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Abstract. Given a function g = g(n) we let Eg be the class of all graphs G such that
if G has order n (that is, has n vertices) then it is embeddable in some surface of Euler
genus at most g(n), and let Ẽg be the corresponding class of unlabelled graphs. We give
estimates of the sizes of these classes. For example we show that if g(n) = o(n/ log3 n)
then the class Eg has growth constant γP , the (labelled) planar graph growth constant; and
when g(n) = O(n) we estimate the number of n-vertex graphs in Eg and Ẽg up to a factor
exponential in n. From these estimates we see that, if Eg has growth constant γP then we
must have g(n) = o(n/ log n), and the generating functions for Eg and Ẽg have strictly
positive radius of convergence if and only if g(n) = O(n/ log n). Such results also hold
when we consider orientable and non-orientable surfaces separately. We also investigate
related classes of graphs where we insist that, as well as the graph itself, each subgraph is
appropriately embeddable (according to its number of vertices); and classes of graphs where
we insist that each minor is appropriately embeddable. In a companion paper, these results
are used to investigate random n-vertex graphs sampled uniformly from Eg or from similar
classes.
Keywords. Embeddable graphs, order-dependent surfaces, approximate counting, labelled
graphs
Mathematics Subject Classifications. 05C10, 05C30

1. Introduction

Given a surface S, let ES be the class of all (finite, simple, labelled) graphs embeddable in S,
so the class P of planar graphs is ES0 where S0 is the sphere. A genus function is a func-
tion g = g(n) from the positive integers N to the non-negative integers N0: we shall always
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take g to be such a function. We let Eg be the class of all graphs G such that if G has n ver-
tices then G ∈ ES for some surface S of Euler genus at most g(n). If we insist that all the
surfaces involved are orientable we obtain the graph class OEg, and similarly if we insist that all
the surfaces are non-orientable we obtain NEg (where NE0 is taken to be P). When g(n) is a
constant h for each n we may write Eh instead of Eg, and similarly for OEh and NEh. For a full
discussion of embeddings in a surface see for example [MT01].

The class P of planar graphs, and more generally the class ES of graphs embeddable in a
fixed surface S, have received much attention recently. In the planar case, much is known about
the size of the class as well as about typical properties of graphs in the class, see for example
[BGW02, BGKN05, BGK03, BK06, BKLM07, BGH+06, DVW96, Fus09, GM04, GMSW05,
GMSW07, GN04, GN09, GNR07, MR08, MSW05, MSW06, OPT03]. The corresponding ques-
tions for graphs in ES have also been extensively studied and much is known, see for example
[BG11, CFG+11, DKS18, KMS17, KMS20, KMSF15, McD08]. Given a class A of (labelled)
graphs we let An be the set of graphs in A on vertex set [n] = {1, . . . , n}. The class A has
(labelled) growth constant γ if 0 < γ < ∞ and

(|An| /n!)
1
n → γ as n → ∞ .

The class P of planar graphs has growth constant γP ≈ 27.23 [MSW05, GN09]; and for each
fixed h , the class Eh has the same growth constant γP [McD08] (and thus so also have OEh

and NEh). Precise asymptotic estimates are known for the sizes of these classes (when h is
fixed), see (3.1) and (3.2) below.

Given a class A of (labelled) graphs we let Ã be the corresponding set of unlabelled graphs.
A set Ã of unlabelled graphs has unlabelled growth constant γ̃ if 0 < γ̃ < ∞ and

|Ãn|
1
n → γ̃ as n → ∞ .

For example for outerplanar graphs the unlabelled growth constant is known precisely and equals
roughly 7.50360 [BFKV07]; and the set P̃ of unlabelled planar graphs has unlabelled growth
constant γ̃P̃ where γP < γ̃P̃ ⩽ 30.061, see [MSW05, BGH+06].

We are interested in the case when the genus function value g(n) may grow with n, and so
the surfaces are not fixed. At the opposite extreme from P , when g(n) is very large all graphs
are in Eg (when g(n) is at least about 1

6
n2, see near the end of Section 3.2 for precise values). In

the overarching project we investigate two closely related questions: (a) how large are the graph
classes like Eg and OEg; and (b) what are typical properties of a random n-vertex graph Rn

sampled uniformly from such a class? We also consider unlabelled graphs, more briefly. In the
present paper we consider question (a), and we give estimates and bounds on the sizes of these
classes of graphs (and of related more constrained classes of graphs - see the next section). In
a companion paper [MS21], we use these results in investigations of question (b) concerning
random graphs. A central aim in both of these papers is to find where there is a change between
‘planar-like’ behaviour and behaviour like that of a binomial (Erdős-Rényi) random graph, both
for class size and for typical properties. It seems that this ‘phase transition’ occurs when g(n) is
around n/ log n. See [DKMS19] for results on the evolution of random graphs on non-constant
orientable surfaces when we consider also the number of edges.



combinatorial theory 3 (1) (2023), #4 3

2. Statement of Results

We first consider classes of graphs which are embeddable in given surfaces, where we insist
simply that the graph is embeddable in the appropriate surface (of Euler genus at most g(n)
for an n-vertex graph) and we have no other requirements. Our focus is mostly on this case,
presented in Section 2.1. In Section 2.2 we consider classes of graphs which are ‘hereditarily
embeddable’ in given surfaces, where we insist also that each induced subgraph is embeddable
in an appropriate surface, depending on its number of vertices. Then, in Section 2.3, we consider
classes of graphs where we insist that each minor is appropriately embeddable. Finally, we close
this section with a brief plan of the rest of the paper.

Throughout this paper, g = g(n) is a genus function and Ag denotes any one of the graph
classes OEg, NEg, Eg (= OEg ∪ NEg) or OEg ∩ NEg. Given non-negative functions x(n)
and y(n) for n ∈ N, the notation x(n) ≪ y(n) means that x(n)/y(n) → 0 as n → ∞. We
also use the standard notations o(x(n)), O(x(n)) and Θ(x(n)), always referring to behaviour
as n → ∞.

2.1. Classes Ag of graphs embeddable in given surfaces

We present four theorems (and three corollaries) in this section. The first theorem gives estimates
of the size of the set Ag

n of graphs for ‘small’ genus functions g, and is our main result since
it covers the ‘phase transition’ range for g. The second and third theorems give lower bounds
(and some estimates) and then upper bounds on the size of Ag

n for wider ranges of the genus
function g. By convention, if t = 0 then both tt and (1/t)t mean 1. Recall that γP is the labelled
planar graph growth constant.

Theorem 2.1. (a) If g(n) is o(n/ log3 n), then Ag has growth constant γP; that is,

|Ag
n| = (1 + o(1))n γn

P n! .

(b) If g(n) is O(n), then

|Ag
n| = 2Θ(n) gg n! and |Ãg

n| = 2Θ(n) gg .

Since P ⊆ Ag ⊆ Eg, in part (a) it would suffice to take A = E . We have no result for
unlabelled graphs corresponding to part (a). Note that in the equations in part (b) above we
write g rather than g(n) for readability - we shall often do this.

For a class B of (labelled) graphs, we let ρ(B) be the radius of convergence of the expo-
nential generating function B(x) =

∑
n |Bn|/n! xn, so ρ(B) =

(
lim supn→∞ (|Bn|/n!)

1
n

)−1

.

Thus 0 ⩽ ρ(B) ⩽ ∞, and for example ρ(P) = γ −1
P . Similarly, for a set B̃ of unlabelled graphs,

we let ρ̃(B̃) be the radius of convergence of the ordinary generating function B̃(x) =
∑

n |B̃n|xn,

so ρ̃(B̃) =
(
lim supn→∞ |B̃n|

1
n

)−1

. Thus 0 ⩽ ρ̃(B̃) ⩽ ∞, and for example ρ̃(P̃) = γ̃ −1

P̃
. Ob-

serve that by Theorem 2.1 (b)

ρ(Ag) > 0 if and only if g(n) = O(n/ log n) (2.1)
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and
ρ̃(Ãg) > 0 if and only if g(n) = O(n/ log n). (2.2)

Thus, in both the labelled case Ag and the unlabelled case Ãg, the threshold when the radius of
convergence drops to 0 is when g(n) is around n/ log n.

We next give two theorems yielding lower bounds (Theorems 2.2 and 2.5) and one theorem
yielding upper bounds (Theorem 2.6) on the sizes of the sets Ag

n of graphs, for a wider range of
genus functions g than considered in Theorem 2.1. Theorem 2.1 (b) will follow from the lower
bounds in Theorem 2.2 (b) (as spelled out in Corollary 2.4) and the upper bounds in Theorem 2.6.
(Theorem 2.1 (a) will be proved separately). We are most interested in the embeddable class of
graphs Ag, but the lower bounds in Theorem 2.2 apply to the smaller class of graphs which are
‘freely embeddable’. Given a genus function g, we let Fg be the class of graphs G such that
every embedding scheme for G has Euler genus at most g(n) where v(G) = n. (Embedding
schemes are discussed briefly in Section 3.2 below.) The freely embeddable class Fg of course
satisfies Fg ⊆ Ag, and Fg may be much smaller than Ag: for example if g is identically 0
then Ag is P and Fg is the class of forests.

The lower bound in part (a) of Theorem 2.2 is for g(n) = o(n) and lets us relate |Ag
n| to |Pn|,

whilst the lower bound in part (b) is for all genus values h. Recall that always |Ag
n| ⩾ |Fg

n|.

Theorem 2.2. (a) If g(n) is o(n) then

|Fg
n| ⩾ (1 + o(1))n γn

P n! gg/2.

(b) There is a constant c > 0 such that, for every h ⩾ 0 and n ⩾ 1,∣∣Fh
n

∣∣ ⩾ cn+h (n2/h)h n! .

Since P ⊆ Fg ⊆ Ag, if Ag has growth constant γP then also Fg has growth constant γP .
We shall see that Theorem 2.2 (a) has the following corollary.

Corollary 2.3. If Fg (or Ag) has growth constant γP then g(n) = o(n/ log n).

In Theorem 2.2 (b), the constant c > 0 need not be tiny: the proof will show that if we restrict
our attention to n ⩾ 15 (and any h ⩾ 0) then we may take c = 1

3
, see inequality (5.2). (Recall

that if h = 0 then (n2/h)h is taken to be 1.) Theorem 2.2 (b) gives the following corollary, when
we restrict our attention to values h which are at most linear in n.

Corollary 2.4. Given c0 > 0 there exists c > 0 such that if 0 ⩽ h ⩽ c0 n then∣∣Ah
n

∣∣ ⩾ ∣∣Fh
n

∣∣ ⩾ cn hh n! and thus
∣∣∣Ãh

n

∣∣∣ ⩾ ∣∣∣F̃h
n

∣∣∣ ⩾ cn hh .

Theorem 2.5 gives some lower bounds on |Ag
n| (not on |Fg

n|) when g is large, and some
estimates when g is very large. The lower bound in part (a) strengthens the lower bound on |Ah

n|
yielded by Theorem 2.2 (b) in some cases when g(n) ⩾ n1+δ for some δ > 0; and in part (b),
when g is very large, we obtain asymptotic estimates of |Ag

n|. The entropy functionH(p) appears
in equation (2.5) below: recall that it is given by H(p) = −p log2 p − (1 − p) log2(1 − p)
for 0 ⩽ p ⩽ 1, and that H(1

2
) = 1. (When log has no subscript it means natural log.)
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Theorem 2.5. (a) If j ∈ N is fixed and n1+1/(j+1) ≪ g(n) ≪ n1+1/j , then

|Ag
n| ⩾ (n2/g)(1+o(1)) j+2

j
g .

(b) If g(n) ≫ n3/2 and ḡ(n) = min{g(n), ⌊ 1
12
n2⌋}, then

|Ag
n| =

((n
2

)
3ḡ

)1+o(1)

. (2.3)

Thus
|Ag

n| = (n2/g)(3+o(1)) g if n3/2 ≪ g(n) ≪ n2 , (2.4)

and
|Ag

n| = 2(
1
2
+o(1))H(6c)n2

if g(n) ∼ cn2 for some 0 < c ⩽ 1
12
. (2.5)

The lower bound in part (a) does not hold for the freely embeddable class Fg
n. Indeed we

shall see as a corollary of a fuller and more precise result (Proposition 8.1 in Section 8) that

|Fg
n| = (n2/g)(1+o(1))g if n ≪ g(n) ≪ n2. (2.6)

Observe that equation (2.4) in part (b) of Theorem 2.5 shows that we have approximate equal-
ity in the case j = 1 of part (a). Now consider very large g. By equation (2.5) (and recalling
that H(1

2
) = 1), if g(n) ⩾ 1

12
n2 then |Ag

n| = 2(1+o(1))(n2). For comparison, note that
if g(n) ⩾ 1

6
n2 then all graphs are in Ag (that is, all 2(

n
2) graphs on [n] for each n), and

if g(n) ⩾ 1
2
n2 then all graphs are in Fg – see Section 3.2 below.

Our last theorem in this subsection gives upper bounds on |Ah
n| and |Ãh

n|.

Theorem 2.6. There is a constant c such that, for every h ⩾ 0 and n ⩾ 1,

|Ãh
n| ⩽ cn+h hh and thus

∣∣Ah
n

∣∣ ⩽ cn+h hh n! .

Theorem 2.5 (b) gives the estimates (2.4) and (2.5) for |Ag
n|when g is very large. Theorem 2.6

together with Theorem 2.2 (b) and Theorem 2.5 (a) will allow us to give estimates of |Ag
n| for

certain other genus functions g(n) ≫ n.

Corollary 2.7. Suppose that either η = 0 or η = 1
j+1

for some integer j ⩾ 1, and
let g(n) = n1+η+o(1) with g(n) ≫ n1+η. Then

|Ag
n| = g(1+o(1))g .

2.2. Hereditary classes of graphs, where each subgraph embeds appropriately

Our definition of the graph class Ag treats each number n of vertices completely separately, but
we might wish to be more demanding and insist for example that each subgraph embeds in the
appropriate surface, and thus the corresponding class is closed under forming subgraphs. Since
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the appropriate surface is determined by the number of vertices, this is equivalent to insisting
that the class is closed under forming induced subgraphs, that is, the class is hereditary.

Given a graph class B, we say that a graph G is hereditarily in B if for each nonempty
set W of vertices the induced subgraph G[W ] is in B ; and we let Hered(B) be the class of
graphs which are hereditarily in B. Observe that the class Hered(B) is hereditary: we call
it the hereditary part of B. Given a genus function g we are interested here in Hered(Ag).
Since P ⊆ Hered(Ag) ⊆ Ag, Theorem 2.1(a) shows that Hered(Ag) has growth constant γP as
long as g(n) = o(n/ log3n).

We give an upper bound (in Proposition 2.8) and then a lower bound (in Theorem 2.9)
on |Hered(Ag)n|. For many genus functions g which ‘often increase’, Hered(Ag)n is much
smaller than Ag

n, as shown in the following result (where the value of α is not optimised).

Proposition 2.8. Let the genus function g satisfy g(n) = o(n/ log3 n); and suppose that there
is an n0 such that for all n ⩾ n0, g(n) > g(n − k) for some 1 ⩽ k ⩽ αn, where α = 1

60
.

Then |Hered(Ag)n| ≪ |Ag
n|.

Examples of genus functions g as in this proposition include the round up or down of β log n
for large β, nβ for 0 < β < 1, andn log−β n for β > 3. We now consider larger genus functions g.
Recall that always Ag ⊇ Fg, so Hered(Ag) ⊇ Hered(Fg) : thus the next result gives a lower
bound on |Hered(Ag)n|.

Theorem 2.9. If g(n) ≫ n/ log n then (|Hered(Fg)n|/n!)1/n → ∞ as n → ∞.

