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ABSTRACT OF THE DISSERTATION

Statistical Methods for Bulk and Single-cell RNA Sequencing Data

by

Wei Li

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2019

Professor Jingyi Li, Chair

Since the invention of next-generation RNA sequencing (RNA-seq) technologies, they have

become a powerful tool to study the presence and quantity of RNA molecules in biological

samples and have revolutionized transcriptomic studies on bulk tissues. Recently, the emerg-

ing single-cell RNA sequencing (scRNA-seq) technologies enable the investigation of tran-

scriptomic landscapes at a single-cell resolution, providing a chance to characterize stochastic

heterogeneity within a cell population. The analysis of bulk and single-cell RNA-seq data

at four different levels (samples, genes, transcripts, and exons) involves multiple statistical

and computational questions, some of which remain challenging up to date.

The first part of this dissertation focuses on the statistical challenges in the transcript-

level analysis of bulk RNA-seq data. The next-generation RNA-seq technologies have been

widely used to assess full-length RNA isoform structure and abundance in a high-throughput

manner, enabling us to better understand the alternative splicing process and transcrip-

tional regulation mechanism. However, accurate isoform identification and quantification

from RNA-seq data are challenging due to the information loss in sequencing experiments.

In Chapter 2, given the fast accumulation of multiple RNA-seq datasets from the same bio-

logical condition, we develop a statistical method, MSIQ, to achieve more accurate isoform

quantification by integrating multiple RNA-seq samples under a Bayesian framework. The

MSIQ method aims to (1) identify a consistent group of samples with homogeneous quality

and (2) improve isoform quantification accuracy by jointly modeling multiple RNA-seq sam-
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ples and allowing for higher weights on the consistent group. We show that MSIQ provides a

consistent estimator of isoform abundance, and we demonstrate the accuracy of MSIQ com-

pared with alternative methods through both simulation and real data studies. In Chapter

3, we introduce a novel method, AIDE, the first approach that directly controls false isoform

discoveries by implementing the statistical model selection principle. Solving the isoform dis-

covery problem in a stepwise manner, AIDE prioritizes the annotated isoforms and precisely

identifies novel isoforms whose addition significantly improves the explanation of observed

RNA-seq reads. Our results demonstrate that AIDE has the highest precision compared to

the state-of-the-art methods, and it is able to identify isoforms with biological functions in

pathological conditions.

The second part of this dissertation discusses two statistical methods to improve scRNA-

seq data analysis, which is complicated by the excess missing values, the so-called dropouts

due to low amounts of mRNA sequenced within individual cells. In Chapter 5, we introduce

scImpute, a statistical method to accurately and robustly impute the dropouts in scRNA-seq

data. The scImpute method automatically identifies likely dropouts, and only performs im-

putation on these values by borrowing information across similar cells. Evaluation based on

both simulated and real scRNA-seq data suggests that scImpute is an effective tool to recover

transcriptome dynamics masked by dropouts, enhance the clustering of cell subpopulations,

and improve the accuracy of differential expression analysis. In Chapter 6, we propose a

flexible and robust simulator, scDesign, to optimize the choices of sequencing depth and

cell number in designing scRNA-seq experiments, so as to balance the exploration of the

depth and breadth of transcriptome information. It is the first statistical framework for

researchers to quantitatively assess practical scRNA-seq experimental design in the context

of differential gene expression analysis. In addition to experimental design, scDesign also

assists computational method development by generating high-quality synthetic scRNA-seq

datasets under customized experimental settings.
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CHAPTER 1

Introduction to Bulk RNA Sequencing Analysis

1.1 Background

Transcriptomes are the complete sets of RNA molecules in biological samples. Unlike the

genome, which is largely invariant in different tissues and cells of the same individual, tran-

scriptomes can vary greatly and cause different tissue and cell phenotypes. Understand-

ing transcriptomes is essential for interpreting genome function and investigating molecular

bases for various disease phenomena. RNA sequencing (RNA-seq) uses the next generation

sequencing (NGS) technologies to reveal the presence and quantity of RNA molecules in

biological samples. Since its invention, RNA-seq has revolutionized transcriptome analysis

in biological research. RNA-seq does not require any prior knowledge on RNA sequences,

and its high-throughput manner allows for genome-wide profiling of transcriptome land-

scapes [1,2]. Researchers have been using RNA-seq to catalog all transcript species, such as

messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs), to determine the tran-

scriptional structure of genes, and to quantify the dynamic expression patterns of every

transcript under different biological conditions [1]. Depending on whether RNA molecules

are sequenced for cells in bulk or for individual cells, the RNA-seq technologies are divided

into bulk RNA-seq and single-cell RNA-seq protocols. In Chapters 1-3, we discuss how to

model the bulk RNA-seq data generated by the Illumina sequencers (Figure 1.1), which are

used to analyze the transcriptomes from large populations of cells. In Chapters 4-6, we

dicuss the statistical modeling and analysis of single-cell RNA-seq data.

Due to the popularity of bulk RNA-seq technologies and the increasing need to analyze

large-scale RNA-seq datasets, more than two thousand computational tools have been devel-
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Figure 1.1: Workflow of an RNA-seq experiment. The first step is to break full-length

mRNA transcripts into short fragments, because the current state-of-the-art sequencing

machines have various length limits on their input nucleotide sequences. To stabilize the

resulting short single-stranded RNA fragments, they are reversely transcribed into double-s-

tranded complementary DNAs (cDNAs). Then adapters are added to both ends to ease

the sequencing step. Since some cDNA fragments are rare and might not be captured in

sequencing, the polymerase chain reaction (PCR) technique is used to amplify the copies of

each cDNA fragment to achieve stronger sequencing signals. After this amplification step, a

fragment size selection step is used to filter out cDNA fragments that are too short or too

long to be accurately sequenced. Finally, in the sequencing step, short sequences of fixed

length, starting from the ligated adapters and extending into the actual fragment sequences,

will be captured by the sequencing machine from the two ends of double-stranded cDNA

fragments.

oped in the past ten years to assist the visualization, processing, analysis, and interpretation

of RNA-seq data. The two most computationally intensive steps are data processing and

analysis. In data processing, for organisms with reference genomes available, short RNA-seq

reads (fragments) are aligned (or mapped) to the reference genome and converted into ge-

nomic positions; for organisms without reference genomes, de novo transcriptome assembly is

needed. Regarding the reference-based alignment, the RNA-seq Genome Annotation Assess-
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ment Project (RGASP) Consortium has conducted a systematic evaluation of mainstream

spliced alignment programs for RNA-seq data [3]. In this chapter, we focus on the statistical

questions engaged in RNA-seq data analyses, assuming reads are already aligned to the ref-

erence genome. Depending on the biological questions to be answered from RNA-seq data,

we categorize RNA-seq analyses at four levels, which require three different ways of RNA-seq

data summary. Sample-level analyses (e.g., sample clustering) and gene-level analyses (e.g.,

identifying differentially expressed genes [4]) mostly require gene read counts, i.e., how many

RNA-seq reads are mapped to each gene. Transcript-level analyses, such as RNA transcript

assembly and quantification [5], often need read counts of genomic regions within a gene,

i.e., how many RNA-seq reads are mapped to each region and each region-region junction,

or even the exact position of each read. Exon-level analyses, such as identifying differential

exon usage [6], usually require read counts of exons and exon-exon junctions. As these four

levels of analysis use different statistical and computational methods, we introduce the key

statistical models used at each level of RNA-seq analysis (Figure 1.2), with an emphasis on

the identification of differential expression and alternative splicing patterns, two of the most

common goals of bulk RNA-seq experiments.

1.2 Sample-level analysis: transcriptome similarity

The availability of numerous public RNA-seq datasets has created an unprecedented op-

portunity for researchers to compare multi-species transcriptomes under various biological

conditions. Comparing transcriptomes of the same or different species can reveal molecular

mechanisms behind important biological processes, and help one understand the conservation

and differentiation of these molecular mechanisms in evolution. Researchers need similar-

ity measures to directly evaluate the similarities of different samples (i.e., transcriptomes)

based on their genome-wide gene expression data summarized from RNA-seq experiments.

Such similarity measures are useful for outlier sample detection, sample classification, and

sample clustering analysis. In addition to gene expression, it is also possible to evaluate

transcriptome similarity based on alternative splicing events [7]. Correlation analysis is a
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genome
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sample-level

Figure 1.2: RNA-seq analyses at four different levels: sample-level, gene-level, transcrip-

t-level, and exon-level. In the sample-level analysis, the RNA-seq reads are usually summa-

rized into a similarity matrix. Taking a 4-exon gene as an example, the gene-level analysis

summarizes the counts of RNA-seq reads mapped to the gene in samples of different con-

ditions, and it subsequently compares the gene’s expression levels calculated based on read

counts; the transcript-level analysis focuses on reads mapped to different isoforms; the ex-

on-level analysis mostly considers the reads mapped to or skipping the exon of interest (the

yellow exon marked by a red box in this example).

classical approach to measure transcriptome similarity of biological samples [8,9]. The most

commonly used measures are Pearson and Spearman correlation coefficients. The analysis

starts by calculating pairwise correlation coefficients of normalized gene expression between

any two biological samples, resulting in a correlation matrix. Users can visualize the cor-

relation matrix (usually as a heatmap) to interpret the pairwise transcriptome similarity of

biological samples, or they may use the correlation matrix in downstream analysis such as

sample clustering.

However, a caveat of using correlation analysis to infer transcriptome similarity is that the

existence of housekeeping genes would inflate correlation coefficients. Moreover, correlation
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measures rely heavily on the accuracy of gene expression measurements and are not robust

when the signal-to-noise ratios are relatively low. Therefore, we have developed an alternative

transcriptome overlap measure TROM [10] to find sparse correspondence of transcriptomes

in the same or different species. The TROM method compares biological samples based on

their associated genes instead of the whole gene population, thus leading to a more robust and

sparse transcriptome similarity result than that of the correlation analysis. TROM defines

the associated genes of a sample as the genes that have z-scores (normalized expression levels

across samples) greater than or equal to a systematically selected threshold. Pairwise TROM

scores are then calculated by an overlap test to measure the similarity of associated genes

for every pair of samples. The resulting TROM score matrix has the same dimensions as

the correlation matrix, and the TROM score matrix can be easily visualized or incorporated

into downstream analysis.

Aside from the correlation coefficients and the TROM scores, there are other statistical

measures useful for measuring transcriptome similarity in various scenarios. First, par-

tial correlation can be used to measure sample similarity after eliminating the part of the

sample correlation attributable to other variables such as batch effects or experimental con-

ditions [11]. Second, with evidence of a non-linear association between RNA-seq samples,

it is suggested to use measures that can capture non-linear dependences, such as the mu-

tual information. Similarly, one may consider using the conditional mutual information [12]

or partial mutual information [13] to remove the effects of other confounding variables. In

addition to the direct calculation of the sample similarity matrix by applying a similarity

measure to the high-dimensional gene expression data, sometimes it is helpful to visualize

the gene expression data and investigate the sample similarities after dimensionality reduc-

tion. Popular dimension reduction methods include principal component analysis (PCA),

t-stochastic neighbor embedding (t-SNE) [14], and multidimensional scaling (MDS) [15].
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1.3 Gene-level analysis: gene expression dynamics

RNA-seq technologies enable the measurement and comparison of genome-wide gene expres-

sion patterns across different samples. The profiling of gene expression patterns is the key

to investigating new biological processes in various tissues and cells of different organisms.

A common but important question in a large cohort of biological studies is how to compare

gene expression levels across different experimental conditions, time points, tissue and cell

types, or even species.

1.3.1 Differential gene expression (DGE) analysis

The main approach to comparing two biological conditions is to find differentially expressed

(DE) genes. A gene is defined as DE if it is transcribed into different amounts of mRNA

molecules per cell under the two conditions [16]. However, since we do not observe the true

amounts of mRNA molecules, statistical tests are principled approaches that help biologists

understand to what extent a gene is DE.

It is commonly acknowledged that normalization is a crucial step prior to DGE analysis

due to the existence of batch effects, which could arise from different sequencing depths or

various protocol-specific biases in RNA-seq experiments [17]. The reads per kilobase per

million mapped reads (RPKM) [18], the fragments per kilobase per million mapped reads

(FPKM) [19], and the transcripts per million mapped reads (TPM) [20] are the three most

frequently used units for gene expression measurements from RNA-seq data, and they remove

the effects of total sequencing depths and gene lengths. Even though in these units, gene

expression data may still contain protocol-specific biases [21], and further normalization is

often needed. There are two main categories of normalization methods: distribution-based

and gene-based. Distribution-based normalization methods aim to make the distribution

of all or most gene expression levels similar across different samples, and such methods in-

clude the quantile normalization [22], DESeq [23], and TMM [24]. Gene-based normalization

methods aim to make non-DE genes or housekeeping genes have the same expression levels
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in different samples, and such methods include a method by Bullard et al. [17] and Pois-

sonSeq [25]. For a comprehensive comparison of the assumptions and performance of these

normalization methods, we refer readers to [16,17,26].

How to form a proper statistical hypothesis test is the core question in the development

of a DGE method. Most existing methods use the Poisson distribution [27] or the Negative

Binomial (NB) distribution [23, 28, 29] to model the read counts of an individual gene in

different samples. In our discussion here, we focus on the NB distribution because it is

commonly used to account for the observed over-dispersion of RNA-seq read counts. We

consider two biological conditions k = 1, 2, each with Jk samples. Yk,ij denotes the read

count of gene i in the jth sample of condition k. The basic assumption is that

Yk,ij ∼ NB(mean = skjθki, dispersion = φi), (1.1)

where skj is the size factor of the jth sample of condition k, θki is the true expression level

of gene i under condition k, and φi is the dispersion of gene i. It is necessary to consider the

size factor skj because it accounts for the fact that different samples usually have different

numbers of sequenced reads. The dispersion parameter φi controls the variability of the

expression levels of gene i across biological samples. The estimation of the parameters skj,

θki, and φi is the key step to investigating the differential expression of gene i between the

two conditions. Bayesian modeling is often used, and prior distributions and relationships

of skj, θki, and φi are often assumed. Note that assuming skj being independent of gene

i simplifies the problem, but it can be advantageous to calculate gene-specific factors sk,ij

to account for technical biases dependent on gene-specific GC contents or gene lengths [30].

The DGE analysis is carried out by testing

H0 : θ1i = θ2i vs. H1 : θ1i 6= θ2i (1.2)

for each gene i.

Starting from model (1.1), most methods include six steps. First, they estimate θki and

φi for each gene. The dispersion parameter characterizes the mean-variance relationship,

consistent with the observation that genes with similar true expression levels exhibit simi-

lar variances [28, 30]. When the sample sizes are small, one may consider using shrinkage
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estimation of φi’s to borrow information across genes or to incorporate prior knowledge, for

the purpose of obtaining more robust results [31]. Second, they construct a test statistic

based on the estimators to reflect the mean difference between the two conditions. Third,

they derive the null distribution of the test statistic under H0. Fourth, they calculate the

observed value of the test statistic for each gene. Fifth, they convert the observed values

of test statistics into p-values based on the null distribution. Sixth, they perform multiple

testing correction on the p-values to determine a reasonable threshold, and the genes with

p-values under that threshold would be called as DE.

For example, edgeR [28] first estimates the dispersion parameters using a conditional

maximum likelihood and then develops a test analogous to the Fisher’s exact test. DESeq2

[30] adds a layer to the model by estimating (θ2i − θ1i) using a generalized linear model

with a logarithmic link function, Yk,ij as the response variable, and the condition as a binary

predictor. This generalized linear model setup can easily incorporate the information on

experimental design as additional predictors. In the testing step, DESeq2 transforms the

problem into testing if the condition predictor has a significant effect on the logarithmic fold

change of gene expression, which is equivalent to testing whether θ2i − θ1i = 0. EBSeq [32]

and ShrinkSeq [33] are also based on model (1.1), but under a Bayesian framework they

use hyper-parameters to borrow information across genes, and they calculate the posterior

probability of a gene being differentially expressed.

There are other DGE methods that do not assume the NB distribution as in model

(1.1) but take a different approach by assuming that log(Yk,ij) follows a Normal distribu-

tion, which has more tractable mathematical theory than count distributions have. For

example, the voom method [34] estimates the mean-variance relationship of log(Yk,ij) and

generates a precision weight for each observation. Then voom inputs log(Yk,ij) and precision

weights into the limma empirical Bayes analysis pipeline [35], which was initially designed

for microarray data and has multiple modeling advantages: using linear modeling to analyze

complex experiments with multiple treatment factors, using quantitative weights to account

for variation in the precision of different observations, and using empirical Bayes methods to

borrow information across genes. Another method sleuth [36] is applicable to finding both
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differentially expressed genes and transcripts between two conditions.

Remark 1.1. A common scenario is that a study only includes a small number of RNA-

seq replicates [37]. Even though most methods introduced in this section are technically

applicable to data with as few as two replicates per condition, there is no guarantee of good

performance for these methods with a small number of replicates. In fact, it was observed

that many methods did not have a good control on false discovery rates (FDR) under this

scenario [37]. We suggest that users carefully check or consult a statistician if the assumptions

of a method are reasonable for their study before using the method, as a way to reduce the

chance of misusing statistics.

Remark 1.2. Comparisons of DGE methods show that none of the methods is optimal in all

circumstances, and methods can produce very different results regarding both the ranking

and number of DE genes on the same dataset [4, 26]. In some applications, users are more

concerned about the ranking of DE genes than the p-values of genes, especially when setting

a reasonable threshold on the p-values is difficult. In other applications where threshold-

ing on p-values is required to control the FDR, users need to address the multiple-testing

issue. Common approaches to addressing the multiple-testing issue include the Bonferroni

correction [38], the Holm-Bonferroni method [39], and the Benjamini-Hochberg FDR cor-

rection [40], with a decreasing level of conservatism. The first two methods aim to control

the family-wise error rate (the probability of making one or more false discoveries), while

the third method aims to control the expected proportion of false discoveries among the

discoveries.

1.3.2 Gene co-expression network analysis

A gene co-expression network (GCN) is an undirected graph, where nodes correspond to dif-

ferent genes, and edges connecting the nodes denote the co-expression relationships between

genes. GCNs can help people learn the functional relationships between genes and infer

and annotate the functions of unknown genes. To the best of our knowledge, the first GCN

analysis on a genome-wide scale across multiple organisms was completed in 2003, enabled
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by the availability of high-throughput microarray data [41]. One of the most commonly used

GCN analysis methods, WGCNA, is popularly applied to gene expression datasets to detect

gene clusters and modules and investigate gene connectivity by analyzing correlation net-

works [42]. Here we introduce the GCN methods based on the framework proposed in [43].

We denote the gene expression matrix as XN×J , where the N rows represent genes, and the

J columns represent samples. The N genes are considered as N nodes in the co-expression

network. The first step is to construct a symmetric adjacency matrix AN×N , where Aij is

a similarity score in the range from 0 to 1 between genes i and j. Aij measures the level of

concordance between gene expression vectors Xi· and Xj·. As discussed in Chapter 1.2, the

similarity measure can be calculated based on the correlation coefficients or the mutual in-

formation measures, depending on the type of gene co-expression relationships to be studied.

The elements in the adjacency matrix only consider each pair of genes when evaluating their

similarity in expression profiles. However, it is important to consider the relative connect-

edness of gene pairs with respect to the entire network in order to detect co-expression gene

modules. Therefore, one needs to calculate the topological overlap matrix TN×N , where Tij

is the topological overlap between node i and j. One such example used in previous studies

is Tij =
∑N
k=1 AikAkj+Aij

min{
∑N
k=1 Aik,

∑N
k=1 Ajk}+1−Aij

[44]. The final distance between nodes i and j is defined

as dij = 1− Tij. Clustering methods can then be applied to search for gene modules based

on the resulting distance matrix. The identified gene modules are of great biological interest

in many applications. For example, the modules can serve as a prioritizer to evaluate func-

tional relationships between known disease genes and candidate genes [45]. Gene modules

can also be used to detect regulatory genes and study the regulatory mechanisms in various

organisms [46].

1.4 Transcript-level analysis: isoform discovery and quantification

During the transcription process from genes to mRNA transcripts, one gene may give rise

to multiple mRNA transcripts with different nucleotide sequences, thus contributing to the

diversity of transcriptomes. RNA transcripts from the same gene are often referred to as
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isoforms, which are different combinations of whole or partial exons. An important use of

RNA-seq data is to recover full-length mRNA transcript structures and expression levels

based on short RNA-seq reads. This application involves two major tasks. The first task, to

identify novel transcripts in RNA-seq samples, is commonly referred to as transcript/isoform

reconstruction, discovery, assembly, or identification. This is one of the most challenging

problems in this area due to the large searching space of candidate isoforms and limited

information contained in short reads (Figure B.1a). The second task, to estimate the ex-

pression of known or newly discovered transcripts, is usually referred to as transcript/isoform

quantification or abundance estimation. It is a common practice to combine the two tasks

into one step, and many popular computational tools simultaneously perform transcript re-

construction and quantification [47]. This is usually achieved by estimating the expression

levels of all the candidate isoforms with penalty or regularity constraints, and the resulting

isoforms with non-zero estimated expression are treated as identified isoforms. We introduce

these two tasks together, as they can be tackled by the same statistical framework in many

existing tools. We focus on the basic models that are commonly used by multiple methods,

and these models are generally annotation-based and assume that a reference genome is

available for the organism of interest.

The transcript reconstruction and quantification are performed separately for individual

genes, so the following discussion applies to one gene. Throughout this section, we index

the isoforms of a gene as {1, 2, . . . , J}. In the reconstruction setting, J is the total number

of candidate isoforms; in the quantification setting, J is the number of annotated (or newly

discovered) isoforms to be quantified. We index the exons of the gene as {1, 2, . . . , I}.

Suppose that a total of n reads are mapped to the gene, and they are denoted as R =

{r1, r2, . . . , rn}. The goal of most methods is to estimate Θ = (θ1, θ2, . . . , θJ)T , where θj =

fraction of isoform j = P(a random read is from isoform j).
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1.4.1 Likelihood-based methods

The first type of transcript quantification methods estimates transcript abundance by maxi-

mizing the likelihood or the posterior based on a statistical model. These methods are flexible

and can be easily modified to incorporate prior biological information. The statistical mod-

els are further divided into three categories: region-based, read-based, and fragment-based

models.

Region-based models summarize the read counts based on the genomic regions of interest,

such as exons and exon-exon junctions. Suppose that S is the index set that denotes all the

genomic regions of interest. Read counts can be summarized as X = {Xs | s ∈ S}, where

Xs is the total number of reads mapped to region s. The basic model assumes that Xs

follows a Poisson distribution with parameter λs. Given the structures of isoforms and their

compatibility with the regions, it is reasonable to assume λs as a linear function of the θj’s:

λs =
∑J

j=1 asjθj. The likelihood function can then be derived, and the task of estimating Θ

reduces to a maximum likelihood estimation (MLE) problem:

L(Θ|X) =
∏
s∈S

e−λsλXss
Xs!

=
∏
s∈S

exp
(
−
∑J

j=1 asjθj

)(∑J
j=1 asjθj

)Xs
Xs!

,

Θ̂ =
(
θ̂1, θ̂2, . . . , θ̂J

)T
= arg max

Θ

∑
s∈S

logL(Θ|X) .

(1.3)

The first isoform quantification method [48] uses a region-based model.

In contrast to region-based models, read-based methods directly use the likelihood as a

product of the probability densities of individual reads instead of first summarizing reads

into region counts. The likelihood function is written as

L(Θ|R) =
n∏
i=1

J∑
j=1

P(ri|isoform j) θj =
n∏
i=1

J∑
j=1

P(si|isoform j) P(`ij|isoform j) θj , (1.4)

where R = {r1, ..., rn}, si is the starting position, and `ij is the read length (for single-end

reads) or fragment length (for paired-end reads) of read ri if it belongs to isoform j (Figure

B.1b). While many methods do not explicitly state it, they assume that si and `ij are

independent in the above model. If the two ends of read i are mapped to the same exon
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or two neighboring exons, its corresponding fragment length can be determined and fixed.

Otherwise, the corresponding fragment length lij of read i could vary for each different

compatible isoform j (Figure B.1b). Even though each read has the same weight in the

likelihood model, the reads that are mapped to two non-neighboring exons play a critical

role in the detection of splicing junctions and the reconstruction of full-length transcripts.

Cufflinks [49], eXpress [50], RSEM [20], and Kallisto [51] all adapted the above model in

their quantification step, and they mainly differ in how they model P(si|isoform j) and

P(li|isoform j) to incorporate sequencing bias adjustment. To estimate Θ by maximizing

the likelihood in (1.4), the Expectation-Maximization (EM) algorithm [52] is the standard

optimization algorithm.

Some other methods, including WemIQ [53], Salmon [54], iReckon [55], and MSIQ [56],

introduce hidden variables to denote the isoform origins of reads and use these variables

to simplify the form of the likelihood function. Suppose that the isoform origins of reads

R = {r1, . . . , rn} are denoted as Z = (Z1, Z2, . . . , Zn)T , where Zi = j if read ri comes from

isoform j. Then the joint probability of R and Z can be written as

P(R,Z|Θ) =
n∏
i=1

P(ri, Zi|Θ) =
n∏
i=1

J∏
j=1

[P(ri|isoform j) θj]
1{Zi=j} . (1.5)

Such model formulation is especially useful when one would like to estimate Θ under the

Bayesian framework (Figure B.1c), as what has been done in MISO [57], Salmon [54], and

MSIQ [56]. Prior knowledge on Θ can be incorporated via modeling the prior distribution

of Θ, and Θ would be estimated with the maximum-a-posteriori (MAP) estimator. As

shown in Figure B.1c, another advantage of the Bayesian framework is that the model can

be easily extended to incorporate multiple RNA-seq samples and borrow isoform abundance

information across samples [56].

