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ABSTRACT 

Hamiltonian perturbation.theory based on recent 

Lie transform techniques is applied to the Hamiltonian of 

a .single particle in nonuniform Vlas.ov plasma. A simple 

relation is derived between the field-plasma interaction 

energy and the transformed single-particle Hamiltonian. 

This relation implies as special cases a general formula 

for ponderomotive force in terms of the linear Vlasov 

susceptibility, and a symmetric Poisson-bracket formula 

for the general three-mode coupling coefficient. 

Nonlinear interaction among waves and particles in plasma 

occurs in problems of parametric instability1 and weak plasma tur­

bulence;2 these nonlinear processess have important applicatio~s to 

such areas as radio-frequency plasma heating, laser-plasma coupling, 

and the stabilization of linear instabilities. Several alternative 
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theoretical approaches to these problems have evolved, including a 

direct perturbation expansion of the governing classical equations 

(e. g., the Vlasov-Maxwell system3 ), the temporary introduction of 

4 5 
quantum mechanical ideas, and the averaged-Lagrangian method. 

6-8 Recently, the present authors have suggested a new approach . 

based upon a canonical transformation9 of the single-particle Hamil-

tonian. This viewpoint, named the method of generalized ponderomotive 

forces, has been shown to provide a systematic and intuitive framework 

for the study of mode coupling in magnetized Vlasov plasma; 8 among its 

advantages are the elegance and efficiency of Hamiltonian perturbation 

theory, and an appealing decomposition of the physical current density. 

In this article, we re-examine our Hamiltonian approach in the light 

of recent Lie-operator formulations, and demonstrate the remarkable 

ease with which certain simple and general results can be derived. 

The coupling of linear modes in plasma is essentially a 

perturbative notion, and, if one is committed to doing a perturbation 

theory, then it is reasonable to seek the most compact and systematic 

version of it available. Workers in celestial mechanics have become 

experts on this subject computing the orbits of heavenly bodies. In 

particular, Hamiltonian perturbation theory10 has been significantly 

refined in the last decade through the introduction of Lie transform 

techniques. ll The Lie transform approach is usually applied to Hamil-

tonian systems depending on a parameter E; the solution when E = 0 

is assumed known. A canonical transformation which solves the modi-

fied (E t 0) system. is then constructed as a power series in E. 
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Although little is known about the general convergence properties of 

such series, they have proved very useful in applications. An important 

feature of the Lie transform approach is an avoidance of the usual 

mixing12 of old and new variables. 

Recently, Dewar13 has developed another operator formalism for 

canonical transformations depending on a parameter £, and shown it to 

be equivalent to that of Deprit. 11 An important virtue of Dewar's 

formulation is the derivation of a nonperturbative form of the 

Hamilton-Jacobi equation for the Lie generating function W, viz., 

<lK 
- d£ (1) 

where the braces denote the Poisson-bracket operation. Equation ( 1) 

describes a canonical transformation (<l,p,H) + (CLP,K) of a given 

Hamiltonian system H(q,p,t;£). The old and new coordinates are re-

lated by the canonical transformation operator ~ according to 

q ~Q and p = y, where the operator ~ is defined by the 

conditions a~/<l£ = Lw~· ~(£ = 0) = 1, and hence 

£1 
d£1 i df2 Lw< £1 >Lw< £2) +, •• ' 

jo 

where 1w denotes the Lie-derivative operator ,W}. Equation (1) 

is, in principle, a nonperturbative relation; in practice, it can be 

employed to arbitrary order in £ by power series expansion. 

Let us apply this formalism to the Hamiltonian of a single 

particle in hot collisionless plasma. Striving for generality, we 
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permit the plasma to be nonuniform, bounded and relativistic, and the 

fields in the plasma to be nonuniform and electromagnetic. Accordingly, 

for arbitrary gauge, we write the electromagnetic potentials in the 

form 

tc+x) +<+ "() + £A x, t), 

+ 
<Ptot(x,t) 

considering (A,<P) as a perturbation of the static equilibrium poten­

tials (A0 ,<P0 ). From the interaction Lagrangian for a single particle, 

we then obtain14 the relation 

<lH 
d£ e<P (2) 

which is valid even for a relativistic particle. Now, the charge and 

current densities in the plasma can be written in terms of the one­

particle distribution function f(;,p,t) as 

p(~,t) ef df o(~ - ;)f(;,p,t), 

j(~,t) ej df o(~- ;)f(;,:p,t)aH(;,:p,t)/a:P 

where Thus, evaluating the field-plasma interaction 

energy and noting relation ( 2), we find 

= fdr r <lH 
d£ ( 3) 

Suppose we now perform an arbitrary canonical transformation. 