Let us revisit the results (2.1) and (2.2) above. By definition Ag ⊇ Fg ⊇ Hered(Fg), and
we now see that

ρ(Ag) > 0 if g(n) = O(n/ log n) and ρ(Hered(Fg)) = 0 if g(n) ≫ n/ log n . (2.7)

Thus we see that, despite considering a worst possible embedding and the additional hereditary
constraint, the threshold when the radius of convergence of Hered(Fg) drops to zero still occurs
when g(n) is around n/ log n, as for the embeddable case Ag. Similarly for unlabelled graphs

ρ̃(Ãg) > 0 if g(n) = O(n/ log n) and ρ̃(Hered(F̃g)) = 0 if g(n) ≫ n/ log n. (2.8)

We could be even more demanding than above, where we require that each induced subgraph
has a suitable embedding. We could insist that we can choose one embedding ϕ of the original
graph G, and then use the induced embedding for each induced subgraph of G, so that ϕ ‘cer-
tifies’ that G ∈ Hered(Ag). See Section 9.1 where we consider such ‘certifiably hereditarily
embeddable’ graphs.

2.3. Minor-closed classes of graphs, where each minor embeds appropriately

Let us now insist that each minor of our graphs (rather than each induced subgraph) is appro-
priately embeddable. Recall that a graph H is a minor of a graph G if H can be obtained from
a subgraph of G by a sequence of edge-contractions, see for example [BM08, Die17]. Given
a class B of graphs, let Minor(B) be the class of graphs G such that each minor of G is in B.
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Thus Minor(B) is minor-closed: we call it the minor-closed part of B (which is the same as
the minor-closed part of Hered(B)). Of course we always have P ⊆ Minor(Ag) ⊆ Ag, and
so in particular ρ(P) ⩾ ρ(Minor(Ag)). Also by the definitions we always have
ρ(Minor(Ag)) ⩾ ρ̃(Minor(Ãg)). We give one theorem concerningMinor(Ag), with contrasting
parts. Note that there is no hint here of a change in behaviour when g(n) is around n/ log n.

Theorem 2.10. For every genus function g, either (a) Minor(Ag) contains all graphs, or
(b) ρ̃(Minor(Ãg)) > 0 (and so ρ(Minor(Ag)) > 0). For every ε > 0 there is a constant c
such that if g(n) ⩾ cn for each n ∈ N then ρ(Minor(Ag)) < ε.

The first part of this theorem shows that if say g0(n) ∼ 1
7
n2, so Minor(Ag0) does not

contain all graphs, then ρ(Minor(Ag0)) > 0. The second part shows that if g1(n) = cn for
some suitably large constant c, then ρ(Minor(Ag1)) < ρ(Minor(Ag0)). This may at first sight
seem paradoxical, until we realise that it is not just values of g(n) for large n that matter here.
Note that, much as in the hereditary case, the graph class Minor(Ag) has a growth constant γP
when g(n) = o(n/ log3 n).

2.4. Plan of the paper

We have just presented our main results. The plan of the rest of the paper is as follows. In the
next section we give some background on embeddings, and in Section 4 we give some prelimi-
nary results on how the numbers of graphs in the classes grow when we add a new vertex to the
graphs or add a handle to the surface. In the following three sections, we prove the results stated
in Section 2.1 on classes of graphs embeddable in given surfaces, proving lower bounds (includ-
ing Theorem 2.5) in Section 5, proving upper bounds (including Theorem 2.6) in Section 6, and
proving Theorem 2.1 in Section 7. In Section 8 we quickly estimate the number |Fh

n | of freely
embeddable graphs. In Section 9 we investigate the hereditary class Hered(Ag) of hereditar-
ily embeddable graphs discussed in Section 2.2, and prove Proposition 2.8 and Theorem 2.9;
and we also investigate the related subclass of ‘certifiably hereditarily embeddable’ graphs. In
Section 10 we consider the minor-closed class Minor(Ag) where each minor is appropriately
embeddable, discussed in Section 2.3, and prove Theorem 2.10; and we also briefly consider
what happens if we replace ‘minor’ by ‘topological minor’. Finally, Section 11 contains a few
concluding remarks and questions.

3. Some background on embeddings of graphs in surfaces

In this section we fill in more details of known results on the sizes of the sets OEh
n and NEh

n of
graphs, and then give some background results on embeddings of graphs in surfaces.

3.1. Number of graphs embeddable in a fixed surface

We noted that the class P has growth constant γP [MSW05]; and further both OEh and NEh

have the same growth constant γP for each fixed h [McD08]. Giménez and Noy [GN09] give
an explicit analytic expression for γP , showing that γP ≈ 27.2269 (where ≈ means ‘correct to
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all figures shown’). Also, we have precise asymptotic estimates [GN09, BG11, CFG+11] for the
sizes of these classes: for all fixed even h ⩾ 0,∣∣OEh

n

∣∣ ∼ c(h) n
5(h−2)

4
−1 γn

P n! as n → ∞ (3.1)

where c(h) is a positive constant; and for all fixed h ⩾ 0,∣∣NEh
n

∣∣ ∼ c̄(h) n
5(h−2)

4
−1 γn

P n! as n → ∞ (3.2)

where c̄(h) is a positive constant.

3.2. Embeddings of graphs in surfaces

We now collect a few useful facts about embeddings of graphs in surfaces which we will use in
the remainder of this paper. For a much fuller introduction to graphs on surfaces we refer the
reader to [MT01]. We will always let h be a non-negative integer. If h is even, Sh/2 denotes the
sphere with h/2 handles, which is the orientable surface with Euler genus h (and genus h/2). We
denote the non-orientable surface with Euler genus h by Nh for each h, where by convention N0

means the sphere S0 (which is treated also as non-orientable).
An embedding of a connected graph in a surface is called cellular (or a 2-cell embedding)

if each face is homeomorphic to an open disc. In the definition of the graph class Ag we do
not insist that the embeddings are cellular, though we could do so. If a connected graph G
has an embedding in Sh/2 (where h is even) then it has a cellular embedding in Sh′/2 for some
even h′ ⩽ h; and similarly if G has an embedding in Nh then it has a cellular embedding in Nh′

for some h′ ⩽ h, see Section 3.4 of [MT01].
A key result is Euler’s formula. Recall that we are interested in simple graphs, but it is

convenient here to work with pseudographs, which may have multiple edges and loops. Let the
connected pseudograph G with v vertices and e edges be cellularly embedded in a surface of
Euler genus h, with f faces. Euler’s formula states that

v − e+ f = 2− h . (3.3)

Now suppose that the pseudograph G has κ ⩾ 2 components H1, . . . , Hκ. If each component Hi

has a cellular embedding ϕi with fi faces and Euler genus hi then we say that G has a cellular
embedding ϕ with f =

∑
i(fi − 1) + 1 =

∑
i fi − (κ − 1) faces (we think of the ‘outer

faces’ of the κ embeddings ϕi as being merged) and Euler genus h =
∑

i hi. The embedding ϕ
is orientable if and only if each ϕi is orientable. Corresponding to (3.3), Euler’s formula for
graphs with κ components is

v − e+ f − κ = 1− h . (3.4)

We will sometimes make use of rotation systems or more generally of embedding schemes.
We give a very brief introduction here, and refer the reader to Chapter 3 of [MT01] for a full
introduction. Given a pseudograph G, for each vertex v let πv be a cyclic permutation of the
edges incident to v. We call the family π = {πv | v ∈ V (G)} a rotation system for G. If G
is cellularly embedded in an orientable surface then the clockwise ordering around each vertex
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gives a rotation system for G; and conversely a rotation system for G gives a cellular embedding
of G in an orientable surface. A mapping λ : E(G) → {+1,−1} is called a signature for G.
If G is cellularly embedded in a non-orientable surface then we set λ(e) = 1 if the ‘clockwise’
orderings at the end-vertices of e agree, and λ(e) = −1 otherwise. Thus we may obtain an
embedding scheme (π, λ) consisting of a rotation system and a signature. Conversely, an em-
bedding scheme for G gives a cellular embedding of G in a surface S, where S is orientable if
and only if each cycle has an even number of edges e with λ(e) = −1.

The cycle rank cr(G) of G is e − v + κ. Observe that cr(G) ⩾ 0, and cr(G) = 0 if and
only if G is a forest. The cycle rank has several other names, including circuit rank, corank,
nullity, cyclomatic number and first Betti number, see for example Bollobás [Bol98] and Bondy
and Murty [BM08].

Given a pseudograph G, we let egmax(G) be the maximum over all embedding schemes
for G of the Euler genus of the corresponding surface, in which G has a cellular embedding. We
call egmax(G) the maximum Euler genus of G. By Euler’s formula (3.4), the Euler genus of a
cellular embedding with f faces is e − v − f + κ + 1 ⩽ e − v + κ = cr(G) (since f ⩾ 1);
and thus egmax(G) ⩽ cr(G). In fact equality holds here: by a result of Ringel and Stahl, see
Theorem 4.5.1 of [MT01], for every pseudograph G the maximum Euler genus equals the cycle
rank : that is,

egmax(G) = cr(G) . (3.5)

Thus Fg is the class of graphs G with cr(G) ⩽ g(n) where n = v(G).
If the graph G is embeddable in a surface of Euler genus h, then G is cellularly embeddable

in a surface of Euler genus k for some k with 0 ⩽ k ⩽ h. Since 3f ⩽ 2e for all embeddings of
simple graphs, from Euler’s formula (3.3) or (3.4) we see that

e(G) ⩽ 3(n+ h− 2) for each G ∈ Eh. (3.6)

Any pseudograph always has a cellular embedding in some orientable surface and in some
non-orientable surface (recall that we treat the sphere S0 as both an orientable and a non-
orientable surface). In proofs we will sometimes treat the orientable and non-orientable cases
separately, and the following observation is useful.

Observation 3.1. For each h ⩾ 0, a graphG embeddable in any surface of Euler genus h can be
cellularly embedded in a non-orientable surface of Euler genus at most h+1, so Eh ⊆ NEh+1.

This observation is clearly correct if G is acyclic (by the convention that S0 is counted also
as non-orientable). For any graph G ∈ OEh with a cycle, we may start with a rotation system
giving an orientable cellular embedding ϕ with Euler genus h′ ⩽ h, pick an edge e in a cycle,
and give e signature -1 (with all other edges having signature +1). We obtain a non-orientable
cellular embedding with at most one less face than ϕ, and so with Euler genus at most h′ + 1.

An example where we need the extra 1 is the complete graph K7 on seven vertices, which
is in OE2 but not in NE2. There is no result like Observation 3.1 for orientable surfaces, since
for all h ⩾ 1 there are graphs in NE1 but not in OEh [FHRR95]. By the Ringel–Youngs
Theorem (see equation (7) in [RY68], or see for example the book [MT01], Theorems 4.4.5
and 4.4.6) the maximum Euler genus of any graph on n vertices, that is the Euler genus of the
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complete graph on n vertices, is equal to 2⌈ 1
12
(n− 3)(n− 4)⌉ ∼ 1

6
n2 in the orientable case, and

⌈1
6
(n − 3)(n − 4)⌉ ∼ 1

6
n2 in the non-orientable case (apart from when n = 7 when the value

is 3). These values are actually at most 1
6
n2, so if g(n) ⩾ 1

6
n2 for each n ∈ N then Ag contains

all graphs (and we cannot replace 1
6

by any smaller constant).
Recall that Fg is the class of graphs such that egmax(G) ⩽ g(n), where v(G) = n. For a

(simple) graph G on [n],

egmax(G) ⩽ egmax(Kn) =

(
n

2

)
− n+ 1 ⩽ 1

2
n2 ,

so if g(n) ⩾ 1
2
n2 for each n ∈ N then Fg contains all graphs (and we cannot replace 1

2
by any

smaller constant).

4. Growth ratios for Ag when adding a vertex or handle

In this section we investigate how numbers of graphs embeddable in surfaces grow when we
add a vertex to the graph or a handle to the surface. We give lower bounds on the growth ra-
tio |OEh

n+1|/|OEh
n | when we increment n by 1, and on the growth ratio |OEh+2

n |/|OEh
n | when we

increment h by 2; and on similar ratios for non-orientable surfaces. (Simultaneous increments
are considered in [Sal20], see Lemma 76.)

4.1. Growth ratios when adding a vertex

We first consider incrementing n by 1. Let us start by noting that, by equations (3.1) and (3.2),
for each fixed surface S we have

|ES
n+1|
|ES

n |
∼ γP n as n → ∞. (4.1)

For n ∈ N letminext(n) be the minimum over all graphsG on [n] of the number of graphsG′

on [n + 1] such that (a) G′ restricted to [n] is G, and (b) for every surface S, if G embeds in S
then G′ also embeds in S. Then for every h ∈ N0 and n ∈ N

|Ah
n+1| ⩾ minext(n) |Ah

n|. (4.2)

It is not hard to see that
minext(n) ⩾ 2n for every n ∈ N . (4.3)

To show this, let G be a graph on [n]. We may assume wlog that G is connected. In G′, we can
make the new vertex n+ 1 be isolated, or be a leaf, or be adjacent to both ends of an edge of G.
This gives 1 + n+ e(G) ⩾ 2n distinct graphs G′; and equation (4.3) follows.

Observe that by inequalities (4.2) and (4.3), for every h ∈ N0 and every n ∈ N

|Ah
n+1|/|Ah

n| ⩾ 2n . (4.4)

Inequality (4.4) will suffice for our present purposes (in the proof of Lemma 7.2), but it seems
worth a little further thought concerning this. (See also the conjectures at the end of this section.)
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Given a surface S, n ∈ N and a graph G ∈ ES
n , let ext(G,S) be the number of graphs G′ ∈ ES

n+1

such that G′ restricted to [n] is G; and let minext(n, S) be the minimum value of ext(G,S) over
all G ∈ ES

n . Corollary 11 in [DVW96] shows (essentially) that minext(n,S0) ⩾ 6n− 9. Given
a sequence S1, S2, . . . of surfaces, we can give a good estimate of the value minext(n, Sn) as
long as the surface Sn has Euler genus o(n).

Proposition 4.1. For each n ⩾ 4 we have minext(n,S0) = 6n − 9; and if g(n) = o(n) then
minext(n,S⌊g(n)/2⌋) = 6n+ o(n) and minext(n,Ng(n)) = 6n+ o(n).

Note that for example minext(n,Ng(n)) is defined to be the minimum over all graphs
G ∈ NEg

n of ext(G,Ng(n)), that is of the number of graphs G′ ∈ NEg(n)
n+1 (not g(n+1) here)

such that G′ restricted to [n] is G. For the proof of Proposition 4.1 we use two lemmas.

Lemma 4.2. Let h ⩾ 0 and n ⩾ 3. Let S be a surface of Euler genus h, and let the n-vertex
graph G have a cellular embedding in S which is a triangulation with no non-contractible 3-
cycles. Then ext(G,S) = 6n + 5h − 9, except if h = 0 and n = 3 when ext(G,S) = 8
(not 9).

Proof. The embedding of G in S is unique, see Theorem 5.3.4 of [MT01]. In each graph G′ on
[n + 1] embeddable in S and such that G′ restricted to [n] is G, the neighbours of vertex n + 1
must form a subset of the vertices on a single face of the triangulation. In the embedding of G
there are e = 3(n+h− 2) edges and f = 2(n+h− 2) faces. Unless h = 0 and n = 3 the faces
have distinct vertex sets (each of size 3), so

ext(G,S) = 1 + n+ e+ f = 1 + n+ 5(n+ h− 2) = 6n+ 5h− 9.

If h = 0 and n = 3 then
ext(G,S) = 1 + n+ e+ 1 = 8,

which completes the proof.

Lemma 4.3. There exists δ > 0 such that, for all n ⩾ 4 and 0 ⩽ h ⩽ δn,

minext(n,S⌊h/2⌋), minext(n,Nh) ⩽ 6n+ 5h− 9. (4.5)

Proof. There is a constant c > 0 such that for all surfaces S of Euler genus h ⩾ 1 there is an n-
vertex (simple) triangulation of S with n ⩽ ch, see Section 5.4 of [MT01]. By subdividing each
edge, inserting a vertex in each face and re-triangulating, we see that, with a larger constant c′,
we may insist that there are no non-contractible 3-cycles. Let δ = 1/c′. Then for all n ⩾ 3 and
all surfaces S of Euler genus h such that 0 ⩽ h ⩽ δn (including h = 0) there is an n-vertex
triangulation of S with no non-contractible 3-cycles, and so (4.5) follows from Lemma 4.2.

