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Abstract

The Evolution and Stability of Massive Stars

by

Joshua Hajime Shiode

Doctor of Philosophy in Astrophysics

University of California, Berkeley

Professor Eliot Quataert, Chair

Massive stars are the ultimate source for nearly all the elements necessary for life. The first
stars forge these elements from the sparse set of ingredients supplied by the Big Bang, and
distribute enriched ashes throughout their galactic homes via their winds and explosive
deaths. Subsequent generations follow suit, assembling from the enriched ashes of their
predecessors. Over the last several decades, the astrophysics community has developed a
sophisticated theoretical picture of the evolution of these stars, but it remains an incomplete
accounting of the rich set of observations. Using state of the art models of massive stars,
I have investigated the internal processes taking place throughout the life-cycles of stars
spanning those from the first generation (“Population III”) to the present-day (“Population
I”). I will argue that early-generation stars were not highly unstable to perturbations,
contrary to a host of past investigations, if a correct accounting is made for the viscous
effect of convection. For later generations, those with near solar metallicity, I find that
this very same convection may excite gravity-mode oscillations that produce observable
brightness variations at the stellar surface when the stars are near the main sequence. If
confirmed with modern high-precision monitoring experiments, like Kepler and CoRoT,
the properties of observed gravity modes in massive stars could provide a direct probe of
the poorly constrained physics of gravity mode excitation by convection. Finally, jumping
forward in stellar evolutionary time, I propose and explore an entirely new mechanism
to explain the giant eruptions observed and inferred to occur during the final phases of
massive stellar evolution. This mechanism taps into the vast nuclear fusion luminosity, and
accompanying convective luminosity, in the stellar core to excite waves capable of carrying a
super-Eddington luminosity out to the stellar envelope. This energy transfer from the core
to the envelope has the potential to unbind a significant amount of mass in close proximity
to a star’s eventual explosion as a core collapse supernova.
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Chapter 1

Introduction

1.1 The evolution of massive stars
The nuclear fusion reactors in the cores of massive stars synthesize the elements necessary

for all of life on earth (Burbidge et al. 1957).1 Through their radiative output, stellar winds,
and often violently explosive deaths, these stars also dominate the energy injection into
the interstellar media of their host galaxies (McKee 1986). And yet, despite decades of
study, there remain significant gaps in our understanding of how massive stars evolve from
birth to death. Which combinations of initial mass, metallicity, angular momentum, and
stellar multiplicity lead to the observed populations of red and blue supergiants (R/BSG),
Luminous Blue Variables (LBV) and Wolf-Rayet (WR) stars? And which to each of the
many classes of supernovae (SNe) and varieties of stellar remnants? These are just a sample
of the big questions we face, and each requires better understanding of the details of massive
stellar evolution. In the following, I will propose new solutions and more refined questions
that will help propel us forward in our attempts to understand the lives and deaths of
massive stars.

Viewed from their cores, the evolution of massive stars is a relatively simple story of
the fusion of successively heavier and more positively charged elements: from hydrogen
and helium to carbon, neon and oxygen and on to the iron-peak elements (e.g., Burbidge
et al. 1957; Clayton 1984; Kippenhahn & Weigert 1990). Most of these burning phases
drive convection in the core and subsequently in shells of matter overlying the inert ashes
of a previous phase (Woosley et al. 2002). Once a sufficiently large iron core is assembled
from the ashes of Silicon burning, it overcomes the support of degeneracy pressure and
collapses to form a neutron star or black hole, potentially accompanied by a brilliant SN
display (Woosley et al. 2002). But to stop at this level of description is to overlook a
variety of insufficiently answered questions about the extent of mixing by convection (e.g.,
Browning et al. 2004; Lebreton & Goupil 2012), turbulent entrainment (Meakin & Arnett

1For the rest of this work, I will use the term “massive star” to refer to any star that will eventually
undergo core collapse, which may or may not give rise to a supernova (SN).
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2007), double-diffusive (Langer et al. 1983; Merryfield 1995; Rosenblum et al. 2011) and
shear-induced instabilities (Maeder & Meynet 2000; Heger et al. 2000); not to mention
the secondary effects, like the excitation of waves at boundaries between convective and
radiative zones (Meakin & Arnett 2007; Quataert & Shiode 2012).

Outside the core, the envelope of a massive star undergoes its own complicated evolution.
On the main sequence, we naively expect a massive star to have a radiative envelope
sitting atop its convective core, shining at nearly its Eddington limit (Eddington 1926;
Henyey et al. 1964; Kippenhahn & Weigert 1990). This radiative envelope contains an ever
smaller fraction of the stellar mass as the total mass increases (Kippenhahn & Weigert 1990;
Woosley et al. 2002). However, Rogers & Iglesias (1992), in their computation of the OPAL
opacities in the early nineties, showed that metal absorption lines provide enhanced opacity
at log T ≈ 5.2, which has important consequences for the envelopes of massive stars with
near-Solar metallicity. With the envelope already near the Eddington limit for electron
scattering, this enhanced opacity causes thin shell convection zones to develop due to the
locally super-Eddington flux; these near-surface convection zones excite waves that can
explain the velocity fields observed at the surfaces of massive stars (Cantiello et al. 2009).
This opacity enhancement may also produce a variety of fast-acting pulsational instabilities
that could lead to enhanced mass loss (e.g., Glatzel & Kiriakidis 1993; Cantiello et al. 2009;
Saio 2011). Most calculations suggest that massive stellar envelopes are likely to become
even more unstable during later evolutionary phases, as they lose mass while attempting
to carry an ever-increasing nuclear fusion luminosity (e.g., Yoon & Cantiello 2010; Glatzel
2008; Saio 2011; Suárez-Madrigal et al. 2013).

At their very surfaces, massive stars are being vigorously eroded by strong stellar winds
(e.g., Heger et al. 2003; Vink 2011). On the main sequnce, they are subject to intense winds
driven by radiation pressure on metal lines in their atmospheres, leading to mass loss rates
that can approach ∼ 10−4 M� yr−1 (Castor et al. 1975; Lamers & Cassinelli 1999; Vink
2011). The driving mechanism for these winds is subject to clumping instabilities (Owocki
2009, and references therein), and recent investigations have begun to quantify the extent
of this clumping for several example massive stars. As a result, it seems that empirical
estimates of steady mass loss rates have been overestimated (perhaps by as much as a factor
of 30) (e.g., Bouret et al. 2005; Fullerton et al. 2006). This implies a significant discrepancy
between observed stellar populations and theoretical evolution calculations, requiring some
additional mass loss mechanism separate from the steady winds expected during hydrogen
and helium-burning (Smith & Owocki 2006; Smith 2011). Luckily, just such a mechanism
has made itself highly conspicuous: eruptive mass loss.

The most prevalent examples of eruptive mass loss, which I define as short (in an
evolutionary sense) periods of mass loss enhanced relative to steady-state wind expectations
(Ṁ & 10−3 M� yr−1), come from observations of the class of post-main-sequence stars known
as LBVs. While LBVs exhibit a range of mass loss behaviors, the most intense of these is
often referred to as a “giant eruption,” with the prime example being that of η Carinae over
the period from about 1837–1860 (Humphreys & Davidson 1994). During this period, the
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& 100 M� star shed ∼ 20 M� at a rate of ∼ 1 M� yr−1, for a total kinetic energy loss of
. 1050 erg (Smith et al. 2003). The cause of giant eruptions like these remains unexplained.

The canonical scenarios for the apparent evolution of massive stars dictate that LBVs
are massive stars in a state of hydrogen shell burning as they make their way from the main
sequence to RSG (and/or BSG) to WR star, where the specific progression and timescales
depend on the initial mass, metallicity and rotation (e.g., Massey 2003). However, evidence
has been piling up during the last decade of rapid advances in transient astronomy that
some fraction of SN progenitors have mass loss properties similar to erupting LBVs within
. 1000 years of explosion—much less than the 105 years these stars are presumed to spend
burning helium after going through an LBV phase (Smartt 2009, and references therein).
This is particularly significant given the traditional assumption that the stellar envelope
and surface are basically static from carbon burning to core collapse, since the thermal time
of the envelope is long relative to this phase of evolution (e.g., Woosley et al. 2002).

There are now dozens of examples of core collapse supernovae that require large pre-
explosion mass loss rates, Ṁ & 10−4 M� yr−1, to explain their visual appearance. These
are generally (but not always, see e.g., Foley et al. 2007) of the class known as Type IIn
(Schlegel 1990), which gets its “n” from the narrow emission lines (full-width at half maximum
intensity ∼ 100 − 1000 km s−1) seen in their spectra (see Filippenko 1997, for a review).
The standard model used to interpret the emission from this class of SNe involves the
interaction of the SN ejecta with a dense, but optically-thin, photoionized wind previously
ejected from the progenitor (e.g., Chevalier & Fransson 1994; Chugai & Danziger 1994).
When the ejecta runs into this circumstellar material (CSM), it generates forward and
reverse shocks that propagate into the wind and back into the ejecta, respectively. These are
separated by a contact discontinuity and bound a dense shell of material traveling at speeds
intermediate between the velocities of the ejecta ∼ few × 104 km s−1 and the unshocked
wind ∼ 100− 1000 km s−1. This manifests spectroscopically in emission line profiles with
intermediate-width and narrow components corresponding to the dense shell and unshocked
wind, respectively. Using this model, large pre-explosion mass loss rates are derived from
measurements of the emission line luminosity (e.g., Chugai & Danziger 1994; Kiewe et al.
2012).

Varying the mass loss history in terms of both rates (Ṁ ∼ 10−4 − 1 M� yr−1) and time
to core collapse (∆t ∼ days − 1000 yr), the interaction between SN ejecta and CSM can
account for a broad range of SN characteristics, from “normal” Type IIn SNe to some of
the most luminous SNe ever observed (e.g., Kiewe et al. 2012; Ginzburg & Balberg 2012;
Gal-Yam 2012). For large enough wind densities (which depends on both the mass loss
rate and inversely on the wind velocity), the CSM can become optically thick enough to
maintain the radiative SN shock beyond the progenitor photosphere. In this case, the “shock
breakout,” when the radiation from the shock escapes ahead of the shock propagation, occurs
in the wind, where more of the shock kinetic energy can be radiated (Falk & Arnett 1977;
Chevalier & Irwin 2011; Ginzburg & Balberg 2012; Moriya & Tominaga 2012). Interaction
models with a dense CSM as described above can explain some of the most luminous SNe
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observed (Smith & McCray 2007; Miller et al. 2009; Gal-Yam 2012). In the particular
case of 2006gy, this type of model implies ∼ 10− 30 M� of CSM ejected within ∼ 10 yr of
explosion (Smith & McCray 2007; Ginzburg & Balberg 2012).

Finally, the most direct line of evidence for eruptive mass loss stems from the direct
observation of non-terminal outbursts that approach the brightnesses of the faintest SNe.
Some of these precede SNe by days to years, as in the brilliant cases of SN 2006jc (Pastorello
et al. 2007; Foley et al. 2007), 2010mc (Ofek et al. 2013), and potentially 2009ip (Mauerhan
et al. 2013; Fraser et al. 2013). Other events without subsequent SNe have been observed and
are collectively known by the observationally-derived, but obfuscating name: SN Imposters
(Van Dyk & Matheson 2012).

1.1.1 The scope of this work

This dissertation will attempt to address discrepancies between observations and theory
during both the main sequence and final burning stages of massive stellar evolution. I will
apply perturbative theory and the recent advances in our understanding of stellar convection
coming from high-fidelity numerical simulations to inspect the stability of models of massive
main sequence stars of a range of metallicities. Using these methods, I will show that high
metallicity stars of ∼ 100 M� may be violently unstable on the main sequence, while the
earliest generations of stars are stabilized by the viscous effect of convection (Chapter 2). For
lower masses, this very same convection in the stellar core excites gravity-mode oscillations
which may be observable thanks to the recent development of part-per-million-precision
photometric monitoring with Kepler (Koch et al. 2010) and CoRoT (Auvergne et al. 2009)
(Chapter 3). Observing these modes would provide an important new window into the
physics of gravity-wave excitation by convection, which is otherwise unobservable even in
our closest stellar laboratory: the Sun.

Perhaps most excitingly, I will propose an entirely new mechanism for generating
eruptions during the final phases of stellar evolution: one that relies on the vigorous
convection taking place in the bellies of these beasts (Chapter 4). In these late phases, the
convection is so strong that, rather than excite gravity-modes with observable, steady-state
surface amplitudes, it can excite dynamic gravity waves capable of transporting energy,
via a process analogous to quantum mechanical tunneling, from the neutrino-cooled core
to the stellar envelope. Once there, this wave energy has the potential to violently expel
solar masses worth of material shortly before the star’s explosive death. This may provide a
natural explanation for the precursor events of SN 2006jc, 2009ip, and 2010mc, as well as
the massive circumstellar environments inferred to exist around the progenitors of Type IIn
SNe.

Before we get into any of that, there are a few theoretical preliminaries to address.
In §1.2, I describe the basic procedure for constructing and evolving the one-dimensional
numerical models of massive stars used throughout this work. In practice, I use the MESA
star stellar evolution code to compute stellar models, so I refer the reader to Paxton et al.
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(2011) and Paxton et al. (2013) for a detailed description of the specific implementation
used in MESA star. In Chapters 2 and 3, I investigate the effects of perturbations on top of
the equilibrium models built with MESA star. Thus in §1.3, I describe the formalism I use
to describe quasi-adiabatic linear non-radial stellar oscillations.

1.2 How to build a star
From a theoretical perspective, the problem of stellar evolution is the challenge of solving

a set of nonlinear, coupled differential equations for the thermodynamic and compositional
structure of a self-gravitating ball of gas in a series of quasi-equilibrium (both hydro and
thermodynamic) configurations (e.g., Henyey et al. 1964; Eggleton 1971; Paxton et al. 2011).
The equations that must be solved include:

dr

dmr

=
1

4πr2ρ
, (1.1)

dP

dmr

= −Gmr

4πr4
− 1

4πr2

d2r

dt2
, (1.2)

dL

dmr

= εnuc − εν − T
ds

dt
, (1.3)

dT

dmr

= −GmrT

4πr4P
∇?, (1.4)

dXi

dt
=

(
dXi

dt

)

nuc

+

(
dXi

dt

)

mix

, i = 1, ...,Nspecies, (1.5)

where G is the gravitational constant, the two time derivatives on the right-hand side of
eqn. 1.5 are the change in composition due to nuclear burning and mixing, respectively, and
the rest of the variables are defined in Table 1.1. These equations, along with appropriate
boundary conditions for the center and surface of the stellar model, serve to define the
stellar evolution problem. The scope of this numerical challenge depends on the spatial
resolution of each model, the number of species (Xi) one wishes to track, and the desired
temporal resolution for the evolution.

To construct the one-dimensional numerical models of massive stars I use throughout
this dissertation, I employed the new, open-source star stellar evolution program in the
Modules for Experiments in Stellar Astrophysics (MESA; Paxton et al. 2011, 2013).2 MESA
star solves the set of equations described above (eqns. 1.1 – 1.5) using modern computing
algorithms for large matrices (see Paxton et al. 2011, for a detailed description). As an
open-source tool, MESA star has been tested and extended by hundreds of users as part of an
open online community of modelers. This community has shown MESA star’s capability to
model the evolution of everything from gas giant planets with rocky cores to super-massive

2As MESA is under continuous development, I have employed several different versions of star for the
investigations presented here.
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Table 1.1: List of variables used in the text

Name Description

αMLT Fraction of pressure scale height for mixing length
αsc Dimensionless efficiency of semiconvective mixing
β Fraction of wave energy that reaches the envelope
cs Speed of sound
γrad Damping rate due to radiation
γleak Damping rate of g-modes due to leakage out of g-mode cavity
γν Damping rate due to neutrino losses
Γ1 ≡ (d lnP/d ln ρ)s
Γ3 ≡ (d lnT/d ln ρ)s + 1
eint Internal energy per unit mass
Ebind Stellar binding energy
Ėg Energy input into g-modes by convection
εnuc Nuclear energy generation rate per unit mass
εν Neutrino emission rater per unit mass
εgrav ≡ −T dS

dt
, gravitational energy generation rate

εnet ≡ εnuc − εν − εgrav, net energy generation rate per unit mass
ερ ≡ (d ln ε/d ln ρ)T
εT ≡ (d ln ε/d lnT )ρ
~F Local stellar flux
g Local gravity
H Pressure scale height
η Overshoot fraction of scale height
Krad Radiative conductivity
kr Radial wavenumber
kh Horizontal (⊥ r) wavenumber
κ Rosseland mean opacity
Lr Stellar luminosity as a function of radius
L? Total stellar luminosity
Lconv Convective luminosity
Lmax, conv Maximum luminosity convection can carry
Ldamp Radiative damping luminosity for acoustic waves (see Chapter 5)
LEdd ≡ 4πGM?c/κ, Eddington luminosity
Lrad Radiative luminosity
Lwave Wave luminosity (for convectively excited waves)
L ≡ min(r,H), convective mixing length
` Spherical harmonic quantum number

Continued on Next Page. . .
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Table 1.1 — Continued

Name Description

Λ ≡
√
`(`+ 1)

mr Mass interior to given point in star
Mad Adiabatic mass (containing part of star where ttherm & τmode)
M? Total stellar mass
Mej Mass ejected via wave-driven mass loss
Mconv ≡ vconv/cs, convective mach number
δm Surface brightness perturbation due to oscillation mode
µ Convective viscosity
N Brunt-Väisälä frequency
∇ad ≡ (d lnT/d lnP )s, adiabatic temperature gradient
∇? ≡ d lnT/d lnP , actual temperature gradient
ν Linear frequency (of waves)
νc Linear convective turnover frequency
ξr Magnitude of radial displacement for perturbation
ξh Magnitude of horizontal (⊥ r) displacement of perturbation
ω Angular frequency of perturbation
ωac Acoustic cutoff frequency
ωc Outer convective turnover frequency
ω? ≡ GM?/R

3
?, stellar natural frequency

Ω Rotation angular frequency
δω Imaginary component of oscillation mode frequency
P Total pressure
φ Azimuthal angle
Φ Gravitation potential
r Radius coordinate in star
rdamp Radius where Lrad = Ldamp (see Chapter 5)
rin Radius of the bottom of a mixed mode’s evanescent zone (see Chapter 4)
rout Radius of the top of a mixed mode’s evanescent zone (see Chapter 4)
rprop Radius where excited g-mode begins to propagate (see Chapter 4)
Rad Adiabatic radius (containing part of star where ttherm & τmode)
R? Radius of photosphere
ρ Density
ρc Central density
s Entropy per unit mass
S` Lamb frequency for perturbations of spherical harmonic number `
t Time
tnuc Nuclear burning timescale

Continued on Next Page. . .
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Table 1.1 — Continued

Name Description

ttherm Thermal (Kelvin-Helmholtz) timescale
T Temperature
Teff Stellar effective temperature
τL ≡ 1/N , convective turnover time of the largest eddies
tleak Timescale for leakage out of the g-mode cavity (see Chapter 5)
τmode Mode period
tν Timescale for damping to neutrinos (see Chapter 5)
τw Wave optical depth
θ Polar angle
vesc Escape velocity
vgroup Group velocity of wave
vr Radial velocity (associated with pulsation)
δv Surface velocity perturbation due to oscillation mode
x ≡ r/R?, fractional radius
Xi Mass fraction of species i
Xctr Central mass fraction of hydrogen
Y Helium mass fraction
Y m
` (θ, φ) Spherical harmonic of degree ` and order m
Z Metallicity (mass fraction)

(M ∼ 1000 M�), first-generation stars. More detailed descriptions of the specific stellar
models used are left to the methods sections of each of Chapters 2, 3, and 4.

1.3 How to make a star ring: quasi-adiabatic stellar os-
cillations

In Chapters 2 and 3, I investigate the stability and observability of stellar oscillations in
a range of main sequence stellar models. In these investigations, I consider the response
of stars to general, non-spherically symmetric perturbations and the subsequent driving
and damping of the oscillation modes these perturbations excite. In Chapter 4, I am not
concerned with the standing oscillation modes I consider in the previous two chapters, but
still employ the physics of wave propagation in stars to understand energy transport during
their final burning stages. Below, I present a formalism for describing the propagation and
energetics of waves in stellar interiors.

In the following chapters, I employ the formalism of linear non-radial oscillations, with
an assumption of quasi-adiabaticity to simplify the calculations (cf., Unno et al. 1989). In
practice, I use the ADIPLS oscillation package distributed with MESA (Christensen-Dalsgaard
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2008a, June 2011 release) to compute adiabatic oscillation eigenfunctions and frequencies,
and then compute the next-order perturbations to the energy transport given the stellar
model and eigenfunctions as background conditions. I refer the reader to Christensen-
Dalsgaard (2008b) and the lecture notes at http://users-phys.au.dk/jcd/oscilnotes/
for a detailed description of the computation of adiabatic linear non-radial oscillations and
the specifics of ADIPLS. Below I provide a simplified description of the quasi-adiabatic mode
calculations performed for this work.

1.3.1 Adiabatic linear non-radial oscillations

To derive the equations that describe adiabatic linear non-radial oscillations, I perturb the
equations of stellar structure, described above in eqns. 1.1 – 1.4, under the assumption that
perturbations are adiabatic (cf., Unno et al. 1989). I introduce small, Eulerian perturbations
such that for each variable, f(~r, t)→ f0(r) + f ′(~r, t) where f0(r) satisfies the equilibrium
equations. I assume that the perturbations are of the form f ′(~r, t) = f ′(r)Y m

` (θ, φ)eiωt and
that the perturbations are adiabatic in a Lagrangian sense, i.e., δP/P = Γ1δρ/ρ, where
δx = x′ + δr · ∇x, for all x.

The resulting fourth-order set of linear, ordinary differential equations may be solved,
with appropriate boundary conditions, for the oscillations supported by a star. As presented
in many other references, these equations are:

dξr
dr

= −
(

2

r
+

1

Γ1P

dP

dr

)
ξr +

1

ρc2
s

(
S2
`

ω2
− 1

)
P ′ +

`(`+ 1)

ω2r2
Φ′ (1.6)

dP ′

dr
= ρ

(
ω2 −N2

)
ξr +

1

Γ1P

dp

dr
P ′ − ρdΦ′

dr
(1.7)

1

r2

d

dr

(
r2dΦ′

dr

)
= 4πG

(
P ′

c2
s

+
ρξr
g
N2

)
+
`(`+ 1)

r2
Φ′, (1.8)

plus the equation for adiabaticity of the perturbations given above, with the buoyancy, or
Brunt-Väisälä, frequency defined as

N2 = g

(
1

Γ1

d lnP

dr
− d ln ρ

dr

)
, (1.9)

the Lamb frequency defined as

S2
` = `(`+ 1)

c2
s

r2
, (1.10)

and the rest of the variables as defined in Table 1.1.
To select the regular solution at the center, the solutions are matched to a second-order

series expansion as r → 0. At the surface of the stellar model (i.e., the photosphere), I
employ a vanishing Lagrangian pressure perturbation and the vacuum potential as the outer
boundary conditions (though other choices, like matching to atmospheric eigenfunctions,

http://users-phys.au.dk/jcd/oscilnotes/
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can be made). The ADIPLS package employs either shooting or relaxation algorithms to
solve for the oscillation eigenfunctions and frequencies (Christensen-Dalsgaard 2008b).

These equations permit two primary types of oscillations, those with buoyancy as their
restoring force and those with pressure gradients as their restoring force. The former are
typically known as gravity-modes or g-modes and the latter as pressure-modes or p-modes
(e.g., Unno et al. 1989).

Local Approximation

To gain some intuition about the types of modes, we examine the oscillation equations
in the local (WKB) approximation, where the radial wavelength of the perturbations is
much shorter than the local radius, i.e., krr � 1. To examine the behavior of oscillations in
this approximation, we begin by ignoring the derivatives of the equilibrium variables, which
vary on the stellar length scale, in comparison with those of the perturbations, which vary
across the much shorter wavelength. From this analysis, we find a second order equation for
the radial displacement ξr:

d2ξr
dr2

=
ω2

c2
s

(
N2

ω2
− 1

)(
S2
`

ω2
− 1

)
ξr, (1.11)

which has the solution ξr ∝ ei
∫
krdr, with

k2
r =

ω2

c2
s

(
N2

ω2
− 1

)(
S2
`

ω2
− 1

)
(1.12)

This representation captures a key quality of linear non-radial oscillations: each eigen-
mode may only propagate where its frequency is less than or greater than both the local
values of two characteristic frequencies in the star: the Brunt-Väisälä (N) and Lamb (S`)
frequencies. As the Brunt-Väisälä frequency describes buoyancy oscillations, where N2 > 0,
a slowly displaced parcel of fluid (low-frequency perturbation) feels a restoring buoyant force;
where N2 < 0, the displaced parcel feels a buoyant acceleration in the direction of motion,
giving rise to the dynamically unstable oscillation known as convection (e.g., Böhm-Vitense
1958; Kippenhahn & Weigert 1990). The Lamb frequency is the minimum frequency of
sound waves of a given spherical harmonic degree, `, and is given by eqn. 1.10. Where the
mode frequency is intermediate between N and S`, the oscillation is locally evanescent, and
decays either exponentially or as a power law.

Figure 1.1 shows the run of Brunt-Väisälä and Lamb frequencies in a 30 M�, solar
metallicity star on the Zero-Age Main Sequence (ZAMS), in what is known as a propagation
diagram. Interior to ∼ 16 M�, the star is convective and the Brunt-Väisälä frequency is
negative (marked “convective core” in the figure). Exterior to that point, dipole (` = 1)
low frequency modes (ω2 . 10−7 s−2) may propagate in the blue shaded region as g-modes,
but will be evanescent in the convective core. High-frequency dipole modes (ω2 & 10−6 s−2)
may propagate as p-modes in the green shaded region, with higher frequency p-modes
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Figure 1.1 : Propagation diagram for a 30M�, solar metallicity star at the ZAMS, which shows
the run of the Brunt-Väisälä and Lamb frequencies (for ` = 1, 5) in the stellar interior. Interior
to ∼ 16M� the Brunt-Väisälä frequency is negative, indicating the presence of a convective core.
Exterior to that point, in the shaded blue region, g-modes of degree ` = 1 may propagate. P-modes
of the same ` are allowed to propagate in the shaded green region bounded on the bottom by the
local maximum of the Brunt-Väisälä and S2

1 frequencies. For intermediate frequencies (at a given
position), shown in white, modes are locally evanescent. Propagation diagrams like this will appear
throughout this work to guide understanding of where modes of different character are allowed to
propagate.
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capable of penetrating further in towards the core. For higher ` modes, the inner turning
point for p-modes, where the mode frequency is approximately equal to the appropriate
Lamb frequency, moves out in the star for fixed mode frequency. In the later phases of
evolution, there can be multiple convective regions and a much more significant overlap in
the Brunt-Väisälä and Lamb frequencies, such that waves of a given frequency can have
mixed character, acting as g-modes in some parts of the star and p-modes in others (see
e.g., Chapter 4).

1.3.2 The quasi-adiabatic assumption

I calculate the perturbative driving and damping rates for the adiabatic modes following
the formalism of Unno et al. (1989). I approximate the imaginary component of the mode
frequency (driving or damping rate) from the second-order expression for the entropy
perturbation

δω ≡ = (ω) =
1

2

∫Mad

0
δT
T

∗
δ
(
εnet − 1

ρ
∇ · ~F

)
dm

ω2
∫Mad

0
|δr|2 dm

(1.13)

The above represents the integration of the change in entropy due to the perturbation
(mode) over one oscillation period, 2π/ω, and over the adiabatic mass, Mad, of the star,
defined as where

ttherm

τmode

≡
∫M
m
cV T dm

τmode

& 1 (1.14)

(cf., Noels 1998). In this formalism, positive (negative) imaginary values represent mode
driving (damping).

