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Brain Activation during Face Perception: Evidence
of a Developmental Change

E. H. Aylward1, J. E. Park1, K. M. Field1, A. C. Parsons1, T. L. Richards1,
S. C. Cramer2, and A. N. Meltzoff 1

Abstract

& Behavioral studies suggest that children under age 10
process faces using a piecemeal strategy based on individual
distinctive facial features, whereas older children use a
configural strategy based on the spatial relations among the
face’s features. The purpose of this study was to determine
whether activation of the fusiform gyrus, which is involved in
face processing in adults, is greater during face processing
in older children (12–14 years) than in younger children (8–
10 years). Functional MRI scans were obtained while children
viewed faces and houses. A developmental change was
observed: Older children, but not younger children, showed

significantly more activation in bilateral fusiform gyri for faces
than for houses. Activation in the fusiform gyrus correlated
significantly with age and with a behavioral measure of
configural face processing. Regions believed to be involved in
processing basic facial features were activated in both younger
and older children. Some evidence was also observed for greater
activation for houses versus faces for the older children than for
the younger children, suggesting that processing of these two
stimulus types becomes more differentiated as children age. The
current results provide biological insight into changes in visual
processing of faces that occur with normal development. &

INTRODUCTION

Behavioral studies suggest that young children perceive
and recognize faces in a manner different from older
children and adults. Whereas older children and adults
encode faces using a gestalt or holistic strategy based
on the face’s configural information (the spatial rela-
tions among the face’s features), research suggests that
children under age 10 use a piecemeal or analytic strat-
egy reliant on distinctive facial features (Schwarzer, 2000;
Carey & Diamond, 1977). These conclusions are based
on findings of the face inversion effect in older subjects
(�10 years), but not in younger children (�8 years)
(Schwarzer, 2000; Carey & Diamond, 1977). The inver-
sion effect refers to the difference in ability to recognize
or remember an upright visual stimulus, as compared
with an inverted visual stimulus. The magnitude of this
effect is greater for faces than for other objects of
comparable complexity (Yin, 1969).

Carey and Diamond (1977) propose that when piece-
meal face processing is at work, memory for faces is
unaffected by the faces’ orientation because featural
information remains intact (i.e., the same eyes, nose,
and mouth appear in both upright and inverted faces).
Gestalt processing, however, relies on configural infor-
mation that changes when faces are inverted, rendering
memory for inverted faces poorer than memory for
upright faces. Thus, the lack of a face inversion effect

in younger children has been interpreted as reflecting
their tendency to use a piecemeal approach rather than
a gestalt, or configural, approach in processing faces.

Several studies have attempted to determine which
aspects of the relationships among features are essential
for configural processing to occur (see Maurer, Le
Grand, & Mondloch, 2002, for review), and suggest that
this type of processing involves three different steps.
First, there must be sensitivity to first-order relations
(e.g., recognizing that a face is a face because it contains
two eyes above one nose above one mouth); then
holistic processing that ‘‘glues’’ the features into a
gestalt; and then sensitivity to second-order relations
(e.g., perceiving distances that separate each of the facial
features from the others).

In EEG research, the adult N170 recorded over occi-
pito-temporal sensors is considered to reflect the classi-
fication of a stimulus as a face (Bentin, Allison, Puce,
Perez, & McCarthy, 1996). Eyes and upright faces, unlike
nonface objects and scrambled faces (where the face
features are unrecognizable), have been shown to evoke
N170s in viewers of all ages (Taylor, McCarthy, Saliba, &
Degiovanni, 1999). In a study of children ages 4 to
15 years, Taylor, Edmonds, McCarthy, and Allison (2001)
showed that developmental changes in the N170 re-
sponse to upright faces continued until adulthood, sug-
gesting slow maturation of configural processing. In
contrast, the N170 in children was of shorter latency
and greater amplitude in response to eyes alone than to1University of Washington, 2University Of California, Irvine
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faces and was mature by 11 years. This suggests that the
N170 responds to individual features of faces as well as to
configural information, and that this featural processing
is in place much earlier than the configural processing.

Many functional MRI (fMRI) studies have demonstrat-
ed that the region of the brain that is most activated in
adults during viewing of human faces is the fusiform
gyrus (e.g., Kanwisher, McDermott, & Chun, 1997; Puce,
Allison, Asgari, Gore, & McCarthy, 1995). Further re-
search has suggested that the fusiform gyrus is also
activated during viewing of nonface stimuli with which
the viewer has particular expertise (e.g., birds viewed by
birdwatchers; Gauthier, Skudlarski, Gore, & Anderson,
2000). It has been argued that such expertise, like face
perception, involves configural processing of the visual
stimuli (Gauthier & Tarr, 2002). Furthermore, it has
been argued that the emergence of the face inversion
effect results from the development of an ‘‘expert
means’’ of representing upright faces that encodes, no
longer simply individual features, but the configural
information of upright face (Carey & Diamond, 1977).
The emergence of the face inversion effect in later
childhood may therefore result from the development
of an ‘‘expert means’’ of representing upright faces that
develops as a result of experience in viewing faces.