Proof of Proposition 4.1. Consider first the planar case. Let n ⩾ 4 and let G0 ∈ Pn. By adding
edges if necessary we can form a graph G′ ∈ Pn which triangulates S0; and ext(G0,S0) ⩾
ext(G′,S0). But by Lemma 4.2, ext(G′,S0) = 6n − 9, and so minext(n,S0) = 6n − 9, as
required.
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Now consider the second part of the proposition. Let the graph G0 on [n] be embeddable in
the surface S of Euler genus h. Add edges to G0 if necessary to obtain an edge-maximal graph G
embeddable in S, and note that ext(G0, S) ⩾ ext(G,S). Suppose that G has e edges and f3
3-faces. Then ext(G,S) ⩾ 1 + n + e + f3. For in a graph G′ on [n+1] with restriction to [n]
being G, vertex n+1 may be isolated, may be adjacent to any one vertex of G, may be adjacent
to both ends of any one edge of G, or may be adjacent to all 3 vertices in any 3-face of G (and
the 3-faces must have distinct sets of incident vertices).

By Theorem 1.1 of [MW18], there is an absolute constant c such that by adding at most ch
edges to G we may form a multigraph G′′ which triangulates S. By Euler’s formula (3.3), G′′

has 3(n+ h− 2) edges and 2(n+ h− 2) faces. It follows that G has at least 3(n+ h− 2)− ch
edges and at least 2(n+ h− 2)− 2ch 3-faces. Hence

ext(G,S) ⩾ 1+n+e+f3 ⩾ 1+n+3(n+h−2)−ch+2(n+h−2)−2ch = 6n+(5−3c)h−9.

Thus minext(n, S) ⩾ 6n + O(h). But by Lemma 4.3 we have the reverse inequality that
minext(n, S) ⩽ 6n+O(h), and we are done.

Better bounds? So far, we managed only to obtain lower bounds on the ratio |ES
n+1|/|ES

n |
(as n increments by 1), with no upper bounds (if S is not fixed). Using minext(n, S) does not
give a tight lower bound on this ratio. For every surface S, we know that |ES

n |/n|ES
n−1| → γP

as n → ∞, and similarly for the connected graphs in ES , see the asymptotic formulae (3.1)
and (3.2), and [BCR08, BG11, CFG+11, GN09]. The following conjecture is similar to [Sal20,
Conjecture 117].

Conjecture 4.4. For any ε > 0 there is an n0 such that for each n ⩾ n0 and each surface S∣∣ES
n+1

∣∣ / ∣∣ES
n

∣∣ ⩾ (1− ε) γP n ,

and similarly for the connected graphs in ES .

Being more precise (and more speculative), we may go further and ask whether, for
each n ∈ N and each surface S ∣∣ES

n+1

∣∣ / ∣∣ES
n

∣∣ ⩾ |Pn+1| / |Pn| ; (4.6)

or even, if S+ is obtained from S by adding a handle or crosscap, then∣∣∣ES+

n+1

∣∣∣ / ∣∣∣ES+

n

∣∣∣ ⩾
∣∣ES

n+1

∣∣ / ∣∣ES
n

∣∣ . (4.7)

(Observe that (4.6) would imply Conjecture 4.4, and (4.7) would imply (4.6).)
Many of the results in the companion paper [MS21] depend on results in the present paper,

but Theorem 3 of that paper does not. By part (a) together with the case j = 1 of part (b) in
that result, for all 0 ⩽ h ⩽ 1

12
n2, as n → ∞ most graphs in Ah

n have at least n + h edges; and
it follows easily that, for all 0 ⩽ h ⩽ 1

12
n2 we have

∣∣Ah
n+1

∣∣/∣∣Ah
n

∣∣ ⩾ (1 + o(1)) (2n + h), see
the proof of inequality (4.3). On the other hand, we noted above that |Pn+1| / |Pn| ∼ γP n by
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equation (4.1). Hence (recalling that γP < 28), we may see that the conjectured inequality (4.6)
holds for all sufficiently large n and all surfaces S of Euler genus h such that 26n ⩽ h ⩽ 1

12
n2.

The above discussion concerned finding better lower bounds on the growth ratio as n is incre-
mented by 1, but it would be useful to find some upper bounds. We give one weak upper bound:
given a genus function g(n) = o(n) there is an n0 such that for all n ⩾ n0 and 0 ⩽ h ⩽ g(n)

|Ah
n+1|/|Ah

n| ⩽ n7. (4.8)

To prove (4.8), let n0 ⩾ 12 be sufficiently large that 6(g(n)−2) ⩽ n for all n ⩾ n0. Let n ⩾ n0,
let 0 ⩽ h ⩽ g(n), and let G ∈ Ah

n+1. By Euler’s formula, e(G) ⩽ 3(n+1+h−2), so there is a
vertex v0 of degree at most 6+ ⌊6(h− 2)/(n+1)⌋ = 6. The graph G− = G− v0 is an n-vertex
graph in Ah with vertex set contained in [n+1], and the number of such graphs is (n+1) |Ah

n|.
Let d =

∑6
j=0

(
n
j

)
⩽ 1

2
n6. Each graph G− is constructed at most d times, since to reconstruct G

we need just to guess the at most 6 neighbours of the ‘missing’ vertex v0. Hence

|Ah
n+1| ⩽ (n+ 1) |Ah

n| d ⩽ |Ah
n|n7,

giving (4.8). There is no result like this if h is not bounded by a suitable function of n: for an
extreme example, if say h ⩾ 1

6
n2 then Kn+1 ∈ Ah and so |Ah

n+1|/|Ah
n| = 2n. We called the

upper bound (4.8) weak, but can we improve it?

Conjecture 4.5. There is a constant α such that, for all n ⩾ 1 and 0 ⩽ h ⩽ n, the growth
ratio |Ah

n+1|/|Ah
n| is at most αn.

In this conjecture we would hope to be able to take α close to the planar graph growth con-
stant γP .

4.2. Growth ratios when adding a handle

We now consider the growth ratio of the graph classes when we increment the genus bound h
by 2. When h is fixed, by (3.1) the growth ratio |OEh+2

n |/|OEh
n | (as h is incremented by 2) is

asymptotic to n5/2 as n → ∞, and by (3.2) the growth ratio |NEh+1
n |/|NEh

n | (as h is incremented
by 1) is asymptotic to n5/4 as n → ∞.

Lemma 4.6. For every h ⩾ 0 and n ⩾ 1

∣∣Ah+2
n

∣∣ ⩾ (
n
2

)
− 3(n+ h)

3(n+ h)

∣∣Ah
n

∣∣ . (4.9)

Proof. We prove these inequalities by a simple double counting argument: for each graph G
in Ah

n we show that we can construct many graphs G′ in Ah+2
n , and each graph G′ is not con-

structed too many times. We make frequent use of such double-counting arguments.
Given a surface S and a graph G embedded in S, by adding a handle or twisted handle to

the surface we can add any one of the non-edges to form a new graph G′. (We can attach the
handle to the surface inside two faces incident to the two vertices we wish to connect, and then
add the new edge along the handle; and similarly for a twisted handle.) The only time we need
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the handle to be twisted is when h = 0 (so the surface S is the sphere S0) and we need G′ to be
embeddable in a non-orientable surface. Thus if G ∈ Ah then G′ ∈ Ah+2.

Each graph in Ah
n has at most 3(n + h − 2) ⩽ 3(n + h) edges. This means that from each

graph G ∈ Ah
n we construct at least

(
n
2

)
− 3(n + h) graphs G′ ∈ Ah+2

n . Furthermore, each
graph G′ constructed has at most 3(n + h− 2) + 1 ⩽ 3(n + h) edges, and so is constructed at
most this many times. The inequality (4.9) follows.

Let n ⩾ 1 and 0 ⩽ h ⩽ 1
43
n2. Then

1
3

((
n

2

)
− 3(n+ h)

)
= 1

6

(
n2 − 7n− 6h

)
⩾ 1

6

(
37
43
n2 − 7n

)
⩾ 1

7
n2

for n sufficiently large, since 37
43

> 6
7
. Hence, by Lemma 4.6, if g(n) ≪ n2 and n is sufficiently

large then ∣∣Ag+2
n

∣∣ ⩾ n2

7(n+ g)
|Ag

n| . (4.10)

Using the same argument as in the proof of Lemma 4.6 for F we similarly obtain that,
if g(n) ≪ n2 and n is sufficiently large then

∣∣Fg+2
n

∣∣ ⩾ n2

7(n+ g)
|Fg

n| . (4.11)

We shall use this inequality in the proof of Theorem 2.2.
We noted at the start of this subsection that when h is fixed, |OEh+2

n |/|OEh
n | ∼ n5/2 and

|NEh+1
n |/|NEh

n | ∼ n5/4 as n → ∞. (When h is not fixed we do not have a useful lower bound
on |NEh+1

n |/|NEh
n |.) As in the ‘adding a vertex’ case, we have no useful upper bounds on the

growth ratios |Ah+2
n |/|Ah

n| as h is incremented by 2 (with n fixed). Conjecture 11.1 in Section 11
(concerning the growth constant γP) would be implied by the following conjecture – in which
perhaps we could take β = 2?

Conjecture 4.7. There are constants α, β such that |Ah+2
n |/|Ah

n| ⩽ αnβ for all 0 ⩽ h ⩽ n.

5. Lower bounds on |Ag
n|, proofs of Theorem 2.2 and 2.5

In this section we prove the two parts (a) and (b) of Theorem 2.2 (which give lower bounds
on |Fg| and thus on |Ag|), then quickly prove Corollary 2.4, and finally prove the two parts (a)
and (b) of Theorem 2.5.

5.1. Proof of Theorem 2.2 (a)

Proof of Theorem 2.2 (a). By inequality (4.11) there is an n0 such that if n ⩾ n0 and 0⩽h⩽ 1
7
n

then ∣∣Fh+2
n

∣∣ ⩾ n2

7(n+ h)
·
∣∣Fh

n

∣∣ ⩾ n

8
·
∣∣Fh

n

∣∣ .
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Applying this ⌊g(n)/2⌋ times starting with Fg
n we see that, if n ⩾ n0 and g(n) ⩽ 1

7
n, then

|Fg
n| ⩾ |Pn| (n/8)⌊g/2⌋ .

But by (3.1)
|Pn| ∼ c(0)n−7/2 γn

P n! ,

so when g(n) is o(n)

|Fg
n| ⩾ (1 + o(1)) c(0)n−7/2 γn

P n! (n/8)(g−1)/2 = (1 + o(1))n γn
P n!ng/2 ,

and Theorem 2.2 (a) follows.

5.2. Proof of Theorem 2.2 (b)

For integers h ⩾ 0 let Ch be the class of connected graphs in Fh, that is, the class of connected
graphs G with at most h + v(G) − 1 edges. Thus for example C0 is the class of trees. Of
course Ch ⊆ Fh.

Lemma 5.1. For all n ⩾ 1 and 0 ⩽ h ⩽ 1
2
n2 − 5

2
n we have

∣∣Ch
n

∣∣ ⩾ nn−2 ·
(

n2 − 3n

2(n+ h)

)h

.

Proof. How many connected graphs are there on [n] with exactly h + n − 1 edges? Pick a
spanning tree on n vertices, there are nn−2 such trees; and then add any h of the

(
n
2

)
− n + 1

potential edges that are not yet present in the graph, there are
((n2)−n+1

h

)
choices for this. Thus

in total there are nn−2 ·
((n2)−n+1

h

)
constructions of connected graphs, each with h+n− 1 edges.

Also, each graph is constructed at most
(
h+n−1

h

)
times, since there are at most this number of

choices for the h added edges. Further, the conditions on n and h imply that 1
2
(n2−3n) ⩾ n+h.

Thus, letting (x)(k) denote the ‘falling factorial’ x(x− 1) · · · (x− k + 1),

|Ch
n| ⩾ nn−2 ·

(
1
2
(n2 − 3n+ 2)

)
(h)

(n+ h− 1)(h)
⩾ nn−2 ·

(
n2 − 3n

2(n+ h)

)h

as required.

Proof of Theorem 2.2 (b). We shall use the inequality

n! ⩽ nn+1e−n for all n ⩾ 7 , (5.1)

which is straightforward to check.
We consider h ⩽ 1

3
n2 until near the end of the proof. If n ⩾ 15 then

(1
2
n2 − 5

2
n)− 1

3
n2 = 1

6
n(n− 15) ⩾ 0;
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so the conditions in Lemma 5.1 hold when n ⩾ 15 and 0 ⩽ h ⩽ 1
3
n2. Also 1

2
(n2 − 3n) ⩾ 1

3
n2

when n ⩾ 9. Thus by Lemma 5.1, for all n ⩾ 15 and 0 ⩽ h ⩽ 1
3
n2,∣∣Ch

n

∣∣ ⩾ nn−2

(
n2 − 3n

2(n+ h)

)h

⩾ nn−2

(
n2

3h(1 + n/h)

)h

= nn−2

(
n2

3h

)h (
1 +

n

h

)−h

⩾ nn−2

(
n2

3h

)h

e−n ⩾ n−3

(
n2

3h

)h

n!

where in the last step we use the inequality (5.1). Thus, for all n ⩾ 15 and h ⩾ 0∣∣Ch
n

∣∣ ⩾ n−3

(
n2

3h

)h

n! (5.2)

where the inequality holds for h > 1
3
n2 since |Ch

n| ⩾ |C0
n| = nn−2 ⩾ n−3n!. Theorem 2.2 (b)

now follows (since Ch ⊆ Fh).

5.3. Proof of Corollary 2.3

Let g(n) satisfy lim supn→∞ g(n) logn
n

> 0. Let ḡ(n) = min{g(n), n/ log n}, and note that
ḡ(n) = o(n) and

lim sup
n→∞

ḡ(n) log ḡ(n)
n

⩾ lim sup
n→∞

ḡ(n) logn
n

> 0.

By Theorem 2.2 (a) applied to ḡ

(|F ḡ
n|/n!)

1
n ⩾ (1 + o(1)) γP ḡḡ/(2n) = (1 + o(1)) γP exp( ḡ log ḡ

2n
) ,

and so
lim sup
n→∞

(|F ḡ
n|/n!)

1
n > γP .

Hence, if Fg has growth constant γP then g(n) = o(n/ log n), as required.

5.4. Proof of Corollary 2.4

Since Ah
n ⊇ Fh

n we need only to consider Fh
n . Let c0 ⩾ 1. Let c1 be the constant in Theorem 2.2

(b) : then for all 0 ⩽ h ⩽ c0n

|Fh
n |/n! ⩾ cn+h

1 (n2/h)h ⩾ cn+h
1 (h/c20)

h = cn1 (c1/c
2
0)

h hh.

If c1/c02 ⩾ 1 then |Fh
n |/n! ⩾ cn1h

h for all 0 ⩽ h ⩽ c0n, so we may set c = c1. On the other
hand, if c1/c02 < 1, then for all 0 ⩽ h ⩽ c0n

|Fh
n |/n! ⩾ cn1 (c1/c

2
0)

c0n hh = (c1 (c1/c
2
0)

c0)n hh ,

so we may set c = c1(c1/c
2
0)

c0 . We have now shown that |Fh
n |/n! ⩾ cnhh for all 0 ⩽ h ⩽ c0n.

Finally we have ∣∣∣Ãh
n

∣∣∣ ⩾ ∣∣∣F̃h
n

∣∣∣ ⩾ ∣∣Fh
n

∣∣ /n! ⩾ cn hh ,

and the proof is complete.
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5.5. Proofs of Theorem 2.5 (a) and (b)

In the proofs here we use results that give upper bounds on the Euler genus of most graphs with a
given number of edges [AG95, DKK20, RT95]. Some of these results are stated for the binomial
(Erdős-Rényi) random graph G(n, p) with given edge probability p = p(n), but they can easily
be applied to the case of a given number m = m(n) of edges, as pointed out in [AG95, DKK20].

