, we next sought to test if immunotherapy-

associated, cytokine-induced dedifferentiation would cause melanoma cells to become more 

sensitive to erastin treatment. The dedifferentiation response of melanoma cells to pro-

inflammatory signaling can be replicated in vitro by treating cell lines with T cell secreted 

cytokines such as TNFα and IFNγ. We confirmed that TNFα and IFNγ stimulation resulted in 

activation of the NFKB or STAT1 signaling pathways (Figure 3-14A) and induced 

dedifferentiation, as determined by up-regulation of AXL and decreased levels of MITF or its 

target gene MART-1 (Figure 3-14B). The degree of dedifferentiation was cell specific and more 

prominent in cell lines M229 and M397. Consistent with the dedifferentiation response, 

treatment with erastin under cytokine stimulation resulted in increased cell death compared to 

cytokine-only or untreated cells (Figure 3-15A). In a cell line with only modest biomarker-based 

dedifferentiation upon IFNγ cytokine treatment (M249), we still observed increased sensitivity 

under higher doses of erastin (5 µM). In these experiments, the combined treatment contributed 

substantially and in some cases in a synthetic lethal fashion to reducing any persisting 

population. As with the vemurafenib co-treatment case, similar results were also observed with 

RSL3 treatment, supporting the dual targeting therapeutic approach with ferroptosis inducing 

drugs under inflammatory cytokine stimulation (Figure 3-15B). 
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Figure 3-14. Inflammatory cytokine stimulation induces dedifferentiation in melanoma. 
(A) Immunoblot showing activation of NFkB p65 (RELA) by phosphorylation of S536 by TNF$ 
treatment, and activation of STAT1 by phosphorylation of Y701 by IFN' treatment. (B) 
Immunoblot showing increases in the AXL biomarker, and decreases in the MITF and MART-1 
biomarkers confirming dedifferentiation of cell lines treated with the indicated cytokines.  
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Figure 3-14. Reduction in persistent cytokine-induced dedifferentiated melanoma cells 
upon combination treatment with erastin or RSL3. (A-B) Crystal violet staining assays of 
erastin (A) or RSL3 (B) treatment at the indicated dose for 7 days with cytokine exposure for the 
initial 3 days (M229 and M249) or 7 days (M397). IFN'=100 U/mL, TNF$=1000 U/mL. Data 
shown is representative of three independent experiments. 
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DISCUSSION 

The mechanism of ferroptosis is a relatively recent discovery, and our study further 

advances the field by bringing it into the context of melanoma where it has not been extensively 

explored. We identified a previously unreported association of sensitivity to ferroptosis induction 

with the degree of dedifferentiation, where the undifferentiated subtype was the most sensitive 

and the melanocytic subtype was the most resistant. This sensitivity to ferroptosis complements 

existing therapies that preferentially target differentiated melanomas, but problematically induce 

dedifferentiation in therapy resistance. Our experiments support the efficacy of ferroptosis 

inducing drugs in targeting both innate resistance, and acquired dedifferentiation-associated 

resistance induced by kinase therapies and by immunotherapy-associated cytokines. Thus, 

combination therapies that include ferroptosis inducing drugs have the potential to enhance 

current treatment options for melanoma patients by providing a synthetic lethal approach to kill 

the persistent melanoma cell populations.  

With targeted therapies, dedifferentiation-based adaptation can be seen in patient 

biopsies in as little as 1 to 3 weeks (Kwong et al., 2015). This early adaptation timeframe argues 

for upfront co-treatment, which has generally been found to be more efficient than sequential 

therapy (Eroglu and Ribas, 2016). Upfront co-targeting would furthermore prevent persisting 

melanoma cells from accumulating additional genomic alterations such as NRAS mutations or 

BRAF amplifications that would make treatment more difficult. In the context of immunotherapy, 

further relevance for a dual-targeting approach comes from the observation that melanoma cells 

can up-regulate surface expression of the PD-L1 ligand in response to inflammatory IFNγ 

signaling. Surface tumor PD-L1 can suppress T cell function through engagement of inhibitory 

PD1 receptor signaling (Iwai et al., 2002; Taube et al., 2012). Therefore, reducing this 

dedifferentiated persisting population of cells via their sensitivity to ferroptosis induction can 

potentially boost overall anti-tumor immunity by preventing an accumulation of melanoma cells 
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with immunosuppressive capabilities. 

In summary, our refined framework of multi-stage melanoma differentiation subtypes 

guided the discovery of a rational therapeutic strategy to target the plasticity of melanoma cells 

associated with resistance. Dedifferentiation is a recurrent innate and acquired resistance 

mechanism to modern kinase targeted therapies and immunotherapies in the clinic. Our results 

propose and support a new co-treatment approach to effectively target the dedifferentiation-

associated resistance escape route that limits the efficacy of current lines of melanoma therapy. 
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EXPERIMENTAL PROCEDURES 
 
 

Table 2-1. List of reagents and resources 
 
Antibodies 
Anti-AXL (C89E7) Cell Signaling Cat#8661 
Anti-MITF (D5G7V) Cell Signaling Cat#12590 
Anti-p75NTR (D4B3) XP® Rabbit mAb Cell Signaling Cat#8238 
Anti-MART-1 (A103) Santa Cruz Cat#sc-20032 
Anti-β-Actin (AC-15) Sigma-Aldrich Cat#A1978 
Anti- p44/42 MAPK (Erk1/2) (L34F12) Cell Signaling Cat#4696 
Anti-phospho-p44/42 MAPK (Erk1/2) 
(Thr202/Tyr204) (D13.14.4E)  Cell Signaling Cat#4370 