I further separate the integral in the numerator into work integrals, as in Unno et al.
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(1989), such that

δω =
1

2

Wnuc +Wν +Wrad +Wgrav − Ėconv

Emode
(1.15)

Emode = ω2

∫ Mad

0

|δr|2 dm (1.16)

Wnuc =

∫ Mad

0

δT

T

∗
δεnuc dm (1.17)

Wν =−
∫ Mad

0

δT

T

∗
δεν dm (1.18)

Wrad =

∫ Mad

0

δT

T

∗
δ

(
−1

ρ
∇ · ~Frad

)
dm (1.19)

Wgrav =

∫ Mad

0

(Γ1 − 1)(Γ3 − 1)

∣∣∣∣
δρ

ρ

∣∣∣∣
2

εg dm (1.20)

εg = −
(
εnuc + εν −

1

ρ
∇ · F

)
(1.21)

where eqn. 1.20 follows from Aizenman & Cox (1975). Below I provide more details on the
meanings of each of these work integrals.

Nuclear driving

Oscillation modes with large amplitudes near regions of nuclear burning in the stellar
interior can couple to this energy generation for mode driving, a process called the ε-
mechanism (e.g., Unno et al. 1989). Over one pulsation cycle, ignoring other effects, a mode
will experience a net gain in energy due to the excess energy generated during the phase of
positive temperature perturbation, due to the strong, positive temperature dependence of
most nuclear processes, (d ln ε/d lnT )ρ ∼ 4− 40.

Taking equation 1.17, and plugging in for the Lagrangian perturbation to the nuclear
energy generation, δεnuc, I find

Wnuc =

∫ Mad

0

∣∣∣∣
δT

T

∣∣∣∣
2 (

ερ,i
Γ3 − 1

+ εT,i

)
εi dm, (1.22)

where the sum over consecutive indices, i, represents a sum over the nuclear reactions taking
place. I have also used the fact that the Lagrangian perturbations are adiabatic to eliminate
the density perturbation in favor of the temperature perturbation.

As pointed out by Unno et al. (1989) the values of εT,ρ are in general, frequency
dependent. When the timescales associated with the individual reactions are sufficiently
short or long compared to the mode period, simple approximations can be made to give
appropriate, modified εT,ρ values (as in the treatment of the p-p chain in Unno et al. 1989).
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However, when the timescales are comparable, one must account for phase shifts between
the thermodynamic and abundance perturbations (cf., Kawaler 1988; Sonoi & Shibahashi
2012). In our investigation of massive main sequence stars in Chapter 2, we include these
phase shifts for mode driving by the CNO-cycle.

Neutrino damping

Modes with large amplitudes in regions with high enough densities and temperatures
for neutrino losses will experience a damping due to neutrino losses, which is analogous
but opposite in sign to the nuclear driving discussed above. Except during silicon burning,
neutrino losses are primarily due to pair-production-annihilation, which has εT ≈ 9 (Clayton
1984; Woosley et al. 2002). As neutrino losses are energetically unimportant on the main
sequence, this does not affect the stability calculations in Chapters 2 and 3. However,
neutrino losses are the dominant source of damping considered for gravity modes in the
cores of massive stars nearing core collapse, which is the focus of Chapter 4.

Radiative damping

Equation 1.19 can be rewritten as

Wrad =−
∫ Rad

0

δT ?

T

d(δLrad)

dr
dr

+

∫ Rad

0

δT

T
Λ2Lr

T ′/T

d lnT/d ln r

+

∫ R

0

δT

T
Λ2 ξh

dLr
dr

dr

r
.

(1.23)

Focusing on the first term (dominant) in this expression, damping occurs whenever the
temperature perturbation and radial derivative of the luminosity perturbation are of the
same sign. That is to say, if, at the temperature maximum, there is more perturbed
luminosity leaving the top of the layer than entering the bottom, there is radiative damping.

The luminosity perturbation itself can be written as

δLrad

Lrad

= 4
ξr
r

+ 4
δT

T
− δκ

κ
− 1

∇?

(
1− d ln∇ad

d ln p

)
δT

T

+
∇ad −∇?

∇?

(
Λ2ξh
r

)
+
∇ad

∇?

[(
4πr3ρ

mr

− ω2

ω2
?

x3

q
− 4

)
ξr
r

+
1

g

dΦ′

dr

]
.

(1.24)

For oscillation modes with significant amplitude in the stellar core, radiative diffusion
generally leads to modest damping of modes. Radiative damping becomes increasingly
important as mode energy shifts into the stellar envelope, where the local thermal time is
shorter. At low enough effective temperatures and high enough metallicities, the opacity
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perturbation term (δκ/κ) can provide strong driving by blocking flux at compression
(maximum positive temperature perturbation) such that d(δLR)/dr changes sign (e.g., Cox
1980). This is known as the κ-mechanism.

Convective damping

The characteristic convective damping timescale for stars with convective cores is
∼ (M?R

2
?/L?)

1/3 (e.g., Zahn 1989). For massive stars, this is ∼ 4 orders of magnitude
shorter than the thermal time, which is the characteristic growth time of perturbations due
to the ε-mechanism (κ-driving can give rise to much more rapid growth). This highlights
the importance of including convective damping in calculations of the pulsational stability
of massive stars (as I have done in Chapter 2). The subtlety is that the effective convective
viscosity is significantly suppressed relative to the above estimate because of the mismatch
between the convective turnover time and the mode periods of interest (Goldreich &
Nicholson 1977; Zahn 1989).

Recent simulations by Penev et al. (2009a) have shown that, in agreement with the
analytic work of Goldreich & Nicholson (1977) and Zahn (1989), interaction between
pulsations and convective eddies indeed acts like a viscosity, damping oscillatory modes in
convection zones. This damping is particularly important for the investigation presented in
Chapter 2; I leave a detailed description to §2.3.2.

1.3.3 Stochastic wave excitation

While convection acts to viscously damp oscillations with significant amplitude within
convection zones, as described above, it also stochastically excites both p- and g-modes
(Goldreich & Kumar 1990). Convective excitation of p-modes is responsible for the solar
5-minute oscillations (see Christensen-Dalsgaard 2002, for a recent review) and analogous
oscillations observed in other stellar types (Bedding 2011). Excitation of g-modes in the
stably-stratified regions adjacent to convection zones is much more efficient than that of p-
modes, as both convective and g-mode perturbations are roughly incompressible (Goldreich
& Kumar 1990); we focus on the excitation of g-modes here as it is relevant to each of
Chapters 2, 3, and 4.

The power spectrum of g-modes excited by stellar convection at and above the character-
istic convective turnover frequency, ωc ∼ vconv/L, has been calculated using both heuristic
physical arguments (setting the wave pressure in the stable layer equal to the convective
ram pressure; Press 1981; Garcia Lopez & Spruit 1991) and by solving the inhomogeneous
wave equation with convective source terms (Press 1981; Goldreich & Kumar 1990; Ku-
mar et al. 1999; Belkacem et al. 2009a). Recently, Lecoanet & Quataert (2013) reviewed
these approaches and extended them to more realistic radiative-convective boundaries; I
summarize here the key results that will be used in later chapters.

Lecoanet & Quataert (2013) showed that the total luminosity in convectively excited,
propagating g-modes in an adjacent radiative zone can be as large asM5/8

convLconv. This energy
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is distributed across a range of frequency and length scales determined by the properties
of the convection, but resides predominantly in modes with ω & ωc, and kh & L−1. These
results depend on the details of the turbulence in the convection zone and overshoot region
and the structure of the buoyancy frequency at the convective-radiative transition. Using this
result, we will show in Chapter 3 that the convective cores of main sequence massive stars
may excite g-modes with observable surface amplitudes and in Chapter 4 that convection
during the final stages of stellar evolution excites gravity waves that can lead to dramatic
mass loss events.

1.4 Summary of chapters
In Chapter 2: “The Stability of Massive Main Sequence Stars as a Function of Metallicity”

(originally published as Shiode, Quataert, & Arras 2012), I present an investigation of the
stability of massive main sequnce stars. This work looks primarily at the stability of radial
oscillations in massive main sequence stars with M? & 120 M� across a range of metallicities
from primordial (Population III) to solar. This investigation follows up on earlier work by
(Baraffe et al. 2001) (and to a lesser degree Sonoi & Umeda 2011), which concluded that
Population III stars on the main sequence are unstable due to nuclear-burning driving (the
ε-mechanism) of their radial fundamental mode. Motivated by recent numerical simulations
of the interaction between convection and periodic shear flows by Penev & Sasselov and
collaborators (2009a; 2009b; 2011), I included a formulation of convective damping ignored
in all prior work. I found that this added viscous damping serves to stabilize stars with
metallicities Z . 2 × 10−3, which would otherwise appear to be unstable due to the ε-
mechanism. This suggests that low-metallicity massive main sequence stars, which lack
the necessary metals for line-driven winds (see §1.1), are unlikely to experience significant
mass loss on the main sequence. However, our calculations are sensitive to the form of
the convective viscosity, highlighting the need for further work simulating the convection-
pulsation interaction at high resolution. For more metal-rich stars, with Z & 2× 10−3, I
confirm previous calculations and find strong instability due to the driving effect of opacity
variations (the κ-mechanism). In these stars, there are enough metals in the stellar envelope
to produce an appreciable enhancement to the opacity in the “iron-bump” at log T ∼ 5.2
(Rogers & Iglesias 1992). This changes both the envelope and oscillation mode structure,
resulting in strong κ-mechanism driving that is many orders of magnitude stronger than
the ε-mechanism driving.

Chapter 3 is entitled “Convectively Excited Gravity Modes in Main Sequence Stars”
(originally published as Shiode, Quataert, Cantiello, & Bildsten 2013). Motivated by
the high precision photometric monitoring campaigns Kepler and CoRoT, I investigated
whether gravity-mode oscillations excited by convection in the cores of massive stars could
produce an observable signature at the stellar surface. While there is a long history of
observing convectively-excited pressure modes (known as “solar-like oscillations”), and
recent detections of potentially convectively-excited mixed modes, the direct excitation of
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gravity modes by convection remains poorly constrained. Using a simple formalism for
the excitation, recently updated by Lecoanet & Quataert (2013), I predicted the flux and
surface velocity perturbations produced by convectively excited gravity modes (g-modes) in
main sequence stars. I found the convective cores in stars & 2 M� can excite g-modes to
sufficient amplitudes to be detectable with high precision photometry if the thickness of
the convective overshoot region is . 30 per cent of a pressure scale height. The energy flux
into convectively excited waves is steep, decaying toward high frequencies, but the change
in surface amplitude and damping with frequency largely compensates for this, leading to
a relatively flat surface amplitude spectrum. Thus, the incoherent sum of many g-modes
would likely produce the appearance of excess photometric variability, with amplitudes of ∼
10 micromagnitudes at frequencies . 10µHz (0.8 d−1) near the solar metallicity zero-age
main sequence. Overshoot shifts the characteristic excitation frequency higher, since this
frequency is given by the convective velocity over the length scale of the convection at
the edge of the core where the excitation predominantly occurs. I found that this surface
manifestation of convectively-excited g-modes should increase with main sequence evolution,
as the mode damping decreases and ever lower frequency modes are able to reach the
surface. Near the terminal-age main sequence (exhaustion of hydrogen in the core) the
flux perturbations may reach up to ∼ 100 micromagnitudes. Our convective excitation
model corroborates past predictions that g-modes in the Sun, which are excited by envelope
convection rather than core, have surface velocity amplitudes . 0.3 mm s−1. All together,
our work implies that massive main sequence stars likely provide the best site for detecting
the direct excitation of g-modes by stellar convection.

Chapter 4 is entitled “Setting the Stage for Interacting Supernovae I: Theory of Wave-
Driven Mass Loss,” which was originally published as Quataert & Shiode 2012. Here I
introduce a mechanism that may provide a natural explanation for the eruptions observed
and inferred to occur during the ∼ year leading up to core collapse supernovae. During
the final stages of stellar evolution, by which I mean carbon fusion and beyond, the fusion
luminosity in the cores of massive stars is many orders of magnitude larger than the emergent
luminosity of the star, since neutrinos provide the dominant cooling. This large fusion
luminosity drives vigorous convection in the stellar core, which carries ∼ 10% of the nuclear
luminosity, requiring mach numbers approaching 0.03. This convection efficiently excites
internal gravity waves in adjacent, stably-stratified regions of the core; the energy flux
in these waves can itself be much larger than the Eddington luminosity in the stellar
envelope. In some progenitors, this wave energy is capable of reaching the stellar envelope
and depositing . 3× 1048 erg, enough to unbind a significant fraction of the envelope in an
energetic eruption. In this Chapter, we use one example of a 40 M�, low metallicity star
burning oxygen convectively in the core to demonstrate how these energetic, convectively
excited waves could lead to mass-loss during the final phases of massive star evolution.
This mechanism, which we term “wave-driven mass loss,” provides a natural explanation for
the seeming preponderance of giant eruptions just prior to core-collapse, which have been
directly observed and inferred from the circumstellar interaction seen in some core-collapse
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SNe (see §1.1).
In the final Chapter, entitled “Setting the Stage for Interacting Supernovae II: Wave-

Driven Mass Loss in Supernova Progenitors,” I investigate the probability of wave-driven
mass loss for a grid of SN progenitor models. For this work, we use MESA star to construct
a grid of 1-D stellar evolution models for stars ranging in mass from 12 – 100 M�, metallicity
from 0 to Solar, initial rotation from 0 to 0.8 critical, and two different mass loss prescriptions.
For each progenitor, we address whether the waves convectively excited in the core are
capable of tunneling out to the envelope at any point during the evolution to core collapse.
None of the progenitors excite sufficiently luminous waves to drive mass loss during core
carbon fusion. During core neon and oxygen fusion, most progenitors that retain their
hydrogen envelopes and become giants excite a super-Eddington flux in waves that is
likely to tunnel to the envelope, carrying 1046 − 1048 erg. This is sufficient to produce
circumstellar environments with ∼ 10−3 − 1 M� out to . 300 AU. However, only a subset
of the progenitors have waves capable of driving an outflow prior to core collapse, primarily
because the timescale to heat up and inflate the stellar envelope can be longer than the
time to core collapse in many cases. In addition, in the most compact progenitors, the
energy-bearing convectively excited waves during O and Ne fusion have frequencies below
the envelope’s acoustic cutoff frequency and are thus prohibited from tunneling. At silicon
fusion, during the final days of a star’s life, waves in almost all progenitors are capable of
transporting ∼ 1047 erg of energy from the core to the stellar envelope. However, due to
the short remaining time before explosion, this energy likely cannot do more than inflate
the envelope. In most compact progenitors, this may inflate up to ∼ 0.5 M� from ∼ 0.5 R�
to ∼ 10s− 100s R�. Due to the strong, inverse correlation between burning timescale and
helium core mass, the timescale of a pre-SN outburst can be used to place an upper limit
on the core mass of the associated progenitor.
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Chapter 2

The Stability of Massive Main Sequence
Stars as a Function of Metallicity

An earlier version of this chapter was previously published as Shiode, J. H., Quataert,
E., & Arras, P. 2012, MNRAS, 423, 3397.

Abstract

We investigate the pulsational stability of massive (M & 120 M�) main sequence stars of
a range of metallicities, including primordial, Population III stars. We include a formulation
of convective damping motivated by numerical simulations of the interaction between
convection and periodic shear flows. We find that convective viscosity is likely strong enough
to stabilize radial pulsations whenever nuclear-burning (the ε-mechanism) is the dominant
source of driving. This suggests that massive main sequence stars with Z . 2× 10−3 are
pulsationally stable and are unlikely to experience pulsation-driven mass loss on the main
sequence. These conclusions are, however, sensitive to the form of the convective viscosity
and highlight the need for further high-resolution simulations of the convection-oscillation
interaction. For more metal-rich stars (Z & 2 × 10−3), the dominant pulsational driving
arises due to the κ-mechanism arising from the iron-bump in opacity and is strong enough to
overcome convective damping. Our results highlight that even for oscillations with periods
a few orders of magnitude shorter than the outer convective turnover time, the “frozen-in”
approximation for the convection-oscillation interaction is inappropriate, and convective
damping should be taken into account when assessing mode stability.

http://dx.doi.org/10.1111/j.1365-2966.2012.21130.x
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2.1 Introduction
Several rounds of investigations over the course of the last seventy years have shown that

massive main sequence stars above a critical mass near 100 M� are vibrationally unstable
in their fundamental radial mode (e.g. Ledoux 1941; Schwarzschild & Härm 1959; Simon &
Stothers 1970; Ziebarth 1970). In these stars, the low density contrast between the stellar
core and envelope allows the fundamental mode to reach large amplitude near the core,
where it may readily couple to the highly temperature sensitive nuclear energy generation
(the ε-mechanism). This results in linear instability with growth times shorter than the
stellar evolutionary time. The resulting non-linear evolution of this instability, which several
authors proposed could lead to significant pulsation-driven mass loss, remains an unsolved
problem despite considerable effort (e.g. Appenzeller 1970; Ziebarth 1970; Papaloizou 1973).

The introduction of OPAL opacities in stellar models in the early nineties (Rogers
& Iglesias 1992) enhanced the linear instability of massive stars of approximately solar
metallicity. Glatzel et al. (1993; 1999) found that the enhanced opacity in the stellar
envelope due to transitions in heavy element isotopes can produce strong radiative (κ-
mechanism) and strange-mode driving. Today, these mechanisms are generally believed to
be the most important sources of fundamental mode instability in massive solar-metallicity
stars (Glatzel 2005).

In the investigations to date, convection has been treated in the “frozen-in” approximation,
in which the interaction between pulsation and convection is ignored entirely. The validity
of this approximation is unclear and needs to be explicitly quantified. The treatment of
convection-pulsation interaction as an enhanced viscosity has a long history rooted in studies
of tidal Q factors and the solar 5-minute oscillations (e.g. Goldreich & Nicholson 1977;
Zahn 1989). Only recently, however, have these theoretical estimates been calibrated with
numerical experiments. In particular, Penev et al. (2009b; 2011) have shown that for
oscillation timescales of the same order as the outer convective turnover time, the interaction
is well represented by an anisotropic viscosity which scales linearly with the ratio of the
oscillation and outer convective turnover times (as argued for by Zahn 1989). On timescales
shorter than about one-third of the outer turnover time, these authors argue for a quadratic
scaling in accordance with Goldreich & Nicholson (1977).

In this paper we reconsider the linear stability of radial oscillations in massive stars,
including primordial Population III stars. For primordial stars, the lack of metals excludes
opacity-driven instabilities in the envelope (i.e., κ-mechanism and strange modes). The
driving found previously for Population III stars above about 120 M� relies on nuclear-
driving in the convective stellar core (ε-mechanism), with resulting growth times that are
much longer than for opacity-driven modes (Baraffe et al. 2001; Sonoi & Umeda 2011). It is
thus particularly important to check the effect of convective damping on these weakly-driven
modes. We also extend our investigation to higher metallicities for ∼ 100 M� models to
examine the effect of convective damping on the stability of massive stars of a range of
metallicities.
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We begin by describing the equilibrium stellar models used in this work in §2.2. In
§2.3, we describe our quasi-adiabatic linear stability analysis, highlighting the important
contributions to mode driving and damping. We then describe our primary results in §2.4
and discuss their implications in §2.5.

2.2 Equilibrium Stellar Models
We have computed evolutionary sequences for equilibrium stellar models with initially

primordial composition (i.e., Population III stars) using the MESA star stellar evolution code
(Paxton et al. 2011)1. We have also computed model sequences for an initial mass of 120 M�,
and a range of metallicities from Z = 2× 10−6 to solar (which we take to be Z = 0.02). All
models are non-rotating and have mass loss turned off. The former approximation is made
for simplicity, while the latter is justified for Population III stars because the line-driving
mechanism for massive star winds relies on the presence of metal-line opacity in the stellar
atmosphere (e.g., Lamers & Cassinelli 1999; Castor et al. 1975). For the higher metallicity
models, since we are interested only in the stability of massive stars on the main sequence,
the effects of mass loss are not critical.

We use the standard mixing length prescription of Böhm-Vitense (1958) and a mixing
length of ∼ 1.6 pressure scale heights for the convective mixing. To examine the effects
of mixing on pulsational stability, we have tested schemes for determining the onset of
convection that cover the likely range of convective core sizes for non-rotating stellar models—
from Ledoux criterion to Schwarzschild criterion with convective overshoot. The qualitative
conclusions of our stability analyses are insensitive to our choice of mixing parameters.
Thus we present, as an illustrative example, models using the Schwarzschild criterion for
convection and with convective overshoot of 10% of one pressure scale height above the
convective core (with overshoot calculated using the prescription of Herwig 2000).

We follow the evolution of Population III stars with masses between 120 and 1000
M� through their main sequence (core hydrogen burning) evolution, using the parameters
outlined above and a nuclear reaction network covering all the relevant reactions for hydrogen
and helium burning (see Paxton et al. 2011, for details). Figure 2.1 shows the evolution of
these stellar models from the Zero-Age Main Sequence (ZAMS) to a 40% central hydrogen
mass fraction (Xctr). For massive Population III stars (M? & 20 M�), hydrogen burning by
the p-p chain cannot halt the gravitational contraction; the star contracts to Tc ∼ 108 K and
ignites He fusion by the triple-alpha process to produce enough heavy elements to sustain
hydrogen burning by the CNO cycle (Marigo et al. 2001). Thus, these stars have much
higher central temperatures on the main sequence than their higher metallicity counterparts.

The highly mixed models shown in Fig. 2.1 have large convective cores and correspond-
ingly thin radiative envelopes, which expand to form red supergiants while the core is still
fusing hydrogen. This is particularly true for the most massive models, as can be seen in

1http://mesa.sourceforge.net/
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Figure 2.1 : Hertzsprung-Russell Diagram for Population III Stars with masses between 120 and 1000
M� and initially primordial abundances. For each mass, the evolution is run with Schwarzschild
mixing and 10% convective overshoot, no rotation, and zero mass loss. Each sequence shown runs
from the ZAMS to a center hydrogen composition (Xctr) of 40% by mass. Filled symbols indicate
models with unstable radial pulsations when convective damping is ignored, while open symbols
denote stable models.
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Fig. 2.1.2

2.3 Pulsational Analysis
For each model in the sequences shown in Fig. 2.1 (and the analogous higher metallicity

models), we have calculated a set of quasi-adiabatic oscillation modes as described in §1.3.
Below I highlight details of the driving and damping discussed in §1.3.2 that are particularly
relevant for pulsations in the massive main sequence stars under consideration in this
chapter.

2.3.1 Nuclear Driving

For the high central temperatures reached in Population III stars (log Tc & 8.1), the
fundamental mode period is intermediate between the proton capture and beta-decay
timescales in the CNO cycle. Accounting for the phases of the abundance variations, I find a
slight reduction of εT by ∼ 15% from the equilibrium value determined by the temperature
dependence of the 14N(p, γ)15O reaction. Thus I have εT . 8 near the centers of massive
Population III stars, somewhat smaller than the value used in Baraffe et al.’s (2001) earlier
study.

2.3.2 Convective Damping

The viscous effect of convection acting to damp stellar oscillations was outlined in § 1.3.2.
Here, I provide more details relevant to the study presented in this chapter.

Penev et al. (2009a) have shown through simulations that convective eddies act to
viscously damp pulsations, in agreement with the analytic work of Goldreich & Nicholson
(1977) and Zahn (1989). In particular, Penev et al. (2009a) find that, over the range of
frequencies and spatial scales accessible in their simulations, the effective kinematic viscosity
of the convection scales linearly with the ratio of the oscillation period and turnover time of
the largest eddies. We refer to the latter as τL below.

However, their simulations do not allow resolution of eddies with turnover times smaller
than about 0.3 τL. That they see no measurable viscous damping for forcing periods less
than this resolution limit implies that eddies with turnover times less than or equal to the
forcing timescale dominate the viscous interaction when tforce . 0.3 τL. Thus, these authors

2Evolving the most massive models to a lower central hydrogen mass fraction becomes difficult because
the envelope expands significantly and evolves on a timescale much shorter than the nuclear timescale. For
the less mixed models we have run (those without overshoot or using the Ledoux criterion for convection),
the radiative envelopes are larger for a given mass, and they do not expand to form red supergiants while
still burning hydrogen in their cores. Our qualitative results regarding the stability of main sequence massive
stars are insensitive to our choice of mixing parameters. However, exactly when (and if) the star evolves
significantly away from its ZAMS state does depend on the details of mixing.



2.3. PULSATIONAL ANALYSIS 24

argue that the formalism of Goldreich & Nicholson (1977), derived on the assumption that
near-resonant eddies in a Kolmogorov cascade dominate the viscosity, applies for higher
frequency (shorter period) forcing.

We thus take a conservative approach, in terms of minimizing the effect of viscous
damping, and assume that the change to quadratic scaling occurs just beyond the resolution
of their simulations, at a ratio of tforce/τL ≡ Πmin = 0.1. Generalizing the results of Penev
& Sasselov (2011), we define our fiducial, frequency-dependent kinematic viscosity to be

ν (ω, r) =

(
1

3
vLL

)
min

[
1

Πmin

∣∣∣∣
2π

ωτL
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2

,
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2π

ωτL

∣∣∣∣ ,Πmax

]
. (2.1)

Here r is the radius of the layer, L = min(r,H) is the mixing length, vL is the convective
velocity according to mixing length theory, τL is the convective turnover time of the
largest eddies (which we take to be 1/NBrunt−Väisälä), ω is the mode’s angular frequency
(and 2π/ω ≡ tforce), and the dimensionless factor Πmax = 2.4 represents the timescale
ratio above which the viscosity is independent of forcing period (saturation period). As
can be seen, the quadratic reduction applies for (2π/ωτL) < Πmin, linear reduction for
Πmin ≤ (2π/ωτL) ≤ Πmax, and unreduced for (2π/ωτL) > Πmax

Figure 2.2 shows a comparison of τL and the fundamental mode period for several main
sequence models. The left panel shows Population III models, while the right shows higher
metallicity, 120 M� models. For Population III models, the fundamental mode periods are
always well into the quadratic scaling regime, but for the higher metallicity cases, the mode
periods tend to lie in the linear scaling or unreduced regimes, especially for the convective
zones in the envelope of the star (log T . 6).

For a radial mode within the star, the integrated rate of convective damping is given by

Ėconv =

∫
ν s′0

(
∂vr
∂r

)2

dm. (2.2)

Plugging in the expansion in terms of modes, we find

Ėconv =

∫
ν s′0 ω

2 |kr|2 ξ2
r dm, (2.3)

where s′0 is the coefficient for damping due to the radial component of the shear from Penev
& Sasselov (2011, their eqn. 9), and kr is given by the usual adiabatic oscillation equations.
In accordance with eqn. 1.13, we then divide by the mode energy to calculate the integrated
damping rate due to interaction with the convection.

For the modes in Population III stars described below, (2π/ωτL) < Πmin (see eqn. 2.1).
If the turnover to quadratic scaling actually occurs at mode periods shorter (longer) than
what we have taken here, the damping will be stronger (weaker) than what we calculate.
However, given the limiting value of Πmin . 0.3 found by Penev et al. (2009a), we find
it unlikely that the damping is weaker than calculated here (see §2.4 and 2.5 for further
discussion).
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Figure 2.2 : Convective turnover time, τL, plotted against fractional mass enclosed for a Population III main sequence model
with masses from 120− 103 M� (left panel), and against internal temperature for 120 M� models for a range of metallicities
(right panel). For the Population III stars, the models shown have Xctr ≈ 0.7; the variable metallicity stars have Xctr ≈ 0.4. The
straight horizontal lines in each panel show the fundamental mode periods corresponding to each model plotted. For reference,
the boundary between linear and quadratic scaling of the convective viscosity with mode period for the 1000M� Population III
model is shown as the thick dashed grey line in the left panel. For all other models (in both panels) this transition occurs at a
period one order of magnitude less than the convective turnover time of the stellar model.
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2.4 Results

2.4.1 Zero Metallicity

Figure 2.3 shows the results of our quasi-adiabatic stability analysis for the fundamental
radial modes in Population III main sequence models. The top panel shows the driving/-
damping rates using the “frozen-in” approximation for convection, while the bottom panel
includes the effects of convective damping. In the absence of convective damping, massive
stellar models with M? > 120 M� have unstable fundamental modes until the central
hydrogen mass fraction is . 0.6. The bottom panel of Fig. 2.3 demonstrates, however, that
convective damping stabilizes the fundamental mode in all Population III main sequence
models, regardless of mass and age. We find that this is true unless Πmin (which charac-
terizes the transition from linear to quadratic suppression of convective damping) satisfies
Πmin & 0.25. While this possibility is not completely ruled out by Penev et al.’s calibration
of convective damping, we regard it as exceptionally fine-tuned.

