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ABSTRACT OF THE DISSERTATION

Microfluidic Tools for Precise Temperature Measurement and Chemical Analysis

by

Brittney Aquaila McKenzie

Doctor of Philosophy, Graduate Program in Bioengineering
University of California, Riverside, June 2019

Dr. William H. Grover, Chairperson

Tools for identifying substances are important in many different fields and have

a wide range of applications. Conventional analytical tools and instruments such as spec-

troscopy and chromatography systems are exceptional in their ability to measure and analyze

samples. However, the cost, size, and complexity of these instruments limit their use in im-

portant applications in resource-limited settings. While “frugal science”— science solutions

that prioritize both cost and function— has made strides in expanding access to health-

care and research, there is still an unmet need for more low-cost and accessible research

and analytical tools. In this work, I develop simple, low-cost, and effective analytical tools

on microfluidic platforms that utilize changes in the physical properties of substances to

examine and analyze samples. I introduce microfluidic tools and methods to accurately

measure temperature and identify substances, or adulteration of substances, in small vol-

umes. I accomplish this work through three projects. In the first project, a Microfluidic

Thermometer, I demonstrate a simple and low-cost technique to accurately measure tem-

peratures in small volumes using a 3D-printed microfluidic chip. With this method, the

vi



temperature of a sample can be measured with about a quarter of a degree Celsius uncer-

tainty. For the second project, Chronoprints, I demonstrate a simple and low-cost method

for identifying a sample based on visualizing how the sample changes in response to a per-

turbation over space and time. With this technique, authentic foodstuffs are distinguished

from adulterated foodstuffs, adulterated medication is identified, and occasionally-confused

pharmaceutical ingredients are easily distinguished. Finally for the third project, Enhanced

Chronoprints, I demonstrate a simple and low-cost method for identifying a sample based

on visualizing changes in the interaction of a falling metal bead with the sample. The cost,

simplicity, versatility, and accuracy of these techniques make them valuable analytical tools

in a variety of different fields and settings.
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Chapter 1

Introduction

1.1 Motivation and Significance

Technology for measuring the physical properties of samples and Identifying sub-

stances by their properties are important in many different fields and have a wide range

of applications. Conventional analytical tools and instrumentals such as spectroscopy and

chromatography systems are exceptional in their ability to measure and analyze samples.

However, the initial cost and operating costs, along with the size and complexity of these

instruments limit their use in important applications in resource-limited settings (Figrure

1.1). While “frugal science”— science solutions that prioritize both cost and function— has

made strides in expanding access to healthcare and scientific research, with technologies

such as the “Foldscope” (fold-able microscope with over 60,000 distributed to over 135 coun-

tries (Figure 1.2A) [1] and the “Mbira Sensor” (modified music instrument that measures

and identifies substances, Figure 1.2B [2]), along with the MECs (Multifluidic Evolutionary

Components, Figure 1.2C) [3] “building blocks” to create instruments and the quick rise in

1



the use of microcontrollers and open-source 3D-printing to create lab equipment [4, 5, 6]

(Figure 1.2D), there is still an unmet need for more low-cost and accessible research and

analytical tools. In my work I develop simple, low-cost, and effective analytical tools that

utilize changes in intrinsic physical properties for the analysis of samples on microfluidic

platforms.

Figure 1.1: Chemical analysis instruments such as the liquid chromatography - Mass Spec-
trometer (Thermo Scientific Exactive LC-MS) are complex, take up a lot of space, are
expensive, and often require additional equipment to operate.

1.2 Approach

Intrinsic physical properties are inherent qualities of matter and they only change

when the matter itself has changed. Since they are independent of the amount of material or

substance present, examining measurements of these properties for a substance or material

2
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Figure 1.2: Low-cost tools improve access to healthcare and research capabilities. (A) The
Foldscope paper microscope has been used all over the world to study the environment,
plant biology and pathology, as well as human an animal biology and pathology [1]. (B)
The Mbira Sensor identifies a substance by detecting the sound frequency emitted by the
instrument when a sample flows through the device— which correlates to the density of the
sample— and has shown to distinguish pharmaceutical ingredients and detect adulterated
medicines [2]. (C) The MECs “building blocks” are designed to integrate together to build
custom instruments quickly and perform a wide array of different tasks [3]. (D) The 3D
printed microscope cost under 100 euros, was designed for open-source use, and is made of
3D-printed components and a microcontroller system with a high-definition camera; it has
been used to study neurogenetics [6].
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while the sample undergoes a change can provide a wealth of information about the sample.

Since all matter have intrinsic physical properties, a wide range of substances and materials

can be studied and variety of intrinsic property measurements (e.g. density, boiling point,

freezing/melting point, etc.) can be explored. In this work I focus on the freezing and

melting properties of substances and develop techniques for measuring temperature and

identifying substances in microfluidic chips based on these properties; I leverage the phase

changes of the samples between the solid and liquid states, Figure 1.3. I chose to develop

these methods in a microfluidic configuration because microfluidic devices are capable of

rapid and high throughput processing of samples, they’re scalable, typically have a small

footprint, and they consume minimal sample and generate minimal waste. The versatility

of microfluidic devices make them valuable tools in a variety of settings and fields.

1.3 Project Overview

In this work I introduce microfluidic tools and methods to accurately measure

temperature and identify substances, or adulteration of substances, in small volumes. I

accomplish this through three projects: a Microfluidic Thermometer, Chronoprints, and

Enhanced Chronoprints.

A microfluidic thermometer: Precise temperature measurements in mi-

croliter and nanoliter-scale volumes— In this project I develop a simple, and low-cost

method to precisely measure the temperature of samples within a microfluidic chip based on

their freezing and melting points. Measuring the temperature of a sample is a fundamental

need in many biological and chemical processes. By providing a low-cost and simple way to

4
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Figure 1.3: A general phase diagram for a substance. In this work I focus on the freezing and
melting properties of substances and leverage the phase changes of these samples (between
the solid and liquid phases) to develop techniques for measuring temperature and identifying
substances.
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accurately measure temperatures in small volumes, this technique can have applications in

a wide variety of research and educational laboratories.

Chronoprints: Identifying samples by visualizing how they change over

space and time— In this project I build upon the microfluidic thermometer work and

take it in a new direction to identify adulterated food products and medicine. The modern

tools of chemistry excel at identifying a sample, but the cost, size, complexity, and power

consumption of these instruments often preclude their use in resource-limited settings. In

this work, I demonstrate a simple and low-cost method for identifying a sample based on

visualizing how the sample changes in response to a perturbation over space and time. The

simplicity and versatility of this technique should make them valuable analytical tools in a

variety of different fields.

Enhanced chronoprints: Identifying samples by visualizing changes in

particle interactions— The previous chronoprint method has some limitations with the

types of samples that can be analyzed and compared, and in this project I develop a method

to address those limitations. I build upon the original chonoprint method, and demonstrate

a simple and low-cost method for identifying a sample based on visualizing how the inter-

action of a metal bead with the sample changes in response to a perturbation over space

and time. This broadens the range of sample types that can be analyzed with the chrono-

print technique and enables the distinction between different substances based on how their

material properties change in response to a perturbation.

This work concludes with prospects for applications in the development of phar-

maceutical drug and ingredients.
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Chapter 2

A microfluidic thermometer: Precise

temperature measurements in

microliter- and nanoliter-scale

volumes

2.1 Introduction

The ability to accurately measure temperatures is a crucial need in many biological

and chemical processes [7, 8, 9, 10]. For milliliter-scale volumes, conventional thermometers

and sensors like thermocouples and thermistors are adequate for measuring the temperature

of a substance. However, these techniques are less suitable for measuring the tempera-

ture of microliter- or nanoliter-scale volumes (which are commonly encountered with cells,
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microorganisms, precious samples, and samples inside microfluidic chips). Infrared (IR)

thermometers can measure the temperature of a surface[11, 12, 13], but their sensitivity to a

material’s emissivity and large sensing area make IR thermometers less suitable for measur-

ing the temperature of the fluid inside a microfluidic chip [14, 15]. Similarly, thermocouples

affixed to the surface of a microfluidic chip can measure the surface temperature, but there

can be significant temperature differences between the surface of a chip and the fluid inside

the chip[16]. Resistance temperature detectors (RTDs) can be fabricated inside microfluidic

channels [17, 18, 19, 20, 21], but RTDs complicate the chip fabrication process and can

be physically or chemically incompatible with on-chip fluids. Finally, temperature-sensitive

fluorophores, magnetic nanoparticles, and nanodiamond probes can be added to a fluid to

measure its temperature [22, 23, 24, 25], but these methods require lasers or magnetic fields

to activate the probes and may not be chemically or biologically compatible with all samples.

In summary, there is an unmet need for simple, broadly-applicable, and label-free techniques

for measuring temperatures in small fluid volumes.

In this work we present a “microfluidic thermometer”, a simple microfluidic chip

that can measure the temperature of microliter- and nanoliter-scale volumes of fluid with an

uncertainty of a quarter of a degree Celsius. The microfluidic thermometer shown in Figure

2.1 takes advantage of the fact that when two phases of a substance (for example, liquid

water and ice) are both present at the same location, the temperature of that location at

equilibrium is precisely known (in this example, 0 ◦C). By adding an array of channels to a

microfluidic chip, filling those channels with materials with known freezing/melting points,

establishing a stable and linear temperature gradient perpendicular to the channels within
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a measurement region on the chip, and locating the solid-liquid interfaces in the channels,

one can visualize the temperature gradient inside the chip and predict the temperature of a

sample at any arbitrary point in the measurement region. Solid-liquid interfaces have previ-

ously been used for adsorption of proteins [26, 27, 28], surfactants [29, 30], and polymers[31]

and the formation of lipid bilayers [32], metals and alloys [33, 34], and free radicals [35], but

to our knowledge, no previous study has used the locations of multiple solid-liquid interfaces

as a tool to measure temperature.

In this proof-of-concept, we created a prototype 3D-printed microfluidic thermome-

ter chip and a custom software tool that can measure the temperature of a 50 microliter

sample. We used this chip to measure the “unknown” freezing point of a sodium chloride

solution. We also created a 3D heat transfer model of the thermometer chip to visualize

the temperature gradient and isotherms inside the device. Finally, we also demonstrated

the feasibility of this technique in even smaller (nanoliter-scale) volumes using a glass mi-

crofluidic chip. The design of the thermometer chip in standard .STL format (section 2.6.1)

and source code for our software tool (sections 2.6.2 and 2.6.3) are available for download,

meaning that anyone with access to a suitable 3D printer can replicate our technique and

use it to analyze their own samples.
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Figure 2.1: Design and operation of the 3D-printed microfluidic thermometer chip. (A)
The chip is placed halfway on a thermoelectric cooler to establish a temperature gradient
in the measurement region inside the chip, and the chip is located inside a 3D-printed
environmental chamber to eliminate condensation. (B) The thermometer chip includes five
channels (A–E) for containing samples and standards with known freezing/melting points,
and a measurement region in which the temperature gradient is roughly linear. (C) In
a microscope image of the measurement region while the channels are filled with water,
the solid-liquid interfaces are visible and define an isotherm (T = 0 ◦C) inside the chip.
(D) During use, the user locates solid-liquid interfaces in four channels containing fluids
with known freezing/melting points (0 ◦C and -5.08 ◦C in this example), and our software
uses these locations to calculate the linear temperature gradient along the channels in this
region. (E) Using this gradient, the temperature of the contents of the middle channel can
be determined at any point within the measurement region with an uncertainty of about a
quarter of a degree Celsius.
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2.2 Materials and Methods

2.2.1 Designing and fabricating microfluidic thermometer chips

The microfluidic thermometer chip shown in Figure 2.1 was designed using Solid-

Works (Dassault Systèmes, Vélizy-Villacoublay, France). The chip is 50 mm long, 25 mm

wide, and contains five parallel channels with curved entries and exits to provide adequate

space for fluid inlets and outlets. Each channel is 1 mm wide, 1 mm deep, and 30 mm

long (along the straight portions) with 1.5 mm space between each channel. The chip de-

sign was exported as an .STL file (section 2.6.1) and printed using a stereolithography 3D

printer (Form 1+, Formlabs, Cambridge, MA) with clear resin (GPCL02; Formlabs). After

printing, unpolymerized resin was rinsed away by immersing the chip in isopropanol for 5

minutes, then the device was left to dry overnight.

Additionally, to confirm that our technique can be used with even smaller volumes,

a glass microfluidic thermometer chip was fabricated that contains just 400 nL of each fluid.

This chip was designed using AutoCAD (Autodesk, San Rafael, CA) and a photomask con-

taining the design was printed using an overhead projector transparency and a conventional

inkjet printer. The photomask transparency was placed in contact with a chromium- and

photoresist-coated glass photomask blank (Telic, Valencia, CA) and irradiated using ultra-

violet light. The exposed regions of photoresist were removed using a developer, and the

exposed regions of chromium were removed using a chrome etchant. The now-exposed re-

gions of glass were etched to the desired channel depth using 49% hydrofluoric acid. The

remaining photoresist and chromium regions were then removed using acetone and chrome

etch, respectively. Fluid inlet/outlet holes were drilled in the glass wafer using diamond-
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tipped drill bits, and the wafer was bonded to a second (blank) glass wafer using thermal

fusion bonding (668 ◦C for 8 hours).

2.2.2 Preparing liquids with known freezing points

As long as a substance has an identifiable interface between its solid and liquid

phases and a precisely-known freezing/melting temperature, the substance could in prin-

ciple be used in a microfluidic thermometer. In this work we used pure water (freezing

point 0 ◦C), sodium chloride (NaCl) solutions with precisely-known freezing points down

to −5.08 ◦C [36], and pure coconut oil with a precisely-known solidification temperature of

24.1 ◦C [37]. To enhance the visibility of the solid-liquid interface of the sodium chloride

solutions, we added a small amount of blue food coloring to each solution (final concentra-

tion 0.01% food coloring by mass). Since coconut oil is transparent when liquid but opaque

and white when solid, the solid-liquid interface in coconut oil is easily identified and no

food coloring or other additives were needed to visualize this interface. Each channel of the

3D-printed microfluidic thermometer chip received 50 µL of liquid, and each channel of the

glass microfluidic thermometer chip received 400 nL of liquid.

2.2.3 Establishing a temperature gradient across the measurement region

on the thermometer chip

A stable temperature gradient was formed across the measurement region on the

microfluidic thermometer chip by placing part of the chip on a thermoelectric cooler; the

rest of the chip was suspended in air (Figure 2.1A). The thermoelectric cooler (TEC1-12706,

Hebei I.T. Co., Shanghai, China) is connected to a recirculating water line that removes
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excess heat from the backside of the cooler. To suppress water condensation on the chip

(which makes the contents of the chip difficult to visualize), the chip and cooler were placed

inside a 3D-printed enclosure that was gently purged with dry nitrogen at 10 ◦C. A glass

lid on the enclosure allows for visualization of the thermometer chip. In this manner, we

created a stable temperature gradient across the thermometer chip that spans from −20 ◦C

(at the end of the chip nearest the cooler) to 10 ◦C (at the suspended end of the chip). For

experiments requiring temperature gradients near room temperature (for example, using

coconut oil that solidifies at 24.1 ◦C), we simply reversed the polarity of the thermoelectric

cooler to make it function as a heater.

2.2.4 Using the microfluidic thermometer chip

In a typical experiment, the five channels on the thermometer chip (labeled A–E in

Figure 2.1B) are filled with three different materials. Channels A and D contain a material

with a known freezing point T1, channels B and E contain a second material with a known

freezing point T2, and channel C contains a material whose temperature is to be measured.

While the thermometer chip allows for the measurement of the temperature at any location

within channel C, in the following analysis we are interested in measuring the temperature

at the location where the solid and liquid phases of the material in channel C touch—that

is, the unknown freezing point Tunk of the material in channel C. The chip is then placed

on the cooler assembly as shown in Figure 2.1A and given 20 minutes to reach thermal

equilibrium. An inspection microscope (SM-4TZ-144A, AmScope, Irvine, CA) is used to

acquire an image of solid-liquid interfaces inside the five channels on the thermometer chip.
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The image of the microfluidic thermometer chip is then opened in a custom Python

program (sections 2.6.2 and 2.6.3). The user specifies the known freezing points T1 and T2

of the materials in channels A/D and B/E, respectively. The program then instructs the

user to click on the locations of the solid-liquid interfaces in all five channels. This provides

the program with the (x, y) coordinates of these interfaces in units of pixels:

• (xA, yA): location of solid-liquid interface in channel A at temperature T1

• (xD, yD): location of solid-liquid interface in channel D at temperature T1

• (xB, yB): location of solid-liquid interface in channel B at temperature T2

• (xE , yE): location of solid-liquid interface in channel E at temperature T2

• (xC , yC): location of solid-liquid interface in channel C at temperature Tunk

The program then calculates the slope m1 and y-intercept b1 of the line between the solid-

liquid interfaces of channel A and channel D:

m1 =
yD − yA
xD − xA

b1 = yA −m1xA (2.1)

and the slope m2 and y-intercept b2 of the line between the solid-liquid interfaces of channel

B and channel E:

m2 =
yE − yB
xE − xB

b2 = yB −m2xB (2.2)

These two lines represent isotherms on the thermometer chip; the first line marks a region of

the chip at known temperature T1, and the second line marks a region of the chip at known

temperature T2. The program then calculates where these isotherms intersect channel C—in
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other words, what location (xC(T1), yC(T1)) in channel C is at temperature T1:

xC(T1) = xC yC(T1) = m1xC(T1) + b1 (2.3)

and what location (xC(T2), yC(T2)) in channel C is at temperature T2:

xC(T2) = xC yC(T2) = m2xC(T2) + b2 (2.4)

The program then plots temperature vs. y-coordinate for channel C and calculates the slope

m3 and y-intercept b3 of this line.

m3 =
T2 − T1

yC(T2) − yC(T1)
b3 = T1 −m3yC(T1) (2.5)

The equation of this line can be used to calculate the temperature of the contents of channel

C at any point along the channel. By solving this equation using the y-coordinate yC of

the solid-liquid interface in channel C, we can determine the unknown freezing point Tunk

of the solution in channel C:

Tunk = m3yC + b3 (2.6)

The Python code available for download (sections 2.6.2 and 2.6.3) automates this process

and was used to create Figure 2.1D and E as well as the figures in the Results and Discussion

section.

2.2.5 Modeling the microfluidic thermometer chip

To further characterize the shape of the thermal gradient inside the thermometer

chip, a 3D model of the chip was created using finite element analysis (COMSOL Multi-

physics, Burlington, MA). The model replicates the geometry and temperature of the chip
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as well as the chip’s orientation partly on the thermoelectric cooler. The “heat transfer

physics” module with convective heat flux and a stationary solver was used to model heat

transfer between the microfluidic thermometer chip and its channel contents, the cooler,

and the surrounding ambient air. Heat transfer coefficients for natural convection normally

range from 5 to 50 W m−2 K−1 [38]; however, in the microfluidic thermometer, heat transfer

by conduction via the thermoelectric cooler dominates and convective losses are minimal,

so we used a slightly lower estimate of the heat transfer coefficient (1 W m−2 K−1).