Studies suggest that the fusiform region is involved
not only in second-order processing, but in first-order
processing as well. In fMRI studies, viewing inverted
faces causes little or no change in the level of fusiform
activation (in comparison to viewing upright faces),
suggesting that the fusiform gyrus is involved in first-
order processing (recognizing a face because of specific
key features), as well as its more traditional role of
configural processing (Aguirre, Singh, D’Esposito, 1999;
Haxby, Ungerleider, et al., 1999; Kanwisher, Tong, &
Nakayama, 1998). These fMRI studies suggest that in-
verted faces also increase activation in parts of the
brain known to be involved in object perception, pre-
sumably because of increased difficulty in perceiving
the first-order features. N170 data also support the
notion that the fusiform gyrus is involved in processing
inverted faces (Rossion et al., 2000; Bentin et al., 1996),
and therefore must be responding to featural as well as
configural data.

Thus, evidence from behavioral studies suggests that
young children process faces using a featural strategy
and that a configural strategy slowly emerges with age.
EEG studies demonstrate that the N170 response to
faces decreases in latency and increases in amplitude,
with the adult pattern of face processing appearing to be
fully in place in the mid-teens. fMRI studies indicate that
the fusiform gyrus is the region of the brain that is most
activated during face perception in adults. There is as yet
no evidence for developmental changes in the fusiform
gyrus during viewing of faces.

The current study was designed to assess develop-
mental changes in activation of the fusiform gyrus

during face perception. We hypothesized that older
children would demonstrate greater activation of the
fusiform gyrus than younger children for faces versus
houses because the older children process the config-
ural aspects of the faces. We also hypothesized that
levels of activation in the fusiform would correlate
positively with a behavioral measure of memory for
upright faces and would correlate negatively with mem-
ory for inverted faces. Activation of the fusiform was
also expected to correlate with a measure of configural
processing, the difference in memory accuracy for
upright versus inverted faces. These hypotheses were
based on the assumption that fusiform activation during
viewing of faces reflects the use of configural strategies
for viewing faces that should, in turn, yield better face
memory.

Previous research suggests that the fusiform gyrus
may be involved in processing featural information as
well as configural information. We, therefore, hypothe-
sized that younger children would demonstrate more
fusiform activation for faces than for houses, but that
the level of activation for younger children would be
lower than the level of activation for the older children
who process configural information as well as featural
information.

RESULTS

Behavioral Data

Results of the behavioral testing are shown in Table 1. As
expected, older children remembered more upright
faces than inverted faces [t(8) = 3.2, p = .01]. This
difference approached significance for the younger
children [t(8), p = .07]. Neither group showed signifi-
cantly poorer memory for inverted versus upright hous-
es. For younger children, the percent difference score
for faces (percent correct for faces minus percent cor-
rect for inverted faces) was not significantly different
from the percent difference score for houses (percent
correct for houses minus percent correct for inverted
houses) [t(8) = �0.95, p = .37]. For the older group,
this difference was significant [t(8) = 3.6, p = .007],
with greater difference between face and inverted face
than between houses and inverted houses.

fMRI Results

Results for the faces versus houses comparison are
shown in Figure 1 for the younger group, in Figure 2
for the older group, and in Figure 3 for the older versus
younger comparison. Functional maps have been regis-
tered on a composite of the structural brains for the
appropriate age group. As can be seen in Figure 2,
activation in the bilateral fusiform gyrus was observed
for the older group, with greater activation on the right
than on the left. Other regions of activation included
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bilateral middle and inferior temporal and occipital gyri.
For the younger group, no activation was observed in
the fusiform gyrus, but there was activation more later-
ally in the left inferior temporal gyrus, bilateral occipital
gyri, and bilateral anterior temporal lobe. Table 2 pres-
ents Talairach coordinates of these regions. Figure 3
demonstrates that the right fusiform region showed sig-
nificantly more activation for the older children than
for the younger children. Other regions that were more
activated in older children than younger children in-
cluded the right middle and inferior temporal and
occipital gyri. A separate t test showed no areas of
greater activation for the younger children in compari-
son to the older children.

We also assessed differences between younger and
older children in level of activation for the houses versus
faces comparison. Although neither group showed any
regions that were significantly more activated for houses
than for faces, the group comparison showed a small

region of greater activation for the older group than for
the younger group for houses versus faces in a region
medial and superior to the region activated by faces
(Figure 4). No other regions of increased activation for
the older versus younger group comparison were ob-
served, and there were no regions where younger
children showed more activation than older children
for the houses versus faces comparison.

Activated Voxels within the Fusiform Gyrus

Within the fusiform gyrus, the number of activated
voxels and average z-score were determined, and then
a ratio was calculated by dividing the number of acti-
vated voxels within the fusiform by the number of
activated voxels within the total brain. Table 3 shows
data for the younger and older groups for the faces
versus houses comparison.