Anti-STAT1 Cell Signaling Cat#9172 
Anti-pSTAT1 (Y701) (58D6) Cell Signaling Cat#9167 
Anti-NF-κB p65 (D14E12) XP® Rabbit mAb  Cell Signaling Cat#8242 
Anti-Phospho-NF-κB p65 (Ser536) (E1Z1T)  Cell Signaling Cat#13346S 
IRDye 800CW Goat Anti-Mouse IgG LI-COR Cat#926-32210 
IRDye 680 Goat Anti-Rabbit IgG LI-COR Cat#926-32221 
Chemicals, Peptides, and Recombinant Proteins 

Vemurafenib (PLX 4032) Selleck Chemicals S1267; CAS: 
918504-65-1 

Erastin Selleck Chemicals 
S7242; CAS: 
571203-78-6 

RSL3 Selleck Chemicals 
S8155; CAS: 
1219810-16-8 

Z-VAD-FMK Selleck Chemicals 
S7023; CAS: 
187389-52-2 

L-Glutathione reduced Sigma-Aldrich 
G4251; CAS: 
70-18-8 

Piperlongumine Selleck Chemicals 
S7551; CAS: 
20069-09-4 

Deferoxamine Sigma-Aldrich 
D9533; CAS: 
138-14-7 

Resazurin Sigma-Aldrich 
R7017; CAS: 
62758-13-8 

Trolox Acros Organics Cat#218940010; 
CAS: 53188-07-1 

Staurosporine Cayman Chemicals 
S1421; CAS: 
62996-74-1 

Recombinant Human TNFα Peprotech Cat#300-01A 
Recombinant Human IFNγ Peprotech Cat#300-02 
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	 	Commercial Assays 
Cell-Titer Glo Promega G7572 
QuantiChrom Glutathione (GSH) Assay 
Kit BioAssay Systems DIGT-250 

GenePrint® 10 System Promega B9510 
AllPrep DNA/RNA Mini kit Qiagen Cat#80204 
Illumina TruSeq RNA sample preparation kit Illumina RS-122-2001 
TruPAGE™ Precast Gels 4-12%, Sigma-Aldrich PCG2003 
Pierce BCA Protein Assay Kit Thermo Scientific Cat#23225 
CM-H2DCFDA Life Technologies C6827 
BODIPY 581/591 C11 Life Technologies D3861 
Trypan Blue Gibco 15250061 
IncuCyte Cytotox Red Reagent Essen Bioscience Cat#4632 
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Table 2-2. List of software and algorithms 
 
Software and Algorithms 

GraphPad Prism 6 GraphPad N/A 
 

TraceFinder Software version 
3.3 Thermo Scientific N/A 

ImageStudioLite LI-COR www.licor.com/bio/products/software/ 
image_studio_lite/ 

IncuCyte ZOOM Live-Cell 
Imaging System Essen Bioscience N/A 

HISAT2 (v.2.0.5) (Kim et al., 2015) https://ccb.jhu.edu/software/hisat2/ 
index.shtml 

HTSeq (0.6.1) (Anders et al., 2015) https://ccb.jhu.edu/software/hisat2/ 
index.shtml 

Tophat2 (v2.0.9) (Kim et al., 2013) https://ccb.jhu.edu/software/tophat/ 

Cufflinks (v2.2.1) (Trapnell et al., 
2012) 

http://cole-trapnell-
lab.github.io/cufflinks/ 

Gene Set Enrichment Analysis 
(GSEA) 

(Subramanian et al., 
2005) 

http://software.broadinstitute.org/gsea/
index.jsp 

R (v3.2) N/A https://www.r-project.org/ 

ConsensusClusterPlus 
R Package (v1.38) 

(Wilkerson and 
Hayes, 2010) 

http://bioconductor.org/packages/ 
release/bioc/html/ConsensusClusterPl
us.html 

Conditional Quantile 
Normalization R Package 
(v1.20) 

(Hansen et al., 
2012) 

https://bioconductor.org/packages/ 
release/bioc/html/cqn.html 

sigclust R Package (v1.1) (Liu et al., 2008) 
https://cran.r-
project.org/web/packages/sigclust/ 
index.html 

samr R Package (v2.0) (Tusher et al., 2001) 
https://cran.r-
project.org/web/packages/samr/ 
index.html 
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Experimental model and subject details 

Human melanoma cell lines were established from patient’s biopsies under UCLA IRB 

approval # 11–003254 as previously described (Søndergaard et al., 2010). A complete list of 

cell lines can be found in Table S1. Cells were cultured in RPMI 1640 with L-glutamine, 10% 

fetal bovine serum, and 1% penicillin, streptomycin and fungizone in a water-saturated incubator 

at 37°C with 5% CO2. Cells were maintained and tested for mycoplasma and authenticated to 

their early passages using GenePrint® 10 System (Promega).  

 

RNA Extraction, Sequencing, and Analysis 

RNA extraction was performed using AllPrep DNA/RNA Mini kit from Qiagen in 53 

human melanoma cell lines. Libraries were prepared using the Illumina TruSeq RNA sample 

preparation kit per the manufacturer’s instructions. RNA sequencing was performed using 50 bp 

paired end sequencing on the Illumina HiSeq 2000 platform. Paired end 50 bp reads generated 

from the melanoma cell line RNA sequencing were mapped using HISAT2 to the Homo sapiens 

hg38 genome build and raw counts per quantified using HTSeq. Both the 53 melanoma cell line 

panel and TCGA raw expected counts were analyzed similarly to reduce technical variability 

from data processing. Cell line and TCGA raw counts were normalized to FPKM values using 

conditional quantile normalization (CQN) to adjust for gene length and GC content (Hansen et 

al., 2012). FPKM values were next transformed in log2 space with an offset of 1. For the 

vemurafenib treated samples, RNASeq was performed using 50 bp single end sequencing and 

mapped the Homo sapiens NCBI build 37.2 reference genome using TopHat2 v2.0.9 (Kim et al., 