When we ignore the effects of convective damping (top panel), our results are comparable
to those of Baraffe et al. (2001, their fig. 4) to within factor of 2. The moderate disagreement
likely stems from differences in the parameters used to evolve the stellar models and the
∼ 15% difference in the temperature dependence of the CNO cycle between their work and
ours (see §1.3.2). In particular, the reduction in temperature sensitivity leads us to conclude
that the fundamental mode in 120 M� Population III main sequence models is stabilized by
radiative diffusion in the envelope even before convective viscosity is taken into account.

While our calculations are quasi-adiabatic and theirs are non-adiabatic, this difference
is likely unimportant for the modes and models shown in Fig. 2.3, which Baraffe et al.
found to be unstable to the ε-mechanism (stars having Xctr & 0.5). First, the non-adiabatic
region of the star, defined by the inverse inequality of eqn. 1.14, contains less than ∼ 10−4

of the total stellar mass for all models shown in Fig. 2.3. Second, the fraction of the mode
energy found in the non-adiabatic zone is also always less than ∼ 10−4. Taken together,
these justify our quasi-adiabatic assumption.

Figure 2.4 shows the mode energy distribution (top panel) and work integrals (bottom
panel) for the fundamental radial mode in a main sequence (Xctr = 0.718) 500 M�,
Population III stellar model. The dominant contributions to the total work integral come
from the nuclear driving and convective damping, at r/R . 0.4 (mr . 100 M�). Similar
plots for fundamental modes in other main sequence models are qualitatively the same.
For more evolved models (those with lower Xctr), the mode energy shifts outward into the
stellar envelope and radiative diffusion is the dominant source of damping.

2.4.2 Dependence on Metallicity

We have performed the same analysis as for the Population III stars, for models with 120
M� and a range of metallicities from 10−6 to solar (taken to be 0.02). Figure 2.5 shows the
results of these calculations. In the upper panel, the net growth rate (taking into account
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Figure 2.3 : Growth rates, in units of Myr−1, for the radial fundamental modes of Population III
stars on the main sequence, shown versus the mass fraction of hydrogen in the star’s convective
core. The top panel shows the results assuming the “frozen-in” approximation for convection (for
comparison with fig. 4 of Baraffe et al. 2001), while the bottom panel includes the effects of
convective damping. Negative growth rates (shaded region) denote stability. Note that the 120
M� models are always stable in this analysis with or without convective damping, due to the lower
CNO cycle temperature dependence (see §1.3.2)
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Figure 2.4 : Mode energy (red solid line, top) and work integrals (bottom) for a typical, damped
radial fundamental mode in a Population III, 500M� main sequence model. All quantities are
plotted versus r/R (bottom abcissa) and enclosed mass, mr (top abcissa). The top panel also
shows the nuclear energy generation rate (blue dashed, right axis) and the Mach number of the
convection (purple, dotted line). The bottom panel shows the different contributions to the total
work integral described in equations 1.17, 1.19, 1.20, and 2.3, with colors according to the legend.
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Figure 2.5 : Net growth rates including convective damping (top) and the convective damping rates
(bottom) for radial fundamental modes in stars on the main sequence with M? = 120 M� and a
range of metallicities, shown versus the mass fraction of hydrogen in the star’s convective core.
Note the logarithmic scale of the y-axis, which highlights the large change in the magnitude of the
driving/damping when the mode amplitude shifts to the envelope, as for the solar and half solar
metallicity models (blue circles and green squares, respectively). The corresponding change in the
magnitude of the convective damping occurs because the damping is dominated by an envelope
convection zone rather than the convective core (see Fig. 2.2).
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any convective damping) is shown versus the central hydrogen fraction (as in Fig. 2.3).
Note the logarithmic scale for the growth and damping rates. The bottom panel shows the
contribution of the convective viscosity to the damping rate. Models with 0 < Z < 2× 10−4

are not shown since their results are nearly identical to the Z = 0 models.
As shown in Fig. 2.6, the sharp transition in the net growth and convective damping

rates for models with Z & 2× 10−3 is due to the shift in mode energy out into the stellar
envelope (shown in the figure for models with Z = 0.01). This transition occurs when the
low-density envelope expands due to the increased radiation pressure around the iron opacity
enhancement at log T ≈ 5.2. When the mode energy is primarily in the stellar envelope
there is the possibility for κ-mechanism driving around the iron opacity enhancement, as well
as stronger convective damping in an outer convection zone where the mode and convective
frequencies are comparable.

In agreement with Baraffe et al. (2001), we find that the radial fundamental modes in
main sequence models with Z & 2× 10−3 are strongly driven by the κ-mechanism operating
in the envelope at the location of the opacity-enhancement due (primarily) to iron transitions
(Rogers & Iglesias 1992). The location of the adiabatic cutoff mass/radius, as defined by
equation 1.14, relative to the location of the opacity peak at log T ≈ 5.2 determines when
the opacity is capable of providing strong driving (cf. Cox 1980). This alignment changes
with the expansion of the stellar envelope, such that only models at particular evolutionary
stages on the main sequence have fundamental modes driven by the κ-mechanism.

Across the range of masses and metallicities investigated here, we find that convective
viscosity always overcomes the ε-driving in the stellar core. However, for models with
Z & 2 × 10−3, the stellar and mode structures are such that κ-mechanism provides the
dominant driving and is orders of magnitude stronger than the convective damping. However,
this envelope driving occurs in a region where the local ratio ttherm/τmode is only slightly
larger than unity and our assumption of quasi-adiabaticity is not entirely valid (as shown in
Fig. 2.6). A fully-non-adiabatic method would likely provide more reliable growth-rates for
these modes. Moreover, our quasi-adiabatic analysis is not capable of capturing strange-
mode driving, which is also likely to be important for the same models that are unstable to
the κ-mechanism (cf., Glatzel 1998).

2.4.3 Higher order and non-radial modes

In addition to the fundamental mode, we have also studied the stability of higher order
radial modes and non-radial oscillations. Higher order radial modes—those having a larger
number of radial nodes—have a more significant fraction of their energy outside the nuclear
burning core, and have shorter wavelengths, which both lead to stabilization by radiative
damping.

The presence of a large convective core prevents gravity(g)-modes from propagating to
small radii and coupling to the nuclear driving (see also Sonoi & Umeda 2011). While high
frequency, low angular degree pressure(p)-modes may penetrate into the burning region,
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Figure 2.6 : Mode energy (red) as a function of log T for Z = 0.01 main sequence stellar models. Shown on the left is a stable
mode with Xctr ≈ 0.58, and on the right is a κ-driven mode with Xctr ≈ 0.48. Also shown are the run of opacity (green
dot-dashed line, left ordinate, multiplied by 3 for clarity), convective mach number (purple dotted line, right ordinate), nuclear
energy generation rate (blue dashed line, left ordinate), and adiabatic cutoff (black dashed vertical line). All values are shown
versus log T . In the more evolved model on the right, the low-density envelope has expanded by a factor of ∼ 2 due to the
enhanced radiation pressure around the iron opacity bump at log T ≈ 5.2.
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these modes have their largest amplitudes near the stellar surface where the density is
low and radiative damping dominates. Furthermore, while p- and g-modes of high enough
angular degree can be trapped by the increase in N2 at the edge of the convective core due
to the chemical composition gradient, these modes experience strong radiative damping
that overcomes the weak nuclear-driving they experience (cf. Unno et al. 1989).

2.5 Discussion and Conclusions
In this paper, we have studied the stability of radial and non-radial oscillation modes for

massive main sequence stars of a range of metallicities, from primordial Population III stars
to those of solar composition. We find that convective damping is likely to stabilize modes
that would otherwise be unstable by the ε-mechanism (driving by nuclear fusion). This is
particularly important for primordial stars whose high effective temperatures imply that
there is no driving due to opacity variations in the stellar envelope (the κ-mechanism). Thus,
we conclude that massive Population III stars are linearly stable on the main sequence,
supporting the idea that such stars are unlikely to experience any pulsation-driven mass
loss during their main sequence evolution.

The calculations in this paper build on those of Baraffe et al. (2001) and Sonoi & Umeda
(2011), who found that the fundamental radial oscillations in Population III stars with
M? > 120 M� are unstable due to the ε-mechanism. However, both Baraffe et al. and
Sonoi & Umeda neglected convective damping. Recent hydrodynamic simulations by Penev
et al. (2009a) have shown that the convective viscosity scales linearly with the oscillation
period for periods of the same order as the turnover time of the largest eddies (in agreement
with Zahn 1989) and quadratically for much shorter periods (in agreement with Goldreich
& Nicholson 1977). The transition between these regimes is not directly accessible to the
simulations; we have taken a conservative estimate of Πmin = 0.1, in agreement with the
simulations, in order to minimize the convective viscosity. If Πmin & 0.25, some ε-driven
modes remain unstable, but this is an extremely fine-tuned value, given Penev et al.’s result
that Πmin . 0.3.

Even more recent simulation work by Ogilvie & Lesur (2012) calls the work of Penev
et al. into question, finding that the viscosity always scales with the period ratio squared
(as Goldreich & Nicholson 1977), and may in fact be negative (i.e., driving) in the short
period forcing regime of interest for this work. These latter simulations use a smaller forcing
amplitude than that of Penev et al., leading to relatively noisier measurements, and a smaller
simulation box which may not capture the full spectrum of turbulence on the large scales
within a stellar convection zone. This latter aspect may be crucial to their measurement
since they infer that the negative contribution to the viscosity is dominated by the effect of
the largest scale eddies. The sensitivity of our results to the exact form of the convective
viscosity highlights the need for higher resolution simulations of the convection-oscillation
interaction, particularly using larger simulation domains to capture the interaction with the
large-scale eddies.
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Stellar models with sufficiently high metallicity, Z & 2 × 10−3, have strong opacity
variations in their envelopes which can provide κ-mechanism driving. We find that the
fundamental mode in these models are destabilized by the κ-mechanism operating near the
iron-bump in opacity for much of their main sequence evolution. This driving is orders of
magnitude stronger than the convective damping. These models experience large linear
growth rates that approach non-adiabiticity (δω . ω). For lower metallicity models, the
ε-mechanism provides the dominant driving but is overcome by convective damping as in
Population III models. In all of the massive stellar models we have considered, we find that
damping due to convective viscosity is stronger than the driving by the ε-mechanism in
stellar interiors for radial modes.

Both Baraffe et al. and Sonoi & Umeda estimate that massive Population III stars may
lose a few (forM? . 1000 M�) or up to ∼ 10% (forM? & 1000 M�) of their total stellar mass
due to pulsation-driven mass loss during the proposed unstable phase of the main sequence.
As Sonoi & Umeda highlight, the convective cores of stars & 500 M� comprise & 90% of
the stellar mass, implying that pulsation-driven mass loss may expose the convective core,
perhaps further increasing mass loss by mixing nuclear-processed material to the surface to
initiate a radiation-driven wind, or by increasing the duration of the proposed pulsationally
unstable phase. If, instead, the pulsations are damped by convective viscosity as we have
concluded, there may be no significant mass lost during the main sequence phase for massive
Population III stars.

In order to fully address the mass loss properties of massive primordial stars, we must
address their stability at more evolved stages. However, as stars evolve off the main sequence,
their fundamental radial mode becomes increasingly non-adiabatic as the mode energy
shifts to the expanding, low-density stellar envelope. Analyzing these modes requires a
non-adiabatic calculation, which we leave to future work.

With all oscillatory modes in main sequence Population III stars likely stabilized by
convective damping, evidence points to there being no mass loss on the main sequence for
these metal-free stars, so long as the non-rotating stellar models used here are a reasonable
approximation. The question of what happens as these stars evolve thus becomes all the
more crucial for assessing the fates of the first stars.
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Chapter 3

Convectively Excited Gravity Modes in
Main Sequence Stars

An earlier version of this chapter was previously published as Shiode, J. H., Quataert,
E., Cantiello, M., & Bildsten, L. 2013, MNRAS, 430, 1736.

Abstract

We predict the flux and surface velocity perturbations produced by convectively excited
gravity modes (g-modes) in main sequence stars. Core convection in massive stars can
excite g-modes to sufficient amplitudes to be detectable with high precision photometry
by Kepler and CoRoT, if the thickness of the convective overshoot region is . 30 per
cent of a pressure scale height. The g-modes manifest as excess photometric variability,
with amplitudes of ∼ 10 micromagnitudes at frequencies . 10µHz (0.8 d−1) near the solar
metallicity zero-age main sequence. The flux variations are largest for stars with M? & 5
M�, but are potentially detectable down to M? ∼ 2 − 3 M�. During the main sequence
evolution, radiative damping decreases such that ever lower frequency modes reach the
stellar surface and flux perturbations reach up to ∼ 100 micromagnitudes at the terminal-age
main sequence. Using the same convective excitation model, we confirm previous predictions
that solar g-modes produce surface velocity perturbations of . 0.3 mm s−1. This implies
that stochastically excited g-modes are more easily detectable in the photometry of massive
main sequence stars than in the Sun.

http://dx.doi.org/10.1093/mnras/sts719
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3.1 Introduction
At the interfaces between convective and radiative zones in stellar interiors, convective

motions transfer a fraction of their kinetic energy into waves in the radiative layer (e.g.,
Press 1981; Goldreich & Kumar 1990; Belkacem et al. 2008). Studying the details of this
energy transfer is important for our understanding of mixing at convective boundaries, the
evolution of shear layers and the excitation of stellar oscillations in many contexts.

The Sun provides an exquisite laboratory for studying convectively excited sound waves
(p-modes), with a forest of modes observed at the solar surface (see Gizon et al. 2010;
Christensen-Dalsgaard 2002, for recent reviews). These sound waves have been detected in
many other stars as well, with rapid growth in the sample of observed “solar-like oscillators”
in the past several years thanks to high precision monitoring campaigns like Kepler (Bedding
2011).

To date, gravity modes (g-modes) have not been convincingly observed at the solar
surface (see Appourchaux et al. 2010, for a recent review). Gravity modes are observed in
several other stellar types, including, for example, white dwarfs (Winget & Kepler 2008)
and slowly-pulsating B-stars (De Cat 2007). In each of these cases, the g-modes are linearly
unstable, rather than stochastically excited as in the case of solar-like oscillations. In the
interesting case of the mixed gravity and pressure modes recently observed in giants (see
e.g., Bedding et al. 2011; Beck et al. 2011), the convective excitation occurs in the envelope
where the modes behave locally as pressure waves. Thus, the direct excitation of g-modes
by turbulent convection is not well tested observationally.

Main sequence stars more massive than the Sun have convective cores and relatively
compact, predominantly radiative envelopes, through which g-modes propagate. This
structure makes them potential hosts for observable, stochastically excited g-modes. The
unprecedented micromagnitude precision of photometric monitoring campaigns like Kepler
(Koch et al. 2010) and CoRoT (Convection, Rotation and planetary Transits; Auvergne
et al. 2009) provides exciting prospects for detecting these stochastically excited g-modes
and opening a new window into both the physics of convective boundaries and massive
stellar interiors. Indeed, Samadi et al. (2010) studied the convective excitation of g-modes
in main sequence stars with masses of 10, 15, and 20 M� and central hydrogen mass fraction
of 0.5, finding that convectively excited g-modes in these stars may reach amplitudes near
the threshold for detectability with CoRoT. In the following, we present a complementary
approach and investigate g-mode amplitudes in a wider range of initial stellar masses, from
2 to 30 M�, and evolutionary states along the main sequence.

We begin by describing our model for the spectrum of g-mode excitation in §3.2, followed
by our method for calculating the observable signatures of convectively excited g-modes
in §3.3, 3.4, and 3.5. In §3.6, we present the results of our calculations for the surface
flux and velocity perturbations of g-modes in massive main sequence stars. We conclude
with a discussion of remaining uncertainties, including the effects of rotation and stellar
evolution modeling, and the current and ongoing observations which might shed light on
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these predictions (§3.7).

3.2 Convective excitation of gravity modes
Convection efficiently excites gravity modes in an adjacent stably stratified medium,

as both convective and g-mode perturbations are roughly incompressible (Goldreich &
Kumar 1990, see § 1.3.3;). The power spectrum of g-modes excited by stellar convection at
and above the characteristic convective turnover frequency, ωc, has been calculated using
both heuristic physical arguments (setting the wave pressure in the stable layer equal to
the convective ram pressure; Press 1981; Garcia Lopez & Spruit 1991) and by solving
the inhomogeneous wave equation with convective source terms (Press 1981; Goldreich &
Kumar 1990; Kumar et al. 1999; Belkacem et al. 2009a). These approaches are reviewed
and extended to more realistic radiative-convective boundaries in Lecoanet & Quataert
(2013); we summarize here the key results for our application.

The low frequency g-modes that carry most of the wave power are strongly damped
by radiative diffusion (see §3.4). As a result only g-modes with frequencies significantly
larger than the characteristic convective turnover frequency (i.e., ω � ωc) can set up global
standing waves potentially detectable at the stellar surface – this is true for both solar-type
stars with envelope convection zones and massive stars with core convection zones. High
frequency g-modes have characteristic radial wavelengths in the radiative zone that are
large compared to the thickness of the radiative-convective boundary. In this limit, it
is reasonable to approximate the radiative-convective boundary as a discontinuity in the
Brunt-Väisälä frequency (as in Goldreich & Kumar 1990). For g-modes excited by a core
convection zone (or its overshoot region), which is relatively unstratified, the excitation
occurs at a roughly fixed position at the edge of the convection zone. The power spectrum
of energy supplied to g-modes is then given by
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over the range
ω ≥ ωc ≡ vconv/H, ` ≥ 1, (3.2)

where `max ≡ (r/H) (ω/ωc)
3/2, r and H are evaluated at the edge of the convective core

(where their ratio is ∼ 1), and the remaining variables are defined in Table 1.1. The
power-law exponents a and b are given by a = 13/2 and b = 2.1

1Because excitation of g-modes by Reynold’s stresses dominate excitation by entropy fluctuations
(Goldreich & Kumar 1990), the convective luminosity in eqn. 3.1 is technically that associated with the
kinetic energy, rather than enthalpy. In mixing length theory, these two contributions to the convective
luminosity are comparable. For the purposes of our calculation, we thus take Lconv to be the total convective
luminosity in the stellar model and absorb uncertainties in the relative contribution of kinetic and enthalpy
fluxes into the uncertain normalization of eqn 3.1.
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Note that integrating over frequency and `, equation 3.1 implies that convection excites
a total g-mode luminosity of (Goldreich & Kumar 1990)

Ėg ∼Mconv Lconv. (3.3)

In fact, the efficiency of g-mode excitation can exceed equation 3.3 depending on the nature
of the convective-radiative transition (Press 1981; Lecoanet & Quataert 2013). Equation 3.1
is, however, appropriate for the high frequency g-modes of interest in this paper. In our
numerical work, we choose the uncertain dimensionless constant in equation 3.1 so that the
integrated wave power is exactly Ėg =Mconv Lconv.

One of the primary uncertainties in the prediction of g-mode excitation is whether the
excitation occurs primarily in the bulk of the convection zone or in a thin “overshoot" region
near the radiative-convective boundary. We parameterize this uncertainty by taking the
local scale-height in the excitation region to be ηH, where H is the true pressure scale height
near the radiative-convective boundary. This amounts to taking H → ηH in equation 3.1
when calculating the wave excitation. The parameter η can take on values in the range
(0, 1], such that η = 1 corresponds to excitation dominated by eddies of size ∼ H in the
convection zone and η < 1 to excitation dominated by a thin overshoot region hosting
eddies of size ∼ ηH. Excitation dominated by a thin overshoot region will have a higher
characteristic frequency ωc/η since the length scale of the convective motions is reduced by
η. This serves to shift the g-mode power input to higher frequency and shorter spatial scales
(higher ω and `). Note, in particular, that for low ` modes having ω � ωc, Ėg ∝ H−7/2.
Thus excitation in a thin overshoot layer significantly increases the power supplied to the
high frequency modes that are the most observable.

In their numerical simulations of the solar radiative-convective transition, Rogers &
Glatzmaier (2006) found that the power into g-modes is roughly constant for ω ∼ 1− 10ωc
and then decreases significantly for ω & 10ωc (see their figs. 1 & 2). This increase in the
characteristic frequency of the excited g-modes is reasonably consistent with excitation in
the overshoot layer given the width of the overshoot layer of ∼ 0.05 H found in the same
simulations (see Rogers et al. 2006). The smaller scales in the overshoot region would also
naturally produce power at higher `, as also found by Rogers & Glatzmaier (2006).2

Fig. 3.1 shows the logarithmic excitation spectrum for our 2 M� model, for η = 1 (left
panel) and 0.1 (right panel). This shows that most of the wave energy is in the lowest
frequency modes convection can excite. In addition, since the wavelength and frequency of
convective eddies are correlated, energy input at higher mode frequencies is predominantly
in modes of higher `.

2Note that the simulations of Rogers & Glatzmaier (2006) use an artificially high convective luminosity
relative to the solar value. It is unclear whether this changes the functional form of the g-mode power vs.
frequency; this needs to be studied in more detail.



3.3.
ST

E
L
L
A

R
M

O
D

E
L
S

38

Figure 3.1 : Convective excitation spectrum vs. ω/ωc (abscissa) and ` (ordinate), for g-modes in our 2 M� model. The spectrum
shown in the left panel is for excitation by the convection zone, η = 1, and the right for excitation dominated by an overshoot
region having a width of 10 per cent of a pressure scale height, η = 0.1. Note the different scales on the abscissa in the two
panels, since our parametrization of the power spectrum applies only above 10ωc for η = 0.1 (see eqn. 3.2). Also note values
for log dĖg/(d lnω d ln `) < 0 are represented as white. The spectra for models with M & 10 M� peak at higher ` values since
r/H & 2 at the edges of their convective cores; otherwise, spectra for different masses are qualitatively similar, with the overall
energy injection rate scaled according to the value ofMconv Lconv (see Table 3.3).
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3.3 Stellar models
We have constructed main sequence models from zero-age main sequence (ZAMS) to

the terminal-age main sequence (TAMS), at a central hydrogen mass fraction of 0.01, for a
range of initial masses from 2 to 30 M� using the MESA stellar evolution code (version 4298;
Paxton et al. 2011)3. All models are non-rotating and solar metallicity (which we take to
be Z = 0.02) with the Grevesse & Sauval (1998) chemical mixture. Following the results of
Brott et al. (2011), we determine convective boundaries using the Ledoux criterion with 30
per cent of a pressure scale height of overshoot,4 and a mixing length parameter αMLT = 1.5.
We also use semiconvection with a dimensionless efficiency parameter, αsc = 0.1, though
this is largely irrelevant due to the overshoot. Finally, we assume the theoretical mass loss
rates of Vink, de Koter, & Lamers (2001) (or de Jager et al. 1988 when Teff < 104 K) scaled
down by a factor of 0.8.

We tested for numerical convergence by varying the number of mesh points and timesteps
taken during the evolution, finding good agreement at the level of refinement used for the
models presented.5 We have also tested a range of other model parameters, including the
mixing length, boundary definitions and rotation, to test their effects on our results (see
§3.7.1). Fig. 3.2 shows the evolutionary tracks in the H-R diagram for the models described
above from ZAMS to TAMS. Along the sequence, crosses appear every 1/10th of the main
sequence lifetime, and symbols mark the locations where we have calculated the convective
excitation of g-modes: ZAMS (Xctr = 0.68), midMS (Xctr = 0.33), and TAMS (Xctr = 0.01).

Table 3.3 gives parameters for the convective cores of our ZAMS models, including the
outer scale convective turnover frequency (νc ≡ ωc/(2π)), the core luminosity (Lconv, which
is roughly equivalent to the emergent stellar luminosity) and the convective mach number
(Mconv). Over the range of masses represented,Mconv increases with luminosity (and mass),
but only as ∼ Lconv

0.2. The yet weaker dependence of the convective turnover frequency on
mass reflects the increase in convective core radius with mass, since energy-bearing eddies
span roughly the core radius.

Fig. 3.3 shows propagation diagrams for our 2 and 10 M� ZAMS models (upper and lower
panels, respectively). Each panel shows the Brunt-Väisälä frequency, N , in the radiatively
stable envelope (blue, solid line), the Lamb frequency (S2

` ≡ ` (` + 1) c2
s/r

2) for ` = 1, 10
(green, solid line), and the outer convective turnover frequency in the core (red, dashed
line). Note the ordinate units are linear frequency, ν. These diagrams highlight where
g-modes and sound waves may propagate in the stellar interior, with g-modes propagating
wherever ω < N, S` and sound waves where ω > N, S` (Aerts et al. 2010; Unno et al. 1989).
The convective turnover frequency for all models is ∼ 3 orders-of-magnitude less than the
Brunt-Väisälä frequency in the radiative zone. Thus, modes with ω & ωc propagate as
high-order (short-wavelength) g-modes in the radiative zone. Lastly, the contrast between

3http://mesa.sourceforge.net/
4We use a step function overshoot prescription, in which the convection zone is extended a distance of

30 per cent of a pressure scale height above the Ledoux boundary, with a constant diffusion coefficient.
5mesh_delta_coeff = 0.25 and varcontrol_target = 10−4
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Figure 3.2 : H-R Diagram showing the evolutionary tracks of our 2 to 30 M� model sequences
spanning ZAMS to TAMS (Xctr = 0.01). The circles, triangles and squares mark the locations of
models for which we have calculated convectively excited modes, and are in the evolutionary states
given in the legend. Crosses mark every 1/10th of the main sequence lifetime (i.e., the model age
at TAMS).
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Table 3.1 : Core Convection Parameters

Massa Lconv
b Mconv

c νc
d νmin [µHz]e

[M�] [L�] [µHz] ZAMS TAMS

2 14 4.37× 10−5 0.05 5.81 1.58
3 75 6.67× 10−5 0.07 5.91 1.74
4 228 8.75× 10−5 0.08 5.54 1.71
5 579 1.23× 10−4 0.10 4.73 1.65
6 1.07× 103 1.40× 10−4 0.10 4.63 1.68
7 1.79× 103 1.57× 10−4 0.11 4.57 1.63
8 2.79× 103 1.73× 10−4 0.11 4.12 1.59
9 4.09× 103 1.88× 10−4 0.12 4.22 1.54
10 5.86× 103 2.07× 10−4 0.12 4.19 1.50
12 1.03× 104 2.32× 10−4 0.13 4.29 1.43
15 1.98× 104 2.59× 10−4 0.14 4.43 1.31
20 4.46× 104 3.00× 10−4 0.15 4.35 1.15
25 7.97× 104 3.28× 10−4 0.15 4.32 0.99
30 1.23× 105 3.46× 10−4 0.15 4.36 0.93

aInitial stellar mass
bConvective luminosity on ZAMS
cConvective mach number on ZAMS
dConvective turnover frequency on ZAMS
eMinimum frequency for ` = 1 standing waves
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panels shows the growth of the convective core in fractional radius (and mass) with increasing
stellar mass and the structural similarity among main sequence models with core convection
zones.

