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Abstract— Worms are a major threat to the security

and reliability of today’s networks. Because they can

spread rapidly from computer to computer, to effectively

contain them we need automated methods to very quickly

identify and filter new worms before they grow into a

massive epidemic. In this paper we propose such an

automated approach based on identifying in real time

the traffic characteristics common to all worms: highly

repetitive packet content, going from an increasing number

of infected hosts to very many random IP addresses of

potential new victims. Our preliminary results on a small

network show that our automated approach of identifying

new worms is promising: it identified three confirmed

worms with an encouragingly low percentage of false

positives when configured with good parameters.

I. INTRODUCTION

Current worm detection technology is both retroac-

tive (i.e., only after a new worm is first detected and

analyzed by a human, a process that can take days, can

the containment process be initiated) and manual (i.e.,

requires human intervention to identify the signature of

a new worm). Such technology is exemplified by say

the Code Red and Slammer outbreaks for which it took

days of human effort to identify the worms, followed by

containment strategies in the form of turning off ports,

applying patches, and doing signature based filtering in

routers and intrusion detection systems.

The difficulties with these current technologies are:

1, Slow Response There is a proverb that talks about

locking the stable door after the horse has escaped.

Current technologies fit this paradigm because by the

time the worm containment strategies are initiated, the

worm has already infected much of the network. In fact,

[1] shows that unless containment strategies are initiated

in around 30 seconds (as opposed to days), the worm

will spread relentlessly.

2, Constant Effort Every new worm requires a major

amount of human work to identify, post advisories, and

finally take action to contain the worm. Unfortunately,

all evidence seems to indicate that there is no shortage

of new exploits and worse, simple binary rewriting and

other modifications of existing attacks, can get around

simple signature based blocking (e.g., as used by Snort).

Thus there is a pressing need for a new worm detection

and containment strategy that is real-time (and hence can

contain the worm before it can infect a significant frac-

tion of the network) and is able to deal with new worms

with a minimum of human intervention (some human

intervention is probably unavoidable to at least catalog

detected worms, do forensics, and fine-tune automatic

mechanisms).

Thus the goals of a good automatic worm detection

and containment strategy are (roughly in order of impor-

tance):

� Real-time Detection: The detection system should

detect the worm in seconds, and potentially initiate

some containment strategy in a similar time frame.

Clearly, the reason for this is to prevent widespread

infection before it is too late [1].

� Content Agnosticism: The detection system should

not rely on external, manually supplied input of

worm signatures. Instead, the system should au-

tomatically extract worm signatures even for new

worms that may arise in the future. Clearly, the

reason for this is to reduce the constant human and

other overhead involved in detecting a new worm.

� Versatile Deployment: The scheme should be de-

ployable at any point in the network including

routers (edge and core), Intrusion Detection systems

running on local area networks and even on end

systems themselves.

� Low Memory Usage: The scheme should ideally use

a low amount of memory especially in incarnations

deployed at routers, both core and edge with em-

phasis on core routers. This is because high speed

memory on such devices is expensive, and also be-

cause it may be important to communicate detection

state across multiple participants and low memory

algorithms into faster information exchange times.

In particular, we wish to avoid keeping per-flow

state at routers.
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� Small Processing per packet: There have been re-

cent market studies that have shown the importance

of doing real-time intrusion detection at 10 Gbps

and faster. Ideally, the real-time detection system

should be deployable (especially at routers, but also

at IDS on fast gigabit LANS) and keep up with

data rates. (In particular, string matching schemes

as exemplified by Snort, may be hard to do at such

speeds, and they do not even provide our goal of

not requiring manual input).

The following secondary goals may also be desirable:

� Public Knowledge of Basic Scheme: While some

deployments may use secret heuristics, and ideal

containment scheme against new worms should

be public (as with public key encryption scheme)

so that others can make improvements and find

weaknesses that can be eliminated in future versions

of the design.

� Resilience to Simple Worm changes: We can expect

no system to provide absolute safety (even public

key encryption after years of failed attacks falls into

this category), but one should be able to argue that

the worm detection strategy is resilient to simple

countermeasures adopted by worm authors.

� Ability to Handle Asymmetric Routing: While in

many places (e.g., end systems) one can observe

both directions of a traffic flow, it would be desir-

able to have a system that could be deployed at say

a core router where due to asymmetric routing the

deployment point can only observe one direction of

a traffic flow. ( 50% of Internet routes in 1999 were

asymmetrical.)

� No use of active probing: Ideally, the containment

system should passively monitor the traffic (at least

for detection purposes) as opposed to doing active

probing of addresses. For instance, if an IDS system

sent challenge queries to various IP addresses to

distinguish their traffic from malicious traffic, this

extra traffic could bother network managers and

could cause further problems (such as extra strain

on the network in busy times, triggering other IDS’s,

etc.). However, a small amount of traffic between

cooperating agents of the IDS may be reasonable.