2.3 Results and Discussion

2.3.1 Modeling isotherm and thermal isocline shape in the thermometer

chip

Our method for analyzing the data from the microfluidic thermometer chip makes

two assumptions about the shape of the temperature gradient in the measurement region of

the chip:

• First, we assume that if we draw a line between two solid-liquid interfaces that are at

the same known temperature in the measurement region on the chip, then all points

on that line are also at the same known temperature (the line is an isotherm).

• Second, we assume that if we draw a line between two points at different known

temperatures within the measurement region on the chip, then there is a linear gradient

of temperatures along that line (the line is a thermal isocline).

17



We tested the validity of each of these assumptions using both computer simulations and

experimental measurements.

Figure 2.2 shows the simulated behavior of the water-filled 3D-printed thermome-

ter chip obtained using COMSOL Multiphysics. In the measurement region on the chip

(dotted rectangles in Figures 2.2A and B), the isotherms are straight (Figure 2.2C) and the

temperature across the five channels varies by no more than 0.13 ◦C in the channel region

(Figure 2.2D). These results support our assumption that the isotherms perpendicular to the

channels are linear within the measurement region of the chip. Additionally, the temperature

gradient is roughly linear along the channel length in the roughly 6-mm-long measurement

region (gray area in Figure 2.2E); this supports our assumption that temperature is a linear

function of distance along the channel within the measurement region. Outside of the mea-

surement region on the chip, the temperature profile along the channels is no longer linear

but much more complex (see region outside the gray area in Figure 2.2E). Consequently,

solid-liquid interfaces outside the measurement region cannot be used to infer temperatures

inside the measurement region.

To determine if the contents of the thermometer chip channels affect the thermal

behavior of the chip in the measurement region, we repeated the analysis in Figure 2.2 with

the channels filled with water, mineral oil, and toluene. These substances are commonly

used in microfluidics and have different thermal properties like thermal conductivity and

heat capacity. Figure 2.3 shows that the different contents of the microfluidic channels had

minimal impact on the temperature distribution across the channels in the measurement

region.
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Figure 2.2: Finite element analysis computer simulations of the 3D-printed microfluidic
thermometer chip with all five channels filled with water. (A) The simulated chip is oriented
partway on a thermoelectric cooler (T = −20◦C) and the rest of the chip is suspended in
air (T = 10 ◦C). By slicing through the middle of the chip, the temperature gradient in the
channel plane is visible (B). Plotting the temperature profile in this plane across the five
channels in the region where freezing measurements are obtained (C) results in a nearly-flat
line in this region; closer inspection (D) shows a variation of only 0.13 ◦C across the five
channels, supporting our assumption that isotherms are nearly linear in the measurement
region. Plotting the temperature profile in the channel plane along the middle channel (E)
results in a fairly complicated temperature profile ranging from a constant −20 ◦C above
the cooler to 0 ◦C at the opposite end of the chip. However, in the region of the chip where
freezing measurements are observed (corresponding to the shaded region on the plot), the
predicted temperature profile is nearly linear; this supports our assumption about the shape
of the temperature gradient along the channels in the measurement region.
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Figure 2.3: Finite element analysis computer simulations of the temperature profile across
the five channels in the measurement region inside the microfluidic thermometer chip, with
the channels filled with water (left), mineral oil (center), and toluene (right). Despite the
different thermal properties of these fluids (with water being the most thermally conductive),
the predicted temperatures differ by less than 0.13 ◦C across the 10 mm wide measurement
region. This supports our assumption that isotherms in the measurement region of the
thermometer chip are essentially linear, even when filling the channels with materials other
than aqueous solutions.

2.3.2 Measuring isotherm and thermal isocline shape in the thermometer

chip

To experimentally verify our assumption that isotherms in the thermometer chip

are linear, we filled all five channels in the thermometer chip with the same fluid (deionized

water; freezing point = 0 ◦C) and established a temperature gradient along the length of the

channels using the setup shown in Figure 2.1. A micrograph of the solid-liquid interfaces in

the measurement region of the thermometer chip is shown in Figure 2.4A. After importing

this image into our custom software (sections 2.6.2 and 2.6.3) and clicking on the locations

of solid-liquid interfaces in each channel, we found that the solid-liquid interfaces formed a

reasonably straight isotherm; the standard deviation of the interface locations in the vertical

direction was only 122 µm. Plotting the locations of the interfaces (inset plots in Figure

2.4A) shows that the vertical locations of the five interfaces differ by less than 500 µm
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(across all five channels; a horizontal distance of 10 mm). We repeated this experiment for a

second solution, an 8% (m/m) NaCl solution with a known freezing point of −5.08 ◦C. The

resulting interfaces were again visible and linear (standard deviation of vertical interface

location = 130 µm; data not shown). These results further support our assumption that

isotherms are linear in the measurement region of the chip.

We also experimentally verified the linearity of isotherms in microfluidic chips with

much smaller channel volumes. Figure 2.5A shows a closeup of two solid-liquid interfaces in

a borosilicate glass chip containing 400 nL of water with a small amount of food coloring

in each channel. The solid-liquid interfaces are clearly visible, confirming that microfluidic

thermometer chips can be fabricated and used with nanoliter-scale volumes.

To experimentally verify our assumption that the temperature gradient along the

chip is linear within the measurement region (and therefore a line along a channel in this

region is a thermal isocline), we filled each of the five channels with different fluids with

precisely-known freezing/melting points (8%, 6%, 4%, and 2% m/m NaCl solutions and

deionized water in channels A, B, C, D, and E, respectively) and established a temperature

gradient along the chip. The micrograph of the measurement region in Figure 2.4B shows

that the solid-liquid interfaces appear in different locations along the channels; the material

with the lowest freezing point (8% NaCl; channel A) has an interface near the bottom of the

image, and the material with the highest freezing point (deionized water; channel E) has

an interface near the middle of the image. After importing this image into our software and

clicking on the location of each solid-liquid interface, the software generates a plot of material
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Figure 2.4
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Figure 2.4: (A) To characterize isotherm shape, all five channels of the microfluidic ther-
mometer chip were filled with water and a stable temperature gradient was formed along
the channels using the setup in Figure 2.1. The solid-liquid interfaces that form are roughly
linear. After clicking on the locations of each interface, the software draws an isotherm (0
◦C) on the image and uses the parameters of this line to estimate the uncertainty of our
measurement. The inset shows that the vertical locations of the solid-liquid interfaces differ
by less than 500 µm across the entire 10 mm width of the measurement region; this supports
our assumption that isotherms are linear in the measurement region. (B) To characterize
the thermal isocline shape, each of the five channels were filled with a different solution with
precisely-known freezing/melting points (deionized water and 2%, 4%, 6%, and 8% m/m
NaCl solutions in channels E, D, C, B, and A, respectively). After clicking on the loca-
tions of each interface, the software plots the temperature at each interface vs. the vertical
locations of the interfaces. A linear fit (solid line; R2 = 0.97 and a maximum difference
of only 0.48 ◦C between predicted and actual temperatures) confirms our assumption that
the temperature gradients are roughly linear in the measurement region. For even higher
precision, a second-order polynomial (dotted line) can be used with a maximum difference
of only 0.22 ◦C between predicted and actual temperatures). (C) To measure an unknown
freezing/melting point, four of the thermometer chip channels were filled with solutions with
known freezing points (water in channels A and D, and 8% (m/m) NaCl in channels B and
E) and the remaining channel C was filled with a NaCl solution with an “unknown” freez-
ing point. After clicking on the locations of each solid-liquid interface, the software draws
isotherms between the known temperatures (0 ◦C at the interfaces in channels A and D,
and −5.08 ◦C at the interfaces in channels B and E), then calculates the linear temperature
gradient between the two isotherms in channel C and uses this gradient to determine the
temperature at the solid-liquid interface in channel C (−2.28 ± 0.26 ◦C). This agrees well
with the known literature value for the freezing point of this solution, −2.41 ◦C.
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Figure 2.5: (A) Using a glass microfluidic chip as a microfluidic thermometer. Solid-liquid
interfaces in channels containing only 400 nL of water mark the location of the T = 0
◦C isotherm. (B) Using coconut oil (solidifying/melting point = 24.1 ◦C) in a 3D-pri
crofluidic thermometer chip. The interfaces between the solid oil (white) and liquid oil
(transparent) are easily identified and form a stable linear isotherm in the chip. Including
an additional material with a different freezing/melting point in the thermometer chip would
enable measurement of temperatures well above zero Celsius.

freezing/melting point vs. vertical location of the solid-liquid interface of the material (inset

of Figure 2.4B). The plot is linear (solid line; R2 = 0.97) with a maximum difference of 0.48

◦C between the measured locations of the solid-liquid interfaces and those predicted by a

linear regression fit of the measured locations. These results support our assumption that the

temperature gradient is linear along the length of the chip within the measurement region.

If even higher precision is needed for an application, the solid-liquid interface locations can

be fitted to a second-order polynomial (dotted line in Figure 2.4B inset) which decreases

the maximum difference between actual and predicted interface locations to just 0.22 ◦C.

However, we used the linear temperature gradient assumption in this work.
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2.3.3 Measuring temperature of an “unknown” solution using the ther-

mometer chip

By utilizing the solid-liquid interface positions of two solutions with known freezing

points, we were able to use the microfluidic thermometer chip to measure the temperatures

throughout a sample of an “unknown” solution inside the measurement region. Specifically,

we used the chip to determine the freezing point of a sodium chloride solution in the chip.

Figure 2.4C shows a photograph of the thermometer chip filled with deionized water in

channels A and D (freezing point T1 = 0 ◦C), 8.0% (m/m) NaCl solution in channels B

and E (freezing point T2 = −5.08 ◦C), and a solution with a simulated unknown freezing

point in channel C (4.0% (m/m) NaCl solution). After loading the image into our custom

software (sections 2.6.2 and 2.6.3) and clicking on the locations of each solid-liquid interface,

the software uses Equations 1–6 to determine that the freezing point T3 of the “unknown”

4% NaCl solution is −2.28 ± 0.26 ◦C (details in section 2.6.3). This value is only 0.13 ◦C

higher than the known literature value for the freezing point of a 4% (m/m) NaCl solution

(−2.41 ◦C [36]).

2.3.4 Using the microfluidic thermometer at temperatures well above 0

◦C

The experiments above use water and aqueous sodium chloride solutions to mea-

sure temperatures at or below 0 ◦C. However, there are obviously many applications for

temperature measurements over a wide range of temperatures, not just below zero Celsius.

To demonstrate that the microfluidic thermometer chip is also capable of measuring tem-
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peratures well above 0 ◦C, we filled all five channels with coconut oil (which has a precise

solidifying/melting point at 24.1 ◦C [37]) and created a stable temperature gradient along

the channels as described above. Since the freezing/melting point of coconut oil is slightly

above ambient temperature, we heated (not cooled) one end of the microfluidic thermometer

chip by reversing the polarity on the thermoelectric cooler and did not need dry nitrogen to

prevent condensation.

Figure 2.5B shows the results from using our custom software (sections 2.6.2 and

2.6.3) to analyze the linearity of the isotherm in the microfluidic thermometer chip while filled

with coconut oil. The interfaces between the solid oil (white) and liquid oil (transparent) are

very easy to locate, and the standard deviation of the locations of these interfaces along the

channels, 81 µm, is actually lower than that observed using water in Figure 2.4A. This shows

that the solid-liquid interfaces in coconut oil form stable linear isotherms in the thermometer

chip. By also using e.g. a second oil with a slightly different freezing/melting point, one can

use the microfluidic thermometer chip to measure temperatures well above zero Celsius.

2.4 Conclusions

In this work, we demonstrated a simple technique for making precise measurements

of the temperatures of microliter- and nanoliter-scale volumes. This technique requires min-

imal equipment and no probes, labels, or other modifications to the sample being measured.

We used this technique to measure the freezing point of a simulated unknown solution. By

using materials with different known freezing/melting points, our technique can be tailored

for measurements at many different temperatures . Additionally, by using 3D printing to
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fabricate our thermometer chip, any researcher can download the design of the chip (section

2.6.1) and fabricate and use the chip. As the glass microfluidic thermometer chip in Figure

2.5 shows, this method is not limited to 3D-printed microfluidic devices and is suitable for

use in any fabrication method that provides optical access to the channel contents. Finally,

since the freezing point of a substance is an intrinsic property of that substance, our tech-

nique could be used as a simple way to identify a substance (or rule out other substances)

by accurately measuring its freezing point.

In its current form, the thermometer chip is limited to making temperature mea-

surements within the measurement region (the area of the chip where the temperature

gradient is linear; dotted boxes in Figure 2.2A and B and gray region in Figure 2.2E). This

roughly 6-mm-long region contains a linear temperature gradient that spans about 5 degrees

Celsius. The location of this temperature range on the temperature scale can be set at will by

loading the microfluidic thermometer channels with materials with different freezing/melt-

ing points (for example, using aqueous sodium chloride solutions to measure temperatures

around 0 ◦C as in Figures 2.4 and 2.5A, or using coconut oil to measure temperatures around

24 ◦C as in Figure 2.5B). However, we cannot use sodium chloride solutions and coconut oil

simultaneously in the thermometer chip because the freezing/melting points of these sub-

stances differ by over 24 ◦C—that means that at least one of the substances’ solid-liquid

interfaces would lie far outside the measurement region. If one of the solid-liquid interfaces

forms outside of the region where the temperature gradient is linear, we would not be able to

accurately predict the temperatures between the different solid-liquid interfaces. Therefore,
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our technique is more suited for precisely measuring temperatures in a narrow range using

similar materials, not measuring temperatures in a wide range using dissimilar materials.
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2.6 Supporting Information for

“A microfluidic thermometer: Precise temperature mea-

surements in microliter- and nanoliter-scale volumes”

2.6.1 Design of the microfluidic thermometer chip in the standard .STL

format used by most 3D printers.

The design of the thermometer chip in standard .STL format is shown below and

can be downloaded at

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189430.
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Figure 2.6: A drawing of the of microfluidic thermometer chip design used to 3D print the
device.

2.6.2 microfluidic_thermometer.py: A custom Python program that auto-

mates the data analysis required when using the microfluidic ther-

mometer chip. Used to generate Figures 2.1D and E, 2.4, and 2.5B.

The source code for the software tool is shown below and can be downloaded at

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189430.
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1 """

2 microfluidic_thermometer.py

3 Software for analyzing images of the microfluidic

thermometer , as described in

4 "A microfluidic thermometer: Precise temperature

measurements in microliter -

5 and nanoliter -scale volumes" by Brittney A. McKenzie and

William H. Grover.

6 The latest version of this software is available at http ://

groverlab.org.

7 """

8

9 import matplotlib.image

10 import matplotlib.pyplot

11 import scipy.stats

12 import numpy

13 import os.path

14 import matplotlib.widgets

15 import math

16 from skimage import exposure

17

18
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19 def setup_fig(filename):

20 global fig , xmax , ymax , t, message , log

21 filename = os.path.join(os.path.dirname(__file__),

filename)

22 img = matplotlib.image.imread(filename)

23 xmax = img.shape [1]

24 ymax = math.floor(img.shape [0] * 1.08) # adds room for

messages

25 aspect_ratio = float(ymax) / float(xmax)

26 fig = matplotlib.pyplot.figure(figsize =(7, 7 *

aspect_ratio))

27 fig.canvas.set_window_title(

28 ’Microfluidic␣Thermometer␣-␣University␣of␣

California ,␣Riverside ’)

29 ax = fig.add_subplot (111)

30 ax.xaxis.set_visible(False)

31 ax.yaxis.set_visible(False)

32 ax.imshow(exposure.equalize_adapthist(img[:, :, 0]),

cmap="gray") # green

33 # ax.imshow(img[:,:,:]) # all channels

34 ax.axis([0, xmax , ymax , 0])
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35 message = matplotlib.pyplot.text(xmax / 2, ymax * 0.96,

"dummy",

36 horizontalalignment=’

center ’,

37 verticalalignment=’

center ’,

38 color="black",

39 backgroundcolor="white

",

40 size="16",

41 fontweight=’bold’,

42 bbox=dict(boxstyle="

square",

43 fc="white",

44 ec="white",

45 lw=0))

46

47

48 def mark(x, y, s, color="white", unk=False):

49 global xmax , ymax

50 matplotlib.pyplot.plot(x - xmax * 0.05, y, "k>",

51 markerfacecolor=color ,
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52 markeredgecolor="black",

53 markeredgewidth =1,

54 markersize =15)

55 matplotlib.pyplot.plot(x + xmax * 0.05, y, "k<",

56 markerfacecolor=color ,

57 markeredgecolor="black",

58 markeredgewidth =1,

59 markersize =15)

60 if not unk:

61 ytemp = ymax * .15

62 else:

63 ytemp = ymax * .24

64 matplotlib.pyplot.text(x, ytemp , s,

65 horizontalalignment=’center ’,

66 color="black",

67 backgroundcolor=color ,

68 size="16",

69 bbox=dict(boxstyle="round",

70 fc=color , ec="k", lw

=1))

71

72
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73 def edge_mark(x, y):

74 matplotlib.pyplot.plot(x, y, "k^", markersize =15)

75

76

77 def standard_error(actuals , predicteds):

78 sum = 0.0

79 for a, p in zip(actuals , predicteds):

80 sum += (a - p)**2

81 return math.sqrt(sum / len(actuals))

82

83

84 x1 = x2 = x3 = x4 = x5 = y1 = y2 = y3 = y4 = y5 = 0

85 m1 = m2 = b1 = b2 = 0

86 known_distance = 0

87 log = u""

88 add_isotherms = False # set this True to generate Fig 1D

89

90

91 # Measure freezing point of unknown using two samples of

each of two known

92 # freezing points

93 def mode1(event):
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94 global ix, iy, x1, x2, x3, x4, x5, y1, y2, y3, y4, y5,

m1, m2, b1, b2

95 global click , message , log , add_isotherms

96 ix, iy = event.xdata , event.ydata

97 if click == 0:

98 x1, y1 = ix , iy

99 mark(x1, y1,

100 "$\mathregular{T_1}$␣=\n%.2f" % T1 + u’␣\N{

DEGREE␣SIGN}C’,

101 "#ff7777")

102 message.set_text("Click␣second␣interface␣with␣

freezing␣point␣" +

103 str(T1) + u’␣\N{DEGREE␣SIGN}C’)

104 if click == 1:

105 x2, y2 = ix , iy

106 mark(x2, y2,

107 "$\mathregular{T_1}$␣=\n%.2f" % T1 + u’␣\N{

DEGREE␣SIGN}C’,

108 "#ff7777")

109 m1 = (y2 - y1) / (x2 - x1)

110 b1 = y1 - m1 * x1
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111 message.set_text("Click␣first␣interface␣with␣

freezing␣point␣" +

112 str(T2) + u’␣\N{DEGREE␣SIGN}C’)

113 if click == 2:

114 x3, y3 = ix , iy

115 mark(x3, y3,

116 "$\mathregular{T_2}$␣=\n%.2f" % T2 + u’␣\N{

DEGREE␣SIGN}C’,

117 "#7777ff")

118 message.set_text("Click␣second␣interface␣with␣

freezing␣point␣" +

119 str(T2) + u’␣\N{DEGREE␣SIGN}C’)

120 if click == 3:

121 x4, y4 = ix , iy

122 mark(x4, y4,

123 "$\mathregular{T_2}$␣=\n%.2f" % T2 + u’␣\N{

DEGREE␣SIGN}C’,

124 "#7777ff")

125 m2 = (y4 - y3) / (x4 - x3)