The Vlasov equation for new entities will be 

{K,F} (4) 
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where F = GWf. Since OW is a unitary operator, manipulation of 

the right-hand side of (3) yields 

f r f ;m = fr (G-lF) aH = 
ae: -w ae: 

leaving us in a position to exploit the Hamilton-Jacobi equation (1). 

Indeed, upon replacing OW aH;ae: by (1), and using partial integra- " 

tion and (4) to rewrite the Poisson-bracket term, we obtain the sim-

ple and general relation 

(5) 

Note that equation ( 5) is nonperturbative in e: and that the par-

ticular canonical transformation has not yet been specified. 

We shall discuss two applications of relation (5). The 

first concerns a general formula15 for the ponderomotive (quasistatic) 

force exerted on the oscillation center of a particle in a high-

frequency field. Adopting the radiation gauge cp = 0, let us devise 

a canonical transformation to eliminate all linear terms in the per-

turbed Hamiltonian: 

K( l) = 0 , F 

this transformation can be effected provided that any field-

particle resonances are neglected.16 The static component of (5) 
·. 2 

then yields, correct to order e: , 
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i. e.' a relation between the linear current density j{ 1 ) and 

the ponderomoti ve Hamiltonian < K( 2 
)/ of an oscillation center. 

Introduction of the linear susceptibility tensor ~ and functional 

differentiation with respect to f lead at once to the formula 

which was presented (without derivation) by Cary and Kaufman in a 

recent letter.15 

Our second application of (5) concerns the resonant non­

linear coupling of three modes of the form A ( ~) exp ( -iw t) a a 

with w
1 

+ w
2 
~ w

3
. If ~2 ) denotes the nonlinear current density 

at frequency wa due to the beating of modes b and c, and if 

,:~ denotes the total energy in mode a, then the equations govern­

ing action transfer among the modes and the frequency shift of each 

17 mode are, respectively, 

ow 
a 

w a 
r; -l Re Ua 
·- a 

where we have defined the coupling coefficient 

Using the method of generalized ponderomotive forces, we have pre-

viously evaluated the coefficients Ua and shown explicitly that 

* u1 = U2 = u
3 

, obtaining e symmetric Poisson-bracket formula for 

the coupling coefficient U; 7 ' 17 this symmetry implies the ~MDiley­

Rowe relations18 
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,_. 
-1 dc.1 -1 d<2 -1 

di' 

wl dt w2 dt -w3 
"3 

dt 

Relation (5), however, gives deeper insight into the foun-

an a so simplifies its derivation dations of the symmetry of U, d 1 

greatly· If we devise a canonical transformation to satisfy (again 

neglecting field-particle resonances16 ) 

then the static component of (5) yields the formula 

-c-jd3x (j{ 2 ). !.) = 

where K( 3) represents the single-particle trilinear interaction 

energy. We thus are led to an interpretation of the three-wave 

coupling coefficient as the trilinear interaction energy of a single 

particle in the fields of the three modes, summed over all nonreso­

nant particles; the symmetry is a necessary consequence of the 

trilinearity. This interpretation is, of course, consistent with 

that in terms of the trilinear interaction Lagrangian which one 

requires from the viewpoint of the averaged-Lagrangian method5. The 

great advantage of our Hamiltonian formulation is that Dewar's 

operator formalism provides us immediately with a formula for 

K( 3) , viz., 
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where the generating function wC 1 ) is found by solving 

The integral of K(J) over phase space reproduces the Poisson­

bracket formula for the coupling coefficient
7

•
17

, previously 

derived by the method of generalized ponderomotive forces. 

This work was supported by the U. S. Department of Energy 

under contracts W-7405-ENG-48 and EY-76-S-02-2456. 
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