For the faces versus houses comparison, groups did
not differ on the number of activated voxels or on the
average z-score in the fusiform gyrus. The groups did
differ, however, on the percentage of fusiform activation
(the number of activated voxels in the fusiform divided
by the number of activated voxels in the total brain times
100) [t(16) = 2.2, p < .05], with older subjects having
greater proportional activation. Because of concern that
left- and right-handers might show different patterns
of results, we repeated the analyses with the three left-
handers omitted. We again found that the older children
had significantly greater percentage of activated voxels
for fusiform gyrus ( p < .05). No group differences were
found for the houses versus faces comparison on aver-
age z-score, number of activated voxels, or percentage
of total brain activation.

There were no significant age group differences for
any of the fusiform gyral measurements for the houses
versus faces comparison. There was, however, an Age
group (older vs. younger) � Comparison (comparing
the activation for houses vs. faces with the activation for
faces vs. houses) interaction for percent fusiform gyral
activation [F(1,16) = 4.9, p < .05]. Post hoc paired t tests
revealed no difference between the houses versus faces
comparison and the faces versus houses comparison in
percent fusiform activation for the younger group, sug-
gesting that the fusiform is essentially processing houses
and faces at the same level of activation. The paired t test
for the older group revealed significantly greater percent
fusiform activation for the faces versus houses compar-
ison (19.8 ± 13.2%) than for the houses versus faces
comparison (12.9 ± 9.0%).

Associations between Behavioral and fMRI Results

Fifteen subjects (9 older and 6 younger) had both
behavioral and scan data. Correlations were performed
between the behavioral measures (accuracy for faces,

Table 1. Behavioral Data

Group Stimuli
Percentage

Correct ± SD

Younger
(n = 9)

Faces 79.6 ± 21.7

Inverted faces 66.7 ± 12.5

Difference between faces
and inverted faces

13.0 ± 18.7

Houses 65.7 ± 21.8

Inverted houses 64.8 ± 16.0

Difference between houses
and inverted houses

0.9 ± 23.4

(Difference betwen
faces and inverted faces)
minus (Difference between
houses and inverted
houses)

12.4 ± 38.0

Older
(n = 9)

Faces 77.8 ± 7.2

Inverted faces 63.9 ± 17.9

Difference between
faces and inverted faces

13.9 ± 13.2

Houses 60.2 ± 10.0

Inverted houses 67.6 ± 17.9

Difference between
houses and inverted houses

�7.4 ± 19.3

(Difference between faces
and inverted faces) minus
(Difference between houses
and inverted houses)

21.3 ± 17.7

310 Journal of Cognitive Neuroscience Volume 17, Number 2



inverted faces, difference between faces and inverted
faces, houses, inverted houses, and difference between
houses and inverted houses) and: (1) average z-score in
the left and right fusiform, (2) number of activated
voxels in each region, and (3) percentage of activated
voxels in each region (the number of activated voxels in
the region divided by the number of activated voxels in
total brain).

For the faces versus houses fMRI comparison, the
face difference score (faces minus inverted faces) cor-
related positively with the average z-score in the fusi-
form gyrus (r = .65, p < .01) (Figure 5) and left
fusiform (r = .68, p < .005), as well as with the number
of activated voxels in the fusiform ( p = .66, r < .01)
and left fusiform (r = .74, p < .005). Percent fusiform
activation in the fusiform also correlated with age (r =
.53, p < .05) (Figure 6).

Memory for faces or inverted faces alone did not
correlate significantly with any of the fusiform measures,
although the correlations between memory for inverted
faces and fusiform measures were in the predicted
directions (positive for faces and negative for inverted
faces). Memory for houses or inverted houses (or the

difference score between these measures) did not cor-
relate with activation in the fusiform.

DISCUSSION

This fMRI study is one of the first to demonstrate a
developmental change in the way faces are processed in
the brain. As shown in Figure 1, there was no significant
difference in brain activation in the fusiform gyrus of
younger subjects when contrasting viewing of faces
versus viewing of houses. Figure 2 shows both right
and left fusiform gyral activation for older children when
viewing faces versus houses, and Figure 3 shows the
contrast between older and younger children. A signif-
icant correlation between age and the percent fusiform
activation (Figure 6) also suggests that the involvement
of the region is developing with age. Activation for faces
versus houses was also observed in both the older and
younger groups in bilateral inferior temporal and occip-
ital gyri, regions that have been found to be involved in
featural processing.

Our results for older children showing greater activa-
tion on the right than on the left are consistent with the

Figure 1. For younger

subjects, brain activation

during viewing of faces was

contrasted with brain
activation during viewing of

houses. Activation for the

group is superimposed upon

the averaged structural brain
of the younger subjects,

warped into stereotaxic

space. The significance of
activation is indicated by the

color bar to the right.

Images are in radiological

convention. Note that there
is no activation in the

fusiform gyral region, the

center of which is at

Talairach coordinates 33,
�39, �15, indicated by

the cross-hair.