A more recent isoform quantification method alpine [58] belongs to the third fragment-

based category. Alpine is specifically designed to adjust for multiple sources of sequencing

biases in isoform quantification. It models the fragment counts using a Poisson generalized

linear model, whose predictors are bias features including the length, the relative position,

the read sequence bias, the guanine-cytosine (GC) content and the presence of long GC
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stretches within every fragment. Alpine estimates the read start sequence biases using the

variable length Markov model, which was proposed by Roberts et al. [59] and implemented

in Cufflinks [49]. After estimating bias parameters, alpine outputs bias-corrected isoform

abundance estimates. The Poisson parameter λs for a potential fragment s is assumed to

be λs =
∑J

j=1 asjθj, similar to the assumptions in region-based models. Hence, θj’s are

estimated based on the bias-corrected estimates λ̂s’s.

The above approaches, however, would not lead to accurate isoform reconstruction results

when directly used to discover new isoforms, because the number of candidate isoforms can

be huge when the number of exons is large. A common practice is to add penalty terms before

maximizing the objective function, i.e., the likelihood or the posterior. The regularization

aims to enforce sparsity on the estimated Θ̂, whose nonzero entries indicate the discovered

isoforms. Two such reconstruction methods are iReckon [55] and NSMAP [60].

1.4.2 Regression-based methods

The second type of statistical methods for isoform quantification is regression-based. These

methods formulate the problem as a linear or generalized linear model and treat the region-

based read count (or proportion) as the response variable, candidate isoforms as predictor

variables, and isoform abundances as coefficients to be estimated. Regression-based methods

include rQuant [61], SLIDE [62], IsoLasso [63], and CIDANE [47].

The basic model is a linear model with region-based read proportions as the responses. As

for the design matrix, IsoLasso considers a binary matrix to denote the compatibility between

the isoforms and genomic regions, while the other three methods consider a conditional

probability matrix, for which the read proportions are modeled as:

Xs

n
=

J∑
j=1

P(a random read falls into region s|isoform j) P(isoform j) + εs

,
J∑
j=1

Fsj θj + εs (s ∈ S) ,

(1.6)

where εs represents independent random noise with mean 0. As in the likelihood-based

methods, the probability Fsj depends on the structure of region s and the length of isoform
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j. Especially when region s spans alternative splicing junctions (e.g., region s skips the

middle exon but includes the two end exons), the estimation accuracy of Fsj is critical in

the modeling. Then the estimation task reduces to a penalized least-squares problem

Θ̂ = arg min
Θ≥0

S∑
s=1

(
Xs

n
−

J∑
j=1

Fsj θj

)2

+ penalty, (1.7)

where the penalty term is only needed for isoform discovery and often excluded for isoform

quantification. For example, IsoLasso sets the penalty term as λ
∑J

j=1
nθj
Lj

, where Lj is the

length of isoform j, while SLIDE uses λ
∑J

j=1
θj
mj

, where mj is the number of exons in isoform

j. In both methods, λ is a tuning parameter to control the level of regularization. IsoLasso

selects λ based on the resulting number of isoforms with non-zero estimated expression, while

SLIDE uses a stability criterion [64].

Remark 1.3. There are isoform discovery methods that reconstruct RNA transcripts based

on deterministic graph methods. Examples include a de novo approach Trinity [65], and

reference genome-based approaches Scripture [66], Cufflinks [19], and Stringtie [67], which

all construct splice graphs based on aligned reads and then use various criteria to parse the

graph into transcripts in a deterministic way, without resorting to statistical models.

Remark 1.4. Despite many methods developed for isoform quantification, not all of them

discuss the estimation uncertainty of isoform abundance levels. Even though the point

estimates of expression levels have led to new scientific discoveries in many biological studies,

it is important to consider estimation uncertainty, especially when the differential expression

analysis is of interest, or when some candidate isoforms are highly similar in structures. One

way to evaluate the uncertainty in Bayesian methods is to construct posterior or credible

intervals of the estimated abundance levels [56,68]. In regression-based methods, it is possible

to calculate the standard errors of the abundance estimates.

Remark 1.5. There have been multiple efforts to quantify transcripts for better accuracy

based on multiple RNA-seq samples (especially biological replicates), thanks to reduced

sequencing costs and the rapid accumulation of publicly available RNA-seq samples. Model-

based methods include CLIIQ [69], MITIE [70], FlipFlop [71], and MSIQ [56]. These methods

generalize the models designed for isoform quantification based on a single sample (Figure
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B.1c), and their results show that aggregating the information from multiple samples can

achieve better accuracy in isoform abundance estimation. We discuss the statistical modeling

of multiple RNA-seq samples for isoform quantification in Chapter 2.

Remark 1.6. Current statistical methods differ in their perspectives to formulate the isoform

quantification problem, the trade-off between the complexity and flexibility of models, and

the methods to adjust for various sources of sequencing biases and errors. Because of the

complexity of transcript-level analysis and the noise and biases in RNA-seq samples, it is

impossible to identify a superior method for all real datasets. We suggest that users consider

their preferences on the precision and recall rates in discovery problems, and to evaluate the

assumptions of different methods for RNA-seq read generation and bias correction, before

selecting the tool to apply on their data [5, 72].

1.5 Exon-level analysis: exon inclusion rates

Since transcript-level analysis of complex genes in eukaryotic organisms remains a great chal-

lenge [72], there are approaches focusing on exon-level signals, seeking to study alternative

splicing based on exons and exon-exon junctions instead of full-length transcripts. When

transcriptomic studies focus on the exon-level, a primary step is usually to estimate the

percentage spliced in (PSI or Ψ, [57]) of an exon of interest. Our discussion below applies to

an individual exon. Considering two isoforms, one includes the exon and the other skips the

exon, the goal of model-based methods is to estimate

Ψ = exon’s inclusion rate

=
P(a read is from the inclusion isoform)

P(a read is from the inclusion isoform) + P(a read is from the exclusion isoform)
.

(1.8)

A direct estimator of PSI is Ψ̂ =
CI
LI

CI
LI

+
CE
LE

, where CI denotes the number of reads supporting

the inclusion isoform (e.g., reads spanning the upstream splicing junction, the exon of inter-

est, and the downstream splicing junction), and CE denotes the number of reads supporting

the exclusion isoform (e.g., reads spanning parts of the upstream and downstream exons
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but skipping the exon of interest). LI and LE denote the lengths or the adjusted lengths

(after accounting for constraints on read and isoform lengths) of the inclusion and exclusion

isoforms.

To evaluate the estimation uncertainty, methods including MISO [57], SpliceTrap [73],

and rMATS [74] use different statistical models. Both MISO and SpliceTrap construct

models similar to model (1.5) under the Bayesian framework, with Ψ as the parameter of

interest. The Bayesian confidence interval of Ψ can then be obtained based on its posterior

distribution. The rMATS method accounts for the information from multiple replicates

through the following hierarchical model

CIk|Ψk ∼ Binomial(n = CIk + CEk, p = f(Ψ)),

logit(Ψk) ∼ Normal(µ = logit(Ψ), σ2),
(1.9)

where CIk (CEk) is the number of reads supporting inclusion (exclusion) in replicate k (k =

1, 2, . . . , K); Ψk is the PSI of the exon of interest in replicate k; Ψ and σ2 are the mean

and variance of PSI in the biological condition of interest; f is a function to normalize Ψ

based on the effective length of the exon. Since MISO and rMATS can estimate Ψ and the

uncertainty of Ψ̂, they can be used to detect differential exon usage between two biological

conditions through statistical testing.

Remark 1.7. There is a trade-off in alternative splicing studies concerning whether to use

transcript-level or exon-level information. Full-length transcripts provide global information

on splicing patterns which directly lead to knowledge on protein isoforms, but accurate

quantification of transcripts suffer from the limited information in short RNA-seq reads.

On the other hand, exon-level analysis results in more accurate quantification of individual

splicing events, but limits the scope of studies to local genomic regions. The accumulation of

multiple RNA-seq samples and the increasingly large databases of annotated transcripts [75]

might provide a solution to this dilemma: combining information from multiple samples with

prior knowledge on transcripts may assist the reconstruction and quantification of full-length

isoforms from short RNA-seq reads.
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1.6 Discussion

RNA-seq has become the standard experimental method for transcriptome profiling, and its

application to numerous biological studies have led to new scientific discoveries in various

biomedical fields. We have summarized the key statistical considerations and methods in-

volved in gene-level, transcript-level, and exon-level RNA-seq analyses. Despite the fact that

continuous efforts on the development of new tools improve the accuracy of analyses on all

levels, challenges posted by relatively short RNA-seq reads remain in studying full-length

transcripts, making it difficult to fully understand the dynamics of mRNA isoforms and their

protein products. In complex transcriptomes, probabilistic models have limited power in dis-

tinguishing different but highly similar transcripts. It has been noted that identification of

all constituent exons of a gene is not always successful, and in cases where these exons are

correctly reported, it is challenging to assemble them into complete transcripts with high ac-

curacy [72]. Given the current read lengths in NGS, we emphasize the importance of jointly

using multiple samples (i.e., technical or biological replicates) to aggregating information on

alternative splicing and sequencing noise. Näıve pooling or averaging methods are shown to

be inadequate in the multiple-sample analysis [56], and statistical discussion on this topic is

still insufficient. On the other hand, new sequencing technologies such as PacBio [76] and

Nanopore [77,78] sequencing technologies can produce longer reads with average lengths of

2 − 3 kbp [79]. A primary barrier of the current long-read sequencing technologies is their

relatively high error rates and sequencing costs [80]. One current approach to take advan-

tage of these technologies is to combine the information in next-generation short reads and

third-generation long reads in isoform analysis [79].

To demonstrate the efficiency of statistical methods developed for RNA-seq data, method

developers must show the reproducibility and interpretability of these methods. As we have

discussed in Remarks 1.2 and 1.6, there is hardly a method that is superior in every appli-

cation. However, a useful method should at least demonstrate its advantage under specific

assumptions or on a particular type of datasets. Meanwhile, no matter how complicated a

statistical model is, its general framework and logical reasoning should be interpretable to
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the users. Also, comparison of different methods over benchmark data can be beneficial for

the development of new methods. However, experimentally validated benchmark data for

RNA-seq experiments are still limited on the genome-wide scale.

Aside from the analysis tasks introduced in this chapter, bulk RNA-seq is also widely

applied to other areas like RNA-editing analysis [81,82], non-coding RNA discovery and char-

acterization [83,84], expression quantitative trait loci (eQTLs) mapping [85], and prediction

of disease progression [86], with interesting statistical questions involved. Transcriptomic

data can also be integrated with genomic and epigenomic data to advance our understand-

ing of gene regulation and other biological processes [87]. In recent years, the emerging

single-cell RNA sequencing (scRNA-seq) technologies enable the investigation of transcrip-

tomic landscapes at the single-cell resolution, bringing RNA-seq analyses to a new stage [88].

We discuss the modeling of scRNA-seq data in more detail in Chapters 4-6.
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CHAPTER 2

Transcript Quantification with

Multiple Bulk RNA Sequencing Samples

2.1 Introduction

One primary goal of the transcriptomics field is to quantify the dynamic expression levels

of mRNA isoforms under different biological conditions. For common species, such as H.

sapiens (humans), M. musculus (mice), and D. melanogaster (fruit flies), existing transcript

annotations record a large number of mRNA isoforms reported in previous literature. For

example, the UCSC Genome Browser [90], GENCODE [75] and RefSeq [91] databases contain

known mRNA isoform structures in transcriptomes of humans and several other species.

However, the annotations lack gold standard abundance information of these isoforms. In

many biological studies, it is important to identify and catalog expression levels of novel or

alternative transcripts [92] in order to perform downstream analyses such as identification

of differentially expressed transcripts and construction of transcript co-expression networks.

Hence, how to accurately estimate isoform abundance is a key question.

Over the past decade, the next-generation RNA-seq technologies have generated numer-

ous datasets with unprecedented nucleotide-level information on transcriptomes, providing

new opportunities to study the dynamic expression of known and novel mRNAs in a high-

throughput manner [1, 19, 93]. The ideal data would include the sequences of full-length

mRNA transcripts; however, the most widely used Illumina sequencers generate millions of

short reads, typically shorter than 300 base pairs (bp), from the two ends of mRNA tran-

script fragments [1]. In this chapter, our discussion focuses on paired-end RNA-seq data

generated by Illumina sequencers (Figure 1.1).
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Due to the presence of numerous isoforms in existing annotations, inference of their

abundance from RNA-seq reads has been an active field of research since 2009 [48,49,53,62].

A necessary step is to first map reads to reference genomes so that researchers know the

number of reads generated from each exon. Then, a common approach to summarizing

RNA-seq reads is to categorize the reads by the genomic regions to which they map so that

the number of reads in different genomic regions can be used to distinguish the abundance

of various isoforms. As different isoforms may consist of overlapping but not identical exons,

many methods divide exons into subexons (Figure 2.1), which are defined as transcribed

regions between every two adjacent splicing sites in annotations [53,62,94]. By this definition,

every gene is composed of non-overlapping subexons and introns. Since combinations of

subexons form a superset of all the annotated isoforms, it is reasonable to categorize RNA-

seq reads based on the sets of subexons to which they map. For the ease of terminology, we

will refer to subexons as exons for the remainder of this dissertation.

isoform 1

isoform 2

isoform 3

subexons 21 43

gene

annotation

genome

Figure 2.1: Illustration of subexons. The example gene has two exons, represented by light

and dark gray boxes, and three mRNA isoforms. The solid lines between exons represent

introns in the gene that have been spliced out in isoforms. Adjacent splicing sites in these

isoforms define four non-overlapping subexons: the first exon is divided into subexon 1 and

2, and the second exon is divided into subexon 3 and 4.

How to infer isoform abundance from observed RNA-seq reads is a statistical problem, as

reads are generated by a mixture of isoforms. We illustrate this using a hypothetical gene,

which is composed of four non-overlapping exons (Figure 2.2). Suppose that the gene is
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transcribed into two mRNA isoforms: 60% of the transcripts are isoform 1, which consists of

exons 1, 2 and 4, and 40% of the transcripts are isoform 2, which consists of all four exons. In

reality, the isoform proportions, though of great interest to biologists, remain unobservable

under the current experimental settings. Our aim is to estimate the relative abundance

of annotated isoforms based on reads generated in RNA-seq experiments. Suppose that n

paired-end reads are generated and mapped to the reference genome. Some of the mapped

reads have obvious isoform origins. For example, read 3 is compatible only with isoform 2,

and thus must have isoform 2 as its origin. On the other hand, many mapped reads can

have ambiguous origins. For example, read 1 is compatible with both isoforms 1 and 2, and

thus we cannot determine its origin isoform. The much more complex structures of real

genes complicate the situation even further. For instance, human genes have nine exons on

average [95], and a large proportion of human genes have more than ten annotated isoforms

(Figure 2.3). Therefore, this problem requires powerful statistical methods to provide good

estimates of isoform proportions.

1 42gene

mRNA

DNA3

...

read 1
read 2
read 3...

isoform 2 mRNA1 42 3

1 42isoform 1

5’ 5’3’ 3’

1 300 350 400 450 480 500 700

Figure 2.2: The four exons of this gene are represented as boxes of different lengths and

colors. The starting and ending positions of the four exons are marked on top of the gene.

In an RNA-seq experiment, multiple reads are generated and the number of reads coming

from each isoform is proportional to the isoform’s abundance. Each read has a 5’-end and

a 3’-end, as shown in read 1. These reads are mapped to the reference genome and their

overlapping exons are key information for estimating isoform abundance.

A number of isoform quantification methods have been developed to estimate the abun-
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Figure 2.3: Relationship of isoform numbers and exon numbers in fly and human genes. a:

log 2(isoform numbers) versus exon numbers in 3421 fly genes, whose exon numbers range

from 3 to 98. b: log 2(isoform numbers) versus exon numbers in 15,268 human genes that

have at least two annotated isoforms. The exon numbers in human genes range from 2 to

380.

dance of specific isoforms. These methods perform isoform quantification using either direct

computation or model-based approaches [1,5,72]. Direct computation approaches count the

number of reads compatible with each isoform and then normalize the counts by isoform

lengths and the total number of reads to generate estimates of isoform abundance. The

most commonly used unit is RPKM [18]. However, for complex gene structures, counts of

RNA-seq reads compatible with isoforms may not be proportional to isoform abundance,

as some reads cannot be assigned unequivocally to only one isoform. To address this issue,

model-based approaches are needed to assess the likelihood of a read coming from different

isoforms. In the first model-based isoform quantification method [48], read counts in genomic

regions are modeled as Poisson variables with isoform abundance as the mean parameter,

under the assumption that reads are uniformly sampled within each isoform. Isoform abun-

dance is estimated by maximum likelihood estimates. Cufflinks [49], the most widely used

method for discovering novel isoforms from RNA-seq data, also has the functionality to es-

timate isoform abundance. Its approach is similar to the likelihood-based approach in [48],

and it proposed a new unit for isoform abundance based on paired-end RNA-seq data,
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FPKM, which accounts for the dependency between paired-end reads. MISO [57] is another

model-based method constructed under a Bayesian framework, and it provides maximum-a-

posteriori estimates and confidence intervals of isoform abundance. There are other isoform

quantification methods with different features [96]. For example, iReckon [55] utilizes a reg-

ularized EM algorithm; WemIQ [53] replaces the Poisson distribution with a more general

and realistic generalized Poisson distribution; Sailfish [97] is a fast alignment-free method

that saves the read mapping step. Please see Chapter 1.4 for more detailed discussion of

existing transcript quantification methods.

sample 1

sample 2

sample 3

sample 4

sample 5

sample 6

coordinates

annotation

186, 310, 000 186, 320, 000 186, 330, 000 186, 340, 000

Figure 2.4: Reads in six human ESC RNA-seq samples mapped to the gene TPR. Detailed

information on these samples is listed in Table C.1. The counts of RNA-seq reads are

summarized in the histograms. The annotated isoform structures of this gene were shown in

the bottom row. We mark four example sites where the six samples are obviously inconsistent

with gray shades.

However, there remains much space to improve the accuracy of isoform quantification due

to the noises and biases in RNA-seq data. Because of the accumulation of RNA-seq samples

in public databases, multiple RNA-seq data sets are often available for the same biological

condition (e.g., the same cell or tissue type), and they provide more information than a single

RNA-seq dataset. For example, the GTEx (Genotype-Tissue Expression) study comprises
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9, 662 samples from 54 tissues, and the Cancer Genome Atlas (TCGA) study comprises

11, 350 samples from 33 cancer types [98]. Here, the concept of multiple samples includes

both technical replicates (different aliquots of the same sample measured multiple times [92])

and biological replicates (replicates obtained from multiple samples of the same type of cells

or tissues). The availability of multiple RNA-seq samples from the same biological condition

in public databases (e.g., NIH Gene Expression Omnibus [99]) motivated us to develop a

new statistical method for better isoform quantification by taking advantage of the common

and thus more reliable information provided by multiple samples. The necessity of such a

method is twofold. First, the number of RNA-seq samples produced by a single lab is limited

since experimental costs increase each time an additional replicate is added. A statistical

method that allows for multiple samples enables researchers to combine their own data with

public data to obtain more accurate and robust isoform abundance estimates. Second, such

a method supports better reuse of public data for both biological discovery and method

development.

Several methods have been developed to use multiple RNA-seq samples from the same

biological condition for isoform quantification. For example, CLIIQ [69] uses integer linear

programming to jointly model RNA-seq data from multiple samples. MITIE [70] assumes

that the same isoforms are expressed in all samples but may have different abundances, and

it then reduces the problem to solving systems of linear equations. FlipFlop [71] uses a

convex formulation and introduces the group-lasso penalty to ensure sparsity in estimation.

However, none of these methods considers the quality variation of different RNA-seq samples

and how such variation might affect the inference of isoform abundance. It is commonly

recognized that RNA-seq samples generated by different protocols or different labs can vary

greatly with respect to the signal-to-noise ratios, biases, etc. For example, Figure 2.4 shows

RNA-seq read coverage of the TPR gene in six human ESC samples. There is obvious

variation in the read coverage profiles of these six samples. For example, the second sample

has little signal in the last exon while the other samples have obviously stronger signals

in the last exon. Thus, it is inappropriate to treat all the samples equally during isoform

quantification by assuming that they come from the same population (i.e., the same tissue
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or cell type). Hence, results from these methods may be sensitive to the heterogeneity of

samples or even, in some cases, be dominated by biased samples, which do not accurately

reflect the transcriptome information of the biological condition of interest.

In this chapter, we propose a quantification method, MSIQ (Multiple RNA-seq Samples

for accurate Isoform Quantification), for accurately estimating isoform expression. MSIQ

is a model-based method for estimating isoform abundance by discerning and using multi-

ple RNA-seq samples that share similar transcriptome information, which we define as the

consistent group. Our modeling consists of two components: (1) estimating the probability

of each sample being in the consistent group via evaluating the sample similarities, and (2)

estimating isoform abundance from reweighted samples, with greater weights given to the

samples that are more likely to be consistent. These two components enable the method

to distinguish between the large variation stemming from experimental factors and the rea-

sonable biological variation. In Chapter 2.2, we describe the Bayesian hierarchical model

used in MSIQ to bridge unknown isoform proportions and observed read counts mapped to

a gene in multiple RNA-seq samples. Our model allows for different isoform proportions

of RNA-seq samples inside and outside the consistent group. This approach reduces the

probability that the estimated isoform abundance is biased by samples of poor quality. We

conduct parameter estimation by Gibbs sampling and prove the consistency of the MSIQ

estimator. We show that the isoform proportions estimated by MSIQ are consistent with

the unknown isoform proportions in the consistent group, while the estimates based on the

assumption that all samples have equal weights are not. In Chapter 2.3, we apply MSIQ

to both simulated and real data to illustrate the efficiency and robustness of MSIQ under

various parameter settings. We also compare MSIQ with the oracle estimators and other

widely used estimation methods. In Chapter 2.6, we discuss the advantages and limitations

of MSIQ and its possible extensions.
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2.2 Methods

For a given gene, the MSIQ method aims to achieve two goals with respect to isoform

expression quantification. First, we want to identify the samples that represent the tissue

or cell type of interest. We refer to these samples as the consistent group and assume that

the group contains at least one sample. We identify samples in the consistent group under

the assumption that these samples share the most similar read distributions among all the

samples. Second, we would like to estimate the proportion of reads coming from each RNA

isoform in the given tissue or cell type, with larger weights given to samples in the consistent

group. We focus our efforts on RNA-seq data with paired-end reads, but the model can

easily be extended for single-end reads.

2.2.1 Observed data and parameters of interest

Suppose we are studying a gene with N exons, J annotated RNA isoforms, and D RNA-seq

samples. Ideally, we are interested in the true proportion of each isoform

pj = P(an mRNA transcript is of isoform j), j = 1, 2, ..., J. (2.1)

However, these hidden parameters are not directly observable in RNA-seq experiments. In-

stead of directly estimating pj, we aim to estimate the practical parameters

αj = P(an RNA-seq read is from isoform j), j = 1, 2, ..., J, (2.2)

which we refer to as isoform proportions.

We denote the observed data, D independent samples of reads mapped to the given gene,

by R(d) = {r(d)
1 , r

(d)
2 , ..., r

(d)
nd } (d = 1 , 2 , ..., D), where nd denotes the total number of reads

in sample d and r
(d)
i denotes the ith read (i = 1, 2, ..., nd) in sample d. To use the read

information, an efficient data summary is needed to preserve the most relevant information

for isoform quantification while limiting the computational complexity to a manageable

level [100]. We write each read as r
(d)
i =

{
s

(d)
1i , s

(d)
2i ,
{
y

(d)
i1 , y

(d)

ic(d)
, y

(d)

i(c(d)+1)
, y

(d)

i(2c(d))

}}
, where

s
(d)
1i and s

(d)
2i respectively denote the index sets of exons overlapping with the read’s left
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end and right end; y
(d)
ik denotes the kth genomic position of read i; c(d) is read length in

sample d. Please refer to Appendix A.1 for the advantages of this summarizing approach

over alternative approaches.

2.2.2 Assumptions and prior

In addition to the observed data, we consider the hidden data, which are the isoform origins

of the reads Z(d) = (Z
(d)
1 , Z

(d)
2 , . . . , Z

(d)
nd )′ , where Z

(d)
i ∈ {1, 2, . . . , J} indicates the isoform

origin of read i, and Z
(d)
i = j if read i actually comes from isoform j. The differences between

RNA-seq samples are reflected in their isoform proportions τ (d), d = 1, 2, . . . , D. In sample

d, we denote the true probability of reads from isoform j as τ
(d)
j = P (Z

(d)
i = j) and the

isoform proportion vector as τ (d) = (τ
(d)
1 , τ

(d)
2 , . . . , τ

(d)
J )′ , with

∑J
j=1 τ

(d)
j = 1. We define a

hidden state variable Ed for each sample such that

Ed = 1{sample d belongs to the consistent group}. (2.3)

We assume samples in the consistent group all have the same proportion vector α =

(α1, α2, . . . , αJ)′ with
∑J

j=1 αj = 1, while samples outside the consistent group can each

have different isoform proportions β(d) = (β
(d)
1 , β

(d)
2 , . . . , β

(d)
J )′ with

∑J
j=1 β

(d)
j = 1. Thus the

isoform proportions can be expressed as

τ (d) = Ed ·α+ (1− Ed) · β(d) =

 α, if Ed = 1 ,

β(d), if Ed = 0 .
(2.4)

The isoform proportion vector α of the consistent group is our key parameter of interest.