126 b2 = y3 - m2 * x3

127 message.set_text("Click␣interface␣with␣unknown␣

freezing␣point")
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128 if click >= 4:

129 x5, y5 = ix , iy

130 # calculate Y location of T1 in channel 3:

131 T1y = m1 * x5 + b1

132 # calculate Y location of T2 in channel 3:

133 T2y = m2 * x5 + b2

134 # equation of vertical temperature profile in

channel 3:

135 m = (T2 - T1) / (T2y - T1y)

136 b = T1 - m * T1y

137 log += "using␣scale␣" + str(mm_per_pixel) + "␣mm/

pixel\n"

138 log += "slope␣␣=␣" + str(m) + "␣degrees␣C␣per␣pixel

\n"

139 log += "slope␣=␣" + str(m / mm_per_pixel) + "␣

degrees␣C␣per␣mm\n"

140 try:

141 log += "using␣stdev␣" + str(stdev) + "␣mm\n"

142 log += "standard␣deviation␣of␣temperature␣=␣"

143 log += str(stdev * m / mm_per_pixel) + "degrees

␣C\n"

144 except NameError:
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145 log += "Note:␣␣stdev␣wasn’t␣defined"

146 log += "y-int␣=␣" + str(b) + "␣degrees␣C\n"

147 # predict temperature in channel 3:

148 T = m * y5 + b

149 if not add_isotherms:

150 mark(x5, y5,

151 "$\mathregular{T_{unk}}$␣=\n%.2f" % T + u’

␣\N{DEGREE␣SIGN}C’,

152 "white")

153 log += u"Freezing␣point␣of␣unknown␣is␣%.2f␣\N{

DEGREE␣SIGN}C\n\n" % T

154 message.set_text(u"Freezing␣point␣of␣unknown␣is␣%.2

f␣\N{DEGREE␣SIGN}C" % T)

155 if add_isotherms:

156 message.set_text(u"")

157 isotherms = [0.0, -0.5, -1.0, -1.5, -2.0, -2.5,

-3.0, -3.5, -4.0, -4.5, -5.0]

158 for i in isotherms:

159 matplotlib.pyplot.plot([x5], [(i-b)/m], "kx

")

160 fig.canvas.mpl_disconnect(mode1)

161 fig.canvas.draw()
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162 click += 1

163

164

165 # Calibrate using five samples of one known freezing point

166 def mode2(event):

167 global ix, iy, x1, x2, x3, x4, x5, y1, y2, y3, y4, y5,

m1, m2, b1, b2

168 global stdev , message , log , click

169 ix, iy = event.xdata , event.ydata

170 if click == 0:

171 x1, y1 = ix , iy

172 mark(x1, y1, "$\mathregular{T}$␣=\n%.2f" % T1 + u’␣

\N{DEGREE␣SIGN}C’)

173 message.set_text("Click␣second␣interface␣with␣

freezing␣point␣" +

174 str(T1) + u’\N{DEGREE␣SIGN}C’)

175 if click == 1:

176 x2, y2 = ix , iy

177 mark(x2, y2, "$\mathregular{T}$␣=\n%.2f" % T1 + u’␣

\N{DEGREE␣SIGN}C’)

178 message.set_text("Click␣third␣interface␣with␣

freezing␣point␣" +
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179 str(T1) + u’\N{DEGREE␣SIGN}C’)

180 if click == 2:

181 x3, y3 = ix , iy

182 mark(x3, y3, "$\mathregular{T}$␣=\n%.2f" % T1 + u’␣

\N{DEGREE␣SIGN}C’)

183 message.set_text("Click␣fourth␣interface␣with␣

freezing␣point␣" +

184 str(T1) + u’\N{DEGREE␣SIGN}C’)

185 if click == 3:

186 x4, y4 = ix , iy

187 mark(x4, y4, "$\mathregular{T}$␣=\n%.2f" % T1 + u’␣

\N{DEGREE␣SIGN}C’)

188 message.set_text("Click␣fifth␣interface␣with␣

freezing␣point␣" +

189 str(T1) + u’\N{DEGREE␣SIGN}C’)

190 if click >= 4:

191 x5, y5 = ix , iy

192 mark(x5, y5, "$\mathregular{T}$␣=\n%.2f" % T1 + u’␣

\N{DEGREE␣SIGN}C’)

193

194 fig2 = matplotlib.pyplot.figure(figsize =(2, 1.5))

195 ax2 = fig2.add_subplot (111)
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196 ax2.spines[’top’]. set_visible(False)

197 ax2.spines[’right’]. set_visible(False)

198 x_locations = numpy.array ([x1, x2, x3 , x4, x5])

199 y_locations = numpy.array ([y1, y2, y3 , y4, y5])

200 x_smallest = min(x_locations)

201 y_smallest = min(y_locations)

202 # shift relative pixel locations to zero

203 x_locations = x_locations - x_smallest

204 # shift relative pixel locations to zero

205 y_locations = y_locations - y_smallest + numpy.mean

(x_locations)

206 x_locations = x_locations * mm_per_pixel # convert

to millimeters

207 y_locations = y_locations * mm_per_pixel # convert

to millimeters

208 ax2.set_xlabel("Horiz.␣dist.␣(mm)")

209 ax2.set_ylabel("Vert.␣dist.␣(mm)")

210 ax2.plot(x_locations , y_locations , "ko")

211

212 x_fullrange = max(x_locations) - min(x_locations)

213

214 # fit the five points to a line:
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215 m, b, r_value , p_value , std_err = scipy.stats.

linregress(

216 [x1, x2 , x3, x4, x5], [y1 , y2, y3, y4, y5])

217 log += "m:␣" + str(m) + "\n"

218 log += "b:␣" + str(b) + "\n"

219 log += "r_value:␣" + str(r_value) + "\n"

220 log += "p_value:␣" + str(p_value) + "\n"

221 log += "std_err:␣" + str(std_err) + "\n"

222 log += "Standard␣deviation␣in␣pixels:␣"

223 log += str(numpy.std([y1, y2, y3, y4, y5])) + "␣

pixels\n"

224 log += "using␣scale␣" + str(mm_per_pixel) + "␣mm/

pixel\n"

225 stdev = numpy.std([y1, y2, y3, y4, y5]) *

mm_per_pixel

226 log += "Standard␣deviation␣in␣mm:␣" + str(stdev) +

"␣mm\n\n"

227 message.set_text(

228 u"Standard␣deviation␣of␣interface␣locations␣is␣

%.0f␣\N{GREEK␣SMALL␣LETTER␣MU}m" %

229 (stdev * 1000))

230
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231 fig2.subplots_adjust(left =0.28, right =0.95, top

=0.95, bottom =0.3)

232

233 # full range:

234 ax2.set_xlim (-0.08 * x_fullrange , 1.08 *

x_fullrange)

235 ax2.set_ylim (-0.08 * x_fullrange , 1.08 *

x_fullrange)

236 fig2.savefig("fig_4a_1.pdf")

237

238 # closeup range:

239 ax2.set_xlim (-0.08 * x_fullrange , 1.08 *

x_fullrange)

240 ax2.set_ylim (4.5, 6)

241 fig2.savefig("fig_4a_2.pdf")

242

243 matplotlib.pyplot.close(fig2) # this keeps

Matplotlib from hanging

244

245 fig.canvas.mpl_disconnect(mode2)

246 fig.canvas.draw()

247 click += 1

43



248

249

250 # Calibrate temperature profile using five different known

freezing points

251 def mode4(event):

252 global ix, iy, x1, x2, x3, x4, x5, y1, y2, y3, y4, y5,

m1, m2, b1, b2

253 global stdev , message , log , click

254 ix, iy = event.xdata , event.ydata

255 if click == 0:

256 x1, y1 = ix , iy

257 mark(x1, y1, "$\mathregular{T}$␣=\n%.2f" % T1 + u’␣

\N{DEGREE␣SIGN}C’)

258 message.set_text("Click␣interface␣with␣freezing␣

point␣" +

259 str(T2) + u’\N{DEGREE␣SIGN}C’)

260 if click == 1:

261 x2, y2 = ix , iy

262 mark(x2, y2, "$\mathregular{T}$␣=\n%.2f" % T2 + u’␣

\N{DEGREE␣SIGN}C’)

263 message.set_text("Click␣interface␣with␣freezing␣

point␣" +
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264 str(T3) + u’\N{DEGREE␣SIGN}C’)

265 if click == 2:

266 x3, y3 = ix , iy

267 mark(x3, y3, "$\mathregular{T}$␣=\n%.2f" % T3 + u’␣

\N{DEGREE␣SIGN}C’)

268 message.set_text("Click␣interface␣with␣freezing␣

point␣" +

269 str(T4) + u’\N{DEGREE␣SIGN}C’)

270 if click == 3:

271 x4, y4 = ix , iy

272 mark(x4, y4, "$\mathregular{T}$␣=\n%.2f" % T4 + u’␣

\N{DEGREE␣SIGN}C’)

273 message.set_text("Click␣interface␣with␣freezing␣

point␣" +

274 str(T5) + u’\N{DEGREE␣SIGN}C’)

275 if click >= 4:

276 x5, y5 = ix , iy

277 mark(x5, y5, "$\mathregular{T}$␣=\n%.2f" % T5 + u’␣

\N{DEGREE␣SIGN}C’)

278

279 fig2 = matplotlib.pyplot.figure(figsize =(2, 1.5))

280 ax2 = fig2.add_subplot (111)
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281 ax2.spines[’top’]. set_visible(False)

282 ax2.spines[’right’]. set_visible(False)

283 y_locations = numpy.array ([y1, y2, y3 , y4, y5])

284 smallest = min(y_locations)

285 y_locations = y_locations - smallest # shift pixel

locations

286 y_locations = y_locations * mm_per_pixel # convert

to millimeters

287 ax2.set_xlabel("Distance␣(mm)")

288 ax2.set_ylabel(u"Temp.␣(\N{DEGREE␣SIGN}C)")

289 ax2.set_xticks ([0, 1, 2, 3, 4, 5])

290 ax2.set_yticks ([0, -2, -4, -6])

291 ax2.plot(y_locations , [T1, T2, T3, T4, T5], "ko")

292

293 fullrange = max(y_locations) - min(y_locations)

294

295 # first try linear (1st order polynomial)

296 m, b, r_value , p_value , std_err = scipy.stats.

linregress(

297 y_locations , [T1, T2, T3, T4, T5])

298 ax2.plot ([-0.1 * fullrange , 1.1 * fullrange],
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299 [m * -0.1 * fullrange + b, m * 1.1 *

fullrange + b], "-k")

300 log += "m:␣" + str(m) + "\n"

301 log += "b:␣" + str(b) + "\n"

302 log += "r-squared:␣" + str(r_value * r_value) + "\n

"

303 predictions = m * y_locations + b

304 differences = abs([T1, T2, T3, T4, T5] -

predictions)

305 log += "T1␣actual␣" + str(T1) + "␣-␣predicted␣" + \

306 str(predictions [0]) + "␣=␣" + str(differences

[0]) + "\n"

307 log += "T2␣actual␣" + str(T2) + "␣-␣predicted␣" + \

308 str(predictions [1]) + "␣=␣" + str(differences

[1]) + "\n"

309 log += "T3␣actual␣" + str(T3) + "␣-␣predicted␣" + \

310 str(predictions [2]) + "␣=␣" + str(differences

[2]) + "\n"

311 log += "T4␣actual␣" + str(T4) + "␣-␣predicted␣" + \

312 str(predictions [3]) + "␣=␣" + str(differences

[3]) + "\n"

313 log += "T5␣actual␣" + str(T5) + "␣-␣predicted␣" + \
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314 str(predictions [4]) + "␣=␣" + str(differences

[4]) + "\n"

315

316 # second try quadratic (2nd order polynomial)

317 A, B, C = numpy.polyfit(y_locations , [T1, T2, T3,

T4, T5], 2)

318 xs = numpy.arange (-0.1 * fullrange , 1.1 * fullrange

, 0.1)

319 ax2.plot(xs , A * xs * xs + B * xs + C, ":k")

320 log += "A:␣" + str(A) + "\n"

321 log += "B:␣" + str(B) + "\n"

322 log += "C:␣" + str(C) + "\n"

323 predictions = A * y_locations * y_locations + B *

y_locations + C

324 differences = abs([T1, T2, T3, T4, T5] -

predictions)

325 log += "T1␣actual␣" + str(T1) + "␣-␣predicted␣" + \

326 str(predictions [0]) + "␣=␣" + str(differences

[0]) + "\n"

327 log += "T2␣actual␣" + str(T2) + "␣-␣predicted␣" + \

328 str(predictions [1]) + "␣=␣" + str(differences

[1]) + "\n"
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329 log += "T3␣actual␣" + str(T3) + "␣-␣predicted␣" + \

330 str(predictions [2]) + "␣=␣" + str(differences

[2]) + "\n"

331 log += "T4␣actual␣" + str(T4) + "␣-␣predicted␣" + \

332 str(predictions [3]) + "␣=␣" + str(differences

[3]) + "\n"

333 log += "T5␣actual␣" + str(T5) + "␣-␣predicted␣" + \

334 str(predictions [4]) + "␣=␣" + str(differences

[4]) + "\n"

335

336 ax2.set_xlim (-0.08 * fullrange , 1.08 * fullrange)

337 fig2.subplots_adjust(left =0.28, right =0.95, top

=0.95, bottom =0.3)

338 fig2.savefig("fig_4b.pdf")

339 matplotlib.pyplot.close(fig2) # this keeps

Matplotlib from hanging

340 message.set_text(u"R-squared␣=␣%.2f␣" % (r_value *

r_value))

341

342 matplotlib.pyplot.close(fig2) # this keeps

Matplotlib from hanging

343 fig.canvas.mpl_disconnect(mode4)
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344 fig.canvas.draw()

345 click += 1

346

347

348 # get image scale

349 def mode3(event):

350 global ix, iy, x1, x2, x3, x4, x5, y1, y2, y3, y4, y5,

m1, m2, b1, b2

351 global scale , mm_per_pixel , known_distance , message ,

log , click

352 ix, iy = event.xdata , event.ydata

353 if click == 0:

354 x1, y1 = ix , iy

355 edge_mark(x1, y1)

356 message.set_text("Click␣the␣right␣edge␣of␣an␣

adjacent␣channel")

357 if click == 1:

358 x2, y2 = ix , iy

359 edge_mark(x2, y2)

360 scale = x2 - x1

361 log += "Scale:␣" + str(known_distance) + "␣mm␣=␣"

362 log += str(scale) + "␣pixels\n"
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363 mm_per_pixel = known_distance / scale

364 log += "Scale:␣" + str(mm_per_pixel) + "␣mm/pixel\n

\n"

365 message.set_text(

366 u"Image␣scale␣is␣%.0f␣\N{GREEK␣SMALL␣LETTER␣MU}

m/pixel" %

367 (mm_per_pixel * 1000))

368 fig.canvas.mpl_disconnect(mode3)

369 fig.canvas.draw()

370 click += 1

371

372

373 def measure_unknown(filename , freezing_point_1 ,

freezing_point_2):

374 setup_fig(filename)

375 global T1, T2, click , message , log

376 log += "measure_unknown:␣" + filename + "\n"

377 click = 0

378 fig.canvas.mpl_connect(’button_press_event ’, mode1)

379 T1 = freezing_point_1

380 T2 = freezing_point_2
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381 message.set_text("Click␣first␣interface␣with␣freezing␣

point␣" + str(T1) +

382 u’\N{DEGREE␣SIGN}C’)

383 matplotlib.pyplot.subplots_adjust(left=0, right=1, top

=1, bottom =0)

384 matplotlib.pyplot.show()

385

386

387 def calibrate_one_concentration(filename , freezing_point_1)

:

388 setup_fig(filename)

389 global T1, click , message , log

390 log += "calibrate:␣" + filename + "\n"

391 T1 = freezing_point_1

392 click = 0

393 fig.canvas.mpl_connect(’button_press_event ’, mode2)

394 message.set_text("Click␣first␣interface␣with␣freezing␣

point␣" + str(T1) +

395 u’\N{DEGREE␣SIGN}C’)

396 matplotlib.pyplot.subplots_adjust(left=0, right=1, top

=1, bottom =0)

397 matplotlib.pyplot.show()
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398 matplotlib.pyplot.close(fig)

399

400

401 def calibrate_five_concentrations(filename ,

402 freezing_point_1 ,

403 freezing_point_2 ,

404 freezing_point_3 ,

405 freezing_point_4 ,

406 freezing_point_5):

407 setup_fig(filename)

408 global T1, T2, T3, T4, T5, click , message , log

409 log += "linearity:␣" + filename + "\n"

410 click = 0

411 fig.canvas.mpl_connect(’button_press_event ’, mode4)

412 T1 = freezing_point_1

413 T2 = freezing_point_2

414 T3 = freezing_point_3

415 T4 = freezing_point_4

416 T5 = freezing_point_5

417 message.set_text("Click␣interface␣with␣freezing␣point␣"

+ str(T1) +

418 u’\N{DEGREE␣SIGN}C’)
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419 matplotlib.pyplot.subplots_adjust(left=0, right=1, top

=1, bottom =0)

420 matplotlib.pyplot.show()

421 matplotlib.pyplot.close(fig)

422

423

424 def get_scale(filename , distance):

425 setup_fig(filename)

426 global known_distance , click , message , log

427 log += "set_scale:␣" + filename + "\n"

428 known_distance = distance

429 click = 0

430 fig.canvas.mpl_connect(’button_press_event ’, mode3)

431 matplotlib.pyplot.subplots_adjust(left=0, right=1, top

=1, bottom =0)

432 message.set_text("Click␣the␣right␣edge␣of␣one␣channel")

433 matplotlib.pyplot.show()

434 matplotlib.pyplot.close(fig)

435

436

437 def report(filename):

438 global log
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439 f = open(filename , "w")

440 f.write(log.encode("utf8"))

441 f.close()

442 log = u""

2.6.3 microfluidic_thermometer.py: Step-by-step description of using

microfluidic_thermometer.py to perform the analyses in Fig 2.4.

A custom Python program, microfluidic_thermometer.py, was written to an-

alyze images of the microfluidic thermometer chip. The current version of the software

is available as online Supplementary Information, and the latest version of the software

is available for download from http://groverlab.org. Sample images of the microfluidic

thermometer chip are included for use with the software. To use the software to measure

the unknown freezing point of a solution, the user creates a short Python script describing

the images to be analyzed. For example, to create Figure 4 in the main text, the following

script was used:

1 import microfluidic_thermometer as mt

2

3 filename = "00000. png"

4 mt.get_scale(filename , distance =2.5)

5 mt.calibrate_one_concentration(filename ,

6 freezing_point_1 =0)

7

55



8 filename = "86420. png"

9 mt.get_scale(filename , distance =2.5)

10 mt.calibrate_five_concentrations(filename ,

11 freezing_point_1 =-5.08,

12 freezing_point_2 =-3.70,

13 freezing_point_3 =-2.41,

14 freezing_point_4 =-1.19,

15 freezing_point_5 =0.0)

16

17 filename = "08408. png"

18 mt.get_scale(filename , distance =2.5)

19 mt.measure_unknown(filename ,

20 freezing_point_1 =0,

21 freezing_point_2 = -5.08)

22

23 mt.report("report.txt")

Line 1 imports microfluidic_thermometer.py (which should be in the same di-

rectory as this script).