Figure 2. The analysis from

Figure 1 is shown here in

older subjects, with the
z-map superimposed upon

the averaged structural brain

of the older subjects, warped
into stereotaxic space.

Note activation in the

fusiform gyral region when

contrasting brain activation
during face versus house

viewing. Color bar and

Talairach coordinates of the

cross-hair are the same as
for Figure 1.
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adult pattern observed in previous studies (Kanwisher,
McDermott, et al., 1997; Puce et al., 1995). The level of
activation in the fusiform gyrus for the older children is
not, however, as robust as is observed in most other
studies with adult subjects. This could suggest that the
fusiform is still not functioning at an adult level in
children who are 12 to 14 years of age, and that further
development will eventually lead to the adult level of
activation. This conclusion is consistent with ERP studies
showing that developmental changes in the N170 re-
sponse to upright faces continue until adulthood (Tay-
lor, Edmonds, et al., 2001), suggesting slow maturation
of configural processing. Alternatively, the relatively low
level of activation in the fusiform may reflect a lack of
attention to the stimuli in our study. No behavioral
response to the stimuli was required in our fMRI study.
Several studies have shown greater levels of activation of
the fusiform for active versus passive viewing.

Neither the younger group nor the older group
showed significantly greater activation for viewing
houses than for viewing faces in any brain region. The
lack of activation for houses versus faces in the younger
children would be consistent with our conclusion that
faces and houses are basically being represented equiv-
alently, although featural processing demands might be
somewhat greater for faces than for houses, as sug-
gested by increased activation of inferior temporal and
occipital gyri. The older children, unlike adults in pre-

vious studies (Gorno-Tempini & Price, 2001; Epstein &
Kanwisher, 1998), showed no areas of greater activation
for the houses versus faces comparison in the para-
hippocampal place area (PPA), or anywhere else in the
brain. Previous studies showing PPA activation for places
suggest greater activation for scenes than for houses or
other buildings, and greater activation for familiar places
than for unfamiliar places. Epstein, Harris, Stanley, and
Kanwisher (1999) conclude that familiarity of land-
marks (campus buildings) increases PPA activity by en-
couraging scene elaboration. Lack of PPA activation in
our study may be associated with the lack of familiarity
of the house stimuli.

Although neither younger nor older subjects showed
significant activation for houses versus faces, the older
group did show more activation for this comparison
than did the younger children in a region lateral to the
right hippocampus (Figure 4) that has been associated
with object perception (Haxby, Ungerleider, et al.,
1999). This group difference provides some indication
for a developmental trend for processing of house
stimuli, with the assumption that even the older chil-
dren are not yet processing houses in exactly the same
region (or to the same extent, in comparison with faces)
as adults. This developmental trend, along with in-
creased activation in the fusiform for the faces versus
houses comparison, suggests an increasing differentia-
tion of how faces and houses are processed.

Figure 3. Older subjects

contrasted with younger

subjects for face versus house

viewing. Data are presented on
the averaged structural brain

from the entire sample,

warped into stereotaxic space.

Older subjects show greater
activation in the right fusiform

gyrus. Color bar and Talairach

coordinates of the cross-hair
are the same as for Figure 1.

Figure 4. Older subjects
contrasted with younger

subjects for house versus

face viewing. Data are

presented on the averaged
structural brain from the

entire sample, warped into

stereotaxic space. Older
subjects show greater

activation in a region just

medial to the right

hippocampus. Color bar is
the same as for Figure 1.

Talairach coordinates of the

cross-hair are 36, �21, �11.
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One possible interpretation of our data is that the
differentiation of brain regions activated in older versus
younger children reflects different ‘‘levels’’ of face pro-
cessing, such as proposed by a model of a distributed

human neural system for face perception (Haxby, Hoff-
man, & Gobbini, 2000). Based on a review of many fMRI
and evoked potential studies of face perception, Haxby
et al. identified three core regions that perform different
functions in processing face information. According to
this model, the inferior occipital gyri are involved in the
most basic processing of featural aspects of the face; the
lateral fusiform gyrus processes the invariant aspects of
faces; and the superior temporal sulcus appears to be
involved in the representation of changeable aspects of
faces (e.g., eye and lip movement, expression). Addi-
tional areas of the brain are recruited to process the
significance of information gleaned from the face, such
as emotions (amygdala), or personal identity (anterior
temporal). In our study, both the older and younger
children demonstrated activation of the inferior occipital
gyri, which would be consistent with the role of this
region in processing the basic featural aspects of the
face. Only the older children, however, showed signifi-
cant activation of the fusiform gyrus, the second level of
the hierarchical model, for the faces versus houses
comparison. This study was not designed to test re-
sponse to changeable aspects of faces (e.g., emotions,
eye movement), so we are unable to conclude whether
developmental changes would occur in the amygdala or
superior temporal gyrus in response to facial movement
or expression.