2013) and normalized to fragments per kilobase of exon per million fragments mapped (FPKM) 

using Cufflinks v2.2.1 and the geometric library size normalization method (Trapnell et al., 

2012).  
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Classification of Cell Lines and Tumors 

The top 3000 genes with the highest variance were used for clustering. Consensus 

complete linkage hierarchical clustering was performed using the Euclidean distance metric and 

subsampling 75% of samples and genes 1000 times using the ConsensusClusterPlus R 

package. Pairwise cluster significance, as defined by whether each cluster originates from 

different Gaussian distributions, was performed using the sigclust R package. A SVM TSP-

based approach as proposed by Shi et al (Shi et al., 2011) was used to train the subtype 

prediction model, where feature selection was performed by hypergeometric test. To have a 

gene list compatible for all datasets used, we took an intersection of genes from both RNASeq 

and microarray chip platforms, resulting in 10,545 genes. The top 250 genes were used to build 

the model. The gene expression matrix was converted into a gene pair binary matrix of relative 

comparisons for each pair of genes A and B whether A>B as introduced by the “top scoring 

pairs” method (Shi et al., 2011). For each subtype, pairs were then scored by hypergeometric 

test to calculate the p-value of enrichment for that subtype compared to the remaining subtypes. 

Gene-pairs were then filtered by having a minimum p-value of 1e-05 in at least one subtype, 

resulting in 1561 gene-pairs. The resulting binary matrix of each cell line with identified subtype 

was used to train the model using a radial basis function kernel with the R package kernlab. The 

model performed at 94% accuracy with leave-one-out cross validation. Gene expression profiles 

for all datasets for prediction were similarly converted to binary matrices and used as test set for 

this SVM-based prediction approach. 

 

PCA and Statistical Analysis 

Principal component analysis (PCA) was performed on mean centered data and all 

statistical analyses were performed in R (http://www.R-project.org/). Projections were calculated 

by matrix multiplication of the centered data to be projected using the rotation matrix determined 

from the PCA of the original source data. 
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Significance testing between treatment groups was performed using two-sample t-test. ANOVA 

p-values were determined using the non-parametric Kruskal-Wallis test at a significance 

threshold of 0.05. Reported p-values between pairs of subtypes were determined using Dunn 

post-hoc testing with multiple hypothesis correction using the Benjamini & Hochberg method.  

 

Enrichment Analysis, Subtype Signatures, and Differentiation Trajectory Scores 

For subtype comparisons, signal-to-noise ratio of one subtype vs. the remaining three 

were used to create ranklists. Rank-based enrichment analysis was performed using Gene Set 

Enrichment Analysis (GSEA) (Subramanian et al., 2005) using the MSigDB C5 GO biological 

process gene sets. Differential expression analysis used for generating subtype signatures was 

performed using Significance Analysis of Microarrays at a 5% false discovery rate (FDR) using 

the samr package in R. For average subtype signature scores, z-scores for of all member genes 

were summed and divided by the number of member genes. To avoid potential confounding 

issues with gene expression from non-tumor sources, genes correlated with the immune and 

keratin signature were not included. Differentiation trajectory position score was determined 

using a center of mass approach where all single subtype and transitional-paired subtype 

average signature scores were summed in a weighted fashion.  Weighting represented the 

relative position along the differentiation trajectory (i) running from 1 to 7 for undifferentiated, 

undifferentiated-neural crest like pair, neural crest like, neural crest like-transitory pair, 

transitory, transitory-melanocytic pair, and melanocytic. The formula is given by: 

 

where mi are the seven signature scores. 

Differentiation Trajectory Position =
mi ⋅ i

i=1

7

∑

mi
i=1

7

∑
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Immune and Keratin Confounding Signature Criteria 

A starter list of immune genes was obtained from the Immunome database, downloaded 

from InnateDB (http://www.innatedb.com). PCA was used to reduce dimensionality of the list of 

immune genes to a single immune score (PC1). The total list of immune confounded genes was 

determined by identifying genes that were correlated to the immune score above a threshold 

value. The threshold correlation was determined using an ROC analysis, comparing 

distributions of correlations of genes within the immune starter list vs. all others. Keratin 

confounded genes was identified similarly, using genes annotated as keratins from the NCBI 

gene database (http://www.ncbi.nlm.nih.gov/gene/) as the starter list of genes.  

 

Methylation Analysis 

Human tumor methylation 450K array data was obtained from The Cancer Genome 

Atlas. Cell line methylation 450K array data was obtained from GSE68379. Probes excluded 

from the downstream analysis were probes with poor detection quality, probes mapping to sex 

chromosomes, probes with known SNPs at the CG site, and 29,233 probes previously shown to 

be cross-reactive with genes on sex chromosomes (Chen et al., 2013).Using the UCSC gene 

annotation, probes mapping to the promoter (TSS1500, TSS200, 5'UTR, and 1stExon) were 

collapsed to gene level by averaging the sites mapping to each gene. Probes mapping to CG 

islands and probes mapping to multiple genes were excluded, resulting in gene-level promoter 

methylation values for 15,580 genes for the cell line data and 14,318 genes for the TCGA data.  