Clearly, the containment stage may also require

some traffic to be sent by the IDS at least to a

manager.

II. THE SCHEME

We define a worm to have the following abstract

features which are indeed discernible in all the worms

we know, even ones with such varying features as Code

Red (massive payload, uses TCP, and attacks on the well

known HTTP port) and MS SQL Slammer (minimal

payload, uses UDP, and attacks on the lesser known MS

SQL port).

� F1, Large Volume of Identical Traffic: These worms

have the property that at least at an intermediate

stage (after an initial priming period but before full

infection) the volume of traffic (aggregated across

all sources and destinations) carrying the worm is

a significant fraction of the network bandwidth.

� F2, Rising Infection Levels: The number of infected

sources participating in the attack steadily increases.

� F3, Random Probing: An infected source spreads

infection by attempting to communicate to random

IP addresses at a fixed port to probe for vulnerable

services.

Thus we propose the following detection strategy that

automatically detects each of these abstract features with

low memory, small amounts of processing, works with

asymmetric flows, does not use active probing. We can

also make a simple argument that our scheme is resilient

to changes by worm authors who know the system in

that such changes would require them to invent an attack

that differs from a worm in at least one of the abstract

categories defined above.

The high-level mechanisms1 we propose to detect each

of these features are:

� M1, Identifying Large Flows in real time with small

amounts of memory : [2], [3] describe mechanisms

to identify flows with large traffic volumes for any

definition of a flow (e.g., sources, destinations). A

simple twist on this definition is to realize that the

content of a packet (or more efficiently, a hash of

the content) can be a valid flow identifier, which by

prior work, can identify in real-time (and with low

memory) a high volume of repeated content. An

even more specific idea (that distinguished worms

from valid traffic such as peer-to peer) is to compute

a hash based on the content as well as the destina-

tion port (that remains invariant for a worm).

� M2, Counting the number of sources : [4], [5]

describe mechanisms using simple bitmaps of small

size to estimate the number of sources on a link with

small amounts of memory and processing. These

mechanisms can be used easily to count sources

corresponding to high traffic volumes identified in

the previous mechanism.

1Each of these mechanisms needs to be modulated to handle some

special cases, but we prefer to present the main idea untarnished with

extraneous details.
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� M3, Determining Random Probing by counting the

number of connections attempts to unused portions

of the IP address : The prefixes from the BOGON

list cover unused portions of the address space. A

large number of packets sent to addresses in this

list are indications of random probing. Note that

these addresses are not aside for the IDS system

and are, in effect, ”shared” across all such IDS

system, of which there can potentially be one on

every network.2

III. PRELIMINARY EVALUATION

A. The setup

We have built the system based on the scheme detailed

in section II. The system is positioned to look at all

traffic flowing in and out of our Local Area Network.

The Local Network is comprised of 7 hosts (4 Linux,

2 WinXP, 1 Win2K). Though this setup may not be

considered representative of most real-time workloads, it

provides us with a good start to help evaluate the high-

level mechanisms discussed in section II.

B. Generating Signatures from Packets

As our desire is to monitor the flow of data content

between various communicating hosts, our first goal is

to generate signatures from the data contained in the

packets. We have adopted and are evaluating 3 different

mechanisms for generating signatures representative of

the data payload contained in the packets.

1) Utilizing the pre-computed TCP-CHECKSUM

available in the packet header.

2) Computing a CRC from the data payload contained

in the packet.

3) Computing Incremental Rabin Fingerprints from

the data payload contained in the packet.

In all three cases the generated signature is augmented

with the destination port. The reason we do this is be-

cause exploits are typically targeted towards a particular

well known service, and the particular service resides

on a specific port, therefore we consider the occurrence

of a signature to be an anomaly if it is found to be

propagating not only to multiple destinations, but also

to the same port on the various destinations.

Each of the mechanisms has its own set of complex-

ities as well as shortcomings.

Shortcomings of utilizing the TCP-CHECKSUM,

2One can argue that the worm author could modify the worm

to randomly probe addressed not in this list. We can address this

problem by say adding some random secret addresses shared within

one ISP.

� The TCP-CHECKSUM includes pseudo headers

when computed, therefore the same content propa-

gating between different hosts may generate differ-

ent TCP-CHECKSUMS. (We are looking at meth-

ods to remove the effect of the pseudo-header from

the checksum, by utilizing methods similar to the

one proposed for incrementally updating the hop

count).

� A similar checksum is not available for UDP pack-

ets.

� As the TCP-CHECKSUM is only 16 bits, the false

match rate may be higher as compared to a 32 or

64 bit signature.