Line 3 specifies the name of the first image file used in this analysis. In this case,

the file 00000.png is a photograph of the microfluidic thermometer chip with all five channels

filled with water:
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Line 4 calls the get_scale function, which is used to determine the scale of the

image. This is necessary if subsequent images were acquired at a different magnification or

pixel resolution than the current image. The argument distance = 2.5 tells the code the

actual length of a known feature on the chip; in this case the distance between two channel

edges in the microfluidic thermometer is 2.5 millimeters. When this script is executed, Line

4 makes a window appear:
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The window instructs the user to “click on the right edge of one channel.” After the edge

is clicked, a triangular marker is placed on the edge and the user is instructed to “click the

right edge of an adjacent channel:
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After the second edge is clicked, another triangular marker is placed on the edge, and the

scale of the image is reported to the user (“Image scale is 19 µm/pixel”) and is saved for

future use:
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Line 5 calls the calibrate_one_concentration function, which is used to analyze

the uniformity of an isotherm across the channels in the thermometer chip. The argument

freezing_point_1 = 0.0 tells the code the known freezing point of the solution in all five

channels of the chip; in this case the channels are filled with water so the freezing point is

0◦C. The window instructs the user to “click the first interface with freezing point 0◦C”:
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After the user clicks on the solid-liquid interface in the first channel, triangular markers and

a label are added to the plot to indicate the known temperature at the interface, and the

user is instructed to “click second interface with freezing point 0◦C”:
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This process repeats, instructing the user to click the third solid-liquid interface:

the fourth interface:
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and the fifth interface:
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The variation of the interface locations in the vertical dimension is reported to the user

(“Standard deviation of the interface locations is 122 µm”) and is saved for future use:

Finally, the software automatically saves two plots (normal and closeup) of the vertical

location of each solid-liquid interface vs. the horizontal location of the interface:
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These plots confirm that isotherms are roughly linear in the measurement region of the

thermometer chip, with a variation in vertical interface location of less than 500 µm over a

10 mm wide region.
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Line 8 specifies a new image file to be used. File 86420.png is a photograph of the

microfluidic thermometer with an 8% w/w solution of sodium chloride in channel A, a 6%

solution in channel B, a 4% solution in channel C, a 2% solution in channel D, and a 0%

solution (water) in channel E:

Line 9 again calls the get_scale function to determine the scale of the new image.

The user clicks on two channel edges, and the scale is reported to the user and saved for

future use:
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Line 10 calls the calibrate_five_concentrations function, which is used to ana-

lyze the shape of the temperature gradient along the channels in the thermometer chip. The

arguments freezing_point_1 = -5.08, freezing_point_2 = -3.70, freezing_point_3

= -2.41, freezing_point_4 = -1.19, and freezing_point_5 = 0.0 specify the freezing

points of the five sodium chloride solutions in channels A through E. The window then

instructs the user to click on each of the five solid-liquid interfaces in turn:
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The R2 value of the linear fit of a plot of interface location vs. temperature is reported to

the user (“R-squared = 0.97”):
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Finally, the software automatically saves a plot of solid-liquid interface temperature vs. the

location of that interface in the vertical direction on the chip:
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The plot includes two least-squares regression fits, one linear (the solid line, which deviates

from the measured temperature values by less than 0.48 ◦C) and one second-order polynomial

(the dotted line, which deviates from the measured temperature values by less than 0.22

◦C). This plot confirms that the temperature gradient is roughly linear in the measurement

region of the thermometer chip, and other functions (like the second-order polynomial) can

be used if additional accuracy is needed).

Line 17 specifies a new image file to be used in the rest of the analysis. In this

case, the file 08408.png is a photograph of the microfluidic thermometer chip with water

in channels A and D, an 8% w/w solution of sodium chloride in channels B and E, and an

solution with “unknown” freezing point in channel C:
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Line 18 again calls the get_scale function to determine the scale of the new image.

The user clicks on two channel edges, and the scale is reported to the user and saved for

future use:
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Line 19 calls the measure_unknown function, which is used to measure the freezing

point of a solution when the other four channels are filled with two solutions with known
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freezing points. The arguments freezing_point_1 = 0.0 and freezing_point_2 = -5.08

tell the code the known freezing point of the solution in channels A and D is 0◦C and the

known freezing point of the solution in channels B and E is −5.08◦C. The window instructs

the user to click the locations of each solid-liquid interface in the chip, first the interfaces at

freezing point 0◦C:
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then the interfaces at freezing point −5.08◦C:
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and finally the interface in the channel containing the “unknown” freezing point solution:
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Finally, the freezing point of the “unknown” solution is reported to the user (“freezing point

of unknown is −2.28◦C”):

Line 23 uses the report function to save a summary of the analysis of these three

images in a text file with the specified name.
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Chapter 3

Chronoprints: Identifying samples by

visualizing how they change over

space and time

Reproduced with permission from Brittney A. McKenzie, Jessica Robles-Najar,

Eric Duong, Philip Brisk, and William H. Grover. Chronoprints: Identifying Samples by

Visualizing How They Change over Space and Time. ACS Central Science, 5(4):589598,

April 2019. Copyright 2019 American Chemical Society.

3.1 Introduction

Techniques for identifying a substance (or the components in a mixture) have many

applications across a wide range of different fields. Modern tools of analytical chemistry like

gas chromatography-mass spectrometry (GC-MS) are unparalleled in their ability to identify
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a substance or mixture. However, the size, cost, and complexity of these instruments limit

their use in important applications in resource-limited settings. For example, around 10%

of all medications in low- and middle-income countries are actually counterfeit and may be

worthless (or even dangerous) to patients [39, 40], and while tools like GC-MS could easily

detect these adulterated medicines, these tools are not readily available in the poorest parts

of the world.

Different substances usually have different physical properties. In some cases, by

measuring a physical property of a sample and comparing it to a known value for a pure

substance, one can chemically identify the sample. We recently demonstrated two simple

and low-cost techniques for measuring two intrinsic physical properties of samples, freez-

ing/melting point [41] and density [2], and we successfully used those physical measurements

to identify some samples. But many natural products, medicines, and other complex mix-

tures may not have a known freezing point or density. To identify or distinguish samples

like these, simple measurements of their physical properties may not be enough.

In this work, we show that the way a sample’s physical properties change over

space and time can be used to chemically identify the sample. Under static and homogenous

conditions, a sample’s properties usually remain unchanged, so our method relies on inducing

a change in the substance by perturbing it in some way. This perturbation could take many

different forms, and in this work we used a rapidly-changing temperature gradient to perturb

our samples. Different samples react to this perturbation in different ways (for example,

in a temperature gradient, different samples might freeze, or thaw, or separate into their

components, or change in other ways). Additionally, these changes can occur at different
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locations in different samples (if the perturbation is applied across the sample as a gradient

of some sort) and at different times in different samples (if the perturbation is changing over

time). The resulting multidimensional dataset of how a sample changes over space and time

in response to a perturbation can serve as a “fingerprint” to identify the sample.

If a perturbation is always applied to a sample in exactly the same manner, then

a sample’s resulting “fingerprint” should be consistent and could in theory be stored in a

database and used to identify the same sample in the future. However, in practice, generating

highly reproducible perturbations would likely require complex and costly hardware that

would disqualify our technique from use in resource-limited settings. In this work, instead

of trying to make the perturbation reproducible across experiments, we made sure that

each sample in a given experiment receives exactly the same perturbation. In other words,

we cannot necessarily compare sample fingerprints across multiple experiments, but we can

compare fingerprints across multiple samples within the same experiment. We accomplished

this using our “microfluidic thermometer chip,” [41] a simple microfluidic chip that holds

several different microliter-scale samples in close proximity to each other. The chip (shown

in Figures 3.1A and B) holds several liquid samples in long parallel microfluidic channels.

When we apply a perturbation (like a dynamic temperature gradient) along these channels,

each sample receives the same perturbation at the same point in space and time. If two

samples in the same experiment display similar changes over space and time in response to

the perturbation, then this suggests that the samples may be the same. But if two samples

in the same run display significantly different changes over space and time, then this proves

that the samples are different.
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Figure 3.1: Producing a “chronological fingerprint” or chronoprint capturing how six samples
(in this example, authentic and adulterated samples of an over-the-counter liquid cold
medicine) respond to a perturbation over space and time (in this case, a rapidly-changing
temperature gradient). (A) A microfluidic thermometer chip containing the samples is
partially immersed in liquid nitrogen to establish a rapidly-changing temperature gradient
along the chip. (B) The chip contains six samples (red) loaded in microfluidic channels that
run parallel to the dynamic temperature gradient. (C) An inexpensive USB microscope
records a video of the physical changes in the samples as they react to the dynamic
temperature gradient. (D) For each sample, our custom MATLAB code (available as
Supporting Information) extracts an image of the entire channel from each frame of the
video. (E) By reducing each channel image to a single column of pixels, then placing these
columns side-by-side, we create a bitmap image (the sample’s chronoprint) that captures
how the sample changes over space (the y-axis) and time (the x-axis). Finally, by comparing
the chronoprints of all six samples in the chip, we can determine whether the samples are
either likely the same or definitely different.
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The data resulting from this process—the change in each sample at each point in

space and time as the sample is perturbed—are multidimensional and challenging to analyze,

but we developed a simple method for comparing different samples. In this work, we record

a movie of the thermometer chip in action, then convert that movie into bitmap images

(one per sample) that capture the way each sample changes over space and time. We call

these images “chronoprints,” a portmanteau of chronological (the image captures a sample’s

changes over time) and fingerprint (the image serves to identify a substance within a given

experiment). Figure 3.1 summarizes the process of obtaining a chronoprint from a complex

sample (in this case, six different samples of an over-the-counter cold medicine exposed to a

perturbation consisting of a dynamic temperature gradient). Since a chronoprint is funda-

mentally just a bitmap image, chronoprints can be compared using image similarity analysis

algorithms from computer science. In this work we demonstrate three different approaches

to quantifying chronoprint similarity: feature tracing (which reduces each chronoprint to

a curve and is suitable for simpler chronoprints), image differences (which calculates the

sum of the pixel-by-pixel differences between two chronoprints), and image hashing (which

converts each chronoprint to a 64-bit representation called a “hash”).

To demonstrate the versatility of chronoprints, we used them here to distinguish

between authentic and adulterated foodstuffs, identify adulterated or counterfeit medication,

and distinguish between toxic and nontoxic pharmaceutical ingredients. But these are just

a few of the different samples that could be analyzed using chronoprints—in principle any

sample that responds to a perturbation by changing its appearance could be analyzed using

chronoprints.
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3.2 Experimental Section

3.2.1 Fabricating microfluidic thermometer chips

Microfluidic fluidic thermometer chips[41] were designed in Adobe Illustrator (Adobe

Systems Inc., San Jose, CA). Each thermometer chip is 125 mm long, 25 mm wide, and con-

tains six parallel microfluidic channels. Each channel is 1.5 mm wide, 0.5 mm deep, and

115 mm long, with 2.5 mm diameter input/output reservoirs at each end, 1.5 mm space

between channels, and markers spaced every 1 mm along the sides of the chip for length

measurements. The chip design was exported as a DXF file (available as online Supporting

Information) and engraved into 3 mm thick poly(methyl methacrylate) pieces (Professional

Plastics Inc., Fullerton, CA) using a computer-controlled hobbyist-grade milling machine

(Bantam Tools, Berkeley, CA). The open channels were enclosed by applying PCR tape

(Bio-Rad Laboratories, Hercules, CA) to the chip.

3.2.2 Preparing samples

Several different types of liquid samples were analyzed in this work. To apply our

technique to the problem of counterfeit food products, we obtained chronoprints from sam-

ples of two pure food oils, extra virgin olive oil (Wal-Mart Stores Inc., Bentonville, AR) and

unrefined peanut oil (Spectrum Organic Products, Petaluma, CA), as well as a 1:1 (v/v)

mixture of the two oils that served as a adulterated oil sample. To explore the ability of our

technique to determine the authenticity of medications, we obtained chronoprints from six

different lots of NyQuil Severe Cold and Flu medicine (a liquid medication containing ac-

etaminophen, phenylephrine, doxylamine succinate, dextromethorphan, and glycerol). The
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drugs had expiration dates spanning a four-month period from July to October 2019. Ad-

ditionally, to simulate the detection of an adulterated (diluted or watered down) medicine,

we prepared and obtained chronoprints from 50%, 75%, 90%, and 95% (v/v) dilutions of

NyQuil Severe Cold and Flu medicine in water. Finally, to show that our technique can

distinguish two occasionally-confused chemicals in pharmaceutical manufacturing, we ob-

tained chronoprints from samples of diethylene glycol (a transparent and sweet-tasting but

poisonous liquid) and glycerol (a similar but nonpoisonous liquid) from Sigma-Aldrich (St.

Louis, MO). About 75 µL of each sample was loaded into the thermometer chip for each

experiment.

3.2.3 Obtaining chronoprints

Once a thermometer chip was filled with samples to analyze (Figure 3.1B), one

end of the chip was partially submerged in a liquid nitrogen bath while recording a video of

the chip contents using an inexpensive USB microscope (Figure 3.1A; Monoprice, Rancho

Cucamonga, CA). This created a dynamic temperature gradient that quickly cooled the

lower regions of the thermometer chip, then slowly cooled the rest of the chip over the

next few seconds. All six sample channels in the chip were exposed to the same changing

temperature gradient. After about 80 seconds for the oil samples and 160 seconds for the

cold medicine samples, no further changes were observed and the video recording was ended

(Figure 3.1C). A custom MATLAB script (Supporting Information) was then used to convert

each video into six chronoprints (one per sample). For each sample, the script extracts an

image of the entire microfluidic channel from each frame of the video (Figure 3.1D). The

script then averages each row of pixels in each channel image to convert it to a single column
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of pixels. By then placing all of these columns of pixels side-by-side, the script creates a

bitmap image that is the sample’s chronoprint, with space (distance along the channel) in

the vertical dimension and time in the horizontal dimension (Figure 3.1E). This process is

then repeated for each sample in the experiment, and the resulting chronoprints are ready

for comparison and similarity analysis.

3.2.4 Comparing chronoprints

Since chronoprints are just bitmap images, they can be compared using a vari-

ety of different techniques, including image similarity algorithms developed by computer

scientists.[42] In this work, we used three different techniques to compare chronoprints: fea-

ture tracing, image differences, and image hashing. In this manuscript, we show results

from only one comparison technique for each experiment, but results from using the other

techniques to analyze these experiments’ data (plus several additional experiments’ data not

shown in the main text) are provided in Supporting Information.

3.2.4.1 Comparing chronoprints using feature tracing

For simpler chronoprints with just one or two dominant features, one can simply

trace the boundary between these features and convert each chronoprint to a curve; these

curves can then be compared to each other to quantify the similarity of the samples. An

example of this feature tracing approach for chronoprint comparison is shown in Figure

3.2. In this process, a custom MATLAB program (Supporting Information) first enhances

contrast by taking the pixel values of the first frame (the first column of pixels in the

chronoprint), halving these values, and subtracting the result from each remaining column
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of pixels in the chronoprint. This process helps remove background noise that affects each

frame of the movie (and therefore each column of the chronoprint) approximately equally.

The program then converts each chronoprint from color to monochrome (Figure 3.2A), then

the program compares the value of each pixel to a constant threshold provided by the user;

pixels with values below that threshold are colored solid black, and pixels with values above

that threshold are colored solid white (Figure 3.2B). The program then traces the boundary

between the black and white pixels and converts this trace into a curve (Figure 3.2C). Rarely,

a column of pixels is encountered where the program fails to find the interface between the

black and white pixels; in these cases the program reuses the last successful interface location

from the previous column of pixels. Finally, the curve is smoothed slightly using a Savitzky-

Golay filter [43, 44] (3rd order polynial; 31 point full window width). If two curves are

similar, this suggests that the two samples analyzed may be the same; but if two curves are

significantly different, this is proof that the samples are chemically different. The degree of

similarity between two samples is quantified by summing the squared differences between

the y-axis values of the curves (the distances along the channel) at each point along the

curves.

3.2.4.2 Comparing chronoprints using image differences

While the feature tracing method described above works well for simpler chrono-

prints, more complex chronoprints cannot be easily reduced to simple curves for compari-

son. For these chronoprints, we compare the bitmap images directly. The image differences

method for chronoprint comparison calculates the sum of the pixel-by-pixel differences be-
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Figure 3.2: Overview of the feature tracing method of comparing chronoprints (in this case,
obtained from two different food oils). Monochrome chronoprints of each sample (A) are
converted to binary chronoprints (B) by comparing each pixel value to a constant threshold
value; pixels above the threshold are colored white, and pixels below the threshold are colored
black. Our code (available as online Supporting Information) then traces the boundary
between white and black pixels on each binary chronoprint, and the resulting traces are
smoothed slightly and plotted together to compare the two chronoprints (C). Traces that
are significantly different (like these) confirm that the two samples are chemically different.
The sum of squared differences (SSD) between the y-axis values of the curves at each point
along the curves (5.43 × 106 in this case) serves to quantify the degree of similarity between
the two samples of food oils.
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tween reduced-resolution versions of two chronoprints. An example of using the image

differences process is shown in Figure 3.3. In this process, each chronoprint (Figure 3.3A) is

first converted from color to monochrome, then the spatial resolution of each chronoprint is

downsampled to 8 by 8 pixels (Figure 3.3B). Each of the chronoprint’s 64 pixels now has a

value between 0 (black) and 28−1 = 255 (white). To compare two chronoprints, the absolute

value of the difference between the pixel values at each pixel location is calculated, and the

sum of these values represents the image difference score for the two images (Figure 3.3C).

An image difference score of 0 indicates that the two chronoprints are exactly identical. The

highest possible image difference score, (28−1)×64 = 16,320, corresponds to comparing an

all-white chronoprint with an all-black chronoprint. In practice, we found that a threshold

of about 1500 separated most sample pairs that are identical (image difference score < 1500)

from sample pairs that were different (image difference score > 1500).

3.2.4.3 Comparing chronoprints using image hashing

The third chronoprint comparison method we used, image hashing, is shown in

Figure 3.4. This method converts each chronoprint to a reduced-size binary representation

(a “hash”) that can then be compared to other chronoprints’ hashes. The process starts

by using the 8 by 8 pixel monochrome version of the chronoprints created in the image

differences method above. Then, each pixel is converted to either solid white or solid black

depending on whether its value lies above or below a threshold (Figure 3.4B). In this study,

we explored four different values for this threshold:

• Local Mean: the average pixel value in each chronoprint was used as the threshold.
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Figure 3.3: Overview of the image differences method of comparing chronoprints (in this
case, obtained from authentic and diluted samples of liquid cold medicine). Chronoprints
of each sample (A) are converted to reduced-resolution (8 × 8 pixel) monochrome chrono-
prints (B). The monochrome chronoprints are then compared by calculating the difference
between the pixel values at each location; the resulting image (C) shows which regions of
the chronoprints are similar (blue) and which are different (red). The sum of these pixel
difference values (3134 in this example) quantifies the similarity of these chronoprints on a
scale from 0 (completely identical) to 16,320 (completely different). In practice, we found
that a threshold of about 1500 generally separates the image differences scores of identical
substances from different substances, so the image differences score of 3134 in this example
is significantly greater than 1500 and confirms that these two samples of cold medicine are
chemically different.
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• Local Median: the median pixel value in each chronoprint was used as the threshold.