 

Deposited Data 

Data is deposited in the Gene Expression Omnibus (GEO) database under accession 

number GSE80829. 
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Public Data Resources 

Dataset from Mica et al for the melanocyte differentiation stage analysis was obtained 

from GSE45227. Gene expression profiles from samples representing the growth conditions for 

each specified stage of differentiation based on the original manuscript was used for analysis 

(day 0 embryonic stem cell, day 6 neural crest cell, day 11 melanoblast, and day 25 

melanocyte). Primary melanocyte expression profiles (adult and neonatal) were used as control.  

Data from the CCLE (expression) and GSDC (expression and methylation) databases 

were downloaded from the respective resource websites (http://www.broadinstitute.org/ccle; 

http://www.cancerrxgene.org/downloads). For expression analysis, microarray probes were 

collapsed to gene symbol to the maximum average probe. Pharmacogenomic data from the 

CTRP was downloaded from the Cancer Target Discovery and Development (CTD2) data portal 

(https://ocg.cancer.gov/programs/ctd2/data-portal). For subtype annotations of cell lines used in 

the pharmacogenomics analysis, we used our support vector machine (SVM)-based classifier 

and merged both the CCLE and GDSC predictions. We excluded 6 cell lines that either had 

mismatched or non-confident classifications, resulting in 43 lines analyzed (1 assayed in 

duplicate by the CTRP). 

For the data from Landsberg et al, expression profiles were obtained from GSE40213. 

Mouse genes were mapped to human homologs using the NCBI HomoloGene database. To 

account for any genes that might not vary in a mouse and could dilute signal when switching to 

human analysis, a variance filter of 0.3 was applied. 

RNASeq raw expected counts (RNASeqV2) and DNA methylation beta values 

(HM450K) of skin cutaneous melanoma (SKCM) bulk tumors from The Cancer Genome Atlas 

(TCGA) were downloaded from the data portal (http://tcga-data.nci.nih.gov).  

For MAPKi treated data, RSEM TPM expression values of patient tumor samples on-

treatment from Kwong et al were obtained from European Genome-phenome Archive (EGA 

S00001000992). FPKM values for single and double drug MAPKi resistant cell lines and 
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disease progression tumors from Hugo et al were obtained from GSE65186. For these disease 

progression tumors, dedifferentiation was determined by MITF downregulation or PDGFRB 

upregulation as previously observed (Müller et al., 2014). MAPK reactivation was determined by 

upregulation, amplification or alternative splicing of BRAF, or upregulation or mutation of NRAS 

(Corcoran et al., 2010; Nazarian et al., 2010; Poulikakos et al., 2011). Mixed / heterogeneous 

response cases had biomarkers for both mechanisms. FPKM values of disease progression 

tumors from Tirosh et al were obtained from GSE77940. 

 

Clonogenic Survival, Viability and Cytotoxicity Assays 

For the BRAFi timecourse study, M229 was treated with vemurafenib or DMSO for the indicated 

timepoints at twice the 50% inhibition concentration (500 nM). For the crystal violet assays, 2.5 

x 105 cells were plated in 6-well plates. The next day media was replaced by drug media and 

replenished every 2-3 days. Plates were stained with crystal violet solution (1% crystal violet, 

50% methanol). Control wells were grown for 1 week and stained when 100% confluent. 

For measurement of percent viable cells with treatment, cells were plated at 5000 cells per well 

and the next day treated with drug. Percentage cell viability is reported as a percentage relative 

to the negative control treatment. Dose-response curves were assayed using CellTiter-Glo 

(Promega) luminescent cell viability assay. IC50 values were obtained by fitting the data to 

nonlinear regression with variable slope using GraphPad Prism. For other viability 

measurements, an resazurin-based assay (a.k.a. Alamar Blue) was used and fluorescence was 

measured at 570/600 ex/em wavelength. Measurement of dead cells per time was measured by 

incubating treated cells with the IncuCyte Cytotox Red Reagent and imaging with IncuCyte 

ZOOM Live-Cell Imaging System (Essen BioScience). For measurement of cell death, Trypan 

blue exclusion assay was used. 
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Analysis of Reactive Oxygen Species Production 

In 12-well plates, 100,000 cells per well were seeded and allowed to attach for 

approximately 12 hours. Cells were then treated with media containing 5 µM of erastin, 100 µM 

deferoxamine or a combination of both, and returned to the 37°C tissue culture incubator. After 

10 hours, drug media was replaced by media containing DMSO control, 5 µM of CM-H2DCFDA 

dye (Life Technologies, C6827), or 5 µM of C11-BODIPY (Life Technologies, D3861) and 

incubated for another 20 min at 37°C. Cells were then washed with PBS, harvested by 

trypsinization, followed by another wash with PBS. Cells were resuspended in 400µL PBS, 

strained through a 35µm nylon mesh filter, and analyzed by flow cytometry using BD LSRII 

equipped with 488 nm laser for excitation (BD Biosciences). 

 

Immunoblotting 

Cells were lysed in modified RIPA buffer (50 mM Tris–HCl (pH 7.5), 150 NaCl, 10 mM β‐

glycerophosphate, 1% NP‐40, 0.25% sodium deoxycholate, 10 mM sodium pyrophosphate, 30 

mM sodium fluoride, 1 mM EDTA, 1 mM vanadate, 20 µg/ml aprotinin, 20 µg/ml leupeptin, and 1 

mM phenylmethylsulfonyl fluoride). Whole‐cell lysates were resolved by SDS–PAGE on 

TruPAGE 4–15% gradient gels (Sigma‐Aldrich) and blotted onto nitrocellulose membranes. 

Membranes were blocked overnight with 5% milk and then incubated sequentially with primary 

and then IRDye‐conjugated secondary antibodies (Li‐Cor). Blots were imaged using the 

Odyssey Infrared Imaging System (Li‐Cor).  

