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A B S T R A C T

Event attribution in the context of climate change seeks to understand the role of anthropogenic greenhouse gas
emissions on extreme weather events, either specific events or classes of events. A common approach to event
attribution uses climate model output under factual (real-world) and counterfactual (world that might have been
without anthropogenic greenhouse gas emissions) scenarios to estimate the probabilities of the event of interest
under the two scenarios. Event attribution is then quantified by the ratio of the two probabilities. While this
approach has been applied many times in the last 15 years, the statistical techniques used to estimate the risk ratio
based on climate model ensembles have not drawn on the full set of methods available in the statistical literature
and have in some cases used and interpreted the bootstrap method in non-standard ways. We present a precise
frequentist statistical framework for quantifying the effect of sampling uncertainty on estimation of the risk ratio,
propose the use of statistical methods that are new to event attribution, and evaluate a variety of methods using
statistical simulations. We conclude that existing statistical methods not yet in use for event attribution have
several advantages over the widely-used bootstrap, including better statistical performance in repeated samples
and robustness to small estimated probabilities. Software for using the methods is available through the cli-
mextRemes package available for R or Python. While we focus on frequentist statistical methods, Bayesian
methods are likely to be particularly useful when considering sources of uncertainty beyond sampling uncertainty.
1. Introduction

Over the past decade, there has been increasing interest in the climate
change research community in describing the role of anthropogenic
greenhouse gas emissions in specific extreme weather events, commonly
referred to as “event attribution” (Stott et al., 2013; National Academies
of Sciences, Engineering, and Medicine, 2016; Herring et al., 2016). This
increased scientific interest has been motivated by public interest, as the
global warming signal both becomes more noticeable and easier to
analyse, and an expectation that further understanding of the role of
anthropogenic emissions might inform adaptation activities. Concur-
rently, observationally-based data products, numerical climate models,
and computational resources have developed to the point where they can
be usefully applied to the analysis of long-term trends in extreme
weather.

Allen (2003) first noted the potential public demand for event attri-
bution information and suggested that concepts from epidemiology and
environmental law would be appropriate in the climate change setting as
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well. In this setting, one compares the probability of an extreme weather
event under a factual scenario of recent and current conditions to the
probability in a counterfactual scenario in which anthropogenic emis-
sions had never occurred but other factors (e.g., the eruption of Mt.
Pinatubo) had still influenced the climate system. Stone and Allen (2005)
formally introduced the concepts of fraction attributable risk (FAR) and
risk ratio (RR) and proposed how they might be estimated given avail-
able tools. (Note that 'risk' in risk ratio inherits from its usage in bio-
statistics/epidemiology and is unrelated to statistical risk.) Unlike in
epidemiology, in which repeated observations (e.g., multiple patients)
are available with different exposures to potential health risks, in the
climate context we do not have available repeated samples of the world,
particularly under the counterfactual scenario. Analyses therefore use
simulations of numerical models of the climate system as surrogates.
Stott et al. (2004) presented the first study using this approach, making
use of a small number of simulations of a climate model representing the
entire climate system, but the small number of simulations meant that
they had to assume a relationship between the average summer
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temperature and the frequency of extremely hot summers. Pall et al.
(2011) extended the method to take advantage of an exceptionally large
number of simulations that removed the need for the assumption of a
mean-extreme relationship, at the expense of an incomplete model of the
climate system. Together, these two variants of the “probabilistic event
attribution” method have become the most popular approach for event
attribution research in recent years (e.g., Peterson et al., 2012, 2013;
Herring et al., 2014, 2015, 2016).

Despite this popularity, there has been little formal statistical devel-
opment of the technique since Stone and Allen (2005). The exception is
the work of Hansen et al. (2014), who considered the problem of esti-
mating the FAR as the ratio of means of two independent Poisson pro-
cesses and proposed use of a confidence interval well-established in the
statistical literature (Wilson, 1927). They also considered the case when
the estimated counterfactual probability of an event is zero and devel-
oped a one-sided interval for FAR.

Underlying probabilistic event attribution are the existence of
observational data and relevant climate model simulations, along with
the assumption that both are adequate for performing an analysis.
Guidelines for such adequacy tests are still being considered (Stott et al.,
2004; Pall et al., 2011; Lott and Stott, 2016; Ang�elil et al., 2016). We
leave the question of how to evaluate the input data sources for further
discussion elsewhere and focus instead on statistical methods to estimate
the RR (conditional on the data sources) and to quantify the uncertainty
in the estimate due to limited statistical sampling because of finite model
ensemble sizes.

This paper presents a formal frequentist statistical framework for
probabilistic event attribution. Previous work has frequently involved
interpretation of frequentist-based analysis using a Bayesian perspective
(e.g., Stott et al., 2004; Pall et al., 2011), so part of our goal is to clarify
ways to implement standard frequentist statistical methods in this
context. We focus on estimating uncertainty from limited sampling, for
which a frequentist approach is well-suited. We present several statistical
methods for estimating uncertainty via confidence intervals, assess per-
formance in a statistical simulation study, provide an example analysis,
and make recommendations for the practice of probabilistic event attri-
bution. We highlight that some methods allow estimation of a confidence
interval even when the estimated counterfactual probability is zero and
the risk ratio is infinity.

2. Statistical framework

We consider the approach of estimating the risk (probability) ratio, as
the ratio of the probability of a specified event under a factual scenario
(F), pF , to that probability under a counterfactual scenario (CF), pC:

RR ¼ pF
pC

:

In most climate attribution studies (and a case study in Section 6), the
factual scenario is intended to represent the climate we have experi-
enced, i.e., in which historical emissions of greenhouse gases and other
drivers of climate change occurred as they did. In contrast, the coun-
terfactual is intended to represent a climate that might have been in the
absence of human interference, i.e., in which the anthropogenic drivers
are held at some “pre-industrial” level (e.g., year 1850 values) even as the
natural drivers (volcanic eruptions and solar luminosity) remain varying
as we have experienced. Given estimates, bpF for pF and bpC for pC, one

simply estimates cRR ¼ bpFbpC. We focus on RR rather than FAR because of its

use in epidemiology and related fields, its interpretability, and because in
our statistical development we generally work with log ðRRÞ, which is
expressed simply as the difference in log probabilities and which im-
proves statistical performance. Usefully, on the log scale, increases and
decreases from anthropogenic influence are symmetric about zero, unlike
for the FAR. However, a confidence interval for FAR can be trivially
calculated from a confidence interval for RR.
2