A multiple-component model of face processing is
supported by EEG studies suggesting that whole faces,
face parts, and even moderately scrambled faces (i.e.,
where facial parts are easily identifiable) are initially
processed in the same regions, although latencies are
slightly longer for face parts and scrambled faces
(George, Evans, Fiori, Davidoff, & Renault, 1996). Shibata
et al. (2002) found two different visual evoked poten-
tials with similar latencies (i.e., N170) that are sensitive
to faces in general and human eyes, respectively. Dipole
source localization analysis indicated that dipoles for the
N170 elicited by eyes were located in the posterior
inferior temporal gyrus, and those for faces, located
initially in the same region, but moved toward the
fusiform and lingual gyri at the late phase of the N170.

Table 3. Activated Voxels within the Fusiform for Faces versus Houses in Younger and Older Subjects

Group Region
Mean Number of
Activated Voxels

Percentage Total
Brain Activation

Average z-score of All
Voxels within Region

Younger (n = 8) Right Fusiform 146.7 ± 161.6 3.5 ± 4.2 0.13 ± 0.12

Left Fusiform 228.5 ± 305.7 4.1 ± 5.9 0.19 ± 0.19

Total Fusiform 375.2 ± 426.4 7.6 ± 9.0 0.16 ± 0.14

Older (n = 10) Right Fusiform 340.4 ± 462.9 8.5 ± 11.3 0.25 ± 0.28

Left Fusiform 503.3 ± 526.7 11.3 ± 10.3 0.32 ± 0.31

Total Fusiform 843.7 ± 818.0 19.8 ± 13.2* 0.28 ± 0.25

*p < .05 for comparison of older versus younger subjects.

Table 2. Tailarach Coordinates of Regions Other than the
Fusiform that were Activated by the Face versus House
Comparison for Each Group

Older Group

R Middle Temporal 56 �33 �6

L Middle Temporal �55 �10 �7

R Inferior Temporal 42 �48 �6

L Middle Occipital �39 �70 �7

R Middle Occipital 42 �70 �7

L Inferior Occipital �35 �64 �5

R Inferior Occipital 43 �72 �6

R Lingual 11 �82 �14

L Lingual �18 �83 �14

Younger Group

R Inferior Temporal 43 �44 �10

L Inferior Occipital �40 �66 �9

R Inferior Occipital 39 �59 �8

R Middle Occipital 36 �68 9

L Superior Temporal �49 �20 3

R Superior Frontal 7 13 46

Older > Younger

R Middle Temporal 40 �64 �1

L Middle Temporal �48 �60 �4

R Lingual Gyrus 13 �82 �10

L Lingual Gyrus �20 �85 �4
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Our finding of activation of the fusiform and lingual gyri
in the older children, but not in the younger children,
again suggests that the brains of younger children may be
responding more to the features of the face than to the
whole face.

Our results are also consistent with an ERP study of
children ages 4–14 years and adults (Taylor, McCarthy,
et al., 1999) that supports a multicomponent model of
face processing. An N170 was recorded to faces at pos-
terior temporal sites across age groups, but at steadily
increasing latencies in the younger children. In children
under 12 years of age, the frontal P170 could not reli-
ably be seen, leading the investigators to conclude that
the underlying neural basis associated with processing
faces matures in a gradual, quantitative manner through-
out childhood. De Haan, Pascalis, and Johnson (2002)
found a putative ‘‘infant N170’’ that distinguished hu-
man faces from nonhuman primate faces, but did not re-
spond to the orientation of the face, again suggesting a
slowly developing system that grows in specificity in its
response to faces.

Although our findings suggest that the brain areas
used to process faces and houses change as children get
older, we cannot necessarily conclude that increased
activation of the fusiform reflects a more ‘‘configural’’
approach to face processing in the older children. The
hypothesis that younger children process faces with a
more piecemeal approach than a configural approach
was only marginally supported by our behavioral data.
The difference in accuracy for remembering upright
versus inverted faces was only slightly greater in older
subjects than in younger subjects, and this group differ-

ence was primarily due to better performance by the
older subjects for inverted houses than for upright
houses. Our behavior data are, however, consistent with
results from other studies that suggest steady progress
toward using a configural approach to process faces
(Bruce et al., 2000; Carey, Diamond, & Woods, 1980)
in children between ages 6 and 10, rather than a sud-
den strategic shift after age 10. Indeed, previous behav-
ioral studies suggest that a face inversion effect may be
seen under certain circumstances at much younger ages
(Mondloch, Le Grand, & Maurer, 2002; Brace et al., 2001;
Freire & Lee, 2001), possibly even in infants (Cohen &
Cashon, 2001), and that a steady improvement occurs
in upright face-encoding efficiency in children from age
6 to age 10 (Carey & Diamond, 1994). We suspect that a
younger sample of children would be required to show
a total lack of memory difference for upright versus in-
verted faces. Similar to our older group of subjects, the
older subjects (10-year-olds) in the study by Carey and
Diamond (1977) also showed somewhat better perfor-
mance on inverted houses than on upright houses.