Proof of Theorem 2.5 (a). Let j ∈ N be fixed, let n1+1/(j+1) ≪ g(n) ≪ n1+1/j , and let ε > 0.
Let m = m(n) = ⌊(1 − 1

2
ε) j+2

j
(g(n) − 1)⌋. Then n1+1/(j+1) ≪ m ≪ n1+1/j , and

so n−j/(j+1) ≪ m/
(
n
2

)
≪ n−(j−1)/j . Recall that the Euler genus of an orientable surface is

twice the genus. It follows from [RT95] (see (1.2) in [RT95] for the G(n, p) version, and note
that it refers to genus not Euler genus) that almost every graph on n vertices with m edges can
be embedded in an orientable surface of Euler genus at most

(1 + 1
2
ε) 1

2
j

j+2
m

(n2)
n2 ⩽ (1− 1

4
ε2) n

n−1
(g(n)− 1) ⩽ g(n)− 1

forn sufficiently large. From Observation 3.1 it then follows that almost every graph onn vertices
withm edges can be embedded in a non-orientable surface of Euler genus at most g(n). So, for n
sufficiently large, at least half of the graphs on n vertices with m edges lie in the class Ag

n. Hence

|Ag
n| ⩾ 1

2

((n
2

)
m

)
⩾ 1

2

(
n(n− 1)

2m

)m

⩾ cg(n)(n2/g(n))(1−
1
2
ε) j+2

j
g(n) for some constant c > 0

⩾ (n2/g(n))(1−ε) j+2
j

g(n) for n sufficiently large ,

as required.

Proof of Theorem 2.5 (b). We first prove equation (2.3). Let g(n) ≫ n3/2 and let

ḡ(n) = min{g(n), ⌊ 1
12
n2⌋}. Denote

((n
2

)
j

)
by x(n, j) for each integer j ⩾ 0. To prove the

lower bound in (2.3) we consider two overlapping cases.
Assume first that n3/2 ≪ g(n) ≪ n2 (so ḡ(n) = g(n) for n sufficiently large). Then by the

case j = 1 of part (a) we have |Ag
n| ⩾ (n2/g)(1+o(1))3g. But

x(n, 3g) ⩽

(
en2

6g

)3g

=

(
n2

g

)(1+o(1))3g

(5.3)

so |Ag
n| ⩾ x(n, 3ḡ)(1+o(1)), which is the required lower bound.

Now assume that g(n) ≫ (log n)2 n3/2. Let 0 < ε < 1 and let m = m(n) ∼ (1− ε) 3 ḡ(n).
Then p = m/

(
n
2

)
satisfies p2(1 − p2) ≫ (log n)4/n; and hence it follows from [AG95, The-

orem 4.5] that almost every graph on n vertices with m edges embeds in an orientable and a
non-orientable surface of Euler genus at most (1 + ε) 1

3
m ⩽ g(n). Thus

|Ag
n| ⩾ (1 + o(1))x(n,m) . (5.4)
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Let m1 = 3(n + g(n) − 2), let m2 = min{m1,
1
2

(
n
2

)
}, let m3 = 3(n + ḡ(n)), and note that

m2 ⩽ m3. Since every graph in Ag
n has at most m1 edges,

|Ag
n| ⩽

∑
j⩽m1

x(n, j) ⩽ 2
∑
j⩽m2

x(n, j) ⩽ 2
∑
j⩽m3

x(n, j) . (5.5)

The numbers x(n, j) are increasing for j = 0, 1, . . . , 3ḡ (since 3ḡ ⩽ 1
2

(
n
2

)
). Also, for each

0 ⩽ j ⩽
(
n
2

)
x(n, j + 1)

x(n, j)
=

(
n
2

)
− j

j + 1
⩽

n(n− 1)

2j
and x(n, j) ⩾

(
n(n− 1)

2j

)j

. (5.6)

Thus
x(n, 3ḡ)

x(n,m)
⩽

(
n(n− 1)

2m

)3ḡ−m

⩽ x(n,m)
3ḡ−m
m = x(n,m)

ε
1−ε

+o(1)

and so
x(n, 3ḡ) ⩽ x(n,m)

1+
ε

1−ε
+o(1)

.

Hence by (5.4) we have
|Ag

n| ⩾ x(n, 3ḡ)1+o(1) . (5.7)

This completes the proof of the lower bound in (2.3).
Now we prove the upper bound in (2.3). Consider the numbers x(n, j) for j = 3ḡ+1, . . . ,m3.

For each such j, by (5.6)

x(n, j)

x(n, 3ḡ)
⩽

(
n(n− 1)

6ḡ

)j−3ḡ

⩽

(
n(n− 1)

6ḡ

)3n

⩽ x(n, 3ḡ)n/ḡ .

Thus
m3∑

j=3ḡ+1

x(n, j) ⩽ 3n · x(n, 3ḡ)1+n/ḡ = x(n, 3ḡ)1+O(n/ḡ) .

Also by monotonicity

3ḡ∑
j=0

x(n, j) ⩽ (3ḡ + 1) · x(n, 3ḡ) = x(n, 3ḡ)1+o(1) .

Hence by the inequality (5.5)

|Ag
n| ⩽ 2

m3∑
j=0

x(n, j) ⩽ x(n, 3ḡ)1+o(1) ,

and we have proved the upper bound in (2.3). This completes the proof of equation (2.3), namely
that |Ag

n| = x(n, 3ḡ)1+o(1).
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Finally we deduce equations (2.4) and (2.5) from equation (2.3). Note first that if
g(n) ⩽ 1

3

(
n
2

)
then as in (5.3) and (5.6)(

n(n− 1)

6g

)3g

⩽ x(n, 3g) ⩽

(
e n2

6g

)3g

,

and so if g(n) ≪ n2 then x(n, 3ḡ) = (n
2

g
)(1+o(1)) 3g. This gives equation (2.4). Now suppose that

g(n) ∼ cn2 for some 0 < c ⩽ 1
12

. Then 3g ∼ 6c
(
n
2

)
, so x(n, 3ḡ) = x(n, 3g) = 2(1+o(1))H(6c)

(
n
2

)
(see for example [CT06, Example 11.1.3]), and equation (2.5) follows.

6. Upper bounds on |Ag
n|, proof of Theorem 2.6

In this section we shall prove an upper bound on numbers of maps (Theorem 6.1), from which we
shall deduce Theorem 2.6. We call a cellularly embedded connected pseudograph, considered
as an unlabelled object, a map (where in general we do not specify a root). We also deduce
Corollary 2.7 in Section 6.4.

Theorem 6.1. There are constants c and n0 such that, for all n ⩾ n0 and all h ⩾ 0, the number
of n-vertex simple maps in a surface of Euler genus h is at most cn+h hh.

The proof will show that we may take c = 2.3 × 105; and if we consider only orientable
surfaces, we may take c = 624. This result will quickly give Theorem 2.6, using one preliminary
lemma. A set A of graphs is called bridge-addable when for each graph G in A, if u and v are
vertices in distinct components ofG then the graph obtained fromG by adding an edge between u
and v is also in A.

Lemma 6.2 ([McD20]). LetA be a bridge-addable set of graphs and let C be the set of connected
graphs in A. Then

|C̃n| ⩾ |Ãn| / 2n for each n ∈ N .

(Stronger results are known for labelled graphs and conjectured to hold for unlabelled graphs,
see [McD20].)

Proof of Theorem 2.6 (using Theorem 6.1). Let c ⩾ 2 and n0 be as in Theorem 6.1, and
let n ⩾ n0. The number of connected unlabelled n-vertex graphs embeddable in a surface of
Euler genus at most h is at most the total number of n-vertex simple maps in a surface of Euler
genus k for 0 ⩽ k ⩽ h, see Section 3.2. By Theorem 6.1 this total is at most

h∑
k=0

cn+kkk ⩽ cnhh

h∑
k=0

ck ⩽ 2 cn+hhh .

But the set of n-vertex graphs embeddable in a surface of Euler genus at most h is bridge-
addable, so by Lemma 6.2 the number of unlabelled n-vertex graphs embeddable in a surface
of Euler genus at most h is at most 2n times the corresponding number of connected graphs,
so |Ẽh

n | ⩽ 4n cn+hhh, which yields Theorem 2.6.
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To prove Theorem 6.1 we shall first show how to upper bound numbers of maps by numbers
of unicellular maps. In the orientable case, there is a formula for the number of unicellular
maps rooted at an oriented edge, and we can complete the proof quickly, in Section 6.2. In the
non-orientable case, we know only formulae (depending on parity) for numbers of ‘precubic’
unicellular maps (with each vertex degree either 1 or 3, and a vertex of degree 1 specified as
root), so we have to work harder, in Section 6.3. The upper bound for the orientable case follows
from that for the non-orientable case (using Observation 3.1), but it is useful to prove the bound
for the orientable case as an introduction to the other harder case (and we can give a better value
for the constant c.)

6.1. From general maps to unicellular maps

Given a map M on a surface and a face F of M , a chord of F in M is a line between two vertices
on the boundary of F which apart from its two end points is embedded in the interior of F . If
a map has more than one face then it has an edge which is in two distinct facial walks. Let us
spell out how, when we start with a map which may have internally disjoint chords, and an edge
which is in two distinct facial walks, we can move the edge from being part of the map to being
a new chord.

Let the connected graph G and the graph H have the same vertex set and disjoint edge sets.
Let G be cellularly embedded in a surface S, forming the map M , with the edges of H (if any)
embedded as internally disjoint chords of M . Let the edge e = uv be in two distinct facial walks
of M , namely F1 oriented to follow uv and F2 oriented to follow vu. (We use the same name
for a face and the corresponding facial walk.) Let F ′

1 be the v − u walk obtained from F1 by
removing uv, similarly let F ′

2 be the u− v walk obtained from F2 by removing vu, and let F be
the closed walk obtained by following F ′

1 then F ′
2. If we delete the edge e from G to form G\e

and add e to H to form H + e, then G\e is connected, deleting e from M gives the map M\e in
the same surface S, and M\e has the same faces as M except that F1 and F2 are replaced by F
(and thus M\e has one less face than M ). Also, the edges of H + e are embedded as internally
disjoint chords of M\e, with e and any chords of F1 or F2 in M embedded as chords of the new
face F of M\e. Applying this procedure repeatedly gives the following lemma.

Lemma 6.3. Let the connected graph G be cellularly embedded in a surface S, forming the
simple map M , and assume that M has f ⩾ 2 faces. Then there is a set X of f − 1 edges of G
such that G\X is connected, M\X is a simple unicellular map in the original surface S, and
the edges in X are embedded as internally disjoint chords in the unique face of M\X .

Let Map(n, e, S) be the set of n-vertex e-edge simple maps in the surface S (considered
up to isomorphism). Similarly, let Map(n, S) be the set of n-vertex simple maps in S, and
let UMap(n, S) be the set of n-vertex simple unicellular maps in S. For 0 ⩽ j ⩽ k − 3,
let D(k, j) be the set of dissections of a k-gon on vertex set [k] with k + j edges. If M is a
map and F is a facial walk in M of length t, the corresponding polygon is the simple convex
polygon P in the plane obtained by creating a separate copy of a vertex v for each visit of the
walk to v (and similarly a second copy of an edge if it is used twice), so P has t vertices and t
edges. Internally disjoint chords of the face F in M form a dissection of the polygon P .
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In Lemma 6.3, if S has Euler genus h, and M has n vertices and e edges, then by Euler’s
formula we have f − 1 = e − n − h + 1 and the unicellular map has n + h − 1 edges. Thus
Lemma 6.3 yields the next lemma.

Lemma 6.4. For each h ⩾ 0 and surface S of Euler genus h, and each n, e ∈ N

|Map(n, e, S)| ⩽ |UMap(n, S)| · |D(2(n+h−1), e−n−h+1)|.

By [FN99], for all sufficiently large k, there are at most (2+ 3
√
2)k dissections of a polygon

with vertex set [k]. Thus from Lemma 6.4 we obtain the following bound on numbers of maps
in terms of numbers of unicellular maps.

Lemma 6.5. For n sufficiently large, for each h ⩾ 0 and surface S of Euler genus h,

|Map(n, S)| ⩽ |UMap(n, S)| · (2 + 3
√
2)2n+2h−2.

6.2. Orientable case: unicellular maps and proof of Theorem 6.1

In this section we complete the proof of the orientable case of Theorem 6.1. We need just one
more lemma.

Lemma 6.6. For n ⩾ 1 and even h ⩾ 0, the number f̃1(n, h) of unlabelled unicellular n-vertex
maps in the orientable surface Sh/2 is at most 24n+3h hh.

Proof. Let f̃ (r)
1 (n, h) be the number of unlabelled rooted unicellular n-vertex maps in the ori-

entable surface Sh/2, where the root is an oriented edge. By [WL72] we have the exact formula

f̃
(r)
1 (n, h) =

(2n+ 2h− 2)!

2h n! (n+ h− 1)!

∑
i1+···+in=h
i1,...,in⩾0

n∏
j=1

1

2ij + 1
.

Each term in the sum in the above equation is at most one, and so the sum is at most∑
i1+···+in=h
i1,...,in⩾0

1 =

(
n− 1 + h

n− 1

)
⩽

(
n+ h

n

)
,

and of course f̃1(n, h) ⩽ f̃
(r)
1 (n, h). Hence

f̃1(n, h) ⩽
(2n+ 2h− 2)!

2h n! (n+ h− 1)!
·
(
n+ h

n

)
= 2−h

(
2n+ 2h− 2

n+ h− 1

)
(n+ h− 1)!

n!

(
n+ h

n

)
⩽ 2−h 22n+2h−2

(
n+ h

n

)2

h!

⩽ 22n+h 22n+2h h! ⩽ 24n+3h hh

as required.
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We may now complete the proof of the orientable case of Theorem 6.1. By Lemmas 6.5
and 6.6, there is an n0 such that, for all n ⩾ n0 and even h ⩾ 0, the number of n-vertex simple
maps in Sh/2 is at most

(2 + 3
√
2)2n+2h−2 f̃1(n, h) ⩽ cn+h

0 hh,

where c0 = 24 (2 + 3
√
2)2 ≈ 623.5.

6.3. Non-orientable case: unicellular maps and proof of Theorem 6.1

In the orientable case, in the proof of Lemma 6.6 we started from a formula for the number
f̃
(r)
1 (n, h) of n-vertex edge-rooted unicellular maps in Sh/2. We have to work harder to com-

plete the proof of Theorem 6.1 for non-orientable surfaces. For convenience we first consider
even values of the Euler genus h: there is a formula for odd h like that used in the proof of
inequality (6.1) for even h, but we do not need to use it.

Following [BC11], we say that a map is precubic if each vertex degree is 1 or 3, and the map is
rooted at a vertex of degree 1. For integers n ⩾ 1 and h ⩾ 0, we make the following definitions.
Recall that UMap(n,Nh) is the set of n-vertex unicellular maps in Nh (where these maps are
not rooted and not necessarily simple). Let UMap(n,Nh, ℓ) be the set of maps in UMap(n,Nh)
with exactly ℓ vertices of degree 2. LetPUMap(m,Nh) be the set ofm-edge unicellular precubic
maps in Nh. Finally, let PUMap(⩽ m,Nh) be the set of unicellular precubic maps in Nh with
at most m edges. Lemma 6.7 gives an upper bound on |UMap(n,Nh)| like that in Lemma 6.6
for the orientable case.

Lemma 6.7. For each n ⩾ 1 and even h ⩾ 0,

|UMap(n,Nh)| ⩽ cn+h hh

where c = 27e3/2 ≈ 574.

To prove this lemma, we shall prove the following three inequalities:

|PUMap(⩽ m,Nh)| ⩽ 2m (3h)−h/2m3h/2 for each m; (6.1)

|UMap(n,Nh, 0)| ⩽ |PUMap(⩽ 3(n+h),Nh)| · 23(n+h) ; (6.2)

and
|UMap(n,Nh, ℓ)| ⩽ |UMap(n−ℓ,Nh, 0)| ·

(
n+h

ℓ

)
for each ℓ < n. (6.3)

Suppose temporarily that we have proved (6.1), (6.2) and (6.3). Then we can use these inequal-
ities in reverse order to complete the proof of the lemma. For, by (6.3),

|UMap(n,Nh)| =
∑
ℓ

|UMap(n,Nh, ℓ)| ⩽
∑
ℓ

|UMap(n− ℓ,Nh, 0)| ·
(
n+ h

ℓ

)
.