In this work we lay out a classical (or frequentist) statistical frame-
work that treats pF and pC (and therefore RR) as fixed, non-random
quantities that are properties of the climate system. Uncertainty arises
in estimating these quantities, and our goal is to quantify the uncertainty

in cRR as an estimate of the unknown RR based on the (sampling) prob-

ability density of cRR. In contrast, a Bayesian treatment would consider
these quantities to be random variables with probability densities and
would allow one to make probabilistic statements directly about RR.
Note that in previous event attribution work, researchers have frequently
interpreted results, including bootstrap-based analyses, in a Bayesian
fashion despite largely relying on frequentist methods (e.g., Stott et al.,
2004; Pall et al., 2011).
2.1. Basic probabilistic framework

We use R to denote the continuous variable of interest (e.g., runoff or
rainfall) and IðR > cÞ to denote the occurrence of the event of interest,
defined by whether the variable exceeds some cutoff, c. Ið⋅Þ is the indi-
cator function that is 1 if the condition occurs and 0 if not.

Let

p ¼ PðR > cÞ ¼ EðIðR > cÞÞ ¼ ∫ IðR > cÞf ðrÞdr (1)

be the probability of the event, where Eð⋅Þ denotes expected value and
f ðrÞ is the probability density function of R. While in principle we can
estimate this quantity in the real world using observations, we only have
a single observational series. If that series were stationary (which may be
a reasonable assumption only for short time periods), we might use
multiple years as replicates, but we cannot estimate this quantity under
the counterfactual scenario. Therefore researchers rely on climate model
simulations to estimate p 2 fpF ;pCg. (However the methods in this paper
can be used for a RR contrasting probabilities under two different time
periods.)

In a single climate model simulation, R for a pre-specified time and
location is not random since the model is deterministic and therefore R
(and IðR > cÞ) is a fixed value. In this case, the use of expectation and
probability above is not meaningful. However, not only can models be
run under multiple scenarios, but they can be run multiple times with
each realization differing in the initial state and thus the subsequent
weather produced. Let W (for “weather”) be a (very high-dimensional)
random variable indicating the state of the earth system and f ðwÞ the
probability density function of W. The individual realizations provide a
simple random sample, w1;…; wnw , of size nw from f ðwÞ. By using the
initial condition ensemble, passed through the deterministic GCM, to
represent f ðwÞ, we rely on the strong assumption that use of the sample of
initial conditions to initialize the GCM can approximate the true f ðwÞ
under a given scenario. This ergodic assumption is reasonable for the
atmospheric model simulations used in the approach of Pall et al. (2011)
after a spin-up period of weeks to over a year but requires decades for
atmosphere-ocean GCMs.W is random and induces the randomness in R.
Thus RðWÞ is our random variable of interest. Now we have

p ¼ PðRðWÞ > cÞ ¼ EðIðRðWÞ > cÞÞ ¼ ∫ IðRðwÞ > cÞf ðwÞdw: (2)

The discussion above assumes one value of R per model realization,
which would often be the case for annual or seasonal extremes or for
short-term extremes for specific calendar dates. If one has multiple values
of R for a given realization (e.g., analyzing daily rainfall), one would
generally benefit from having a much larger sample size than is the focus
here (particularly the simulation results of Section 5), but one would
need to account for any correlation between themultiple values of R from
a given realization (e.g., the daily values in a given season or year),
particularly when estimating uncertainty.

In Section 3 we present methods to estimate p 2 fpF ; pCg, while in
Section 4 we discuss how to quantify the uncertainty in estimating RR.
Before doing so, we consider the additional complexities involved in
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estimating RR that are not characterized in the basic framework above.

2.2. Sources of uncertainty

Sources of uncertainty in estimating the RR using GCMs (see also
National Academies of Sciences, Engineering, and Medicine (2016))
include:

� Variability in the earth system: Uncertainty arises from limited
sampling of the variability of the system, which can range from time
scales of days to years, decades, and centuries. This is often oper-
ationalized via an ensemble of GCM simulations initialized with
different initial conditions and quantified based on the notion of
sampling uncertainty as discussed in the basic framework above.

� Boundary condition uncertainty: This includes aspects of the sys-
tem that can vary in time but that are prescribed in the model and
thus not simulated by it, such as the concentrations of radiatively-
active trace constituents in the atmosphere and changes in land use.
Modification of one or more of these boundary conditions constitutes
the distinction between the factual and counterfactual scenarios; thus
uncertainty in the distinction is implicit in this source of uncertainty.
When such forcing terms are based on observational data, there is
observational uncertainty.

� Model parametric uncertainty: This represents uncertainty in the
appropriate values for parameters in the GCM that are used in ap-
proximations for various processes not directly simulated by the
GCM. This could include fundamental physical or chemical constants,
but generally uncertainty in those constants is negligible relative to
uncertainty in the appropriate value of bespoke parameters.

� Model structural uncertainty: This is another component of un-
certainty inherent to the climate model – the uncertainty in how to
represent a complex physical system as a mathematical model, but not
the uncertainty in tuning of that approximation. Note that determi-
nation of whether a model is fit for purpose for event attribution is a
binary determination of this broader component of uncertainty.

We draw a fundamental distinction between uncertainty arising from
variability in the system and the remaining sources of uncertainty. Un-
certainty from variability is a statistical sampling problem, with uncer-
tainty decreasing with increasing sample size. Critically, this uncertainty
is quantifiable using well-established frequentist or Bayesian statistical
methods. If we had an infinitely large ensemble, our sampling uncer-
tainty would be zero. However, there would still be bias from the fact that
the climate produced by the model is not the same as the climate pro-
duced by the real system, even in equilibrium, due to the additional
factors listed above. In this work, we focus on uncertainty from vari-
ability, in part because frequentist methods would appear to be of limited
use for the other sources. We make some comments on these other
components of uncertainty in the discussion.