3.4 Gravity wave physics
To identify potentially observable g-modes in massive stars, we must first determine

whether waves excited at the convective-radiative boundary reach the stellar surface. Waves
excited at the boundary travel through the radiative zone, where they are subject to damping
by radiative diffusion. The radiative damping rate for a traveling g-mode is given by

γrad(ω, `, r) = Krad(r) k2
r , (3.4)

Krad(r) =
16σ T (r)3

3 ρ(r)2κ(r) cp(r)
, (3.5)

kr ≈
Λ

r

N

ω
. (3.6)

where Λ2 ≡ ` (`+ 1) and kr is the radial wavenumber. The last approximation (eqn. 3.6)
relies on the WKB dispersion relation for g-modes, which have ω � N,S`.

We write a wave “optical depth” (as in Kumar & Quataert 1997)

τw(ω, `, r) =

∫ r

rconv

dr′
γrad(ω, `, r′)

vgroup(ω, `, r′)
, (3.7)

where
vgroup ≈

ω

kr
≈ ω2 r′

ΛN
. (3.8)

Waves of a given frequency and degree deposit most of their energy at the radius where
τw ∼ 1. As γrad is inversely proportional to frequency, low frequency waves damp well inside
the star while high frequency waves propagate to the surface. The minimum frequency for
standing g-modes satisfies the condition τw(ω, `, router) . 1, where router is the radius of the
wave’s outer turning point where ω = min (N,S`).

Fig. 3.4 shows the location where a wave of frequency ν has an optical depth, τw ∼ 1,
for g-modes with ν ≥ νc in our 2 and 10 M� models. The horizontal dashed lines show
the minimum frequency for standing g-modes, separating the low frequency waves that
damp in the radiative envelope from those that reach their outer turning point and set up
standing oscillations. Also shown are the characteristic turnover frequency in the convective
core (νc, filled circles), and the outer turning points of g-modes with τw(ω, `, router) < 1
(filled diamonds). At high frequencies, the outer turning point moves inward with increasing
frequency since it is defined by where ω = S` (see Fig. 3.3).
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Figure 3.3 : Propagation diagrams for 2 M� (upper panel) and 10 M� (lower panel) ZAMS models.
The solid blue line shows the Brunt-Väisälä frequency (N), the solid green lines the ` = 1, 10 Lamb
frequency (S`), and the dashed red line shows the convective turnover frequency in the core (νc).
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Figure 3.4 : Location, in log pressure units, where an g-mode of frequency ν reaches unity optical
depth due to radiative damping (see eqn. 3.7) or its outer turning point, for 2 M� (upper panel)
and 10 M� (lower panel) ZAMS models. Filled circles show the characteristic convective frequency
in the convective core, diamonds mark frequencies with τw < 1 at the outer turning point (where
they reflect and can set up standing waves), and the horizontal dashed lines give the minimum
standing wave frequency for each `. Note that the outer turning point moves inward at high
frequency as it is defined by where ω = S`. Colors in each panel correspond to `, as described in
the legend in the lower panel.



3.5. QUASI-ADIABATIC STELLAR OSCILLATIONS 45

3.5 Quasi-adiabatic stellar oscillations
For each model, we use prescription described in §1.3 to calculate stellar oscillation

eigenfunctions and quasi-adiabatic flux perturbations and growth/damping rates for g-modes
above the minimum frequency for standing waves.

Our quasi-adiabatic calculations are only valid in the regime where the thermal time
of the overlying layers is greater than the mode period. Thus, we approximate surface
perturbations by their value in the vicinity of the adiabatic cutoff, Rad, where the thermal
time in the overlying layer is equal to the mode period.6 Comparison with non-adiabatic
growth/damping rates and eigenfunctions (Townsend & Teitler in prep) shows that our
quasi-adiabatic calculations provide a good approximation for damping rates and surface
amplitudes to within factors of a few.

The short wavelength g-modes predominantly excited by convection are subject to large
radiative damping. Those able to set up global standing waves are still linearly damped with
lifetimes of ∼ 1− 105 yr (with the exception of some linearly driven modes). Damping rates
are fit reasonably well by power laws in mode frequency, with indices of −3 to −8, where
flatter power laws apply for more evolved models. Deviations from the power-law arise
primarily from opacity effects in the stellar envelope, whose relative importance depends on
mode frequency.

The convective excitation rate and mode lifetime together set the equilibrium mode
energy

Emode(ω, `) =
1

2

dĖg
d lnω d`

Nm(ω, `)−1γ−1, (3.9)

where Emode ≡ ω2/2
∫Mad

0
[ξ2
r + Λ2ξ2

h] dm, Nm(ω, `) is the number of modes in a logarithmic
bin in ω (at fixed `), and γ is the damping rate of the mode as determined by all non-
adiabatic effects (radiative diffusion, nuclear driving, and any convective viscosity). For
g-modes with ω � N , Nm(ω, `) ≈ (n+ `/2)(2 `+ 1), where n is the number of radial nodes
in the mode eigenfunction (Unno et al. 1989).

In linear adiabatic stellar oscillation theory, the amplitude of the temperature and density
perturbations, and the magnitude of the fluid displacement, are arbitrary. We convert the
linear theory results into realistic predictions by normalizing the g-mode eigenfunctions using
the estimate of the mode energy in equation 3.9. We then use these properly normalized
eigenfunctions to calculate the disk integrated perturbations as follows.

3.5.1 Surface perturbations

For modes with ` ≥ 1, disk-averaging effects reduce the observable amplitude of oscil-
lations as neighboring surface elements oscillate out of phase with one another. For each

6In detail, we take the median value of the perturbation in the range where this ratio is between 0.1
and 10. In our 10 M� ZAMS model, the cutoff occurs at logP = 8.64, 8.46, 8.18, 7.73 erg cm−3 for our
n = −16,−10,−5,−1 g-modes at frequencies of ν = 4.38, 6.73, 12.79, 39.85µHz.



3.6. RESULTS 46

mode, we calculate the disk-integrated, limb-darkened, quasi-adiabatic perturbation to the
bolometric magnitude and surface radial velocity for each stellar model (as in Dziembowski
1977):

|δm| =1.087

[
b`
δF

F0

+ (2b` − c`)
ξr
R

]

r≈Rad
, (3.10)

|δvdisk| = [u` ξr ω + v` ξh ω]r≈Rad , (3.11)

where b`, c`, u`, and v` are coefficients related to the effect of limb-darkening on the visibility
of modes of a given `, ξr,h are the radial and horizontal displacement eigenfunctions, and
δF/F0 is the fractional perturbation to the radiative flux due to the oscillation. We assume
Eddington limb-darkening for simplicity, and thus use the b`, c`, u`, and v` coefficients
tabulated in Dziembowski (1977).

We primarily use δvdisk to compare our calculations with previous estimates and observa-
tional constraints on solar g-modes (see §3.6.3). For the more massive stellar models, which
we show produce a much smaller velocity signal, we also consider a simpler estimate of the
non-disk-averaged total velocity perturbation

|δvtot| =
1

2

[
|ξrω|2 + |ξhω|2

]1/2
r≈Rad

, (3.12)

which might be connected to the non-thermal velocities needed to fit spectral line profiles
in hot, massive stars: microturbulence and macroturbulence.

As a general rule, the procedure described above results in a ratio of flux-to-velocity-
perturbations of order δm/δvdisk ∼ 1µmag/ cm s−1 for ` = 1 modes. We find that this
ratio varies between 0.1 − 10µmag/ cm s−1, with a trend towards larger values at lower
frequencies. There is no clear trend with mass or stellar evolutionary state.

3.6 Results

3.6.1 Brightness perturbations

We find that, unless the excitation is dominated by an overshoot region . 10 per
cent of a pressure scale height thick, corresponding to a peak excitation frequency of
& 10ωc, individual oscillation modes excited by convection produce brightness fluctuations
of δm . 10µmag (except at the TAMS, see §3.6.1).

We thus focus on the effect of an ensemble of stochastically excited modes on the intrinsic
variability of the star. This RMS magnitude perturbation is an incoherent sum over all
modes in a given logarithmic bin in frequency:

δmrms =

[ ∑

∆ lnω, all `

∑̀

m=−`

[δm(`,m, ω)]2
]1/2

, (3.13)
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Figure 3.5 : Individual ` = 1 g-mode (top panels) and RMS (lower panels; see eqn. 3.13) surface brightness fluctuations as a
function of frequency for convectively excited g-modes in our 10 M� model at the ZAMS (left panels), midMS (middle panels),
and TAMS (right panels). Individual ` = 2 modes have similar amplitudes to those shown in the top panels for all phases, and
` = 3 modes approach parity at the TAMS. Open circles in the top panels mark individual mode frequencies, while in the bottom
panels they show frequencies at which we have calculated δmrms. Note the decrease in the minimum standing wave frequency (i.e.,
the low frequency cutoff of the spectrum), and corresponding increase in the magnitude of the maximum brightness perturbation,
with evolution. In our evolved models, the low frequency cutoff of the spectrum for η . 0.3 is set by the minimum excitation
frequency for which our model is valid, νc/η, since this is larger than the minimum frequency for standing waves. There is likely
to be convectively excited power at these frequencies (see, e.g., Rogers & Glatzmaier 2006), but it is not accounted for here.
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where the sum is over a logarithmic bin in ω and all ` (though practically only ` . 5
contribute).

The left panels of Fig. 3.5 show the predicted δm perturbations due to individual ` = 1
modes (top) and the total δmrms (bottom) as a function of frequency for our 10 M� ZAMS
models. The open circles in the upper left panel (for δm) correspond to individual g-mode
frequencies, while the circles in the bottom left panel are frequencies where δmrms has
been calculated from the individual modes. The flatter spectrum of the RMS magnitude
perturbations, relative to that of the individual ` = 1 g-modes, results from summing the
contributions from all modes in a given logarithmic frequency bin, including those of higher
` (which are not plotted in the upper left panel; see equation 3.13).

For ZAMS models, the combination of the convective excitation spectrum and that
of radiative damping combine to produce a nearly flat spectrum of mode energies for the
standing g-modes excited by convection, since Ė ∝ ν−13/2 and γ ∝ ν−6. However, there
is a strong decrease in surface amplitude with increasing frequency at fixed mode energy,
which is well fit by δm ∝ ν−4, due primarily to the outer turning point moving inward. This
latter trend dominates the δm spectra shown in the top panels of Fig. 3.5. The spectra of
flux perturbations is qualitatively similar to that shown in Fig. 3.5 for the range of stellar
masses we investigated.

The top panel of Fig. 3.6 shows the maximum δmrms in ZAMS models at each mass, with
color corresponding to overshoot thickness and symbol size denoting the frequency of the
peak flux perturbation. In more massive stars, the closer match between standing g-mode
frequencies and the characteristic excitation frequency, and the overall larger luminosity
and mach number, lead to larger brightness perturbations. However, the frequency of peak
brightness, ≈ 5µHz (∼ 0.4 d−1), is roughly constant with increasing mass.

Effect of stellar evolution

Both the mach number in the core and the stellar luminosity increase during main
sequence sequence evolution, leading to increased power input to g-modes and a larger
characteristic convective frequency, νc. In addition, the minimum frequency for standing
waves decreases along the main sequence as the thermal time at the mode outer turning point
increases. Together these imply an increase in g-mode surface amplitudes with evolution, as
well as the appearance of ever lower frequency modes.

The top and bottom panels of Fig. 3.5 show the evolution along the main sequence
of the power spectrum for individual modes and δmrms, respectively, in our 10 M� model.
The RMS flux perturbation (lower panels) at fixed frequency increases with evolution, and
the appearance of lower frequency modes at the surface leads to larger signals at lower
frequencies than appeared on the ZAMS.

The chemical composition gradient left behind by the receding convective core during
the main sequence evolution produces an extended bump in the Brunt-Väisälä profile; this
results in enhanced trapping behavior near the end of the main sequence as modes separate
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Figure 3.6 : Peak RMS surface brightness fluctuations δmrms for convectively excited g-modes,
calculated according to eqn. 3.13, as a function of mass. Color corresponds to the value of η and
size to mode frequency, as described in legend. Panels show results for models at their labeled
evolutionary states. In the evolved models, the minimum frequency for excitation at small η (νc/η)
is larger than the minimum frequency for standing waves (νmin; Table 1), leading to a suppression
in the total flux perturbation for the smallest values of η.
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into those with most of their energy in that composition-gradient region and those primarily
in the radiative zone. This effect leads to the differences in the surface amplitudes of
adjacent modes seen in the upper right panel of Fig. 3.5.

As shown in Figs. 3.5 and 3.6, we predict g-mode power peaked at near 5µHz on the
ZAMS, but this peak approaches ∼ 1µHz at the end of the main sequence. However, in
our evolved models, the minimum frequency for standing g-modes can be less than the
minimum frequency for which our excitation model applies, ωc/η, when the overshoot region
is . 30 per cent of a pressure scale height. This is shown clearly in the low-frequency cutoff
of the spectra in Fig. 3.5, and in the lower panels of Fig. 3.6, where the magnitude of the
maximum perturbation for η = 0.05, 0.1 is smaller than that for larger η and appears at a
higher frequency. There is likely convective excitation power at these low frequencies, but it
is not accounted for in our model (see, e.g., Rogers & Glatzmaier 2006).

If we assume the energy flux into modes below νc/η is constant, as appears to be the case
in the Rogers & Glatzmaier (2006) simulations, the equilibrium energy in modes below this
cutoff scales as ∼ ν4. However, a strong scaling of surface amplitude at fixed mode energy,
as we find in the case of our 10 M� TAMS model, can lead to an increase in the maximum
δmrms by a factor of a few and a shift of the peak to slightly lower frequencies than appear
in the lower panels of Figs. 3.5 and 3.6. At yet lower frequencies, however, approaching the
minimum for standing waves, νmin, the predicted flux perturbations decrease.

For Kepler and CoRoT observations with micromagnitude precision photometry, the
RMS brightness fluctuations contributed by convectively excited g-modes should be detectable
during the main sequence for all stars considered, if the driving is dominated by a convective
overshoot region with width . 30 per cent of a pressure scale height at the top of the core.
The expected amplitudes reach ∼ 100s of µmag around ν ∼ 1− 10µHz (0.08− 0.8 d−1).

3.6.2 Velocity perturbations

In addition to brightness perturbations, non-radial modes produce velocity perturbations
which may be observed either in the disk-integrated radial velocity signature or via the
motions they generate where spectral lines are formed (“microturbulence”; e.g., Cantiello
et al. 2009, and references therein). In massive main sequence stars, we are interested in
the latter case; moreover, we are concerned with the aggregate effect of many modes, as
discussed above for the brightness perturbations.

In Fig. 3.7, we show the maximum predicted RMS velocity fluctuations as a function of
initial stellar mass and evolutionary phase. For g-modes excited by the convective core, we
predict surface velocity fluctuations that are always � 1 km s−1, whereas the observed non-
thermal surface velocities in massive main sequence stars are & 1− 10 km s−1. Even in our
most optimistic scenario for excitation, with η = 0.05, g-modes excited by core convection
do not produce sufficiently large velocities to explain the observed microturbulence.
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Figure 3.7 : Peak RMS surface velocity fluctuations convectively excited g-modes as a function of
mass. Symbols and colors are as in Fig. 3.6.
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3.6.3 Observability of solar g-modes

We have also computed a solar model according to modern asteroseismology constraints,
in order to determine the surface velocities of solar g-modes implied by our excitation model.
If the excitation is dominated by the highly-stratified solar convection zone, g-modes of a
given frequency ω are primarily excited at the place in the convection zone where ω ∼ ωc(r)
(Kumar et al. 1999). Thus high frequency g-modes are predominantly excited near the solar
surface, while low frequency g-modes are excited near the radiative-convective boundary in
the interior. Assuming the convection zone behaves like a polytrope with index n ≈ 1.5,
equation 3.1 still applies, but with `max = r/H (ω/ωc)

2/3, where r and H are evaluated at
the interior radiative-convective boundary where g-modes begin to propagate, a = 7/2,
b = 2, and η = 1.

However, if the excitation is instead predominantly due to a thin overshoot region of
width ηH at the base of the convection zone, then we assume the excitation spectrum at fixed
position (a = 13/2), with η < 1. In Fig. 3.8, we show the disk-integrated g-mode velocity
amplitudes that result from using the convection-zone-dominated and overshoot-dominated
excitation spectra. In the overshoot case, we choose values η = 0.05, 0.3 that span the range
suggested by helioseismic investigations and numerical simulations of solar convection (e.g.,
Christensen-Dalsgaard et al. 2011; Rogers & Glatzmaier 2005, 2006).

In all reasonable excitation scenarios, we find amplitudes of δvdisk . 0.3 mm s−1, which
are consistent with those derived by Kumar et al. (1996). Our results are also consistent with
the observational upper limits that place δvdisk . 10 mm s−1 at ∼ 100µHz (Appourchaux
et al. 2010).

The intensity-to-velocity ratio we find for these high frequency solar g-modes is δm/δv .
1µmag/ cm s−1, so that typical intensity perturbations are . 10−2 µmag. This is also well
below the published upper limits from Appourchaux et al. (2000) of ∼ 0.5µmag.

3.7 Discussion
Using a simple parametrization for the convective excitation of gravity modes, we

predict that the convective cores of stars with masses & 2 M� will excite observable surface
brightness fluctuations while on the main sequence. If the excitation is dominated by an
overshoot region having a width of . 30 per cent of the pressure scale height at the top of
the convective core, these stars will exhibit intrinsic photometric variability with amplitudes
up to 10s of micromagnitudes at frequencies of 5− 10 µHz (0.4− 0.8 d−1) on, or just red of
the solar metallicity ZAMS. These flux variations are largest for massive stars with M & 5
M� (Fig. 3.6).

As the stars evolve along the main sequence, we predict a strong increase in the flux
variability, reaching 100s of micromagnitudes at frequencies . 10µHz, along with the
appearance of power at ever lower frequencies, down to ∼ 1µHz (0.08 d−1) at the TAMS.
We predict no observable accompanying velocity signal.



3.7. DISCUSSION 53

Figure 3.8 : Disk-integrated velocity perturbations for ` = 1 solar g-modes. For comparison, ` = 2, 3

modes have smaller velocity perturbations by factors of ∼ 3 and 10, respectively. The blue points
show the amplitudes of modes assuming that the highly-stratified solar convection zone dominates
the exciation, as compared to the green and red points which give the result of excitation by an
overshoot region of 30 or 5 per cent of a pressure scale height, respectively.
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Given the relatively low amplitudes of individual g-modes, we have framed our predictions
in terms of the RMS flux variations at a given frequency, rather than the amplitudes of
individual stellar normal modes. The latter are smaller by factors of ∼ 3 − 30 at these
frequencies (with larger corrections at lower frequencies), making it challenging to detect
individual normal modes. However, as the duration of observation for Kepler and CoRoT
stars increases, it may become possible to detect individual normal modes in a periodogram
analysis, since the long lifetimes of these modes ensures that they will become more prominent
in longer duration observations (e.g. Dupret et al. 2009).

Our excitation model agrees with previous predictions that the surface amplitudes of
solar g-modes are . 0.3 mm s−1 (Fig. 3.8), thus implying that photometry of massive main
sequence stars provides the best potential window into the convective excitation of g-modes.

3.7.1 Theoretical uncertainties

Overshoot excitation

Detailed asteroseismic modeling provides a best fit width for the solar overshoot region
(“tachocline”) of between 5 and 40 per cent of a pressure scale height at the base of the
convection zone, depending on the overshoot prescription used (Christensen-Dalsgaard et al.
2011, and references therein). Numerical simulations by Rogers & Glatzmaier (2005, 2006)
imply an overshoot thickness at the small end of this range ∼ 0.05H. However, asteroseismic
results from other solar-like stars suggest that the thickness of the overshoot layer may not
be universal even among similar stellar types (e.g., Lebreton & Goupil 2012).

For main sequence stars with core convection zones, numerical simulations by Browning,
Brun, & Toomre (2004) find that the overshoot region has, in our terms, η . 0.2. Results
from asteroseismic modeling of massive main sequence pulsators are broadly consistent with
overshoot of a few tenths of a pressure scale height, but show a range of best fit parameters
from consistent with zero (e.g., Aerts et al. 2011) to more than 40 per cent of a pressure
scale height (e.g., Briquet et al. 2007); further corroboration is found in isochrone fitting of
open clusters (Brott et al. 2011, and references therein). This broad base of observational
results, in combination with arguments presented here, suggest that g-mode excitation by
convective overshoot could produce observable surface brightness perturbations in massive
main sequence stars.

Effects of rotation on g-modes

Using typical observed surface velocities for massive stars (e.g., Wolff et al. 2006), the
corresponding rotation frequencies are given by

Ω ≈ 3.5µHz

(
v

150 km s−1

)(
R

R�

)−1

, (3.14)

i.e., Ω ' 3 (1) µHz for M = 2 (10)M�.
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The effect of the Coriolis force on g-mode propagation can be seen in the WKB dispersion
relation (as in e.g., Kumar et al. 1999, eqn. 21):

ω2 ≈ 4
(k ·Ω)2

k2
+N2 (k · ĝ)2

k2
, (3.15)

Thus, g-modes only propagate where ω > 2 (Ω · k̂), and modes with frequencies ω . Ω are
confined to the equator.

As discussed in §3.6, much of the convectively excited power is in modes with frequencies
of ∼ 1−5µHz, comparable to the median rotation frequencies of massive main sequence stars.
Thus we expect that rotation will have a non-negligible effect on the surface manifestation
of convectively excited g-modes (it may also change the excitation of g-modes since rapidly
rotating convection has different statistical properties than non-rotating convection). This
is particularly true as the star evolves to the TAMS. Given the potential importance of
rotation, it would be particularly interesting to compare high precision photometry of slowly
vs. rapidly rotating main sequence A-O stars.

Additionally, if the surface of the star is rotating more rapidly than the core, the star
may possess critical layers that significantly increase the radiative damping of outgoing
g-modes and preclude the establishment of standing waves. Such critical layers may in fact
be set up by the angular momentum carried by the g-modes themselves (see e.g., Rogers,
Lin, & Lau 2012).

Effects of stellar model parameters

To assess the effects of stellar modeling parameters on our predictions, we evolved a 10
M� star with variable mixing parameters and rotation. We tested mixing length parameters
αMLT = 1, 1.5, 2; boundaries determined by the Schwarzschild and Ledoux criteria without
overshoot; and the Schwarzschild criterion with 30 per cent overshoot and initial surface
rotation velocities of 50, 100, 200 km s−1 (with and without the chemical mixing induced by
Taylor-Spruit magnetic fields).

We find that the uncertainty in our predicted mode amplitudes at fixed central hydrogen
mass fraction due to stellar evolutionary parameters may be up to a factor of ∼ 5, with the
models presented in our figures roughly corresponding to the median of the distribution.
Changing αMLT produces the largest effect, as larger αMLT corresponds to smaller ωc and
largerMconv; the overall normalization of the convective excitation spectrum scales as α−2

MLT

for a = 13/2 (see eqn. 3.1). Convective boundary definitions can also change the ratio of
ωmin/ωc by up to a few percent on the ZAMS, changing the fraction of the convectively
excited g-mode power that reaches the stellar surface by . 25 per cent. By the end of the
main sequnce these effects can amount to an order of magnitude dispersion among models,
as the determination of convective boundaries affects the progression of stellar evolution.
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Turbulent power spectrum

In their study of the detectability of solar g-modes, Belkacem et al. (2009a) employ a
Lorentzian eddy-time-correlation function for coupling the turbulent convective motions
to g-mode excitation. They find that this results in a 30-fold increase in solar g-mode
amplitudes, as compared to the assumptions used in our analysis (and previous work; e.g.,
Kumar et al. 1996). Samadi et al. (2010) also employed this formalism to study convectively
excited g-modes in 10, 15, and 20 M� main sequence models having Xctr = 0.5. They find
amplitudes of ∼ 10µmag for individual ` = 1 g-modes in these stars, also ∼ 30 times larger
than the amplitudes in our η = 1 case (see our Fig. 3.5 and their fig. 2).

Near-surface convection zones

Massive main sequence stars of near solar metallicity have vigorous near-surface con-
vection zones due to the iron opacity bump (Cantiello et al. 2009). These convection
zones are another potentially important source of g-modes near the stellar surface, having
mach numbers of & 0.01. Near-surface convection zones have characteristic frequencies of
10s to 100s of µHz, but the small scale-heights near the stellar surface imply that nearly
all of the convective power is at larger characteristic ` & 30. These high ` g-modes are
unlikely to produce any significant surface brightness perturbations, but, as suggested by
Cantiello et al. (2009), the velocity field associated with these waves might account for
the micro/macro-turbulent velocity fields inferred via spectroscopic modeling. We leave a
detailed investigation of the excitation and propagation of these modes to future work.

3.7.2 Observational prospects

Distinguishing stochastically excited modes

Some of the stars we have investigated lie in the SPB instability strip, where stars are
observed to pulsate in low-degree g-modes with frequencies of 0.6− 3 d−1. These linearly
excited modes have frequencies very near the peak of the stochastically excited modes. It
is thus important to determine how to observationally distinguish between linearly and
stochastically excited modes.

Unlike p-modes stochastically excited by envelope convection zones (i.e., solar-like
oscillations), the convectively excited modes explored in this work have linear damping
timescales (primarily due to radiative diffusion) of years or longer, much longer than a
typical observation timescale. Thus the spectral broadening and time-frequency diagram
characteristics that distinguish stochastically-driven modes in the former case cannot be
leveraged here (e.g., Bedding 2011; Belkacem et al. 2009b). We must instead rely on the fact
that convectively excited g-modes should be observable in stars outside the linear instability
strips and at frequencies that should otherwise be damped in linear analyses.
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Have convectively excited g-modes already been detected?

Aerts et al. (2009) have shown that the “macroturbulent” velocity fields observed in
spectra of blue supergiants can be explained by the collective effect of an ensemble of excited
g-modes, which span a similar frequency range to that presented here. More recent ongoing
work by Simón-Díaz et al. (2011), has shown that macroturbulence is present in O and B
dwarf stars as well, suggesting that perhaps the same low-frequency pulsations are present
on the main sequence. We have shown however, that if individual mode amplitudes are
set by the competition between convective excitation by the core and radiative damping
in the envelope (see eqn. 3.9), the aggregate effect is too small to explain the observed
macroturbulence (see Fig. 3.7). The source of these turbulent motions could instead be
g-modes excited by near-surface convection zones, as discussed in §3.7.1 above and Cantiello
et al. (2009). Another interesting possible source is the photon bubble instabilities that
occur in the atmospheres of massive stars (Turner et al. 2004).

There is tantalizing evidence for convectively excited g-modes in recent observations of
A, B and O stars with Kepler (Balona et al. 2011; Uytterhoeven et al. 2011; Blomme et al.
2011). In their study of B-star pulsators, Balona et al. (2011) find evidence for theoretically
unexpected, low frequency pulsations in SPB stars and SPB/β Cep hybrid pulsators. Some
of these stars lie outside the classical instability strips for low-order modes, potentially
implying that a previously unexplored driving mechanism is at work in these stars.

In studies of O-stars, Blomme et al. (2011) have found an unexpected “red-noise”
component to the stellar photometric power spectrum, even after instrumental corrections
have been applied. This noise appears at the frequencies and amplitudes that agree with
our predictions; however, the inferred mode lifetimes of hours to days for the “red-noise”
modes are incommensurate with those of the g-modes explored here, which have lifetimes of
years to Myrs.

As a general comment, we note that many studies remove or disregard power at low-
frequencies below 0.5 or 0.2 d−1, depending on the study. They appeal to instrumental
effects both known and un-characterised. However, we urge caution: the complete removal
of this low frequency power may take with it the signatures of convectively excited g-modes.
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Chapter 4

Setting the Stage for Interacting
Supernovae I: Theory of Wave-Driven
Mass Loss

An earlier version of this chapter was previously published as Quataert, E., & Shiode, J.
2012, MNRAS, 423, L92.