But, by (6.2), for each ℓ < n

|UMap(n− ℓ,Nh, 0)| ⩽ |PUMap(⩽ 3(n+ h),Nh)| · 23(n+h)
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(where the right hand side does not depend on ℓ). Hence

|UMap(n,Nh)| ⩽
∑
ℓ

|PUMap(⩽ 3(n+ h),Nh)| · 23(n+h) ·
(
n+ h

ℓ

)
⩽ 24(n+h) · |PUMap(⩽ 3(n+ h),Nh)|
⩽ 24(n+h) · 23(n+h) (3h)−h/2 (3(n+ h))3h/2 by (6.1)
= 27(n+h) 3h h−h/2 · h3h/2(1 + n/h)3h/2

⩽ (27e3/2)n (273)h hh,

where the last step follows since 1 + x ⩽ ex and so (1 + n/h)3h/2 ⩽ e3n/2. Thus once we have
proven (6.1), (6.2) and (6.3) we will have proven Lemma 6.7.

Proof of inequality (6.1). It follows from Euler’s formula (3.3) that each precubic unicellular
map in Nh has at least 3h− 1 edges, and (since h is even) each map in PUMap(m,Nh) has an
odd number of edges, see Lemma 5 of [BC11]. Write h as 2j. By Corollary 8 of [BC11], the
number of precubic unicellular maps in Nh with m = 2k + 1 edges, where m ⩾ 3h − 1 (or
equivalently k ⩾ 3j − 1), satisfies

|PUMap(m,Nh)| = cj ·
(2k)!

6j k! (k + 1− 3j)!

where

cj = 3 · 23j−2 j!

(2j)!

j−1∑
l=0

(
2l

l

)
16−l.

But
j!

(2j)!
=

1

(2j)(j)
⩽ j−j,

and
j−1∑
l=0

(
2l

l

)
16−l ⩽

∑
l⩾0

22l16−l =
∑
l⩾0

4−l = 4
3
,

so cj ⩽ 23jj−j . Also
(2k)!

k! (k + 1− 3j)!
=

(
2k

k

)
k!

(k + 1− 3j)!
⩽ 22k k3j.

Thus

|PUMap(m,Nh)| ⩽ 23jj−j · 6−j 22k k3j ⩽ ( 8
6j
)j 2m−1 (m

2
)3j

= ( 1
6j
)j 2m−1m3j = (3h)−h/2 2m−1m3h/2.

Hence

|PUMap(⩽ m,Nh)| ⩽ (3h)−h/2m3h/2
∑
m′⩽m

2m
′−1

⩽ 2m(3h)−h/2m3h/2,

as required.
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Proof of inequality (6.2). Consider a unicellular n-vertex map M in Nh (which necessarily
has e(M) = n+h−1 edges) which has no vertices of degree 2. Given a vertex v of degree
at least 4, we may form a new map in the surface by splitting v into two vertices, v and v′, of
degree at least 3, as in Figure 6.1.

Figure 6.1: Splitting a vertex v of degree greater than three.

We can split each vertex of degree greater than three until no such vertices are left. In every
splitting step we add a new vertex and a new edge. To obtain vertices all of degree three from
a vertex of degree d(v) > 3 we need to make exactly d(v) − 3 vertex splits. In total, summing
over all vertices, after making∑

v∈V (G)
d(v)>3

(d(v)− 3) ⩽
∑

v∈V (G)

d(v) = 2 e(M)

splits we will have turned M into a unicellular map with each vertex degree 1 or 3, and with at
most 3e(M) = 3(n+h−1) edges. Finally, pick an edge, insert a vertex u of degree 2 in this edge,
add a leaf vertex adjacent to u, and make this vertex the root. This last step adds two edges, so
from M we have now constructed a precubic unicellular map M ′ with less than 3(n+ h) edges.

By deleting the root vertex and suppressing the resulting vertex of degree 2, and then con-
tracting the new edges in M ′, we recover the map M . Thus the number of unicellular n-vertex
maps in Nh without vertices of degree 2 is at most

(
3(n+h)
n+h

)
⩽ 23(n+h) times the number of

unicellular precubic maps in Nh with at most 3(n+ h) edges, as required.

Proof of inequality (6.3). Each unicellular n-vertex map inNh with ℓ vertices of degree 2 can be
obtained from a unicellular map in Nh with n1 = n− ℓ vertices, and thus with n1+h−1 edges,
which has no vertices of degree 2, by inserting ℓ vertices of degree 2 into edges. The number of
ways of doing the inserting is at most the number of ways of forming a list of k = n1 + h − 1
non-negative integers summing to ℓ, which is(

(k − 1) + ℓ

k − 1

)
=

(
n+h−2

ℓ

)
⩽

(
n+ h

ℓ

)
.

Thus the number of unicellular n-vertex maps in Nh with ℓ vertices of degree 2 is at most
(
n+h
ℓ

)
times the number of unicellular n1-vertex maps in Nh without vertices of degree 2, as required.
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We have now completed the proof of Lemma 6.7. Next let us handle the case when h may
be odd, as a corollary of Lemma 6.7.

Lemma 6.8. There is an n0 such that, for each n ⩾ n0 and h ⩾ 0,

|UMap(n,Nh)| ⩽ cn+hhh

where c = 27e3/2 + 1 ≈ 575.

Proof. By Lemma 6.7, we may assume that h is odd. Suppose we are given a unicellular map M
in Nh with n vertices. By picking an edge, inserting a new vertex u to subdivide the edge,
and then attaching to u a loop with signature -1, we may form a unicellular map M ′ in Nh+1

with n + 1 vertices. From M ′ we can recover M if we guess the added vertex u. Thus, by
Lemma 6.7, letting c0 be the constant there,

|UMap(n,Nh)| ⩽ (n+ 1) |UMap(n+1,Nh+1)| ⩽ (n+ 1) cn+h+1
0 (h+ 1)h+1;

and the lemma follows since c > c0.

We may now complete the proof of the non-orientable case of Theorem 6.1, much as in
the orientable case. Let n0 and c be as in Lemma 6.8. Then by Lemmas 6.5 and 6.8, for
all n ⩾ n0 and h ⩾ 0, the number of n-vertex simple maps in Nh is at most cn+h

0 hh,
where c0 = c (2 + 3

√
2)2 ≈ 2.24× 105.

We have now completed the proofs of both the orientable and the non-orientable cases of
Theorem 6.1 on maps, which as we saw yields Theorem 2.6 on graphs.

Now that we have proved Theorem 2.6 (as well as all the earlier results in Section 2.1 apart
from Theorem 2.1) we can prove Corollary 2.7.

6.4. Proof of Corollary 2.7

Recall that g(n) = n1+η+o(1) with g(n) ≫ n1+η. Suppose first that η = 0, so g(n) = n1+o(1)

with g(n) ≫ n. Then (writing g for g(n) as usual) we have (n2/g)g = g(1+o(1))g, so by Theo-
rem 2.2 (b) for some constant c > 0

|Ag
n| ⩾ cn+g(n2/g)g n! = g(1+o(1))g .

Also, by Theorem 2.6 we have |Ag
n| ⩽ g(1+o(1))g. Thus |Ag

n| = g(1+o(1))g, as required.
Now suppose that η = 1

j+1
for some j ∈ N. Then

log(n2/g) = (1 + o(1)) j
j+1

log n = (1 + o(1)) j
j+2

log g ,

so by Theorem 2.5 (a)

|Ag
n| ⩾ (n2/g)

(1+o(1))
j+2
j

g
= g(1+o(1))g .

Also as before, by Theorem 2.6 we have |Ag
n| ⩽ g(1+o(1))g. Thus again we have |Ag

n| = g(1+o(1))g,
which completes the proof.
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7. Estimating |Ag
n|, proof of Theorem 2.1

From the bounds we have already obtained we can very quickly prove part (b) of Theorem 2.1.
The great bulk of this section is devoted to proving part (a).

7.1. Proof of Theorem 2.1 (b)

Let g(n) = O(n). By Corollary 2.4 there are constants c1 > 0 and n1 such that for n ⩾ n1

|Ag
n| ⩾ cn1g

gn! and thus |Ãg
n| ⩾ cn1g

g.

By Theorem 2.6 there is a constant c2 such that for all n ⩾ 1

|Ãg
n| ⩽ cn2g

g and thus |Ag
n| ⩽ cn2g

gn!.

It follows that |Ag
n| = 2Θ(n)ggn! and |Ãg

n| = 2Θ(n)gg, as required.

7.2. Proof of Theorem 2.1 (a) (on growth constant γP)

In this subsection we will prove Theorem 2.1 (a), which says essentially that when
g(n) = o

(
n/ log3 n

)
the class Eg is not too much larger than P . We use the notation Rn ∈u Ag

to mean that the random graph Rn is sampled uniformly from the graphs in Ag
n. For most of the

proof we assume that g is non-decreasing. We first show that for ‘most’ integers n, the random
graph Rn ∈u Ag

n whp has linearly many leaves, and deduce that for these integers n whp Rn has
small maximum degree. Then we can use the following ‘planarising’ results, [DV95, Theorem 4]
in the orientable case and [DV95, Theorem 5] in the non-orientable case. Given a graph G, a
planarising edge-set is a set of edges such that deleting these edges fromG leaves a planar graph.

Lemma 7.1. [DV95] For all n ⩾ 2 and h ⩾ 0, every connected graph in Eh
n with maximum

degree at most ∆ has a planarising edge-set of size at most 4
√

h(n+ h− 2)∆.

We next give a sequence of five lemmas which yield a bound on the maximum degree,
and allow us to use Lemma 7.1 to prepare for the final steps in the proof of Theorem 2.1(a).
In these lemmas we assume that we are given a non-decreasing genus function g satisfying
g(n) = O(n/ log n), and we are given a constant 0 < ε < 1. We start by showing that for
‘most’ positive integers n, the set Ag

n+1 is not much bigger than Ag
n. Given 0 < δ < 1 we say

that a set I ⊆ N has lower (asymptotic) density at least δ if for all sufficiently large n ∈ N we
have |I ∩ [n]| ⩾ δn.

Lemma 7.2. Let g be non-decreasing and suppose that g(n) = O(n/ log n); and let 0 < ε < 1.
Then there exists a constant c1 = c1(g, ε) such that the set I∗(g, ε) of integers n ⩾ 1 for which∣∣Ag

n+1

∣∣ ⩽ c1 (n+ 1) |Ag
n|

has lower density at least 1− ε.
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Proof. Note that if g(n) ⩽ cn/ log n then g(n)g(n) ⩽ e(1+o(1))cn. Hence by Theorem 2.6 there
is a constant c0 > 1 such that

|Ag
n| ⩽ cn0 n! for all n ⩾ 1. (7.1)

We shall see that we may take c1 = c
1/ε
0 . Let n ∈ N, and suppose for a contradiction that there

are more than εn integers m ∈ [n] such that∣∣Ag
m+1

∣∣ ⩾ c1 (m+ 1) |Ag
m| .

By inequality (4.4), for all m ∈ N we have (since g(m+ 1) ⩾ g(m))∣∣Ag
m+1

∣∣ ⩾ ∣∣∣Ag(m)
m+1

∣∣∣ ⩾ 2m |Ag
m| ⩾ (m+ 1) |Ag

m| .

Hence
|Ag

n| > cεn1 n! = cn0 n!

contradicting (7.1).

From now on we shall let I∗ = I∗(g, ε) be as in the last lemma.

Lemma 7.3. Let g be non-decreasing and suppose that g(n) = O(n/ log n); and let 0<ε, p<1.
Let I∗ = I∗(g, ε) be as in Lemma 7.2. Let Rn ∈u Ag. Then there exist α > 0 and n0 ∈ N such
that for all n ⩾ n0 with n ∈ I∗

p̃(n) := P(Rn has at least αn leaves) ⩾ p .

Proof. Let α = (1−p)
2c1

, where c1 is as in Lemma 7.2. To prove the lemma we will show
that p̃(n) ⩾ p for sufficiently large n ∈ I∗. We do this by constructing from each graph G ∈ Ag

n

with few leaves many graphs G′ ∈ Ag
n+1, with little double counting.

Let n ∈ I∗ and let G ∈ Ag
n have less than αn leaves. There are exactly (1− p̃(n)) |Ag

n| such
graphs. To construct a graph G′ ∈ Ag

n+1 from G, we first pick one of the vertices in [n + 1], v
say. There are n+1 choices for this. We now put a copy Ĝ of G on the vertex set [n+1]\{v} in
such a way that the order-preserving bijection from [n] to [n+1]\{v} is an isomorphism from G

to Ĝ. We form G′ by adding the vertex v to Ĝ as a leaf incident to some vertex y ∈ [n+1]\{v}.
Since there are n choices for y, in total we make (1 − p̃(n)) |Ag

n| (n + 1)n constructions of
graphs G′ ∈ Ag

n+1.
How often is each graph G′ ∈ Ag

n+1 constructed? To get back to G from G′, we just need to
find the vertex x (which is a leaf in G′), delete it, and then move the vertex set from [n+1]\{x}
to [n] using the order-preserving bijection. How many choices for x are there? There are at
most ⌈αn⌉ leaves in G′, so each graph G′ is constructed at most ⌈αn⌉ times. We thus have∣∣Ag

n+1

∣∣ ⩾ |Ag
n| (1− p̃(n))

(n+ 1)n

⌈αn⌉
.

But
∣∣Ag

n+1

∣∣ ⩽ c1(n+ 1) |Ag
n| since n ∈ I∗, so we obtain

|Ag
n| (1− p̃(n))

(n+ 1)n

⌈αn⌉
⩽

∣∣Ag
n+1

∣∣ ⩽ c1(n+ 1) |Ag
n| .
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Hence
1− p̃(n) ⩽ ⌈αn⌉

n
c1 = αc1 +O( 1

n
) = 1−p

2
+O( 1

n
),

and so
p̃(n) ⩾ 1+p

2
+O( 1

n
) ⩾ p

for n sufficiently large, as required.

We have now seen that, as long as g(n) = O(n/ log n) and g is non-decreasing, for n ∈ I∗

the random graph Rn ∈u Ag ‘often’ has linearly many leaves. We now use this result to show
that ‘often’ the maximum degree ∆(Rn) is small. In order to be able to control the maximum
degree ∆(Rn) when n ∈ I∗ we shall use two further preliminary lemmas, Lemmas 7.4 and 7.5.
Both the lemmas are generalisations of results in [MR08]. Lemma 7.4 concerns the maximum
number of leaves adjacent to any vertex. We spell out a proof here for completeness, though
the proof closely follows the proof of Lemma 2.2 in [MR08]. See Theorem 4.1 in [MR08] for a
related sharper and more general result.

Lemma 7.4. Let G be a class of graphs which is closed under detaching and re-attaching any
leaf, and let Rn ∈u G. Then whp each vertex in Rn is adjacent to at most 2 log n/ log log n
leaves.

Proof. Given integers n > k ⩾ 1, let B = B(n, k) be the set of graphs G ∈ Gn such that vertex 1
is adjacent to at least k leaves. We claim that

P(Rn ∈ B) ⩽ 1/k! . (7.2)

Let us prove the claim (7.2). For each graph G ∈ B, consider the k least pendant vertices
u1, . . . , uk adjacent to vertex 1, remove the edges incident with these vertices ui, and arbitrarily
re-attach each vertex ui to one vertex of G other than ui+1, . . . , uk. Then each graph G′ con-
structed is in Gn, and the number of constructions is at least |B| (n−1)(k). (Recall that (x)(k)
denotes the ‘falling factorial’ x(x− 1) · · · (x− k + 1).)

How often can each graph G′ ∈ Gn be constructed? We may guess the set of k vertices ui

and then we know the original graph G. Thus each graph G′ is constructed at most
(
n−1
k

)
times.

Hence
|Gn| ⩾ |B| (n−1)(k)/

(
n−1
k

)
= |B| k!

and so
P(Rn ∈ B) = |B|/|Gn| ⩽ 1/k!

as required for (7.2).
Now we may complete the proof of the lemma. Let k = k(n) = ⌈2 log n/ log log n⌉. Then

by (7.2) the probability that Rn has some vertex adjacent to at least k leaves is at most

n/k! ⩽ n (e/k)k = n e−(2+o(1)) logn = n−1+o(1) .