Finally, many event attribution analyses use atmospheric-land GCMs,
as in Pall et al. (2011), rather than coupled models, for reasons of
computational efficiency, a partial conversion of (oceanic) model struc-
tural uncertainty to better-understood boundary condition uncertainty,
and in some cases a desire to more strongly condition the analysis on
known features of the real world. With such analyses, model simulations
do not sample from the longer-time-scale internal variability of the sys-
tem. In Supplemental Material B we describe the additional uncertainty
related to this longer-time-scale variability and present statistical
methods for averaging over results from multiple years.

3. Estimating event probabilities

We next provide an overview and comparison of methods for esti-
mating p 2 fpF ; pCg. We discuss approaches that simply count exceed-
ances and rely on binomial sampling statistics, parametric fitting of the
variable of interest, and extreme value analysis (EVA) of the variable of
3

interest.
While EVA is often used for estimating probabilities of extreme events

with observational data, serious difficulties can arise in the context of
event attribution analyses that use model ensembles, and simple
nonparametric estimators are often a good choice. First note that EVA is
generally used on long time series and applied to short-term (e.g., daily)
extremes. In this context, one often uses a block maximum (or minimum)
approach, blocking by year, or a peaks-over-threshold approach that only
uses observations over a high threshold, such as the 99th percentile of the
observations. The statistical theory that supports EVA relies on taking
maxima (or minima) over a large number of observations per block or
setting a high threshold. However, for analysis of annual or seasonal
extremes or short-term extremes for specific calendar dates, model en-
sembles generally only provide moderate sample sizes such as 50, 100, or
400, violating the assumptions of EVA. Furthermore, in event attribution,
the event of interest may be extreme only in one scenario, so EVA may
not be applicable for one scenario. And for short model simulations with
initial conditions that favor extreme weather, the entire sample may be
extreme in an absolute sense, in which case the event of interest may, in a
relative (i.e., conditional) sense, not be extreme and EVA would not be
appropriate (e.g., Pall et al., 2017).

Thus, while there are situations in which EVA has advantages for
model-based event attribution (as seen in the case study in Section 6 and
discussed further in our recommendations in Section 7), we focus more
on the binomial approach because of its greater generality.

3.1. Nonparametric (binomial sampling of events)

One straightforward approach to estimating p is a nonparametric
Monte Carlo (MC) estimate based on the available sample. An MC esti-
mate of the expectation in (2) involves drawing nw samples of W from
f ðwÞ (based on the model simulations) and using the estimator:

bp ¼ #events
nw

¼ 1
nw

Xnw
i¼1

IðRðwiÞ > cÞ; (3)

which is justified by the law of large numbers because bp is a statistically-
consistent estimator for p as nw→∞. Consistency here means that as nw
gets large, bp is guaranteed to get very close to p.

This estimator makes no assumptions about the distribution of R
(hence the term ’nonparametric’, although it is equivalent to Bernoulli
sampling and a resulting binomial distribution for the number of events)
and is thus robust, but there are drawbacks to the approach. First, the
estimator may have more uncertainty than parametric estimators that
assume a particular distribution. Furthermore, if R > c does not occur in
the sample, our estimator is bp ¼ 0 even when we have substantive
expertise suggesting that p is non-zero. Zeros for bpF , bpC, or both result in
RR estimates of zero, infinity, or an undefined value.

3.2. Parametric

If one is willing to assume a particular parametric form for the dis-
tribution of R, such as a normal or log-normal distribution, statistical
theory tells us that one may be able to obtain an estimator for p that has
lower variance (less uncertainty) than the nonparametric estimator
above. For example if we assume normality, we can estimate the mean

and variance of R as r and s2R ¼
P

ðri�rÞ2
nw�1 , where ri ¼ RðwiÞ and r is the

simple average of r1;…; rnw . Then bp ¼ ∫ ∞
c f ðr; r; s2RÞdr where f ðr; r; s2RÞ is

the normal density with mean r and variance s2R.
The methodology allows us to estimate probabilities for events far in

the tail of the distribution, but it relies crucially on the assumption that
the chosen distribution well approximates the true distribution even far
in the tail. Put another way, all the data values are used to estimate the
parameters of the assumed distribution and thereby infer the behavior of
the tail of the distribution.
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Finally, note that unless the chosen distribution has a finite bound
(either a maximum for extremes in the upper tail or a minimum for the
lower tail), one will not obtain bp ¼ 0.

3.3. Extreme value analysis (EVA)

A compromise between the fully parametric and nonparametric ap-
proaches is to use extreme value techniques developed in the statistical
literature; Coles (2001) provides an excellent overview. This approach
applies when the event of interest is sufficiently far in the tail of the
distribution of R. The approach involves fitting a three-parameter sta-
tistical distribution only to the extreme observations. While the approach
takes a parametric form, statistical theory provides strong theoretical
support for the particular distributional form. We provide an overview of
these methods, including a discussion of the statistical and imple-
mentational challenges of using the methods for annual or seasonal ex-
tremes in Supplemental Material C.

4. Estimating uncertainty in the risk ratio

In this section we consider several methods for estimating uncertainty
using frequentist confidence intervals. Our focus is on confidence in-
tervals for RR, and we introduce each method in the simplest context of
the nonparametric estimator (Section 3.1) before describing how the
method could be used in the context of EVA. After describing the
methods we carry out a simulation study to assess which performs best.

4.1. The frequentist interpretation of uncertainty about p and RR

As discussed briefly in Section 2, we cannot generate a distribution of
p or of RR ¼ pF=pC using the methods discussed here, as this is not part of

the frequentist statistical framework used here. cRR has a distribution,
called the sampling distribution, that is induced by the distributions of bpF
and bpC, but it is not particularly useful to plot it, as it represents the

variability of cRR around RR. The danger in presenting such a plot is that
it will often be viewed incorrectly as representing the distribution of RR,
interpreted in a Bayesian fashion even though it has not been derived in a
Bayesian fashion. For example, suppose the sampling distribution has a

long right tail. This indicates that the estimator, cRR, might be much
larger than the true value, RR, and suggests that the true value may be
much smaller than the our estimate. But if this sampling distribution
were incorrectly interpreted as a Bayesian posterior, one would conclude
that the true value may be much larger than the point estimate. (How-
ever, in the case of a simple parametric model and large sample size, the
Bayesian central limit theorem states that the Bayesian posterior distri-
bution will be approximately the same as the frequentist sampling dis-
tribution (Gelman et al., 2013)).