Abstract

During the late stages of stellar evolution in massive stars (C fusion and later), the
fusion luminosity in the core of the star exceeds the star’s Eddington luminosity. This
can drive vigorous convective motions which in turn excite internal gravity waves. The
local wave energy flux excited by convection is itself well above Eddington during the last
few years in the life of the star. We suggest that an interesting fraction of the energy in
gravity waves can, in some cases, convert into sound waves as the gravity waves propagate
(tunnel) towards the stellar surface. The subsequent dissipation of the sound waves can
unbind up to several M� of the stellar envelope. This wave-driven mass loss can explain
the existence of extremely large stellar mass loss rates just prior to core-collapse, which are
inferred via circumstellar interaction in some core-collapse supernovae (e.g., SNe 2006gy
and PTF 09uj, and even Type IIn supernovae more generally). An outstanding question
is understanding what stellar parameters (mass, rotation, metallicity, age) are the most
susceptible to wave-driven mass loss. This depends on the precise internal structure of
massive stars and the power-spectrum of internal gravity waves excited by stellar convection.

http://dx.doi.org/10.1111/j.1745-3933.2012.01264.x
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4.1 Introduction
Many massive stars appear to lose a significant fraction of their mass in episodic outbursts

rather than continuous line-driven winds (e.g., Bouret et al. 2005; Smith & Owocki 2006).
There is strong evidence from observations of luminous supernovae (SNe) that the most
extreme version of this phenomena is the ejection of ∼ 1 − 10M� of the stellar envelope
in the last year to decade of massive stellar evolution (in a very small fraction of massive
stars). In particular, the interaction between an outgoing supernova shock and such ejecta
can explain some of the most optically luminous SNe yet detected (e.g., Smith & McCray
2007), including, e.g., SN 2006gy (Smith et al. 2007; Ofek et al. 2007) and perhaps the
emerging class of hydrogen-poor ultraluminous SNe (Quimby et al. 2011; Chomiuk et al.
2011). In several cases, the late-time light curve disfavors one alternative explanation, that
the luminosity is powered by unusually large amounts of radioactive Ni and Co (e.g., Miller
et al. 2010; Chomiuk et al. 2011).

Related evidence for prodigious mass loss in the last few years of stellar evolution comes
from SNe like PTF 09uj, which was interpreted as shock-breakout from an extremely dense
circumstellar wind (Ofek et al. 2010), and those like SN 2006jc (Pastorello et al. 2007; Foley
et al. 2007) and 2010mc (Ofek et al. 2013) which had directly observed luminous outbursts
within a few years of core collapse. Even more typical Type IIn SNe (i.e., those displaying
narrow emission lines indicative of circumstellar interaction) appear to require progenitor
mass loss rates exceeding ∼ 10−2 M� yr−1 (Kiewe et al. 2012; Fox et al. 2013), far larger
than can be explained by continuous mass loss processes operating in massive stars.

One of the central puzzles posed by the circumstellar interaction scenario for luminous
and Type IIn SNe and the observations of pre-SN outbursts is why a massive star should
experience highly enhanced mass loss, and lose a significant fraction of its mass in some
cases, in only . 10−4 of its lifetime. In the case of luminous interacting SNe, prodigious
mass loss is required even later, in the final ∼ 10−6.5 of the star’s lifetime, in order for
the supernova shock to encounter the stellar ejecta at radii ∼ 100 AU where the shock is
particularly radiatively efficient.

The most important change that occurs in the late stages of massive stellar evolution is
the onset of prodigious neutrino cooling in the core of the star, associated with the high
temperatures required for carbon fusion and beyond (see, e.g., Woosley et al. 2002 for
a review). The fusion luminosities exceed Eddington for C fusion and later and become
particularly large during the last year in the life of the star. The rapid fusion and neutrino
cooling in turn accelerate the nuclear burning so that the characteristic nuclear timescale
tnuc (analogous to the main sequence timescale for H-burning) decreases to a ∼ yr for Ne
and O fusion and a ∼ day for Si fusion (with the exact values depending on stellar mass,
metallicity, and rotation). Because neutrino cooling and fusion have different temperature
sensitivities, it is in general not possible for neutrino cooling to balance nuclear heating
everywhere in the core of the star, although in a volume averaged sense the two balance.
This local difference between heating and cooling drives convection which carries a significant
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convective luminosity ∼ 10s% of the fusion luminosity.
In this Chapter, we argue that wave excitation by vigorous convection in the late stages

of stellar evolution is capable of driving the strong mass loss suggested by circumstellar
interaction in luminous core-collapse SNe. Such wave excitation has been explicitly seen in
numerical simulations of carbon and oxygen shell fusion by Arnett and collaborators (e.g.,
Meakin & Arnett 2006); there is also closely related numerical work in the context of solar
convection (e.g., Rogers & Glatzmaier 2005, 2006). Here we provide analytic estimates of
wave excitation in evolved massive stars and discuss the resulting implications for mass loss
in the last ∼ year of stellar evolution. We begin by summarizing some of the key properties
of convection during carbon fusion and later and the excitation of internal gravity waves by
such convection (§4.2). We then calculate the conditions under which a super-Eddington
flux of waves excited in the core of the star can tunnel through to the stellar envelope (§4.3).
Finally, in §4.4 we discuss the implications of our results and directions for future work.

Because there are significant uncertainties in the interior structure of massive stars during
the evolutionary phases of interest, we focus on elucidating the general conditions required
for efficient wave-driven mass loss. We defer to future work the problem of finding stellar
progenitors that have all of the requisite properties. SNe with evidence for circumstellar
interaction represent ∼ 10% of all core-collapse events (Smith 2011); ultraluminous SNe
are much rarer still (e.g., Quimby et al. 2011). This suggests that rather special stellar
parameters are required to generate ∼M� of ejecta in the last ∼ year of stellar evolution.

4.2 Convection and wave excitation in late stages of stel-
lar evolution

Table 4.2 summarizes some of the key properties of core fusion and convection during
the late stages of stellar evolution (based on Woosley et al. 2002 and Kippenhahn & Weigert
1990).

For a stellar core with a mass ∼M�, a convective luminosity Lconv ∼ Lfusion corresponds
to a typical convective velocity vconv ∼ 10 (Lconv/109L�)1/3 (ρc/107 g cm−3)−1/9 km s−1,
where ρc is the central density. The corresponding convective Mach numbers are given
in Table 4.2, and are & 0.01 for Ne fusion and later. Although the parameters given in
Table 1 are motivated by the core properties of evolved massive stars, similarly vigorous
convection occurs during late stage shell burning. For example, Arnett & Meakin (2011)
find convective luminosities and Mach numbers comparable to those given in Table 4.2 for
shell O fusion during the hour prior to core collapse.

Figure 4.1 shows a mode propagation diagram for a 40 M�, Z = 10−4 metallicity model
during core O fusion (at which point R? ' 1700R�, Teff ' 4000 K, and Lphoton ' 105.8 L�).
The model was evolved using the MESA 1D stellar evolution code (Paxton et al. 2011) with
no mass loss. Convective boundaries are determined by the Schwarzschild criterion, and
hydrogen- and non-burning convection zones have overshooting of 1% of the local pressure
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Table 4.1 : Late Stages of Massive Stellar Evolution

Stage Duration (tnuc) Lfusion (L�) Mach (Mconv) τc (s)

Carbon ∼ 103 yr ∼ 106 ∼ 0.003 ∼ 104.5

Neon ∼ 1 yr ∼ 109 ∼ 0.01 ∼ 103

Oxygen ∼ 1 yr ∼ 1010 ∼ 0.02 ∼ 103

Silicon ∼ 1 day ∼ 1012 ∼ 0.05 ∼ 102

Note. — Fusion luminosities, durations, convective Mach numbers,
and convective turnover times for core fusion during the late stages
of stellar evolution of a ∼ 25M� star (based on Woosley et al. 2002).
Precise values depend somewhat on stellar mass, metallicity, and
rotation. Convective Mach number is an order of magnitude estimate
assuming that a significant fraction of the fusion luminosity is locally
carried by convection; depending on the stellar parameters, core
carbon fusion may not be convectively unstable. Shell fusion of C, O,
Ne, etc. can produce similarly vigorous convection.

scale height. This progenitor choice is somewhat arbitrary and thus unlikely to actually
be the optimal progenitor for wave-driven mass loss. We include this model to provide a
quantitative example of the propagation diagram and likely mode properties during very
late stages of stellar evolution. For this particular stellar model, the core convection has a
Mach numberMconv ∼ 0.01 and locally carries a luminosity Lconv ∼ 0.1Lfusion ∼ 109.5 L�,
with a comparable convective luminosity in the shell C fusion present at r ∼ 0.03R�.

Vigorous convection transfers some fraction of the turbulent kinetic energy into waves,
both sound waves and internal gravity waves. For the specific stellar model in Fig. 4.1, the
core convective region is bordered by a convectively stable region into which the internal
gravity waves excited by convection can propagate. This is important because the roughly
incompressible convective motions are much more efficient at directly exciting internal
gravity waves than acoustic waves (Goldreich & Kumar 1990). Quantitatively, convection
carrying a luminosity Lconv with a Mach numberMconv excites a total internal gravity wave
luminosity of (Lecoanet & Quataert 2013)

Lwave ∼M5/8
conv Lconv ∼ 108

(
Lconv

1010L�

)(Mconv

10−3

)5/8

L�. (4.1)

This analytic estimate of the fraction of the convective energy transferred to internal gravity
waves is consistent (at the order of magnitude level) with simulations of internal gravity
wave excitation by solar convection (Rogers & Glatzmaier 2005, 2006).

The frequencies and wavelengths of the internal gravity waves are somewhat more
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Figure 4.1 : Propagation diagram for a 40 M� star with Z = 10−4 during core O fusion, showing
the Brunt-Väisälä frequency N (blue, solid line) and the Lamb frequency S` (for ` = 1 and 10;
green, solid) on the left ordinate, plotted as a function of radius. The convective mach number
Mconv (gray, dashed) is also shown on the right ordinate. The thin red lines show the convective
turnover frequency in the core, and ten times that frequency, to demonstrate the range of internal
gravity wave frequencies the core convection is likely to excite. The inner and outer radius of the
tunneling cavity (rin and rout) for an ` = 1 mode of frequency ωc are marked on the top abcissa.
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uncertain than the total wave luminosity given in equation 4.1. If the excitation is dominated
by motions in the convection zone itself, the characteristic frequency associated with most of
the wave power is the convective turnover frequency, ω ∼ ωc ≡ τ−1

c . Likewise, the horizontal
spatial scale is set by the size of the convective eddies, so that the characteristic angular
degree of the excited modes is ` ∼ r/H, where H is the size of the convective eddies and r
is the radius where the excitation occurs (e.g., Kumar et al. 1999). For the core (and ‘thick’
shell) convection relevant here, this would correspond to modes having ` ∼ few.

The uncertainty in these estimates is that much of the excitation may instead occur in a
convective overshoot layer (Garcia Lopez & Spruit 1991; Rogers & Glatzmaier 2005, 2006).
This increases both the frequency and angular degree ` of the excited waves because the
length-scale over which the excitation happens is the thickness of the overshoot layer. For
evolved massive stellar models the thickness of the overshoot layer is particularly uncertain
because the vigorous convection itself generates significant mixing and may substantially
modify the structure of the star relative to that predicted by 1D models (Meakin & Arnett
2006; Arnett & Meakin 2011). It is likely that the convective overshoot layer is significantly
thicker in this circumstance than in the sun (where it is . 0.05H at the interior convective-
radiative transition; e.g., Christensen-Dalsgaard et al. 2011). This favors the excitation of
lower ` waves with ω ∼ ωc. For our analytic estimates we will use

ω ≡ f ωc = fMconv
cs
H
∼ fMconv S1 (4.2)

where f ∼ 1− 10 is a dimensionless number that encapsulates the uncertainty associated
with the wave excitation and S1 is the ` = 1 Lamb frequency. The characteristic wave
frequencies ω = ωc and ω = 10ωc are shown with the thin red lines in Fig. 4.1.

4.3 Tunneling, trapping, and damping

4.3.1 Internal gravity waves

Depending on their frequency and angular degree, the energy supplied to internal gravity
waves can either remain trapped in the central part of the star or tunnel out to the stellar
envelope in the form of propagating sound waves.

We now estimate the conditions under which the latter occurs.
For internal gravity waves that become evanescent at a radius rin and tunnel to a radius

rout, the effective damping rate of the otherwise trapped mode due to leakage to large radii
is given by (Unno et al. 1989)

γleak ∼
vgroup

rin

(
rin

rout

)2Λ

∼ ω
ω

Λ〈N〉

(
rin

rout

)2Λ

, (4.3)

where Λ2 = ` (` + 1) and 〈N〉 is the average Brunt-Väisälä frequency in the propagating
region. The radii rin and rout are labeled in Fig. 4.1 for ` = 1 modes with ω = ωc. Physically,
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the timescale for energy to leak out implied by equation 4.3 (∼ γ−1
leak) is given by the group

travel time across the propagating region (rin/vgroup) divided by the tunneling probability,
i.e., the fraction of the mode energy that tunnels through the barrier in a given group travel
time.

In addition to the tunneling captured by equation 4.3, the outgoing gravity waves can
also be partially reflected by the rapid changes in composition at shell boundaries (see
the spikes in N2 in Fig. 4.1); this occurs if the wavelength of the waves is larger than the
thickness of the region over which the composition changes. The latter is set by convective
overshoot at the base of the shell convection zones and is probably a few percent of a
scale height. Given this, we estimate that lower frequency gravity waves with ω ∼ ωc are
reasonably in the WKB limit in which equation 4.3 applies, but for higher frequency waves
with ω ∼ 10ωc, the tunneling may be suppressed by an additional factor of ∼ 10 due to the
compositional boundaries.

Internal gravity waves of frequency ω (given by eq. 4.2) and degree ` excited at the outer
edge of the core convection zone at radius ∼ rprop begin to tunnel at a radius rin ∼ 3rprop

(based on the width of the convectively stable region at ∼ 0.01R� in Fig. 4.1). The radius
where the tunneling ceases (rout) is determined by where ω > S`, so that the waves become
propagating sound waves. For massive stellar models at radii ∼ 10−2 − 10R�, we find that
the Lamb frequency can be reasonably approximated as a power-law in radius S` ∝ r−b,
with b ∼ 1.2− 1.5. Using equation 4.2 for the characteristic wave frequency, this implies
rout/rin ' 0.3 (fMconv)−1/bΛ1/b and thus

γleak ∼
(
rin

rprop

)2Λ (
fMconvΛ−1

)2[Λ/b]+1
ω, (4.4)

γleak ∼ 32Λ
(
fMconvΛ−1

)2[Λ/b]+1
fωc, (4.5)

The dominant damping mechanisms for the gravity wave energy trapped in the core of
the star are nonlinear damping and neutrino damping. The neutrino damping rate is

γν ∼ 10t−1
therm ∼ 100 t−1

nuc (4.6)

where ttherm is the thermal (Kelvin-Helmholz) time and the factor of 10 in front of t−1
therm

is due to the strong temperature dependence of the neutrino reactions (so that a given
perturbation in temperature gives rise to a yet stronger perturbation in neutrino cooling).
The last expression in equation 4.6 is a consequence of the fact that the duration of nuclear
burning (tnuc in Table 4.2) in the late stages of massive stellar evolution is only a factor
of ∼ 10 longer than the thermal time. For some of the g-modes of interest it is possible
that driving due to fusion may be stronger than the neutrino damping (see, e.g., Murphy
et al. 2004). The interaction between convective excitation and such driving could be very
interesting, but to be conservative, we do not explicitly include this driving in our estimates.

During O and Ne fusion, equation 4.6 implies that γν ∼ 3 × 10−6 Hz ∼ 10−3 ωc, for
ωc ∼ 3× 10−3 as shown in Fig. 4.1. Thus, neutrino damping is rather effective for modes of
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frequency ∼ ωc. For comparison, takingMconv ∼ 0.01, we find that γleak & γν for modes
with ` = 1, if f & 3. For ` = 2, the condition is more prohibitive: high frequency modes
having f & 10 are required for leakage to dominate neutrino damping. This demonstrates
that only the power in the lowest degree modes with ` ' 1−2 is capable of efficiently leaking
out into the stellar envelope. These low ` modes are, however, those that are expected to
be excited by the large-scale convection in late stages of stellar evolution.

The nonlinear damping of internal gravity waves is somewhat more difficult to quantify.
A useful measure of the nonlinearity in the propagating region is the dimensionless parameter
krξr (the radial displacement relative to the radial wavelength): when krξr & 1, the waves can
locally overturn the stratification leading to efficient nonlinear damping. Using conservation
of energy flux, krξr for a traveling internal gravity wave of frequency ω can be rewritten as

krξr ∼ Λ3/2

(
N

ω

)3/2(
Fwave

ρr3ω3

)1/2

(4.7)

where Fwave = Lwave/4πr
2 is the local wave energy flux. Quantitatively, using the stellar

progenitor shown in Fig. 4.1, and assuming Lwave ∼ 108L�, we find that krξr & 1 for
radii . 0.015R� for ω ∼ ωc, while krξr . 0.01 at all radii of interest for ω ∼ 10ωc. Wave
breaking is thus unlikely to significantly limit the energies attained by higher frequency
internal gravity waves, which also tunnel the most effectively (this corresponds to larger f
in eq. 4.4). However, wave breaking may be important for waves with frequencies ∼ ωc.
Indeed, Meakin & Arnett (2006) see some evidence for mixing induced by g-modes breaking
in the convectively stable region separating O and C-burning shells in their simulations of
late-stage burning in massive stars.

4.3.2 Sound waves

The outward energy flux in sound waves created as described in §4.3.1 dissipates well
before reaching the stellar surface. In particular, we find that the dominant dissipation
of the sound waves is via radiative diffusion. The sound waves damp when the radiative
diffusion time ∼ 1/(k2Krad) (where Krad is the radiative conductivity) is shorter than the
group travel time of the modes across a given scale-height of the star ∼ H/cs. This condition
can be rewritten as

Lrad & Ldamp ≡
4πr2ρc3

s

(kH)2
, (4.8)

where we have assumed that gas pressure is not much smaller than radiation pressure
(which is reasonable for the conditions of interest). Fig. 4.2 shows Lrad (which is ∼ LEdd

even though the envelope is convective) and Ldamp as a function of radius for modes with
ω ∼ 3ωc in the 40 M�, Z = 10−4 progenitor used in Fig. 4.1. The sound waves damp by
radiative diffusion in the envelope at r ∼ 30− 100R�.

The dissipation of the outgoing sound waves will drive convection in the outer stellar
envelope. However, the convection ceases to be efficient when the wave luminosity is larger
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Figure 4.2 : Critical luminosities that determine the dissipation of the outgoing wave power Lwave

and the ability of convection to carry the thermalized energy. All quantities are for the 40M�,
Z = 10−4 stellar model from Fig. 4.1. Outgoing acoustic waves damp by radiative diffusion when
the background radiative flux in the stellar model Lrad exceeds the critical luminosity Ldamp (see eq.
4.8; ω = 3ωc for Ldamp in this example). Subsonic convection cannot carry the thermalized wave
power (Lwave = 107L� here) when Lwave & Lconv,max = 4πr2ρc3

s. Taken together, these results
imply that the super-Eddington wave power cannot be carried by either convection or radiative
diffusion in the stellar envelope at r & 500R�, leading to strong mass loss. There is ∼ 5M� exterior
to this radius in this example.
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than the maximum energy that subsonic convection can carry Lmax, conv = 4πr2ρ c3
s. So long

as Lwave & LEdd, this will always occur inside the photosphere. For the specific model shown
in Fig. 4.2, Lwave > Lmax, conv outside ∼ 500R�. There is ∼ 5M� of mass exterior to this
radius. The inability of convection or radiative diffusion to carry the outgoing wave energy
implies that the wave power will inevitably drive a strong outflow. In particular, the mass
outflow rate induced is likely to be Ṁ ∼ 4πr2ρcs (evaluated where Lwave ∼ Lconv,max, so that
convection cannot carry the energy; this corresponds to the sonic point of the outflow). For
the stellar model used in Figures 4.1 and 4.2, we find Ṁ ∼ 10 M� yr−1 and Lwave & Ṁv2

esc

(for Lwave & 107 L�), so that the wave power is capable of driving a sustained outflow.

4.4 Discussion
The total energy released during Ne and O fusion in the last year of massive stellar

evolution is ∼ 1051 ergs. We have shown that a significant fraction of this energy ∼ 1048−49

ergs – i.e., Lwave ∼ 1041−42 erg s−1 – is converted into internal gravity waves via the Mach
& 0.01 convection that accompanies the enormous nuclear and neutrino luminosities in the
cores of massive stars. We have further argued that a large fraction of the power in low
angular degree (` ∼ few) modes can tunnel through to the stellar envelope and become
outgoing acoustic waves.

If the low degree modes carry a significant fraction of the total wave power, the outgoing
energy flux in acoustic waves will be significantly super-Eddington. The dissipation of
the acoustic waves in the stellar envelope then drives convection that attempts to carry
a super-Eddington power ∼ 1040−41 erg s−1 ∼ 10 − 100 LEdd. Such convection becomes
inefficient inside the stellar photosphere (Fig. 4.2) and thus the end result of this wave
energy deposition is almost certainly substantial mass loss. Assuming that the outgoing
wave power can be maintained for a reasonable fraction of the duration of Ne and O core
fusion, up to 1047−48 ergs is deposited in the stellar envelope. If the unbound material moves
at ∼ 100− 1000 km s−1, the wave power can unbind ∼ 10−2 − 10M� of material.

Matter moving at ∼ 300 km s−1 ejected in the year prior to core-collapse will end up at
∼ 100 AU when the star explodes. The mass-loss rates, ejecta mass, and the radial extent
of the ejecta estimated here are consistent with the conditions required to explain SNe
powered by circumstellar interaction between the SN shock and surrounding stellar ejecta.
In particular, at the low end of our estimated mass loss rates (∼ 10−3 − 10−2 M� yr−1),
circumstellar interaction can produce typical Type IIn supernovae (Kiewe et al. 2012). More
extreme cases with ejecta masses approaching ∼ 0.1− 1M� in the last year are comparable
to what is needed to power the most luminous SNe ever detected (e.g., SN 2006gy, Smith
et al. 2007; and the ultraluminous Ics, Quimby et al. 2011) as well as SNe powered by shock
breakout in a dense circumstellar wind (e.g., Ofek et al. 2010). Moreover, our results provide
an explanation for what is otherwise a fine tuning problem: why should the star happen to
lose a non-negligible fraction of its mass in the last year of stellar evolution (∼ 10−6.5 of its
lifetime!)?
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For red super-giant progenitors, the mechanism of mass loss proposed here operates
primarily during core Ne and O fusion. During core C fusion, the energy flux in internal
gravity waves is typically well below Eddington and so is unlikely to modify the stellar mass
loss. During Si fusion, the wave luminosities are enormous, but the sound crossing time of a
giant (∼ few months) is much longer than the duration of the burning phase and so the
star undergoes core-collapse before waves can reach the stellar surface. Nonetheless, the
outgoing wave power created during Si fusion may substantially modify the structure of the
progenitor star at radii . 30R� (see Meakin & Arnett 2006). This could change how the
supernova shock interacts with the surrounding star. In addition, in compact progenitors
that have already lost their hydrogen envelopes, wave excitation during Si fusion could
help drive substantial mass loss in the day prior to core-collapse. Such stripped envelope
progenitors are of particular interest in the context of understanding whether circumstellar
interaction powers hydrogen-poor ultra-luminous SNe (e.g., Quimby et al. 2011).

In the well-studied case of SN 2006gy – whose lightcurve is consistent with ∼ 10M� of
ejecta in the 8 years prior to core-collapse (Smith et al. 2010) – there is also evidence for a
comparable amount of ejecta ∼ 103 years earlier (via an IR light echo; Miller et al. 2010).
The wave-driven mass loss mechanism we have proposed cannot work in its present form for
this earlier mass loss episode. Likewise, it is unlikely to be relevant to typical luminous-blue
variable outbursts.

Our model for wave-driven mass loss requires that a reasonable fraction of the internal
gravity wave power excited by convection reside in low ` modes with frequencies somewhat
larger than the characteristic convective turnover frequency. The reason for the former
condition is that high ` gravity waves cannot tunnel through to the stellar surface; their
energy is instead trapped in the interior, where it is ultimately thermalized and radiated via
neutrinos. The latter condition is required since lower frequency gravity waves will likely
break locally within the g-mode propagating region and induce mixing (see eq. 4.7; such
mixing could be very interesting in its own right: e.g., by bringing fresh fuel down to higher
temperatures where it could in principle combust and power an eruption like those studied
by Dessart et al. 2010). In their simulations of O shell fusion, Meakin & Arnett (2006) found
significant wave power in ` = 4 modes; since these simulations covered only a quadrant of
the star, these were the lowest ` modes they could simulate. This is consistent with our
hypothesis that the convection in the late stages of stellar evolution will be particularly
large-scale and thus will excite low ` modes.

It is unclear whether core convection or shell convection is likely to be the most important
source of waves for driving mass loss. Core convection tends to be more energetic and is
likely larger scale, favoring the excitation of the low ` modes that tunnel most effectively.
However, a countervailing consideration is that waves excited during shell convection have a
smaller barrier to tunnel through. Further numerical work to calibrate the power-spectrum
of wave excitation is clearly needed, particularly during core O and Ne fusion.

The basic energetics of core convection and wave excitation that we have highlighted
apply to all massive stars. It is, however, clear on observational grounds that not all
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massive stars undergo extreme mass loss in the year prior to core-collapse. Given that
our mechanism requires that a significant fraction of the gravity wave power excited by
convection is in relatively low ` modes and that the tunneling cavity not be too spatially
extended, we suspect that the answer to this apparent tension is that only in certain
progenitors (with particular mass, metallicity, and/or rotation) are these conditions satisfied.
However, determining exactly which progenitors these are will require additional work.
For example, as emphasized by Arnett & Meakin (2011), the structure of the core of the
star itself depends on the mixing induced by the internal gravity waves and so standard
one-dimensional models may not be sufficiently accurate to address these questions.

A second question that we have not addressed is how the star responds to the wave
power deposited in the stellar envelope. It is possible that in some cases the stellar structure
adjusts in such a way as to suppress the fraction of the wave power that can tunnel to large
radii before much of the stellar envelope has been shed. This would limit the total amount
of mass loss via wave energy deposition. This question will be explored in detail in future
work.
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Chapter 5

Setting the Stage for Interacting
Supernovae II: Wave-Driven Mass Loss
in Supernova Progenitors

A version of the following chapter will be submitted for publication in 2013.

Abstract
The broad class of interacting supernovae show evidence for intense mass loss during

their final years leading up to core collapse. We have proposed one potential mechanism
for producing these unexpected events, termed “wave-driven mass loss.” Internal gravity
waves, excited by convection in the stellar core, carry a super-Eddington flux into the stellar
envelope and potentially unbind ∼ M� of material. The mechanism requires that convection
preferentially excites long wavelength perturbations in a stellar interior with a relatively
small separation between where gravity and pressure waves may propagate. In this Chapter,
we explore the internal conditions of potential supernova progenitors using the 1-D stellar
evolution code, MESA star, in search of those most susceptible to wave-driven mass loss. We
find that ∼ 20 per cent of the supernova progenitors we survey excite ∼ 1046 − 1048 erg of
energy in waves that can tunnel from the core to the envelope and potentially drive mass loss
during at least one of the neon or oxygen burning phases (which occurs within a few months
to a decade of core collapse). We argue that this energy can generate a powerful outflow
and a massive circumstellar environment with 10−3 − 1 M� reaching . 3× 1015 cm before
explosion. During silicon burning, a . 5 day long phase for our progenitor models, the wave
energy may inflate ∼ 10−3 − 1 M� of the stellar envelope to ∼ 10− 100s of solar radii in
∼ half of the progenitors examined. We thus argue that many compact, Wolf-Rayet-like,
supernova progenitors will experience this wave-driven inflation during silicon burning and
will thus have a significantly different supernova signature than traditionally assumed.
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5.1 Introduction
There is a large and growing body of evidence demonstrating that many supernova

(SN) progenitors experience episodes of intense mass loss as late as the weeks leading up
to core collapse (e.g., Foley et al. 2007; Ofek et al. 2013; Mauerhan et al. 2013). These
progenitors stand in stark contrast to the canonical picture of massive stars in their final
∼ 1000 yr prior to explosion, that of a “frozen” stellar envelope overlying a vigorously
burning, neutrino-cooled core (e.g., Kippenhahn & Weigert 1990; Woosley et al. 2002).
Direct observations of luminous outbursts that precede supernovae (SNe) like 2006jc (Foley
et al. 2007; Pastorello et al. 2007), 2009ip (Mauerhan et al. 2013) and 2010mc (Ofek et al.
2013) and the unseen episodes of highly enhanced mass-loss inferred from observations of
interacting SNe (Kiewe et al. 2012; Gal-Yam 2012; Ginzburg & Balberg 2012) point to
dynamic conditions in the envelopes of SN progenitors as they approach explosion.