 

GSH Measurement 

Levels of GSH were measured using the colorimetric QuantiChrom Glutathione Assay Kit 

(BioAssay Systems) according to the kit instructions. Briefly, 2x106 cells were plated on 10 cm 

dishes. The next day, cells were scraped with cold PBS and centrifuged at 1000g for 10 minutes 
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at 4° C. Cells were re-suspended in 1 mL cold phosphate buffer (50mM phosphate, 1 mM 

EDTA, ph=6.5) and lysed by sonication. Lysates were spun down at 10,000g for 15 min at 4° C. 

The supernatant was split into two for measurement of GSH using the kit reagents, and protein 

quantification using the BCA Protein Assay Kit from Pierce Biotechnology. 

 

Mass spectrometry-based metabolomic analyses 

In 6-well plates, 200,000 cells per seeded per well and allowed to attach over night. The 

next day, media was replaced with media containing 5 µM of erastin. After 8 hr of treatment, 

cells were washed with ice-cold 150 mM ammonium acetate (NH4AcO) pH 7.3 and metabolites 

extracted in 1 ml ice-cold 80% MeOH. The cells were quickly transferred into a microfuge tube, 

and 10 nmol norvaline was added to the cell suspension for use as an internal standard. The 

suspension was subsequently vortexed three times over 15 min and then spun down at 4°C for 

5 min. The supernatant was transferred into a glass vial, the cell pellet was re-extracted with 

200 µl ice-cold 80% MeOH and spun down and the supernatants were combined. Metabolites 

were dried at 30°C under vacuum and re-suspended in 50 µl of 70% acetonitrile (ACN).  

Samples were run on a Q-Exactive mass spectrometer coupled to an UltiMate 

3000RSLC UHPLC system (Thermo Scientific). The mass spectrometer was run in polarity 

switching mode (+3.00 kV/−2.25 kV) with an m/z window ranging from 65 to 975. Mobile phase 

A was 5 mM NH4AcO, pH 9.9, and mobile phase B was ACN. Metabolites were separated on a 

Luna 3 µm NH2 100 Å (150 × 2.0 mm) (Phenomenex) column. The flow was kept at 200 µl/min, 

and the gradient was from 15% A to 95% A in 18 min, followed by an isocratic step for 9 min 

and re-equilibration for 7 min. Metabolites were detected and quantified as area under the curve 

(AUC) based on retention time and accurate mass (≤ 3 ppm) using the TraceFinder 3.1 (Thermo 

Scientific) software. Samples were normalized by protein concentration measured using the 

BCA Protein Assay Kit from Pierce Biotechnology. All samples were run as biological triplicates, 

and consistent results were seen in independent experiments.  
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PERSPECTIVES AND FUTURE STUDIES 
 

 
Our molecular classification analysis of melanoma cell lines led to the identification of 

four subtypes that reflected progressive step-wise differentiation states. This refined framework 

of melanoma differentiation can guide new discoveries in melanoma biology. As differences in 

differentiation state can yield fundamentally different cellular properties, it can potentially help 

reconcile heterogeneity of phenotypes and responses to therapy. For example, a high MITF 

differentiated transcriptional state was found to be more dependent on MAPK pathway signaling 

and therefore more sensitive to inhibition of the pathway (Konieczkowski et al., 2014a; Müller et 

al., 2014).  

In our work we integrated our differentiation framework with publicly available 

pharmacogenomics resources to uncover a new dedifferentiation-associated vulnerability to 

drug-induced ferroptosis. Dedifferentiation is a recurrent innate and acquired resistance 

mechanism to modern kinase targeted therapies and immunotherapies in the clinic. Thus, this 

discovery offers a new co-treatment option targeted directly at the dedifferentiation-based 

resistance escape route that limits the efficacy of current lines of melanoma therapy. However, 

the mechanisms as to why less differentiated cells are more sensitive to ferroptosis induction is 

not fully clear. Further understanding these mechanisms will be essential in optimizing 

ferroptosis induction for the treatment of melanoma.  

 

Treatment with ferroptosis inducing drugs in vivo 

Our experimental results thus far provide compelling evidence that ferroptosis inducing 

drugs would be a new therapeutic avenue to treat dedifferentiation-associated therapy resistant 

melanomas. However, these functional studies were carried out in vitro and the question 

remains whether the sensitivity of dedifferentiated cells to undergo ferroptosis would be 

recapitulated in vivo where the level of nutrients and metabolism would be different. Since 
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melanoma cells are highly plastic and can switch differentiation states in vivo (Hoek et al., 

2008b), combinatorial treatments that target both states would be predicted to be more effective 

than single agent therapies. Preclinical studies by others have shown that ferroptosis inducing 

drugs such as erastin and RSL3 do have in vivo anti-tumor efficacy and are well tolerated, but 

currently remain limited due to poor pharmacokinetics (Yang et al., 2014). Once new ferroptosis 

drugs with improved bioavailability are identified, further in vivo studies to investigate 

combination therapy with MAPK pathway inhibitors or immunotherapy drugs is warranted.  

 

Differentiation state and regulation of oxidative stress 

Melanocytes have vital antioxidant stresses and defenses inherent to their biology, 

owing to the high oxidative stress from melanin biosynthetic processes and UV radiation (Denat 

et al., 2014). Thus, it logical that differentiated melanoma cells, which are more similar to normal 

melanocytes, are better able to withstand induction of lipid ROS and ferroptosis. The loss of 

differentiation programs that combat redox stresses could render redox-challenged cancer cells 

susceptible to oxidative stress. High MITF cells were found to be more resistant to H2O2-

induced cell death through MITF transcriptional upregulation of the redox sensor APE-1 (Liu et 

al., 2009). MITF has also been shown to drive the expression of PGC1α, a key transcription 

factor regulating mitochondria biogenesis and expression of ROS detoxifying enzymes 

(Vazquez et al., 2013). Genetic experiments modulating MITF or other associated transcription 

factors could uncover the role of melanocyte differentiation in protecting cells from accumulation 

of oxidative stress.  