Instead, the standard statistical approach to quantifying uncertainty is
to estimate a confidence interval. For the sake of illustration we will
discuss a 90% confidence interval here, but the ideas are the same for
other levels of confidence. The basic principle of a 90% confidence in-
terval is that it is a random interval that should include the true value of
the RR in 90% of the datasets that we might observe/collect. It is a
random interval because it varies depending on the data collected, while
the true RR is considered to be fixed. Therefore given a procedure for
producing a confidence interval we can assess the procedure based on its
coverage probability (the probability it contains the true value), assessed
using synthetic datasets developed to mimic the real data-generating
mechanism. Our goal is to use a procedure for calculating a confidence
interval that produces intervals as short as possible while still having the
specified coverage probability of 90%.

4.2. Methods for calculating confidence intervals

In this section, we explore several ways to estimate a confidence
4

interval for the RR. We note that the statistical literature on estimating
the RR (and the related odds ratio) in the biomedical literature is large
and in particular considers a number of methods applied to binomial
counts (see Fagerland et al. (2015) for an overview), and we consider
some of those methods in addition to the bootstrap and a basic
normal-theory method. Many of these methods are implemented in the
climextRemes package available for R and Python, which builds upon the
extRemes R package (Gilleland and Katz, 2011).

In general for probabilities (especially those near 0 or 1) and for ratios
the sampling distribution of a given estimator is not a normal distribu-
tion, often being skewed. In this setting, working on the log scale often
gives better statistical performance, with confidence intervals that come
closer to having the desired coverage (e.g., Katz et al., 1978). One would
compute the confidence interval for the quantity on the (natural) log
scale (e.g., the log risk ratio) and then exponentiate the endpoints of the
interval to get a confidence interval on the original scale.

4.2.1. Normal-theory confidence intervals
Basic statistical theory provides a standard confidence interval based

on the standard error of the estimator when the sampling distribution of
the estimator is approximately normally distributed. The approach is
appropriate for larger sample sizes but can perform poorly for smaller
sample sizes and when either pF or pC is close to zero. Furthermore, it
involves some mathematical derivation, with use of the delta method in
the context of the RR. For completeness we provide details in Supple-
mental Material D.1.

We turn next to the bootstrap, which aims to overcome some of these
difficulties by relying on computation.

4.2.2. Bootstrap
The bootstrap is a widely-used, asymptotically-justified statistical tool

for estimating the uncertainty in statistical estimates, particularly in
cases where one cannot derive the standard error of or confidence in-
terval for an estimator in closed form (Efron and Tibshirani, 1994;
Davison and Hinkley, 1997). To introduce the bootstrap we present it to
develop a confidence interval for p for simplicity. However the same
techniques work on the log scale for log p and for logRR.

A common version of the bootstrap involves resampling values of R
with replacement from the sample, r1;…; rnw to generate nb different
bootstrap datasets, each of size nw. With each bootstrap dataset we es-

timate p, giving us bpð1Þ;…;bpðnbÞ. Note that the method does not provide us
with a distribution to represent uncertainty in p and should not be
interpreted as a Bayesian posterior distribution for p (though there are
connections between Bayesian methods and the bootstrap). Rather the

sample bpð1Þ;…; bpðnbÞ provides us with an estimate of the sampling dis-
tribution of bp. The idea of the bootstrap is that the empirical distribution

of the bpðiÞ values around bp generally behaves similarly to the distribution
of bp around p, which is the true sampling distribution, f ðbp; pÞ. If we knew
the true sampling distribution, it would be simple to calculate a confi-

dence interval. E.g., with normal data, we know that x � N
�
μ;σ

2

n

�
. Given

knowledge of this sampling distribution, we can analytically derive a
90% confidence interval for μ as x plus/minus 1.64 times the standard
error, σ=

ffiffiffi
n

p
, without needing to use the bootstrap. In the absence of a

known sampling distribution, there are a variety of ways to use the bpðiÞ
values to estimate a bootstrap confidence interval for p:

� Bootstrap interval using bootstrap standard error estimate: use

the empirical standard deviation of the bpðiÞ values around their mean,bp. If we are happy to assume normality, we can use the empirical

standard deviation of the bpðiÞ values as the standard error estimate,
which we denote bse, to form a 90% confidence interval in the usual
way,
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ðbp � 1:64⋅ bse; bp þ 1:64⋅ bseÞ: (4)
� Bootstrap percentile interval: use percentiles of the empirical dis-

tribution of the bpðiÞ values to avoid the assumption of normality
needed when using the bootstrap-based standard error estimate. This

gives the following 90% interval, involving the 5th (bp5%) and 95th

(bp95%) percentiles of the bpðiÞ values,
�bp5%; bp95%�: (5)

� Basic bootstrap interval: the interval also involves bp5% and bp95% and
is

�bp � �bp95% � bp�; bp � �bp5% � bp��: (6)

It is useful to consider the intuition behind why the upper quantile is
involved in calculating the lower endpoint of the interval and vice versa,

in contrast to the percentile method. The basic intuition is that if bp95% is
much larger than bp, this indicates the plausibility of estimated values that
are much larger than the true value. Given this, our lower limit for p
should be much lower than bp, because our actual estimate, bp, calculated
using our single dataset may be much larger than the true value, p. Note

that if the sampling distribution is symmetric, with bp � bp5% ¼ bp95% � bp
then the percentile and basic intervals will be the same.

� Studentized bootstrap interval: this approach improves upon the
basic interval by standardizing by an estimate of the standard error in

each bootstrap sample. Let zðiÞ ¼ ðbpðiÞ � bpÞ= bseðiÞ where bseðiÞ is a

(possibly rough) estimate of the standard error of bpðiÞ that is calcu-
lated from the ith bootstrap sample. Let z5% and z95% be the 5th and
95th percentiles of the zðiÞ values. The studentized confidence interval
is then

�bp � bse⋅z95%; bp � bse⋅z5%�
where bse is the (possibly rough) standard error estimate based on the
actual dataset.

� Adjusted percentile (BCa) bootstrap interval: this approach seeks
to improve upon the percentile interval by estimating a trans-
formation that brings the sampling distribution closer to normality
(Davison and Hinkley, 1997).