We assume α and β(d) are a priori Dirichlet(λ), and Ed is a priori Bernoulli(γ): Ed|γ ∼

Bernoulli(γ),where γ ∼ Beta(a, b). Intuitively, λ controls the distance between the isoform

proportions of samples inside and outside the consistent group, while γ controls the tendency

of assigning a sample to the consistent group. We describe the relationship between observed

RNA-seq reads and hidden isoform proportions in multiple samples under a Bayesian frame-

work (Figure 2.5).
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Figure 2.5: Joint modeling of multiple RNA-seq samples with MSIQ. In this framework,

Ed (d = 1, 2, . . . , D) is a binary hidden state variable indicating whether RNA-seq sample d is

in the consistent group, while a, b, and γ are hyper-parameters (priors) in Ed’s distribution.

Depending on Ed, the isoform proportion vector τ (d) takes either the consistent group’s

isoform proportion vector α or sample-specific β(d). Given the isoform proportions, RNA-seq

reads are generated in each sample, and the observed data are summarized as R(d).

2.2.3 The probabilistic model of MSIQ

We introduce I
(d)
i,j as a short notation of the binary variable 1{Z(d)

i = j}. Given a sample

with isoform proportion τ (d), the probability of read r
(d)
i and origin Z

(d)
i can be written as:

P
(
r

(d)
i , Z

(d)
i |τ (d)

)
=

J∏
j=1

P
(
r

(d)
i , Z

(d)
i = j|τ (d)

)
1{Z(d)

i =j}

=
J∏
j=1

[
P
(
r

(d)
i |Z

(d)
i = j

)
τ

(d)
j

]I(d)ij

,
J∏
j=1

(
h

(d)
i,j τ

(d)
j

)I(d)i,j

,

(2.5)

where P
(
r

(d)
i , Z

(d)
i |τ (d)

)
refers to the joint density of read r

(d)
i and its isoform origin Z

(d)
i

given the model parameters, and h
(d)
i,j is the generating probability of read r

(d)
i given isoform

j. If read r
(d)
i and isoform j are incompatible (e.g., read 2 in Figure 2.2 cannot come from

isoform 1), h
(d)
i,j = 0. Otherwise, h

(d)
i,j depends on the model of the read generation mechanism.
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We adopt the following model from [53]:

h
(d)
i,j =

1

`′j
× P

(
L

(d)
i,j

)
, (2.6)

where `′j is the effective length (i.e., the number of possible starting positions on the fragment)

of isoform j and can be calculated as `′j = `j−L(d): `j is the length of isoform j and L(d) is the

mean fragment length in sample d. L
(d)
i,j denotes the fragment length of r

(d)
i if it comes from

isoform j. L
(d)
i,j is assumed to be a Gaussian random variable and its mean L(d) = E(L

(d)
i,j ) and

variance var(L
(d)
i,j ) can be estimated from single-isoform genes, whose mapped reads directly

specify fragment lengths.

Let E = (E1, E2, . . . , ED)′ be the hidden state vector indicating whether each sample

is among the consistent group or not, and let R = {R(d)}Dd=1, Z = {Z(d)}Dd=1, and τ =

{τ (d)}Dd=1 represent the reads, origins of reads, and isoform proportions in all the samples,

respectively. To simplify the notation, we also introduce n
(d)
j =

∑nd
i=1 I

(d)
ij to represent the

total number of reads coming from isoform j in sample d. Based on equation (2.5), the joint

probability of all reads is given by the MSIQ model as follows:

P (R,Z, τ ,E, γ|λ, a, b) = P (R,Z| τ ,E)P (τ |λ,E)P (E| γ)P(γ|a, b) , (2.7)

where

P (R,Z| τ ,E) =
D∏
d=1


[
nd∏
i=1

J∏
j=1

(
h

(d)
i,j αj

)I(d)i,j

]Ed [ nd∏
i=1

J∏
j=1

(
h

(d)
i,j β

(d)
j

)I(d)i,j

]1−Ed
 ,

P (τ |λ,E) ∝
J∏
j=1

α
λj−1
j

D∏
d=1

[
J∏
j=1

(
β

(d)
j

)λj−1
]1−Ed

,

P (E| γ) ∝ γ
∑D
d=1 Ed(1− γ)D−

∑D
d=1 Ed ,

P(γ|a, b) ∝ γa−1(1− γ)b−1 .

(2.8)

As a result, the joint probability can be simplified as

P (R,Z, τ ,E, γ|λ, a, b) ∝

[
J∏
j=1

α
λj−1+

∑D
d=1 Edn

(d)
j

j

][
D∏
d=1

J∏
j=1

(
β

(d)
j

)(1−Ed)
(
λj−1+n

(d)
j

)]

×

[
D∏
d=1

J∏
j=1

nd∏
i=1

(
h

(d)
i,j

)I(d)i,j

]
γ
∑D
d=1 Ed+a−1(1− γ)D−

∑D
d=1 Ed+b−1 .

(2.9)
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2.2.4 Posterior sampling

In the MSIQ model (2.9), the reads R are the observed data, the isoform origins Z and the

consistent group indicator E are the hidden data, while isoform proportions α, {β(d)}Dd=1,

and consistent group proportion γ are the parameters. To estimate the parameters, a useful

approach is to implement a Gibbs sampler to iteratively draw posterior samples of hidden

data and parameters from their conditional distributions. Since our ultimate parameter of

interest is α, whose inference becomes obvious given Z and E, we integrate out τ (i.e., α

and {β(d)}Dd=1) in model (2.9) to achieve better computational efficiency. This step is based

on a property of the Dirichlet distribution:∫
· · ·
∫
{(τ1,...,τJ ):0≤τj≤1,

∑
j τj=1}

J∏
j=1

τ
λj−1
j dτ1 · · · dτJ = B(λ), ∀λj > 0 , (2.10)

where B(λ) =
ΠJj=1Γ(λj)

Γ(
∑J
j=1 λj)

. Hence,

P (R,Z,E, γ|λ, a, b) ∝B1(Z,E)

[
D∏
d=1

B
(d)
0 (Z(d), Ed)

][
D∏
d=1

nd∏
i=1

J∏
j=1

(
h

(d)
i,j

)I(d)i,j

]

× γ
∑D
d=1 Ed+a−1(1− γ)D−

∑D
d=1 Ed+b−1 ,

(2.11)

where

B
(d)
0 (Z(d), Ed = 1) = 1,

B
(d)
0 (Z(d), Ed = 0) =

∏J
j=1 Γ

(
λj+n

(d)
j

)
/Γ(

∑J
j=1 λj+nd),

B1(Z,E) =
∏J
j=1 Γ

(
λj+

∑D
d=1 Ed·n

(d)
j

)
/Γ(

∑J
j=1 λj+

∑D
d=1 Ed·nd) .

(2.12)

We denote Θ , {Z,E, γ}. The distribution of each parameter or hidden variable condi-

tional on everything else can thus be estimated by Gibbs sampling as follows.

(1) Ed follows a Bernoulli distribution:

Ed|Θ/{Ed} ∼ Bern

(
odds(Ed;λ, τ)

1 + odds(Ed;λ, τ)

)
, (2.13)

where

odds(Ed;λ, τ) =
P(Ed = 1|Θ/{Ed})
P(Ed = 0|Θ/{Ed})

=
B1(Z,E−d, Ed = 1)

B1(Z,E−d, Ed = 0)
· B

(d)
0 (Z(d), Ed = 1)

B
(d)
0 (Z(d), Ed = 0)

· γ

1− γ
.

(2.14)
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(2) Z
(d)
i follows a multinomial distribution:

Z
(d)
i |Θ/{Z(d)

i } ∼ Multinomial
(
q

(d)
i1 , q

(d)
i2 , . . . , q

(d)
iJ

)
, (2.15)

where q
(d)
ij = P

(
R,Z

(−d)
−i ,Z

(d)
i =j,E,γ

∣∣∣λ,a,b)/∑J
j′=1 P

(
R,Z

(−d)
−i ,Z

(d)
i =j′,E,γ

∣∣∣λ,a,b) .
(3) γ follows a Beta distribution:

γ|Θ/{γ} ∼ Beta

(
D∑
d=1

Ed + a,D −
D∑
d=1

Ed + b

)
. (2.16)

2.2.5 Estimators of isoform proportions

With the above posterior distribution of the hidden variables and parameters, we can draw

samples iteratively to estimate the hidden state of each RNA-seq sample and the true isoform

proportions in the consistent group. We suppose that there are T iterations after discarding

the burn-in period of Gibbs sampling. In each iteration, we denote the sampled hidden

state vector as E(t) = (E
(t)
1 , E

(t)
2 , . . . , E

(t)
D )′ and the hidden origin vector in sample d as

(Z
(d,t)
1 , . . . , Z

(d,t)
nd )′.

To estimate isoform proportions in each iteration, we pool the reads from sample d whose

estimated state varibale E
(t)
d = 1 to calculate α(t), where

α
(t)
j =

λj +
∑D

d=1

(
E

(t)
d

∑nd
i=1 1{Z

(d,t)
i = j}

)
∑J

j=1 λj +
∑D

d=1 E
(t)
d nd

. (2.17)

Overall, the MSIQ estimator of the isoform proportion vector is α̂MSIQ = 1
T

∑T
t=1α

(t), and

the relative estimation error (REE) is calculated as

REE(α̂MSIQ) =
m∑
j=1

|αj − α̂MSIQ
j |/αj. (2.18)

We show the consistency property of the MSIQ estimator α̂MSIQ in the following lemma

(Appendix A.2).

Lemma 2.1. α̂MSIQ converges to the posterior mean of isoform proportion E(α|R,λ, a, b):

lim
T→∞

α̂MSIQ = E(α|R, λ, a, b). (2.19)
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We can also estimate the posterior probability of each sample belonging to the consistent

group: θ = (θ1, θ2, . . . , θD)′, where θd = P (Ed = 1|R,λ, a, b), and the estimator is θ̂MSIQ
d =

1
T

∑T
t=1 E

(t)
d . Based on this posterior probability, we can predict the state variable of each

sample: Êd = 1{θ̂MSIQ
d > 1/2}.

To further evaluate the biological variation within the consistent group, we estimate

the standard error of the MSIQ estimator given the posterior samples. For isoform j, the

standard error of the respective entry in α̂MSIQ is estimated as:

σ̂j =

√√√√ 1

T

T∑
t=1

(α
(t)
j − α̂

MSIQ
j )2 . (2.20)

Even though the consistent group is assumed to have a consensus isoform proportion, it is

useful to account for the biological variation, especially when the overall heterogeneity is

non-negligible.

We also propose six competing estimators to demonstrate the effectiveness of MSIQ in

accurate isoform quantification. We know from Chapter 2.2.3 that the log likelihood of all

reads in sample d is

log
(
P(R(d),Z(d)|τ (d))

)
=

nd∑
i=1

m∑
j=1

I
(d)
ij log

(
h

(d)
ij τ

(d)
j

)
. (2.21)

Then the EM algorithm can be implemented to estimate τ (d). The six competing estimators

are calculated using the EM algorithm based on different sets of samples:

AVG (averaging): We calculate the isoform proportion in each sample and take the average

of them as the estimator of isoform proportion: α̂AVG = 1
D

∑D
d=1 τ̂

(d).

AVG* (oracle averaging): We calculate the isoform proportion in each sample in the

consistent group (truth) and take the average of them as the estimator of isoform

proportion: α̂AVG* =
∑D
d=1 τ̂

(d)
1{Ed=1}/

∑D
d=1 1{Ed=1}.

POOL (pooling): We pool the reads in all samples together, then we use the EM algorithm

to estimate the isoform proportion as α̂POOL.
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POOL* (oracle pooling): We pool the reads in samples in the consistent group (truth)

together, then we use the EM algorithm to estimate the isoform proportion as α̂POOL*.

MSIQa (MSIQ averaging): We calculate the isoform proportion in each sample in the

consistent group (identified by MSIQ) and take the average of them as the estimator

of isoform proportion: α̂MSIQa =
∑D
d=1 τ̂

(d)
1{θ̂MSIQ

d >1/2}/
∑D
d=1 1{θ̂

MSIQ
d >1/2}.

MSIQp (MSIQ pooling): We pool the reads of the given gene in the samples from the

identified consistent group together, then we use the EM algorithm to estimate the

isoform proportion as α̂MSIQp.

Among these estimators, α̂AVG* and α̂POOL* are oracle estimators that can be used as gold

standards in simulations but are unknown in real data; α̂MSIQa and α̂MSIQp are MSIQ-

dependent and rely on θ̂ estimated by MSIQ.

2.3 Results

2.3.1 MSIQ achieves the lowest error rates in simulations

To show that MSIQ provides more accurate estimation of isoform expression than the current

averaging or pooling method, we compare the REE rates of α̂MSIQ with those of the six

competing estimators: α̂AVG*, α̂MSIQa, α̂AVG, α̂POOL*, α̂MSIQp, and α̂POOL. It is difficult

to compare these methods on real data because true isoform abundances in samples are

unknown. Therefore, we used simulated data to compare the performance of these estimators

under various scenarios.

We simulated RNA-seq reads from 3, 421 D.melanogaster (fly) genes that have multiple

isoforms available in the UCSC Genome Browser (September 2010). Among these genes,

221 have 3 exons, 330 have 4 exons, 365 have 5 exons, 370 have 6 exons, 320 have 7 exons,

311 have 8 exons, 256 have 9 exons, 292 have 10 exons, and 956 genes have more than 10

exons. The isoform numbers increase at a roughly exponential rate as the exon numbers

increase (Figure 2.3). We simulated ten samples and 500 paired-end reads from each gene
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Table 2.1: Four parameter settings in the simulation study.

setting average fragment length (bp) read length (bp)

1 150 50

2 250 50

3 150 100

4 250 100

in every sample. To fully evaluate the performance of the seven estimators, we considered

five different scenarios with different numbers of samples in the consistent group.

For each gene, we first independently generated the isoform proportion vector α of sam-

ples in the consistent group and the isoform proportion vectors β1,β2,β3,β4 and β5 for the

other five samples. The five scenarios were designed as follows. In scenario 1, all ten samples

are in the consistent group. In scenario 2, five samples are in the consistent group, and the

other five samples have individual isoform proportions β1,β2,β3,β4 and β5. In scenario 3,

seven samples are in the consistent group, and the other three samples have individual iso-

form proportions β1,β2 and β3. In scenario 4, seven samples are in the consistent group, and

the other three samples have the same isoform proportion vector β6 = arg max
βi,i=1,...,5

||βi − α||22 ,

which is the proportion vector most different from α. In scenario 5, seven samples are in

the consistent group, and the other three samples have the same isoform proportion vector

β7 = arg min
βi,i=1,...,5

||βi −α||22 , which is the proportion vector most similar to α.

We also considered four settings of fragment and read length (Table 2.1) to examine how

these parameters affect the performance of the seven estimators on isoform quantification.

Under each setting, we first determined the origin of a fragment according to the designated

isoform proportion, and then the starting position and the fragment length were simulated

from a uniform distribution and a normal distribution, respectively. Once the starting and

ending positions of the fragments were determined, the corresponding paired-end reads were

also obtained.

For each scenario and parameter setting, we calculated the seven estimators, and then
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Figure 2.6: REE rates of the seven estimators in scenarios 1-5. REE rates are calculated

for 2465 fly genes with 3-10 exons. In each boxplot, the REE rates of MSIQ, AVG∗ (oracle

averaging), MSIQa, AVG (averaging), POOL∗ (oracle pooling), MSIQp and POOL (pooling)

are plotted side by side under each scenario and the whiskers extend to the most extreme

REE rates. The top-right legend of each plot displays the parameter setting: the mean

fragment length (F) and the read length (R).

evaluated their estimation accuracy by calculating the REE of these estimators against the

true isoform proportions (Figure 2.6). When calculating α̂MSIQ, we set the hyper-parameters

in model (2.9) as a = 7 and b = 2. We have also included a sensitivity analysis of the MSIQ

method on these two parameters in Appendix A.3. The results suggest that given the samples

not in the consistent group (scenarios 2-5), especially when these samples constitute a large

proportion or are vastly different from the consistent group, MSIQ and MSIQ-based methods

achieve much smaller error rates than the averaging or pooling methods. Compared with

MSIQ, AVG results in a 17.3-fold increase in the REE rates on average, and POOL results

in a 17.6-fold increase. These results suggest that, compared with the direct averaging or

pooling method, the MSIQ methods, which take the quality of samples into consideration,
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Figure 2.7: Median REE of the MSIQ-based and oracle estimators. MSIQ outperforms

MSIQa and MSIQp and gives error rates close to those of the oracle estimators. The param-

eters, the mean fragment length (F) and the read length (R), are listed on the top of each

panel. The standard errors of the REE rates are given under each scenario. The smallest

standard error in each scenario is marked in red.

can lead to more accurate isoform quantification. MSIQ can also constrain the estimation

error to a much narrower range compared with direct averaging and pooling (Figure 2.6).

For example, MSIQ is able to control the REE rate below 1.33 for 90% of the 2, 465 genes,

while direct averaging and pooling give rise to REE rates larger than 2.00 for more than 15%

of these genes. We conclude that MSIQ is a more robust method than direct averaging and

pooling.
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We also summarized the median REE rates under different scenarios (Figure 2.7). Since

AVG and POOL are observed to have much poorer accuracy than the other five estimation

methods, we exclude them from this comparison. The results show that MSIQ not only

outperforms direct averaging and pooling, but also achieves more accurate abundance esti-

mation than MSIQa and MSIQp. Compared with MSIQ’s median REE rate, MSIQa and

MSIQp have average REE rates that are greater by 0.009 and 0.007, respectively. We also

conclude that the estimation results of MSIQ are similar to those of AVE∗ and POOL∗, the

two oracle estimators that are impossible to calculate on real data. On average, the REE

rate of MSIQ is only 0.019 larger than AVE∗ and 0.058 larger than POOL∗.

From Figure 2.7, it is obvious that the proportion of samples in the consistent group

and the difference between the consistent group and other samples have large effects on the

performance of all five estimating methods: MSIQ, AVG∗, MISQa, POOL∗, and MISQp.

In scenario 1 when all the samples are in the consistent group, the five methods exhibit

their lowest median REE rates. In scenario 2, which has the smallest proportion of samples

in the consistent group, all five methods have the largest median REE rates among all

scenarios. This phenomenon can be explained by the fact that having fewer samples in the

consistent group leads to more error-prone identification of these samples and less accurate

estimates of the isoform proportions. In scenarios 3-5, in which 70% of the samples are in

the consistent group, the REE rates of the five methods lie between those of scenarios 1

and 2. Among all three non-oracle estimation methods, MSIQ has the best performance

in all five scenarios. Unlike MSIQa and MSIQp, which discard the samples outside of the

identified consistent group, MSIQ partially borrows information from these samples through

the Bayesian hierarchical framework.

2.4 MSIQ has the highest estimation accuracy in real data studies

Although the true isoform proportions are mostly unknown in real data, we are still able to

evaluate multi-sample isoform abundance estimation methods by creating a set of samples

with the majority from one tissue of interest (the consistent group) and other samples from
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Table 2.2: RNA-seq samples and consistent groups in the five sets.

set ID consistent group other samples sample IDs

1 ESC / 1-6

2 ESC brain 1-9

3 ESC Flux Simulator 1-6, 10-14

4 ESC Flux Simulator 1-6, 15-19

5 ESC Flux Simulator 1-6, 20-24

a different tissue. Even though this setup is not a realistic scenario in biological studies,

it provides a good opportunity to evaluate different estimation methods. In this setup, we

know the true states of the hidden state variables, i.e., which samples belong to the consistent

group. We used six public RNA-seq data sets of human ESCs and consider these samples to

be the consistent group (Table C.1). We mixed these samples with three samples of human

brain tissues or three samples simulated by Flux Simulator [101].

We obtained five sets of RNA-seq samples by mixing the six human ESC samples in the

consistent group with other samples in different combinations (Table 2.2). Since MSIQ has

the best performance among all the three non-oracle MSIQ-based estimation methods in the

simulation studies in Chapter 2.3.1, we only considered MSIQ and not MSIQa or MSIQp

in the real data studies. We compared MSIQ with direct averaging (AVG) and pooling

(POOL) on these five sets of real RNA-seq samples to estimate the isoform proportions in

the consistent group (human ESC). We also evaluated three previously developed methods for

single RNA-seq samples, Cufflinks [49], MISO [57], and iReckon [55]), in this comparison.

For Cufflinks, we used both the averaging (Cuffa) and the pooling (Cuffp) approach to

calculate the isoform proportions. For MISO and iReckon, pooling is not a feasible approach

due to the large memory requirements when analyzing a merged RNA-seq sample, so we

only implemented the averaging approach. When evaluating the above seven methods, we

used each method’s estimates on set 1 (i.e., the consistent group) as the standards. The

estimation results of MSIQ, AVG, POOL, Cuffa, Cuffp, MISO, and iReckon on sets 2-5 were
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Figure 2.8: REE rates of MSIQ, AVG (averaging), POOL (pooling), Cuffa (Cufflinks

averaging), Cuffp (Cufflinks pooling), MISO, and iReckon on sets 2 to 5. We used these

seven estimators to perform isoform quantification on sets 2 to 5 and calculated the REE

rates by treating their correpsonding estimates on set 1 as the standards.

compared with their own standards on set 1, and REE rates were calculated accordingly.

In this study, the true RNA isoform structures were extracted from the Homo sapiens

annotation of the UCSC Genome Browser (February 2009) [102]. According to the annota-

tion, there are 15, 268 human genes with multiple isoforms (Figure 2.3b). For each sample

set, we only performed estimation for genes that have reads in all the samples. As a result,

isoform proportions were calculated for 11, 091 genes in set 1, 9753 genes in set 2, 460 genes

in set 3, 404 genes in set 4, and 497 genes in set 5. Comparing the REE rates of MSIQ and

the other six methods (Figure 2.8), we clearly see that MSIQ achieves the lowest median

error rates and the smallest inter-quantile ranges in the four comparison cases. This result is

strong evidence supporting the effectiveness of MSIQ in identifying the consistent group and

estimating its isoform proportions. Note that even though iReckon also leads to relatively

accurate results, especially when comparing set 2 and set 1, the number of genes for which
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iReckon can provide estimation is much smaller compared with other methods. In the four

cases, iReckon obtains estimates only for 1065, 255, 377 and 374 genes. This comparison

also suggests that pooling is not an ideal approach when the depths of sequencing coverage

in multiple RNA-seq samples vary greatly.
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Figure 2.9: MSIQ’s estimated isoform proportions and standard errors for gene THTPA

(6 isoforms) and gene PIGH (12 isoforms). The left plots give the estimated proportions

by isoform. The intervals denote the respective MSIQ estimator ± one standard error:

α̂MSIQ
j ± σ̂j. The right plots give the estimated isoform proportions by sample. The numbers

denote the isoform indices and the horizontal axis denotes whether the corresponding sample

is identified as being within the consistent group or not.

We use set 1 (i.e., the 6 human ESC samples) to illustrate why the consistent group

represents more reliable transcriptome landscapes and how the standard deviation defined

in (2.20) can be used to assess the biological variation within the consistent group. Shown

in Figure 2.9 are two example genes THTPA (6 isoforms) and PIGH (12 isoforms). We use

these two examples to illustrate that (1) MSIQ is able to identify consistent groups that have

comparably more consistent isoform abundances, and (2) the biological variation within the

consistent group is much smaller compared to the overall variation among all the samples,
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and this variation is well captured by the estimated standard errors.

2.5 MSIQ leads to the highest correlation with NanoString counts

We present a second real data study to evaluate different methods by comparing their re-

ported isoform abundances (in FPKM values) with NanoString counts on the same datasets.

The NanoString nCounter technology is considered to be a highly reproducible and robust

method for detecting gene and isoform expression [103], so the NanoString measurements

can be used as a benchmark for isoform expression [72,104]. We compared our MSIQ method

with three other estimation methods, Cufflinks, iReckon, and MISO, based on their perfor-

mance on six samples of the human liver hepatocellular carcinoma (HepG2) cell line (Table

C.1).

Even though genome-wide isoform abundances are not available for these HepG2 data,

the NanoString counts are available for a small set of genes [72]. These NanoString mea-

surements include 140 probes that correspond to 470 isoforms of 107 genes. We applied

MSIQ, Cufflinks, iReckon, and MISO on the six HepG2 samples and used each method to

estimate isoform abundances for this set of genes. Cufflinks and iReckon directly report

the FPKM values of the relevant isoforms. MSIQ and MISO estimate isoform proportions,

and the FPKM values can be calculated accordingly. For each sample, we calculated the

Pearson correlation coefficient between each method’s estimated isoform expression and the

benchmark NanoString counts. Since the NanoString probe counts do not have a one-to-one

correspondence with isoform expression, for each NanoString probe we either used the iso-

form with the largest expression (Figure 2.10a) or added up the expression of all the isoforms

corresponding to that probe (Figure 2.10b). Overall, the estimated expression of MSIQ has

the highest correlation with the NanoString counts and achieves the best consistency with

this benchmark measurement. This result again suggests that MSIQ leads to more accurate

isoform quantification by incorporating the information in multiple RNA-seq samples.
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Figure 2.10: Correlation between NanoString counts and the estimated isoform expression.

a: For each NanoString probe, the corresponding isoform with the largest estimated FPKM

value was used to calculate the correlation. The standard error of the calculated correlation

coefficients is between 0.069 and 0.099. b: For each NanoString probe, the sum of all the

corresponding isoforms’ estimated FPKM values was used to calculate the correlation. The

standard error of the calculated correlation coefficients is between 0.065 and 0.085.