• Global Mean: the average pixel value across all six chronoprints in an experiment

was used as the threshold.

• Global Median: the median pixel value across all six chronoprints in an experiment

was used as the threshold.

Once a chronoprint is converted to an 8 by 8 binary image, it has effectively been

reduced to a 64-bit “hash” of the original chronoprint. To calculate the similarity between

two image hashes, our software interprets white pixels as binary “1” or TRUE and black

pixels as “0” or FALSE, then calculates the exclusive OR (also called XOR) of each pixel

pair between the images. If two pixels in the same location in two image hashes are the

same (that is, they are both white or both black), then the result of the XOR of the pixel

values is always 0 (that is, 0 XOR 0 = 0 and 1 XOR 1 = 0). However, if the two pixels

are different (if one is black and the other is white), then the result of the XOR of the pixel

values is always 1 (that is, 1 XOR 0 = 1 and 0 XOR 1 = 1). By then adding up the sum of

all 64 pixel-wise XOR operations, we obtain the two chronoprints’ image hashing similarity

score (Figure 3.4C). This value ranges from 0 (for two chronoprints with identical image

hashes) to 64 (for chronoprints with exactly opposite image hashes).
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Figure 3.4: Overview of the image hashing method of comparing chronoprints (in this case,
obtained from authentic and diluted samples of liquid cold medicine). Chronoprints of
each sample (A) are converted to reduced-resolution (8 × 8 pixel) binary chronoprints (B)
by comparing each pixel value to a constant threshold. The binary chronoprints are then
compared by computing the exclusive OR (XOR) of the pixels at each location in the binary
chronoprints, interpreting black = binary “0” or FALSE and white = binary “1” or TRUE.
The resulting XOR image (C) is shown with blue pixels wherever the chronoprints are
similar and red pixels wherever the chronoprints are different. The number of red pixels
in the XOR image, the image hashing score (20 in this example), quantifies the degree of
similarity of these chronoprints on a scale from 0 (completely identical) to 64 (completely
different). In practice, we found that XOR images with more than about 10 red pixels
corresponded to chronoprint pairs from different samples, so the image hashing similarity
score of 20 in this example confirms that these two samples of cold medicine are chemically
different.
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3.3 Results and discussion

3.3.1 Identifying food fraud

The intentional tampering, substitution, or dilution of food or ingredients, also

know as food fraud, is a widespread problem that costs consumers and the food industry $10

billion to $15 billion a year worldwide. [45] In some cases, food ingredients are substituted

or diluted with potentially dangerous or toxic alternates, thereby producing a serious public

health concern. For example, in 2008, 22 food companies in China used the toxic compound

melamine, commonly used to produce plastic resins, in infant formula to artificially inflate

the apparent protein content of their products. This resulted in six infant deaths and nearly

300,000 illnesses [45, 46, 47, 48]. In response to the significant economic and health impact

of food fraud, the Grocery Manufacturing Association and the United States Congressional

Research Service recommend testing food products during and after their production and

suggest that authenticating ingredients is the best way to detect adulteration [45, 47].

Olive oil was found to be one of the most commonly adulterated food products

worldwide between the years 1980 and 2010, [49] and the University of California, Davis’

Olive Center reported in 2010 that 69% of imported olive oils and 10% of California olive

oils labeled “extra virgin” did not meet the legal standard.[50] In some cases, “extra virgin”

olive oil is diluted with other less expensive oils such as sunflower seed and peanut oils,

which pose serious health risks to individuals who are allergic to these foodstuffs. [47, 48]

To determine if chronoprints can be used to identify adulterated food oils, we used

our technique to analyze various samples of pure oils and oil mixtures. Since these samples

resulted in relatively simple chronoprints, we used the feature tracing comparison technique

93



to convert each chronoprint into a curve and quantify sample similarity. We began by

loading a thermometer chip with six identical samples of 100% extra virgin olive oil before

partially submerging the chip in liquid nitrogen, recording a video of the chip as it cools,

and converting the video into six chronoprints. The results from performing feature tracing

analysis on each chronoprint are shown in Figure 3.5A. Since all six samples were identical, we

expected the resulting curves to be very similar, and this is indeed the case. The maximum

sum-of-squared-differences between the curves, 4.22×105, is relatively low and indicates that

the samples are likely identical. In another experiment, we analyzed six identical samples

of a different oil (100% unrefined peanut oil). As expected, the resulting curves are again

nearly identical, with a maximum sum-of-squared-difference of 1.73× 105. These and other

results support our claim that all six samples in the microfluidic thermometer receive the

same perturbation, and if the samples are identical, then the resulting chronoprints will be

very similar (with sum-of-squared differences between their feature tracing curves less than

about 1× 106).

To determine whether different samples produce different chronoprints in the same

experiment, we loaded two samples each of three different oils into a thermometer chip.

Channels 1 and 4 contained pure peanut oil, channels 3 and 6 contained pure olive oil,

and channels 2 and 5 contained a 1:1 (v/v) mixture of olive and peanut oils. We then

obtained chronoprints for each sample and analyzed them using the feature tracing method;

the resulting curves are shown in Figure 3.5C. Within each oil type, each pair of samples

resulted in very similar curves: the sum-of-squared differences was only 5.98 × 104 for the

two olive oil samples, 2.55× 105 for the two peanut oil samples, and 1.04× 105 for the two
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Figure 3.5: Identifying authentic and adulterated food oils using chronoprints. Each plot
compares chronoprints from six food oil samples, converted to curves using the feature
tracing method. (A) Chronoprint curves from six identical samples of olive oil are nearly
identical and differ by a sum-of-squared-differences (SSD) that is 4.22 × 105 or less; this
is less than the experimentally observed threshold of 1 × 106 and confirms that the oil
samples are identical. (B) Chronoprint curves from six identical samples of peanut oil
are similarly identical. (C) Chronoprint curves from two samples each of three different
oils (olive oil, peanut oil, and a 1:1 mixture of olive and peanut oil) are similar within
each oil type but significantly different between the different oil types. The maximum
sum-of-squared-differences between two different oil types (5.77 × 106 difference between
the olive oil and peanut oil samples) is greater than the threshold of 1 × 106 and confirms
that these oils are different.
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olive/peanut mixture samples. However, the different oil types had very different curves: the

maximum sum-of-squared-differences was 5.77×106 for the olive oil and peanut oil samples.

In this and other experiments, we found that chronoprints with feature tracing scores greater

than about 1× 106 indicated that the oils were different, and chronoprints with scores less

than 1× 106 indicated that the oils were the same. Additional chronoprints and analysis of

experiments with olive oil, peanut oil, and a 1:1 mixture of the two oil samples are provided

in Supporting Information.

3.3.2 Detecting counterfeit medicine

The United Nations estimates that around 10% of all medicines in low- and middle-

income countries are counterfeit; consumers waste billions of dollars on these fake drugs every

year. [39, 40] Simple and inexpensive tools for identifying adulterated drugs can protect

consumers from these threats. For example, recent paper-based tests have been developed

that can confirm the authenticity of samples of certain drugs.[51, 52, 53] However, there

remains an unmet need for simple and low-cost techniques that can be applied to a wide

range of different types of drugs.

To test the use of chronoprints for distinguishing authentic and adulterated medicine

samples, we used our technique to analyze samples of over-the-counter cold medicine. These

samples resulted in fairly complex chronoprints, so we used image differences and image

hashing to compare these chronoprints. We first filled a microfluidic thermometer chip with

six samples of cold medicine from the same bottle and obtained a chronoprint for each sam-

ple. Since these drug samples were identical, we expected that the resulting chronoprints

would be very similar. Our experimental results (Figure 3.6A) confirm this expectation:
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using image hashing with a global mean pixel value as the threshold, all six chronoprints’

hashes differ by only 5 or fewer bits out of 64. This small difference in the chronoprints’

image hashes confirms that the cold medicine samples are identical. We then filled the chip

with six samples of cold medicine from six different medicine manufacturer’s lots and ob-

tained a chronoprint for each sample. Since these medicine samples are all the same brand,

we expected that the resulting chronoprints would also be very similar. Our experimental

results (Figure 3.6B) confirm this expectation: using image hashing with a local mean pixel

value as the threshold, all six chronoprints’ hashes differ by only 4 or fewer bits out of 64.

This small difference in the chronoprints’ image hashes confirms that these cold medicine

samples are also identical, despite being manufactured at different times over a 4-month

period. Additional chronoprint experiments, as well as the different analysis methods for

the experiments shown in Figure 3.6, are provided in Supporting Information.

If a sample of medicine is adulterated by diluting it with water, the sample’s chrono-

print might change, and this could be the basis of a test to detect adulterated medicines. To

test this idea, we filled a microfluidic thermometer chip with two samples each of 50%, 75%

and 100% (v/v) dilutions of cold medicine in water. The resulting chronoprints were again

analyzed using image hashing with a global mean pixel value as the threshold. The results

(Figure 3.7A) show that within each dilution, the two samples’ chronoprints are identical

or nearly so: the two samples of 100% medicine have identical image hashes, as do the

two samples of 75% medicine, and the two samples of 50% medicine differ by only 4 bits.

However, between the different dilutions, the samples’ chronoprints were very different: the

100% and 75% dilutions differed by 24 bits, the 75% and 50% dilutions differed by 23 and 27

98



A B
Image Hashing
Global Mean

Image Hashing
Local Mean

Figure 3.6: Detecting authentic liquid cold medicine using chronoprints. Each set of im-
ages shows six chronoprints along with all pairwise comparisons of the six samples in each
experiment, plus a small summary plot of difference scores (blue points = known identical
samples). (A) Chronoprints from six identical samples of cold medicine from the same
bottle, compared using the image hashing method with the global mean pixel value used
as the threshold. The resulting image hashes never differ by more than 5 bits; this is well
below the 10-bit experimentally-observed threshold between identical and different samples
(dotted line in summary plot) and confirms that all six medicine samples are identical. (B)
Chronoprints from six samples of cold medicine from six different manufacturer’s lot num-
bers, compared using the image hashing method with the local mean pixel value used as
the threshold. The resulting image hashes never differ by more than 4 bits; this again con-
firms that the medicine samples are identical (despite having manufacture dates spanning a
four-month period).
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bits, and the 100% and 50% dilutions differed by 47 and 51 bits. In this and other studies,

we found that chronoprint image hashes that differed by more than about 10 bits indicated

that the medicines were different (and potentially adulterated), and hashes that differed

by less that 10 bits indicated that the medicines were the same. Additional chronoprint

experiments for the 50%, 75%, and 100% (v/v) dilutions of cough medicine in water, as well

as the different analysis methods for the experiment shown in Figure 3.7A, are provided in

Supporting Information.

To explore the sensitivity of the chronoprint technique, we repeated the cold

medicine analysis in Figure 3.7A with a smaller difference between the different dilutions:

90%, 95% and 100% (v/v). For this experiment, we found that the image differences compar-

ison method provided the clearest results (Figure 3.7B). As expected, within each dilution,

the two samples’ chronoprints are very similar: the two samples of 100% medicine have

image difference scores of only 687, the two samples of 95% medicine have scores of 404,

and the two samples of 90% medicine have scores of 660. These scores are all less than the

∼1500 threshold that we observed separates image differences scores of identical (< 1500)

and different (> 1500) samples. And also as expected, two different dilutions’ chronoprints

were very different: the 90% medicine had image differences scores from 2195 to 2564 when

compared to the 100% medicine and 1768 to 2120 when compared to the 95% medicine.

However, the 95% and 100% medicines had indistinguishable chronoprints—their image dif-

ferences scores ranged from 517 to 888, which are below the ∼ 1500 threshold and therefore

erroneously identified as identical. In summary, the results in Figure 3.7 show that our

chronoprint method can identify samples of this cold medicine that have been diluted by as
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Figure 3.7: Detecting adulterated liquid cold medicine using chronoprints. (A) Chronoprints
from two samples each of three different dilutions of cold medicine in water (50%, 75%,
and 100%) again compared using the image hashing method. The resulting image hashes
successfully confirm that the two samples of each dilution are identical (difference scores of
0, 0, and 4 bits; all < 10) and all samples of different dilutions are different (difference scores
from 23 to 51 bits; all > 10). (B) Chronoprints from two samples each of three additional
dilutions of cold medicine (90%, 95%, and 100%) compared using the image differences
method. The resulting difference images successfully distinguished the 90% samples from
the 95% and 100%, with difference scores from 1768 to 2564 (all > 1500, the experimentally-
observed threshold between identical and different samples marked with the dotted line).
However, the images failed to distinguish the 100% and 95% samples, with difference scores
from 517 to 888 (all < 1500 and therefore erroneously identified as identical; red points
below the dotted line). Thus, chronoprints are capable of identifying samples of this cold
medicine that have been diluted by as little as 10%.
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little as 10%. Additional chronoprint experiments for the 90%, 95%, and 100% (v/v) dilu-

tions of cough medicine in water, as well as the different analysis methods for the experiment

shown in Figure 3.7B, are provided in Supporting Information.

3.3.3 Identifying toxic pharmaceutical ingredients

In 1937, a chemist at the S.E. Massengill Company in Bristol, Tennessee, un-

wittingly substituted a toxic substance, diethylene glycol, for nontoxic glycerol in a liquid

formulation of the early antibiotic sulfanilamide. The resulting medicine, called “Elixir Sul-

fanilamide,” fatally poisoned over 100 persons [54, 55], and the toxicity of diethylene glycol

became common knowledge among pharmaceutical companies. But remarkably, poisonings

due to diethylene glycol in medicines remain tragically common today, with a mass poisoning

occurring somewhere in the world on average every two years since 1985.[56] Many of these

poisonings occur in resource-limited settings where pharmaceutical companies may not have

the resources needed to confirm the identity (and safety) of their manufacturing stocks. The

problem of distinguishing diethylene glycol from glycerol is compounded by the fact that

they both have very similar properties: they are both transparent, viscous, sweet-tasting

liquids, with similar densities, freezing/melting points, and other properties. Consequently,

our initial attempts to distinguish diethylene glycol and glycerol by their melting/freezing

points alone (using our microfluidic thermometer[41]) were unsuccessful.

To determine whether our chronoprint technique could distinguish toxic diethylene

glycol from nontoxic glycerol, we filled a microfluidic thermometer chip with three sam-

ples each of both substances, partially immersed the chip in liquid nitrogen, and obtained

chronoprints from the video recording of the chip. The chronoprints were then analyzed
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using the image hashing technique with the global mean pixel value used as the threshold.

The results, shown in Figure 3.8, confirm that all the glycerol chronoprint hashes are very

similar (never differing by more than 8 bits), as are all the diethylene glycol chronoprint

hashes (never differing by more than 10 bits). However, the glycerol chronoprint hashes are

significantly different from the diethylene glycol chronoprint hashes (differing by at least 46

bits). These results confirm that our chronoprint method can easily distinguish between

toxic diethylene glycol and nontoxic glycerol.

3.4 Conclusion

In this work, we introduced chronoprints, an image-based method for identifying

or distinguishing substances. Chronoprints are simple and inexpensive to obtain; we used a

plastic microfluidic chip, a USB camera, and some liquid nitrogen to obtain ours, but other

approaches could be used. In principle, any sample that changes in appearance in response to

a perturbation could be analyzed using chronoprints. While we used chronoprints to analyze

only liquid samples in this work, the technique is not limited to liquids. For example,

solid samples such as pills could be dissolved in constant volumes of water, loaded into

the thermometer chip, and analyzed for their authenticity using chronoprints. Even gas

mixtures could be analyzed using chronoprints if their components formed condensation or

other visible markings on the channel walls of the microfluidic thermometer.

In this proof-of-concept, we used a rapidly-changing temperature gradient as the

perturbation; this gradient induces phase changes, separations, and other changes within the

samples that make for useful chronoprints. However, some samples may be indistinguishable
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Figure 3.8: Distinguishing toxic and nontoxic pharmaceutical ingredients using chronoprints.
Chronoprints of three samples of toxic diethylene glycol and three samples of nontoxic glyc-
erol were analyzed using the image hashing technique with the global mean pixel value as
the threshold. The three glycerol chronoprint hashes were nearly identical (differing by 8
or fewer bits), as were the three diethylene glycol hashes (differing by only 3 to 10 bits).
However, all of the glycerol chronoprint hashes were significantly different from all of the
diethylene glycol hashes (differing by 46 to 51 bits out of a maximum of 64). These results
confirm that these substances can be easily distinguished by their chronoprints.
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using chronoprints based on dynamic temperature gradients. For example, we could not dis-

tinguish the 95% and 100% dilutions of cold medicine using dynamic temperature gradients

in Figure 3.7B. For samples like these, other kinds of perturbations could be used to gen-

erate unique chronoprints. For example, if the samples differ in their boiling points, then a

high-temperature dynamic temperature gradient might generate different chronoprints for

the different samples. For heterogenous samples containing suspended solids, a changing

gravitational acceleration provided by e.g. a centrifuge may yield unique chronoprints. In

general, any perturbation that affects the appearance of different samples in different ways

could be the basis for a chronoprint.

Our method does not require that the temperature gradient is reproducible from

run to run. Rather, we use multiple parallel microfluidic channels to ensure that each sam-

ple experiences the same temperature gradient within a run (thereby enabling comparisons

between the samples within that run). This greatly simplifies our technique by eliminating

the need for hardware like temperature sensors or controllers. However, if it were possible

to compare chronoprints from different runs, it would enable us to construct a database of

chronoprints for various substances; this would enable our technique to identify a substance

without having a known sample of the substance for comparison. One simple way to accom-

plish this would be to load one or more reference materials into the thermometer chip. For

example, materials like temperature-sensitive liquid crystals (whose appearances change in

known and reproducible ways as their temperature changes) could serve as internal stan-

dards. By scaling a liquid crystal’s chronoprint to make it match a reference chronoprint for

the liquid crystal, then applying the same scaling to the chronoprints of other samples in the
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same run, one might obtain “standardized chronoprints” that could be saved to a database

and compared between different runs.

One practical limitation to using our chronoprint technique in resource-limited set-

tings is the availability of liquid nitrogen for creating the dynamic temperature gradient.

While liquid nitrogen is relatively inexpensive, it requires production and transport infras-

tructure that may not exist in some locations. For those without access to liquid nitrogen,

dry ice may be available from e.g. carbonated beverage production facilities that are found in

many towns. We found that dynamic temperature gradients suitable for obtaining chrono-

prints can be obtained using dry ice in acetone, although one must first confirm that one’s

microfluidic thermometer chip material is compatible with the solvent. We also previously

used inexpensive Peltier (thermoelectric) coolers to generate temperature gradients,[41] and

these coolers could also be used to create chronoprints. Finally, a compressor and freezer

coil from an ordinary refrigerator could likely be repurposed to provide the temperature

gradient necessary for obtaining chronoprints.

Another practical limitation to our technique concerns the training and other re-

sources required to perform it, but we note that many of the experiments in this work were

performed by undergraduate researchers (J. Robles-Najar and E. Duong) who required only

minimal training to become proficient at the chronoprint technique. The microfluidic ther-

mometer chip we used required a hobbyist-grade milling machine for fabrication, but we

provide the computer design file for this chip in Supporting Information, and we have also

demonstrated that consumer-grade 3D printers can be used to fabricate similar chips.[41]

Additionally, the MATLAB- and Python-based analysis code we also provide as Supporting
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Information should simplify the process of generating chronoprints from video recordings of

thermometer chips.