Confidence intervals for RR In general, the ensemble members
under the two scenarios are unrelated. If they were related, we would
want to resample from the data in a way that reflected the relationship
between the simulations in the two scenarios. Given the lack of rela-
tionship, a bootstrap procedure is to obtain nb resampled datasets from
each scenario and to randomly pair the datasets to get nb pairs, from

which one can calculate log cRRð1Þ
;…; log cRRðnbÞ. This pertains to esti-

mates obtained from any of the nonparametric, parametric, or EVA
methods.

Drawbacks to the bootstrap An important difficulty with the

bootstrap occurs when cRR ¼ ∞ (the following discussion holds equiva-

lently for cRR ¼ 0Þ. In this case in which bpC ¼ 0 the bootstrap fails
because there is no variability in the data; all bootstrap datasets will havebpðiÞC ¼ 0. Another case is when some of the bootstrap samples have bpðiÞC ¼
0 or bpðiÞF ¼ 0 and therefore log cRRðiÞ 2 f� ∞;∞g. In this case, the boot-
strap standard error estimate (and therefore the bootstrap normal in-
terval) cannot be calculated, while the ad hoc approach of removing such
bootstrap samples before calculating confidence intervals using the
various bootstrap methods has no clear justification and could affect
5

performance of the resulting confidence interval. Finally when using
EVA, it is not uncommon to be unable to estimate bpF or bpC because the
optimization for the EVA parameters does not converge, and this often
occurs with a subset of the bootstrapped datasets as well. It is unclear
how to handle this, although if the number of times this occurs is small,
ad hoc calculation of confidence intervals based on ignoring these values
may not cause serious bias in the uncertainty quantification.

More generally than just in this context of estimating the RR, the
percentile bootstrap method is known to perform poorly in practice
(Hesterberg, 2015). However, while the logic behind the swapping of the
percentiles in the basic bootstrap method relative to the percentile
method suggests we might favor the basic bootstrap, both theoretical
results (Davison and Hinkley, 1997; Hesterberg, 2015) and our simula-
tion results (Section 5) show that the basic bootstrap also does not
perform well. Furthermore, our simulation results suggest that all of the
bootstrap-based methods have serious drawbacks.

This is not surprising, particularly for values of bpF or bpC near zero. The
bootstrap is known to perform poorly when the resampling gives a
discrete distribution with few values. An extreme manifestation of this
occurs when bpN or bpA are zero. However, even when this does not occur,
the sampling distribution often has probability mass at∞, 0 and 0=0, and

the bootstrap estimate of the sampling distribution of log cRR � log RR
can provide a poor approximation to the true sampling distribution.

4.2.3. Inverting a hypothesis test using the likelihood ratio statistic
This approach is appealing because it can be used when bpF ¼ 0 (orbpC ¼ 0), providing a one-sided confidence interval that gives a lower

(upper) bound on plausible values of RR, as done in Jeon et al. (2016).
The usefulness of providing a bound on the RR should be apparent,
because the bound allows us to assess the magnitude of the anthropo-
genic influence in light of uncertainty. The basic idea is to find a confi-
dence interval by inverting a hypothesis test for the estimate of interest. A
standard hypothesis test that is commonly applicable is a likelihood ratio
test (Casella and Berger, 2002), which compares the likelihood of the
data based on the maximum likelihood estimate to the likelihood of the
data when constraining the parameters to represent a simpler setting in
which a null hypothesis is assumed true. Confidence intervals based on
likelihood ratio tests are widely used and well described in the statistical
literature but have not been used in event attribution, so we provide
details in Supplemental Material D.2.

4.2.4. Binomial-based intervals
For the case where the two probabilities in the risk ratio are estimated

using the nonparametric approach, but not the EVA approach, the sta-
tistical literature provides a wide variety of methods to calculate a con-
fidence interval for the risk ratio from independent binomial proportions,
motivated by the vast number of analyses of risk ratios in the biomedical
literature (Fagerland et al., 2015). Once again, a standard framework
involves inverting a hypothesis test. Of the wide array of possibilities,
some methods our literature search suggested to be promising are:

� Wilson's method: Hansen et al. (2014) propose to find an interval for
the risk ratio by conditioning on the sum of events in the two sce-
narios to produce a binomially-distributed quantity and using an
approximate confidence interval for a binomial probability proposed
by (Wilson, 1927).

� Koopman's asymptotic score method: (Koopman, 1984) proposes to
invert Pearson's chi square test. (Fagerland et al., 2015) found this
method to perform reasonably well in simulations.

� Wang and Shan's method: Wang and Shan (2015) seek to improve
upon existing methods by an inductive process to determine the
ordering of how extreme different data values are with respect to
providing evidence against the null hypothesis and then computing
p-values by computing probabilities of data as or more extreme than
observed, using the worst case value of the unknown nuisance



C.J. Paciorek et al. Weather and Climate Extremes xxx (2017) 1–12
parameter. One can then invert the test to obtain a confidence in-
terval. More details are in Supplemental Material D.3.

5. Simulation study to evaluate the methods

Given the variety of methods available, the potential for small sample
sizes, the fact that pF or pC are often near zero, and the difficulty that the

normality-based method and the bootstrap methods have when cRR ¼∞,
we explored the performance of the methods using a simulation study.
For simplicity and given the limitations of EVA discussed earlier, the
simulation study focuses on the context of estimating the RR based on the
nonparametric approach rather than EVA. The key factors that affect the
statistical performance of the methods are the ensemble size, the true
value of the RR, and the true probability of the event.

5.1. Design

For a given scenario, defined by the ensemble size (n), the RR, and the
event probability (pF), we generated 5000 synthetic datasets of yF and yC
values, each from a binomial distribution with n ensemble members and
probability of event pF and pC ¼ pF=RR, respectively. We considered
n 2 f25; 50;100;400g, where 50 is the minimum suggested in the
C20C þ Detection and Attribution project protocol (http://portal.nersc.
gov/c20c) and 400 the number available for our case study. Our results
focus on ensembles of size 100 as intermediate between the high uncer-
taintywith smaller sizes and the fact that sizes as large as 400will often not
be available. We considered RR 2 f1; 2;4;8; 16g representing the range
from a world where there is no anthropogenic influence to one with very
strong influence. We considered pF 2 f0:01; 0:025; 0:05;0:10; 0:20g to
represent a range in how extreme the event is. Given all possible combi-
nations of values of n, RR, and pF , we have 100 scenarios.