The mass-loss rates inferred, assuming SN emission powered by the interaction of the
outgoing SN shock and the prior ejected mass, far exceed what is reproducible by line-driven
winds, with derived rates of ∼ 10−3 − 1 M� yr−1 (e.g., Kiewe et al. 2012; Fox et al. 2013;
Smith & McCray 2007). The total circumstellar masses inferred approach tens of solar
masses in the most extreme cases (e.g., Ginzburg & Balberg 2012; Moriya & Tominaga
2012). Several candidate mechanisms capable of generating mass loss this prodigious have
been proposed, including wave-driven mass loss (Quataert & Shiode 2012, hereafter QS12),
common envelope interaction with a close companion (Chevalier 2012; Soker 2013), the
pulsational pair instability (Rakavy et al. 1967), and local radiation-driven instabilities in
the stellar envelope (Suárez-Madrigal et al. 2013). The first of these can best explain the
apparent preponderance of episodic mass-loss in the final ∼ year leading up to core collapse
(e.g. Ofek et al. 2013); we focus on it here.

In this Chapter, we will address two basic questions: How much energy is available in
convectively excited waves during the final evolutionary phases of massive stars? And, in
which evolutionary scenarios can this energy escape the core and generate a pre-SN outburst?
To that end, we present an investigation of the interior conditions of a suite of core collapse
SN progenitor models, spanning a decade in mass, metallicities from Population III to solar,
and initial rotation velocities up to 80 per cent of critical (breakup).

This Chapter begins with a summary of the wave-driving mechanism laid out in Chapter 4
and QS12 (§5.2). We then continue with a description of the grid of 1-D stellar progenitors
in §5.3. In §5.4, we present the results of our investigation of SN progenitor interiors and
their susceptibility to wave-driven mass loss. The Chapter concludes with a brief discussion
of the results (§5.5) and directions for future work (§5.6).

5.2 The wave driving mechanism
The wave-driven mass loss mechanism is discussed in detail in Chapter 4. In the following,

we provide a brief summary of the key concepts, and update some of the relevant timescale
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considerations.

5.2.1 Convective wave excitation

In the final stages of massive stellar evolution, i.e., carbon fusion and beyond, the core
of the star is cooled predominantly by thermal neutrinos (e.g., Clayton 1984; Woosley et al.
2002). The nuclear luminosity is thus in equilibrium with the neutrino cooling, which may
exceed the emergent stellar luminosity by many orders of magnitude. If each core burning
phase releases ∼ 1051 erg by fusing ∼ M� of material, we expect characteristic fusion and
neutrino luminosities of 107 L� for C-burning, 1010 L� for Ne and O-burning, and 1012

L� for Si-burning (based on burning timescales given in Table 5.1, and e.g., Woosley et al.
2002). In most models, the luminosities during C and Ne-fusion are in fact smaller by a
factor of ∼ 10 due to the small abundances of C and Ne left behind by the prior burning
phases. The emergent radiative luminosity for these SN progenitors is roughly equal to
the Eddington luminosity for electron scattering in the stellar envelope: characteristically,
∼ 105 − 106 L� for core collapse SN progenitors.

Due to the different temperature dependences of the nuclear burning and neutrino
emission rates, local regions within the core are convectively unstable, with convection
carrying a significant fraction of the nuclear luminosity, . 10 per cent. Thus, convection
may carry a luminosity that exceeds the envelope Eddington value during C-burning, and
does so by many orders of magnitude during Ne burning and beyond. This convection has
characteristic mach numbers of ∼ 10−3 − 0.03 (see also Table 4.2).

At the interfaces between these convection zones and neighboring stable regions, a
radius we call rprop, convection transfers a fraction of its luminosity to linear, propagating
gravity modes (g-modes) in that layer (e.g., Press 1981; Goldreich & Kumar 1990; Lecoanet
& Quataert 2013). The top panel of Fig. 5.1 shows an example propagation diagram
(analogous to fig. 4.1) for a 40 M� 10−1 Z� progenitor during core oxygen burning; here
rprop is the innermost labeled radius, marking the boundary between the oxygen burning
core convection zone and the neighboring stably stratified layer (where the N2 > 0) where
g-modes propagate.

In Chapter 4, we used the estimate from the earlier literature that the energy flux in in-
ternal gravity waves is Lwave ∼Mconv Lconv (eqn. 4.1). This is, however, only appropriate for
a model in which the transition between the convective and radiative zones is discontinuous
(Lecoanet & Quataert 2013). High frequency internal gravity waves have longer wavelengths
in the radiative zone and thus indeed see the transition as approximately discontinuous.
This is not, however, the case for the gravity modes that carry most of the wave energy flux,
those with frequencies comparable to the convective turnover frequency (which have shorter
wavelengths in the radiative zone). The excitation of these energy-bearing waves depends
on the structure of the radiative-convective transition and thus depends on details that are
not well-modeled in 1-D stellar evolution calculations. Lecoanet & Quataert (2013) argued
that a smooth transition is more physical and leads to a larger energy flux than given by
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eqn. 4.1. For a particular analytically tractable smooth model of the radiative-convective
transition, they found that the wave luminosity excited by convection is

Lwave ∼M5/8
conv Lconv ∼ 108

(
Lconv

1010L�

)(Mconv

10−3

)5/8

L�, (5.1)

where there is a dimensionless pre-factor in front of eqn. 5.1 that depends on the properties
of the radiative-convective transition. It is not possible to calculate this pre-factor with
existing 1-D stellar evolution calculations. Thus we set this to 1 while noting that it could
be smaller if the radiative-convective transition is very thin (i.e., closer to discontinuous).

The spectrum of waves excited by convection is also somewhat uncertain (though
constraints may be forthcoming from precision observations of massive main sequence
stars; see Chapter 3). In broad terms, the convection most efficiently excites waves with
characteristics similar to the energy-bearing eddies (e.g. Press 1981; Lecoanet & Quataert
2013). Thus, the wave energy is likely concentrated in waves with frequencies near ωc,
where ωc ≈ vconv/min(r,H) is the Brunt-Väisälä frequency in the convection zone; and
with horizontal lengthscales corresponding to spherical harmonic degrees ` ∼ rprop/H(rprop).
However, the lowest frequency waves, those with ω ≈ ωc, have non-linear amplitudes and
break as soon as they reach the radiative zone.1 Thus, in the following, we focus on the
linear, propagating waves with frequencies ω & 3ωc.

5.2.2 The fate of gravity modes: tunneling vs. neutrino losses

Convectively excited g-modes in the cores of evolved massive stars damp through one of
two main channels: locally via neutrino losses or by tunneling out of the g-mode propagation
cavity (we will also refer to the latter as “leakage”). Due to the highly temperature sensitive
neutrino emission rates, positive (negative) temperature perturbations associated with
waves lose more (less) energy via neutrino emission than the background, damping the
perturbations. Nuclear fusion in the core may provide driving via an analogous, but
opposite in sign, process known as the ε-mechanism, but we ignore this small contribution
for simplicity. Leakage arises because the envelope of the star can often host acoustic
waves of the same frequencies as the g-modes propagating in the core. Convectively excited
g-modes can couple to the acoustic propagation cavity if they can tunnel through the
intervening forbidden region (barrier) and are above the envelope’s acoustic cutoff frequency,
ωac ≈ cs/(2H) (see e.g., Unno et al. 1989).

Larger lengthscale (low `) waves decay slower through the barrier and higher frequency
waves see smaller barriers (see Chapter 4). Thus, g-modes with these characteristics have the
highest probability of tunneling, rather than damping to neutrinos. Whether a progenitor
can drive mass loss by convectively excited waves depends first on the capacity for advanced
convective burning to excite sufficiently high frequency and low ` waves to high energy.

1Eqn. 5.1 gives the luminosity in linear g-modes and does not include the energy associated with these
immediately non-linear waves.
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Figure 5.1 : Propagation diagram (top panel) and luminosity plot (bottom panel) for a 40 M�
10−1 Z� blue supergiant progenitor at core oxygen burning. The propagation diagram shows the
Brunt-Väisälä frequency (solid blue line), Lamb frequency for ` = 1, 3 (solid and dashed green
lines, respectively) and the propagating g-mode frequency excited by the core during this timestep
(red solid line) against the left axis. The convective mach number is plotted as the dashed grey line
against the right axes. The luminosity plot shows the relevant local luminosities in each shell of the
model: the neutrino luminosity (Lν) in solid black, radiative (Lrad) in solid red, convective (Lconv)
in solid magenta, the radiative damping luminosity (Ldamp) in dashed teal (see eqn. 5.6), maximum
convective luminosity (Lmax, conv) in dashed magenta (see eqn. 5.7), and the wave luminosity (Lwave)
excited during this timestep as the blue solid line. The radii relevant for wave-driven mass loss
are marked by vertical dotted lines, and labeled at the top. The propagation radius, rprop, is
shown in grey, as are the inner and outer radii of the tunneling region, rin and rout, respectively.
The damping radius, rdamp, is shown in teal, where Lrad = Ldamp, and rss in magenta, where
Lwave = Lmax, conv; rss is where the convection driven by wave energy deposition becomes supersonic
and likely initiates an outflow.
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We argued in Chapter 4 that g-modes damp primarily via tunneling if they leak faster
than they damp to neutrinos:

tleak < tν , (5.2)

where the leakage time is given by the group travel time across the g-mode cavity, divided
by the tunneling probability2:

tleak ≈ tg

(
rout

rin

)2 Λ

, (5.3)

and the group travel time is given by

tg =

∫ rin

rprop

dr

vgroup, r

, (5.4)

where rin is the inner radius of the tunneling region (outer edge of the g-mode propagation
cavity) and rout is the outer radius of the tunneling region (inner edge of the p-mode
propagation cavity; see Fig. 5.1 for the locations of these radii for an example mode). The
neutrino damping time is set by the characteristic time for neutrino losses from the g-mode
propagation cavity, enhanced by the temperature sensitivity of the neutrino losses:

tν ≈
∫ rin
rprop

eint dm(
d ln εν
d lnT

)
ρ

∫ rin
rprop

εν(r) dm
, (5.5)

where eint is the internal energy per unit mass for the stellar material, εν(r) is the neutrino
energy loss rate per unit mass, dm ≡ 4πr2ρ dr, and (d ln εν/d lnT )ρ ∼ 9 for neutrino losses
due to pair-annihilation.

The size of the g-mode propagation cavity, rprop to rin, is roughly independent of frequency
for the frequencies of convectively excited g-modes (see Fig. 5.1), fixing the approximate
neutrino damping timescale given in eqn. 5.5. The leakage timescale, on the other hand,
depends strongly on the width of the tunneling region, rout/rin and the rate at which waves
decay through the barrier. Both decline with decreasing `, while the former also declines
with increasing wave frequency.

Equation 5.3 was derived under the WKB assumption, wherein the waves are assumed to
vary on lengthscales much shorter than the background. For many of the compact progenitor
models we survey here (i.e. WR stars), this assumption is invalid in the envelope (acoustic
propagation cavity) for the frequencies of convectively excited g-modes. Equivalently, these
modes have frequencies below the acoustic cutoff for the stellar envelope and are likely
reflected before reaching that cavity. In the following, we consider waves with 3ωc . ωac as
precluded from tunneling.

2In some cases, particularly compact progenitors, the most energetic, propagating g-modes have fre-
quencies on the same order as ωac in the envelope; there is likely an additional inhibiting contribution
to the tunneling probability in these cases because the outer turning point rout is part of the thin stellar
atmosphere. This correction is not accounted for here.
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There may be a further inhibiting contribution to the tunneling probability due to the
composition barriers present at the interfaces of convective and radiative zones, which may
introduce variations on lengthscales shorter than the wavelength. The width and magnitude
of these barriers depends sensitively on the treatment of mixing and convective boundaries.
We do not attempt to account for it here, but acknowledge that it is an uncertainty in our
calculation.

5.2.3 Acoustic waves and mass loss

Waves that satisfy eqn. 5.2 and have frequencies above the acoustic cutoff frequency in
the envelope damp predominantly by tunneling out to the stellar envelope, where they may
be carrying a significantly super-Eddington luminosity as acoustic waves. In the envelope,
these waves damp either when the radiative damping timescale becomes comparable to the
wave travel time or when the wave reaches non-linear amplitudes: ξr ω ∼ cs (see Chapter 4).
The former condition can be represented as

Lrad & Ldamp ≡
4πr2ρ c3

s

(k H)2
, (5.6)

where k is the wavenumber of the propagating acoustic wave. The latter condition is
equivalent to

Lwave & Lmax, conv ≡ 4πr2ρ c3
s . (5.7)

In the following, we call rdamp the location where waves satisfy eqn. 5.6 and rss where they
satisfy eqn. 5.7 (where the “ss” is meant to indicate “supersonic”). The bottom panel of
Fig. 5.1 demonstrates the locations of these radii, based on eqns. 5.6 and 5.7, for an example
mode.

Except in some compact progenitors, waves reach eqn. 5.6 first, deeper in the star, after
traveling on the sound crossing time, tsound, from rout to rdamp. The sound crossing time is
generally short enough to be unimportant. At rdamp, the wave energy damps by radiative
diffusion and creates a local region with a significantly super-Eddington flux. In order to
drive an outflow, the deposited wave energy must reach rss, where evenMconv & 1 cannot
carry the total luminosity. If rdamp is in the convection zone, energy moves quickly outward
on a timescale

teddy ≈
H

vconv

∣∣∣∣
rdamp

≈ H(rdamp)

(
Lwave

4πr2
damp ρ(rdamp)

)−1/3

. (5.8)
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If, instead, rdamp is in a stably stratified radiative zone, the deposited energy must heat
the local material enough to drive convection. This occurs on a (generally much longer)
timescale

theat(r) ≈
∫ r
rdamp

eintdm

Lwave

, (5.9)

where the terminal radius, r = min(rss, renv, cz), and renv, cz is the base of a pre-existing
envelope convection zone (if one exists). If there is a pre-existing convection zone, the wave
energy need only heat enough material to extend the convection zone down to rdamp. If
there is not one, or rss < renv, cz, the wave energy must heat all the material between rdamp

and rss to potentially drive an outflow. This of course depends sensitively on the details
of how the convection zone grows; it might in fact grow more quickly by entrainment (as
described in e.g., Arnett et al. 2009). We use eqn. 5.9 in the following as it represents a
conservative estimate of the timescale for energy to reach rss after damping at rdamp.

Convection necessarily fails to carry the energy at rss, where the total luminosity exceeds
Lmax, conv. At this point, evenMconv & 1 convection cannot carry the total luminosity. This
can result in a strong pre-SN outflow, so long as tsound, theat and teddy are all shorter than
the time to core collapse. In compact progenitors where convectively excited waves have
frequencies above the envelope acoustic cutoff, waves reach eqn. 5.7 first, potentially driving
a strong outflow on . the sound travel time to the stellar surface.

For progenitors in which wave energy can reach rss prior to core collapse, we assume
that this leads to an outflow and estimate the mass loss rates and total potential ejecta
mass for the given burning phase as follows. At rss,Mconv & 1 convection is required to
carry the outgoing flux; thus rss represents a sonic point in a potential outflow. The mass
loss rate for this outflow will be

Ṁ ≈ 4πr2
ss ρ cs(rss). (5.10)

Since Lwave = Lmax, conv at rss, the kinetic energy of the proposed outflow, 1/2 Ṁv2
esc(rss),

will exceed the wave luminosity so long as cs < vesc, which it must be for bound stellar
material.

Thus, the outgoing wave luminosity cannot energetically sustain an outflow with the
full Ṁ implied by the sonic point arguments; the star is in a regime analogous to the
“photon-tired” wind discussed by Owocki et al. (2004). This could lead to inflation of the
envelope to larger radii. However, we view this as unlikely because the total wave energy
deposited at rss generally exceeds the binding energy of the star at r > rss. Thus, we
suspect an outflow with a smaller Ṁ than given in 5.10 is the most likely outcome. Owocki
et al. (2004) also argue for the latter, positing the development of a porous atmosphere
in the presence of super-Eddington luminosities. This provides low density channels out
of which radiation can flow and drive a lower density wind. The true outcome of this
super-Eddington energy deposition clearly depends on multi-dimensional effects, which will
need to be examined using hydrodynamical models. These are, however, beyond the scope
of this work.
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In this “photon-tired” regime, we can estimate the ejecta mass, assuming the wind taps
into the full wave luminosity via a lower Ṁ outflow:

Mej .
2 Ewave

v2
esc(rss)

. (5.11)

In this case, we can estimate the mass loss rate as

Ṁ ≈ Mej

tfusion

, (5.12)

where tfusion is the timescale for the relevant burning phase that generates Ewave used in
eqn. 5.11.

5.3 Stellar Models
We use the MESA star3 stellar evolution code (version 4789; Paxton et al. 2011) to

construct evolutionary sequences from the zero-age main sequence (ZAMS) to core collapse
for supernova progenitors ranging in initial mass from 12 to 100 M�, metallicity from
0 (i.e., Population III) to solar, and initial angular velocities from 0 to 0.8 critical (see
Appendix A for more details on the MESA star parameters we employ). Paxton et al. (2013)
provides updated, detailed descriptions of the stellar evolution physics and numerical scheme
employed by MESA star. Thus, we provide only a brief summary of the key aspects of our
specific calculations, and refer the reader to that comprehensive work for details.

All models employ the Grevesse & Sauval (1998) chemical mixture, OPAL opacities
(Rogers & Iglesias 1992), and updated nuclear reaction parameters for the 12C(α, γ)16O
(Kunz et al. 2002), 14N(p, γ)15O (Imbriani et al. 2005), and triple-alpha (Fynbo et al. 2005)
reactions.

We determine convective boundaries using the Ledoux criterion, with a mixing length
parameter α = 1.5, semiconvection with a dimensionless efficiency parameter, αsc = 0.1,
and thermohaline mixing with efficiency, αth = 2.0. On the main sequence, we use 33.5 per
cent of a pressure scale height of overshoot above the convective core4, following the results
of Brott et al. (2011). Beyond the main sequence, we ignore overshoot for simplicity.

For the majority of our calculations, we assume the theoretical mass loss rates of Vink,
de Koter, & Lamers (2001) when Teff > 104 K and de Jager et al. (1988) when Teff < 104 K,
each scaled down by a dimensionless efficiency factor of 0.8 for non-rotating models (“0.8
(v+dj)”) and 0.6 for rotating models (“0.6 (v+dj)”). For rotating models, the mass-loss rate
is allowed to increase above this prescription by up to a factor of ten, in order expel any
surface layers whose rotation would be super-critical (see Paxton et al. 2013 for a more

3http://mesa.sourceforge.net/
4We use a step function overshoot prescription, in which the convection zone is extended a distance of

33.5 per cent of a pressure scale height above the Ledoux boundary, with a constant diffusion coefficient.
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thorough description). In order to test the effect of the mass loss prescription on the results,
we also include calculations for high mass, solar metallicity progenitors, where we use the
Nieuwenhuijzen & de Jager (1990) rates for Teff < 104 K and a dimensionless efficiency
factor of 1.0 (“v+n”); this more closely matches the prescription described in Woosley et al.
(2002).

For rotating progenitors, we employ compositional mixing and angular momentum
transport via all magnetohydrodynamic (MHD) instabilities available in version 4789 of
MESA star, except that we follow Paxton et al. (2013) and ignore the Solberg-Hoiland
contribution to the convective instability criterion. The magnetic field is assumed to arise
via the Spruit-Tayler dynamo (Spruit 2002). In detail, we do not believe the angular
momentum transport processes in stellar interiors are well understood. We include the
rotating progenitor models to give an order-of-magnitude indication of how different single
star evolution outcomes can be when stellar rotation is included.

Table 5.1 summarizes the properties of our grid of evolutionary calculations for a total of
76 progenitor models. The table gives the initial values for mass, metallicity, and rotation,
as well as the mass loss scheme, and shows how these map to final core masses, burning
timescales, and our progenitor classifications. Progenitor classifications are based on the
structure of the final model prior to core collapse. We define a red supergiant (RSG) as
a star with a hydrogen envelope and Teff < 104 K, a blue supergiant (BSG) as a star with
a hydrogen envelope and Teff ≥ 104 K, and a Wolf-Rayet (WR) as a star that has lost its
hydrogen envelope. These classifications correspond to stars with radii 300 − 103 R� for
RSGs, 3− 300 R� for BSGs and 0.4− 1.6 R� for WRs. Note that in our calculations, none
of the progenitors lose their helium envelopes prior to core collapse. Broadly, the results
in Table 5.1 show that our solar metallicity progenitors with MZAMS & 30 M� become WR
stars, lower ZAMS mass solar metallicity stars generally produce RSGs, and low-metallicity
stars produce BSGs. At fixed MZAMS, moderate rotation produces bigger helium core masses
through mixing, while the largest initial rotation values lead to smaller cores due to the
rotational enhancement of the stellar wind.

Figures 5.2, 5.3 and 5.4 show examples of the convective history, plotted against log tcc,
where tcc is time to core collapse, for each of our progenitor categories. Fig. 5.2 shows
the history of a 12 M�, solar metallicity, slowly rotating progenitor that becomes a RSG;
Fig. 5.3 shows a 60 M�, 0.1 Z�, non-rotating progenitor that becomes a BSG; Fig. 5.4 shows
a 40 M�, solar metallicity, non-rotating progenitor that makes a WR. In these diagrams,
stellar mass is plotted against the time to core collapse, in years, so that each plot shows
the convective history from the ZAMS to ∼ 30 seconds from core collapse (log tcc = −6).
The mass extent of each convection zone in the star is marked by the darker gray shaded
regions, overshoot mixing (on the main sequence only) is shown in light gray, semiconvection
in green, and thermohaline mixing in magenta. Also plotted are the mass boundaries of
the He, C/O, O/Ne/Mg, and iron cores as a function of time to core collapse. For the He,
C/O and O/Ne/Mg cores, these boundaries are determined by the first mass coordinate
interior to the surface (or the previous mass boundary) where hydrogen, helium or carbon
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Table 5.1: Stellar model properties

MZAMS Zinit Ω/Ω∗crit Mass Loss∗∗ Class† MHe
‡ MC/O Miron Menv,H Menv,He Convective (radiative) core burning time∗∗∗[

M�
] [

Z�
] [

M�
] [

M�
] [

M�
] [

M�
] [

M�
]

H [Myr] He [Myr] C [yr] Ne [yr] O [yr] Si [day]

12 0 0.00 0.8 (v+dj) RSG 3.17 1.98 1.51 5.89 3.98 15.0 0.85 6600.0 6.300 5.800 4.90

12 10−2 0.00 0.8 (v+dj) RSG 4.39 2.14 1.49 5.31 4.14 19.0 1.10 3800.0 4.300 4.000 3.60

12 10−1 0.00 0.8 (v+dj) RSG 4.35 2.11 1.45 4.49 3.89 19.0 1.10 4900.0 3.600 4.300 4.40
12 1.0 0.00 0.8 (v+dj) RSG 4.21 1.97 1.44 3.99 3.85 18.0 1.10 5600.0 4.600 5.000 5.50
12 1.0 0.20 0.6 (v+dj) RSG 4.94 2.34 1.46 3.75 4.00 16.0 0.99 3100.0 3.700 2.800 3.60
12 1.0 0.50 0.6 (v+dj) RSG 2.79 2.36 1.53 3.54 4.00 17.0 0.97 2900.0 6.100 3.400 3.70
12 1.0 0.80 0.6 (v+dj) RSG 6.57 3.20 1.49 1.86 4.78 21.0 0.75 1300.0 0.780 3.100 2.80

15 0 0.00 0.8 (v+dj) BSG 3.62 2.82 1.45 6.98 4.86 12.0 0.66 2300.0 0.960 4.100 4.70

15 10−2 0.00 0.8 (v+dj) RSG 5.84 2.93 1.49 6.26 5.12 14.0 0.80 1800.0 4.400 2.100 2.40

15 10−1 0.00 0.8 (v+dj) RSG 5.82 2.86 1.53 4.50 4.51 14.0 0.81 1900.0 3.200 2.100 2.20
15 1.0 0.00 0.8 (v+dj) RSG 5.72 2.78 1.50 3.67 4.29 13.0 0.82 2100.0 4.300 2.200 2.80
15 1.0 0.50 0.6 (v+dj) RSG 6.69 3.26 1.58 3.45 4.53 12.0 0.73 1200.0 3.500 2.300 2.10
15 1.0 0.80 0.6 (v+dj) RSG 9.48 4.69 1.65 0.80 4.54 16.0 0.59 (230.0) 0.660 0.700 0.89

20 0 0.00 0.8 (v+dj) BSG 5.24 4.45 1.46 8.44 6.55 8.7 0.50 650.0 0.520 1.600 3.50

20 10−2 0.00 0.8 (v+dj) RSG 7.78 4.40 1.59 6.99 6.45 9.9 0.55 560.0 0.290 0.420 1.10

20 10−1 0.00 0.8 (v+dj) RSG 8.49 4.26 1.53 3.21 5.06 9.9 0.58 540.0 0.910 1.600 2.30
20 1.0 0.00 0.8 (v+dj) RSG 8.44 4.55 1.60 1.99 4.37 9.0 0.58 550.0 0.430 0.490 0.90
20 1.0 0.20 0.6 (v+dj) RSG 7.70 5.12 1.64 2.71 5.04 8.5 0.55 (330.0) 0.640 1.300 1.60
20 1.0 0.50 0.6 (v+dj) RSG 9.70 5.30 1.48 2.17 4.93 8.7 0.54 (340.0) 0.260 0.770 2.20
20 1.0 0.80 0.6 (v+dj) WR 10.96 7.47 1.85 − 2.21 11.0 0.48 (150.0) 1.200 0.380 0.65

25 0 0.00 0.8 (v+dj) BSG 9.41 6.73 1.57 9.84 7.86 7.0 0.43 (280.0) 0.140 0.360 1.30

25 10−2 0.00 0.8 (v+dj) RSG 11.05 6.65 1.83 2.67 6.18 7.8 0.46 (180.0) 0.910 0.300 0.55

25 10−1 0.00 0.8 (v+dj) RSG 11.34 6.43 1.64 1.38 5.49 7.8 0.46 (240.0) 0.110 0.230 0.95
25 1.0 0.00 0.8 (v+dj) RSG 11.16 6.48 1.82 0.85 4.71 7.1 0.47 (210.0) 0.160 0.150 0.64
25 1.0 0.20 0.6 (v+dj) RSG 12.39 7.39 1.63 0.97 5.04 6.8 0.47 82.0 0.620 0.670 0.82
25 1.0 0.50 0.6 (v+dj) RSG 13.07 8.11 1.64 0.55 4.69 7.2 0.45 62.0 0.450 0.590 0.89
25 1.0 0.80 0.6 (v+dj) WR 11.36 8.67 1.79 − 1.29 8.9 0.47 (110.0) 1.300 0.390 0.77

30 0 0.00 0.8 (v+dj) BSG 11.90 8.50 1.68 11.10 9.83 6.0 0.37 (110.0) 0.360 0.530 0.74