Finally, since chronoprints are fundamentally just bitmap images on a computer,

we can leverage the enormous variety of image analysis and comparison techniques that have

been developed by computer scientists. The image similarity measurements that we used in

this proof-of-concept demonstration generally worked well, but they could not algorithmi-

cally distinguish the 95% and 100% dilutions of cold medicine in Figure 3.7B. However, by

simply looking at the raw chronoprints in Figure 3.7B, one can nonetheless see slight differ-

ences between the two concentrations’ chronoprints. Image comparison algorithms that can

recognize these differences will enable our chronoprint technique to correctly identify and

discriminate an even wider variety of samples.
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3.6 Supporting Information for

“Chronoprints: Identifying substances by visualizing how

they change over time”

3.6.1 Thermometer_chip.dxf: Design of the microfluidic thermometer

chip in DXF format, used when milling the chips used in this work

on a CNC mill.

The design of the thermometer chip in standard .DXF format is shown below and

can be downloaded at https://pubs.acs.org/doi/10.1021/acscentsci.8b00860.
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Figure 3.9: A drawing of the thermometer chip design used to fabricate chips in this work.
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3.6.2 Supporting information text and supplementary Figures 3.10–3.22:

data from replicate chronoprint experiments, and results from dif-

ferent analysis methods for the experiments shown in the main

text.

3.6.2.1 Optimal lighting

Our initial experiments with food oils revealed the importance of proper lighting

in obtaining quality chronoprints. Overly-lit experiments caused saturated pixels in the

resulting videos and poor contrast in the resulting chronoprints, which in turn affected

how well our feature tracing MATLAB script could convert the chronoprint into curves; see

supplementary Figure 3.10 for an example. In later experiments we reduced the lighting on

the chip to obtain results such as those shown in the main text.

3.6.2.2 Optimal experiment duration

We also explored the optimal duration for oil chronoprint experiments. Supple-

mentary Figure 3.11 shows the results of using the feature tracing analysis of a chronoprint

obtained from a 25-second-long video of the oil samples reacting to a dynamic temperature

gradient. While the resulting curves are roughly grouped by their oil type, the separation

between the oil types is not very pronounced. We attributed this to insufficient experi-

ment time and ran subsequent experiments for longer durations, which resulted in greater

separation between the different oil curves.

110



0 10 20 30 40 50 60 70 80 90 100 110
Time (s)

0

50

100

150

200

250

300

350

400

450

500

Sp
ac

e 
(p

x)

Olive Oil, Peanut Oil, and Mixture Samples

Ch. 1: Olive Oil
Ch. 2: Peanut Oil
Ch. 3: 1:1 Olive & Peanut Oil
Ch. 4: Olive Oil
Ch. 5: Peanut Oil
Ch. 6: 1:1 Olive & Peanut Oil

Figure 3.10: Curves resulting from using the feature tracing analysis of chronoprints from
from 100% olive oil (channels 1 and 4), 100% peanut oil (channels 2 and 5), and a 1:1
mixture of olive and peanut oils (channels 3 and 6). Excessive lighting during video recording
saturated some pixels and adversely affected the quality of these results.
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Figure 3.11: Curves resulting from using the feature tracing analysis of chronoprints from
from a 1:1 mixture of olive and peanut oils (channels 1 and 4), 100% peanut oil (channels
2 and 5), and 100% olive oil (channels 3 and 6). The separation between the oil types
is not very pronounced. We attribute this to insufficient experiment duration time. The
curves from samples in channels 1 and 2 are slightly higher than the curve from the same
samples in channels 4 and 5. We attribute this error to poor centering of the channels on
this microfluidic thermometer chip, which exposed channels 1 and 2 to a faster-dropping
temperature gradient than the other channels.
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3.6.2.3 Thermometer chip edge effects

Occasionally, small variations in our chip milling process can yield thermometer

chips with channels that are not perfectly centered on the chip. When this happens, the

samples in the channels may experience slightly different changing temperature gradients

during an experiment; the sample in the channel closer to one edge of the chip is more

exposed to the liquid nitrogen bath and cools faster than the other channels. This results in

a shifted curve for the sample, as shown for the oil samples in channels 1 and 2 of Figure 3.11

and the sample in channel 1 of Figure 3.12. Taking care to fabricate symmetric thermometer

chips minimizes this source of error.

3.6.2.4 Replicate of experiment in main text Figure 3.5C

We performed several replicates of the oil experiment shown in Figure 3.5C of

the main text and included one here (Figure 3.12). In both experiments, chronoprints

successfully distinguish these different oil types.

3.6.2.5 Comparisons of chronoprint image similarity algorithms

As explained in the main text, we used five different image similarity algorithms to

quantify the similarity of pairs of chronoprints. Four of these algorithms used image hashing,

which converts each chronoprint to a reduced-resolution, 64-bit binary “hash” of the original

chronoprint. These algorithms differed in which pixel value we used as a threshold for

converting the chronoprints into binary representations:

Local Mean: the average pixel value in each chronoprint was used as the threshold.
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Figure 3.12: Curves resulting from using the feature tracing analysis of chronoprints from
from 100% peanut oil (channels 1 and 4), a 1:1 mixture of olive and peanut oils (channels 2
and 5), and 100% olive oil (channels 3 and 6). This is a replicate of the experiment shown
in Figure 3.5C of the main text. Among the samples of the same oil types, the chronoprint
traces had relatively small differences: the maximum sum-of-squared-differences of 8.47
×104, 3.61 ×105, and 1.35 ×105 between the two 100% olive oil samples, the two 100%
peanut oil samples, and the two 1:1 olive and peanut oil samples, respectively. However,
between the different oil types, the chronoprint traces had greater differences: the maximum
sum-of-squared-differences were 7.34 ×106 between the 100% olive oil and 100% peanut oil
samples.
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Local Median: the median pixel value in each chronoprint was used as the threshold.

Global Mean: the average pixel value across all six chronoprints in an experiment was

used as the threshold.

Global Median: the median pixel value across all six chronoprints in an experiment was

used as the threshold.

The fifth algorithm, image differences, converted each chronoprint to a reduced-

resolution grayscale version, then calculated the sum of the pixel-by-pixel differences between

two chronoprints to assess their similarity.

In the main text, we presented results from only a single image similarity algorithm

for each cold medicine experiment. Here, we present results from all five algorithms for

each cold medicine experiment in the main text, as well as analysis of replicates of some

of the experiments in the main text. Figure 3.13 compares all five chronoprint similarity

algorithms for the experiment in Figure 3.6A of the main text (comparing six identical cold

medicine samples taken from the same bottle). Figure 3.14 compares all five algorithms for

the experiment in Figure 3.6B of the main paper (comparing six samples of cold medicine

from six different manufacturer’s lots). Figure 3.15 provides a replicate of the experiment

in Figure 3.6A of the main text (comparing six identical cold medicine samples taken from

the same bottle); in this case the thawing of the samples was also recorded and included in

the chronoprints. Figure 3.16 provides a replicate of the experiment in Figure 3.6B of the

main paper (comparing six samples of cold medicine from six different manufacturer’s lots).

Figure 3.17 compares all five different chronoprint similarity algorithms for the experiment
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in Figure 3.7A of the main text (comparing 50%, 75%, and 100% v/v dilutions of cough

medicine in water). Figures 3.18 and 3.19 provide replicates of the experiment in Figure

3.7A of the main text (comparing 50%, 75%, and 100% v/v dilutions of cough medicine in

water). Figure 3.20 compares all five chronoprint similarity algorithms for the experiment

in Figure 3.7B of the main paper (90%, 95%, and 100% v/v dilutions of cold medicine in

water). Finally, Figures 3.21 and 3.22 provide replicates of the experiment in Figure 3.7B

of the main paper (90%, 95%, and 100% v/v dilutions of cold medicine in water).

3.6.3 Chronoprintgen.m: MATLAB software for converting videos into

chronoprints, used to generate all of the chronoprints shown in

this work.

The source code for the software used to generate all of the chronoprints in this

work is shown below and can be downloaded at

https://pubs.acs.org/doi/10.1021/acscentsci.8b00860.

1 %ChronoprintGen.m

2 %

3 %This code accompanies the paper "Chronoprints: Identifying

samples by
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Figure 3.13: Comparisons of different
chronoprint similarity algorithms for six
cold medicine samples from one bottle (the
experiment shown in Figure 3.6A of the main
text).
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Figure 3.14: omparisons of different chrono-
print similarity algorithms for six cold
medicine samples from six different manufac-
turing lots (the experiment shown in Figure
3.6B of the main text).
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Figure 3.15: Replicate of comparing six cold
medicine samples from one bottle (replicate of the
experiment shown in Figure 3.6A of the main text.
All sample chronoprints are very similar, with a
minimum pixel difference of 2 and maximum pixel
difference of 12 out of 64 pixels total between
different sample chronoprints. The local mean
image hashing analysis performed the best for this
experiment.
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Figure 3.16: Replicate of comparing six cold
medicine samples from six different manufacturing
lots (replicate of the experiment shown in Figure
3.6B of the main text). All sample chronoprints are
almost identical, with a minimum pixel difference
of 0 and maximum pixel difference of 5 out of 64
pixels total between different sample chronoprints.
The local mean image hashing analysis performed
the best for this experiment.
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Figure 3.17: Comparisons of different chrono-
print similarity algorithms for 50%, 75%,
and 100% (v/v) dilutions of cold medicine in
water (the experiment shown in Figure 3.7A
of the main text).
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Figure 3.18: Replicate of the analysis of
50%, 75%, and 100% cold medicine samples
(replicate of the experiment shown in Figure
3.7A of the main text). All three dilutions
types are distinguishable. The global median
image hashing analysis performed best for this
experiment, with a maximum pixel difference
of 28 of 64 pixels between the 75% and 100%
sample chronoprints.
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Figure 3.19: Replicate of the analysis of 50%, 75%,
and 100% cold medicine samples (replicate of the
experiment shown in Figure 3.7A of the main text).
All three sample types are distinguishable. The
local median image hashing analysis performed the
best for this experiment, with a maximum pixel
difference of 28 out of 64 pixels between the 75%
and 100% sample chronoprints.
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Figure 3.20: Comparisons of different chrono-
print similarity algorithms for 90%, 95%,
and 100% (v/v) dilutions of cold medicine in
water (the experiment shown in Figure 3.7B
of the main text).
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Figure 3.21: Replicate of the analysis of 90%, 95%,
and 100% cold medicine samples (replicate of the
experiment shown in Figure 3.7B of the main text).
The 90% cold medicine samples are distinguishable
from the others, but the 95% and 100% samples
were not distinguishable. The local median image
hashing analysis performed the best for this exper-
iment, with a maximum pixel difference of 26 out
of 64 pixels between the 90% and 100% sample
chronoprints.
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Figure 3.22: Replicate of the analysis of 90%, 95%,
and 100% cold medicine samples (replicate of the
experiment shown in Figure 3.7B of the main text).
The 90% cough medicine sample is distinguishable
from the others, but the 95% and 100% samples
were not distinguishable. The image differences
analysis performed the best for this experiment,
with a maximum sum of pixel difference of 3134
out of 16320 between the 90% and 100% sample
chronoprints.
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4 %visualizing how they change over space and time" by

Brittney A. McKenzie ,

5 %Jessica Robles -Najar , Eric Duong , Philip Brisk , and

William H. Grover.

6 %

7 %Updated versions of this code are available on groverlab.

org

8

9 %Generate Chronoprints

10 %Access directory folder with video frame images

11 srcfiles = dir(’C:\Users\User\Folder␣with␣video␣frames \*.

png’);

12

13 %Naturally sort file names in numerical order

14 files = natsortfiles ({ srcfiles.name});

15

16 %Number of rows of pixels in channel

17 numrow = 443;

18 for framenum = 1 : length(files)%For every frame in your

directory of frames

19

20 %Concatinates filename into a string
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21 filename = strcat(’C:\Users\User\Folder␣with␣video␣

frames\’,char(files(framenum)));

22

23 %Read image

24 frame = imread(filename);

25

26 %Define channel regions by pixel columns

27 ch{1} = frame (: ,81:98 ,:);

28 ch{2} = frame (: ,124:141 ,:);

29 ch{3} = frame (: ,167:184 ,:);

30 ch{4} = frame (: ,211:228 ,:);

31 ch{5} = frame (: ,255:272 ,:);

32 ch{6} = frame (: ,299:316 ,:);

33

34 for row = 1: numrow %For every row of pixels in the

chanel

35

36 for channelnum = 1:6 %for all channels

37

38 %Separate image into RGB components and compute

average RGB pixel
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39 %values for each row of pixels in the channel

image for each

40 %frame

41 mean_r = mean(ch{channelnum }(row ,:,1),’native ’)

;

42 mean_g = mean(ch{channelnum }(row ,:,2),’native ’)

;

43 mean_b = mean(ch{channelnum }(row ,:,3),’native ’)

;

44

45 %Matrix stores the average pixel RGB values for

each row of pixels in the

46 %channel image for each frame

47 slice{channelnum }(row ,framenum ,:) = cat(3,

mean_r ,mean_g ,mean_b);

48 end

49 end

50 end

51

52 %Show all chronoprint images and save them to a file

53 for num =1:6
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54 figure ,reslice{num} = imshow(slice{num}); %Show all

chronoprint images

55

56 %Save chronoprint image to file

57 imwrite(slice{num}, sprintf(’Chronoprint %01d.png’,num))

;

58 end

3.6.4 OilChronoprintAnalysis.m: MATLAB software for analyzing chrono-

prints using the feature tracing method, used to generate Figures

3.2 and 3.5 and supplementary Figures 3.10–3.12.

The source code for the software used to analyze chronoprints with the feature

tracing method is shown below and can be downloaded at

https://pubs.acs.org/doi/10.1021/acscentsci.8b00860.

1 %OilChronoprintAnalysis.m

2 %

3 %This code accompanies the paper "Chronoprints: Identifying

samples by

4 %visualizing how they change over space and time" by

Brittney A. McKenzie ,

5 %Jessica Robles -Najar , Eric Duong , Philip Brisk , and

William H. Grover.
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6 %

7 %Updated versions of this code are available on groverlab.

org

8

9 clc; clear all; close all;

10

11 for num = 1:2 %number of samples to analyze

12

13 %define number of image pixel rows and columns

14 rownum = 457;

15 colnum = 555;

16 rownum_1 = rownum -1;

17

18 %Reads chronoprint images

19 Reslice1_{num} = imread(sprintf(’Chronoprint %01d.png’,

num));

20

21 %subtract background to improve contrast and reduce

noise

22 Reslice2_{num} = Reslice1_{num}(:,:,:) - Reslice1_{num

}(:,1,:)/2; %remove noise with half of first frame

23
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24 %Convert image to binary

25 thresholdvalue = 0.039;

26 Reslice3_{num} = im2bw(Reslice2_{num}, thresholdvalue);

27

28 %New matrix to store isolated curve values

29 Reslice4_{num} = ones(rownum_1 ,colnum);

30

31 %Isolate curve values and store values in matrix

32 for row = 1: rownum_1

33 for col = 2: colnum

34 if Reslice3_{num}(row ,col)== Reslice3_{num}(row

+1,col) && Reslice3_{num}(row ,col)==

Reslice3_{num}(row+1,col -1)

35 Reslice4_{num}(row ,col)= 1;

36 else

37 Reslice4_{num}(row ,col)= 0;

38 end

39 end

40 end

41

42 %New vector to store Y values (space along channel in

pixels) of curve
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43 rawdata{num} = zeros(1,colnum);

44

45 %Record raw data Y values (pixel distance along channel

) of curve

46 for rows = 1: rownum_1

47 for cols = 1: colnum

48 if Reslice4_{num}(rows ,cols)== 0

49 rawdata{num}(cols)= rownum -rows;

50 end

51 end

52 end

53

54 %Time vectors with adjusted time scale to account for

frame rate

55 framerate = 8; %frames/sec

56 t{num} = (1: length(rawdata{num}))/framerate; %adjusted

time vector

57

58 %Remove zero placeholder values from data and replace

with last

59 %successful trace value

60 rawdata {3}(2)= 0; rawdata {4}(2)= 0; rawdata {6}(2)= 0;
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61 newdata{num} = interp1 (1:nnz(rawdata{num}), rawdata{num

}( rawdata{num} ~= 0), cumsum(rawdata{num} ~= 0), ’

NearestNeighbor ’);

62 newdata{num}(isnan(newdata{num})) = rawdata{num}(isnan(

newdata{num})); %Keeps starting zero

63

64 %Apply Savitzky -Golay filter

65 order = 3; %polynomial order

66 framelen = 31; %frame length

67 Y{num} = sgolayfilt(newdata{num},order ,framelen);

68 end

69

70 %Compute sum of squared differences

71 ssd = sum((Y{1} - Y{2}) .^2);

72

73 %Plot data

74 figure

75 plot(t{1},Y{1},t{2},Y{2});

76 title(’Oil␣Samples ’);

77 ylabel(’Space␣(px)’);

78 xlabel(’Time␣(s)’);

79 legend ({’Sample␣1’,’Sample␣2’});
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80 axis ([0 75 0 500]);

3.6.5 chronoprint.py and workup.py: Python software for analyzing chrono-

prints using the image hashing and image differencesmethods, used

to generate Figures 3.3, 3.4, and 3.6–3.8, and supplementary Fig-

ures 3.13 – 3.22.

The source code forthe software used to analyze chronoprints with the image hash-

ing and image differences methods is shown below and can be downloaded at

https://pubs.acs.org/doi/10.1021/acscentsci.8b00860.

The chronoprint.py code computes the image differences and image hashing

methods for each data set.

1 # chronoprint.py

2 #

3 # This code accompanies the paper "Chronoprints:

Identifying samples by

4 # visualizing how they change over space and time" by

Brittney A. McKenzie ,

5 # Jessica Robles -Najar , Eric Duong , Philip Brisk , and

William H. Grover.