Note that while we only consider risk ratios greater than or equal to
one, the results are equivalent for pC 2 f0:01; 0:025;0:05;0:10;0:20g
with RR 2 f1; 1=2; 1=4;1=8;1=16g because the same calculations can be
done for RR�1 � pC

pF
, followed by taking one over the resulting interval

endpoints to get a confidence interval for RR.
We then applied the following methods to each synthetic dataset,

thereby producing a set of 5000 confidence intervals for each method for
each scenario. The methods were:

� Wilson's method (Section 4.2.4),
� Koopman's asymptotic score test inversion (Section 4.2.4),
� Wang-Shan exact test inversion (Section 4.2.4),
� normal-theory with delta method (Section 4.2.1),
� likelihood-ratio (LR) test inversion (Section 4.2.3),
� bootstrap normal (Section 4.2.2),
� percentile bootstrap (Section 4.2.2),
� basic bootstrap (Section 4.2.2),
� bootstrap-t (Section 4.2.2), and
� BCa bootstrap (Section 4.2.2).

We report results for 90% confidence intervals, considering the lower
and upper endpoints separately because in real event attribution ana-
lyses, the focus will often be on the lower bound for the RR so as to assess
the plausibility of no anthropogenic influence. Thus we focus on 95%
one-sided confidence intervals. However we note that some of the
methods were not developed as two separate one-sided intervals.
Therefore, a two-sided interval may cover the true RR with the correct
probability but when interpreted as two separate one-sided intervals not
have the correct one-sided coverage probability.

We assessed performance using the following metrics:

� coverage probability of the intervals (proportion of times the 5000
intervals included the true RR),
6

� length of the interval (focusing on themagnitude of the lower bound),
and

� proportion of intervals that could not be calculated because bpF ¼ 0 orbpC ¼ 0.

All code is available at https://bitbucket.org/lbl-cascade/event_
attribution_uq_paper.

6. Results

Fig. 1 shows the coverage probability for a one-sided lower confi-
dence interval, ðRRL;∞Þ. We see that for the LR, basic bootstrap, and
bootstrap-t intervals, the intervals fail to include the true value at least
95% of the time. In contrast, the other methods are overly conservative
(the intervals include the true value more than 95% of the time) for most
or all values of RR. While values higher than 95% may sound appealing,
they provide conservative results with intervals that are overly long and
thereby increased uncertainty in estimating the RR.

Note that in this and other figures we omit results for the bootstrap
normal interval. In almost all of the scenarios the standard deviation of
the RR estimates in the bootstrap samples could not be calculated
because one or more estimates were zero, infinity or 0/0, and omitting
those estimates has no statistical justification.

Fig. 2 shows the coverage probability for a one-sided upper confi-
dence interval, ð0;RRUÞ. Here theWang-Shanmethod is conservative, the
LR and Koopman methods show some undercoverage, and the bootstrap,
Wilson, and delta methods have widely variable results, with substantial
undercoverage in some cases.

Figure 3 shows the median value of RRL, with higher values corre-
sponding to shorter intervals and more statistical certainty about the
value of RR. As expected, in general intervals are wider for smaller values
of pF (and therefore also of pCÞ, corresponding to fewer observed events.
While the LR, basic bootstrap, and bootstrap-t methods have higher
lower bounds, these are the methods showing undercoverage (particu-
larly the bootstrapmethods), so the shorter intervals are only obtained by
violating the condition that coverage probability be correct. In contrast,
the Koopman, Wilson, and Wang-Shan methods perform well, with the
Koopman and Wilson approaches showing shorter intervals for smaller
values of pF .

Finally, Fig. 4 shows the proportion of simulated datasets for which a
lower confidence bound could not be calculated, illustrating how
commonly the bootstrap and delta methods fail, particularly for larger
values of RR and lower values of pF , which correspond to scenarios with
fewer events.

Figs. 7–10 in the Supplemental Material A show coverage results for
n ¼ 400. In general these results are similar to those for n ¼ 100, but for
n ¼ 400 we see that coverage probability is generally closer to 95%, as
we would expect with increasing sample size. Results for n 2 f25; 50g
were produced but are not shown; the results are similar quantitatively in
terms of coverage and qualitatively in terms of the median bound values,
but as expected show smaller lower bounds and higher proportions of
datasets in which the bound(s) could not be calculated.

In summary, the bootstrap methods perform poorly. The LR method,
which can be used both when analyzing binomial counts and when using
EVA, provides some advantages, in particular its ability to provide in-
tervals in most situations, including when bpC ¼ 0. In contrast, the
bootstrap intervals require bpC > 0 and do not provide meaningful in-

tervals when too many of the bootstrap samples result in bpðiÞC ¼ 0.
However, the LR interval shows undercoverage; in contrast, if one is

using binomial counting, then the Koopman andWang-Shan methods are
possibilities and avoid the undercoverage of the LR method. However,
the upper endpoint of Koopman shows some undercoverage and both
methods can be too conservative, leading to overly-long intervals. Thus
there is a tradeoff here, and a user maywish to consider how conservative
they wish to be in their analysis. The Wilson method performs similarly

http://portal.nersc.gov/c20c
http://portal.nersc.gov/c20c
https://bitbucket.org/lbl-cascade/event_attribution_uq_paper
https://bitbucket.org/lbl-cascade/event_attribution_uq_paper


Fig. 1. Coverage probability of 95% lower confidence bound for n ¼ 100 for various methods and values of RR and pF . Values of 0.95 are optimal, while values less
than 0.95 indicate undercoverage and values greater than 0.95 indicate conservativeness (overcoverage). Values lower than 0.8 are set to 0.8 for display purposes.
Simulations in which the lower bound could not be computed were excluded.
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to the Koopman method for the lower endpoint but has extreme under-
coverage for the upper endpoint. The Koopman method is easy to
compute, although the endpoints for Wang-Shan (whose calculation is
computationally-intensive) can be pre-computed and saved as a lookup
table.