30 10−2 0.00 0.8 (v+dj) RSG 13.98 9.11 1.53 1.18 6.24 6.6 0.41 (100.0) 0.490 0.660 1.90

30 10−1 0.00 0.8 (v+dj) RSG 14.28 8.81 1.55 0.85 6.31 6.6 0.40 (100.0) 0.320 0.490 1.00
30 1.0 0.00 0.8 (v+dj) WR 13.86 8.07 1.64 − 4.24 6.0 0.41 (82.0) 0.300 0.490 1.10
30 1.0 0.20 0.6 (v+dj) BSG 15.46 9.65 1.78 0.45 5.29 5.8 0.42 37.0 0.120 0.190 0.91
30 1.0 0.50 0.6 (v+dj) BSG 16.33 10.49 1.86 0.35 5.16 6.1 0.41 (58.0) (0.100) 0.160 0.76
30 1.0 0.80 0.6 (v+dj) WR 12.65 9.67 1.52 − 0.96 7.4 0.44 60.0 0.750 0.870 2.50

40 0 0.00 0.8 (v+dj) RSG 17.48 14.49 1.85 12.57 11.09 4.8 0.36 (26.0) (0.079) 0.095 0.69

40 10−2 0.00 0.8 (v+dj) RSG 20.02 14.11 1.87 1.42 8.44 5.2 0.34 (24.0) (0.078) 0.093 0.59

40 10−1 0.00 0.8 (v+dj) BSG 20.37 13.98 1.97 0.85 7.84 5.2 0.35 (34.0) (0.072) 0.093 0.62
40 1.0 0.00 v+n WR 10.04 7.63 1.73 − 0.31 4.8 0.43 (170.0) 0.240 0.180 0.73
40 1.0 0.00 0.8 (v+dj) WR 13.10 10.24 1.51 − 0.32 4.8 0.39 (67.0) 0.410 0.490 1.50
40 1.0 0.20 0.6 (v+dj) WR 20.41 14.77 1.67 − 3.81 4.7 0.36 (15.0) (0.061) 0.067 1.50
40 1.0 0.50 0.6 (v+dj) WR 20.01 15.61 2.10 − 2.55 4.9 0.36 9.8 (0.058) 0.068 1.10
40 1.0 0.80 0.6 (v+dj) WR 13.77 11.22 1.58 − 0.21 5.7 0.41 (41.0) 0.380 0.360 1.50

50 0 0.00 0.8 (v+dj) RSG 23.13 19.60 1.75 9.97 12.21 4.2 0.33 (11.0) (0.040) 0.044 1.00

50 10−2 0.00 0.8 (v+dj) BSG 26.28 20.05 1.74 1.91 10.01 4.5 0.32 (13.0) (0.041) 0.046 1.10

50 10−1 0.00 0.8 (v+dj) BSG 26.61 19.40 1.75 0.85 8.40 4.5 0.33 (17.0) (0.042) 0.046 0.89
50 1.0 0.00 0.8 (v+dj) WR 12.35 9.44 1.67 − 0.34 4.2 0.40 (78.0) 0.570 0.650 2.00
50 1.0 0.00 v+n WR 10.42 7.99 1.83 − 0.30 4.2 0.41 (150.0) 1.100 0.330 0.63
50 1.0 0.20 0.6 (v+dj) WR 24.19 20.15 1.76 − 2.17 4.1 0.34 (10.0) (0.031) 0.038 0.86
50 1.0 0.50 0.6 (v+dj) WR 22.33 16.34 1.74 − 0.44 4.2 0.34 (9.8) (0.037) 0.044 1.00
50 1.0 0.80 0.6 (v+dj) WR 14.36 11.65 1.59 − 0.25 4.9 0.40 (28.0) (0.340) 0.220 1.30

60 0 0.00 0.8 (v+dj) BSG 29.15 25.39 2.27 3.16 11.45 3.8 0.31 (9.6) (0.024) 0.028 0.28

60 10−2 0.00 0.8 (v+dj) BSG 32.60 25.34 1.99 1.98 11.42 4.0 0.31 (7.0) (0.026) 0.026 0.52

Continued on Next Page. . .
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Table 5.1 — Continued

MZAMS Zinit Ω/Ω∗crit Mass Loss∗∗ Class† MHe
‡ MC/O Miron Menv,H Menv,He Convective (radiative) core burning time∗∗∗[

M�
] [

Z�
] [

M�
] [

M�
] [

M�
] [

M�
] [

M�
]

H [Myr] He [Myr] C [yr] Ne [yr] O [yr] Si [day]

60 10−1 0.00 0.8 (v+dj) BSG 32.75 24.84 2.20 0.13 7.18 4.1 0.31 (7.8) (0.025) 0.024 0.31
60 1.0 0.00 v+n WR 11.70 9.08 1.57 − 0.32 3.8 0.39 (81.0) 0.770 0.860 2.40
60 1.0 0.00 0.8 (v+dj) WR 15.14 12.09 1.71 − 0.33 3.8 0.37 (38.0) (0.200) 0.170 0.81
60 1.0 0.20 0.6 (v+dj) WR 26.93 21.57 2.12 − 0.52 3.7 0.32 (4.9) (0.020) 0.029 0.39
60 1.0 0.50 0.6 (v+dj) WR 24.56 20.61 1.81 − 0.44 3.8 0.33 (7.9) (0.033) 0.040 0.65
60 1.0 0.80 0.6 (v+dj) WR 15.67 12.74 1.76 − 0.33 4.3 0.39 (24.0) (0.220) 0.150 0.78

70 0 0.00 0.8 (v+dj) BSG 34.99 30.95 2.63 3.60 13.42 3.5 0.30 (5.2) (0.017) 0.019 0.24

70 10−2 0.00 0.8 (v+dj) BSG 38.95 31.00 2.54 2.35 13.18 3.7 0.29 (5.8) (0.019) 0.017 0.25

70 10−1 0.00 0.8 (v+dj) BSG 38.97 30.89 2.58 0.05 7.77 3.7 0.29 (4.9) (0.018) 0.018 0.24
70 1.0 0.00 v+n WR 13.54 10.65 1.63 − 0.31 3.5 0.37 (57.0) 0.300 0.250 1.20
70 1.0 0.00 0.8 (v+dj) WR 17.45 14.20 1.87 − 0.35 3.5 0.35 (22.0) (0.100) 0.097 0.62
70 1.0 0.20 0.6 (v+dj) WR 24.21 20.24 1.70 − 0.41 3.4 0.33 (4.9) (0.035) 0.043 0.94
70 1.0 0.50 0.6 (v+dj) WR 25.68 18.53 1.97 − 0.41 3.5 0.33 (4.3) (0.028) 0.039 0.38
70 1.0 0.80 0.6 (v+dj) WR 16.43 13.36 1.78 − 0.38 3.9 0.38 (21.0) (0.180) 0.130 0.88

80 1.0 0.00 0.8 (v+dj) WR 18.89 15.23 2.01 − 0.31 3.3 0.34 (19.0) (0.074) 0.075 0.93
80 1.0 0.00 v+n WR 8.45 6.22 1.51 − 0.32 3.3 0.44 290.0 1.500 1.800 2.20
80 1.0 0.20 0.6 (v+dj) WR 19.83 16.31 2.13 − 0.40 3.3 0.36 (9.1) (0.080) 0.075 0.78
80 1.0 0.50 0.6 (v+dj) WR 18.61 15.11 2.08 − 0.40 3.3 0.36 (14.0) (0.098) 0.086 0.64
80 1.0 0.80 0.6 (v+dj) WR 17.54 14.26 2.04 − 0.39 3.6 0.37 (16.0) (0.130) 0.110 0.72

100 1.0 0.00 0.8 (v+dj) WR 9.81 7.45 1.66 − 0.34 3.0 0.43 (170.0) 0.130 0.200 0.96
100 1.0 0.00 v+n WR 6.34 4.49 1.57 − 0.34 3.1 0.52 850.0 0.740 0.690 1.40
100 1.0 0.20 0.6 (v+dj) WR 19.01 13.14 2.08 − 0.40 3.0 0.36 (11.0) (0.100) 0.089 0.65
100 1.0 0.50 0.6 (v+dj) WR 18.06 14.73 2.04 − 0.40 3.3 0.37 (10.0) (0.130) 0.100 0.60
100 1.0 0.80 0.6 (v+dj) WR 17.47 14.25 1.95 − 0.40 3.5 0.37 (22.0) (0.140) 0.110 0.79

∗Ω2
crit ≡ (1 − L/LEdd)GM?/R

3
?.∗astHere, “vdj” is shorthand for the Vink et al. (2001) and de Jager et al. (1988) mass loss prescription combination and the dimensionless efficiency factor is

shown as a prefactor; “v+n” denotes the Vink et al. (2001) and Nieuwenhuijzen & de Jager (1990) mass loss prescription combination.
†We define “RSG” as a progenitor that retains its hydrogen envelope and has Teff < 104 K at core collapse, “BSG” as progenitor with a hydrogen envelope
and Teff ≥ 104 K, and a “WR” as a progenitor without hydrogen.
‡Helium core mass at core infall; same as the “He core mass” plotted on the abcissa of figs. 5.8, 5.10, and 5.11.
∗∗∗Burning lifetimes are determined based on the time it takes for burning to reduce the central abundance of the main fuel below 10−5. Except for Ne, which does
not fully deplete before core oxygen burning, for which we estimate the lifetime based on the start of Ne burning to the start of O burning. Note that the lifetime
of the central convection zone, when one exists, may be shorter than the lifetime of the burning phase given here (integrated energies relevant for excited waves
span only the convective lifetime).
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Figure 5.2 : The convective history of a 12 M�, solar metallicity star initially rotating at 20 per cent of the critical rotation
velocity, plotted against log time to core collapse, in years. This star becomes a red supergiant SN progenitor with a 4.94 M�
helium core and a 5.61 M� hydrogen envelope. For each timestep, the dark grey represents mass coordinates that are convective,
light grey those that have overshoot, green those with semiconvection, and magenta those with thermohaline mixing. For example,
for log tcc & 6 (far left), the star is on the main sequence and has a convective core burning hydrogen that recedes in mass with
time from mr ∼ 4.5 − 3M�, with a ∼ 1.5M� overshoot region above it. The dashed lines show the mass boundaries of the
various cores, light blue shows the boundary of the helium (i.e., hydrogen-depleted) core, red the C/O (i.e., H and He-depleted)
core, orange the O/Ne/Mg core, and black the iron core. The O/Ne/Mg core, for example, moves out in mass with time as
carbon is depleted by burning in the core and shells.
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Figure 5.3 : The convective history of a 60 M�, one-tenth solar metallicity non-rotating star, plotted against log time to core
collapse, in years. This star becomes a blue supergiant SN progenitor with a 32.75 M� helium core and a 1.3 M� radiative
hydrogen envelope. Colors and lines have the meanings described in fig. 5.2.
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Figure 5.4 : The convective history of a 40 M�, solar metallicity, non-rotating star, plotted against log time to core collapse, in
years. This star becomes a Wolf-Rayet SN progenitor with a 13.1 M� helium core. Colors and lines have the meanings described
in fig. 5.2.
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drops below a mass fraction of 10−4. For the iron core, the boundary is determined by the
first mass coordinate inward from the boundary of the O/Ne/Mg core where the total mass
fraction of iron-group elements rises above 0.5.

5.3.1 Effect of opacity enhancements

In massive stellar envelopes, radiation pressure provides a significant fraction of the
pressure support even when the opacity is set by electron-scattering (Kippenhahn & Weigert
1990). Significant opacity enhancements due to transitions of iron at log T ∼ 5.2 and the
recombination of HeII (log T ∼ 4.7) and H (log T ∼ 4) lead to regions of the stellar envelope
where the Eddington luminosity is greatly exceeded locally and gas pressure and density
inversions can result (Paxton et al. 2013). In order to evolve through these computationally
difficult stages of evolution, we employ the “enhanced mixing length theory” described
in Paxton et al. (2013), which may crudely account for an energy transport mechanism
not present in our 1-D models, such as the development of porosity (Shaviv 2001; Owocki
et al. 2004). We thus sacrifice accuracy in the surface evolution in favor of completing
the core evolution all the way to core collapse. This implies, however, that our progenitor
classifications (RSG, BSG, and WR) have significant uncertainties.

5.4 Results
We present the results of our calculations by core burning phase: carbon, neon, oxygen,

and silicon burning. Since burning timescales can vary by more than an order of magnitude,
decreasing for increasing core mass, this does not uniformly map onto time to core collapse
for all progenitors (see §5.5).

In order for convectively excited waves to drive mass-loss in a SN progenitor at any
given time, they must satisfy the following conditions:

Lwave > LEdd; (super-Eddington)
tleak < tν , tcc; (leakage)

tsound, theat, teddy < tcc. (outflow)

Since the spectrum of wave excitation declines steeply above ∼ 3ωc (Lecoanet & Quataert
2013), we focus on examining the above conditions for waves with ω = 3ωc throughout each
burning phase. For each of the core burning phases, the characteristic ` ∼ rprop/H . 2, so
we focus on waves with ` ∼ 1 since these likely carry much of the excited wave luminosity
and are the most likely to satisfy the leakage condition (see eqn. 5.3).

Each of the following subsections presents the results of our calculations as follows. We
begin by considering each of the super-Eddington, leakage, and outflow conditions in turn. If
the most efficiently excited waves in a given progenitor fail either of the first two conditions,
there is unlikely to be any significant energy transported from the core to the stellar envelope
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(i.e., the excited wave energy damps to neutrinos in the core). However, if the progenitor
hosts waves that satisfy the super-Eddington and leakage conditions but fail the outflow
conditions, there is still a possibility that the energy carried out to the envelope could affect
the envelope structure prior to core collapse by e.g., inflating or partially unbinding it.

For progenitors where at least the super-Eddington and leakage conditions are met, we
examine the total wave energy reservoir excited during each phase. This is given by the
integral of the wave luminosity over the phase of interest:

Ewave =

∫
Lwave dt. (5.13)

While we use the above form for our calculations, it is useful to look at an approximate
form of eqn. 5.13 that highlights the important contributions:

Ewave ∼ Enuc

(
Lconv

Lnuc

)
M5/8

conv, (5.14)

where Lnuc is the nuclear luminosity for a given burning phase, and Enuc the total energy
released through fusion during the burning phase.

We regard the determination of the wave energy reservoir as the most definitive conclusion
of our work. Our arguments regarding mass loss rates and ejecta masses rely heavily on
assumptions about how outflows develop in super-Eddington atmospheres (see §5.2.3), which
are as yet not satisfactorily understood. However, the necessary testing, likely involving
multi-dimensional hydrodynamic simulations, is beyond the scope of this work.

Finally, for progenitors where all conditions for wave-driven mass loss are met, we
estimate the potential unbound mass, Mej, using eqn. 5.11. This represents an upper limit
in the sense that we assume that the outflow taps into the full reservoir of wave energy to
produce an outflow (it is not strictly an upper limit because of uncertainties in calculating
e.g., Ewave and vesc). We also calculate the radius, Rej, unbound material can reach by core
collapse, given simply by Rej ≈ vesc tcc.

Our calculations of the relevant timescales for tunneling and sound-crossing in the
envelope rely on accurate determinations of the Brunt-Väisälä frequency to determine
the relevant radii (rprop, rin, rout; see Fig. 5.1) and the group travel time for the excited
g-modes. As the Brunt-Väisälä frequency requires numerical differentiation and depends on
the implementation of mixing in the stellar interior (in that composition gradients enter
into the Brunt-Väisälä frequency), our results are affected by numerical noise. Over the
course of each burning phase, we evaluate the timescales given in the leakage and outflow
conditions for at least ∼ 100 timesteps for each progenitor. We consider any progenitor
in which at least 50 per cent of the wave energy excited during a given phase satisfies
the super-Eddington, leakage, and outflow conditions as capable of generating wave-driven
mass loss throughout that phase. On the other hand, progenitors that fail this 50 per cent
criterion are considered incapable of wave-driven mass loss for the given phase.
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In the following, we organize our results by helium core mass (not ZAMS mass), as this
is the best indicator for the time and energy-scales of the late burning phases (cf. Woosley
et al. 2002).

A summary of all of our wave-driven mass loss calculations is given in Table 5.2. We
present a detailed discussion of each of the advanced burning phases in the sections that
follow.

5.4.1 Carbon-burning

Carbon burning is the least interesting of the advanced burning phases from the per-
spective of wave excitation and subsequent wave-driven mass loss. The nuclear luminosity
is generally only slightly larger than the Eddington luminosity and the characteristic mach
numbers are the smallest of the post-He burning phases. Furthermore, only progenitors that
produce the smallest helium cores (which includes some of the high ZAMS mass progenitors
simulated with high mass loss rates) experience convective core carbon burning. The exact
helium core mass cutoff depends on the physics implemented in the stellar evolution code,
especially the choice of 12C(α, γ)16O reaction rate and the mixing parameters. For large
helium core masses, the carbon abundance after helium burning is not large enough for the
carbon burning luminosity to exceed the neutrino losses in the core, and carbon is burned
radiatively (see e.g., Woosley et al. 2002).

For our MESA star calculations, employing the Kunz et al. (2002) 12C(α, γ)16O rate,
convective core carbon burning occurs only for He-core masses below about 9 M� for non-
rotating progenitors. A few of the rotating progenitors with larger helium cores experience
convective core carbon burning due to the combination of rotationally enhanced mixing
and mass loss; a detailed exploration of this is beyond the scope of this work. Independent
of mass, carbon does burn convectively in a shell after being exhausted in the core; lower
core mass progenitors have multiple distinct shell burning phases separated in time (see
e.g., Fig. 5.2).

While core carbon burning excites . 1046 erg of wave energy over the course of the
burning phase, none of the progenitors produce a super-Eddington wave luminosity during
this phase of evolution. Fig. 5.5 shows propagation diagrams and luminosity plots for
three core carbon-burning models, one of each of our progenitor classes. For each set of
plots, from left to right, the upper and lower panels are analogous to figs. 4.1 and 4.2 from
Chapter 4, respectively. The top panel shows the Brunt-Väisälä frequency (solid blue line),
Lamb frequencies for ` = 1 and 3 (green, solid and dashed lines, respectively) and the range
of propagating g-mode frequencies (given by ∼ 3ωc) predominantly excited during the
core carbon-burning phase (red, shaded span) plotted against the left axis; the convective
mach number is plotted against the right axis as the dashed grey line. A range of g-mode
frequencies is shown to capture variation during the burning phase.

The bottom panels show the local luminosities important in the physics of wave excitation
and damping: the radiative luminosity (Lrad) is shown as the solid red line; the neutrino
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luminosity (Lν) in solid black; convective luminosity (Lconv) in solid magenta; the maximum
possible convective luminosity (Lmax, conv) in dashed magenta; the damping luminosity for
radiation (Ldamp) in dashed teal; and the range of Lwave excited during this phase as the blue,
shaded span. All progenitors that undergo convective core carbon burning are qualitatively
similar, in that Lwave < LEdd throughout the phase. Thus, wave-driven mass loss is unlikely
to arise from core carbon burning.

5.4.2 Neon burning

As for core carbon burning, only lower mass models (helium core masses . 16 M� in this
case) have a distinct convective core neon burning phase. This is shown in Fig. 5.2 as the
short core convection phase just after the growth of the carbon depleted core (log tcc ∼ 0.75)
and similarly in Fig. 5.4 (log tcc ∼ 0). Also similar to core carbon burning, the mass fraction
in Ne left behind by the prior phase decreases with core mass, so that the net nuclear
luminosity, and thus the wave luminosity, decreases with increasing core mass. Thus, only
43 of our 76 progenitors have distinct core neon burning phases.

All neon burning RSG and BSG progenitors excite gravity waves that meet the leakage
condition, but only models with helium core masses . 14 M� generate a super-Eddington
wave luminosity during core neon burning. For the compact WR progenitors, core-Ne
burning predominantly excites waves with frequencies . ωac in the stellar envelope, which
are thus unlikely to tunnel out of the stellar core. This leaves 27 of the 43 core neon burning
progenitors where waves are likely to transport energy out of the core and into the stellar
envelope.

Figure 5.6 shows the propagation diagrams and luminosity plots as in Fig. 5.5, but with
logP on the abscissa rather than log r, in order to show the envelope behavior. The top
right panel showing the propagation diagram for the WR progenitor also shows the acoustic
cutoff frequency, ωac, in the envelope (dashed, cyan line) to demonstrate its magnitude
in comparison to the excited g-mode frequencies. That ω . ωac is also reflected in the
bottom right panel where Ldamp < Lmax, conv at all radii; this is equivalent to kH < 1 (see
eqns. 5.6 and 5.7). This representative example demonstrates that convectively excited
waves in WR progenitors during core neon burning are likely reflected before reaching the
envelope. For the giant progenitors, ωac � ω for the excited g-modes and roughly follows
the Lamb frequency (so it is not shown). In giants that satisfy the super-Eddington and
leakage conditions, waves likely tunnel out of the core and deposit their energy at rdamp.

The upper panels of Fig. 5.7 show the total energy released in waves during core neon
burning for all progenitors that satisfy the super-Eddington and leakage conditions. In the
upper left panel, the integral in eqn. 5.13, evaluated from the start of the burning phase to
a given tcc, is plotted every log tcc ∼ 0.05. The total (cumulative) energy liberated over the
whole burning phase for each model is shown as a horizontal line in the upper right panel.
The colors represent the helium core mass, according to the colorbar at the far right of the
plot, and the symbols represent the progenitor type, with circles representing RSGs, squares
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Figure 5.5 : Propagation diagrams and luminosity plots for example core carbon burning models from each progenitor class. Top
panels show propagation diagrams, where the colors and dashes are as described for fig. 5.1 but with the range of propagating
g-mode frequencies excited during the whole burning phase shown by the red span. The lower panels show the relevant local
luminosities as in the bottom panel of fig. 5.1 but with the range of wave luminosities excited throughout the burning phase
shown as the blue span. These lower panels demonstrate that Lwave < Lrad ∼ LEdd during core carbon burning. The red
supergiant shown is a 12 M� solar metallicity model, the blue supergiant a 15 M� zero metallicity model, and the Wolf-Rayet a
80 M� solar metallicity model with high mass loss.
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Figure 5.6 : Propagation diagrams and luminosity plots for example core neon burning models from each progenitor class. The
colors and dashes are as described for fig. 5.5, with the addition of the acoustic cutoff frequency (ωac) in the envelope shown as
the dashed cyan line in the top right panel for the Wolf-Rayet progenitor. This is plotted to show that the g-mode frequencies
are below the acoustic cutoff for this representative compact progenitor, and thus waves are likely reflected before reaching the
envelope. For the red/blue supergiant progenitors, ωac roughly follows the Lamb frequency and is never larger than the g-mode
frequencies. The red supergiant shown is a 25 M� solar metallicity model, the blue supergiant a 15 M� zero metallicity model,
and the Wolf-Rayet a 40 M� solar metallicity model.
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BSGs, and triangles WRs. There are no strong trends in Ewave during core neon burning.
For all progenitors that satisfy the super-Eddington and leakage conditions (giants),

waves reach rdamp interior to rss, on a timescale tsound ∼ 104 s� tcc (since rdamp � R?). For
three of the RSGs and one BSG, rdamp is within one scale height of the envelope convection
zone; we consider the timescale for driving an outflow from these few progenitors to be
teddy � tcc. However, the majority, 23, reach rdamp in the radiative zone ∼ 10 scale heights
from the outer convection zone and must heat the stellar material to drive convection
and eventually an outflow. Calculating theat over the region from rdamp to the base of the
envelope convection zone renv, cz, we find 12 of the remaining 23 have theat < tcc, leading
to the conclusion that wave-driven mass loss is plausible in these 12 progenitors. The
remaining 11 likely reach collapse with ∼ 1046 erg of wave energy still attempting to work
its way through the envelope.

The upper panel of Fig. 5.8 shows our estimate of Mej (see eqn. 5.11) for the 16 progenitors
(out of 43 core-Ne burning and 76 total progenitors) where wave-driven mass loss is likely
during core neon burning. Our RSG progenitors, having the most weakly bound envelopes,
are capable of producing the largest wave-driven mass loss events, with Mej ∼ 0.1− 1 M�.
BSGs can produce Mej . 0.04 M� and WRs . 0.01 M�. If launched during core-Ne fusion,
traveling at the escape velocity at rdamp, ∼ 100s km s−1, this ejecta can reach distances of
. 300 AU prior to core collapse. Lower mass progenitors, with their smaller helium cores,
longer burning timescales, and tendency to form giants, are capable of producing the most
massive and extended wave-driven circumstellar environments.

5.4.3 Oxygen burning

Core oxygen burning is convective for all progenitors, but occurs over a range of timescales
(see Table 5.1, and Woosley et al. 2002); the burning timescale depends primarily on helium
core mass, with the smallest cores (∼ 3 M�) having core oxygen burning for ∼ 6 yr and
the largest (∼ 40 M�) for ∼ 10 day. For all the progenitors considered here, the burning
produces a super-Eddington wave luminosity during the majority of the core oxygen burning
phase.

In all but five of the 42 RSG and BSG progenitors, convectively excited waves can
transport energy from the core to the envelope. As expected from eqn. 5.3, those that fail
are biased towards larger values of rout/rin. For the WRs, only three out of 34 compact
progenitors have waves with frequencies above the envelope acoustic cutoff during core
oxygen burning. This leaves a total of 40 (37 giants and 3 WRs), a little more than half of
the progenitors, capable of transporting wave energy from the core to the envelope during
core oxygen burning.

The middle panel of Fig. 5.7 shows the wave energy reservoir during core oxygen burning
for these 40 progenitors, while the bottom panel shows the wave energy from shell oxygen
burning. There is a factor of 50 increase in the wave energy reservoir from core oxygen
burning as the helium core mass increases from ∼ 3.2− 39 M�. This increase arises partially
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Figure 5.7 : Wave energy excited (see eqn. 5.14) during core-Ne and O burning (top and middle
left panels, respectively) and shell-O burning (bottom left panel) for each of the progenitors that
satisfies the super-Eddington and leakage conditions, plotted against time to core collapse. Colors
correspond to helium core mass, as given by the color bar at right. The integrated energy, from the
beginning of the burning phase up to a given tcc, is plotted every 0.05 dex in log tcc in the top panel,
0.2 dex in the middle panel, and 0.3 dex in the bottom panel. The top right panels give the total
(cumulative) wave energy excited over the entirety of each core burning phase. The bottom right
gives the total energy excited over the shell burning phase (or the total at log tcc ∼ −6, whichever
occurs first). The shape of the points correspond to progenitor type as noted in the legend in the
top panel. These plots demonstrate the near one-to-one correspondence between helium core mass
and available wave energy, as explained further in the text.
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Figure 5.8 : Potential mass unbound by waves generated during core neon (upper panel) and oxygen
burning (lower panel), estimated using eqn. 5.11. The colors and symbols represent progenitor
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due to differences in the envelope binding energy (hydrogen for the giants and helium for the
Wolf-Rayets).
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from each of the contributions outlined in eqn. 5.14. As core mass increases, the time
averaged mach number during the oxygen core burning increases by a factor of ∼ 20, the
total nuclear energy liberated varies by a factor of ∼ 5, and the ratio of the convective to
nuclear luminosities varies by a factor of ∼ 2. While the ratio Lconv/Lnuc varies only slightly,
the ratio Lwave/LEdd varies from ∼ 1− 103 due to the change in burning timescale and thus
Lnuc.

During the short core oxygen burning phase, fewer progenitors host waves capable of
heating the stellar envelope on a timescale shorter than the time to core collapse. Only four
of the 40 progenitors with waves capable of transporting a super-Eddington luminosity to
the envelope have theat < tcc and can drive outflows via radiatively damped waves. Another
four excite waves that reach rss < rdamp, but have kH > 1, so that they can drive an outflow
on ∼ the sound crossing time at rss, which is characteristically on the order of minutes.
Finally, seven giants have waves with rdamp less than one scale height from the envelope
convection zone; for these, we assume the deposited wave energy can immediately drive
convection into the envelope zone and drive an outflow on a timescale teddy . day < tcc. In
total, 15 of our 76 progenitors are capable of generating wave-driven mass loss during the
core oxygen burning phase; these 15 span all three progenitor categories.