6 #

7 # Updated versions of this code are available on groverlab.

org
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8

9 import numpy as np

10 import matplotlib.pyplot as plt

11 import matplotlib.image as mpimg

12 import matplotlib.ticker as ticker

13 import scipy.misc

14 import os

15 import seaborn as sns

16 import pandas as pd

17

18

19 class chronoprint ():

20 def __init__(self , file , substance , description=""):

21 self.file = file

22 self.substance = substance

23 self.description = description

24 self.rgb = mpimg.imread(self.file)

25 self.r = self.rgb[:,:,0]

26 self.g = self.rgb[:,:,1]

27 self.b = self.rgb[:,:,2]

28 self.mono = np.dot(self.rgb[...,:3], [0.299 , 0.587,

0.114])
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29 self.resolution = 8

30 self.reduced = scipy.misc.imresize(self.mono , (self

.resolution , self.resolution))

31 self.reduced_mean = np.mean(self.reduced)

32 self.reduced_median = np.median(self.reduced)

33 def view_rgb(self):

34 plt.imshow(self.rgb)

35 plt.title(self.file)

36 plt.show()

37 def view_r(self):

38 plt.imshow(self.r, cmap="gray")

39 plt.title(self.file + ":␣RED")

40 plt.show()

41 def view_g(self):

42 plt.imshow(self.g, cmap="gray")

43 plt.title(self.file + ":␣GREEN")

44 plt.show()

45 def view_b(self):

46 plt.imshow(self.b, cmap="gray")

47 plt.title(self.file + ":␣BLUE")

48 plt.show()

49 def view_mono(self):
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50 plt.imshow(self.mono , cmap="gray")

51 plt.title(self.file + ":␣MONO")

52 plt.show()

53 def hash(self):

54 print(self.mono)

55

56

57 class label():

58 def __init__(self , line , location , width , text):

59 self.line = line

60 self.location = location

61 self.width = width

62 self.text = text

63

64 if location == -2:

65 self.x1, self.y1 = 0.06, 0.91

66 self.x2, self.y2 = 0.09, 0.94

67 if location == -1:

68 self.x1, self.y1 = 0.17, 0.91

69 self.x2, self.y2 = 0.09, 0.83

70 if location == 0:

71 self.x1, self.y1 = 0.28, 0.91
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72 self.x2, self.y2 = 0.09, 0.72

73 if location == 1:

74 self.x1, self.y1 = 0.39, 0.91

75 self.x2, self.y2 = 0.09, 0.61

76 if location == 2:

77 self.x1, self.y1 = 0.50, 0.91

78 self.x2, self.y2 = 0.09, 0.50

79 if location == 3:

80 self.x1, self.y1 = 0.61, 0.91

81 self.x2, self.y2 = 0.09, 0.39

82 if location == 4:

83 self.x1, self.y1 = 0.72, 0.91

84 self.x2, self.y2 = 0.09, 0.28

85 if location == 5:

86 self.x1, self.y1 = 0.83, 0.91

87 self.x2, self.y2 = 0.09, 0.17

88 if location == 6:

89 self.x1, self.y1 = 0.94, 0.91

90 self.x2, self.y2 = 0.09, 0.06

91

92 if self.width == 2:

93 self.x1 = self.x1 + 0.055
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94 self.y2 = self.y2 - 0.055

95 if self.width == 3:

96 self.x1 = self.x1 + 0.11

97 self.y2 = self.y2 - 0.11

98 if self.width == 6:

99 self.x1 = self.x1 + 0.22 + 0.055

100 self.y2 = self.y2 - 0.22 - 0.055

101 if self.line == 1:

102 self.y1 = self.y1 + 0.05

103 self.x2 = self.x2 - 0.05

104

105

106 class experiment ():

107 def __init__(self , chronoprints , description="default")

:

108 print("initializing")

109 self.chronoprints = chronoprints

110 self.reduced_combo = np.hstack ((c.reduced for c in

self.chronoprints))

111 self.global_mean = np.mean(self.reduced_combo)

112 self.global_median = np.median(self.reduced_combo)

113 self.description = description
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114 self.labels = []

115 self.heading = "Temporary"

116 def print_stats(self):

117 print("Experiment␣min␣=", self.min)

118 print("Experiment␣max␣=", self.max)

119 for c in self.chronoprints:

120 print(c.file , np.min(c.mono), np.max(c.mono))

121 def view_rgb(self):

122 for i, c in enumerate(self.chronoprints):

123 plt.subplot(len(self.chronoprints), 1, i+1)

124 plt.imshow(c.rgb)

125 plt.show()

126 def view_mono(self):

127 for i, c in enumerate(self.chronoprints):

128 plt.subplot(len(self.chronoprints), 1, i+1)

129 plt.imshow(c.mono , cmap="gray", vmin=self.min ,

vmax=self.max)

130 plt.show()

131 def view_r(self):

132 for i, c in enumerate(self.chronoprints):

133 plt.subplot(len(self.chronoprints), 1, i+1)
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134 plt.imshow(c.r, cmap="gray", vmin=self.min ,

vmax=self.max)

135 plt.show()

136 def view_g(self):

137 for i, c in enumerate(self.chronoprints):

138 plt.subplot(len(self.chronoprints), 1, i+1)

139 plt.imshow(c.g, cmap="gray", vmin=self.min ,

vmax=self.max)

140 plt.show()

141 def view_b(self):

142 for i, c in enumerate(self.chronoprints):

143 plt.subplot(len(self.chronoprints), 1, i+1)

144 plt.imshow(c.b, cmap="gray", vmin=self.min ,

vmax=self.max)

145 plt.show()

146

147

148 def hash(self , algorithm="None"):

149 results = np.zeros((6, 6))

150 resolution = 8

151 individual_means = True

152 fig , ax = plt.subplots(figsize =(3, 3))
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153

154 # ADD THE TEXT LABELS

155 for label in self.labels:

156 fig.text(label.x1, label.y1, label.text , ha="

center", va="center")

157 fig.text(label.x2, label.y2, label.text , ha="

center", va="center", rotation=’vertical ’)

158 fig.text (0.01 , 0.98, algorithm.replace("␣", "\n"),

weight="bold", ha="left", va="top")

159

160 # plot rgb index images

161 for i, c in enumerate(self.chronoprints):

162 # plot left index images

163 plt.subplot2grid ((9, 9), (i+3, 1))

164 plt.imshow(c.rgb , extent =[0,100,0,1], aspect

=100)

165 plt.gca().set_xticks ([])

166 plt.gca().set_yticks ([])

167 # plot top index images

168 plt.subplot2grid ((9, 9), (1, i+3))

169 plt.imshow(c.rgb , extent =[0,100,0,1], aspect

=100)
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170 plt.gca().set_xticks ([])

171 plt.gca().set_yticks ([])

172

173 # plot binary index images

174 for i, c in enumerate(self.chronoprints):

175 if algorithm =="Local␣Mean":

176 t1 = c.reduced > c.reduced_mean

177 elif algorithm =="Local␣Median":

178 t1 = c.reduced > c.reduced_median

179 elif algorithm =="Global␣Mean":

180 t1 = c.reduced > self.global_mean

181 elif algorithm =="Global␣Median":

182 t1 = c.reduced > self.global_median

183 else:

184 raise ValueError(’Unsupported␣algorithm ’)

185 # plot left binary index images

186 plt.subplot2grid ((9, 9), (i+3, 2))

187 plt.imshow(t1, cmap="gray")

188 plt.gca().set_xticks ([])

189 plt.gca().set_yticks ([])

190 # plot top binary index images

191 plt.subplot2grid ((9, 9), (2, i+3))
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192 plt.imshow(t1, cmap="gray")

193 plt.gca().set_xticks ([])

194 plt.gca().set_yticks ([])

195

196 df = pd.DataFrame ({"delta" : [], "relationship" :

[]})

197

198 # plot hash images

199 for i, c1 in enumerate(self.chronoprints):

200 for j, c2 in enumerate(self.chronoprints):

201 if algorithm =="Local␣Mean":

202 t1 = c1.reduced > c1.reduced_mean

203 t2 = c2.reduced > c2.reduced_mean

204 elif algorithm =="Local␣Median":

205 t1 = c1.reduced > c1.reduced_median

206 t2 = c2.reduced > c2.reduced_median

207 elif algorithm =="Global␣Mean":

208 t1 = c1.reduced > self.global_mean

209 t2 = c2.reduced > self.global_mean

210 elif algorithm =="Global␣Median":

211 t1 = c1.reduced > self.global_median

212 t2 = c2.reduced > self.global_median
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213 else:

214 raise ValueError(’Unsupported␣algorithm

’)

215

216 # plot ahash images

217 plt.subplot2grid ((9, 9), (i+3, j+3))

218 plt.imshow(np.logical_xor(t1, t2), cmap = "

brg",

219 vmin=0, vmax =2)

220 plt.gca().set_xticks ([])

221 plt.gca().set_yticks ([])

222 results[i][j] = np.sum(np.logical_xor(t1,

t2))

223

224 plt.text (3.5, 3.5, np.sum(np.logical_xor(t1

, t2)),

225 ha="center", va="center", fontsize

=6, color="white")

226 if i==j: # this happens on the diagonal

227 pass

228 elif i > j: # this rules out repeats!

229 pass
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230 elif c1.substance == c2.substance:

231 df = df.append(pd.DataFrame ({"delta" :

[np.sum(np.logical_xor(t1, t2))], "

relationship" : ["same"]}))

232 else:

233 df = df.append(pd.DataFrame ({"delta" :

[np.sum(np.logical_xor(t1, t2))], "

relationship" : ["diff"]}))

234

235 plt.subplot2grid ((9, 9), (1, 1), rowspan=2, colspan

=2)

236 plt.ylim ((-6,70)) # this uses the full range of

possible values

237 sns.swarmplot(y=df["delta"], hue=df["relationship"

], x=[""]*len(df), palette =["b", "r"], size =3)

238 plt.gca().legend_.remove ()

239 plt.gca().set_xticks ([])

240 plt.gca().yaxis.label.set_visible(False)

241 plt.gca().spines[’top’]. set_visible(False)

242 plt.gca().spines[’right’]. set_visible(False)

243 plt.gca().spines[’bottom ’]. set_visible(False)
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244 plt.subplots_adjust(left =0.01, bottom =0.01, right

=0.99, top=0.99,

245 wspace =0.15, hspace =0.15)

246 plt.savefig(self.description + "␣" + algorithm.

upper() + ".pdf", dpi =600)

247

248

249 def diff(self):

250 differences = np.zeros((len(self.chronoprints), len

(self.chronoprints)))

251 results = np.zeros((len(self.chronoprints), len(

self.chronoprints)))

252 resolution = 8

253 fig , ax = plt.subplots(figsize =(3, 3))

254

255 # ADD THE TEXT LABELS

256 for label in self.labels:

257 fig.text(label.x1, label.y1, label.text , ha="

center", va="center")

258 fig.text(label.x2, label.y2, label.text , ha="

center", va="center", rotation=’vertical ’)
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259 fig.text (0.01 , 0.96, "Difference", weight="bold",

ha="left", va="center")

260

261 # plot rgb index images

262 for i, c in enumerate(self.chronoprints):

263 # plot left index images

264 plt.subplot2grid ((9, 9), (i+3, 1))

265 plt.imshow(c.rgb , extent =[0,100,0,1], aspect

=100)

266 plt.gca().set_xticks ([])

267 plt.gca().set_yticks ([])

268 # plot top index images

269 plt.subplot2grid ((9, 9), (1, i+3))

270 plt.imshow(c.rgb , extent =[0,100,0,1], aspect

=100)

271 plt.gca().set_xticks ([])

272 plt.gca().set_yticks ([])

273

274 # plot mono index images

275 for i, c in enumerate(self.chronoprints):

276 # t1 = np.float64(c.reduced)

277 t1 = c.reduced
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278 # plot left mono index images

279 plt.subplot2grid ((9, 9), (i+3, 2))

280 plt.imshow(t1, cmap="gray")

281 plt.gca().set_xticks ([])

282 plt.gca().set_yticks ([])

283 # plot top mono index images

284 plt.subplot2grid ((9, 9), (2, i+3))

285 plt.imshow(t1, cmap="gray")

286 plt.gca().set_xticks ([])

287 plt.gca().set_yticks ([])

288

289 df = pd.DataFrame ({"delta" : [], "relationship" :

[]})

290

291 # plot diff images

292 for i, c1 in enumerate(self.chronoprints):

293 for j, c2 in enumerate(self.chronoprints):

294 t1 = c1.reduced

295 t2 = c2.reduced

296

297 difference = np.where(t1>t2, t1-t2, t2-t1)

# uint8 , 0-255
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298

299 plt.subplot2grid ((9, 9), (i+3, j+3))

300 plt.imshow(difference , cmap = "brg",

301 vmin=0, vmax =255) # was

difference_max

302 plt.gca().set_xticks ([])

303 plt.gca().set_yticks ([])

304

305

306 differences[i][j] = np.sum(difference)

307 plt.text (3.5, 3.5, str(np.sum(difference)),

ha="center", va="center", fontsize=6,

color="white")

308 if i==j: # this happens on the diagonal

309 pass

310 elif i > j: # this rules out repeats

311 pass

312 elif c1.substance == c2.substance:

313 df = df.append(pd.DataFrame ({"delta" :

[np.sum(difference)], "relationship"

: ["same"]}))

314 else:
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315 df = df.append(pd.DataFrame ({"delta" :

[np.sum(difference)], "relationship"

: ["diff"]}))

316 results[i][j] = np.sum(np.square(np.float64

(difference)))

317

318

319 plt.subplot2grid ((9, 9), (1, 1), rowspan=2, colspan

=2)

320 plt.plot ([ -1 ,1] ,[1500 ,1500] , "k:")

321 sns.swarmplot(y=df["delta"], hue=df["relationship"

], x=[""]*len(df), palette =["b", "r"], size =3)

322 plt.gca().legend_.remove ()

323 plt.gca().set_xticks ([])

324 plt.gca().yaxis.label.set_visible(False)

325 plt.gca().spines[’top’]. set_visible(False)

326 plt.gca().spines[’right’]. set_visible(False)

327 plt.gca().spines[’bottom ’]. set_visible(False)

328

329 mkfunc = lambda x, pos: ’%1.0fM’ % (x * 1e-6) if x

>= 1e6 else ’%1.0fk’ % (x * 1e-3) if x >= 1e3

else ’%1.0f’ % x
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330 mkformatter = ticker.FuncFormatter(mkfunc)

331 plt.gca().yaxis.set_major_formatter(mkformatter)

332

333 plt.subplots_adjust(left =0.01, bottom =0.01, right

=0.99, top=0.99,

334 wspace =0.15, hspace =0.15)

335

336 plt.savefig(self.description + "␣DIFF.pdf", dpi

=600)

The workup.py code displays the image differences and image hashing computa-

tion results.

1 # workup.py

2 #

3 # This code accompanies the paper "Chronoprints:

Identifying samples by

4 # visualizing how they change over space and time" by

Brittney A. McKenzie ,

5 # Jessica Robles -Najar , Eric Duong , Philip Brisk , and

William H. Grover.

6 #

7 # Updated versions of this code are available on groverlab.

org
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8

9 import chronoprint as cp

10

11 def workup(experiment):

12 experiment.hash("Local␣Mean")

13 experiment.hash("Local␣Median")

14 experiment.hash("Global␣Mean")

15 experiment.hash("Global␣Median")

16 experiment.diff()

17

18 chronoprints = []

19 for f, s in zip(("1.png", "4.png", "2.png", "5.png", "3.png

", "6.png",),

20 ("100", "100", "75", "75", "50", "50")):

21 chronoprints.append(cp.chronoprint(f, s))

22

23 e = cp.experiment(chronoprints , "Cold␣medicine")

24 e.labels.append(cp.label(line = 1, location = 1, width = 2,

text = "100%"))

25 e.labels.append(cp.label(line = 1, location = 3, width = 2,

text = "75%"))
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26 e.labels.append(cp.label(line = 1, location = 5, width = 2,

text = "50%"))

27 e.labels.append(cp.label(line = 2, location = 1, width = 1,

text = "1"))

28 e.labels.append(cp.label(line = 2, location = 2, width = 1,

text = "2"))

29 e.labels.append(cp.label(line = 2, location = 3, width = 1,

text = "1"))

30 e.labels.append(cp.label(line = 2, location = 4, width = 1,

text = "2"))

31 e.labels.append(cp.label(line = 2, location = 5, width = 1,

text = "1"))

32 e.labels.append(cp.label(line = 2, location = 6, width = 1,

text = "2"))

33 workup(e)
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Chapter 4

Enhanced chronoprints: Identifying

samples by visualizing changes in

particle interactions

4.1 Introduction

The chronoprint technique described in Chapter 3 can identify substances by vi-

sualizing how they change in response to a perturbation over space and time [57]. The

chronoprint technique can identify adulterated foodstuffs and medicines. Although chrono-

printing can be used to identify a wide range of samples since all substances have physical

properties, the technique is limited to substances that produce a visual change in appear-

ance in response to a perturbation. To overcome this limitation I use beads along with a

thermal gradient and gravitational perturbation to discriminate substances in chronological
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fingerprints. This is an enhancement to the original chronoprint technique, thus I call the

resulting images “enhanced chronoprints.”

Essentially any perturbation source that induces a change within a substance can

be used to produce chronoprints. In the previous demonstration, a dynamic temperature

gradient perturbation was applied to the samples by partially submerging a microfluidic chip

containing samples in a liquid nitrogen bath [57]. In this work a chronological fingerprint

of a metal bead falling through a substance (using Earth’s applied gravitational acceler-

ation, 9.8 m/s2 or 1 g) with a temperature gradient is produced and compared (Figure

4.1). Since physical properties vary by substance, the time-dependent trajectory of a bead

moving through the substance may also vary. The velocity of a bead accelerated through a

sample is a function of the bead’s properties (its size and density), the sample’s properties

(its viscosity and density), and the force applied to the bead (1 g if using Earth’s gravita-

tional acceleration, or more if using e.g. centrifugal acceleration). For spherical beads, this

relationship is described by Stokes’ Law for the terminal velocity of a sphere falling in a

fluid:

v =
2

9

(ρp − ρf )

µ
gr2 (4.1)

where ρp is the density of the bead, ρf is the density of the fluid, µ is the dynamic viscosity

of the fluid, g is the gravitational acceleration, and r is the radius of the bead.

In the enhanced chronoprint technique the size and density of beads are likely con-

stant over the course of an experiment, but the viscosity and density of the samples may

vary from one sample to another; this variance will result in different chronoprints for the
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Figure 4.1: Producing an “enhanced chronoprint” capturing how six samples (in this example,
three 50% and three 60% (v/v) glycerol in water dilutions) with metal beads respond to
a perturbation over space and time (in this case, a temperature gradient and gravitational
force). (A) A microfluidic thermometer chip containing the samples and beads is partially
suspended off of a thermoelectric cooler to establish a temperature gradient along the chip.
The chip gets tilted at an angle to apply a gravitational force. (B) The chip contains six
samples (transparent), each with a metal bead (black circle), loaded in microfluidic channels
that run parallel to the temperature gradient. (C) An inexpensive USB document camera
records a video of the change in the falling bead trajectory as the physical properties of the
sample changes in response to the temperature gradient. For each sample, a single column
of pixels—that intersects the bead trajectory— in each channel image for each frame of the
video is extracted. (D) By placing these pixel columns side-by-side, we create a bitmap
image (the sample’s enhanced chronoprint) that captures how the falling bead, and thus the
sample, changes over space (the y-axis) and time (the x-axis). Finally, by comparing the
enhanced chronoprints of all six samples in the chip, we can determine whether the samples
are either likely the same or definitely different.

158



different samples and enable the user to chemically distinguish the samples. The substance’s

unique behavior would be captured in the chronorprint digital image and can be used as

the basis for distinguishing between different samples. In the experiments a thermal per-

turbation is activated with thermoelectric coolers to produce a temperature gradient along

the chip, and then a gravitational force (Earth’s gravitational acceleration 1 g in this case)

is applied by tilting the chip at an angle. A video recording of the experiment is converted

to a digital image (chronoprint) that shows how the falling bead trajectory, and thus the

sample, changes over space and time. During this perturbation a substance’s viscosity and

density are a function of its temperature, and a particle traveling through the substance

during the perturbation would experience a velocity change as it passes through the sub-

stance. In practical terms, this means that a bead dropped through a sample in a channel

will speed up and slow down, or even stop or reverse at different points within the sample

due to the changes in substance’s material properties. In addition, the thermal gradients

within the sample are functions of the substances’ thermal conductivity, Reynolds number

(the ratio of inertial forces to viscous forces within the fluid), and Prandtl number (ratio of

kinematic viscosity to thermal diffusivity), since the geometry and thermal conductivity of

the fluidic chip is the same, the thermal gradient within the substance may differ for chemi-

cally different substances resulting in varying particle behavior. Overall, the combination of

thermal and gravitational perturbations results in a complex path followed by the particle

in the sample’s digital image, a path that is dictated not only by the substance’s viscosity,

density and material properties, but also how those properties change as a function of tem-

perature. Therefore, in the (already unlikely) event that two different substances have the
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same viscosity and density at one temperature, then chronoprints can still distinguish the

two substances based on how their viscosities and densities change at different temperatures.