2.6 Discussion

In this chapter, we propose a new method, MSIQ, to more accurately estimate isoform expres-

sion levels associated with biological conditions of interest using multiple RNA-seq datasets.

Accurate isoform quantification from RNA-seq data has long been a challenge because the

existence of multiple isoforms makes it impossible to uniquely assign most reads and deter-

mine the reads’ isoform origins. MSIQ tackles this challenge by utilizing data from multiple

RNA-seq samples derived from the same biological condition; we reason that aggregating

more information can improve accuracy in isoform abundance estimation. Unlike previous

work that treats all the samples equally, MSIQ identifies a consistent group of samples that

are most representative of the biological condition and estimates isoform proportions of the

consistent group.

Applications of MSIQ to both simulated and real data demonstrate that MSIQ yields

more accurate isoform quantification than direct averaging or pooling methods given the
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existence of poor quality or mislabeled samples. These results suggest MSIQ’s potential as a

powerful and robust transcriptomic tool for isoform quantification. MSIQ’s estimation results

provide accurate transcriptome profiles, which can be used to construct co-expression net-

works, investigate cell-type-specific isoform expression, and identify differentially expressed

transcripts between two biological conditions. The MSIQ method also provides standard

error estimates to measure the variability of isoform abundance within the consistent group.

This information can be especially useful when users need to compare multiple tissues or

cell types. We currently estimate the standard errors using the posterior samples of isoform

proportions, and our method can be extended to directly model the variation at the cost of

increased complexity in the model and computations. In addition to isoform abundance esti-

mation, MSIQ can also be applied to evaluate the quality of multiple RNA-seq samples of the

same tissue or cell type. This application can help researchers evaluate the reproducibility

of RNA-seq samples and determine which samples to include in downstream analyses.

An important step in the MSIQ method is the identification of the consistent group, which

depends on posterior draws of the hidden state variables. We currently use a Beta-Bernoulli

model to describe the probability of each sample belonging to the consistent group. However,

it is possible to improve the model once gold standard data for the biological condition of

interest become available [20, 105]. We can extend our MSIQ model to account for the

heterogeneous quality of multiple RNA-seq samples based on the similarity of the isoform

abundance estimates between each sample and the gold standard. Such quality assessment

can be integrated with inter-sample similarity to better identify the consistent group. As a

result, the samples that have higher agreement with gold standards and high similarity with

each other will be more likely to be considered as in the consistent group. This procedure is

supposed to identify more reliable samples and can potentially increase the re-use of public

RNA-seq data as it will provide an interpretable measure of the quality of multiple RNA-seq

datasets. We would also like to point out that biological knowledge can be incorporated into

MSIQ modeling to further improve abundance estimation. For example, mRNA fragments

are actually not uniformly distributed within the isoforms [53], and a high correlation was

observed between read coverage and genome GC content [62]. Our proposed hierarchical
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model can be considered an umbrella framework that can be easily extended to incorporate

more detailed modeling procedures as long as these procedures use likelihoods to describe

read generating processes. Such extension might help MSIQ achieve better performance on

complex genes.

Another interesting extension of our MSIQ method is to model single-cell RNA-seq

(scRNA-seq) data, which contain information on the technical and biological noise of isoform

abundance at the single-cell level [106, 107]. ScRNA-seq data are needed for the analysis of

(1) subpopulations of cells from a large heterogeneous population and (2) rare cell types, for

which sufficient molecules cannot be obtained for conventional RNA-seq experiments [18].

Given scRNA-seq data, MSIQ can be iteratively utilized to evaluate the transcriptional het-

erogeneity and detect subpopulations (i.e., consistent groups) in the set of samples. Mean-

while, MSIQ may also reveal the principal isoform expression pattern in a given cell popu-

lation. An alternative approach is to allow for multiple consistent groups as subpopulations

of single cells in the modeling.
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CHAPTER 3

Precise Transcript Reconstruction with

Bulk RNA Sequencing Data

3.1 Introduction

Alternative splicing, a post-transcriptional process during which particular exons of a gene

may be included into or excluded from a mature RNA isoform transcribed from that gene, is

a key contributor to the diversity of eukaryotic transcriptomes [108]. Alternative splicing is

a prevalent phenomenon in multicellular organisms, and it affects approximately 90%-95%

of genes in mammals [109]. Understanding the diversity of eukaryotic transcriptomes is es-

sential to interpreting gene functions and activities under different biological conditions. In

transcriptome analysis, a key task is to accurately identify the set of existing isoforms and

estimate their abundance levels under a specific biological condition, because the informa-

tion on isoform composition is critical to understanding the isoform-level dynamics of RNA

contents in different cells, tissues, and developmental stages. Abnormal splicing events have

been known to cause many genetic disorders [110], such as retinitis pigmentosa [111] and

spinal muscular atrophy [112]. Accurate isoform identification and quantification will shed

light on gene regulatory mechanisms of genetic diseases, thus assisting biomedical researchers

in designing targeted therapies for diseases.

The identification of truly expressed isoforms is an indispensable step preceding accurate

isoform quantification. However, compared with the quantification task, isoform discovery is

a more challenging problem both theoretically and computationally. The reasons behind this

challenge are threefold. First, next-generation RNA-seq reads are too short compared with

full-length RNA isoforms. RNA-seq reads are typically no longer than 300 bp in Illumina
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sequencing [113] (Figure 1.1), while more than 95% of human isoforms are longer than 300

bp, with a mean length of 1712 bp (GENCODE annotation, Release 24) [75]. Due to the

fact that most isoforms of the same gene share some overlapping regions, many RNA-seq

reads do not unequivocally map to a unique isoform (Figure B.1a). As a result, isoform

origins of those reads are ambiguous and need to be inferred from a huge pool of candidate

isoforms. Another consequence of short reads is that junction reads spanning more than

one exon-exon junctions are underrepresented in RNA-seq data, due to the difficulty of

mapping junction reads (every read needs to be split into at least two segments and has all

the segments mapped to different exons in the reference genome). The underrepresentation

of those junction reads further increases the difficulty of accurately discovering full-length

RNA isoforms. Second, the number of candidate isoforms increases exponentially with the

number of exons. Hence, computational efficiency becomes an inevitable factor that every

method must account for, and an effective isoform screening step is often needed to achieve

accurate isoform discovery [94]. Third, it is a known biological phenomenon that often only

a small number of isoforms are truly expressed under one biological condition. Given the

huge number of candidate isoforms, how isoform discovery methods balance the parsimony

and the accuracy of their discovered isoforms becomes a critical and meanwhile difficult

issue [47,55].

Over the past decade, researchers have developed multiple state-of-the-art isoform dis-

covery methods to tackle one or more of the challenges mentioned above. The two earliest

annotation-free methods are Cufflinks [49] and Scripture [66], which can assemble RNA iso-

forms solely from RNA-seq data without using annotations of known isoforms. Both methods

use graph-based approaches, but they differ in how they construct graphs and then parse a

graph into isoforms. Scripture first constructs a connectivity graph with nodes as genomic

positions and edges determined by junction reads. It then scans the graph with fixed-sized

windows, scores each path for significance, connects the significant paths into candidate iso-

forms, and finally refines the isoforms. Cufflinks constructs an overlap graph of mapped

reads, and it puts a directed edge based on the genome orientation between two compatible

reads that could arise from the same isoform. It then finds a minimal set of paths that cover
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all the fragments in the overlap graph. A more recent method StringTie also uses the graph

idea. It first creates a splice graph with read clusters as nodes to identify isoforms and then

constructs a flow network to estimate the expression levels of isoforms [67]. Another suite of

methods utilize different statistical tools and regularization methods to tackle the problems

of isoform discovery. For example, IsoLasso [63], SLIDE [62], and CIDANE [47] all build

linear models, where read counts are summarized as the response variable, and isoform abun-

dances are treated as parameters to be estimated. The candidate isoforms with non-zero

estimated abundance are then considered as discovered. For more comprehensive discussion

and comparison of existing isoform discovery methods, readers can refer to Chapter 1.4.

Aside from the intrinsic difficulty of isoform identification due to the short read lengths

and the huge number of candidate isoforms, the excess biases in RNA-seq experiments fur-

ther complicate the isoform discovery problem. Ideally, RNA-seq reads are expected to be

uniformly distributed within each isoform. However, the observed distribution of RNA-seq

reads significantly violates the uniformity assumption due to multiple sources of biases. The

most commonly acknowledged bias source is the different levels of GC content in different

regions of an isoform. The GC content bias was first investigated by Dohm et al. [114], and

a significantly positive correlation was observed between read coverage and GC contents.

Another work later showed that the effect of GC content tends to be sample-specific [115].

Another major bias source is the positional bias, which causes the uneven read coverage at

different relative positions within an isoform. As a result of the positional bias, reads are

more likely to be generated from certain regions of an isoform, depending on experimental

protocols, e.g., whether cDNA fragmentation or RNA fragmentation is used [116,117]. Fail-

ing to correct these biases will likely lead to high false discovery rates in isoform discovery

and unreliable statistical results in downstream analyses.

Current computational methods account for the non-uniformity of reads using three main

approaches: adjusting read counts summarized in defined genomic regions to offset the non-

uniformity biases [116,118], assigning a weight to each single read to adjust for biases [119],

and incorporating the biases as model parameters in likelihood-based methods [58,59,61,120]

for isoform discovery or abundance estimation.
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Despite continuous efforts on developing effective computational methods to identify

full-length isoforms from the next-generation RNA-seq data, the existing methods still suffer

from low accuracy for genes with complex splicing structures [72, 93]. A comprehensive

assessment has shown that methods achieving good accuracy in identifying isoforms for D.

melanogaster (34, 776 annotated isoforms) and C. elegans (61, 109 annotated isoforms) fail to

maintain good performance for H. sapiens (200, 310 annotated isoforms) [72,121]. Although

it is generally believed that deeper sequencing will lead to better isoform discovery results,

the improvement is not significant in H. sapiens, compared with D. melanogaster and C.

elegans, due to the complex splicing structures of human genes [18, 72]. Moreover, despite

increasing accuracy of identified isoforms evaluated at the nucleotide level and the exon level,

it remains challenging to improve the isoform-level performance. In other words, even when

all sub-isoform elements (i.e., short components of transcribed regions such as exons) are

correctly identified, accurate assembly of these elements into full length isoforms remains a

big challenge.

Motivated by the observed low accuracy in identifying full-length isoforms solely from

RNA-seq data, researchers have considered leveraging information from reference annotations

(e.g., Ensembl [121], GENCODE [75], and UCSC Genome Browser [102]) to aid isoform

discovery. Existing efforts include two approaches. In the first approach, methods extract

the coordinates of gene and exon boundaries, i.e., known splicing sites, from annotations

and then assemble novel isoforms based on the exons or subexons of every gene [47, 62, 67].

In the second approach, methods directly incorporate all the isoforms in annotations by

simulating faux-reads from the annotated isoforms [122]. However, the above two approaches

have strong limitations in their use of annotations. The first approach does not fully use

annotation information because it neglects the splicing patterns of annotated isoforms, and

these patterns could assist learning the relationship between short reads and full-length

isoforms. The second approach is unable to filter out non-expressed annotated isoforms

because researchers lack prior knowledge on which annotated isoforms are expressed in an

RNA-seq sample; hence, its addition of unnecessary faux-reads will bias the isoform discovery

results and lose control of the false discovery rate.
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In this chapter, we propose a more statistically principled approach, AIDE (Annotation-

assisted Isoform Discovery and abundance Estimation), to leverage annotation information

in a more advanced manner to increase the precision and robustness of isoform discovery.

Our approach is rooted in statistical model selection, which takes a conservative perspective

to search for the smallest model that fits the data well, after adjusting for model complexity.

In our context, a model corresponds to a set of candidate isoforms, and a more complex

model contains more isoforms. Our rationale is that a robust and conservative computational

method should only consider novel isoforms as credible if adding them would significantly

better explain the observed RNA-seq reads than using only the annotated isoforms. AIDE

differs from many existing approaches in that it does not aim to find all seemingly novel

isoforms. It enables controlling false discoveries in isoform identification by employing a

statistical testing procedure, which ensures that the discovered isoforms make statistically

significant contributions to explaining the observed RNA-seq reads. Specifically, AIDE learns

gene and exon boundaries from annotations and also selectively borrows information from the

annotated isoform structures using a stepwise likelihood-based selection approach. Instead

of fully relying on the annotation, AIDE identifies non-expressed annotated isoforms and

remove them from the identified isoform set. Moreover, AIDE simultaneously estimates the

abundance of the identified isoforms in the process of isoform reconstruction.

3.2 Methods

3.2.1 Isoform discovery and abundance estimation using AIDE

The AIDE method is designed to independently identify and quantify the RNA isoforms of

each gene. Suppose that a gene has m non-overlapping exons and J candidate isoforms. If no

filtering steps based on prior knowledge is applied to reduce the set of candidate isoforms, J

equals 2m− 1, the number of all possible combinations of exons into isoforms. The observed

data are the n RNA-seq reads mapped to the gene: R = {r1, . . . , rn}. The parameters

we would like to estimate are the isoform proportions α = (α1, . . . , αJ)′, where αj is the

proportion of isoform j among all the isoforms (i.e., the probability that a random read is
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from isoform j) and
∑J

j=1 αj = 1. We also introduce hidden variables Z = {Z1, . . . , Zn} to

denote the isoform origins of the n reads, with Zi = j indicating that read ri is from isoform

j, and P(Zi = j) = αj, for i = 1, . . . , n.

The joint probability of read ri and its isoform origin Zi can be written as:

P (ri, Zi|α) =
J∏
j=1

P (ri, Zi = j|α)I{Zi=j}

=
J∏
j=1

[P (ri|Zi = j)αj]
I{Zi=j}

,
J∏
j=1

(hijαj)
Iij ,

(3.1)

where Iij , I{Zi = j} indicates whether read ri is from isoform j, and hij , P (ri|Zi = j) is

the generating probability of read ri given isoform j, calculated based on the read generating

mechanism.

3.2.1.1 Read generating mechanism

We have defined hij as the generating probability of read ri given isoform j. Specifically,

if read ri is not compatible with isoform j (read ri contains regions not overlapping with

isoform j, or vice versa), then hij = 0; otherwise,

hij = P(starting position of ri | isoform j)P(fragment length of ri | isoform j)

, P s
ijP

f
ij .

(3.2)

In the literature, different models have been used to calculate the starting position distri-

bution P s and the fragment length distribution P f . Most of these models are built upon a

basic model:

P s
ij = 1/Lj ,

P f
ij =

1√
2πσf

exp

{
−(lij − µf )2

2σ2
f

}
,

(3.3)

where Lj is the effective length of isoform j (the isoform length minus the read length),

and lij is the length of fragment i given that read ri comes from isoform j. However,
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this basic model does not account for factors like the GC content bias or the positional

bias. Research has shown that these biases affect read coverages differently, depending

on the specific experimental protocols. For example, reverse-transcription with poly-dT

oligomers results in an over-representation of reads in the 3’ ends of isoforms, while reverse-

transcription with random hexamers results in an under-representation of reads in the 3’

ends of isoforms [123]. Similarly, different fragmentation protocols have varying effects on

the distribution of reads within an isoform [117].

Given these facts, we decide to use a non-parametric method to estimate the distribution

P s of read starting positions, because non-parametric estimation is capable of accounting for

the differences in the distribution due to different protocols. We use a multivariate kernel

regression to infer P s from the reads mapped to the annotated single-isoform genes. Suppose

there are a total of cs exons in the single-isoform genes. For k′ = 1, ..., cs, we use qk′ to denote

the proportion of reads whose starting positions are in exon k′, among all the reads mapped

to the gene containing exon k′. Given any gene with J isoforms, suppose there are cj exons

in its isoform j, j = 1, ..., J . We estimate the conditional probability that a read ri starts

from exon k (k = 1, 2, ..., cj), given that the read is generated from isoform j, as:

P s
ij(bi = k) ∝

∑cs
k′=1

∏3
d=1

1
hd
K
(
xkd−xk′d

hd

)
qk′∑cs

k′=1

∏3
d=1

1
hd
K
(
xkd−xk′d

hd

) , such that

cj∑
k=1

P s
ij(bi = k) = 1 , (3.4)

where bi denotes the (random) index of the exon containing the starting position of the read

ri. When bi = k, we use xk1, xk2, and xk3 to denote the GC content, the relative position,

and the length of exon k, respectively. The GC content of exon k, xk1, is defined as the

proportion of nucleotides G and C in the sequence of exon k. The relative position of exon

k, xk2, is calculated by first linearly mapping the genomic positions of isoform j to [0, 1]

(i.e., the start and end positions are respectively mapped to 0 and 1) and then locating the

mapped position of the center position of the exon. For example, if isoform j spans from

position 100 to position 1100 in a chromosome, and the center position of an exon is 200 in

the same chromosome, then the relative position of this exon is 0.1. The meaning of xk′d’s

(k′ = 1, ..., cs; d = 1, ..., 3) are be defined in the same way. The kernel function K(·) is set

as the Gaussian kernel K(x) = 1√
2π

exp(−x2). hd denotes the bandwidth of dimension d and
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is selected by cross validation. The estimation procedure of P s
ij is implemented through the

R package np [124].

As for the fragment length (P f ), we assume that it follows a truncated log normal dis-

tribution. This is because RNA fragments that are too long or too short are filtered out

in the library preparation step before the sequencing step. In addition, the empirical frag-

ment length distribution is usually skewed to right instead of being symmetric (Figure B.2).

Therefore, a truncated log normal distribution generally fits well the empirical distribution

of fragment lengths:

P f
ij =


√

2 exp

(
−
[
log

(
lij
mf

)]2/
2σ2
f

)
√
πσf

[
erf

(
1√
2σf

log

(
t
f
u
mf

))
−erf

(
1√
2σf

log

(
t
f
l
mf

))]
lij

, if lij ∈ [tfl , t
f
u]

0, otherwise

, (3.5)

where mf and σf are the median and the shape parameters of the distribution, respectively;

tfl is the lower truncation threshold and tfu is the upper truncation threshold. The function

erf(·), the “error function” encountered in integrating the normal distribution, is defined as

erf(x) = 2√
π

∫ x
0

exp(−t2)dt.

3.2.1.2 The probabilistic model and parameter estimation in AIDE

Given the aforementioned settings, the joint probability of all the observed and hidden data

is

P (R,Z|α) =
n∏
i=1

P (ri, Zi|α) =
n∏
i=1

J∏
j=1

(hijαj)
Iij =

n∏
i=1

J∏
j=1

(
P s
ijP

f
ijαj

)Iij
, (3.6)

where P s
ij and P f

ij are defined in equations (3.4) and (3.5). The complete log-likelihood is

` (α|R,Z) =
n∑
i=1

J∑
j=1

Iij log
(
P s
ijP

f
ijαj

)
. (3.7)
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However, as Z and the resulting Iij’s are unobservable, the problem of isoform discovery

becomes to estimate α via maximizing the log-likelihood based on the observed data:

α̂ = arg max
α

` (α|R)

= arg max
α

log

[
n∏
i=1

(
J∑
j=1

P s
ijP

f
ijαj

)]

= arg max
α

n∑
i=1

log

(
J∑
j=1

P s
ijP

f
ijαj

)
,

(3.8)

subject to αj ≥ 0 and
∑J

j=1 αj = 1. To directly solve problem (3.8) is not easy, so we use on

the EM algorithm along with the complete log-likelihood (3.7), and it follows that we can iter-

atively update the estimated isoform proportions as α
(t+1)
j = 1

n

∑n
i=1

P sijP
f
ijα

(t)
j /∑J

j′=1 P
s
ij′P

f

ij′α
(t)

j′ .

As the algorithm converges, we obtain the estimated isoform proportion α̂ = (α̂1, . . . , α̂J)′.

3.2.2 Stepwise selection in AIDE

If we directly consider all the J = 2m − 1 candidate isoforms in problem (3.8) and calculate

α̂, the problem is unidentifiable when J > n. Even when J ≤ n, this may lead to many

falsely discovered isoforms, because the most complex model with all the possible candidate

isoforms would best explain the observed reads. Therefore, instead of directly using the EM

algorithm to maximize the log-likelihood with all the possible candidate isoforms, we perform

a stepwise selection of isoforms based on the likelihood ratio test (LRT). This approach has

two advantages. On the one hand, we can start from a set of candidate isoforms with

high confidence based on prior knowledge, and then we can sequentially add new isoforms to

account for reads that cannot be fully explained by existing candidate isoforms. For example,

a common case is to start with annotated isoforms. On the other hand, the stepwise selection

by LRT intrinsically introduces sparsity into the isoform discovery process. Even though the

candidate isoform pool can be huge when a gene has a large number of exons, the set of

expressed isoforms is usually much smaller in a specific biological sample. LRT can assist

us in deciding a termination point where adding more isoforms does not further improve the

likelihood.
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The stepwise selection consists of steps with two opposite directions: the forward step

and the backward step (Figure 3.1). The forward step aims at finding a new isoform to best

explain the RNA-seq reads and significantly improve the likelihood given the already selected

isoforms. The backward step aims at rectifying the isoform set by removing the isoform with

the most trivial contribution among the selected isoforms. Since stepwise selection is in a

greedy-search manner, some forward steps, especially those taken in the early iterations, may

not be the globally optimal options. Therefore, backward steps are necessary to correct the

search process for a better solution path.

We separate the search process into two stages. We use stepwise selection to update the

identified isoforms at both stages, but the initial isoform sets and the candidate sets are

different in the two stages. Stage 1 starts with a single annotated isoforms that explains the

most number of reads, and it only considers the annotated isoforms as candidate isoforms.

Stage 1 stops when the the forward step can no longer finds an isoform to add to the

identified isoform set, i.e., the LRT does not reject the null hypothesis given the p-value

threshold. Stage 2 starts with the isoforms identified in stage 1, and considers all the possible

isoforms, including the annotated isoforms not chosen in stage 1, as the candidate isoforms

(Figure 3.1). The initial isoform set is denoted as S
(0)
1 (stage 1) or S

(0)
2 (stage 2), the

candidate isoform set is denoted as C1 (stage 1) or C2 (stage 2), and the annotation set

is denoted as A. At stage 1, the candidate set and initial set are respectively defined as

C1 = A and S
(0)
1 =

{
arg maxj∈A(number of reads compatible with isoform j)

}
. Suppose the

stepwise selection completes after t1 steps at stage 1, and the estimated isoform proportions

after step t (t = 1, 2, ..., t1) are denoted as α̂(t) =
(
α̂

(t)
1 , ..., α̂

(t)
J

)′
. Note that ∀j /∈ C1,

α̂
(t)
j ≡ 0 at stage 1. At stage 2, the initial set and the candidate set are respectively defined

as S
(0)
2 =

{
j : α̂

(t1)
j > 0

}
and C2 = {1, 2, ..., J = 2m − 1}.

We introduce how to perform forward and backward selection based on a initial isoform

set S(0) and a candidate set C. We omit the stage number subscripts for notation simplicity.

At both stages, we first use the EM algorithm to estimate the expression levels of the initial

isoform set S(0): α̂(0) = arg maxα ` (α|R) = arg maxα
∑n

i=1 log
(∑

j∈S(0) P s
ijP

f
ijαj

)
, subject

to αj ≥ 0 if j ∈ S(0), αj = 0 if j /∈ S(0), and
∑

j∈S(0) αj = 1.
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Initialization:
the annotated isoform with 
the most compatible reads

select one isoform using MLE;
p value > threshold 

in the LRT?
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Initialization:
selected annotated isoform(s)

select one isoform using MLE;
p value > threshold 

in the LRT?

select one isoform using MLE;
p value ≤ threshold 

in the LRT?

Yes; remove the selected isoform
from the identified set

Yes; add the selected isoform 
to the identified set

No

Yes; add the selected isoform 
to the identified set

No

stage 1

consider annotation only

stage 2

consider all the possible isoforms

Yes; remove the selected isoform
from the identified set

No

stop

forward step

backward step

forward step

backward step

No; go to stage 2

Figure 3.1: Workflow of the stepwise selection procedure of the AIDE method. Stage 1 starts

with a single annotated isoform compatible with the most reads, and stage 2 starts with the

annotated isoforms selected at stage 1. In the forward step at both stages, AIDE identifies

the isoform that mostly increases the likelihood, and it uses the LRT to decide whether this

increase is statistically significant. If significant, AIDE adds this isoform to its identified

isoform set; otherwise, AIDE terminates the current stage. In the backward step at both

stages, AIDE finds the isoform in its identified set such that the removal of this isoform

decreases the likelihood the least, and it uses the LRT to decide whether this decrease is

statistically significant. If insignificant, AIDE removes this isoform from its identified set;

otherwise, AIDE keeps the identified set. AIDE stops when the forward step at stage 2 no

longer adds any candidate isoform to the identified set.