The lower panel of Fig. 5.8 shows our estimate of Mej for the 15 progenitors capable
of wave-driven mass loss during core oxygen burning, as described above for Ne-burning.
As during core-Ne burning, the weakly bound envelopes of the giant progenitors are
most susceptible to large mass-loss events. During core-O burning, RSGs may produce
Mej ∼ 0.3 − 3 M�, BSGs may liberate Mej . 1 M�, and WRs . 0.01 M�. Given the
similar timescales and assumed envelope structures for oxygen and neon fusion, the outflow
velocities and the radii reached by the ejecta during core-O burning are similar to those
during Ne burning, with ejecta reaching . 300 AU at speeds of 100s km s−1. For the more
massive giants with both core-Ne and O convective burning phases, the energy liberated
during core oxygen fusion may be an order of magnitude larger, but it is unable to escape
the star due to the shorter time to core collapse.

5.4.4 Silicon burning

The silicon burning phase is the most uncertain of those considered here. During this
late stage, burning and convective timescales become comparable, likely invalidating the
treatment used in most stellar evolution codes, including MESA star (e.g., Woosley et al.
2002). Furthermore, the reaction network uses many pseudo-reactions to simulate the actual
high-dimensional nucleosynthetic network (though development is underway to improve
upon this; Paxton, private communication). These uncertainties may affect the luminosities
and stellar structure during silicon burning, so we regard the following results as tentative.

In our MESA star models, silicon burns convectively in the core for all progenitors, over
timescales of . 5 day for the smallest cores down to ∼ 6 hr for the largest. The most
luminous burning phase, core silicon burning produces a significantly super-Eddington
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wave luminosity in all progenitors, Lwave ∼ 102 − 104LEdd. The characteristic excitation
frequency, ∼ 3ωc, increases from ∼ 10−3 Hz during carbon burning to ∼ 0.1 Hz during this
last phase. At these high frequencies, convectively excited waves now exceed the acoustic
cutoff frequency in all compact progenitors.

With the compact progenitors exciting waves above the acoustic cutoff frequency, many
more progenitors transport energy from the core to the surface during core silicon burning
than during the previous phases: 70 of 76. Figure 5.9 shows the wave energy reservoir for
these 70 progenitors during core silicon burning. There is a roughly monotonic relationship
between Ewave and helium core mass, as in the case of core oxygen burning, but the range
in Ewave is smaller at a factor of ∼ 8.

Thirty-seven of the seventy progenitors that satisfy the super-Eddington and leakage
conditions also satisfy the outflow conditions. Of these, the majority, 29, are WR progenitors
which now host convectively excited waves with frequencies above the acoustic cutoff, as
described above. In these, waves reach rss before rdamp, likely generating outflows on the
sound crossing time at rss, which is . minute. Only one of the RSG progenitors has waves
that damp in the envelope convection zone, while the remaining seven have theat, teddy < tcc.
This latter group arises due to the several order of magnitude increase in Lwave, which brings
the sonic point, rss, deeper into the envelope in addition to simply increasing the energy
deposition rate.

Figure 5.10 shows the mass, Mej, that can be unbound by waves excited during core-Si
burning. As during previous phases, there is a clear delineation in Mej between giants and
WRs due to differences in the envelope binding energy. While several of the RSGs are capable
of heating the stellar material and potentially driving an outflow prior to core collapse,
there is not enough time for any unbound mass to travel beyond the progenitor photosphere,
which is already & 100 R�. However, for the WR progenitors, wave energy driven to the
envelope during Si burning has the potential to inflate these compact progenitors to giants
extending out to 100s R�, in the ∼ day leading up to collapse. This may have important
implications for the appearance of a subsequent supernovae.

5.5 Discussion and conclusions
In this Chapter, we have surveyed supernova progenitors covering a decade in initial

mass, metallicities from 0 (Population III) to solar and rotation up to 80 per cent of
breakup in search of those susceptible to the wave-driven mass loss mechanism we proposed
in Chapter 4 and QS12. We believe this grid of evolutionary sequences provides a good
sample of the range of possible helium core masses and mass loss histories for single star
core collapse SN progenitors. For the majority of progenitors, waves excited by vigorous
core convection after core carbon exhaustion can carry a super-Eddington luminosity out
to stellar envelope and deposit 1046 − 1048 erg. Depending on the uncertain physics of
super-Eddington stellar envelopes, this may lead to strong wave-driven mass loss in about
20 per cent of the progenitors surveyed. While a detailed comparison to supernova rates
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Figure 5.9 : Wave energy excited (see eqn. 5.14) during core (top left panel) and shell silicon
burning (bottom left panel) for each of the progenitors that satisfies the super-Eddington and
leakage conditions, plotted against time to core collapse in days. The top right panel gives the
total (cumulative) wave energy excited over the whole core-Si burning phase, while the bottom
right gives the total energy excited during shell-Si burning (or the total at log(tcc/day) ∼ −3.5,
whichever occurs first). Colors and symbols are as described for Fig. 5.7.
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Figure 5.10 : Potential mass unbound by waves generated during core-Si burning. Colors and
symbols are as in fig. 5.8. As for the earlier burning phases, there is a clear delineation in Mej by
progenitor type due to differences in the envelope binding energy. For the giant progenitors, there
is not enough time before core collapse for the wave-energy deposition to eject material beyond
the stellar radius. Instead, wave energy will significantly restructure the stellar envelope prior to
explosion.
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depends on the initial mass function, the connection between ZAMS and helium core masses,
and the subset of massive stars that can explode, we note that the rate of wave-driven
mass loss we find is comparable to the rate of Type IIn SNe, which are ∼ 10 per cent of
core collapse SNe (Li et al. 2011). Progenitors with small helium cores are susceptible to
early mass loss events, up to ∼ 10 yr prior to core collapse, and giants with weakly bound
envelopes produce the largest events, potentially ejecting multiple solar masses of material
out to ∼ 100s AU. At silicon burning, this process can inflate compact Wolf-Rayet like
progenitors (without hydrogen envelopes) to giants with helium envelopes that extend to
∼ 100s R�.

Table 5.2 summarizes the results of our calculations (see also Figs. 5.7—5.11). For each
model, the time to core collapse (tcc) for each of the neon, oxygen and silicon burning
phases is given whenever these phases occur convectively. The wave energy reservoir (Ewave)
for each burning phase is given for models in which convectively excited waves can tunnel
out of the core and carry a super-Eddington luminosity into the envelope. Finally, when
this excited wave energy can plausibly drive an outflow on a timescale shorter than tcc, we
present the potential ejecta mass (Mej) and the radius that ejecta reaches prior to explosion
(Rej). Our results demonstrate that the lowest core mass progenitors are most likely to
produce massive, ∼ M�, extended, . 300 AU, circumstellar environments. While compact
WR progenitors are less likely to generate a massive circumstellar medium, wave excitation
and damping during Si burning can inflate WR progenitors to giant radii (∼ 100s R�).

Given that the wave luminosity excited by core carbon fusion is never super-Eddington,
the earliest core burning phase that might lead to wave-driven mass loss is neon fusion. For
the lowest core masses, the onset of super-Eddington wave luminosities may be as early as
∼ 10 yr before core collapse. Figure 5.11 shows the earliest potential onset of wave-driven
mass loss (tonset) as a function of helium core mass. This highlights the well known (e.g.,
Woosley et al. 2002) correspondence between burning duration and core mass, which is one
of the key features of our specific mass loss mechanism. For wave-driven mass loss events,
the timing of a pre-SN outburst can be used to place an upper limit on the helium core
mass of the progenitor, which can in turn be constrained by modeling the associated SN.
For example, an event that occurs more than a month prior to core collapse requires a
progenitor with a helium core mass . 15 M�. The complex interplay between mixing and
mass loss, each dependent on both rotation and metallicity, makes the further inference
from helium core mass to ZAMS mass, metallicity and rotation much more uncertain.

5.6 Directions for future work
In this work, we have outlined how wave energy, transported from the core and deposited

in the stellar envelope, could lead to large outflows in a subset of SN progenitors within ∼ 10
years of core collapse. The conditions we have investigated are necessary for wave-driven
mass loss, but it is as yet unclear if they are sufficient. Further (likely hydrodynamic)
calculations are necessary to investigate both the excitation and damping of waves in SN
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Figure 5.11 : Earliest potential onset of wave-driven mass loss for SN progenitors, plotted as a
function of helium core mass. Symbols denote the phase of burning corresponding to the earliest
potential onset, with diamonds for Ne-core burning, pentagons for O-core, and stars for Si-core.
Colors represent progenitor type as in previous figures. Grey dashed lines mark 10 years, 1 year, 1
month, and 1 day prior to core collapse (from top to bottom). Note the correspondence between
tonset and MHe, with lower core masses producing wave-driven mass loss earlier in evolution.
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Table 5.2: Wave-driven mass loss results

core Ne burning core O burning core Si burning

MZAMS Zinit Ω/Ωcrit Mass Loss Class t∗cc Ew, 46
† Mej

‡ v‡esc Rej
‡ t∗cc Ew, 46

† Mej
‡ v‡esc Rej

‡ t∗cc Ew, 46
† Mej

‡ v‡esc Rej
‡[

M�
] [

Z�
]

[yr] [erg]
[
M�

]
[km/s] [AU] [yr] [erg]

[
M�

]
[km/s] [AU] [day] [erg]

[
M�

]
[km/s]

[
R�

]
12 0 0.00 0.8 (v+dj) RSG 11.41 3.3 0.31 103 249.8 6.27 3.9 − − − 5.06 11.9 0.74 127 80.0

12 10−2 0.00 0.8 (v+dj) RSG 6.89 2.8 0.30 97 141.2 4.38 4.8 − − − 3.87 11.7 0.21 238 114.7

12 10−1 0.00 0.8 (v+dj) RSG 7.65 3.0 0.43 83 135.4 4.43 4.3 − − − 4.74 11.4 − − −
12 1.0 0.00 0.8 (v+dj) RSG 9.16 3.0 0.71 65 126.7 5.23 4.0 0.94 65 72.0 5.85 18.9 − − −
12 1.0 0.20 0.6 (v+dj) RSG 6.13 1.9 0.41 68 88.1 2.94 5.3 − − − 3.98 10.3 6.0 10−2 414 204.8

12 1.0 0.50 0.6 (v+dj) RSG 9.23 1.4 − − − 3.72 5.5 − − − 3.90 10.8 5.6 10−2 439 212.4

12 1.0 0.80 0.6 (v+dj) RSG 3.90 2.5 0.55 67 55.6 2.72 7.1 − − − 3.00 12.8 6.3 10−2 450 167.6

15 0 0.00 0.8 (v+dj) BSG 5.19 3.3 3.5 10−2 307 336.9 3.13 5.7 − − − 5.17 21.2 − − −
15 10−2 0.00 0.8 (v+dj) RSG 3.83 2.0 − − − 2.00 7.0 − − − 2.63 15.1 − − −
15 10−1 0.00 0.8 (v+dj) RSG 5.16 1.8 0.35 73 79.5 2.16 9.2 − − − 2.36 14.2 − − −
15 1.0 0.00 0.8 (v+dj) RSG 4.51 2.3 0.51 67 64.5 2.10 9.7 2.35 64 28.5 2.99 21.5 6.9 10−2 561 208.4
15 1.0 0.50 0.6 (v+dj) RSG 4.90 1.7 0.37 67 69.3 2.53 5.8 − − − 2.28 14.4 − − −
15 1.0 0.80 0.6 (v+dj) RSG 1.15 1.0 0.11 93 22.6 0.56 17.2 0.52 182 21.6 1.00 30.7 − − −

20 0 0.00 0.8 (v+dj) BSG 2.10 2.2 9.7 10−3 478 212.0 1.20 8.9 − − − 3.73 13.0 − − −
20 10−2 0.00 0.8 (v+dj) RSG 0.65 3.2 − − − 0.44 16.4 − − − 1.35 20.0 − − −
20 10−1 0.00 0.8 (v+dj) RSG 2.24 1.5 − − − 1.35 8.1 − − − 2.47 12.4 − − −
20 1.0 0.00 0.8 (v+dj) RSG 0.81 3.3 0.59 75 12.9 0.47 18.5 0.99 136 13.5 1.14 22.3 5.3 10−2 653 92.7
20 1.0 0.20 0.6 (v+dj) RSG 1.75 1.8 − − − 0.98 11.8 − − − 1.75 15.9 − − −
20 1.0 0.50 0.6 (v+dj) RSG 0.96 2.4 0.40 78 15.9 0.60 − − − − 2.38 15.7 − − −
20 1.0 0.80 0.6 (v+dj) WR 0.88 − − − − 0.35 23.2 4.8 10−3 2201 163.4 0.76 29.4 5.9 10−3 2239 211.0

25 0 0.00 0.8 (v+dj) BSG 0.51 3.4 − − − 0.31 − − − − 1.53 17.5 − − −
25 10−2 0.00 0.8 (v+dj) RSG 0.60 2.0 − − − 0.31 25.5 − − − 0.66 28.8 − − −
25 10−1 0.00 0.8 (v+dj) RSG 0.34 3.8 − − − 0.26 23.7 − − − 1.10 23.7 − − −
25 1.0 0.00 0.8 (v+dj) RSG 0.27 3.9 0.29 115 6.6 0.17 35.8 0.37 311 11.1 0.74 24.9 − − −
25 1.0 0.20 0.6 (v+dj) RSG 1.06 1.4 0.10 118 26.7 0.48 16.9 − − − 1.00 30.4 − − −
25 1.0 0.50 0.6 (v+dj) RSG 0.90 1.4 − − − 0.46 13.6 0.33 201 19.6 1.05 28.6 − − −
25 1.0 0.80 0.6 (v+dj) WR 0.99 − − − − 0.33 − − − − 0.87 25.6 2.9 10−3 2974 321.9

30 0 0.00 0.8 (v+dj) BSG 0.77 0.6 − − − 0.41 20.5 − − − 0.99 27.0 − − −
30 10−2 0.00 0.8 (v+dj) RSG 0.96 1.4 − − − 0.52 − − − − 2.08 16.7 − − −
30 10−1 0.00 0.8 (v+dj) RSG 0.71 − − − − 0.39 25.3 − − − 1.18 25.1 − − −
30 1.0 0.00 0.8 (v+dj) WR 0.73 − − − − 0.39 − − − − 1.35 19.9 5.1 10−3 1987 333.7
30 1.0 0.20 0.6 (v+dj) BSG 0.33 − − − − 0.19 − − − − 1.01 29.8 − − −
30 1.0 0.50 0.6 (v+dj) BSG − − − − − 0.16 − − − − 0.86 28.2 − − −
30 1.0 0.80 0.6 (v+dj) WR 1.32 − − − − 0.67 − − − − 2.66 14.8 2.4 10−3 2498 825.9

40 0 0.00 0.8 (v+dj) RSG − − − − − 0.10 46.1 − − − 0.78 25.5 − − −
40 10−2 0.00 0.8 (v+dj) RSG − − − − − 0.09 43.6 0.48 302 5.9 0.68 28.0 − − −
40 10−1 0.00 0.8 (v+dj) BSG − − − − − 0.09 46.1 0.34 368 7.1 0.71 28.7 − − −
40 1.0 0.00 v+n WR 0.34 − − − − 0.18 − − − − 0.87 25.1 2.5 10−3 3185 345.5

40 1.0 0.00 0.8 (v+dj) WR 0.73 − − − − 0.37 − − − − 1.75 15.7 1.6 10−3 3126 678.3

40 1.0 0.20 0.6 (v+dj) WR − − − − − 0.06 64.7 7.9 10−3 2868 38.1 1.03 30.2 3.6 10−3 2914 373.0

40 1.0 0.50 0.6 (v+dj) WR − − − − − 0.06 − − − − 0.98 27.3 2.7 10−3 3177 385.2

40 1.0 0.80 0.6 (v+dj) WR 0.59 − − − − 0.30 − − − − 1.64 21.8 1.7 10−3 3598 734.5

50 0 0.00 0.8 (v+dj) RSG − − − − − 0.04 82.6 − − − 0.86 32.7 − − −
50 10−2 0.00 0.8 (v+dj) BSG − − − − − 0.04 82.5 0.57 382 3.4 0.90 31.2 − − −
50 10−1 0.00 0.8 (v+dj) BSG − − − − − 0.04 83.6 0.45 430 3.9 0.91 30.5 − − −
50 1.0 0.00 0.8 (v+dj) WR 0.96 − − − − 0.50 − − − − 2.46 16.3 1.7 10−3 3063 933.9

50 1.0 0.00 v+n WR 0.78 − − − − 0.28 − − − − 0.73 25.1 2.2 10−3 3395 309.2
50 1.0 0.20 0.6 (v+dj) WR − − − − − 0.03 − − − − 0.87 − − − −
50 1.0 0.50 0.6 (v+dj) WR − − − − − 0.04 − − − − 0.83 − − − −
50 1.0 0.80 0.6 (v+dj) WR − − − − − 0.23 − − − − 1.41 24.7 1.9 10−3 3614 633.4

Continued on Next Page. . .
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Table 5.2 — Continued

core Ne burning core O burning core Si burning

MZAMS Zinit Ω/Ωcrit Mass Loss Class t∗cc Ew, 46
† Mej

‡ v‡esc Rej
‡ t∗cc Ew, 46

† Mej
‡ v‡esc Rej

‡ t∗cc Ew, 46
† Mej

‡ v‡esc Rej
‡[

M�
] [

Z�
]

[yr] [erg]
[
M�

]
[km/s] [AU] [yr] [erg]

[
M�

]
[km/s] [AU] [day] [erg]

[
M�

]
[km/s]

[
R�

]
60 0 0.00 0.8 (v+dj) BSG − − − − − 0.02 147.5 − − − 0.35 59.4 − − −
60 10−2 0.00 0.8 (v+dj) BSG − − − − − 0.02 136.1 − − − 0.59 55.9 − − −
60 10−1 0.00 0.8 (v+dj) BSG − − − − − 0.02 153.0 9.2 10−2 1296 5.8 0.41 46.3 2.1 10−2 1497 75.5

60 1.0 0.00 v+n WR 1.24 − − − − 0.64 − − − − 2.56 14.2 1.6 10−3 2989 948.9

60 1.0 0.00 0.8 (v+dj) WR − − − − − 0.16 − − − − 0.98 23.6 1.9 10−3 3567 435.3
60 1.0 0.20 0.6 (v+dj) WR − − − − − 0.02 − − − − 0.45 − − − −
60 1.0 0.50 0.6 (v+dj) WR − − − − − 0.04 − − − − 0.68 − − − −
60 1.0 0.80 0.6 (v+dj) WR − − − − − 0.16 − − − − 0.89 33.2 2.2 10−3 3939 433.8

70 0 0.00 0.8 (v+dj) BSG − − − − − 0.02 204.7 − − − 0.29 81.6 − − −
70 10−2 0.00 0.8 (v+dj) BSG − − − − − 0.02 194.5 − − − 0.29 70.5 − − −
70 10−1 0.00 0.8 (v+dj) BSG − − − − − 0.02 203.9 2.7 10−2 2756 9.0 0.30 65.7 7.9 10−3 2896 106.9

70 1.0 0.00 v+n WR 0.50 − − − − 0.25 − − − − 1.39 22.3 1.9 10−3 3423 590.9

70 1.0 0.00 0.8 (v+dj) WR − − − − − 0.10 − − − − 0.72 24.5 1.5 10−3 4026 358.7
70 1.0 0.20 0.6 (v+dj) WR − − − − − 0.04 − − − − 1.01 − − − −
70 1.0 0.50 0.6 (v+dj) WR − − − − − 0.03 − − − − 0.43 − − − −
70 1.0 0.80 0.6 (v+dj) WR − − − − − 0.14 − − − − 0.95 32.0 2.2 10−3 3869 457.2

80 1.0 0.00 0.8 (v+dj) WR − − − − − 0.07 − − − − 0.92 21.7 1.4 10−3 3918 445.6

80 1.0 0.00 v+n WR 2.95 − − − − 1.57 − − − − 2.34 13.7 2.0 10−3 2646 767.7

80 1.0 0.20 0.6 (v+dj) WR − − − − − 0.07 − − − − 0.80 26.3 1.5 10−3 4151 413.5

80 1.0 0.50 0.6 (v+dj) WR − − − − − 0.09 − − − − 0.71 31.6 1.9 10−3 4039 355.4

80 1.0 0.80 0.6 (v+dj) WR − − − − − 0.11 − − − − 0.82 27.6 1.8 10−3 3884 394.3

100 1.0 0.00 0.8 (v+dj) WR 0.33 − − − − 0.22 − − − − 1.12 23.6 2.7 10−3 2957 411.9

100 1.0 0.00 v+n WR 1.35 − − − − 0.60 14.8 3.7 10−3 2020 254.9 1.69 17.3 3.7 10−3 2164 454.3

100 1.0 0.20 0.6 (v+dj) WR − − − − − 0.09 − − − − 0.73 28.9 1.7 10−3 4075 368.6

100 1.0 0.50 0.6 (v+dj) WR − − − − − 0.10 − − − − 0.70 31.0 1.9 10−3 4061 351.4

100 1.0 0.80 0.6 (v+dj) WR − − − − − 0.11 − − − − 0.87 29.1 1.9 10−3 3918 424.9

∗A value is given whenever burning occurs convectively, otherwise − is given.
†Wave energy excited in units of 1046 erg; a value is given whenever convectively excited waves meet the super-Eddington and leakage conditions, otherwise − is given.
‡A value is given whenever the super-Eddington, leakage and outflow conditions are met, otherwise − is given.
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progenitors. Both multi-dimensional hydrodynamic simulations (like those by, e.g., Rogers
et al. 2006; Browning et al. 2004) and observational constraints (as described in Chapter 3)
would provide valuable constraints on the spectrum of wave excitation and thus how much
of the full wave energy reservoir can reach the stellar envelope.

Multi-dimensional hydrodynamical simulations are also needed to better understand
the behavior of super-Eddington stellar envelopes. Some authors, including Soker (2013),
have suggested that envelope inflation is a more likely outcome than mass ejection or the
formation of a super-Eddington wind, which we have argued for (Shaviv 2001; Owocki
et al. 2004, have also argued for the latter). Detailed simulations would lead to better
characterization of winds driven by a super-Eddington continuum that is, to order of
magnitude, unable to energetically support the outflow implied by simple 1-D sonic point
arguments.

Some of our progenitors are susceptible to wave-driven mass loss at multiple stages
during their evolution to collapse. However, at each phase, we have investigated our 1-D
stellar evolution model without any enhanced mass loss during prior phases. Future efforts
to quantify the potential effect of wave-driven mass loss on the subsequent evolution of a
star are necessary to understand the full evolution of progenitors that experience pre-SN
outbursts. It is unclear how wave-driven mass loss events could affect the future evolution
of the stellar core and envelope, and thus any potential further wave-driven mass loss.

Throughout our investigation, we have ignored the effect of rotation on the excitation,
propagation and damping of waves. However, these effects may be important, especially
for our rapidly rotating progenitors. The excitation of modes depends on the statistical
properties of convection, which are different in rapidly rotating stars. Rotation also affects
the shape of wave propagation cavities and can introduce critical damping layers (e.g.,
Rogers et al. 2012). We intend to investigate these potential effects in future work.
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Appendix A: Massive star models
We use version 4789 of the MESA star stellar evolution code (Paxton et al. 2011) to

construct evolutionary sequences of massive stars from the zero-age main sequence (ZAMS)
to core collapse. We employed four separate inlists to evolve each progenitor from start to
finish. The first generates ZAMS models. For masses below 30 M�, we use the following
non-default parameters

create_pre_main_sequence_model = .true.
mesh_delta_coeff = 0.5
Lnuc_div_L_upper_limit = 0.9
overshoot_f_above_burn_h = 0.335
overshoot_f0_above_burn_h = 0.
overshoot_step_fraction = 1.

with

relax_Z = .true.
new_Z = <value >

for non-solar metallicities and

change_rotation_flag = .true.
new_rotation_flag = .true.
set_omega_div_omega_crit = .true.
new_omega_div_omega_crit = <value >

for rotating models.
Above 30 M�, we read in an analogous (in terms of rotation and metallicity) 30 M�

model stopped at Lnuc_div_L_upper_limit = 0.1 and use

relax_mass_scale = .true.
new_mass = <value >

instead of create_pre_main_sequence_model = .true..
The next inlist evolves the ZAMS models through the main sequence using

change_v_flag = .true.
new_v_flag = .true.
set_rate_c12ag = ’Kunz’
set_rate_n14pg = ’Imbriani ’
set_rate_3a = ’Fynbo’
kappa_file_prefix = ’gs98’
mesh_delta_coeff = 0.5
use_Type2_opacities = .true.
mixing_length_alpha = 1.5
use_Henyey_MLT = .true.
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use_Ledoux_criterion = .true.
alpha_semiconvection = 0.1
thermo_haline_coeff = 2.0
T_mix_limit = 0
max_iter_for_resid_tol1 = 3
tol_residual_norm1 = 1d-5
max_tries = 50
max_tries_for_retry = 50
max_tries_after_backup = 50
max_tries_after_backup2 = 50
delta_lgL_He_limit = -1
delta_lgP_limit = -1
delta_lgTeff_limit = 0.5
delta_lgL_limit = 0.5
delta_lgRho_cntr_limit = 0.02
dX_nuc_drop_limit = 5d-3

with overshoot above the H-burning core turned on as during the pre-MS evolution above.
The envelope is allowed to more efficiently mix using the “enhanced MLT” scheme with
okay_to_reduce_gradT_excess = .true. and velocities are limited to the stellar core
using

velocity_logT_lower_bound = 9
velocity_Z_lower_bound = 10

Resolution is increased by 0.4 in all transition regions. The mass loss schemes are either

RGB_wind_scheme = ’Dutch ’
AGB_wind_scheme = ’Dutch ’
Dutch_wind_lowT_scheme = ’de␣Jager’
RGB_to_AGB_wind_switch = 1d-4

or

RGB_wind_scheme = ’Dutch ’
AGB_wind_scheme = ’Dutch ’
Dutch_wind_lowT_scheme = ’Nieuwenhuijzen ’
RGB_to_AGB_wind_switch = 1d-4

with Dutch_wind_eta set as described in §5.3. For rotating models, the diffusion coefficients
for rotational mixing are set as the following

D_SH_factor = 0.0
D_SSI_factor = 1.16
D_ES_factor = 1.16
D_GSF_factor = 1.16
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The models are stopped when they reach the end of the MS, controlled by the parameters

xa_central_lower_limit_species (1) = ’h1’
xa_central_lower_limit (1) = 1e-8

Beyond the MS, we turn off the overshoot by setting

overshoot_f_above_burn_h = 0.0
overshoot_f0_above_burn_h = 0.
overshoot_step_fraction = 0.

and evolve the models to central carbon exhaustion at

xa_central_lower_limit_species (1) = ’c12’
xa_central_lower_limit (1) = 1e-6

Finally, we run the models from neon and oxygen burning to core collapse at lower resolution
by setting mesh_delta_coeff = 1.0.

This procedure works uninterrupted for the majority of our model grid. However,
in some cases it was necessary to change a few of MESA star’s other parameters to aid
convergence. For massive stars in which the envelope convection zone reaches deep down
towards the hydrogen burning shell during post-ms evolution, we sometimes needed to
increase dH_div_H_limit to allow relatively large changes in fractional hydrogen abundance
due to the changing mesh at the convective boundary. In a few cases, we needed to increase
solver tolerances (tol_correction_norm and tol_max_correction) to ten or 30 times the
default during the final evolutionary phases to reach core collapse.
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