7. Case study: Texas drought/heatwave

7.1. The event

Our case study focuses on the heat and dryness over the US state of
Texas in the summer of 2011, the hottest and driest (in terms of pre-
cipitation deficit) on record dating back over a century (Rupp and Mote,
2012; Hoerling et al., 2013). Rupp and Mote (2012) performed a prob-
abilistic event attribution analysis, but with counterfactual conditions
estimated from previous years with similar anomalous temperature
patterns in the Pacific Ocean (but cooller ocean temperatures generally).
They concluded that anthropogenic emissions had increased the chance
of the anomalously low rainfall and especially of the anomalous heat over
Texas. While Hoerling et al. (2013) also found evidence for an anthro-
genic contribution to the anomalous heat, they did not see evidence of a
contribution to the precipitation deficit. Revealing possible in-
consistencies in methods, however, these estimates based on climate
models are at odds with the lack of an observed long-term summer
warming over Texas (Stone et al., 2013; Hoerling et al., 2013). In this
case study, we follow Rupp and Mote (2012) in considering March-
–August growing season temperature and rainfall averaged over the state
of Texas, though the methods discussed in this work apply to longer or
shorter periods.
7

7.2. Data and methods

We use data from CAM5.1 contributed to the C20C þ Detection and
Attribution Project (Folland et al., 2014). CAM5.1 simulates the pro-
cesses of the atmosphere and land surface, given prescribed radiative and
ocean surface conditions, run at a spatial resolution of approximately 1

�

(Neale et al., 2012). Simulations have been run under a factual scenario
of observed boundary conditions (e.g., greenhouse gas concentrations,
aerosol burdens, and sea surface temperatures) and under a counterfac-
tual scenario with greenhouse gas and other radiative boundary condi-
tions set to year-1855 values and ocean conditions set to the benchmark
estimate of Stone and Pall. (2018). This removes a spatio-temporal
pattern of anthropogenic warming but preserves month-to-month and
year-to-year anomalous variability. We use data from 50 simulations of
both scenarios covering a 1961–2010 reference period, 100 simulations
(including the longer 50) covering the 1997–2010 period, and 400
simulations (including the longer 100) covering 2011–2013 (Ang�elil
et al., 2017).

While multiple observational datasets are available, we use the CRU-
TS-3.22 observationally-based data set (Harris et al., 2014). We work
with anomalies of both observations and model output against the
1961–2010 period, by subtracting the historical mean for temperature
and dividing by it for precipitation. For the model simulations, the factual
scenario reference using the 50 simulations covering the full 1961–2010
period is used for estimating anomalies for both of the scenarios.

When using EVA we set the threshold, u, as the 90th percentile for
temperature of the values being analyzed (both scenarios). For precipi-
tation we consider the 20th percentile.

All code and data are available at https://bitbucket.org/lbl-cascade/

https://bitbucket.org/lbl-cascade/event_attribution_uq_paper


Fig. 2. Coverage probability of 95% upper confidence bound for n ¼ 100 for various methods and values of RR and pF . Values of 0.95 are optimal, while values less
than 0.95 indicate undercoverage and values greater than 0.95 indicate conservativeness (overcoverage). Values lower than 0.8 are set to 0.8 for display purposes.
Simulations in which the upper bound could not be computed were excluded.
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event_attribution_uq_paper. We use the climextRemes R package version
0.2.0 (also available for Python) to estimate risk ratios and uncertainty,
in some cases based on binomial counts and in others on EVA.

7.3. Uncertainty analysis for temperature

Fig. 5a shows the distribution of temperature anomalies for 2011 for
the two scenarios.

The actual event of a 2.62 �C anomaly in 2011 is very extreme
relative to both the factual and counterfactual distributions, particularly
so with respect to the counterfactual. For the binomial approach, the
estimated RR is ∞. Using the likelihood ratio-based confidence interval,
we have a one-sided 95% confidence interval (CI) of (1.04, ∞), while
using the Koopman method we have (0.74, ∞); both are quite uncertain
because of how extreme the event is. Here EVA provides us with the
ability to use the information in the sample more effectively because the
event is so extreme. The RR estimate is still ∞, with bpA ¼ 0:0067 andbpN ¼ 0, but the 95% one-sided CI using the likelihood ratio approach is
(12.8, ∞), providing strong evidence for a large RR.

Next, note that for less extreme event definitions, the event can be
fairly common in the factual scenario and still not observed or very un-
common in the counterfactual. Given that the event is not extreme in the
factual, EVA is not appropriate for that scenario, and we focus on the
results based on the binomial approach. Table 1 shows results for a va-
riety of definitions of the event. Note that we report a two-sided 90% CI
by considering two one-sided 95% intervals.

Note that the factual distribution is shifted so substantially relative to
8

the counterfactual distribution that the RR estimates are very large for
extreme events and necessarily less so for less extreme events because bpF
has an upper bound at 1 and as the event becomes less extreme, bpC in-
creases and is no longer negligible.

Regardless, the evidence is strong that the probability of an extreme
heatwave is much greater with anthropogenic influence than without,
and for events defined by anomaly values larger than one, we conclude
the risk ratio is at least 10, having accounted for sampling uncertainty.
An important caveat is of course whether the model is able to capture the
climatology of the event of interest, which is outside the scope of this
work.

7.4. Uncertainty analysis for precipitation

Fig. 5b shows the distribution of precipitation (relative) anomalies for
2011 for the two scenarios. For the actual event, an anomaly value of
0.40 (i.e., 40% as much precipitation as the historical mean), we have
zero exceedances in both scenarios. Furthermore EVA is of limited use as
we get bpF ¼ 0:000088 and bpC ¼ 0, with high uncertainty: the likelihood-
ratio based lower bound for RR is less than 0.01.

Given this, we consider several values for the event definition that are
less extreme than the actual drought. Fig. 6 shows results from both the
binomial count approach and EVA. In general we see evidence for a RR
greater than one, with our best estimate of a RR of about two at a variety
of event definitions. However the uncertainty in the lower bound at more
extreme event definitions limits our ability to make a more robust
attribution statement.

https://bitbucket.org/lbl-cascade/event_attribution_uq_paper


Fig. 3. Median value of lower confidence bound for n ¼ 100 for various methods and values of RR and pF . Higher values are better as they correspond to shorter
confidence intervals. Simulations in which the lower bound could not be computed were excluded.
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8. Discussion and recommendations

We have presented a statistical framework for estimating the risk
ratio to quantify anthropogenic influence on extreme events, focusing on
proposing, implementing, and evaluating standard frequentist statistical
methods for accounting for sampling uncertainty in event attribution.
Our methodological recommendations are as follows:

1 When using binomial counting, we recommend either the Koopman
or Wang-Shan methods. If one is interested in the upper endpoint as
well as the lower endpoint for small sample sizes, then Koopman does
not preserve coverage probability, and we suggest Wang-Shan. These
methods can be conservative, so the likelihood ratio approach might
also be considered despite it producing intervals that can be too short.