 

Metabolic regulation of lipid redox in melanoma 

When ferroptosis-sensitive and -resistant isogenic melanoma cell lines were treated with 

erastin, levels of reduced (GSH) and oxidized (GSSG) glutathione were greatly depleted in both 

lines, albeit at different magnitudes. We found that the levels of reduced and total glutathione 
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were lower in undifferentiated melanomas, and accordingly low glutathione levels are linked to 

ferroptosis sensitivity. The ferroptosis insensitive lines, despite having a considerable depletion 

of GSH, had no detectable level of lipid ROS at the measured time-point. There could be many 

contributing factors as to why these insensitive lines do not generate high levels of lipid ROS.  

The levels of cellular iron, activity of the iron-dependent ROS producing enzymes such as 

lipoxygenases, and availability of oxidizable polyunsaturated fatty acids in the lipid membrane 

have been shown contribute to the production of lipid ROS and sensitivity to ferroptosis (Dixon 

et al., 2012; Doll et al., 2017; Xie et al., 2016; Yang et al., 2016). Assays to measure the 

available labile iron and lipidomics to profile the phospholipid composition could shed light on 

the factors driving the differential amounts of lipid ROS between the ferroptosis sensitive and 

insensitive lines. 

Alternatively, the ferroptosis insensitive cells may have an increased capacity to quickly 

detoxify the generated lipid ROS. The reaction to detoxify lipid ROS is carried out by GPX4, 

which also converts to GSH to GSSG as a reducing equivalent. GSH can be regenerated by 

glutathione reductase (GSR) requires NADPH. Engagement of metabolic pathways that 

generate NADPH can therefore promote the regeneration of GSH and the capacity of cells to 

maintain low ROS levels (Gorrini et al., 2013). Accordingly, low basal levels of NADPH were 

found to be predictive of sensitivity to ferroptosis across multiple cancer cell lines (Shimada et 

al., 2016). NADPH can be produced from the oxidative pentose phosphate pathway, folate 

metabolism, the conversion of malate to pyruvate through malic enzyme 1 (ME1), or the 

conversion of isocitrate to α-ketoglutarate by isocitrate dehydrogenase 1 and 2 (IDH1, IDH2) 

(Fan et al., 2014; Gorrini et al., 2013). Metabolomic profiling and flux analysis of the ferroptosis 

insensitive cells compared to the sensitive cells could reveal which metabolic pathways are 

involved in melanoma adaptation and survival under oxidative stress. Collectively, a greater 

understanding of the metabolism of melanoma cells could guide development of new 

combination therapies by modulating oxidative stress. 
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Oxidative stress and metastasis 

Recently, it was shown that metastasizing melanoma cells experienced high levels of 

oxidative stress and successful metastasis is dependent on metabolic adaptations that increase 

GSH regeneration (Piskounova et al., 2015). This adaptation was also found to be dependent 

on NADPH generating enzymes, most notably of the folate pathway. Since metastasizing cells 

are under oxidative stress, we would expect that these cells would have a heightened sensitivity 

to ferroptosis induction due to lower levels of NADPH and GSH. Future studies with in vivo 

metastatic models could determine if treatment with ferroptosis inducing drugs could have an 

additional benefit of limiting distant metastasis, which would significantly improve patient 

survival. 
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APPENDIX 

 

The selected work described here are a result of collaborative efforts to advance the 

understanding of melanoma and treatment response through bioinformatic analysis. In each of 

the following studies, my contributions were to the processing, analysis, and interpretation of 

microarray or RNA sequencing gene expression data that have guided the design and 

conclusions of specific experiments in the paper. 
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Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in 

BRAFV600E melanoma 

Targeted therapy for the treatment with BRAFV600E-driven melanoma with oncogenic 

BRAF inhibitors have led to high response rates, but side effects occur due to the paradoxical 

activation of BRAF in wild-type cells. The addition of downstream MEK inhibitors has helped 

alleviate these toxicities and has resulted in improved survival compared to the BRAF 

monotherapy alone. However, targeted MAPK inhibitor (MAPKi) therapy is limited by the 

inability to achieve durable responses due to the development of resistance. This is in contrast 

to treatment with immunotherapy, which has led to remarkable durable responses in patients. 

Therefore, the combination of all three can potentially achieve a greater antitumor effect by 

incorporating the rapid response rates of targeted therapy and durability of immunotherapy. 

However, it remains unknown whether MEK inhibition will dampen the immune response. In this 

study, we evaluate the feasibility of the triple combination therapy.  

We show that in a syngeneic mouse model of BRAFV600E-driven melanoma, the triple 

combination therapy including dabrafenib, trametinib, and adoptive cell transfer (ACT) 

immunotherapy of gp100 antigen specific T cells (pmel cells) resulted in enhanced antitumor 

effect with complete tumor regression and increased T cell infiltration. Gene expression analysis 

of harvested tumors at day 5 after ACT shows that pmel ACT with dabrafenib and/or trametinib 

treated tumors cluster distinctly from the other treatment groups (Figure A-1A). Moreover, there 

were three unique immune signature profiles among the treatment groups (Figure A-1B). 

Immune A genes are upregulated after treatment with dabrafenib, trametinib, or the combination 

with either mock or pmel ACT. Immune B genes are upregulated after treatment with 

dabrafenib, trametinib, or the combination and receiving pmel ACT but not the mock ACT. 