Such a characterization adds significant discrimination power to the chronoprint technique

and broadens the range of sample types that can be analyzed with the chronoprint technique.

To demonstrate a proof-of-concept of the enhanced chronoprint technique, I com-

pare enhanced chronoprints of different glycerol dilutions in water, as well as enhanced

chonronprints of the occasionally-confused pharmaceutical ingredients glycerol and diethy-

lene glycol (whose accidental or intentional substitution has led to hundreds of deaths).

4.2 Materials and Methods

4.2.1 Fabricating microfluidic thermometer chips

The microfluidic thermometer chips [41] were designed using Adobe Illustrator

(Adobe Systems Inc., San Jose, CA). Each chip is 125 mm long, 25 mm wide, and contains six

parallel microfluidic channels. Each channel is 1.5 mm wide, 1 mm deep, and 115 mm long,

with 1.5 mm diameter input/output reservoirs at each end, 1.5 mm space between channels,

and markers spaced every 1 mm along the sides of the chip for length measurements. A DXF

file of the chip design was exported and engraved into 3 mm thick poly(methyl methacrylate)

pieces (Professional Plastics Inc., Fullerton, CA) using a computer-controlled hobbyist-grade

milling machine (Bantam Tools, Berkeley, CA). The open channels were enclosed by fusing

on another piece of 3 mm thick poly(methyl methacrylate) with ethanol and heat [58].
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4.2.2 Preparing samples

Glycerol solutions along with diethylene glycol soltuions were analyzed in this work.

50% and 60% (v/v) glycerol dilutions in water were prepared and compared. To show that

the enhanced technique can still distinguish two occasionally-confused chemicals in phar-

maceutical manufacturing, we obtained chronoprints from samples of diethylene glycol (a

transparent and sweet-tasting but poisonous liquid) and glycerol (a similar but nonpoisonous

liquid) from Sigma-Aldrich (St. Louis, MO). About 75 µL of each sample was loaded into

the thermometer chip along with a single 1/32” diameter stainless steel metal bead (Mc-

Master Carr Supply Co, Santa Fe Springs, CA) for each experiment. The chip outlets were

taped to prevent the channel contents from emptying out during the experiments.

4.2.3 Obtaining enhanced chronoprints

After filling a chip with samples and the metal beads to analyze, the chip was

placed horizontally at a 30◦ angle to allow all of the beads to consistently fall down one

edge of the chip channels when tilted. Two thirds of the chip was then suspended off of

a thermoelectric cooler (TEC1-12706, Hebei I.T. Co., Shanghai, China) cooled to -20 ◦C,

which applies a freezing perturbation and creates a temperature gradient along the channels.

The thermoelectric cooler is connected to a recirculating water line that removes excess heat

from the backside of the cooler. The chip was then tilted vertically from a 0◦ angle to a

70◦ angle to apply a gravitational perturbation, and a video recording of the chip contents

was captured using an inexpensive USB document camera (V4K Ultra HD, Ipevo Inc.,

Sunnyvale, CA). All six sample channels in the chip were exposed to the same temperature
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gradient and the same gravitational force. After all beads finished falling through the 50%

and 60% glycerol dilutions in water, the recording was stopped. In some runs, not all of

the beads successfully traveled through the samples. In cases where beads were stuck at the

inlets or may have became stuck along the way, due to being trapped by tiny air bubbles,

chronoprints were not obtained for those samples. An example of a chronoprint with a bead

that briefly became stuck after falling is shown in the Supplementary Information. For the

glycerol and diethylene glycol sample comparisions, the video recording was stopped after

all beads in the diethylene glycol were finished falling. The image analysis software, ImageJ

(NIH Research Services Branch), was used along with the “reslice” tool within the program

to convert the videos to six enhanced chronoprints (one per sample). For each sample, the

reslice tool takes a single column of pixels—that intersects the trajectory of the bead— in

each channel image for each frame of the video and then places all of these columns of pixels

side-by-side to create a bitmap image that is the sample’s chronoprint, with space (distance

along the channel) in the vertical dimension and time in the horizontal dimension. This

process is then repeated for each sample in the experiment, and the resulting chronoprints

are ready for comparison and similarity analysis.

4.2.4 Comparing enhanced chronoprints

For enhanced chronoprints with just one or two dominant features, one can simply

trace the boundary between these features and convert each chronoprint to a curve; these

curves can then be compared to each other to quantify the similarity of the samples. An

example of this approach for chronoprint comparison is shown in Figure 4.2, and is a simpli-

fied version of the feature tracing method used in the previous chronoprint work.[57] In this
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process, a custom MATLAB program (Supporting Information) first enhances transforms

the image so that space (distance along channel) is in the vertical direction and time is in

the horizontal direction of the image. The program then converts each chronoprint (Figure

4.2A) from color to monochrome (Figure 4.2B), then the program compares the minimum

pixel value in each row of pixels in the image to a constant threshold provided by the user;

pixels with values below that threshold are recorded and plotted (bead pixels), and pixels

with values above that threshold (chip background pixels) are removed (Figure 4.2C). If two

curves are similar, this suggests that the two samples analyzed may be the same; but if two

curves are significantly different, this is proof that the samples are chemically different. The

degree of similarity between two samples is quantified by summing the squared differences

between the y-axis values of the curves (the distances along the channel) at each point along

the curves.

4.3 Results and Discussion

4.3.1 Distinguishing colorless solutions

As a proof-of-concept, we usedEnhanced Chronoprints to discriminate two colorless

solutions (that might not show a visible change with the previous chronoprint technique).

To do this, I obtained enhanced chronoprints for 50% and 60% (v/v) glycerol solutions in

water and analyzed them. Glycerol is a nontoxic ingredient commonly used in food products,

cosmetics, and medicines for many of its properties including, but not limited to, its sweet

taste, its viscosity, and humectancy. The trajectory of the bead in each sample is dictated
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Figure 4.2: Overview of comparing chronoprints (in this case, obtained from two different
glycerol solutions). Color chronoprints of each sample (A) are converted to monochrome
chronoprints (B) by comparing each minimum pixel value in each row of pixels to a constant
threshold value; pixels above the threshold (chip background pixels) are removed, and pixels
below the threshold (bead pixels) are recorded. The code (Supporting Information) then
plots each curve to compare the two chronoprints (C). Curves that are significantly different
(like these) confirm that the two samples are chemically different. The sum of squared
differences (SSD) between the y-axis values of the curves at each point along the curves
(6.93 × 106 in this case) serves to quantify the degree of similarity between the two glycerol
solution samples
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by the substance’s viscosity, density and material properties, and these properties change

as a function of temperature. Therefore samples with differing composition should display

unique bead trajectories in the enhanced chronoprints. In Figure 4.3, the experimental

results for the 50% and 60% (v/v) glycerol dilutions in water confirm this expectation, and

the changes in the colorless samples can be visualized through the bead trajectory curves

from the enhanced chronoprints.

Within each glycerol sample dilution, each pair of samples resulted in very similar

curves: the sum-of-squared differences was only 8.72×104 for the two 50% glycerol samples,

9.68 × 103 for the two 60% glycerol dilution samples. However, the different dilutions

had very different curves: the maximum sum-of-squared-differences was 7.41 × 106 for the

50% and 60% glycerol dilution samples. Like in my previous chronoprint work, we found

that chronoprints with sum-of-squared-differences greater than about 1×106 indicated that

the substances were different, and chronoprints with sum-of-squared-differences less than

1× 106 indicated that the substances were the same. Additional chronoprints and analysis

of experiments with glycerol dilution samples are provided in Supporting Information.

4.3.2 Identifying toxic pharmaceutical ingredients

In 1937, the S.E. Massengill Company in Bristol, Tennessee, unintentionally sub-

stituted the toxic substance, diethylene glycol, for nontoxic glycerol in a liquid formulation

of the early antibiotic sulfanilamide. Over 100 people that had used the resulting medicine,

called “Elixir Sulfanilamide,” were fatally poisoned [54, 55], and the toxicity of diethylene

glycol then became commonly known among pharmaceutical companies. Remarkably, how-
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Figure 4.3: Distinguishing colorless glycerol dilutions using enhanced chronoprints. This plot
compares chronoprints from four glycerol dilutions in water samples, converted to curves us-
ing the method described in section 4.2.4. Chronoprint curves from two samples each of
glycerol dilutions (50% and 60% (v/v) in water) are similar within each dilution but signif-
icantly different between the different dilutions. The maximum sum-of-squared-differences
between two different dilutions (7.41 × 106 difference between the 50% and 60% glycerol
dilutions samples) is greater than the threshold of 1× 106 and confirms that these samples
are different.
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ever, poisonings due to the use of diethylene glycol in medicines remain tragically recurrent

today, with mass poisoning occurring every two years on average somehwere in the world

since 1985.[56] A lot of these incidents occur in resource-limited settings where pharmaceu-

tical companies may not have the tools needed to confirm the identity (and safety) of their

manufacturing stock ingredients.

To determine whether the enhanced chronoprint technique could distinguish toxic

diethylene glycol from nontoxic glycerol, we filled a microfluidic chip with three samples of

each substance, partially suspended the chip off of a thermoelectric cooler that is cooled to

-20 ◦C, and obtained chronoprints from the video recording of the chip. The chronoprints

were then analyzed using the comparison technique described in section 4.2.4. The results,

shown in Figure 4.4, confirm that all the glycerol enhanced chronoprint curves are very

similar (never differing by more than a sum-of-squared-differences of 1.12× 103), as are all

the diethylene glycol enhanced chronoprint curves (never differing by more than a maximum

of 4.92× 105). However, the glycerol enhanced chronoprint curves are significantly different

from the diethylene glycol enhanced chronoprint curves (differing by at least a sum-of-

squared-differences of 1.29 × 106). These results confirm that the enhanced chronoprint

method can easily distinguish between the two colorless, toxic diethylene glycol and nontoxic

glycerol.

4.4 Conclusion

In this work, I introduced enhanced chronoprints, an enhancement to the orig-

inal chronoprint method [57], an image-based technique for identifying or distinguishing
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Figure 4.4: Distinguishing toxic and nontoxic pharmaceutical ingredients using enhanced
chronoprints. The enhanced chronoprints of three samples of toxic diethylene glycol and
three samples of nontoxic glycerol were analyzed using the method described in section
4.2.4. The three glycerol enhanced chronoprint curves were nearly identical (differing by
a maximum sum-of-squared-differences of 1.12 × 103), as were the three diethylene glycol
curves (differing by a maximum of 4.92 × 105). However, all of the glycerol chronoprint
curves were significantly different from all of the diethylene glycol curves (differing by at
least 1.29 × 106 sum-of-squared-differences). These results confirm that these substances
can be easily distinguished by their enhanced chronoprints.
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substances. Much like the original chronoprints, enhanced chronoprints are simple and in-

expensive to obtain; we used a plastic microfluidic chip, a USB document camera, and a

thermoelectric cooler to obtain ours, and other approaches could be used. Although we

analyze only liquid samples in this work using enhanced chronoprints, this method is not

limited to liquids. Solid samples such as pills, for example, could be dissolved in constant

volumes of water, loaded into the thermometer chip with a bead, and analyzed for their

authenticity using enhanced chronoprints.

With the original chronoprint technique, generally any sample that changes in ap-

pearance in response to a perturbation could be analyzed using chronoprints. The enhanced

chronoprint method builds upon this method to broaden the types of samples that could be

analyzed with the technique, to include samples that may not produce a visible change in

response to a perturbation. By adding beads to transparent samples, and producing chrono-

prints of the beads falling through the different substances along a temperature gradient,

I demonstrated that changes in the temperature-dependent material properties (viscosity

and density) of a substances can be captured in the chronoprints, and can be used to iden-

tify and discriminate an even wider variety of samples with enhanced chronoprints; adding

significant discrimination power to the chronoprint technique.
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4.6 Supplementary Information for

Enhanced chronoprints: Identifying samples by visualiz-

ing changes in particle interactions with sample viscosity

4.6.1 Design of the microfluidic thermometer chip used to engrave the

chips used in this work on a CNC mill.

The design of the thermometer chip used in this work is shown in Figure 4.5.

4.6.2 Replicates of experiments in Figures 4.3 and 4.4 of the main text

Figures 4.6 through 4.9 provide replicates of the experiment in Figure 4.3 of the

main text (comparing 50% (v/v) glycerol dilutions in water with 60% (v/v) glycerol dilutions

in water). Figures 4.10 through 4.13 provide replicates of the experiment in Figure 4.4 of

the main text (comparing glycerol samples with diethylene glycol dilutions).
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Figure 4.5: A drawing of the thermometer chip design used to fabricate chips in this work.
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Figure 4.6: Replicate comparing 50% (v/v) glycerol dilutions in water with 60% (v/v)
glycerol dilutions in water (replicate of the experiment shown in Figure 4.3 of the main
text). All dilutions types are distinguishable. The bead falling through the first 50% glycerol
dilution (dark blue curve) very briefly became stuck along the channel wall when falling,
and this brief stop was refleced in its chronoprint and its resulting curve. The presence of a
tiny air bubble can cause a falling bead to get stuck.
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Figure 4.7: Replicate comparing 50% (v/v) glycerol dilutions in water with 60% (v/v)
glycerol dilutions in water (replicate of the experiment shown in Figure 4.3 of the main
text). All dilutions types are distinguishable.
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Figure 4.8: Replicate comparing 50% (v/v) glycerol dilutions in water with 60% (v/v)
glycerol dilutions in water (replicate of the experiment shown in Figure 4.3 of the main
text). All dilutions types are distinguishable.
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Figure 4.9: Replicate comparing 50% (v/v) glycerol dilutions in water with 60% (v/v)
glycerol dilutions in water (replicate of the experiment shown in Figure 4.3 of the main
text). All dilutions types are distinguishable.
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Figure 4.10: Replicate comparing glycerol samples with diethylene glycol samples (repli-
cate of the experiment shown in Figure 4.4 of the main text). The two sample types are
distinguishable.
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Figure 4.11: Replicate comparing glycerol samples with diethylene glycol samples (repli-
cate of the experiment shown in Figure 4.4 of the main text). The two sample types are
distinguishable.
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Figure 4.12: Replicate comparing glycerol samples with diethylene glycol samples (repli-
cate of the experiment shown in Figure 4.4 of the main text). The two sample types are
distinguishable.
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Figure 4.13: Replicate comparing glycerol samples with diethylene glycol samples (repli-
cate of the experiment shown in Figure 4.4 of the main text). The two sample types are
distinguishable.

179



4.6.3 ChronoprintAnalysis.m: MATLAB software for analyzing enhanced

chronoprints, used to generate Figures 4.2C – 4.4 and Figures 4.6

– 4.13

The source code for the software used to analyze chronoprints is shown below.

1 % ChronoprintAnalysis.m

2 %

3 % This code converts each chrononoprint to curves and

computes the sum of

4 % squared differences between the curves

5

6 clc; clear all; close all;

7

8 for num = 1:2 % number of samples to analyze

9

10 % Reads chronoprint images

11 Image1_{num} = imread(sprintf(’reslice %01d.png’,num));

12

13 % Transform image for space to be on y-axis and time to

be on x-axis

14 Image2_{num} = imrotate(flipdim(Image1_{num},1) ,-90);

15

16 % Convert image to monochrome
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17 Image3_{num} = rgb2gray(Image2_{num});

18 Image3_{num }(: ,1:23) = []; %remove shadow near inlets

19

20 % Find minimum pixel values in each row and record the

value and

21 % indices

22 [minValues{num}, t{num}] = min(Image3_{num},[],2);

23

24 % Adjust time from number of frames to seconds and

remove pixels where

25 % the minimum pixel values are greater that the

threshold value

26 framerate = 21; %set frame rate

27 threshold = 180; % set threshold pixel value

28

29 t{num}= t{num}/ framerate; %adjust time from frames to

seconds

30 t{num}( minValues{num}> threshold) = NaN; %remove pixels

above threshold

31

32
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33 % Define y indicies and shift plots to the same

starting location

34 y{num} = length(t{num}) -[1: length(t{num})];

35 dy{num} = find(~isnan(t{num}) ,1);

36 y{num} = y{num} + dy{num}; % shift plots to same

starting location

37

38 end

39

40 %Compute sum of squared differences

41 diff = y{1} - y{2}; ssd = sum(diff (:) .^2);

42

43 figure ()

44 plot(t{1},y{1},’.’,t{2},y{2},’.’);

45 xlabel(’Time␣(s)’);

46 ylabel(’Space␣(px)’);

47 legend(’Sample␣1’,’Sample␣2’);
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Chapter 5

Conclusions

5.1 Prospective pharmaceutical applications for the demon-

strated techniques

In my projects I developed methods and tools to measure physical properties of

subtsances, to identify authentic and adulterated medicines, as well as to distinguish phar-

maceutical ingredients. Many of these techniques can be further explored for applications

in the development of new pharmaceutical drugs and medicine products. The distribution

coefficient, also known at the partition coefficient, is a critical measurement in chemical and

pharmaceutical research. It is used to determine pharmacokinetic properties of drugs, and

is commonly measured by shaking two immiscible solvents (an inorganic phase and an or-

ganic phase) with the compound of interest in a flask, and then determining the ratio of the

concentrations of compound in the two phases at equilibrium. This “shake-flask method”

is essentially a measure of the difference of compound solubility in the two phases. The
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shake-flask method often requires large volumes of solvent, as well as large amounts of the

samples of interest, which can makes the method very costly and sometimes infeasible when

using precious samples. In addition, the time for these systems to reach equilibrium so that

the distribution coefficient can be measured takes hours and in some cases can even take

days, making it a time-consuming process as well.

The ability to measure distribution coefficients within a microfluidic chip could

drastically reduce the amount of sample and time required for this method; this is where

the microfluidic thermometer, as well as the two aforementioned chronoprints methods can

be of value. For example, several samples, each containing a very small amount of different

variations of a pharmaceutical compound mixed with two immiscible fluids, could be loaded

into the channels of the microfluidic thermometer chip, and the the method to produce

solid-liquid interfaces could be used. Once the system reaches equilibrium, one could then

extract the liquid portion and measure the amount of solute in that phase to determine

the distribution coefficient. This could be repeated for all samples on the chip to iden-

tify compounds with the desired pharmokinetic properties. The chronoprint and enhanced

chronoprint techniques could be used in a similar fashion, but instead to monitor changes

in a pharmaceutical substance in response to a perturbation (e.g. pH gradient, temperature

gradient, etc.); this could also help identify substances with the desired pharmaceutical prop-

erties. With their versatility, the microfluidic thermometer and chronoprint techniques have

the potential to provide low-cost and efficient ways to study and develop pharmaceutical

drugs and ingredients.
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