Hence whp each vertex in Rn is adjacent to at most 2 log n/ log log n leaves, as required.
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Let S be the set of graphs G such that if G has n vertices then each vertex is adjacent to
at most 2 log n/ log log n leaves (where S is for small number of leaves). Since Ag

n is closed
under detaching a leaf and re-attaching it, by Lemma 7.4 Rn ∈u Ag satisfies Rn ∈ S whp. Now,
given 0 < α < 1, let Lα be the set of graphs G which have at least α v(G) leaves. The next
lemma concerns both S and Lα.

Lemma 7.5. Let 0 < α < 1, let b = b(n) = ⌈(8/α) log n⌉, and let

B = {G ∈ Lα ∩ S : ∆(G) ⩾ b(n) where n = v(G)}.

There is a function η(n) = o(1) as n → ∞ such that the following holds: for all n ∈ N and all
surfaces S, the random graph RS

n ∈u ES satisfies P(RS
n ∈ B) ⩽ η(n).

(Observe that η(n) does not depend on the surface S.) The following proof is adapted from
the proof of Theorem 1.2 in [MR08].

Proof. For each surface S let BS = B ∩ ES . The idea of the proof is similar to some earlier
proofs: from each graph in BS

n we can build many graphs in ES
n with little double counting, so

we cannot start with many graphs in BS
n . Let a = a(n) = ⌊2 log n⌋. Let η(n) = n/2a−1,

so η(n) = o(1). Let n0 be sufficiently large that for each n ⩾ n0 we have a ⩾ 3 and
αn− 2 log n/ log log n− a ⩾ 1

2
αn. Assume that n ⩾ n0, and let S be any surface.

Here is the construction. Let G ∈ BS
n , and fix an embedding of G in S. Let v be a vertex

with degree at least b. The embedding gives a clockwise order on the neighbours of v: list them
in this order as v1, v2, . . . , vd where d ⩾ b is the degree of v and where vd is the largest of
the numbers v1, . . . , vd. Choose an arbitrary ordered list of a distinct pendant vertices with none
adjacent to v, say u1, . . . , ua. Finally choose an arbitrary subset of a of the d ⩾ b > a vertices vi,
which we may write as vi1 , . . . , via where i1 < i2 < · · · < ia.

Now for the graph part. Delete each edge incident to v, and each edge incident to one of the
chosen pendant vertices ui. For each i = 1, . . . , a, join v to ui and join ui to ui+1 (where ua+1

means u1). Thus we have formed a wheel around v. For each j = 1, . . . , a, join uj to each
of vij , vij+1, . . . , vij+1−1 (where ia+1 means i1). This completes the construction. It is easy to
see that each graph G′ constructed is in ES

n .
For each G ∈ Bn, we make at least (αn− 2 log n/ log log n)(a) ⩾ (1

2
αn)a choices for the list

of pendant vertices u1, . . . , ua, and at least
(
b
a

)
⩾

(
b
a

)a choices for the subset of the neighbours
of v. Thus the total number of constructions is at least

|Bn|
(
αn

2
· b
a

)a

⩾ |Bn| (2n)a.

Now consider the double counting. How many times can a given graph G′ ∈ ES
n be con-

structed? Guess the vertex v. Find the largest ‘second neighbour’ of v: this is vd. This de-
termines ua (the unique neighbour of v adjacent to vd). Now guess which of the two common
neighbours of v and ua is u1 (the other is ua−1). Now we know each of u1, u2, . . . , ua. Next guess
the original neighbours of these vertices. This determines the original graph G completely. So
the embedding is determined, and in particular the order v1, . . . , vd of the neighbours of v. But
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for each j = 1, . . . , a − 1 the vertex vij is the earliest vertex in this list adjacent in G′ to uj ,
and via is the earliest vertex in this list which is adjacent in G′ to ua and is also after via−1 in the
cyclic order. Hence we know vi1 , vi2 , . . . , via , and all choices have been determined. Thus G′ is
constructed at most n · 2 · na = 2na+1 times. Hence

|An| ⩾ |Bn|(2n)a/(2na+1)

and so
P[Rn ∈ Bn] = |Bn|/|An| ⩽ n/2a−1 = η(n) ,

which completes the proof of the lemma.

We can now obtain the desired bound on the maximum degree.

Lemma 7.6. Let g be non-decreasing and satisfy g(n) = O(n/ log n); and let 0 < ε < 1.
Let I∗ = I∗(g, ε) be as in Lemma 7.2. Let Rn ∈u Ag. Then there exists 0 < α < 1 such that,
setting b = b(n) = ⌈(8/α) log n⌉ as in Lemma 7.5, for all sufficiently large n in I∗ we have

P(∆(Rn) < b) ⩾ 1
2
. (7.3)

Proof. By Lemma 7.3 with p = 2
3

there exists a constant α > 0 such that for all sufficiently
large n ∈ I∗ we have P(Rn ∈ Lα) ⩾ 2

3
(where Lα

n is the set of graphs G on [n] with at least αn
leaves). Thus by Lemma 7.4

P(Rn ̸∈ Lα ∩ S) ⩽ 1
3
+ o(1).

Hence by Lemma 7.5, for n ∈ I∗

P(∆(Rn) ⩾ b) ⩽ P ((Rn ∈ Lα ∩ S)) ∧ (∆(Rn) ⩾ b)) + P(Rn ̸∈ Lα ∩ S)) ⩽ 1
3
+ o(1) ,

which gives (7.3).

Lemma 7.6 allows us to use the planarising result Lemma 7.1 to upper bound the sizes of the
sets Ag

n, first for n ∈ I∗ in Lemma 7.7 and then for all n in Lemma 7.8 (still assuming that g is
non-decreasing).

Lemma 7.7. Let g be non-decreasing and satisfy g(n) = o
(
n/ log3 n

)
; and let 0 < ε < 1.

Let I∗ = I∗(g, ε) be as in Lemma 7.2. Then as n → ∞ with n in I∗

|Ag
n| ⩽ (1 + o(1))n γn

P n! .

Proof. Assume that n ∈ I∗ and that n is sufficiently large that (7.3) holds, so at least 1
2

of all
graphs in Ag

n have maximum degree at most c2 log n, where α is as in Lemma 7.6 and c2 = 8/α.
Define c3 = 5

√
c2. Let G ∈ Ag

n have ∆(G) ⩽ c2 log n. Then by Lemma 7.1, for n sufficiently
large there exists a set of at most t := c3

√
ng log n edges such that deleting these edges leaves a

planar graph G′. How often is each planar graph G′ constructed? Note the crude bound that for
all integers 2 ⩽ j ⩽ k

j∑
i=0

(
k

i

)
⩽ kj.
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Thus there are at most
t∑

i=0

((n
2

)
i

)
⩽ n2t

choices for which set of at most t edges may be added to G′ to obtain G. Hence each graph G′

is constructed at most n2t times. Since at least half of all graphs in Ag
n have maximum degree at

most c2 log n and t = o(n/ log n) we have

|Ag
n| ⩽ 2n2t |Pn| = (1 + o(1))n |Pn| = (1 + o(1))nγn

P · n!

as required.

We have now found a bound on the size of |Ag
n| for all n in the set I∗; and using this, we next

prove an upper bound on |Ag
n| for all n ∈ N.

Lemma 7.8. Let g be non-decreasing and satisfy g(n) = o(n/ log3 n); and let 0 < ε < 1. Then
as n → ∞ (without any restriction)

|Ag
n| ⩽ (1 + o(1))n γ

(1+ε)n
P n! .

Proof. Now we let I∗ = I∗(g, 1
2
ε), as in Lemma 7.2. By Lemma 7.7, as n → ∞ with n ∈ I∗

|Ag
n| ⩽ (1 + o(1))n γn

P n! .

All that is left to show is that this is also satisfied for all n ̸∈ I∗. To do so, suppose that n ̸∈ I∗.
Since (1

2
ε)(1 + ε)n < εn and the interval [n, (1 + ε)n] contains at least εn integers, there exists

an m ∈ I∗ such that n < m ⩽ (1 + ε)n. Furthermore, recall that by inequalities (4.2) for
all n ⩾ 1 ∣∣Ag

n+1

∣∣ ⩾ 2n |Ag
n| ⩾ (n+ 1) |Ag

n| .

From this, it follows that

|Ag
n| ⩽

1

m(m− 1) · · · (n+ 1)
|Ag

m|

⩽
1

m(m− 1) · · · (n+ 1)
· (1 + o(1))m γm

P m!

= (1 + o(1))n γ
(1+ε)n
P n!

and this completes the proof.

We are at last in a position to complete the proof of Theorem 2.1 (a). Note that we do not
assume that g is non-decreasing.

Proof of Theorem 2.1 (a). Define the genus function function g+ = g+(n) by setting
g+(n) = max{g(1), . . . , g(n)}. Then g+(n) = o(n/ log3 n) and g+ is non-decreasing. Since
|Ag

n| ⩽ |Ag+

n | for each n, by Lemma 7.8 applied to g+

lim sup
n→∞

(|Ag
n|/n!)

1/n ⩽ γP .
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But since also Pn ⊆ Ag
n we have

lim inf
n→∞

(|Ag
n|/n!)

1/n ⩾ lim
n→∞

(|Pn|/n!)1/n = γP ,

which completes the proof.

8. Estimating |Fh
n |

Recall that Fh
n is the set of graphs on [n] such that every cellular embedding is in a surface

with Euler genus at most h. When considering large values of h the separate factor n! in the
bound

∣∣Fh
n

∣∣ ⩾ cn+h (n2/h)h n! given in Theorem 2.2 (b) is not helpful. In this short section we
give an estimate of |Fh

n | valid for all n and all relevant values of h, which immediately yields
the estimate (2.6).

Proposition 8.1. There are constants 0 < c1 < c2 such that, for all n ⩾ 1 and 0 ⩽ h ⩽ n2(
c1n

2

n+h

)n+h

⩽
∣∣Fh

n

∣∣ ⩽ (
c2n

2

n+h

)n+h

.

Proof. Upper bound. Suppose first that n + h ⩽ 1
2

(
n
2

)
. For each graph G in Fh

n we
have e(G) ⩽ h+ n− 1, so

|Fh
n | ⩽

∑
i⩽n+h−1

((n
2

)
i

)
⩽ (n+ h)

( (
n
2

)
n+ h− 1

)

⩽ (n+ h)

(
e n2

2(n+h)

)n+h−1

using n−1
n+h−1

⩽ n
n+h

=
1

e

(n+ h)2

n2 2n+h−1

(
en2

n+h

)n+h

⩽

(
en2

n+h

)n+h

.

Suppose now that n+ h > 1
2

(
n
2

)
and h ⩽ n2. Then

|Fh
n | ⩽ 2(

n
2) ⩽

(
8n2

n+ h

)n+h

since (
8n2

n+ h

)n+h

⩾

(
8n2

n+ n2

)n+h

⩾ 4n+h ⩾ 2(
n
2) .

Taking c2 as 8 completes the proof of the upper bound.

Lower bound. Recall that Ch is the class of connected graphs in Fh. As in the proof of The-
orem 2 (b), for n ⩾ 15 and 0 ⩽ h ⩽ 1

3
n2 we have

∣∣Ch
n

∣∣ ⩾ nn−2

(
n2 − 3n

2 (n+ h)

)h

⩾ n−22n
(

n2 − 3n

2 (n+ h)

)n+h

⩾

(
n2

3 (n+ h)

)n+h

.
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But the final bound here is less than 1 if h > 1
3
n2, so

∣∣Fh
n

∣∣ ⩾ ∣∣Ch
n

∣∣ ⩾ (
n2

3 (n+ h)

)n+h

for n ⩾ 15 and all h ⩾ 0. The lower bound now follows easily: we may set c1 = 1
14

, since
then c1n2

n+h
⩽ c1n ⩽ 1 for all 1 ⩽ n ⩽ 14 and h ⩾ 0.

9. The hereditary graph classes Hered(Ag) and Hered(Fg)

In this section we prove Theorem 2.9, which shows that the radius of convergence ρ(Hered(Fg))
drops to 0 when g(n) ≫ n/ log n; and this also holds for ρ(Hered(Ag)) since
Hered(Fg) ⊆ Hered(Ag). Recall that by (3.5), Hered(Fg) is the class of graphs G such that
for each subset W of vertices we have cr(G[W ]) ⩽ g(|W |). We shall deduce Theorem 2.9
from Lemma 9.1 below, which gives an explicit lower bound on |Hered(Fg)n| for a suitable
genus function g. We also give a corresponding larger explicit lower bound on |Hered(Ag)n| in
Lemma 9.4, though that cannot tell us more about the radius of convergence. Finally we prove
Proposition 2.8, which shows that in some interesting cases Hered(Ag) is much smaller than Ag.
In Section 9.1, we consider ‘certifiably hereditarily embeddable’ graphs.

Recall that, given a class B of graphs, we say that a graph G is hereditarily in B if each
induced subgraph of G is in B; and we call the class of graphs which are hereditarily in B
the hereditary part of B, denoted by Hered(B). Clearly Hered(B) ⊆ B. If for example
the genus function g satisfies g(n) = 0 for n ⩽ 5 and g(6) = 2, and G is the complete
graph K5 plus a leaf, then G ∈ Eg but G ̸∈ Hered(Eg). Of course Fg ⊆ Ag, and
thus Hered(Fg) ⊆ Hered(Ag) (as we noted above). The containment can be strict. We saw
earlier that if g is identically 0 then Ag = P and Fg is the class of forests. It follows that, if g is
identically 0, then Hered(Ag) = P and Hered(Fg) is the class of forests.

Theorem 2.9 will follow quickly from the next lemma, which gives an explicit lower bound
on |Hered(Fg)n| for a suitable genus function g.

Lemma 9.1. Let the genus function g satisfy g(n) → ∞ and g(n)/n → 0 as n → ∞; and
suppose that there is an n0 such that for n ⩾ n0, g(n) is non-decreasing and g(n)/n is non-
increasing. Then

|Hered (Fg)n| ⩾ n! g(1+o(1)) g/2 . (9.1)

We shall prove Lemma 9.1 below, but first let us use it to deduce Theorem 2.9, and then
deduce the results (2.7) and (2.8).

Proof of Theorem 2.9 using Lemma 9.1. Let the function f(n) = max{1, log log n} for n ∈ N.
Further, let g1(n) = min{g(n), n/f(n)} ; and note that g1(n) ⩽ g(n), g1(n) ≫ n/ log n
and g1(n) = o(n). Let g2(n) = min{g1(k) : k ⩾ n} ; and note that g2(n) ⩽ g1(n),
g2(n) ≫ n/ log n and g2(n) is non-decreasing. Let n0 ∈ N be such that g(n) ⩾ 1 for all n ⩾ n0.
Let g3(n) = g2(n) for n < n0, and for n ⩾ n0 let g3(n) = n min{g2(k)/k : n0 ⩽ k ⩽ n} . Note
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that g3(n) ⩽ g2(n), g3(n) ≫ n/ log n and g3(n)/n is non-increasing for n ⩾ n0. Also g3(n) is
non-decreasing for n ⩾ n0, since g2(n+ 1) ⩾ g2(n) ⩾ g3(n) and so

g3(n+1) = min{n+1
n
g3(n), g2(n+1)} ⩾ g3(n) .

It follows that g3(n) ⩽ g(n), g3(n) ≫ n/ log n and g3 satisfies the conditions in Lemma 9.1.
Hence, by Lemma 9.1 applied to g3,

|Hered (Fg)n| ⩾ |Hered (Fg3)n| ⩾ n! g
(1+o(1)) g3/2
3 ;

and so
(|Hered(Fg)n|/n!)1/n → ∞ as n → ∞ ,

as required.

Let us spell out the proofs of the results (2.7) and (2.8) which are presented immediately after
Theorem 2.9. By Theorem 2.9 and the result that ρ(Ag) > 0 if g(n) = O(n/ log n) (which is
part of (2.1)) we immediately obtain (2.7). In the unlabelled case, the first part of (2.8) follows
directly from the first part of (2.2), and the second part from the second part of (2.7).