Immune C genes were those downregulated by dabrafenib or trametnib treatment in mock or 

pmel ACT. There was an general increase of chemokines and their receptors gene expression 

with treatment of pmel ACT with dabrafenib or trametnib, and more so with the triple 



 94 

combination (Figure A-1C). Treatment with dabrafenib, trametinib, or the combination resulted 

upregulation of melanosomal antigens (Figure A-1D), which can promote antigen specific T cell 

recognition. MHC expression were also upregulated with treatment of dabrafenib and/or 

trametinib combined with pmel ACT, but not mock ACT. This indicated that the antigen-specific 

effector cells were important for the MHC upregulation. 

 In summary, our gene expression analysis suggested that the heightened antitumor 

response in the triple combination therapy is from improved T cell recognition by upregulation of 

melanocytic antigen and MHC gene expression. There was a strong global upregulation of 

immune-related gene expression with the triple combination treatment, further supporting an 

increase of immune infiltration in this treatment group. 

 

Reference: 

Hu-Lieskovan, S., Mok, S., Moreno, B.H., Tsoi, J., Robert, L., Goedert, L., Pinheiro, E.M., Koya, 
R.C., Graeber, T.G., Comin-Anduix, B., and Ribas, A. (2015). Improved antitumor activity of 
immunotherapy with BRAF and MEK inhibitors in BRAFV600E melanoma. Sci Transl Med 7, 
279ra41-279ra41. 
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Figure A-1. Microarray analysis of tumors treated by dabrafenib, trametinib, or the 
combination of dabrafenib and trametinib with pmel-1 ACT or mock ACT. 
On day 5 after ACT, tumors were isolated and snap-frozen immediately (two to three mice in 
each group). RNA isolation was done after all samples were collected. (A) PCA of gene 
expression profile of the tested samples. (B) Clustering of immune-related genes with analysis 
of variance (ANOVA) filter, P < 0.05. Gene names in individual clusters are listed in tables S1 to 
S3. (C) Clustering of chemokines and their receptors. (D) Clustering of MDAs and MHC class I 
and II molecules. See reference for additional detail. Figure is adapted from Figure 5 of Hu-
Lieskovan et al, 2015.  
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Inhibition of colony stimulating factor-1 receptor improves antitumor efficacy of BRAF 

inhibition 

 Targeted therapy with oncogenic BRAF inhibitors also have an additional immune 

potentiating effect, due to paradoxical activation of wild-type BRAF in tumor-infiltrating 

lymphocytes (TILs) that increases cytotoxic activity and IFN-γ production. However, melanoma 

cells can secrete the cytokine colony stimulating factor 1 (CSF1) to promote an 

immunosuppressive microenvironment to promote immune escape. Engagement of CSF1 to 

CSF1 receptor can induce the differentiation and polarization of M2 macrophages and myeloid 

derived suppressor cells. In this study, we show in the SM1 murine melanoma model that 

combination therapy of oncogenic BRAF inhibitor PLX4032 and CSF1R inhibitor PLX3397 

results an increase in TILs and heightened antitumor response that is T-cell dependent.  

 Gene expression analysis of the SM1 tumors was performed following treatments with 

PLX3397, PLX4032, or the combination for 5 days. We determined the presence of monocytic 

or T cell immune populations within the tumor by using the rank-based overlap tool Rank-Rank 

Hypergeometic Overlap (RRHO) with reference immune signatures from the Differentiation Map 

Portal (DMAP). We compared the differential expression between each of the treated groups 

from vehicle control with the differential expression between monocytes and T cells.  Our RRHO 

overlap analysis suggest that for all treated groups, there is a stronger T cell signature with the 

higher signal in the combination therapy group (Figure A-2, A-C). 

   Additionally, we looked into the immune specific gene expression from F4/80+ CD11b+ 

macrophages and CD3+ CD8+ T-cells. Within the macrophage gene expression dataset, we 

observed a downregulation of the immunosuppressive M2 polarized macrophage-related gene 

expression such as Arg1, IL-10, CD163, and MSR1. This downregulation was present in all 

treatment groups, but was stronger in the combination therapy (Figure A-2D). Within the CD8+ 

T cell dataset, we observed upregulation of T cell activation genes such as IFN-γ, Gzmb, and 

Pdcd1. This upregulation was again present in all treatment groups, but strongest in the 
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combination therapy treatment group (Figure A-2E).  Taken together, our results suggests that 

the improved antitumor response from PLX3397 and PLX4032 treatment can be attributed to 

the combined effect of both drugs. PLX3397 treatment decreases the immunosuppressive M2-

polarized macrophages from PLX3397 treatment, which then promotes T-cell infiltration, while 

PLX4032 treatment augments T-cell activation and cytotoxic response. 

 

Reference: 

Mok, S., Tsoi, J., Koya, R.C., Hu-Lieskovan, S., West, B.L., Bollag, G., Graeber, T.G., and 
Ribas, A. (2015). Inhibition of colony stimulating factor-1 receptor improves antitumor efficacy of 
BRAF inhibition. BMC Cancer 15, 356. 
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Figure A-2.  In vivo T-cell activation and suppression of macrophages mediated by 
PLX3397 and PLX4032. Gene expression signature overlap maps were used to compare the 
similarity of drug-treated full tumor gene expression profiles with a panel of T-cell and monocyte 
(Mono) gene signatures from a reference immune cell signature database (the Rank-Rank 
Hypergeometric Overlap (RRHO) algorithm and the Differentiation Map (DMAP) database), (A) 
PLX3397 treatment vs vehicle control (VC); (B) PLX4032 vs vehicle; (C) combined drug 
treatment (Combo) vs vehicle. (D) Gene expression heat map for macrophage signature genes 
in F4/80(+) CD11b(+) macrophages FACS-sorted from SM1 tumors treated with PLX3397 or 
PLX4032 for 5 days. (E) Gene expression heat map for T-cell signature genes in CD3(+) 
CD8(+) T-cells from SM1 tumors. Color scale, log2-transformed fold change expression (red, 
high; green, low) for each gene (row) normalized to the value for the vehicle control-treated 
tumors. See reference for more detail. Adapted from Figure 5 from Mok et al, 2015. 