3.2.2.1 Forward step

The identified isoform set at step t is denoted as S(t) = {j : α̂
(t)
j > 0}. The log-likelihood

at step t is `(t) = `
(
α̂(t)|R

)
=
∑n

i=1 log
(∑

j∈S(t) P s
ijP

f
ijα̂

(t)
j

)
. At step (t + 1), we consider

adding one isoform k ∈ C\S(t) into S(t) as a forward step. Given S(t) and k, we estimate the
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corresponding isoform proportions as

α̂(t,k) = arg max
α

n∑
i=1

log

 ∑
j∈S(t)∪{k}

P s
ijP

f
ijαj

 , (3.9)

subject to αj ≥ 0 if j ∈ S(t) ∪ {k}, and αj = 0 otherwise. Then we choose the isoform

k∗ = arg max
k∈C\S(t)

n∑
i=1

log

 ∑
j∈S(t)∪{k}

P s
ijP

f
ijα̂

(t,k)
j

 , (3.10)

which maximizes the likelihood among all the candidate isoforms. Then the log-likelihood

with the addition of this isoform k∗ becomes `∗ =
∑n

i=1 log
(∑

j∈S(t)∪{k∗} P
s
ijP

f
ijα̂

(t,k∗)
j

)
. To

decide whether to follow the forward step and add isoform k∗ to the identified isoform set,

we use the LRT to test the null hypothesis (H0 : S(t) is the true isoform set from which the

RNA-seq reads were generated) against the alternative hypothesis (Ha : S(t)∪{k∗} is the true

isoform set). Under H0 we asymptotically have −2(`(t) − `∗) ∼ χ2(1) . If the null hypothesis

is rejected at a pre-specified significance level, then S(t+1) = S(t) ∪ {k∗}, α̂(t+1) = α̂(t,k∗),

and the log-likelihood is updated as `(t+1) =
∑n

i=1 log
(∑

j∈S(t+1) P s
ijP

f
ijα̂

(t+1)
j

)
. Otherwise,

S(t+1) = S(t), α̂(t+1) = α̂(t), and `(t+1) = `(t).

3.2.2.2 Backward step

Suppose we add an isoform to the identified isoform set at step t, the updated isoform set

is then denoted as S(t+1). We subsequently consider removing one isoform k ∈ S(t+1) at a

backward step. Given S(t+1) and k, we estimate the corresponding isoform proportions as

α̂(t+1,−k) = arg max
α

n∑
i=1

log

 ∑
j∈S(t+1)\{k}

P s
ijP

f
ijαj

 ,

subject to αj ≥ 0 if j ∈ S(t+1)\{k}, and αj = 0 otherwise. Then we choose the isoform

k− = arg max
k∈S(t+1)

n∑
i=1

log

 ∑
j∈S(t+1)\{k}

P s
ijP

f
ijα̂

(t+1,−k)
j

 ,

which maximizes the likelihood among all the isoforms in S(t+1). Then the log-likelihood with

the removal of this isoform k− becomes `− =
∑n

i=1 log
(∑

j∈S(t+1)\{k−} P
s
ijP

f
ijα̂

(t+1,−k−)
j

)
.
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To decide whether to follow the backward step and remove isoform k− from the iden-

tified isoform set, we use the LRT to test the null hypothesis (H0 : S(t+1)\{k−} is the

true isoform set from which the RNA-seq reads were generated) against the alternative hy-

pothesis (Ha : S(t+1) is the true isoform set). Under H0 we asymptotically have −2(l− −

l(t+1)) ∼ χ2(1) . If the null hypothesis is not rejected at a pre-specified significance level,

then S(t+2) = S(t+1)\{k−}, α̂(t+2) = α̂(t+1,−k−), and the log-likelihood is updated as `(t+2) =∑n
i=1 log

(∑
j∈S(t+2) P s

ijP
f
ijα̂

(t+2)
j

)
. Otherwise, S(t+2) = S(t+1), α̂(t+2) = α̂(t+1), and `(t+2) =

`(t+1).

At both stages 1 and 2, we iteratively consider the forward and backward steps and

stop the algorithm at the first time when a forward step no longer adds an isoform to the

identified set (Figure 3.1). To determine whether to reject a null hypothesis in a LRT, we

set a threshold on the p-value. The default threshold is 0.01 divided by the number of genes

considered for isoform discovery. Unlike the thresholds set on the FPKM values or isoform

proportions in other methods, this threshold on p-values allows users to tune the AIDE

method based on their desired level of statistical significance. A larger threshold generally

leads to more discovered isoforms and a better recall rate, while a smaller threshold leads to

fewer discovered isoforms that are more precise.

3.3 Results

The AIDE method utilizes the likelihood ratio test to identify isoforms via a stepwise selection

procedure, which gives priority to the annotated isoforms and selectively borrows informa-

tion from their structures. AIDE achieves simultaenous isoform discovery and abundance

estimation based on a carefully constructed probabilistic model of RNA-seq read generation,

and the stepwise selection process consists of model parameter estimation and likelihood

ratio tests (Figure 3.1). We first conducted a proof-of-concept simulation study to verify the

efficiency and accuracy of the AIDE method (Appendix A.8). This study demonstrates the

effectiveness of AIDE in removing non-expressed annotated isoforms and identifying novel
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isoforms with higher accuracy. Second, we used a transcriptome-wide study to evaluate the

performance of AIDE and three other widely used methods (Cufflinks, SLIDE, and StringTie)

provided with various read coverages and annotations of different quality. Third, we further

assessed the accuracy of these four methods on real human and mouse RNA-seq data. We

also experimentally validated the discovery of AIDE and showed that it can identify isoforms

with biological relevance. Fourth, we compared the performance of these methods with the

results from the long-read sequencing technologies. Finally, we evaluated the isoform abun-

dance estimation results of these four methods using a benchmark Nanostring dataset. In all

the above studies, AIDE demonstrated its advantages in achieving the highest precision in

isoform discovery and the best accuracy in isoform quantification among the four methods.

3.3.1 AIDE outperforms state-of-the-art methods in simulations

We compared AIDE with three other state-of-the-art isoform discovery methods, Cufflinks

[49], StringTie [67], and SLIDE [62], in a simulation setting that well mimicked real RNA-seq

data analysis. The four methods tackle the isoform discovery task from different perspectives.

Cufflinks assembles isoforms by constructing an overlap graph and searching for isoforms

as sparse paths in the graph. SLIDE utilizes a regularized linear model, and demonstrated

precise results in large-scale comparisons [72]. StringTie uses a network-based algorithm, and

achieves the best computational efficiency and memory usage among the existing methods

[67]. Unlike all these three methods, our method AIDE, built upon a likelihood model

and stepwise selection, converts the annotation-assisted isoform discovery problem into a

statistical variable selection problem.

To conduct a fair assessment of the four methods, we simulated RNA-seq datasets using

the R package polyester [117], which uses both built-in models and real RNA-seq datasets

to generate synthetic RNA-seq data that exhibit similar properties to those of real data. We

simulated eight human RNA-seq datasets with eight read coverages (10x, 20x, . . . , 80x) and

pre-determined isoform fractions (Appendix A.4). An “nx” coverage means that an exonic

genomic locus is covered by n reads on average. We compared the accuracy of the four
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methods supplied with annotations of different quality. In real scenarios, annotations con-

tain both expressed (true) and non-expressed (false) isoforms in a specific RNA-seq sample.

Annotations might miss some expressed isoforms in that RNA-seq sample because alterna-

tive splicing is known to be condition-specific and widely diverse across different conditions.

Therefore, it is critical to evaluate the extent to which different methods rely on the accu-

racy of annotations, specifically the annotation purity and completeness, which we define as

the proportion of expressed isoforms among the annotated ones and the proportion of anno-

tated isoforms among the expressed ones, respectively. We constructed nine sets of synthetic

annotations with varying purity and completeness (Table 3.1).

Table 3.1: Synthetic annotations. Purity and completeness of the nine sets of synthetic

annotations were calculated based on the truly expressed isoforms in the simulated data.

synthetic annotation set 1 2 3 4 5 6 7 8 9

purity 40% 40% 40% 60% 60% 60% 80% 80% 80%

completeness 40% 60% 80% 40% 60% 80% 40% 60% 80%

annotation annotation

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

AIDE Cufflinks StringTie SLIDE

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
annotation

a b cprecision recall error rate

Figure 3.2: Isoform discovery and abundance estimation results of AIDE, Cufflinks,

StringTie, and SLIDE on simulated RNA-seq data with 10x coverage. Each boxplot gives

the 1st quantile, median, and 3rd quantile of the per-gene results given each set of synthetic

annotation. a: precision of isoform discovery; b: recall of isoform discovery; c: error rates

of abundance estimation.

We first compared AIDE and the other three methods Cufflinks, SLIDE, and StringTie

in terms of their isoform discovery accuracy at the individual gene level. Regarding both

60



precision (i.e., the proportions of expressed isoforms in the discovered isoforms) and recall

(i.e., the proportions of discovered isoforms in the expressed isoforms), AIDE outperforms

the other three methods with all the nine sets of synthetic annotations (Figures 3.2, B.3, and

B.4). Especially with the less accurate synthetic annotation sets 1-4, AIDE demonstrates

its clear advantages in precision and recall thanks to its stepwise selection strategy, which

prevents AIDE from being misled by the wrongly annotated isoforms. When the read cover-

age is 10x and the annotations have 40% purity (sets 1-3), the median precision of AIDE is

as high as the 3rd-quantile precision of Cufflinks. In addition, AIDE achieves high precision

(> 75%) much more frequently than the other three methods (Figure 3.2a). In terms of the

recall, AIDE and Cufflinks exhibit better capability in correctly identifying truly expressed

isoforms than StringTie and SLIDE. AIDE achieves high recall (> 75%) in more genes when

the annotation purity is 40%, and its recall rates are close to those of Cufflinks when the

annotation purity is increased to 60% and 80% (Figure 3.2b). We also found that the an-

notation purity is more important than the annotation completeness for isoform discovery

(Figure 3.2). This observation suggests that if practitioners have to choose between two

annotation sets, one with high purity but low completeness and the other with low purity

but high completeness, they should use the former annotation set as input into AIDE.

As a concrete example, for the human gene DPM1, annotation set 1 has a 67% purity

and a 67% completeness, and annotation set 9 has a 60% purity and a 100% completeness.

Thanks to its capacity to selectively incorporate information from the annotated isoforms,

AIDE successfully identified the shortest truly expressed isoform, which is missing in the

annotation set 1 (Figure B.5). With annotation set 9 that contains two non-expressed

isoforms, AIDE also correctly identified the three truly expressed isoforms (Figure B.6).

In contrast, Cufflinks, StringTie, and SLIDE missed some of the truly expressed isoforms

with both annotation sets. Specifically, they missed the shortest expressed isoform not in

annotation set 1, and they identified too many non-expressed isoforms with the less pure

annotation set 9.

We also summarized the genome-wide average precision, recall, and F scores of AIDE and

the other three methods at three different levels: base, exon, and isoform levels, with each of
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Figure 3.3: Precision-recall curves of AIDE and the other three isoform discovery methods

in simulation. Given each synthetic annotation set, we applied AIDE, Cufflinks, StringTie,

and SLIDE for isoform discovery, and summarized the expression levels of the predicted

isoforms using the FPKM values. The precision-recall curves were obtained by thresholding

the FPKM values of the predicted isoforms. The AUC of each method is also marked in the

plot. The shown results are based on RNA-seq data with a 10x coverage.

the nine synthetic annotation sets (Figure B.7, Appendix A.5). All the four methods have

high accuracy at the base and exon levels regardless of the annotation accuracy. However,

even when exons are correctly identified, it remains challenging to accurately assemble exons

into full-length isoforms. At the isoform level, AIDE achieves the best precision and F scores,

as well as recall rates comparable to Cufflinks. In addition to the reconstruction accuracy

based on the initial output of each method, we also compared the precision-recall curves of

different methods by applying varying thresholds on the estimated isoform expression levels
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(Figure 3.3). Regardless of the annotation quality, AIDE achieves the highest precision when

all the methods lead to the same recall. These results demonstrate the advantage of AIDE

in achieving high precision and low false discovery rates in isoform discovery.

As the true isoform proportions were specified in this simulation study, we also compared

AIDE with the other three methods in terms of their accuracy in isoform abundance estima-

tion. We use α = (α1, . . . , αJ)′ to denote the proportions of J possible isoforms enumerated

from a given gene’s known exons, and we use α̂ = (α̂1, . . . , α̂J)′ to denote the estimated

proportions by a method. We define the estimation error rate as: e(α̂) = 1
2

∑J
j=1 |αj − α̂j|.

The error rate is a real value in [0, 1], with a value 0 representing a 100% accuracy. With

all the nine synthetic annotation sets, AIDE achieves the overall smallest error rates (Figure

3.2c).

3.3.2 AIDE improves isoform discovery in real data studies

We performed another transcriptome-wide comparison of AIDE and the other three methods

to further validate the robustness and reproducibility of AIDE based on real data. Since

transcriptome-wide benchmark data are unavailable for real RNA-seq experiments, we used

the isoforms in the GENCODE annotation as a surrogate basis for evaluation [75]. For

every gene, we randomly selected half of the annotated isoforms and input them as partial

annotations into every isoform discovery method. We collected from public data repository

three human embryonic stem cell (ESC) datasets and three mouse bone marrow-derived

macrophage (BMDM) datasets (Table C.2). For each gene, we applied AIDE, Cufflinks,

StringTie, and SLIDE to these six datasets for isoform discovery with partial annotations,

and we evaluated the accuracy of each method by comparing their identified isoforms with the

complete set of annotated isoforms. Although the annotated isoforms are not equivalent to

the truly expressed isoforms in the six samples from which RNA-seq data were generated, the

identified isoforms, if accurate, are supposed to largely overlap with the annotated isoforms

given the quality of human and mouse annotations. Especially if we assume the human

and mouse annotations are unions of known isoforms expressed under various well-studied
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biological conditions including human ESCs and mouse BMDMs, it is reasonable to use those

annotations to estimate the precision of the discovered isoforms, i.e., what proportions of

the discovered isoforms are expressed.
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Figure 3.4: Comparison of AIDE and the other three methods in real data studies. a: ex-

on-level accuracy on the human ESC samples; b: exon-level accuracy on the mouse BMDM

samples; c: transcript-level accuracy on the human ESC samples; d: transcript-level accu-

racy on the mouse BMDM samples. The gray contours denote the F scores, as marked on

the right of each panel.

We summarized the isoform discovery accuracy of the four methods on each dataset at

both the exon level and the transcript level (Figure 3.4). At the exon level, AIDE has the

highest precision and recall on all the six datasets, achieving F scores greater than 90%

(Figure 3.4a-b). The second best method at the exon level is StringTie. Since connecting

exons into the full-length isoforms is much more challenging than simply identifying the

individual exons, all the methods have lower accuracy at the isoform level than at the exon

level. While having slightly lower recall rates than Cufflinks, AIDE achieves the highest

precision (∼ 70% on human data and ∼ 60% on mouse data) at the isoform level (Figure
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3.4c-d). Moreover, when all the methods achieve the same recall after thresholding the

estimated isoform expression levels, AIDE has the largest precision on all the six samples

(Figure B.8). In the three mouse BMDM samples, AIDE identified novel isoforms for the

genes MAPKAPK2, CXCL16, and HIVEP1, which are known to play important roles in

macrophage activation [125–127]. Since AIDE has higher precision rates than the other

three methods, these novel isoforms found by AIDE are worth investigating in macrophage

studies.

AIDE is able to achieve more precise isoform discovery than existing methods because it

utilizes a statistical model selection principle to determine whether to identify a candidate

isoform as expressed. We used two example genes ZBTB11 and TOR1A, to illustrate the

superiority of AIDE over the other three methods (Figure 3.5). The genome browser plots

clearly show that AIDE identifies the annotated isoforms with the best precision, while the

other methods either miss some annotated isoforms or lead to too many false discoveries.

We also used these two genes to show that AIDE is robust to the choice of the p-value

threshold used in the LRTs. The default choice of the threshold is 0.01
total number of genes

, which is

4.93×10−7 for human samples and 4.54×10−7 for mouse samples. We used AIDE to identify

isoforms with different thresholds and tracked how the results change while the threshold

decreases from 10−2 to 10−10 (Figure B.9). As expected, AIDE tends to discover slightly

more isoforms with a larger threshold, and it becomes more conservative with a smaller

threshold. However, the default threshold leads to accurate results for these four genes, and

the discovered isoform set remains stable around the default threshold.

3.3.3 PCR-Sanger sequencing validates the effectiveness of AIDE

Since AIDE and Cufflinks have demonstrated higher accuracy than other methods in the

assessment of genome-wide isoform discovery, we further evaluated the performance of these

two methods on a small cohort of RNA-seq datasets using polymerase chain reaction (PCR)

followed by Sanger sequencing. We applied both AIDE and Cufflinks to five breast cancer

RNA-seq datasets for isoform identification with GENCODE annotation version 24. After
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Figure 3.5: Isoform discovery for the human genes ZBTB11 and TOR1A based on real data.

The histogram and the sashimi plot denote the RNA-seq reads mapped to the two genes

in the human ESC sample 1 (Table C.2). Isoform discovery was based on the GENCODE

human annotation version 24. AIDE achieves the best accuracy among the four methods.

comparing the genome-wide isoform discovery results, we randomly selected ten genes that

have annotated transcripts uniquely predicted by only AIDE or Cufflinks with FPKM > 2 for

experimental validation (Appendix A.6). We summarized the genes into two categories: six

genes with annotated isoforms identified only by Cufflinks but not by AIDE (category 1), and

four genes with annotated isoforms identified only by AIDE but not by Cufflinks (category

2). For four genes in category 1, MTHFD2, NPC2, RBM7, and CD164, the experimental

validation found that the isoforms uniquely predicted by Cufflinks were false positives (Figure

3.6a-d). Specifically, both AIDE and Cufflinks correctly identified the full-length isoforms

MTHFD2-201, NPC2-207, RBM7-203, CD164-003 for the four genes, respectively. However,
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Figure 3.6: Experimental validation of isoforms predicted by AIDE and Cufflinks. Isoforms of

genes MTHFD2 (a), NPC2 (b), RBM7 (c), CD164 (d), FGFR1 (e), and ZFAND5 (f) were

validated by PCR and Sanger sequencing. The isoforms to validate (yellow) are listed under

each gene (dark gray), with + / − indicating whether an isoform was / was not identified

by PCR or a computational method. The forward (F) and reward (R) primers are marked

on top of each gene. For each gene, the agarose gel electrophoresis result demonstrates the

molecular lengths of PCR products, and the chromatography of Sanger sequencing confirms

that the sequence around the exon-exon junction is unique to the PCR-validated isoform.
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the isoforms MTHFD2-203, NPC2-205, RBM7-208, CD164-210 predicted only by Cufflinks

were all false discoveries. The validation results of category 1 indicate the potential of

AIDE to effectively reduce false positive prediction of full-length isoforms compared with

Cufflinks. For two genes in category 2, we validated the isoforms uniquely predicted by

AIDE as true positives (Figure 3.6e-f). AIDE correctly identified isoforms FGFR1-238 and

FGFR1-201 for the FGFR1 gene, as well as isoform ZFAND5-208 for the ZFAND5 gene.

On the other hand, Cufflinks only identified FGFR1-201 and missed the other two isoforms.

The validation results of category 2 suggest that AIDE also has good recall performance in

this case study.

a

AIDE

Cufflinks

FGFR1 gene

FGFR1-238
FGFR1-201

FGFR1-201
FGFR1-204

FGFR1-C1
FGFR1-241

FGFR1-205

b

c d

Figure 3.7: Biological functions of the isoform FGFR1-238. a: PCR experiments vali-

dated the expression of FGFR1-238 in breast cancer cell lines MCF7, SUM149, BT474,

SK-BR-3, MB231, and BT549. b: Long-term colonogenic assay with lipo3000 controls

(“siControl”) and FGFR1-238 knockdowns. Tumor growths relative to the siControl were

quantified by the ImageJ software [128]. c: FGFR1 isoforms identified by AIDE and Cuf-

flinks. d: Long-term colonogenic assay with siControl (negative control), si-FGFR1-238

(positive control), si-FGFR1-205, and si-FGFR1-C1. Tumor growths relative to the siCon-

trol were quantified by the ImageJ software.
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3.3.4 AIDE identifies isoforms with biological relevance

We investigated the biological function of FGFR1-238, an isoform predicted by AIDE but

not by Cufflinks. Since FGFR1-238 was identified in the breast cancer RNA-seq samples,

we evaluated its function in breast cancer development by a loss-of-function assay. In de-

tail, we validated the expression of FGFR1-238 in breast cancer cell lines MCF7, BT549,

SUM149, MB231, BT474, and SK-BR-3 using PCR (Figure 3.7a), and we designed primers

to uniquely amplify a sequence of 533 bp in its 18-th exon. Results show that high levels

of FGFR1-238 were detected in cell lines MCF7, BT549, MB231, and BT474 (Figure 3.7a).

Next, we designed five small interfering RNAs (siRNAs) that specifically target the unique

coding sequence of FGFR1-238 (Appendix A.7). Then we studied the dependence of tumor

cell growth on the expression of FGFR1-238 by conducting a long-term (10 days) cell prolif-

eration assay in the presence or absence (control) of siRNA knockdown. Our experimental

results clearly show that the knockdown of the FGFR1-238 isoform inhibits the survival of

MCF7 and BT549 cells (Figure 3.7b).

To further validate the specific biological function of isoform FGFR1-238, we also de-

signed two siRNAs targeting two isoforms FGFR1-205 and FGFR1-C1 (novel) which were

predicted by Cufflinks (Figure 3.7c). The expressions of FGFR1-205 and FGFR1-C1 were

validated in three breast cancer cell lines, BT549, MCF7, and BT474, by PCR experiments.

The three isoforms were knocked down in the host mammalian cells BT549, MCF7, and

BT474 by RNA interference, respectively. The colonogenic assay shows that only the dele-

tion of FGFR1-238 but not FGFR1-205 or FGFR1-C1 obviously impacted long term cell

survival (Figure 3.7d). Therefore, FGFR1 and especially its isoform FGFR1-238 could be

promising targets for breast cancer therapy, implying the ability of AIDE in identifying

full-length isoforms with biological functions in pathological conditions.

To further compare AIDE and other reconstruction methods in identifying isoforms with

biological functions, we also applied AIDE, Cufflinks, and StringTie to the RNA-seq data of

three melanoma cell lines. As one of the most predominant driver oncogenes, the tumorigenic

function of the NRAS gene was well documented [130]. Recently, some novel isoforms of
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Figure 3.8: NRAS isoforms predicted by AIDE, Cufflinks, and StringTie. NRAS isoforms in

the GENCODE annotation, reported by Eisfeld et al. [129], and discovered by AIDE, Cuf-

flinks, or StringTie in three melanoma BRAF inhibitor resistant cell lines: M229R, M263R,

and M395R.

the NRAS gene were experimentally identified using quantitative PCR and shown to have

potential roles in cell proliferation and malignancy transformation [129]. Except for the

annotated isoform 1, the other two isoforms identified by Eisfeld et al. have not been

included in the GENCODE [75] or Ensembl [121] annotation (Figure 3.8). We applied both

AIDE and the other two reconstruction methods to the RNA-seq data of melanoma cell

lines [131, 132]. Our results showed that (1) the two novel NRAS isoforms, in addition to

the annotated isoform 1, were identified by AIDE; (2) only isoform 1 was identified in two

out of the three cell lines by StringTie; 3) none of them was identified by Cufflinks (Figure

3.8). These results again demonstrate the potential of AIDE as a powerful bioinformatics

tool for isoform discovery from short-read sequencing data.

3.3.5 AIDE achieves the best consistency with long-read sequencing

We conducted another transcriptome-wide study to evaluate the isoform discovery methods

by comparing their reconstructed isoforms (from the next-generation short RNA-seq reads)

to those identified by the third-generation long-read sequencing technologies, including Pa-

cific Biosciences (PacBio) [76] and Oxford Nanopore Technologies (ONT) [133]. Even though

PacBio and ONT platforms have higher sequencing error rates and lower throughputs com-

pared to the NGS technologies, they are able to generate much longer reads (1-100 kbp)
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to capture multiple splicing junctions [134]. Here we used the full-length transcripts identi-

fied from the PacBio or ONT sequencing data as a surrogate gold standard to evaluate the

isoform discovery methods.
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Figure 3.9: Evaluation of isoform discovery methods based on long-read technologies. a:

The F score, precision, and recall of Cufflinks, AIDE, and StringTie calculated based on

isoforms identified by ONT. b: The F score, precision, and recall of Cufflinks, AIDE, and

StringTie calculated based on isoforms identified by PacBio.

We applied AIDE, Cufflinks, and StringTie to a next-generation RNA-seq sample of

human ESCs, and compared their identified isoforms with those discovered from PacBio or

ONT data generated from the same human ESC sample [134]. SLIDE requires its input

RNA-seq reads to have the same mapped read length and is thus not applicable to this

dataset. The comparison results based on ONT and PacBio are highly consistent: AIDE

achieves the best precision and overall accuracy (F score) at both the base level and the

transcript level (Figure 3.9). The fact that all the three methods have high accuracy at the

exon level but much lower accuracy at the transcript level again indicate the difficulty of

assembling exons into full-length isoforms based on short RNA-seq reads. Among all the

three methods, AIDE is advantageous in achieving the best precision in full-length isoform
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discovery.

3.3.6 AIDE improves isoform abundance estimation

Since the structures and abundance of expressed isoforms are unobservable in real RNA-

seq data, we also seek to evaluate the performance of different methods by comparing their

estimated isoform expression levels in the FPKM unit with the NanoString counts, which

could serve as benchmark data for isoform abundance when PCR validation is not available

[56,72,104,135]. We expect an accurate isoform discovery method to discover a set of isoforms

close to the expressed isoforms in an RNA-seq sample. If the identified isoforms are accurate,

the subsequently estimated isoform abundance is more likely to be accurate and agree better

with the NanoString counts.
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Figure 3.10: Spearman correlation coefficients between the estimated isoform expression and

the benchmark NanoString counts. a: For every probe, the sum of the expression levels of

its corresponding isoforms was used in the calculation. b: For every probe, the maximum of

the expression levels of its corresponding isoforms was used in the calculation.

We therefore applied AIDE, Cufflinks, and StringTie to six samples of the human HepG2

immortalized cell line with both RNA-seq and NanoString data [72] (Table C.2). We supplied

all the three methods with the GENCODE annotation (version 24) [75] for isoform discovery.