Our correlational data support to some extent the
hypothesis that the developmental increase in fusiform
activation may be associated with a greater configural (as
opposed to ‘‘piecemeal’’) approach to face processing.
Activation in the fusiform for the faces versus houses
comparison was significantly correlated with the differ-
ence in memory for faces versus inverted faces. If one
accepts the assumption that the discrepancy in memory
for upright versus inverted faces reflects the extent to
which a configural approach is being used, our correla-
tional data provide some evidence that children with
greater fusiform activation are more successful at using
configural processing (Figure 5). Gauthier, Skudlarski,

Figure 5. Correlation between difference score for accuracy of
memory for upright versus inverted faces and average z-score within

the fusiform gyrus. Positive scores ref lect better memory for upright

than for inverted faces. White squares represent older children and
black squares represent younger children.

Figure 6. Correlation between age and percent fusiform activation
(the number of activated voxels in the fusiform divided by the number

of activated voxels in the entire brain, multiplied by 100).
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et al. (2000) found similar results, with relative expertise
for birds or cars (as measured by tests that required
matching of bird species or car model year) positively
correlated with relative percent signal change for birds
versus cars in the right fusiform face area. Although we
hypothesized negative associations between fusiform
activation and memory for inverted faces, and positive
associations between fusiform activation and memory
for faces, these correlations were not significant. Thus, it
appears that activation in the fusiform gyrus is associ-
ated with use of a configural strategy, but that it is not
necessarily associated with accuracy of memory for
faces, as many other factors must certainly affect this
type of memory. In this sample, neither memory for
upright nor memory for inverted faces was correlated
with the face difference score (r = .14 and .004, re-
spectively), which is assumed to reflect use of a config-
ural strategy.

Recent studies have suggested that the fusiform gyrus
is activated by stimuli with which the viewer has ‘‘ex-
pertise’’ (Gauthier, Skudlarski, et al., 2000). Further-
more, an ‘‘inversion effect’’ can be observed for stimuli
other than faces with which the viewer has expertise
(Gauthier, Skudlarski, et al., 2000; Carey & Diamond,
1986). Carey and Diamond (1977) theorize that the
substantial effect of face inversion that emerges after
age 10 results from the development of an expert
means, based on experience, of representing upright
faces that encodes not simply individual distinctive
features, but the configural information of upright faces.
Alternatively, it could be argued that the fusiform gyrus
is not developmentally ‘‘ready’’ to deal with stimuli in a
configural manner until the child is older, and this
maturation may be somewhat independent of the num-
ber of faces encountered in one’s lifetime. According to
this view, the child must rely on a piecemeal approach
for perception until the fusiform gyrus matures. Our
results cannot clearly adjudicate between these alterna-
tive hypotheses.

Previous research suggests that the fusiform gyrus is
activated when adults view inverted faces as well as
upright faces (Aguirre et al., 1999; Haxby, Ungerleider,
et al., 1999; Kanwisher, Tong, et al.,1998), suggesting
that this brain region is involved in featural processing as
well as in configural processing. We did not, however,
find significant differences in fusiform activation for the
younger children when they viewed faces versus houses,
suggesting that the fusiform gyrus is not even being used
for featural processing in younger children. In addition,
for the young children, the percent fusiform activation
(the number of activated fusiform voxels divided by the
total number of activated voxels in the brain) was not
significantly different for the faces versus houses com-
parison (7.6 ± 9.0%) than for the houses versus faces
comparison (6.5 ± 8.9%; t = .68, p = .52). This finding
might lend support for the interpretation that the
fusiform gyrus is not yet fully functionally developed,

as it is not yet responding specifically to faces, either to
their featural or configural aspects.

Developmental studies involving training of subjects
to increase ‘‘expertise’’ with either face or nonface
stimuli may be able to determine whether the limited
fusiform activation in the younger children is the result
of limited experience with faces, or due to developmen-
tal immaturity of the fusiform. [Studies with adults
suggest that training on nonface stimuli may activate
the fusiform (Gauthier, Tarr, Anderson, Skudlarski, &
Gore, 1999), but these studies have been performed in
subjects whose fusiform presumably is functioning in a
mature fashion.] Furthermore, such training studies may
be helpful in understanding disorders such as autism, in
which perception and memory for faces are deficient.
Previous research has demonstrated abnormal activation
of the fusiform gyrus in adolescent and adult autistic
subjects during face perception (Pierce, Muller, Amp-
brose, Allen, & Courchesne, 2001; Schultz et al., 2000).
Similar to the younger children in this study, viewing of
faces activated the inferior temporal gyrus in the sub-
jects with autism. Studies of people with autism involv-
ing training them with a novel set of faces may be useful
in determining whether their lack of focal activation
during face processing is the result of: (a) a ‘‘faulty’’ or
developmentally immature fusiform gyrus, or (b) a lack
of experience with faces, perhaps due to failure to look
at people’s faces in early childhood.