A B C 
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CRAF R391W is a melanoma driver oncogene 

While the majority of melanomas have driver mutations in BRAF or NRAS, there remains 

a subset of melanomas with no known driver mutation. In this study, we identify a rare and novel 

driver mutation in a patient with melanoma that is wild-type to BRAF and NRAS. Although wild-

type for BRAF and NRAS, the cell line derived from the patient biopsy, M375, was highly 

sensitive to pan-RAF and MEK inhibition (Figure A-3A). Additionally, M375 had signaling 

patterns similar to the BRAF mutant cell line M397, as indicated by substantially higher 

phosphorylation of MEK and ERK that can be suppressed by pan-RAF inhibition. As negative 

controls, BRAF/NRAS wild-type cell lines M230 and PB have lower phosphorylation levels of 

MEK and ERK, and are less affected by RAF inhibition (Figure A-3, B-C). Therefore, we 

hypothesized that M375 had a previously undiscovered MAPK pathway mutation driving the 

oncogenic phenotype. 

Through RNA sequencing analysis, we found that the levels of CRAF were substantially 

higher in M375 than any of the other tested cell lines (Figure A-3D). Due to the higher RNASeq 

transcript levels, we were able to confidently perform mutation calling of the CRAF locus and 

identified a homozygous CRAF A1171T missense mutation (R391W). This mutation was 

confirmed by Sanger sequencing to be a homozygous mutation that is present in the original 

patient biopsy and therefore not an artifact of cell culture (Figure A-3E). Additionally, this 

mutation is not present in normal blood cells, indicating that it is a somatic mutation. The levels 

of this CRAF protein were also strongly elevated (Figure A-3F), suggesting a functional 

importance for the mutated kinase.  

In summary, our RNA sequencing analysis and cell line phenotype information has led to 

the discovery of the CRAF R391W mutation. The abundant transcript levels and homozygosity 

of this mutation all indicate a selective advantage of this mutation and its importance. Further 

validation experiments guided by this discovery have confirmed that CRAF R391W is a novel 

oncogene. In CRAF wild-type cells, exogenous expression enables CRAF continuous 
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homodimerization, increased MAPK signaling activity, can confer resistance to BRAF inhibition, 

and supports anchorage independent growth in NIH3T3 cells. Experimental details can be found 

in the original referenced manuscript. 

 
Reference: 
 
Atefi, M., Titz, B., Tsoi, J., Avramis, E., Le, A., Ng, C., Lomova, A., Lassen, A., Friedman, M., 
Chmielowski, B., Ribas, A., and Graeber, T.G. (2016). CRAF R391W is a melanoma driver 
oncogene. Sci Rep 6, 27454. 
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Figure A-3. Identification of CRAF R391W as a candidate melanoma oncogene in a BRAF 
WT/NRAS WT cell line (M375) and matched patient sample. (A) Growth inhibition assay 
demonstrates sensitivity of the BRAF/NRAS wild type cell line M375 to pan-RAF inhibitor (PRi) 
and MEK inhibitor (MEKi) and its resistance to the BRAF inhibitor vemurafenib. M375 was 
treated with serial dilutions of these drugs in duplicate. MEKi concentration was 1/10 of the PRi 
and vemurafenib concentration for each dilution. The assay was repeated twice. Error bars 
indicate the standard error. (B) MAP-kinase signaling and inhibitor treatment response of CRAF 
mutant M375 cells is reminiscent of BRAF mutated cells except for lack of vemurafenib 
sensitivity. Western blot assay was performed on CRAF mutant M375, c-KIT mutant M230, 
BRAF mutant M397 and NRAS/BRAF wild type PB cell lines to analyze their MAPK pathway 
activities at basal levels or after treatment with 1.0 µM of PRi or vemurafenib for 24 hours. (C) 
RNA-seq analysis of M375 reveals a homozygous CRAF A1171T mutation (CRAF R391W). 
RNA-seq analysis was performed for the M375, M230 (c-KIT mutant), M397 (BRAF mutant), 
and PB (BRAF WT/NRAS WT) cell lines. For discovery of the CRAF R391W mutation all 
mutations detected in the sequencing data were filtered for potentially damaging mutations in 
the MAP kinase pathway (see methods). The table shows the detected mutations in the 
common melanoma oncogenes and CRAF for the four cell lines. (D) mRNA expression of CRAF 
in the four cell lines as determined by RNA-seq analysis. M375 shows >10x higher expression 
of CRAF (R391W). (E) CRAF A1171T/R391W mutation in M375 and its corresponding tumor is 
the result of a somatic mutation. Sanger sequencing was performed on the genomic DNA 
samples isolated from M375 cell line, its corresponding tumor and matched blood of the patient. 
Sequencing confirmed the presence of CRAF A1171T mutation in the tumor, its derived cell line 
(M375), but not in the blood of the patient. (F) Western blot analysis shows strongly elevated 
abundance of CRAF protein levels in the CRAF mutated melanoma cell line M375 in 
comparison with 3 other melanoma cell lines. See reference for more details. Adapted from 
Figure 1 from Atefi et al, 2016. 
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