SLIDE requires its input RNA-seq reads to have a unique read length after mapping and

is thus not applicable to the six mapped HepG2 RNA-seq datasets. Since the NanoString

nCounter technology is not designed for genome-wide quantification of RNA molecules, the
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HepG2 NanoString datasets have measurements of 140 probes corresponding to 470 isoforms

of 107 genes. We first found the isoforms compatible with every probe, and we then compared

the sum or the maximum of the estimated abundance of these isoforms with the count of that

probe. For each HepG2 sample, we calculated the Spearman correlation coefficient between

the estimated isoform abundance (“sum” or “max”) and the NanoString probe counts to

evaluate the accuracy of each method (Figure 3.10). AIDE has the highest correlations in

five out of the six samples, suggesting that AIDE achieves more accurate isoform discovery

as well as better abundance estimation in this application. It is also worth noting that all

three methods have achieved high correlation with the Nanostring counts for samples 3 and

4, since these two samples have the longest reads (100 bp) among all the samples.

3.4 Discussion

We propose a new method AIDE to improve the precision of isoform discovery and the

accuracy of isoform quantification from the next-generation RNA-seq data, by selectively

borrowing alternative splicing information from annotations. AIDE identifies isoforms in a

stepwise manner while placing priority on the annotated isoforms, and it performs statistical

testing to automatically determine what isoforms to retain. We demonstrate the efficiency

and superiority of AIDE compared to three state-of-the-art methods, Cufflinks, SLIDE, and

StringTie, on multiple synthetic and real RNA-seq datasets followed by an experimental

validation through PCR-Sanger sequencing, and the results suggest that AIDE leads to

more precise discovery of full-length RNA isoforms and more accurate isoform abundance

estimation. In an evaluation based on the third-generation long-read RNA-seq data, AIDE

also leads to the most consistent isoform discovery results than the other methods do.

In addition to reducing false discoveries, AIDE is also demonstrated to identify full-length

RNA isoforms with biological functions in disease conditions. First, we assessed the biological

relevance of the isoform FGFR1-238 , which was only identified by AIDE, using a loss-of-

function assay. We selected two breast cancer cell lines that had this isoform expressed and

experimentally proved that cell proliferation was inhibited with this isoform being knocked
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down. Second, we applied both AIDE and Cufflinks to the RNA-seq data of melanoma cell

lines. Only AIDE was able to detect two novel isoforms of the NRAS gene, which were

reported to play a role in the drug resistance mechanism of BRAF -targeted therapy.

Even though long reads generated by PacBio and ONT have advantages over next-

generation short RNA-seq reads for assembling full-length RNA isoforms, it remains neces-

sary to improve computational methods for short-read-based isoform discovery. First, wide

application of the long-read sequencing technologies is still hindered by their lower through-

put, higher error rate, and higher cost per base [76]. Meanwhile, the short-read sequencing

technology is still the mainstream assay for transcriptome profiling. Second, a huge number

of next-generation RNA-seq datasets have been accumulated over the past decade. Consid-

ering that many biological or clinical samples used to generate those datasets are precious

and no longer available for long-read sequencing, the existing short-read data constitute an

invaluable resource for studying RNA mechanisms in these samples. Therefore, an accurate

isoform discovery method will be indispensable for studying full-length isoforms from these

data. Meanwhile, we also expect that with increased availability of long read data, we will

be better equipped to compare and evaluate the reconstruction methods for short-read data.

To the best of our knowledge, AIDE is the first isoform discovery method that identifies

isoforms by selectively leveraging information from annotations based on a statistically prin-

cipled model selection approach. The stepwise likelihood ratio testing procedure in AIDE

has multiple advantages. First, AIDE only selects isoforms that significantly contribute to

the explanation of the observed reads, leading to more precise results and reduced false

discoveries than those of existing methods. Second, the forward steps allow AIDE to start

from and naturally give priority to the annotated isoforms, which have higher chances to

be expressed. Meanwhile, the backward steps allow AIDE to adjust its previously selected

isoforms given the newly added isoforms so that all the selected isoforms together better

explain the observed reads. Third, the testing procedure in AIDE allows the users to adjust

the conservatism and precision of the discovered isoforms according to their desired level of

statistical significance. Because of these advantages, AIDE identifies fewer novel isoforms at

a higher precision level than previous methods do, making it easier for biologists to experi-
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mentally validate the novel isoforms. In applications where the recall of isoform discovery is

of great importance, users can increase the p-value threshold of AIDE.

Through the application of AIDE to multiple RNA-seq datasets, we demonstrate that

selectively incorporating annotated splicing patterns, in addition to simply obtaining gene

and exon boundaries from annotations, greatly helps isoform discovery. The stepwise se-

lection procedure of AIDE also differentiates it from the methods that directly assume the

existence of all the annotated isoforms. The application of AIDE has lead us to interesting

observations that could benefit both method developers and data users. First, we find that

a good annotation can help reduce the need for deep sequencing depths. AIDE has been

shown to achieve good accuracy on datasets with low sequencing depths when supplied with

accurately annotated isoforms, and its accuracy is comparable to that based on deeply se-

quenced datasets. Second, we find it more important for an annotation to have high purity

than to have high completeness, in order to improve the isoform discovery accuracy of AIDE

and the other methods we compared with in our study. Ideally, instead of using all the

annotated isoforms, a better choice is to use a filtered set of annotated isoforms with high

confidence. This requires annotated isoforms to have confidence scores, which unfortunately

are unavailable in most annotations. Therefore, how to add confidence scores to annotated

isoforms becomes an important future research question, and answering this question will

help the computational prediction of novel isoforms.

When identifying differential splicing patterns between RNA-seq samples from different

biological conditions, a well-established practice is to first estimate the isoform abundance in

each sample, and then perform statistical testing to discover differentially expressed isoforms

[136,137]. However, as we have demonstrated in both synthetic and real data studies, existing

methods suffer from high risks of predicting false positive isoforms, i.e., estimating non-zero

expression levels for unexpressed isoforms in a sample. Such false positive isoforms will

severely reduce the accuracy of differential splicing analysis, leading to inaccurate comparison

results between samples under two conditions, e.g., healthy and pathological samples. In

contrast, AIDE’s conservative manner in leveraging the existing annotations allows it to

identify truly expressed isoforms at a greater precision and subsequently estimate isoform
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abundance with a higher accuracy. We expect that the application of AIDE will increase the

accuracy of differential splicing analysis, lower the experimental validation costs, and lead

to new biological discoveries at a higher confidence level.

The probabilistic model of AIDE is very flexible and can incorporate reads of varying

lengths and generated by different platforms. The non-parametric approach to learning the

read generating mechanism makes AIDE a data-driven method, and it does not depend on

specific assumptions of the RNA-seq experiment protocols. Therefore, a natural extension

of AIDE is to combine the short but more accurate reads from the next-generation technolo-

gies with the longer but more error-prone reads generated by new sequencing technologies

such as PacBio [76] and Nanopore [78]. Joint modeling of the two types of reads has the

potential to greatly improve the overall accuracy of isoform detection [138], since AIDE is

shown to have better precision than existing methods, and longer RNA-seq reads capture

more splicing junctions and can further improve the recall rate of AIDE. Aside from the

stepwise selection procedure used by AIDE, another possible way to incorporate priority on

the annotated isoforms in the probabilitic model is to add regularization terms only on the

unannotated isoforms. However, this approach is less interpretable compared with AIDE,

since the regularization terms lack direct statistical intepretations as the p-value threshold

does. Moreover, this approach may lose control of the FDR when the annotation has a low

purity. Another future extension of AIDE is to jointly consider multiple RNA-seq samples

for more robust and accurate transcript reconstruction. It has been shown that it is often

possible to improve the accuracy of isoform quantification by integrating the information

in multiple RNA-seq samples [56, 69, 70]. Therefore, by extending AIDE to combine the

consistent information from multiple technical or biological samples, it is likely to achieve

better reconstruction accuracy, and enable researchers to integrate publicly available and

new RNA-seq samples for transcriptome studies.
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CHAPTER 4

Introduction to Single-cell RNA Sequencing Analysis

4.1 Background

Bulk RNA-seq technologies have been widely used for transcriptome profiling to study tran-

scriptional structures, splicing patterns, and gene and transcript expression levels [1]. How-

ever, it is important to account for cell-specific transcriptome landscapes in order to address

biological questions such as cell heterogeneity and gene expression stochasticity [139]. De-

spite its popularity, bulk RNA-seq does not allow people to study cell-to-cell variation in

terms of transcriptomic dynamics. In bulk RNA-seq, cellular heterogeneity cannot be ad-

dressed since signals of variably expressed genes would be averaged across cells. Fortunately,

single-cell RNA sequencing (scRNA-seq) technologies are now emerging as a powerful tool

to capture transcriptome-wide cell-to-cell variability (Figure 4.1) [88, 140, 141]. ScRNA-seq

enables the quantification of intra-population heterogeneity at a much higher resolution,

potentially revealing dynamics in heterogeneous cell populations and complex tissues [142].

The rapid development of scRNA-seq technologies offer unprecedented opportunities

for investigating transcriptional mechanisms underlying biological and medical phenomena

at the individual-cell resolution [143–145]. The scRNA-seq technologies have enabled re-

searchers to investigate fundamental biomedical questions such as cellular composition of

various tissues and cell types [146, 147], cell differentiation trajectories [148, 149], and spa-

tial and temporal dynamics of single cells [150, 151]. Important discoveries have been made

from scRNA-seq data and advanced our understanding of diseases such as neurological dis-

orders [152,153] and tumorigenesis [154,155].
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4.2 Currently available scRNA-seq technologies
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Figure 4.1: Workflow of a scRNA-seq analysis. A typical pipeline of scRNA-seq experiments

and analysis involve the following major steps: isolation of single cells and RNA molecules

from bulk tissue, library preparation and sequencing, read mapping to obtain read count

matrix (rows for genes and columns for cells), dimensionality reduction and feature selection,

clustering analysis and visualization, downstream investigation such as DE analysis.

Since the first scRNA-seq study was published in 2009 [156], more than twenty scRNA-seq

experimental protocols have been developed [157–162]. These scRNA-seq technologies differ

in one or more aspects including cell isolation, cell lysis, reverse transcription, transcript

coverage, and the availability of unique molecular identifiers (UMIs) [163]. Among these

different aspects, one important factor that needs to be considered for downstream analysis

is transcript coverage. Tag-based protocols, such as Drop-seq [159] and Seq-Well [161],

allow the integration of UMIs [164] to detect and quantify unique transcripts, but they

can only capture and sequence the 3’-end or 5’-end of the RNA transcripts. In contrast,

full-length protocols, such as Smart-seq2 [157] and Fluidigm C1, are able to capture full-

length transcripts and allow the addition of the External RNA Control Consortium (ERCC)

spike-ins [162,165].

Compared to the tag-based protocols, full-length protocols are advantageous for transcript-

79



and exon- level studies in order to understand single-cell alternative splicing [166] and isoform

usage [167]. For gene-level analyses, the tag-based protocols are usually designed to obtain a

broad but shallow view of gene expression across many cells, while the full-length protocols

provide a deeper and more accurate account of gene expression in fewer cells. In gene-level

analyses, the first step after read mapping is often to summarize a gene expression matrix

where rows represent genes and columns represent cells. Each element in the matrix sum-

marizes the number of RNA-seq reads (for full-length protocols) or the number of unique

UMIs (for tag-based protocols) mapped to a gene in an individual cell. The remaining of

this chapter focuses on gene-level analyses of scRNA-seq data.

One important characteristic of scRNA-seq gene expression data is the dropout phe-

nomenon where a gene is expressed in one cell but its RNA transcripts are not detected by

the sequencing experiments [168]. Usually these events occur due to the low amounts of

mRNA in individual cells, and thus a truly expressed transcript may not be detected during

sequencing in some cells. If one gene’s transcripts in a cell are not detected in a scRNA-seq

experiment, its expression will be represented by a false zero count in the resulting gene

expression matrix. This characteristic of scRNA-seq is shown to be protocol-dependent. For

instance, the number of cells that can be analyzed with one chip is usually no more than a

few hundreds on the Fluidigm C1 platform, with around 1-2 million reads per cell. On the

other hand, protocols based on droplet microfluidics can parallelly profile more than 10, 000

cells, but with only 100-200k reads per cell [169]. Hence, there is usually a much higher

dropout rate in scRNA-seq data generated by the droplet microfluidics than the Fluidigm

C1 platform. New droplet-based protocols, such as inDrop [158] or 10x Genomics [160], have

improved molecular dectection rates but still have relatively low sensitivity compared with

the microfluidics technologies, without accounting for sequencing depths [170]. Statistical

methods for scRNA-seq gene expression data need to take the dropout issue into consider-

ation, and otherwise they may present varying efficacy when applied to data from different

protocols.
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4.3 Dimensionality reduction and feature selection

Since scRNA-seq experiments may involve thousands of genes and hundreds to millions

of cells, scRNA-seq gene expression matrices are with a high dimensionality. Therefore,

dimensionality reduction or feature selection approaches are usually applied to scRNA-seq

data before downstream analysis to reduce the noises, speed up calculations, and assist

visualization (Figure 4.1) [163,171].

Dimensionality reduction approaches are widely used in single-cell studies to provide

visualization in exploratory analysis and to help identify important patterns in single-cell

transcriptomes. Their main goal is to project individual cells from the high-dimensional

gene expression measurement space to a low-dimensional latent space. Principal component

analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) [14] are the two

most frequently used methods used on single-cell gene expression data. PCA is a linear

projection method, and it is often applied to visualize major cell clusters [172] or development

trajectories [173]. Pseudotime inference methods such as TSCAN [174] and Waterfall [175]

also rely on PCA to achieve dimensionality reduction before inferring the underlying temporal

order of the individual cells. On the other hand, t-SNE is a non-linear approach that tends

to well preserve local clustering structures, and it has been widely applied to help identify

patterns in complex cell populations [159,160].

More recent dimensionality reduction methods have been specifically designed for scRNA-

seq data. For example, ZIFA, representing zero-inflated factor analysis, is a dimensionality

reduction method that explicitly accounts for the presence of dropouts [176]. ZIFA uses a

latent variable model and extends the factor analysis framework with an additional zero-

inflation modulation layer. In the ZIFA model, the dropout probability (i.e., the probability

that a gene’s transcripts not being detected) is assumed to be a function of a gene’s latent

expression level, p0 = exp(−λx2), where λ is the exponential decay parameter and x denotes

the gene expression level. This assumption is based on the empirical observation that the

dropout rate of a gene depends on the expected expression level of that gene in the cell

population [176]. Another matrix factorization method, ZINB-WaVE, uses a zero-inflated
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negative binomial (ZINB) model to extract low-dimensional signals from scRNA-seq data

[177]. ZINB-WaVE has the flexibility to include both gene- and cell-level covariates to adjust

for batch effects or gene sequence effects on read counts. It assumes that the observed read

count is a random variable following a ZINB distribution, while both the mean parameter

and the zero proportion depend on the gene- and cell- level covariates through regression

models.

In addition to dimensionality reduction, feature selection is another way to circumvent

very high-dimensional problems. Researchers use this approach to identify a set of genes

that are most relevant to the underlying structures of single cells, e.g., genes that are highly

variable across cell subpopulations or genes that specifically expressed in one or a few cell

subtypes. People have used gene expression variance, coefficient of variance, or Gini index

to rank genes for this purpose [178–180]. It was also shown that the Gini index is a more

appropriate criterion than the coefficient of variance for selecting rare cell-type-specific genes

[180]. The dimensionality reduction and feature selection approaches are usually combined

in practice before downstream analyses (e.g., clustering) are performed [181]. However, as

there are no unified guidelines for choosing parameters, such as the number of gene features

or the number of components to retain for the projected space, inconsistency may arise from

different analysis pipelines even if they use the same statistical models.

4.4 Identification of cell subpopulations

A key goal of many scRNA-seq studies is to identify cellular subpopulations (e.g., cell sub-

types and cell states) that cannot be defined by bulk data [143, 163, 171]. Especially, single

cell analysis provides an opportunity to systematically define cell subpopulations as opposed

to using criteria including marker protein expression or morphology [143]. Single cell studies

that incorporate prior biological knowledge often use the expression levels of known marker

genes to characterize major cell types. For example, the GAD1 and GAD2 genes are used as

markers of amacrine cells [159], while the CD3D and NKG7 genes are respectively used as

markers of T cells and natural killer cells [160]. However, many cell types or subtypes have
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few well-established marker genes, and the limited number of marker genes may not fully

capture the diverse facets of cell identities. Therefore, most studies rely on unsupervised

clustering methods to identify cell subpopulations and putative cell types (Figure 4.1). This

task needs to be carried out after careful normalization to remove technical variation such

as batch effects in scRNA-seq data [182].

Clustering methods developed for scRNA-seq data are usually categorized by the statisti-

cal models on which they are based. The first type of scRNA-seq clustering method is based

on the k-means algorithm. For example, the method SC3 aims to improve the accuracy and

robustness of cell clustering through a consensus approach [183]. SC3 applies the k-means

algorithm to the first d eigenvectors of the cell-cell distance matrices, and it obtains multiple

clustering solutions by varying the value of d. It finally combines all clustering solutions into

a consensus matrix, summarizing how often each pair of cells is assigned to the same cluster.

Another method RaceID2 applies the k-medoids algorithm to a correlation-based distance

matrix, and it infers the cluster number based on the saturation of the average within-cluster

variation [184].

The second type of scRNA-seq clustering method is based on hierarchical clustering.

CIDR is the first clustering method that incorporates imputation of dropout values, but the

imputed expression value of a particular gene in a cell changes each time when the cell is

paired up with a different cell [185]. The hierarchical clustering algorithm is then applied on

the cell-cell distances after dimensionality reduction. In a study of mouse cortical cells, Tasic

et al. first selected genes that were differentially expressed between preliminary clusters, and

then applied the hierarchical clustering algorithm using only the DE genes [186].

The third type of scRNA-seq clustering method is based on graphs. The SNN-Cliq

method [187] uses the ranking of cells’ common k-nearest-neighbors (KNNs) to construct a

graph with cells as nodes. It then identifies cell clusters in the graph by finding the maximal

cliques, which are fully connected subgraphs not contained in a larger clique. Another

two methods, PhenoGraph [188] and Seurat [181], also construct a KNN graph before cell

clustering. They both use the Louvain method [189] to uncover cell clusters from the KNN

graphs.
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The current practice of single cell clustering analysis is usually interactive, as there lacks

unified criteria to identify cell outliers, determine cluster numbers, and annotate cell clusters

with biological information. Researchers often rely on visualization of cell cluster similarities

and marker gene expression levels to evaluate the results based on existing knowledge. The

clustering analysis may be repeated with different parameters until a reasonable result is

obtained. However, with on-going efforts including the Human Cell Atlas [190], databases of

known cell types and their gene expression characteristics may become available in the near

future.

4.5 Differential gene expression analysis

After identifying cell subpopulations using statistical and computational methods, it is nec-

essary to analyze the gene expression characteristics and differences among these subpopu-

lations, so as to define cell identities. Similar as for bulk RNA-seq data, a main approach to

comparing two cell subpopulations is to find DE genes through principled statistical tests.

Since scRNA-seq data are highly heterogeneous and sparse due to the dropout events, com-

monly used Poisson or Negative Binomial models for bulk RNA-seq data cannot be directly

applied on scRNA-seq data. Therefore, new strategies and methods have been developed for

performing differential gene expression analysis on single-cell data [191].

We first introduce the basic framework for testing the mean difference of gene expression

in different cell subpopulations (Figure 4.1). We consider two cell subpopulations k = 1, 2,

each with Jk cells. Yk,ij denotes the expression level of gene i in the jth cell of subpopulation

k. Depending on the specific methods, the expression levels could be measured as read

counts (e.g., in SCDE [168]) or log-transformed TPM values (e.g., in MAST [192]). A

common assumption is that

Yk,ij ∼ λkif0(φ0,ki) + (1− λki)f1(θki,φ1,ki) (4.1)

where λki is the probability of gene i being a dropout in subpopulation k. If gene i is

a dropout, we assume that its expression level follows distribution f0 with one or more
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parameters φ0,ki; if gene i is not a dropout, we assume that its expression level follows

distribution f1 with true expression level θki and other necessary parameter(s) φ1,ki. This

assumption uses a dropout component (f0) to account for the zero or very low read counts

resulting from the dropout events. For example, SCDE specifies f0 as a Poisson distribution

and f1 as a Negative Binomial distribution. Another scRNA-seq DE method MAST assumes

f0 to be δ0, a point mass at 0, and f1 to be a Normal distribution. The DGE analysis is

then carried out by testing

H0 : θ1i = θ2i vs. H1 : θ1i 6= θ2i (4.2)

for each gene i. As in bulk DE analysis (Chapter 1.3.1), shrinkage estimation of gene

expression variance can be incorporated into the framework to borrow information across

genes and increase the robustness of estimation [192]. To apply the previously developed DE

methods on scRNA-seq data, Van den Berge et al. [193] proposed an approach to estimate

observation weights from a zero inflated NB model before the statistical testing step. The

approach can be combined with DESeq2 [30] and edgeR [28] to detect DE genes in single

cell data.

To better account for the cellular heterogeneity in terms of gene expression, new DE

methods have been proposed to test for differences beyond traditional differential mean ex-

pression. For example, scDD [194] aims to identify differential distributions in terms of differ-

ential mean expression, differential proportions of cells within each distribution component,

and differential modality. DEsingle uses a zero-inflated NB distribution to fit scRNA-seq

data in each cell subpopulation and tests if there is difference in the zero component or the

NB component of the distribution, or in both [195].

4.6 Discussion

Aside from differential gene expression analysis, analyses of pseudotime order and branch-

ing, gene co-regulation, and spatial inference are also common goals involved in single-cell

genomics. The statistical models for scRNA-seq data will evolve as new technologies are
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developed. Currently, single-cell genomics still face great statistical and computational chal-

lenges given the extensive technical noises and the high dimensionality of scRNA-seq data.

In Chapters 5 and 6, we will discuss two statistical challenges in detail to improve the anal-

ysis of scRNA-seq data. In Chapter 5, we discuss the imputation of dropout values to assist

biological discovery based on single-cell gene expression. In Chapter 6, we discuss the exper-

imental design of scRNA-seq experiments to achieve a balanced trade-off between exploring

the depth or breadth of transcriptome information in single cells.
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CHAPTER 5

Accurate Imputation for

Single-cell RNA Sequencing Data

5.1 Introduction

The emerging scRNA-seq technologies enable the investigation of transcriptomic landscapes

at single-cell resolution. However, ScRNA-seq data analysis is complicated by excess zero

counts, the so-called dropouts due to low amounts of mRNA sequenced within individual

cells [168]. This characteristic of scRNA-seq is shown to be protocol-dependent. For example,

the number of cells that can be analyzed with one chip is usually no more than a few

hundreds on the Fluidigm C1 platform, with around 1-2 million reads per cell. On the

other hand, protocols based on droplet microfluidics can parallelly profile more than 10, 000

cells, but with only 100-200k reads per cell [169]. Hence, there is usually a much higher

dropout rate in scRNA-seq data generated by the droplet microfluidics than the Fluidigm

C1 platform. Statistical methods developed for scRNA-seq data need to take the dropout

issue into consideration, in order to have sufficient efficacy when applied to data from different

protocols.

Methods for analyzing scRNA-seq data have been developed from different perspectives,

such as clustering, cell type identification, and dimensionality reduction. Some of these

methods address the dropout events by implicit imputation while others do not. CIDR is

the first clustering method that incorporates imputation of dropout values, but the imputed

expression value of a particular gene in a cell changes each time when the cell is paired

with a different cell [185]. The pairwise distances between every two cells are later used

for clustering. Seurat is a computational strategy for spatial reconstruction of cells from
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single-cell gene expression data [181]. It infers the spatial origins of individual cells from the

cell expression profiles and a spatial reference map of landmark genes. It also includes an

imputation step to infer the expression of landmark genes based on highly variable genes.

ZIFA is a dimensionality reduction model specifically designed for zero-inflated single-cell

gene expression analysis [176]. The model is built upon an empirical observation: dropout

rate of a gene depends on its mean expression level in the population and, and ZIFA accounts

for dropout events using factor analysis.

cell j selected cells other cells

…

…

gene set AjA

gene set B

… …

… …

imputation
with selected cells

cell j

zero

high
expression

j

j

Nj

Figure 5.1: A toy example illustrating the workflow in the imputation step of scImpute,

described in Equations (5.5)-(5.6). The scImpute method first learns each gene’s dropout

probability in each cell by fitting a mixture model. Next, scImpute imputes the highly

probable dropout values in cell j (gene set Aj) by borrowing information of the same gene in

other similar cells, which are selected based on gene set Bj (not severely affected by dropout

events).

Since most downstream analyses on scRNA-seq, such as differential gene expression anal-

ysis, identification of cell-type-specific genes, and reconstruction of differentiation trajectory,

rely on the accuracy of gene expression measurements, it is important to correct the false zero

expression due to dropout events in scRNA-seq data by model-based imputation methods.

To our knowledge, MAGIC is the first available method for explicit and genome-wide impu-

tation of single-cell gene expression profiles [196]. MAGIC imputes missing expression values
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by sharing information across similar cells, based on the idea of heat diffusion. A key step

in this method is to create a Markov transition matrix, constructed by normalizing the sim-

ilarity matrix of single cells. In the imputation of a single cell, the weights of the other cells

are determined through the transition matrix. Another imputation method, SAVER [197],

borrows information across genes using a Bayesian approach to estimate (unobserved) true

expression levels of genes. Both MAGIC and SAVER would alter all gene expression levels

including those not affected by dropouts, and this would potentially introduce new biases

into the data and possibly eliminate biologically meaningful variation. It is also inappropri-

ate to treat all zero counts as missing values, since some of them may reflect true biological

non-expression. Therefore, we propose a new imputation method for scRNA-seq data, scIm-

pute, to simultaneously determine which values are affected by dropout events in data and

perform imputation only on dropout entries. To achieve this goal, scImpute first learns each

gene’s dropout probability in each cell based on a mixture model. Next, scImpute imputes

the highly probable dropout values in a cell by borrowing information of the same gene in

other similar cells, which are selected based on the genes unlikely affected by dropout events

(Figure 5.1).