2 When using EVA, only the normal-theory, likelihood ratio, and
bootstrap methods are feasible. We recommend the likelihood ratio
approach to calculate confidence intervals for the RR. This approach
can provide a CI even when the estimate of the RR is infinity and
avoids the problem that the bootstrap can fail to varying degrees
when bootstrapped values of the RR estimate cannot be calculated or
are infinity.

3 With the likelihood ratio approach, confidence intervals can be too
short in a variety of circumstances and should be interpreted
cautiously.

4 While appealing in its simplicity, bootstrap methods can perform
poorly for quantifying uncertainty in RR, particularly when either pF
or pC are near zero.
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5 Bootstrapping provides a methodology to calculate confidence in-
tervals, not Bayesian probability statements/intervals about RR. Un-
less an explicit Bayesian analysis is done, researchers should provide
confidence intervals as their measure of uncertainty and avoid plot-
ting the bootstrap distribution, as it represents the sampling distri-

bution for cRR not the distribution of RR.
6 Although we have not investigated its performance in the simulation

study, EVA may provide estimates that use the data more efficiently
than binomial counting in some cases, particularly when sample sizes
are not too small and the event definition is fairly extreme under both
scenarios. In this situation, the small counts of extreme events lead to
high uncertainty for the binomial counting approach, but EVA can
borrow information from data values below the event definition
cutoff. However, with small sample sizes, EVA suffers from having
few observations with which to fit the distribution and often from
difficulties in numerical optimization.

7 EVA is not appropriate if the event is not extreme in the scenario
being analyzed (e.g., often the case for cold events in a natural
counterfactual scenario). Furthermore simple binomial counts are
effective and straightforward as sample sizes increase provided the
event is not too rare in at least one of the scenarios. EVA and binomial
counting could be used in the same analysis when the event is rare in
one scenario and not the other. However, in this case it is clear that
the RR is far from zero and there would be limited benefit from
reducing uncertainty in the probability for the scenario in which the
event is rare, so analysis using binomial counting for both scenarios
should be very effective.



Fig. 4. Proportion of simulated datasets for which lower confidence bound could not be calculated for n ¼ 100. For the Wilson, Koopman, Wang-Shan, and likelihood
ratio methods this occurs only when no events occur in both scenarios.

Fig. 5. Histograms of temperature (degrees Celsius) (a) and precipitation (b) anomalies for March–August 2011 over Texas from 400-member ensembles, with actual
event indicated by black line.
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Bayesian methods can also be useful and can be used to account for
sampling uncertainty. Perhaps most usefully, a Bayesian perspective is
probably the only option for accounting for uncertainty from uncertain
boundary conditions (including uncertain counterfactual conditions in
conditional attribution studies) and model parametric and structural
uncertainty. For example, if one has an ensemble of model simulations
based on varying the parameters of the climate model, this is most
naturally seen as having drawn from a (prior) distribution over model
parameters. This is naturally viewed in a Bayesian context but is difficult
10
to conceptualize in a frequentist statistics framework as variation in the
data that one might observe under the hypothetical of repeating an
experiment. Similarly, the use of multiple climate models and the pos-
sibility of an ensemble of simulations of possible aerosol forcing or other
forcings could be considered in a Bayesian framework (e.g., Smith et al.,
2009). Critically, unlike with sampling variability, additional simulations
do not reduce uncertainty from these sources or give results that
converge in a frequentist statistical context to the true RR. In fact, from a
statistical perspective one might characterize these uncertainties as bias



Table 1
RR estimates and 90% CI for a variety of event definitions based on binomial
count approach. The last three event definitions are based on the quantiles of the
CRU observations.

event definition
( �C)

Number factual/
counterfactual exceedances

cRR Koopman
CI

LRT CI

2.62 (actual
event)

2/0 ∞ (0.74, ∞) (1.04,
∞)

2.0 43/0 ∞ (16, ∞) (31, ∞)
1.5 129/3 43 (17, 108) (19,

133)
1.03 (1 in 20
year)

245/11 22 (14, 36) (14, 38)

0.73 (1 in 10
year)

314/40 7.9 (6.1, 10.1) (6.2,
10.2)

0.43 (1 in 5
year)

357/90 4.0 (3.4, 4.6) (3.4,
4.7)

Fig. 6. Estimated risk ratio and 90% confidence intervals for both binomial
counts and EVA for various definitions of the event in terms of March–August
precipitation anomaly over Texas (so lower values are more extreme). The three
event definitions to the right are the 1 in 20, 1 in 10 and 1 in 5 year events based
on the CRU observations. The upper bound for EVA for the event of 0.5 is
greater than 100 but truncated at 100 for plotting purposes. Note that for less
extreme event definitions, EVA is less appropriate as EVA relies on the cutoff
being in the tail of the distribution.
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rather than variance. Given that conditioning on the ensemble output has
limitations in terms of quantifying these uncertainties, any statistical
treatment of these uncertainties is likely to represent some form of
sensitivity analysis or subjective Bayesian analysis. Consideration of how
to quantify parametric and structural uncertainty is an active area of
climate research generally (e.g., Knutti et al., 2010).

One common question in event attribution analyses is how to define
the event, which is often based on choosing the cutoff beyond which an
’extreme event’ is considered to have occurred. When the motivation for
a study is damage to society, one may be able to choose a specific cutoff
(or small range of cutoffs) to use. If analysis is motivated by an event
occurring and the cutoff is determined based on observations, one might
consider the definition to be a source of uncertainty. However, our
perspective (originally developed in Jeon et al. (2016)) is that this is most
naturally considered as a sensitivity analysis, reporting the RR and un-
certainty for a variety of cutoff values, as done in our case study and in
Ang�elil et al. (2017) and Pall et al. (2017). In some cases, such as tem-
perature in our Texas example, while the results vary somewhat with the
event definition, the lower bound of the confidence interval provides
evidence for a robust attribution statement in light of uncertainty.
11
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