The extent to which memory for faces and inverted
faces should be associated with fusiform activation is
unclear. Although many studies with adults show less
fusiform activation for viewing inverted than for upright
faces (or trained stimuli), there is little known about the
relationship between memory for these stimuli and
fusiform activation. However, because it is assumed that
the difference in accuracy of recognition for upright
versus inverted faces reflects use of configural process-
ing, and activation of the fusiform gyrus is associated
with configural processing, it is reasonable to hypothe-
size that increased activation of the fusiform during
viewing of upright faces (as compared with nonface
stimuli) will be correlated with better accuracy for face
recognition. Based on these assumptions, we hypothe-
sized that levels of activation in the fusiform would
correlate positively with memory for upright faces, as
well as for the difference in memory accuracy for upright
versus inverted faces, and would correlate negatively
with memory for inverted faces.

As indicated above, our measure of configural pro-
cessing (memory for upright vs. inverted faces) corre-
lated significantly with activation in the total fusiform
gyrus and in the left fusiform, but not in the right. Most
studies with adults suggest fusiform activation on the
right is more strongly associated with configural pro-
cessing. A recent study with children who had restricted
vision in the right or left visual fields as infants suggests
that input to the right, but not to the left, visual field
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caused impaired second-order relational processing (Le
Grand, Mondloch, Maurer, & Brent, 2003). There is,
however, evidence that both right and left fusiform areas
are involved in face processing. Measuring PET response
during viewing of faces and nonface stimuli, Rossion
et al. (2000) concluded that face-specific processing
occurs in both the right and the left middle fusiform
gyrus, and show that the response in the left fusiform
can be greater than that in the right during face percep-
tion if attention is directed toward individual facial
features. This is consistent with other behavioral, clini-
cal, and EEG studies (Tovée, 1998; Rhodes, 1993) which
suggest that recognition of faces by the left hemisphere
of the brain occurs when processing involves more of a
piecemeal approach.

Several limitations of this study must be addressed. It
could be argued that age group differences in fusi-
form gyral activation might potentially be explained
by a lesser degree of attention to faces for the younger
subjects. If this were the case, one would not expect
to find any regions of activation for the faces versus
houses comparison. The regions that were found to have
greater activation for faces than houses for the younger
children—the bilateral inferior temporal gyri and inferior
posterior occipital region, and the anterior temporal
lobe—include regions associated with object perception
(Ishai, Ungerleider, & Haxby, 2000). In a PET study of
2-month-old infants, Tzourio-Mazoyer et al. (2002)
found that faces activated the same bilateral inferior oc-
cipital area that corresponds to an occipital face area
previously identified in adults as involved in perceiving
featural aspects of faces. Furthermore, one would have
expected greater activation for older children than youn-
ger children for the faces versus fixation comparison
(see Methods, fMRI Techniques). Although the activation
for faces versus fixation was somewhat more localized
to occipital regions in older children than in younger
children, the total number of brain voxels activated
for this comparison was not significantly different for
the two groups [t(16) = 0.96, p = .35]. The potential
of differential attention to faces versus houses could be
tested in future studies by conducting memory tests
for stimuli observed during scanning or by including a
test of face matching or working memory during the scan
session.

Another possible consideration in interpreting the age
group differences would be potential differences in
hemodynamic response for the two age groups. Al-
though this was not assessed in this study, previous
research has found that peak amplitudes of hemody-
namic time courses were comparable between adults
and children (ages 7–8) on a simple visual reaction time
task in all eight brain regions studied, and that time
courses were comparable in seven of eight regions
(Kang, Burgund, Lugar, Petersen, & Schlaggar, 2003).
These investigators concluded that their findings vali-
date the feasibility of direct statistical comparison of

children and adult fMRI data, suggesting no evidence
of developmental changes in the level of general hemo-
dynamic response.

In this study, we did not include children younger
than 8 years due to concerns regarding cooperation
among younger children during scanning. Because some
activation of the fusiform occurred in children age 8–
10 years (Table 3), it would be ideal to repeat this study
with children who are even younger. Understanding the
development of brain function for face processing in
normal children will be important in understanding and
treating atypical face processing strategies in develop-
mental disorders.

METHODS

Participants

Participants were 11 children age 8–10 years (7 boys,
4 girls; mean age = 9.3 ± 0.86 years) and 10 children
age 12–14 years (6 boys, 4 girls; mean age = 13.0 ±
0.86 years). All but two older girls and one younger boy
were right handed. Three of the younger boys could not
tolerate the scanning procedure, but behavioral data
were available. Behavioral data were not available for
one of the older boys and two of the younger boys
because of computer problems. Participants were re-
cruited through flyers posted at local schools and in the
hospital, and through personal contacts. Children with a
neurological disorder or unremovable foreign metal
such as oral braces were excluded from the study.
Children and their parents gave informed consent prior
to the study, which was approved by the University of
Washington Human Subjects Institutional Review Board.