5.2 Methods

5.2.1 Data processing and normalization

The input of our method is a count matrix XC with rows representing genes and columns

representing cells, and our eventual goal is to construct an imputed count matrix with the

same dimensions. We start by normalizing the count matrix by the library size of each

sample (cell) so that all samples have one million reads. Denote the normalized matrix by

XN , we then make a matrix X by taking log 10 transformation with a pseudo count 1.01:

Xij = log10(XN
ij + 1.01); i = 1, 2, ..., I, j = 1, 2, ..., J, (5.1)

where I is the number of genes and J is the number of cells. The pseudo count is added to

avoid infinite values in parameter estimation. The advantage of the logrithmic transforma-
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tion is to prevent a few large observations from being extremely influential. In addition, the

transformed values allow for greater flexibility of the modeling.

5.2.2 Dectection of cell subpopulations and outliers

Since scImpute borrows information of the same gene from similar cells to impute the dropout

values, a critical step is to first determine which cells are from the same subpopulation. Due

to excess zero counts in scRNA-seq data, it is difficult to accurately cluster cells into true cell

types using an unsupervised approach. Hence, the goal of this step is to find a candidate pool

of “neighbors” for each cell. In a subsequent imputation step, scImpute will select similar

cells from the candidate neighbors. Suppose that scImpute clusters the cells in a dataset

into K subpopulations in this step. For each cell, its candidate neighbors are the other cells

in the same cluster.

(1) PCA is performed on the matrix X for dimensionality reduction and the resulting

matrix is denoted as Z, where columns representing cells and rows representing PCs. The

purpose of dimensionality reduction is to reduce the impact of large portions of dropout

values. The PCs are selected such that at least 60% of the variance in data could be

explained.

(2) Based on the PCA-transformed data Z, the distance matrix DJ×J between the cells

could be calculated. For each cell j, we denote its distance to the nearest neighbor as lj.

For the set L = {l1, ..., lJ}, we denote its first quartile as Q1, and third quartile as Q3. The

outlier cells are those cells which do not have any close neighbors:

O = {j : lj > Q3 + 1.5(Q3 −Q1)}. (5.2)

For each outlier cell, we set its candidate neighbor set Nj = ∅. The outlier cells could be a

result of experimental/technical errors, but they may also represent real biological variation

such as rare cell types. We would not impute the gene expression values in the outlier cells,

nor use them to impute gene expression values in other cells.

(3) The non-outlier cells {1, ..., J}\O are clustered into K groups by spectral clustering

[198]. We denote gj = k if cell j is assigned to cluster k (k = 1, ..., K). Hence, cell j has the
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candidate neighbor set Nj = {j′ : gj′ = gj, j
′ 6= j}.

5.2.3 Identification of dropout values

Once we obtain the transformed gene expression matrix X and the candidate neighbors of

each cell j (Nj), the next step is to infer which genes are affected by the dropout events

in which cells. We construct a statistical model to systematically determine whether an

expression value comes from a dropout event or not. With the existence of dropout events,

most genes have a bimodal expression pattern across similar cells, and that pattern can

be described by a mixture model of two components (Figure 5.2). The first component is

a Gamma distribution used to account for the dropouts, while the second component is

a Normal distribution to represent the actual gene expression levels. For each gene, the

proportions and parameters of the two components could be different in various cell types,

so we construct a separate mixture model for each cell subpopulation.
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Figure 5.2: Three example genes (ESCO2, FBXO3, and PRIM1 ) for comparison of observed

and fitted expression distribution in three different cell types. The results are based on the

human ESC scRNA-seq data [173]. Blue histograms represent observed distributions, and

black lines represent fitted distributions by scImpute.
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For each gene i, its expression in cell subpopulation k is modeled as a random variable

X
(k)
i with density function

f
X

(k)
i

(x) = λ
(k)
i Gamma

(
x;α

(k)
i , β

(k)
i

)
+
(

1− λ(k)
i

)
Normal

(
x;µ

(k)
i , σ

(k)
i

)
, (5.3)

where λ
(k)
i is gene i’s dropout rate in cell subpopulation k, α

(k)
i , β

(k)
i are the shape and rate

parameters of Gamma distribution, and µ
(k)
i , σ

(k)
i are the mean and standard deviation of

Normal distribution. The intuition behind this mixture model is that if a gene has high

expression and low variation in most cells within a cell subpopulation, a zero count is more

likely to be a dropout value; on the other hand, if a gene has constantly low or medium

expression with high variation, then a zero count may reflect real biological variability. An

advantage of this model is that it does not assume an empirical relationship between dropout

rates and mean gene expression levels, as Kharchenko et al. [168] did, allowing more flexibility

in model estimation. The parameters in the mixture model can be estimated by the EM

algorithm and we denote their estimates as λ̂
(k)
i , α̂

(k)
i , β̂

(k)
i , µ̂

(k)
i , and σ̂

(k)
i . It follows that the

dropout probability of gene i in cell j, which belongs to subpopulation k, can be estimated

as

dij =
λ̂

(k)
i Gamma

(
Xij; α̂

(k)
i , β̂

(k)
i

)
λ̂

(k)
i Gamma

(
Xij; α̂

(k)
i , β̂

(k)
i

)
+
(

1− λ̂(k)
i

)
Normal

(
Xij; µ̂

(k)
i , σ̂

(k)
i

) . (5.4)

In summary, each gene i has an overall dropout rate λ̂
(k)
i in cell subpopulation k, which

does not depend on individual cells within the subpopulation. Gene i also has dropout

probabilities dij’s, which may vary among different cells. Ghazanfar et al. [199] also used a

Gamma-Normal mixture model to analyze scRNA-seq data but only applied it to categorize

non-zero expression into low expression or high expression values.

5.2.4 Imputation of dropout values

We impute the gene expression levels cell by cell. For each cell j, we select a gene set Aj in

need of imputation based on the genes’ dropout probabilities in cell j: Aj = {i : dij ≥ t},

where t is a threshold on dropout probabilities. We also have a gene set Bj = {i : dij < t}

that have accurate gene expression with high confidence and do not need imputation. We
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first learn cells’ similarities through gene set Bj. Then we impute the expression of genes

in set Aj by borrowing information from the same gene’s expression in other similar cells

learned from Bj. Figure B.10c give some real data examples of dropout probabilities in cells,

showing that it is reasonable to divide genes into two sets. To learn the cells similar to cell

j based on gene set Bj, we use the non-negative least squares (NNLS) regression:

β̂(j) = arg min
β(j)

||XBj ,j −XBj ,Njβ
(j)||22, subject to β(j) ≥ 0 , (5.5)

where Nj represents the indices of cells that are candidate neighbors of cell j. The response

XBj ,j is a vector representing the Bj rows in the j-th column of X, the design matrix XBj ,Nj

is a sub-matrix ofX with dimensions |Bj|×|Nj|, and the coefficients β(j) is a vector of length

|Nj|. It is worth noting that NNLS itself has the property of leading to a sparse estimate

β̂(j), whose components may have exact zeros [200], so NNLS can be used to select similar

cells of cell j from its neighbors Nj. Finally, the estimated coefficients β̂(j) from the set Bj

are used to impute the expression of gene set Aj in cell j:

X̂ij =


Xij, i ∈ Bj,

Xi,Nj β̂
(j), i ∈ Aj.

(5.6)

We construct a separate regression model for each cell to impute the expression of genes with

high dropout probabilities. This method simultaneously determines the values that need im-

putation, and would not introduce bias to the high expressions of accurately measured genes.

Since the identified dropouts are corrected by scImpute, the proportion of zero expression

is reduced in the imputed data. However, scImpute does not inflate all the zero expres-

sions, and some genes remain to have bimodal distributions after the imputation. Therefore,

scImpute takes a relatively conservative approach to impute dropouts, attempting to avoid

introducing biases and retain the stochasticity of gene expression.

The application of scImpute involves two parameters. The first parameter is K, which

determines the number of initial clusters to help identify candidate neighbors of each cell.

The imputation results do not heavily rely on the choice of K since scImpute uses a model-

based method to select similar cells in a later stage. However, setting K to a value close to
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the true number of cell subpopulations can assist the selection of similar cells. The second

parameter is a threshold t, and the imputation is only applied to the genes with dropout

probabilities larger than t in a cell to avoid over-imputation. The sensitivity analysis based

on the mouse embryo data [201] suggests that scImpute is robust to varying parameter values

(Figure B.10a-b). Especially, the choice of parameter t only affects a minute fraction of genes

(Figure B.10c).

5.2.5 Generation of simulated scRNA-seq data

We suppose there are three cell types c1, c2, and c3, each with 50 cells, and there are 20, 000

genes in total. In the gene population, only 810 genes are truly differentially expressed, with

one third having higher expression in each cell type respectively. We directly generate genes’

log 10-transformed read counts as expression values. First, mean expression levels of the

20, 000 genes are randomly drawn from a Normal distribution with mean 1.8 and standard

deviation 0.5. Similarly, standard deviations of gene expression are randomly drawn from

a Normal distribution with mean 0.6 and standard deviation 0.1. These parameters are

estimated from the real scRNA-seq data of mouse embryo cells [201]. Second, we randomly

draw 270 genes and shift their mean expression in cell type c1 by multiplying it with an

integer randomly sampled from {2, 3, . . . , 10}; we also create 270 highly expression genes

for each of cell types c2 and c3 in the same way. Next, the expression values of each gene

in the 150 cells are simulated from Normal distributions defined by the mean and standard

deviation parameters obtained in the first two steps. We refer to the resulting gene expression

data as the complete data. Finally, we suppose the dropout rate of each gene follows a double

exponential function exp(−0.1×mean expression2), as assumed in [176]. Zero values are then

introduced into the simulated data for each gene based on a Bernoulli distribution defined

by the dropout rate of the gene, resulting in a gene expression matrix with excess zeros and

in need of imputation. We refer to the gene expression data after introducing zero values as

the raw data. This generation process of gene expression values does not directly follow the

mixture model used in scImpute, so that we use this simulation to investigate the efficacy

and robustness of scImpute in a fair way.
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5.3 Results

5.3.1 scImpute recovers gene expression affected by dropouts

A key reason for performing imputation on scRNA-seq data is to recover biologically mean-

ingful transcriptome dynamics in single cells so that we can more accurately determine cell

identity and identify DE genes among different cell types. We first use three studies to

illustrate scImpute’s efficacy in imputing gene expressions. All the imputation results are

obtained without using true cell type information unless otherwise noted.

First, we show that scImpute recovers the true expression of the ERCC spike-in tran-

scripts [202], especially low abundance transcripts that are impacted by dropout events. The

ERCC spike-ins are synthesized RNA molecules with known concentrations, which serve as

gold standards of true expression levels, so the read counts can be compared with the true

expression for accuracy evaluation. The dataset we used contains 3005 cells from the mouse

somatosensory cortex region [203]. After imputation, the median correlation among the 57

transcripts’ read counts and their true concentration increases from 0.92 to 0.95, and the

minimum correlation increases from 0.81 to 0.89. The read counts and true concentrations

also present a stronger linear relationship in each single cell (Figure 5.3).

Second, we show that scImpute correctly imputes the dropout values of 892 annotated

cell-cycle genes in 182 ESCs that have been staged for cell-cycle phases (G1, S, and G2M)

[149]. These genes are known to modulate the cell cycle and are expected to have non-zero

expression during different stages of the cell cycle. Before imputation, 22.5% raw counts of

the cell-cycle genes are zeros, which are highly likely due to dropouts. After imputation,

most of the dropout values are corrected, and true dynamics of these genes in the cell cycle

are revealed (Figure B.11). The imputed counts also better represents the true biological

variation in these cell-cycle genes (Figure 5.4).

Third, we use a simulation study to illustrate the efficacy of scImpute in enhancing the

identification of cell types. We simulated expression data of three cell types c1, c2, and c3,

each with 50 cells, and 810 among 20, 000 genes are truly differentially expressed (Chapter
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Figure 5.3: The ERCC spike-ins’ log 10(count+1) and log 10(concentration) in four randomly

selected mouse cortex cells. Imputed data presents a better linear relationship between the

true concentration and the observed counts.
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Figure 5.4: Violin plots showing the log 10(count+1) of nine cell cycle genes in the three

phases (G1, S, and G2M). The scImpute method has corrected the dropout values of cell

cycle genes.
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5.2.5). Even though the three cell types are clearly distinguishable after we applied PCA

to the complete data, they become less separated in the raw data with dropout events.

The within-cluster sum-of-squares calculated based on the first two PCs increases from 94

in complete data to 2646 in raw data. However, the relationships among the 150 cells are

clarified after we applied scImpute. The other two methods MAGIC and SAVER are also

able to distinguish the three cell types, but MAGIC introduces artificial signals that largely

alter the data and thus the PCA result, while SAVER only slightly improves the clustering

result over that of the raw data (Figure 5.5). In addition, the dropout events obscure the

differential pattern and thus increase the difficulty of detecting DE genes. The imputed data

by scImpute leads to a clearer comparison between the up-regulated genes in different cell

types, while the imputed data by MAGIC and SAVER fail to recover this pattern (Figure

5.5). We also assessed how the prevalence of dropout values influences the performance of

scImpute. As expected, the DE analysis based on the imputed data has increased accuracy

as the dropout proportion decreases. Yet scImpute still achieves > 80.0% area under the

curve even when the proportion of zero count in raw data is 75.0% (Figure B.12).

5.3.2 scImpute improves the identification of cell subpopulations

To illustrate scImpute’s capacity in aiding the identification of cell subtypes or cell sub-

populations, we applied our method to two real scRNA-seq datasets. The first one is a

smaller dataset of mouse preimplantation embryos [201]. It contains RNA-seq profiles of

268 single cells from 10 developmental stages. Partly due to dropout events, 70.0% of read

counts in the raw count matrix are zeros. To illustrate the dropout phenomenon, we plot the

log 10-transformed read counts of two 16-cell stage cells as an example in Figure 5.6. Even

though the two cells come from the same stage, many expressed genes have zero counts in

only one cell. This problem is alleviated in the imputed data by scImpute, and the Pearson

correlation between the two cells increases from 0.72 to 0.82 (Figure 5.6), especially due to

the decreased number of genes only expressed in one cell. MAGIC achieves an even higher

correlation (0.95) but also introduces very large counts that do not exist in the raw data.

Biological variation between the two cells is likely lost in the imputation process of MAGIC.
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Figure 5.5: The scImpute method corrects dropout values and helps define cellular identity

in the simulated data. a: The first two PCs calculated from the complete data, raw data,

and imputed data by scImpute, MAGIC, and SAVER. Numbers in the parantheses are the

within-cluster sum of squares calculated based on the first two PCs. The within-cluster sum

of squares is defined as
∑3

k=1

∑50
j=1 ||ykj − ȳk·||2, where ȳk· =

∑50
j=1 ykj

50
and ykj is a vector of

length 2, denoting the first two PCs of cell j in cell type ck. b: The expression profile of

the 810 true DE genes in the complete, raw, and imputed data.

On the other hand, SAVER’s imputation does not have a clear impact on the data.

Figure 5.6: Raw and imputed gene expression levels of two mouse embryonic cells from the

16-cell stage. Correlation between the two cells is marked on the top-left of each scatter

plot.

We compared the imputation results by investigating the clustering accuracy in the first

two PCs. Although it is possible to differentiate the major developmental stages from the
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raw data, the imputed data by scImpute output more compact clusters (Figure 5.7). MAGIC

gives a clean pattern of developmental stages, but it has a high risk of removing biologically

meaningful variation, given that many cells of the same stage have almost identical scores

in the first two PCs. We then compared the clustering results of the spectral clustering

algorithm [198] on the first two PCs. Since the true cluster labels include several sub-stages

in embryonic development, we used different numbers of clusters, k = 6, 8, 10, 12 and 14.

The results were evaluated by four different measures: adjusted rand index [204], Jaccard

index [205], normalized mutual information (nmi) [206], and purity. The four measures

are all between 0 and 1, with 1 indicating perfect match between the clustering result and

the true stages. All the four measures indicate that scImpute leads to the best clustering

result as compared with no imputation and the imputation by MAGIC or SAVER (Figure

B.13). This result suggests that scImpute improves the clustering of cell subpopulations by

imputing dropout values in scRNA-seq data.

zygote
early2cell
mid2cell
late2cell
4cell

8cell
16cell
earlyblast
midblast
lateblast

raw scImpute MAGIC SAVER

−50 0 50 −50 0 50 −50 0 50 −50 0 50

−25

0

25

50

dim1

di
m

2

Figure 5.7: The scImpute method improves cell subpopulation clustering in the mouse

embryonic cells. The scatter plots show the first two PCs obtained from the raw and imputed

data of mouse embryonic cells. The black dots mark the outlier cells detected by scImpute.

We also applied scImpute to a large dataset generated by a high-throughput droplet-

based system [160]. The dataset contains 4500 peripheral blood mononuclear cells (PBMCs)

of nine immune cell types, with 500 cells of each type. In the raw data, 92.6% read counts

are exactly zeros. Given dimensionality reduction by t-SNE [14], the cytotoxic and näıve

cytotoxic T cells are clustered together, and the other four types of T cells are not separated.

After scImpute’s imputation, the cytotoxic (label 11) and näıve cytotoxic T (label 8) cells are

separated into two groups, and the näıve T cells (label 5) and memory T cells (label 3) are
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now distinguishable from the remaining T cells (Figure 5.8). This evidence shows the strong

ability of scImpute to identify cell subpopulations despite missing cell type information. On

the other hand, MAGIC does not improve the clustering of cells in the same type (Fig-

ure B.14), and we could not obtain SAVER’s results after running the program overnight.

After the imputation by scImpute, the monocyte cells are grouped into one large and two

small clusters, and we found that the three clusters reveal dynamics of two signature genes,

FCER1A, which accumulates during the dendritic cell differentiation from monocytes [207],

and S100A8, whose expression differs between subsets of human monocytes [208]. The large

cluster (label 10) is characterized by high expression of S100A8 and moderate expression of

FCER1A; one of the small clusters (label 1) presents high expression of both S100A8 and

FCER1A, while in the other small cluster (label 2) FCER1A is largely non-expressed.
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Figure 5.8: The scImpute method helps identify cell subpopulations in the PBMC dataset.

The first two dimensions of the t-SNE results were calculated from raw and imputed PBMC

dataset. Numbers marked on the imputed data are cluster labels. Cell type information is

displayed for major clusters.

5.3.3 scImpute assists differential gene expression analysis

ScRNA-seq data provide insights into the stochastic nature of gene expression in single cells,

but suffer from a relatively low signal-to-noise ratio compared with bulk RNA-seq data.

Thus an effective imputation method should lead to a better agreement between scRNA-

seq and bulk RNA-seq data of the same biological condition on genes known to have little

cell-to-cell heterogeneity. To evaluate whether the DE genes identified from single-cell data
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are more accurate after imputation, we utilized a real dataset with both bulk and single-cell

RNA-seq experiments on human ESCs and definitive endorderm cells (DECs) [173]. This

dataset includes 6 samples of bulk RNA-seq (4 of H1 ESC and 2 of DEC) and 350 samples of

scRNA-seq (212 of H1 ESC and 138 of DEC). The percentages of zero expression are 14.8%

in bulk data and 49.1% in single-cell data.

We applied scImpute, MAGIC, and SAVER to impute the gene expression for each cell

type respectively, and then performed DE analysis on the raw data and the imputed data. We

used the R package DESeq2 [30] to identify DE genes from the bulk data, and the R packages

DESeq2 and MAST [192] to identify DE genes from the scRNA-seq data. Inspecting the top

200 DE genes from the bulk data, we found that their expression profiles in the scRNA-seq

data have stronger concordance with those in the bulk data after imputation by scImpute.

We applied different thresholds to the FDRs of genes in the bulk data to obtain a DE gene

list for every threshold. The same thresholds were applied to the FDRs of genes calculated

from the raw and imputed scRNA-seq data to obtain DE gene lists respectively. Then we

compared the DE gene lists obtained from the scRNA-seq data with those from the bulk data

(i.e., the standard) to calculate precision, recall, and F scores (Figure B.15). The scImpute

method leads to more similar DE genes to those from the bulk data, and achieves around

10% higher F scores compared with results on the raw data. We found that scImpute makes

a good balance between the precision and recall rate, while MAGIC has low precision, and

SAVER has low recall and is barely distinguishable from no imputation. We conclude that

scImpute is preferred when users have a priority on the overall accuracy of the DE genes.

A comparison between the expression profiles of DEC and ESC marker genes [173, 209,

210] shows that the imputed data by scImpute best reflect the gene expression signatures by

removing undesirable technical variation resulted from dropouts (Figure 5.9a). To determine

if the DE genes identified in scRNA-seq data are biologically meaningful, we performed gene

ontology (GO) enrichment analysis [211]. In the ∼ 300 DEC up-regulated genes that are

only detected in the imputed data by scImpute but not in the raw data, enriched GO terms

are highly relevant to the functions of DECs (Figure 5.9b). However, in the ∼ 300 DEC

up-regulated genes that are only detected in the raw data, enriched GO terms are general
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Figure 5.9: The scImpute method improves differential gene expression analysis and reveals

expression dynamics in time-course experimments. a: Raw and imputed expression levels of

two marker genes of DEC. b: Selected GO terms enriched in the DEC up-regulated genes

that can be only detected (by DESeq2 or MAST) in the imputed data by scImpute, but not

in the raw data. c: Time-course expression patterns of the gene GDF3, which is annotated

with the GO term “endoderm development”. Black triangles mark the gene’s expression in

bulk data.

and not characteristic of DECs. These results also demonstrate that scImpute can facilitate

the usage of DE methods that were not designed for single-cell data.

5.3.4 scImpute recovers gene expression temporal dynamics

Aside from the data we used in differential expression analysis, Chu et al. [173] also generated

bulk and single-cell time-course RNA-seq data profiled at 0, 12, 24, 36, 72, and 96 h of dif-

ferentiation during DEC emergence. We utilize this dataset to show that scImpute can help

recover the DE signals that are difficult to identify in the raw time-course data, and reduce

false discoveries resulted from dropouts. We first applied scImpute to the raw scRNA-seq

data with true cell type labels, and then studied how the time-course expression patterns
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Figure 5.10: The first two PCs calculated from raw and imputed time-course ESC data.

change in imputed data. The imputed data better distinguishes cells of different time points

(Figure 5.10), suggesting that imputed read counts reflect more accurate transcriptome dy-

namics along the time course. Even though the scRNA-seq data present more biological

variation than the bulk data, it is reasonable to expect that the average gene expression

signal across cells in scRNA-seq should correlate with the signal in bulk RNA-seq. For a

genome wide comparison, the imputed data have significantly higher Pearson correlations

with the bulk data. We studied 70 genes associated with the GO term “endoderm develop-

ment” [212] and found that a subset of these genes that are likely affected by dropout events

show higher expression and better consistency with the bulk data after the imputation by

scImpute (Figures 5.9c). Similarly, we also studied the marker genes of DECs [173,209,210]

and these genes’ expression levels at the time point 96h are recovered by scImpute even

though they have a median read count of zero in the raw data (Figure B.16).

5.4 Discussion

In this chapter, we propose a statistical method scImpute to address the dropout events

prevalent in scRNA-seq data. scImpute focuses on imputing the missing expression values

of dropout genes, while retaining the expression levels of genes that are largely unaffected

by dropout events. Hence, scImpute can reduce technical variation resulted from scRNA-

seq and better represent cell-to-cell biological variation, while it also avoids introducing
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excess bias during its imputation process. To achieve the above goal, scImpute first learns

each gene’s dropout probability in each cell by fitting a mixture model for each cell type.

Next, scImpute imputes the highly probable dropout values of genes in a cell by borrowing

information of the same gene in other similar cells, which are selected based on the genes not

severely affected by dropout events. Comprehensive studies on both simulated and real data

suggest that compared with the raw data, the imputed data by scImpute better presents cell

type identity and lead to more accurate DE analysis results.

An attractive advantage of scImpute is that it can be incorporated into most existing

pipelines or downstream analyses of scRNA-seq data, such as normalization [141, 213], dif-

ferential expression analysis [168,192], as well as clustering and classification [185,187]. The

scImpute method takes the raw read count matrix as input and outputs an imputed count

matrix of the same dimensions, so it can be seamlessly combined with other computational

tools without data reformatting or transformation. However, new analyzing tools specifically

designed for the imputed data by scImpute may have improved performance over existing

methods developed for raw scRNA-seq data, by incorporating features such as smaller pro-

portion of zero expression, dropout rates, and dropout probabilities estimated by the mixture

models. Another important feature of scImpute is that it only involves two parameters that

can be easily understood and selected. The first parameter K denotes the potential number

of cell populations. It can be selected based on clustering of the raw data and the resolution

level desired by the users. If users are only interested in the differences among the major

clusters, they could use a relatively small K, and scImpute can borrow more information

among individual cells; otherwise, users can select a relatively large K, and scImpute would

be more conservative in the imputation process. The second parameter is a threshold t on

dropout probabilities. We show in a sensitivity analysis that scImpute is robust to different

parameters (Figure B.10), and a default threshold value of 0.5 is sufficient for most scRNA-

seq datasets. Moreover, cell type information is not necessary for the scImpute method.