Shortcomings of utilizing a CRC,

� As the CRC is computed over the complete data

contained in the packet payload, which means that

even if 1 byte were to change then the computed

checksum would be different. Future worms could

take elementary countermeasures to evade being

detected by a scheme based on CRC’s by simply

moving a few bytes around each time they propa-

gate.

� Computation overhead involved.

Shortcomings of utilizing Rabin Fingerprinting,

� If we select a small length for generating the Rabin

Fingerprints then we may end up generating too

many Rabin Fingerprints for each packet this adds

to the memory overhead. On the other hand if

we select a large length for generating the Rabin

Fingerprints then we may ignore too many packets

of smaller length this may resulting in missing

worms that propagate at a slow rate over multiple

packets.

� Computation overhead involved.

C. Detecting Anomalies

A signature is computed from the data payload con-

tained in every packet passing through the system. By

utilizing mechanisms described in [][] (sample-and-hold,

multi stage filters) we can determine which signatures

occur more frequently than others.

For all signatures that occur frequently we need to

maintain counters. These counters maintain counts for (i)

the number of unique destination IP’s, (ii) the number

of unique source IP’s, and (iii) the number of unique

source IP- destination IP pairs. Because there is memory

overhead involved with maintaining these counters per

individual signature, we only instantiate counters for a

particular signature when it occurs more than a minimum

threshold number of times.
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Fig. 1. TCP Checksum Distribution

Besides maintaining specific counters per signature,

we also maintain global counters, for the number of

unique destination IP’s, the number of unique source

IP’s, the number of unique destination Ports, and the

number of unique source IP - destination IP communi-

cating pairs across all traffic passing through the system.

We propose to utilize these and other such counters to aid

in dynamically determining the various threshold levels

used by the system to distinguish between the anomalous

and the non-anomalous packets.

We have done preliminary experiments by setting

the value of the thresholds statically, however we are

now considering heuristics to adaptively determine these

thresholds. Besides taking into account the volume of

various traffic types, and the global counters described

above these heuristics also take into account the location

where the system has been deployed (i.e. core router,

edge router, gateway, host machine).

We observed no packet fragmentation during our anal-

ysis. At routers the packets may be fragmented, therefore

adequate adjustments need to be made to the algorithm.

We flag packets as anomalies when:

1) We observe packets with identical content being

sent to a number of hosts in our local network (of

7 hosts). (Code Red, Port 139 NetBios worm)

2) Packets with identical content are being sent from

a large number of hosts (in the Internet) to a single

host in our local network(Port 139 NetBios worm)

3) packets with identical content are being sent from

a host(s) (within our local network) to a large

number of hosts in the Internet. (Linux Slapper)

D. Observations

The observations were made by running our tests on

a tcpdump trace file collected over a 9 day period. There

are a total of 4 million packets in the trace file.
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Fig. 3. CRC Checksum Distribution

Based on the graphs we observe that the CRC+Port

and the Rabin Fingerprint+Port distributions are not

much different from each other.

Further based on these graphs we can observe that the

number signatures based on CRC+Destination Port or

Rabin Fingerprint (� = 39)+Destination Port occurring

at most once is exponentially higher than the Fingerprints

occurring more than once. This leads us to believe that

we will need to instantiate counters for a very small

fraction of the overall checksums.

On the other hand when we reduce the length of

the Rabin Fingerprint to (� = 4) then we see a large

number of signatures occurring more frequently and the

TCP CHECKSUM as picked up from the TCP Header

provides with no assistance in making any deterministic

decisions.

We caught the following three worms: Code Red,

Linux Slammer and Port 139 NetBios worm .

There are a number of applications that can lead to

frequent false positives without a careful choice of the

parameters that control the flagging of worm packets:

VNC Sessions, Mailing Lists and SSH Sessions.
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E. Algorithm Refinements

Based on the observations we are now testing a new

set of refinements.

Considering the long-term goals of our project, uti-

lizing Rabin Fingerprints seems to be the most suitable

option for converting the data contained in the packets

into numerical signatures.

However utilizing Rabin Fingerprints is not without

it’s problems. The length of the sub-strings over which

we compute the Rabin fingerprint has (i) a direct impact

on the memory required by the Bloom Filter (or any

other data-structure) used to keep track of the occurrence

of the fingerprints, and (ii) the false positive rates.

If the fingerprint is too small then a) the number of

fingerprints generated for every packet may be too many

to track, and b) the number of packets the sub string

has occurred previously may be too many. On the other

hand if the fingerprint is too large then a) we may lose

the granularity required to correlate two instances of the

same worm, which employ simple techniques to avoid

being caught, and b) we may end up ignoring the small

packets (packets with fewer bytes than the length of the

fingerprint).

Based on these observations we have opted to make
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some modifications to our algorithm.