Behavioral Techniques

As in the developmental study by Carey and Diamond
(1977), participants were presented with two memory
tasks. In the first, subjects were asked to remember 15
faces randomly intermixed with 15 houses, each picture
shown individually in upright orientation for 2 sec
(Figure 7). Immediately afterward, subjects were shown
12 pairs of faces and 12 pairs of houses and indicated via
arrow keys which picture in each pair had been previ-
ously presented. The second memory task was identical
to the first except that faces and houses were presented
upside down. The pictures for the two tasks (upright
and inverted) were different, with sets counterbalanced
across subjects. Thus, the pictures that were presented
upright for half of the subjects were presented upside
down for the other half of the subjects, and vice versa.
Face stimuli were gray-scale digital photos of Caucasian
men who were 18–35 years old and without facial hair,
glasses, or jewelry. E-Prime (Version 1.0, Psychology
Software Tools, Pittsburgh, PA) was used to present
the stimuli and to record the participants’ responses.
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Behavioral data were analyzed using the same method
used by Carey and Diamond (1977). Percent correct was
calculated for each type of stimuli (upright faces, in-
verted faces, upright houses, inverted houses). A differ-
ence score was calculated by subtracting percent correct
for inverted faces from percent correct for upright faces,
and the same was done for inverted houses and upright
houses. Within each group, paired t tests were used to
determine whether there were differences in memory
for upright versus inverted stimuli, and whether differ-
ence scores (upright minus inverted) were different for
the two types of stimuli.

fMRI Techniques

Scan Acquisition

Structural and functional MRI were performed on a 1.5 T
MR imaging system (General Electric, Waukesha). Scan-
ning included a 21-slice axial set of anatomical images in
plane with functional data (TR/TE 200/2.2 msec; fast
spoiled gradient-echo pulse sequence; 6 mm thick with
1 mm gap; 256 � 256 matrix). Anatomical imaging was
followed by an fMRI series using two-dimensional
gradient-echo echo-planar pulse sequence (TR/TE
3000/50 msec, 21 slices; 6 mm thick with 1 mm gap,
64 � 64 matrix, 114 volumes total; time = 342 sec). Dur-
ing the scan the subject viewed pictures of faces for a
36-sec epoch, followed by a 36-sec epoch of pictures
of houses. Each pair of epochs was repeated 4 times,
with novel stimuli used for each epoch. Each picture
was presented for 6 sec, with no interstimulus inter-
val. In addition, an 18-sec fixation condition (crosshair)
was presented at the beginning, middle, and end of
the 342-sec scan. Face stimuli were digital photos of
24 Caucasian adult men and women without glasses or
jewelry. No pictures were used as stimuli for both the
behavioral and fMRI studies. The conditions were coun-
terbalanced so that faces were shown before houses to

half of the participants in each age group, and houses
were shown first to the other half.

Image Processing and Analysis

fMRI scans were analyzed using MEDx (version 3.4.1)
(Sensor Systems, Sterling, VA). The data were motion
corrected, linear detrended, and a t test was performed
contrasting the two conditions within each scan, with
results expressed as a z-score. Each subject’s activation
z-map was spatially smoothed with a 4-mm gaussian
filter and converted to standard stereotaxic space of
Talairach and Tournoux (1988) using FLIRT (www.fmrib.
ox.ac.uk/fsl/). Maps showing significant activation for
each group were generated (Bosch, 2000). Activated
voxels with z > 2.4 and belonging to an activation
cluster with size greater than that expected by chance
( p < .05) were identified (Friston, Worsley, Frackowiak,
Mazziotta, & Evans, 1994). This approach considers
the significance of activation in the voxel of interest as
well as in adjacent voxels to identify a voxel as signifi-
cantly activated, and also corrects for multiple compar-
isons. In order to compare z-maps between the two age
groups, we calculated a z-map contrasting respective
values using the two-sample test statistic for comparison
of means (Rosner, 1995).

In addition to group comparisons of z-maps, we also
quantified the average z-score and the number of acti-
vated voxels (i.e., those reaching threshold of �2.4) in
the fusiform gyrus. These activation measures were
obtained for each hemisphere and for the two compar-
isons (faces vs. houses and houses vs. faces). The
regions were outlined manually on the stereotaxic space
anatomical template, then converted to a mask and
applied to each individual subject’s z-map in stereotaxic
space. (Brain volumes for the two groups were not
significantly different, t(16) = 1.8, p = .65, making it
unlikely that any systematic variance in the warping

Figure 7. Example of

upright and inverted face

and upright and inverted

house. For the behavioral
task, subjects saw individual

faces (upright and inverted)

and houses (upright and

inverted). These are
examples of the stimuli used

for the forced-choice test

condition in which subjects
were required to indicate

which face or house in the

pair was the one they had

previously viewed.
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procedure would falsely result in group differences. In
addition, visual inspection showed that regions of acti-
vation on individual maps were in the same structures as
on the group maps.) The total number of significantly
activated voxels within the whole brain was also calcu-
lated, and ratios were computed (activated voxel count
in each region /total brain activated voxel count). Pear-
son correlations were performed between behavioral
data (e.g., memory for upright vs. inverted faces) and
the activation data.
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