Given k = k(n), letZk be the class of graphsG such that if v(G) = n thenG is a subdivision
of a cubic graph H with k vertices, such that in G each of the 3

2
k edges of H is subdivided at

least s times, where s = s(n) = ⌊2(n−k)
3k

⌋. (We could consider cubic pseudographs H weighted
by their compensation factor, but this added complication would not yield a significant improve-
ment.) To prove Lemma 9.1, we will use two further lemmas, namely Lemma 9.2, in which we
show that for a suitable choice of k = k(n) we have Zk ⊆ Hered(Fg); and Lemma 9.3, in which
we show that Zk

n is large.

Lemma 9.2. Let the genus function g satisfy g(n) → ∞ and g(n)/n → 0 as n → ∞; and
suppose that there is an n0 such that for n ⩾ n0, g(n) is non-decreasing and g(n)/n is non-
increasing. Let k = k(n) = 2⌊ng/(2n+ 3g)⌋. Then

Zk ⊆ Hered (Fg) for n sufficiently large . (9.2)

Before proving Lemma 9.2 let us make some observations about the cycle rank cr(G) for
a pseudograph G. (Recall from (3.5) that egmax(G) = cr(G).) A key observation is that if G′

is obtained from G by adding a leaf or subdividing an edge then cr(G′) = cr(G). If C is a
cycle then cr(C) = 1, and so if G has exactly one cycle then cr(G) = 1. If G has compo-
nents G1, . . . , Gκ then cr(G) =

∑κ
i=1 cr(Gi).

Let H be the core of G, obtained by repeatedly deleting any leaves. Note that we do not
restrict attention to the complex part of G (consisting of the components with more than one
cycle), so the core may contain components which are cycles. The kernel K of G is the pseu-
dograph obtained from the core H by suppressing all vertices of degree 2, except that a com-
ponent of H which is a cycle yields a component of K which is a single vertex with a loop. Thus
any component of G with exactly one cycle becomes a vertex with a loop in K.
Then cr(G) = cr(H) = cr(K). In particular if the kernel K is empty then cr(G) = 0.



combinatorial theory 3 (1) (2023), #4 35

Let G be a subcubic pseudograph, with non-empty kernel K. Let v2(K) be the number of
singleton components of K consisting of a vertex with a loop, which is the number of compo-
nents of G with exactly one cycle. Let v3(K) be the number of vertices of degree 3 in K, which
is at most the number of vertices of degree 3 in G. Each component of K containing a vertex of
degree 3 is cubic. Note that v3(K) + v2(K) = v(K). To upper bound cr(K) (and thus cr(G)),
we consider separately the v2(K) singleton components of K and the κ(K)− v2(K) ⩽ 1

2
v3(K)

cubic components, and see that

cr(K) = e(K)− v(K) + κ(K)

= v2(K) + (3
2
v3(K)− v3(K) + κ(K)− v2(K))

= v2(K) + 1
2
v3(K) + (κ(K)− v2(K))

⩽ v2(K) + v3(K) = v(K) .

Thus
cr(G) = cr(K) ⩽ v(K) . (9.3)

This result is best possible: cr(K) = v(K) if and only if each component of K is either a
singleton vertex with a loop or consists of two vertices joined by three parallel edges. We can
now prove Lemma 9.2.

Proof of Lemma 9.2. Recall that k = k(n) = 2⌊ng/(2n + 3g)⌋ and note that k is even, k < g
and k ∼ g as n → ∞. Recall also that s = s(n) = ⌊2(n − k)/3k⌋, so s ∼ 2n/ 3k ∼ 2n/ 3g
and s → ∞ as n → ∞. We may assume that n is sufficiently large that s ⩾ n0.

Let G ∈ Zk
n . Suppose for a contradiction that there is a nonempty set W ⊆ [n] such that the

induced subgraphG[W ] has cr(G[W ]) > g(|W |); and we may suppose that the setW is minimal
with this property. Now the kernel K of G[W ] is nonempty (since otherwise cr(G[W ]) = 0)
and in particular G[W ] has a cycle, so |W | ⩾ 3s + 3 ⩾ 3n0 + 3 ⩾ n0 + 1. Thus g(n) is
non-decreasing for n ⩾ |W | − 1. If G[W ] had a leaf w ∈ W and W ′ = W \ {w}, then

cr(G[W ′]) = cr(G[W ]) > g(|W |) ⩾ g(|W ′|)

contradicting the minimality of W . Hence G[W ] has no leaves, and so all vertices have degree 2
or 3.

The number of components of G[W ] with exactly one cycle is v2(K); and each such compo-
nent contains at least 3s+3 vertices. Consider now the components of G[W ] which correspond
to cubic components of K. A loop at a vertex u in a cubic component of K corresponds to at
least 3s+ 2 vertices of degree 2 in G[W ]. A non-loop edge uv in a cubic component of K cor-
responds to at least s vertices of degree 2 in G[W ]. If there are x loops in the cubic components
of K then there are 3

2
v3(K) − x non-loop edges; and thus the total number of vertices in the

components of G[W ] which correspond to cubic components of K is at least

x(3s+ 2) + (3
2
v3(K)− x)s+ v3(K) = (3

2
s+ 1)v3(K) + x(2s+ 2) ⩾ (3

2
s+ 1)v3(K) .

Hence
|W | ⩾ (3s+ 3)v2(K) + (3

2
s+ 1)v3(K) ⩾ (3

2
s+ 1)v(K) .
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Thus by (9.3) we have
cr(G[W ]) = cr(K) ⩽ v(K) ⩽ 2 |W |

2+3s
.

We shall obtain the desired contradiction by showing that 2 |W |
2+3s

⩽ g(|W |), that is
2+3s ⩾ 2 |W |/g(|W |). To show this, since n/g(n) is non-decreasing for n ⩾ n0 and |W | ⩾ n0,
it suffices to show that 2 + 3s ⩾ 2n/g (still writing g for g(n)), that is s ⩾ 2n−2g

3g
. By the defi-

nition of s, this must hold if
2(n− k)

3k
− 1 ⩾

2n− 2g

3g
.

But this inequality simplifies to
k(2n+ 3g) ⩽ 2ng ,

which follows immediately from the definition of k. This completes the proof.

We continue by proving the following lemma, showing that Zk
n is large.

Lemma 9.3. Let the function k = k(n) take even integer values and satisfy k(n) ⩽ n
and k(n) → ∞ as n → ∞. Let c = 1

6
(3/e)3/2 (≈ 0.1932). Then the class Zk satisfies

|Zk
n| ⩾ n! (ec+ o(1))k kk/2 (9.4)

Proof. For even k, the number C(k) of cubic graphs on [k] satisfies C(k) ∼ (2/e)1/2ckk3k/2

as k → ∞, see for example Corollary 9.8 of [JRL11]. We may assume that n is sufficiently
large that s ⩾ n0. We construct graphs in Zk

n by picking a k-set U ⊆ [n] and a cubic graph G0

on U (so G0 has 3
2
k edges), and using the n − k vertices in U = [n]\U to subdivide each edge

of G0 at least s times. (This is possible since n− k ⩾ (3
2
k) s.) To count the graphs constructed,

we may think of listing the edges of G0 in lexicographic order, oriented away from the smaller
end-vertex, and listing the vertices in U in any one of the (n−k)! possible orders; then inserting
the first s vertices of U in order in the first oriented edge, the next s vertices in the next edge, and
so on, until we insert the remaining at least s vertices in the last edge. In this way each graph is
constructed just once. Thus

|Zk
n| ⩾

(
n

k

)
C(k) (n− k)! = n!C(k)/k!

= n! (c+ o(1))kk3k/2/k!

= n! (ec+ o(1))k kk/2

since k! = ((1 + o(1))(k/e))k.

We can now complete the proof of Lemma 9.1.

Proof of Lemma 9.1. Let k = k(n) = 2⌊ng/(2n+3g)⌋. Combining Lemmas 9.2 and 9.3, for n
sufficiently large we have

|Hered(Fg)n| ⩾ |Zk
n| by Lemma 9.2

⩾ n! (ec+ o(1))k kk/2 by Lemma 9.3
= n! (ec+ o(1))gg(1+o(1))g/2

= n! g(1+o(1))g/2,

as required.
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Lower bounding the size ofHered(Ag). We have already noted thatHered(Fg)⊆Hered(Ag),
so the result corresponding to Theorem 2.9 for Hered(Ag) follows directly from Theorem 2.9.
However, we can obtain an improved explicit bound for the size of Hered(Ag) compared to that
in Lemma 9.1 (where the lower bound was n! g(1+o(1))g/2). We state this in the following lemma.

Lemma 9.4. Let the genus function g satisfy g(n) → ∞ and g(n)/n → 0 as n → ∞; and
suppose that there is an n0 such that for n ⩾ n0, g(n) is non-decreasing and g(n)/n is non-
increasing. Then

|Hered (Ag)n| ⩾ n! g(1+o(1)) g . (9.5)

Our lower bound approach for proving Lemma 9.4 follows the same pattern as the proof
of Lemma 9.1 except that it involves the ‘excess’ of a graph rather than the cycle rank. The ex-
cess xs(G) of a graph G is the sum over its non-tree components C of e(C) − v(C).
Thus xs(G) ⩾ 0, and xs(G) = 0 if and only if each component has at most one cycle (that
is, there are no ‘complex’ components). Also, deleting a leaf or subdividing an edge does not
change the excess. Observe that for a graphGwith κ− non-tree components, the cycle rank cr(G)
satisfies cr(G) = xs(G) + κ−. It is more convenient here to work with xs(G) rather than cr(G),
since we will need to consider subgraphs that may fail to be connected.

Given a genus function g we let XSg be the class of all graphs G with xs(G) ⩽ g(n)
where n = v(G). We show in Lemma 9.6 that XSg ⊆ Ag and so Hered (XSg) ⊆ Hered (Ag).
We then show in the proof of Lemma 9.7 that Zk ⊆ Hered(XSg) for a suitable choice of k ∼ 2g
(previously we had k ∼ g), and using Lemma 9.3 we show that Zk is suitably large. Lemma 9.7
will immediately give Lemma 9.4. To prove Lemma 9.6 we use one preliminary lemma.

Lemma 9.5. Every graph G with xs(G) ⩾ 1 has a rotation system with at least 3 faces.

Proof. Let xs(G) ⩾ 1. By considering the core of G, we may see that it suffices to assume that
each vertex degree is at least 2. If G contains two cycles sharing at most one edge, then clearly
there is a rotation system for G such that both cycles form facial walks, and so in total there must
be at least 3 facial walks, as required. Similarly, there is a rotation system as desired if the two
cycles intersect in a subdivided edge, that is, in a path in which each internal vertex has degree 2.

Suppose that in G there are no two edge-disjoint cycles. We claim that there must be two
cycles which intersect in an edge or subdivided edge. Let us check first that there are two cycles
which intersect (exactly) in a path. To see this, let C1, C2 be any two distinct cycles. Let e be an
edge of C2 not in C1. By following C2 in both directions from e we may form a path P2 which is
part of C2, has no edges or internal vertices in C1, and joins distinct vertices u, v in C1 . Let the
path P1 be one of the two parts of C1 between u and v. Then P1 and P2 together from a cycle C
which intersects C1 exactly in the path P1.

Now let C1 and C2 be cycles which intersect in a shortest possible path P . We want to
show that each internal vertex in P has degree 2. Suppose for a contradiction that some internal
vertex v in P is incident to an edge vw not in P . Start walking from v along vw and continue
(always picking a new edge) until we first meet a vertex z in C1 or C2. Since there are no two
edge-disjoint cycles we must form a path Q (with all vertices distinct) and the final vertex z of Q
is not v and indeed is not in P (by the minimality of P ). Suppose wlog that z is in C2. Then the
distinct vertices v and z divide C2 into two parts. Pick one of these parts, and form the cycle C ′

2
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from this part and the path Q. Then C1 and C ′
2 intersect in a path strictly contained in P . But

this contradicts our choice of C1 and C2, and thus completes the proof of the lemma.

Lemma 9.6. For every graph G, if xs(G) = h then G ∈ OEh ∩ NEh; that is, G has an
embedding in an orientable and a non-orientable surface of Euler genus at most xs(G).

Proof. Consider a nonplanar component C of a graph G (the result clearly holds for planar
graphs G); and note that xs(C) ⩾ 1 (indeed we have xs(C) ⩾ 3). By Lemma 9.5 there is a
rotation system for C with f ⩾ 3 faces. By Euler’s formula, the corresponding embedding has
Euler genus e−v−f+2 ⩽ xs(C)−1. It follows that the union of the non-tree components of G
has an embedding in an orientable surface of Euler genus at most xs(G)− 1; and extending the
embedding to include any tree components, we see that G has such an embedding ϕ. Finally, by
Observation 3.1, G must have a non-orientable embedding with Euler genus at most xs(G).

We could shorten the proof of Lemma 9.6 (essentially omitting Lemma 9.5) if we were will-
ing to replaceNEh byNEh+1, but we have chosen to be tidy. By Lemma 9.6 we haveXSg ⊆ Ag

and so Hered (XSg) ⊆ Hered (Ag). This gives the first inequality in the conclusion (9.6) of the
next lemma, which as we noted immediately gives Lemma 9.4.

Lemma 9.7. Let the genus function g satisfy g(n) → ∞ and g(n)/n → 0 as n → ∞; and
suppose that there is an n0 such that for n ⩾ n0, g(n) is non-decreasing and g(n)/n is non-
increasing. Then

|Hered (Ag)n| ⩾ |Hered (XSg)n| ⩾ n! g(1+o(1)) g . (9.6)

Proof of Lemma 9.7. We shall continue often to write g for g(n). The idea of the proof is as
follows. If the graph G is a subdivision of a k-vertex cubic graph H then

xs(G) = xs(H) = 1
2
k . (9.7)

Thus if G has n vertices and k ⩽ 2 g(n) then G ∈ XSg. If each edge of the original cubic
graph H was subdivided sufficiently often, and we introduced a little slack, then in fact G ∈
Hered(XSg). Since there are many choices for G we can deduce that Hered(XSg) is large.

Now for the details. As before, let Zk
n be the set of graphs on [n] which are subdivisions

of a k-vertex cubic graph, and such that the distance between any two vertices of degree 3 is at
least s+ 1 (and so the girth is at least 3s+ 3). This time, we choose an even integer k = k(n) a
little less than 2g: we let

k = 2⌊ ng

n+ 3g
⌋

(so k ∼ 2g, and k → ∞ as n → ∞). Recall that s = s(n) = ⌊2(n − k)/3k⌋, so
s ∼ 2n/ 3k ∼ n/ 3g and s → ∞ as n → ∞. We may assume that n is sufficiently large
that s ⩾ n0. By Lemma 9.3,

|Zk
n| ⩾ n! (ec+ o(1))k kk/2

= n! (2(ec)2 + o(1))g g(1+o(1))g .

But 2(ec)2 ≈ 0.55 > 1
2
, so |Zk

n| ⩾ n! (1
2
g)(1+o(1))g for n sufficiently large. We shall complete

the proof by showing that Zk
n ⊆ Hered(XSg)n (for n sufficiently large).
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Let G ∈ Zk
n . Suppose for a contradiction that G ̸∈ Hered(XSg)n, so there is a

nonempty set W ⊆ [n] such that xs(G[W ]) > g(|W |). An acyclic graph has excess 0,
so |W | ⩾ 3s+ 3 ⩾ 3n0 + 3. We may suppose that the set W is minimal such
that xs(G[W ]) > g(|W |). Then, since g is non-decreasing for n ⩾ n0 and |W | ⩾ n0 + 1,
it follows that G[W ] has no leaves, and so all vertices have degree 2 or 3. If all vertices had
degree 2 then the excess would be 0, so there must be vertices of degree 3, say i ⩾ 2 vertices of
degree 3. For each vertex v in G[W ] of degree 3, the three complete subdivided edges incident
with v must be in G[W ] (since there are no leaves). Thus there are at least i · 3

2
s vertices of

degree 2 (since each vertex of degree 2 is counted at most twice), and so |W | ⩾ i · (1 + 3
2
s).