Considering that the Rabin fingerprints are computed

incrementally, we now propose to track fingerprints of

various lengths simultaneously. We now select say two

(the final algorithm could use more than two) represen-

tative lengths � and � over which we will compute the

Rabin fingerprints. Of these two, � is of significantly

smaller length than �. As a first step Rabin fingerprints

are computed for � length sub-strings and only if a

match is found for the smaller length we proceed to

compute the Rabin fingerprint for the sub-string of longer

length �. We believe that by adopting this method we

will only need to compute a few Rabin fingerprints (of

small length �) for most packets, which amounts to

a significantly reduced processing overhead per packet.

This technique will also limit the number of signatures

we need to match future packets against thus reducing

the memory overhead.

We are also considering computing the Rabin finger-

prints for a set of randomly selection sub-strings from

the packet and understanding the effects of the same on

the false-positive rates.

It is our understanding that we may need to spend



6

considerable effort in determining the effects of selecting

various lengths for � and � on various distinct packet

streams with substantial variations in the workload.

In order to utilize limited resources we would also

like to apply strategies to flush the set of signatures

in the filters periodically. At the present time we are

studying the effects of the following strategies. (i) Flush

all the signatures in the filters, after a period of time

or a number of packets, (ii) flush all signatures in the

filters while retaining the signatures we have found to be

anomalous in the previous window, and (iii) mechanisms

to decay the signature entries in the filters as opposed to

periodically flushing them.

To reduce the false positive rates, we also need to

introduce some adaptive learning so that the system

may distinguish between flash events (mailing lists) and

worms.

When deployed at the gateway there might be a sig-

nificant improvement in the effectiveness of the system

if we consider different thresholds for the data stream

coming into the network and the data stream going out.

F. Validation

For validating future versions of our system deployed

on larger networks we will need to estimate the number

of worms that actually went by. For this purpose we can

use existing IDSes such as Snort that are based on worm

signatures.

IV. ACTING ON THE ANOMALOUS PACKETS

While our current system only reports the anomalous

packets, the final system will also take adequate action.

Because the system cannot always tell with high cer-

tainty whether a given packet belongs to a worm or

not, it is appropriate to have more than one type of

countermeasure in order to limit the amount of collateral

damage caused by the system. First of all when the

system suspects the appearance of a new worm it alarms

the network administrator and provides forensic data to

let human experts analyze and classify it. For traffic

that looks like a worm but there is still a chance

of misclassification the system would take less drastic

action such as rate limiting it. For traffic identified with

high confidence as worm traffic the system can take more

drastic action such as dropping the packets or resetting

the TCP connections.

V. DEPLOYMENT OF THE SYSTEM

The deployment of our system on a large enough

number of points in the network can significantly slow

down the spread of new worms. It can also have the

benefit of eliminating traffic generated by older worms

that are still active on un-patched systems. There is a

large amount of redundant traffic in the Internet, from

hosts that remain infected by the worms even after the

release of numerous advisories. For example an expected

300,000 hosts are still infected by the much publicized

CodeRed worm generating large volumes of traffic as

they are still going about their business to infect other

hosts. If our proposed Detection Systems were deployed

at strategic points in the network, then this redundant

traffic could be eliminated.

VI. CONCLUSION AND FUTURE DIRECTIONS

Worms are a major threat to the security and reliability

of todays networks. Because they can spread rapidly

from computer to computer, to effectively contain them

we need automated methods to very quickly identify

and filter new worms before they grow into a massive

epidemic. In this paper we propose such an automated

approach based on identifying in real time the traffic

characteristics common to all worms: highly repetitive

packet content, going from an increasing number of

infected hosts to very many random IP addresses of

potential new victims. Our preliminary results on a small

network show that our automated approach of identifying

new worms is promising: it identified three confirmed

worms with an encouragingly low percentage of false

positives when configured with good parameters.

We note that the techniques discussed in this paper

could be used to detect other types of malicious traffic

prevalent in the Internet: email worms and Spam.

VII. APPENDIX

A. Rabin Fingerprinting

The Rabin fingerprint for a sequence of bytes

t

1

; t

2

; t

3

; : : : ; t

�

of length � is given by

F

1

= (t

1

� p

��1

+ t

2

� p

��2

+ � � �+ t

�

) mod M where

p and M are constants.

The best way to evaluate a polynomial given its

coefficients is by Horner’s rule:

F

1

= (p � ((: : : (p � (p � t

1

+ t

2

)+ t

3

) : : : ))+ t

�

) mod M

If we now want to compute F

2

, then we need only to

add the last coefficient and remove the first one:

F

2

= (p � F

1

+ t

�+1

� t

1

� p

��1

) mod M

We pre-compute a table of all possible values of (t
i

�

p

��1

) for fast execution of the algorithm.
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