Thus by (9.7)
xs(G[W ]) = 1

2
i ⩽ |W |

2+3s
.

We shall obtain the desired contradiction by showing that |W |
2+3s

⩽ g(|W |), that
is 2 + 3s ⩾ |W |/g(|W |). To show this, since n/g(n) is non-decreasing for n ⩾ n0

(and |W | ⩾ n0), it suffices to show that 2+3s ⩾ n/g (still writing g for g(n)), that is s ⩾ n−2g
3g

.
By the definition of s, this must hold if

2(n− k)

3k
− 1 ⩾

n− 2g

3g
,

which simplifies to
k(n+ 3g) ⩽ 2ng . (9.8)

But this inequality holds by the definition of k, so we have the desired contradiction. This
completes the proof of Lemma 9.7 (and thus of Theorem 2.9).

It remains only to prove Proposition 2.8 to complete the proofs of our results on hereditarily
embeddable graphs.

Proof of Proposition 2.8. By inequality (4.10) we have |Ag−2
n | ≪ |Ag

n|. Let L be the class
of graphs G such that if v(G) = n then G has less than 2αn leaves. Observe that 2α < ρ(P).
Thus |Ag

n∩Ln| ≪ |Ag
n| by Theorem 6 of [MS21] (which depends only on Theorem Theorem 2.1

in the present paper).
Let n ⩾ n0, and let G ∈ (Ag \ (Ag−2 ∪ L))n. It suffices to show that G ̸∈ Hered(Ag).

Let 1 ⩽ k ⩽ 2αn be such that g(n) ⩾ g(n−k) + 2. Observe that G has at least k leaves,
since G ̸∈ Ln. Form H by deleting k leaves from G. Since g(n−k) ⩽ g(n)− 2 and G ̸∈ Ag−2

n

we have G ̸∈ Ag(n−k)
n . Hence the (n−k)-vertex induced subgraph H of G is not in Ag(n−k)

(since we could add back the deleted leaves while keeping embedded in the same surface), and
so G ̸∈ Hered(Ag), as required.

9.1. The class cHered(Ag) of certifiably hereditarily embeddable graphs

In the first part of this section, we investigated graph classes where a graph G is in the class if
and only if each (induced) subgraph ofG has an embedding in a suitable surface with sufficiently
small Euler genus. We could be more demanding and insist that there must be a single cellular
embedding ofG such that each induced embedding of an induced subgraph has sufficiently small
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Euler genus. It is natural here to focus on orientable surfaces. Given a genus function g = g(n),
we say that a graph G is certifiably hereditarily in OEg if there is a cellular embedding of G
in some orientable surface such that for each nonempty set W of vertices the induced em-
bedding of G[W ] (which is orientable) has Euler genus at most g(|W |). Let cHered(OEg)
denote the class of such graphs. Then cHered(OEg) ⊆ Hered(OEg), and this is typically
a proper containment. For example, if g satisfies g(n) = 0 for n ⩽ 4 and g(5) = 2 then
clearly K5 ∈ Hered(OEg), and we will see below that K5 ̸∈ cHered(OEg). On the other hand,
cHered(OEg) ⊇ Hered(Fg), since every orientable embedding of a graph G in Hered(Fg) cer-
tifies that G is in cHered(OEg). Thus by (2.7) the threshold when ρ drops to 0 for certifiably
hereditarily embeddable graphs still occurs around n/ log n.

We have one loose end to tidy up here.

Proof that K5 ̸∈ cHered(OEg) when g(n) = 0 for n ⩽ 4. For K4 on vertex set [4], there is a
unique rotation system which gives an embedding in the sphere S0 and which has cyclic or-
der π(1) = (234) for vertex 1. The rest of the rotation system is π(2) = (143), π(3) = (124)
and π(4) = (132), and it is a triangulation.

Now consider a rotation system π for K5 on [5]. We want to show that for at least one
vertex i ∈ [5], the induced rotation system on [5] \ {i} is nonplanar. We may assume wlog
that π(1) = (2345). Suppose for a contradiction that for each i = 2, .., 5 the induced rotation
system on [5] \ {i} is planar. When we drop vertex 2, the induced cyclic order π(1) on {3, 4, 5}
is (345); and by the assumption that the induced embedding on {1, 3, 4, 5} is planar and the
uniqueness of the planar embedding, we see that π(3) contains the subsequence (154), π(4)
contains (135), and π(5) contains (143). Arguing similarly when we drop other vertices, we see
that the cyclic orders π(i) must contain the subsequences shown:

drop 2 drop 3 drop 4 drop 5
π(1) 345 245 235 234
π(2) − 154 153 143
π(3) 154 − 125 124
π(4) 135 125 − 132
π(5) 143 142 132 −

It follows from the table that π(2) = (1543), π(3) = (1254), π(4) = (1325) and π(5) = (1432).
But now, in the induced embedding on {2, 3, 4, 5}, there is a facial walk with vertices 2, 5, 4, 3, 2
of length 4; thus we do not have a triangulation, and so we do not have a planar embedding of
the copy of K4 on {2, 3, 4, 5}.

10. Minor-closed classes Minor(Ag) of embeddable graphs

In this section we prove Theorem 2.10 on the graph class Minor(Ag). Recall that, given a genus
function g, Minor(Ag) is the class of graphs G such that, for each k = 1, . . . , v(G), each k-
vertex minor H of G is in Ag

k; and recall that Minor(Ag) ⊇ P . By the Kuratowski–Wagner
Theorem (see for example [BM08, Die17]), a graph G is in P if and only if it has no minor K5
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or K3,3. Thus for example Minor(Eg) = P if and only if g(5) = g(6) = 0, since K5 and K3,3

both embed in each surface other than S0 (in the orientable case note that Minor(OEg) = P
if and only if g(5) < 2 and g(6) < 2). At the other extreme, for each n ∈ N let g∗(n) be the
least h ⩾ 0 such that Kn ∈ Ah: then g∗(n) ∼ 1

6
n2 (see near the end of Section 3.2, or below,

for exact values). But Minor(Ag) contains all graphs if and only if Kn ∈ Ag for each n ∈ N,
and this happens if and only if g(n) ⩾ g∗(n) for each n ∈ N.

We are ready to prove Theorem 2.10. The proof of the first part is very short. The proof
of the second part will show that for small ε > 0 we may take the constant c = c(ε) to be
about 1

3
log2

1
ε
.

Proof of Theorem 2.10. For the first part, note that Minor(Ag) is closed under taking minors,
and for any class B of graphs which is closed under minors and does not contain all graphs we
have ρ(B) ⩾ ρ̃(B̃) > 0, see [NSTW06, AFS09, DN10]. Hence either Minor(Ag) contains all
graphs, which happens if and only if g ⩾ g∗; or ρ̃(Minor(Ãg)) > 0, and so ρ(Minor(Ag)) > 0.
(Thus the threshold when the radius of convergence drops to 0 occurs when g(n) ∼ n2/6.)

Now consider the second part of the theorem. Let ε > 0, and fix a large t ∈ N. Let n ⩾ t and
construct graphs on [n] as follows. Partition [n] into k = ⌊n/t⌋ parts of size t, with an extra part
of size u ⩽ t − 1 if t does not divide n. If t|n (so there is no extra part) we set u = 0. Choose
a vertex in each part (say the smallest vertex). Pick an order on the k or k + 1 chosen vertices,
list the vertices as v1, v2, . . . and add the edges vivi+1. We obtain at least 1

2
k! unoriented paths.

Put an arbitrary connected graph on each part. We have 2( 12+o(1))t2 choices for each part of size t
(where o(1) is as t gets large), and if there is an extra part of size u then we have at least u!
choices for this part. In total we make at least

n!

k! (t!)k u!
1
2
k!u! (2(

1
2
+o(1))t2)k

constructions, and each graph is constructed at most once. So if t is chosen sufficiently large,
the number of distinct graphs constructed is at least

n! (2(
1
2
+o(1))t2/t!)k ⩾ n! (2(

1
2
+o(1))t2)n/t−1 = n! (2(

1
2
+o(1))t)n ⩾ n! ε−n

for n sufficiently large.
Recall that, for each n ⩾ 3, in the orientable case (when g∗(n) is the least h such

that Kn ∈ OEh) we have g∗(n) = 2
⌈

1
12
(n− 3)(n− 4)

⌉
; and g∗(n) =

⌈
1
6
(n− 3)(n− 4)

⌉
in

the non-orientable case, except that g∗(7) = 3. Thus, for both the orientable and non-orientable
cases, for each 1 ⩽ n ̸= 6

g∗(n+ 1) ⩽ 2
⌈

1
12
(n− 2)(n− 3)

⌉
⩽ 1

6

(
(n− 2)(n− 3) + 10

)
= 1

6
(n2 − 5n+ 16) ,

where the second inequality holds since (n − 2)(n − 3) is always an even integer.
Thus g∗(n+1) ⩽ 1

6
n2 for each n ⩾ 4, including n = 6. But g∗(n+1) is 0 for n = 0, 1, 2 and 3;

and so g∗(n+ 1) ⩽ 1
6
n2 for each n ⩾ 1.

Now consider one of the graphs G constructed on [n], and a minor H of G with s vertices.
Each vertex w of H corresponds to a connected subgraph Hw of G, where these subgraphs are
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vertex-disjoint. Consider the ith part of G, with chosen vertex v∗i . Suppose that H contains ai
vertices w corresponding to connected subgraphs Hw of G which are contained within the ith
part of G and do not contain v∗i , and so are completely contained within the ith part. There may
also be a vertex ofH corresponding to a connected subgraph ofGwhich contains v∗i and perhaps
other vertices of the ith or other parts of G. Then each ai ⩽ t− 1 and

∑
i ai ⩽ s; and H can be

embedded in a surface of Euler genus at most∑
i

g∗(ai + 1) ⩽ 1
6

∑
i

ai
2 ⩽ 1

6

s

t− 1
(t− 1)2 = 1

6
(t− 1) s.

Thus if we set c = ⌈1
6
(t − 1)⌉ and g(n) = cn then G is in Minor(Ag). Hence

|Minor(Ag)n| ⩾ n! ε−n for n sufficiently large, and ρ(Minor(Ag)) ⩽ ε, as required.

Interesting questions on minor-closed classes remain open. For example, we saw that the
value ρ(Minor(Ag)) is arbitrarily small for a large linear function g. But do we need g to
be so large? Given ε > 0, is there a constant c = c(ε) such that setting g(n) = n + c we
have ρ(Minor(Ag)) < ε?

Finally here let us briefly consider topological minors. A graph H is a topological minor
of a graph G if H can be obtained from a subgraph of G by a sequence of edge-contractions
where each edge is incident to a vertex of degree 2, see for example [Die17]. Given a class B of
graphs, let tMinor(B) be the class of graphs G such that each topological minor of G is in B. We
call tMinor(B) the topological-minor-closed part of B. Of course we always
have P ⊆ Minor(Ag) ⊆ tMinor(Ag) ⊆ Ag, and so in particular ρ(P) ⩾ ρ(tMinor(Ag)).

Let us restrict our attention here to Eg (rather than Ag). As with (usual) minors, we
have tMinor(Eg) = P if and only if g(5) = g(6) = 0. However, in other ways the behaviour
is very different from that of minors, and in particular there is no result like Theorem 2.10. For
example, define a genus function g by setting g(n) = 0 for n ⩽ 5 and g(n) = ⌊1

2
n⌋ for n ⩾ 6.

Then clearly K5 ̸∈ Eg since g(5) = 0. But each subcubic graph G (with each degree at most 3)
has xs(G) ⩽ 1

2
v(G). Hence, noting that each subcubic graph on at most 5 vertices is planar, we

have G ∈ Eg by Lemma 9.6. Also, each topological minor of a subcubic graph is subcubic, so
each subcubic graph is in tMinor(Eg); and it follows that ρ(tMinor(Eg)) = 0. See the recent
paper [CLS19] for more information and results related to this topic.

11. Concluding remarks and questions

As earlier, let g be a given genus function and let Ag denote any one of the graph classes Eg,
OEg, NEg or OEg ∩ NEg. We have given estimates and bounds on the sizes of the sets Ag

n,
where for example Eg

n is the set of graphs on vertex set [n] embeddable in a surface of Euler
genus at most g(n); and we have given some corresponding results for the hereditary classes
Hered(Ag) and cHered(Ag), the minor-closed class Minor(Ag), the topological-minor-closed
class tMinor(Ag), and for related unlabelled graph classes. Some of these results will be used
in the companion paper [MS21] where we investigate random graphs sampled uniformly from
such classes. Many interesting questions remain open concerning the sizes of these classes of
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graphs. We focus in this concluding section on whether the class Ag has a growth constant γ
and if so whether γ = γP .

We have seen that (from a distance) the graph class Ag is ‘similar’ in size to P for a ‘small’
genus function g, and much bigger for a ‘large’ g. Can we pin this down more precisely? Theo-
rem 2.1 (a) shows that Ag has growth constant γP as long as g(n) = o(n/ log3 n). Also we saw
from Theorem 2.5 (a) that if Ag has growth constant γP then g(n) = o(n/ log n). Perhaps the
converse holds?

Conjecture 11.1. Ag has growth constant γP if and only if g(n) = o(n/ log n).

We saw in (2.1) and (2.2) that, in both the labelled and the unlabelled cases, the radius of
convergence is strictly positive if and only if g(n) = O(n/ log n). In the labelled case, for
suitably well behaved genus functions g, perhaps we have a growth constant whenever we have
a strictly positive radius of convergence?

Conjecture 11.2. If c > 0 is a constant and g(n) ∼ cn/ log n, then Ag has a growth constant
γ = γ(c).

Suppose temporarily that the growth constants γ(c) exist as in Conjecture 11.2. Then in-
equality (4.10) shows that γ(c) is strictly increasing as a function of c, and by Theorem 2.1 (b)
we have γ(c) → ∞ as c → ∞. Also, γ(c) > γP for each c > 0. Does γ(c) → γP as c → 0?

Now let us briefly consider unlabelled graph classes. As we noted earlier (in Section 1), the
set P̃ of unlabelled planar graphs has growth constant γ̃P̃ where γP < γ̃P̃ ⩽ 30.061. Further,
for any fixed genus h, the set Ãh has the same growth constant γ̃P̃ , see [McD08]. What can we
say about the existence of a growth constant for Ãg for a non-constant genus function g(n)?
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[Fus09] Éric Fusy. Uniform random sampling of planar graphs in linear time. Random
Struct. Algorithms, 35(4):464–522, 2009. doi:10.1002/rsa.20275.

[GM04] Stefanie Gerke and Colin McDiarmid. On the number of edges in random pla-
nar graphs. Comb. Probab. Comput., 13(2):165–183, 2004. doi:10.1017/

S0963548303005947.
[GMSW05] Stefanie Gerke, Colin McDiarmid, Angelika Steger, and Andreas Weißl. Random

planar graphs with n nodes and a fixed number of edges. In Proceedings of the
sixteenth annual ACM-SIAM symposium on discrete algorithms, SODA 2005, Van-
couver, BC, Canada, January 23–25, 2005., pages 999–1007. New York, NY: ACM
Press, 2005.

http://arxiv.org/abs/1910.04609
https://doi.org/10.1002/047174882X
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1002/rsa.20871
https://doi.org/10.1137/17M113383X
https://doi.org/10.1137/17M113383X
https://doi.org/10.1016/j.jctb.2009.06.001
https://doi.org/10.1016/j.jctb.2009.06.001
https://doi.org/10.1002/jgt.3190200305
https://doi.org/10.1016/S0012-365X(98)00372-0
https://doi.org/10.1016/S0012-365X(98)00372-0
https://doi.org/10.1002/rsa.20275
https://doi.org/10.1017/S0963548303005947
https://doi.org/10.1017/S0963548303005947


46 Colin McDiarmid, Sophia Saller

[GMSW07] Stefanie Gerke, Colin McDiarmid, Angelika Steger, and Andreas Weißl. Ran-
dom planar graphs with given average degree. In Combinatorics, Complexity, and
Chance. A tribute to Dominic Welsh, pages 83–102. Oxford: Oxford University
Press, 2007.
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