When cell type information is available, separate imputation on each cell type is expected

to produce more accurate results. However, as illustrated by the simulation and real data

studies, scImpute is able to infer cell-type-specific expression even when the true labels are
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not supplied.

The scImpute method scales up well when the number of cells increases, and the compu-

tation efficiency can be largely improved if a filtering step on cells can be performed based on

biological knowledge. Aside from computational complexity, another future direction is to

further improve imputation efficiency when dropout rates in raw data are severely high, as

with the droplet-based technologies. Imputation task becomes more difficult when propor-

tion of missing values increases. More complicated models that account for gene similarities

may yield more accurate imputation results, but the prevalence of dropout events may re-

quire additional prior knowledge on similar genes to assist modeling. Despite the availability

of computational methods that directly model zero-inflation in data [168, 192], scImpute

takes the imputation perspective to improve the data quality, and its applicability is not

restricted to a specific task. Hence, scImpute is an useful tool that benefits all types of

scRNA-seq downstream analyses.
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CHAPTER 6

Experimental Design for Single-cell RNA Sequencing

6.1 Introduction

Since the first scRNA-seq study was published in 2009 [156], more than twenty scRNA-

seq experimental protocols have been developed. An effective experimental design requires

careful consideration of the target research question as well as the experimental budget, and

a typical design in practice consists of two steps. First, researchers need to select a proper

protocol among the available ones, and the primary consideration is the choice between a

tag-based protocol that allows the integration of UMIs [164] and a full-length protocol that

captures full-length transcripts and allows the addition of the ERCC spike-ins [165]. The

tag-based protocols (e.g., Drop-seq [159]) are usually used to obtain a broad but shallow

view of the transcriptomes across many cells, while the full-length protocols (e.g., Smart-

seq2 [157]) provide a deeper account of the gene expression in fewer cells. For example,

a study about gene expression dynamics during stem cell differentiation requires accurate

gene expression measurements, so it should opt for a full-length protocol. In contrast, in

a study aiming to identify a previously unknown cell phase during the differentiation, it

is necessary to sequence a large number of cells using a tag-based protocol to capture the

transient phases. In the second step, to optimize an experiment with a selected protocol

and a fixed budget, researchers need to choose between exploring the depth or breadth of

transcriptome information, which sums up to determining the appropriate number of cells

to sequence.

However, in contrast to the classical experimental design [215] guided by certain theoret-

ical optimality (e.g., the maximum power of a statistical test), the scRNA-seq experimental
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design is impeded by various sources of data noises, making a reasonable theoretical analy-

sis tremendously difficult [88, 176]. Especially, scRNA-seq data are characterized by excess

zeros resulted from the dropout events, in which a gene is expressed in a cell but its mRNA

transcripts are undetected. As a result, many commonly used statistical assumptions are not

directly applicable to modeling scRNA-seq data. For example, Baran-Gale et al. proposed

using a Negative Binomial (NB) model to estimate the number of cells to sequence, so that

the resulting experiment is expected to capture at least a specified number of cells from

the rarest cell type [216]. However, the estimation accuracy depends on the idealized NB

model assumption, which real scRNA-seq data usually do not closely follow (Figure 6.1).

There is also a theoretical investigation of the cell-depth trade-off based on the Poisson as-

sumption of gene read counts and a specific list of genes of interests [217]. In contrast to

model-based design approaches [218], multiple scRNA-seq studies used descriptive statistics

to provide qualitative guidance instead of well-defined optimization criteria for experimen-

tal design [162, 219]. However, since the descriptive statistics were proposed from different

perspectives, their resulting experimental designs are difficult to unify to guide practices.

For example, one study reported that the sensitivity of most protocols saturates at approxi-

mately one million reads per cell [220], while another study found that the saturation occurs

at around 4.5 million reads per cell [170]. The reason for this discrepancy is that the two

studies defined the sensitivity in different ways: the first study used the gene detection rate

while the second study used the minimum number of input RNA molecules required for

confidently detecting a spike-in control [202].

In this chapter, we propose a statistical simulator scDesign for optimizing scRNA-seq

experimental design from the perspective of detecting DE genes between two biological con-

ditions (determined before an experiment) or two cell states (inferred after an experiment),

a major scRNA-seq data analysis task. Given a pre-defined significance level (e.g., an FDR),

the power of a scRNA-seq experiment for detecting DE genes is jointly determined by the

sensitivity of detecting gene expression, the accuracy of measuring gene expression, and the

number of cells sequenced for each cell state. For each protocol and a specified total se-

quencing depth (i.e., the total number of reads in a scRNA-seq experiment), the cell-wise
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Figure 6.1: Comparison of the Negative Binomial (NB) model and the Gamma-Normal

(GN) model used in scImpute. Both models were used to fit six scRNA-seq datasets from

different protocols, as listed in Table C.3. For each gene, the Kolmogorov-Smirnov (KS)

distance between the empirical and fitted gene expression distributions was calculated and

summarized in the boxplots. In all the scenarios, the GN model leads to smaller KS distances.

sequencing depth (i.e., the expected number of reads per cell) decreases as the cell num-

ber increases [144]. However, existing power analysis methods for scRNA-seq experiments

unrealistically assume a fixed cell-wise sequencing depth, which does not change as the cell

number varies [220,221]. Therefore, the practical scRNA-seq experimental design calls for a

new approach that accounts for various characteristics and constraints of a real scRNA-seq

experiment.

Our scDesign method provides a simulation-based experimental design framework that

has multiple advantages in real practice. First, scDesign is protocol- and data-adaptive. It

learns scRNA-seq data characteristics from rapidly accumulating public scRNA-seq data gen-

erated under diverse settings. For example, 1976 series of scRNA-seq datasets are currently

available in the Gene Expression Omnibus (GEO) database [222]. There are also newly

developed scRNA-seq databases such as SCPortalen (70 studies with 67, 146 cells) [223],

scRNASeqDB (36 studies with 8910 cells) [224], and the Single Cell Portal (43 studies with
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496, 366 cells). Second, scDesign generates synthetic data that well mimic real scRNA-seq

data under the same experimental settings, providing a basis for using its synthetic data to

guide practical scRNA-seq experimental design. Third, scDesign is flexible in accommodat-

ing user-specific analysis needs. Users can apply scDesign to evaluate the performance of

downstream analyses, such as gene differential expression and cell clustering, under various

experimental settings at no experimental cost. Assisted by the evaluation results, users will

be able to design a scRNA-seq experiment according to their specified criteria.

6.2 Methods

6.2.1 The statistical framework of scDesign

We develop scDesign based on a statistical generative framework that utilizes both existing

real scRNA-seq data and reasonable assumptions mimicking various experimental processes.

In contrast to the existing simulation methods for scRNA-seq data, scDesign constructs a

Gamma-Normal mixture model to account for dropout events. This is motivated by the

successful applications of our imputation method, scImpute, for recovering dropout gene

expression values in scRNA-seq data (as discussed in Chapter 5). This mixture model allows

scDesign to overcome the dropout hurdle in learning the key gene expression characteristics

from real scRNA-seq data (Figure 6.1), so that scDesign generates synthetic data highly

similar to real data in multiple aspects.

Depending on whether the task is to design a scRNA-seq experiment to sequence one

or two batches of cells, scDesign has the corresponding one-state mode (Figure 6.2a) or the

two-state mode (Figure 6.2b). In the one-state mode, scDesign leverages the information

in a real scRNA-seq dataset from one biological condition (e.g., treatment or control) or

one cell state (e.g., T cells) to generate a single scRNA-seq dataset given an experimental

setting, i.e., a pre-specified total sequencing depth and a cell number. From the real scRNA-

seq dataset, scDesign first estimates two cell-wise and three gene-wise parameters, which

jointly define the key characteristics of scRNA-seq data. Second, scDesign simulates ideal
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Figure 6.2: The statistical framework of scDesign. a: The simulation process of one count

matrix from a single cell state (one-state mode). b: The joint simulation process of two

count matrices from two different cell states (two-state mode).

gene expression levels for new cells of the same biological condition or cell state based on the

estimated gene expression parameters. Third, scDesign introduces missing values to mimic

the actual dropout events in a scRNA-seq experiment. Fourth, scDesign outputs a synthetic

gene expression matrix with entries as read counts. In the two-state mode, scDesign leverages

the information in two real scRNA-seq datasets from different biological conditions or cell

states to generate two datasets given an experimental setting. In this two-state mode, the

simulation by scDesign mimics an experiment where two groups of cells from two biological

conditions or cell states are sequenced together (Figure 6.2b). Similar to the one-state mode,

scDesign independently simulates ideal gene expression levels for new cells of the two cell
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states, introduces dropout values based on the estimated dropout parameters of each state,

and generates observed read counts by accounting for the fact that RNA molecules from the

two batches of cells compete to be sequenced. Finally, scDesign outputs two gene expression

count matrices, one for each cell condition or state. It is worth noting that the scDesign

framework is directly generalizable to more than two biological conditions or cell states.

6.2.2 scDesign for scRNA-seq data simulation

We first describe how scDesign generates simulated RNA-seq data given existing real scRNA-

seq data from a certain cell state. These simulated count matrices capture the characteristics

of real count matrices, so they can be used to assist the development of computational

methods and evaluate the performance of those methods under user-specified settings. We

introduce how to simulate a single count matrix below, and introduce how to simulate

multiple count matrices following a differentiation path in Appendix A.9.

Given a real single-cell count matrix with I genes and J0 cells, our goal is to generate a

new count matrix with I genes and J cells, under the constraint that the new matrix has a

total of S reads (Figure 6.2a). Both J and S are user-specified parameters. This resembles

the real scenario where both the cell number and the total read number need to be specified

before a scRNA-seq experiment.

(1). Estimate parameters from real scRNA-seq data.

We denote the real single-cell count matrix by Xreal, whose I rows and J0 columns

represent the genes and cells, respectively. About the two cell-wise parameters, for each cell

j we estimate its library size as

ŝ0j =
I∑
i=1

Xreal
ij , j = 1, ..., J0 , (6.1)

and its cell-wise dropout rate as

q̂0j =
1

I

I∑
i=1

I{Xreal
ij = 0}, j = 1, ..., J0 . (6.2)

Then we fit the cell library sizes ŝ01, . . . , ŝ0J0 using a truncated Normal distribution, and the

estimated mean and standard deviation (SD) are denoted as µ̂s and σ̂s, respectively.
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To estimate the three gene-wise parameters, we first normalize the read counts given their

corresponding library sizes and then perform a logarithmic transformation on the normalized

values. The transformed matrix is denoted as X log, where

X log
ij = log10

(
median{ŝ01, ..., ŝ0J}

ŝ0j

Xreal
ij + 1.01

)
. (6.3)

Using the Gamma-Normal mixture model described in the scImpute method, we estimate

the gene-wise dropout rate as well as mean and SD of gene expression. The mixture model

considers the expression levels of gene i as independently and identically distributed random

variables, X log
i1 , . . . , X

log
iJ0

, following the density function

fi(x) = λ0i Gamma (x;α0i, β0i) + (1− λ0i) Normal
(
x;µ0i, σ

2
0i

)
, (6.4)

where λ0i is gene i’s dropout rate, α0i and β0i are the shape and rate parameters of the

Gamma distribution, and µ0i and σ0i are the mean and SD of the Normal distribution.

The Gamma component describes the gene expression distribution when the dropout events

occur, while the Normal component represents the distribution of actual gene expression

levels. We used multiple real scRNA-seq datasets to demonstrate that this mixture model

outperforms the widely used NB model in terms of goodness-of-fit to real data (Figure 6.1).

The parameters in this model can be estimated by the EM algorithm and the resulting

dropout rate, mean, and SD estimates are denoted as λ̂0i, µ̂0i, and σ̂0i, respectively. We then

use a Gamma distribution to fit the estimated mean expression levels µ̂01, ..., µ̂0I and denote

the estimated shape and scale parameters as k̂0 and θ̂0.

To summarize, we estimate two cell-wise parameters including the cell library size ŝ0j

and the cell-wise dropout rate q̂0j (j = 1, ..., J0), and estimate three gene-wise parameters

including the mean expression µ̂0i, the SD σ̂0i, and the gene-wise dropout rate λ̂0i (i =

1, ..., I).

(2). Simulate ideal gene expression values.

In this step, we simulate the ideal expression values independently for each gene without

considering varying cell library sizes and the dropout issue. For each gene i, we first simulate

its mean expression µi ∼ Gamma(k̂0, θ̂0), then we simulate its SD by stratified sampling from
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the binned observations, which we could process from the real count matrix. Specifically,

we divide the estimated gene mean expression values {µ̂01, ..., µ̂0I} into B intervals, and

we use µ̂0(k) to denote the k-th order statistic of {µ̂01, ..., µ̂0I}. Then, the first interval is(
−∞, µ̂0(1) +

µ̂0(I)−µ̂0(1)
B

]
, the B-th interval is

(
µ̂0(1) +

µ̂0(I)−µ̂0(1)
B

(B − 1),+∞
)

, and the b-th

interval is
(
µ̂0(1) +

µ̂0(I)−µ̂0(1)
B

(b− 1), µ̂0(1) +
µ̂0(I)−µ̂0(1)

B
b
]

(1 < b < B). We define ẑ0i = b if

µ̂0i belongs to the b-th bin, and similarly we define zi = b if µi belongs to the b-th bin. We

simulate the SD σi of gene i by sampling from the stratified gene SDs estimated from the real

data: σi ∼ Uniform({σ̂0i′ : ẑ0i′ = zi, i
′ = 1, . . . , I}). Finally, we generate the ideal expression

matrix X ideal, where X ideal
ij

i.i.d.∼ Normal(µi, σ
2
i ), j = 1, ..., J .

(3). Introduce dropout events.

In this step, we introduce dropout values into the synthetic count matrix, while account-

ing for the variability of both gene-wise and cell-wise dropout rates. The cell-wise dropout

rate in a synthetic cell j is simulated as qj
i.i.d.∼ Uniform({q̂01, ..., q̂0J0}), j = 1, ..., J . For each

gene i (i = 1, ..., I), we simulate its gene-wise dropout rate λi by sampling one value from

the stratified dropout rates estimated from the real data: λi ∼ Uniform({λ̂0i′ : ẑ0i′ = zi, i
′ =

1, ..., I}). Then, we simulate the number of dropout events for gene i: ni ∼ Binomial(J, λi).

In other words, gene i is affected by the dropout events in ni cells. These ni cells are sam-

pled without replacement from the cell population {1, 2, ..., J}, with cell j being selected

with probability
qj∑J
j=1 qj

. We denote the sampling results by Iij, with Iij = 1 indicating

that gene i is a dropout in cell j and Iij = 0 indicating that gene i is successfully amplified

in cell j. Then we obtain the synthetic count matrix with dropout events Xdrop, where

Xdrop
ij =

[
10X

ideal
ij I{Iij=0} − 1.01

]
, and [x] is the nearest integer to x.

(4). Simulate the final count matrix.

We first simulate the library size of each synthetic cell j: sj
i.i.d.∼ Normal(µ̂s, σ̂

2
s), j =

1, . . . , J , and then we calculate the expected proportion of each entry in the count matrix

Pij = sjX
drop
ij /

∑I
i=1

∑J
j=1 sjX

drop
ij . Finally, we obtain the final synthetic count matrix Xsyn, which

is constrained by the sequencing depth S, by simulating its counts from the multinomial

113



distribution:

(Xsyn
11 , ..., X

syn
1J , ..., X

syn
I1 , ..., X

syn
IJ ) ∼ Multinomial (S, (P11, ..., P1J , ..., PI1, ..., PIJ)) . (6.5)

6.2.3 scDesign for scRNA-seq experimental design

The scDesign method aims to determine the best number of cells to sequence given a fixed

sequencing depth, such that the resulting RNA-seq data are optimized for differential gene

expression analysis. We denote the two real count matrices as Xreal1, with I rows (genes)

and J01 columns (cells), and Xreal2, with I rows (genes) and J02 columns (cells). Without

loss of generality, we assume that the two matrices, which represent two cell states, have

the same genes listed in the same order. We introduce how to simulate a synthetic count

matrix for each state with scDesign in two scenarios, and the procedure is then repeated

with varying cell numbers to obtain synthetic data for power analysis (Appendix A.10).

Scenario A. In scenario A, we assume that cells from the two cell states are prepared

as separate libraries and sequenced independently. Given Xreal1 and Xreal2, the goal of

scDesign is to generate a synthetic count matrix with I genes and J1 cells for state 1, and

a synthetic count matrix with I genes and J2 cells for state 2. Cell states 1 and 2 have

sequencing depths of S1 and S2, respectively. For each state g (g = 1, 2), we follow Chapter

6.2.2 to simulate a count matrix Xsyn,g
I×Jg . The only difference is in step (2), where we directly

set µgi = µ̂g0i and σgi = σ̂g0i, i = 1, ..., I, instead of simulating new parameters. This is to

ensure that the rows in the two simulated matrices still represent the same set of real genes,

and the power analysis based on the simulated data is biologically meaningful.

Scenario B. Now we consider the case where the two cell states are jointly sequenced.

Suppose that the two cell states are mixed in one biological sample, and the experimental

setting is that J cells are to be sequenced to generate S RNA-seq reads in total. We assume

that the two cell states present in fractions of p1 and p2 in the sample, respectively. That is,

0 < p1 < 1, 0 < p2 < 1, and p1 + p2 ≤ 1. When p1 + p2 < 1, there are more than two cell

states present in the same sample. The goal of scDesign in scenario B is to simulate count

matrices for the two selected cell states, based on a real count matrix of each state.
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(1). Determine cell numbers.

We denote the numbers of cells from state 1, state 2, and the remaining states as J1,

J2, and Jr, respectively. These numbers are sampled from a Multinomial distribution:

(J1, J2, Jr) ∼ Multinomial (J, (p1, p2, 1− p1 − p2)) .

(2). Simulate count matrices with dropout events.

Following steps (1)-(3) in Chapter 6.2.2, we simulate two count matrices Xdrop1
I×J1 and

Xdrop2
I×J2 for cell states 1 and 2, respectively. The only difference is in step (2), where we

directly set µgi = µ̂g0i and σgi = σ̂g0i, i = 1, ..., I, to ensure that the rows in the synthetic count

matrices represented the same set of real genes.

(3). Simulate the final count matrices.

We first simulate the library sizes of the cells in the two states: s1
j ∼ Normal (µ̂1

s, (σ̂
1
s)

2),

j = 1, ..., J1; s2
j ∼ Normal (µ̂2

s, (σ̂
2
s)

2) , j = 1, ..., J2 , where µ̂1
s and σ̂1

s are estimated from

Xreal1, and µ̂2
s and σ̂2

s are estimated from Xreal2. Then we combine the two count matrices

to obtain the expected proportion matrix PI×(J1+J2):

Pij =
Zij∑I

i=1

∑J1
j′=1 s

1
j′X

drop1
ij′ +

∑I
i=1

∑J2
j′′=1 s

2
j′′X

drop2
ij′′

, (6.6)

where Zij = s1
jX

drop1
ij if 1 ≤ j ≤ J1, and Zij = s2

j−J1X
drop2
i(j−J1) if J1 < j ≤ J1 + J2. The

first J1 columns and the last J2 columns in P give the expected proportions of genes

in cell states 1 and 2, respectively. We further assume that the total number of reads

from the two states together is S0 = [S(J1 + J2)/J ], where [x] denotes the nearest integer

to x. Then we simulate the final count matrix Xsyn
I×(J1+J2) constrained by the sequenc-

ing depth from a Multinomial distribution: (Xsyn
11 , ...,X

syn
1(J1+J2), ...,X

syn
I1 , ...,X

syn
I(J1+J2)) ∼

Multinomial
(
S0, (P11, ..., P1(J1+J2), ..., PI1, ..., PI(J1+J2))

)
. The final count matrices of cell

state 1 and state 2 are Xsyn,1
I×J1 (Xsyn,1

ij , Xsyn
ij ) and Xsyn,2

I×J2 (Xsyn,2
ij , Xsyn

i(j+J1)), respectively.
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6.3 Results

6.3.1 scDesign captures key characteristics of scRNA-seq data

We first demonstrate that scDesign accurately captures six key characteristics of real scRNA-

seq data, so it serves as a reliable data simulator to assist scRNA-seq experimental design

and to compare relevant computational methods. To assess the simulation performance of

scDesign as compared with four other simulation methods, splat, powsimR, Lun, and scDD,

we compared the simulated data generated by each method with the real data from various

protocols. Both splat and powsimR are software packages for simulating scRNA-seq data

[221, 225]; Lun denotes the simulation design introduced by Lun et al. [226]; scDD denotes

the simulation method designed to evaluate the DE method scDD [194]. We considered six

experimental protocols, Smart-seq2 [157], Drop-seq [159], 10x Genomics [160], Fluidigm C1

(SMARTer) [227], inDrop [158], and Seq-Well [161], and we collected three real scRNA-seq

gene expression datasets of distinct cell types from each protocol (Table C.3). In summary,

we used 18 real count matrices of 17 cell types from human and mouse to evaluate the five

simulation methods.

For each real count matrix, we randomly split the cells into two subsets of equal sizes,

one used to estimate gene expression parameters and simulate a new count matrix with the

same dimensions, and the other used to evaluate the simulation results. We compared each

pair of real and simulated count matrices in terms of six summary statistics, including four

gene-wise statistics (the count mean, the count variance, the count coefficient of variation

(cv), and the gene-wise zero proportion) and two cell-wise statistics (the library size and

the cell-wise zero proportion). Our results show that scDesign well mimics real scRNA-seq

experiments based on all six experimental protocols, even though those protocols generate

data with distinct properties. For example, data from Smart-seq2 and Fluidigm C1 have

relatively larger library sizes and smaller count cvs (Figure 6.3a), while data from the other

four protocols have smaller library sizes and larger zero proportions (Figure B.17). We mea-

sured the similarity between each summary statistics’ empirical distributions in real and the
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Figure 6.3: Comparison of scRNA-seq simulation methods based on the Smart-seq2 protocol.

a: The gene-wise expression mean, expression variance, expression coefficient of variation,

zero proportion, and the cell-wise zero proportion and library size in real and simulated

monocyte datasets. b: The KS distances between the six statistics in the real and simu-

lated data. The best and second best simulation methods with respect to each statistic are

respectively marked with 1 and 2 in the heatmap. c: The empirical relationships between

the key statistics in the real and simulated data.

corresponding simulated data, using the Kolmogorov-Smirnov (KS) distance, whose value is

between 0 and 1 and a smaller value indicates greater similarity. Comparing the KS distances

of the five methods, we found that scDesign performs the best for five protocols: Smart-seq2,

Fluidigm C1, Seq-Well, Drop-seq, and inDrop (Figure 6.3b), while scDesign and powsimR

perform comparably for 10x Genomics (Figure B.17). In summary, scDesign is ranked the

best in 84 comparisons and the second best in 20 comparisons, among all the 108 comparisons

(six statistics for each of the 18 datasets). In addition, our results also show that scDesign is

able to preserve the relationships between genes’ expression mean and expression variance,

expression cv, and zero proportion (Figure 6.3c). The demonstrated advantage of scDesign

is rooted in its ability to incorporate both parametric and non-parametric methods to sim-

ulate scRNA-seq data. By constructing a mixture model to account for the dropout events,
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scDesign explicitly models the gene-wise parameters from the real data. When generating

cell-wise parameters for the simulated cells, scDesign uses different sampling techniques for

each parameter to capture its distribution characteristic. In terms of the method stability,

scDesign, Lun, and splat successfully generated simulated data for all the 18 datasets, while

scDD encountered errors with five datasets, and powsimR had errors with four datasets.

6.3.2 scDesign guides rational scRNA-seq experimental design

Given a fixed sequencing depth in designing a scRNA-seq experiment, scDesign assists users

to predict the optimal number of cells for sequencing. In the context of gene differential

expression analysis of two cell states, the cell number is optimal if its resulting scRNA-seq

data lead to the most accurate detection of DE genes, where the accuracy depends on a

user-specified criterion, e.g., a statistical test’s power given a significance level. We consider

two scenarios: (A) cells from the two cell states are prepared as two separate libraries and

sequenced independently; (B) cells from the two cell states are prepared in the same library

and sequenced together. Scenario A includes many studies that investigated cells collected

at two differentiating time points, cells of the same tissue type from patients and healthy

subjects, or cells of the same type but exposed to different experimental treatments [228,229].

The experimental design under scenario A aims to select the optimal cell numbers simul-

taneously for two libraries, so that the subsequent DE analysis becomes the most accurate

given a user-specified criterion. Scenario B includes many scRNA-seq studies that sequenced

an in vivo tissue sample, e.g., the peripheral blood mononuclear cell sample [160], which is

composed of a mixture of cell subtypes. In scenario B, DE analysis is performed on a pair

of known or putative cell subtypes within the sequenced sample.

In scenario A, the constraints are the total sequencing depths of the two cell states,

and scDesign aims to determine the optimal cell number of each cell state, among a set of

candidate cell numbers. The scDesign method simulates a new count matrix of each state

based on a real count matrix of the same state, for each pre-specified sequencing depth and

cell number. Once obtaining the simulated count matrices corresponding to various candidate
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cell numbers, scDesign assesses the accuracy of DE gene identification using five metrics:

precision, recall, true negative rate, F1 score (the harmonic mean of precision and recall),

and F2 score (the harmonic mean of true negative rate and recall). We applied scDesign to

optimize the designs of 14 example experiments (Table C.4). In every experiment, we set

the sequencing depth to 100 million reads, and considereded eight candidate cell numbers

per cell state: 64, 128, 256, 512, 1024, 2048, 4096, and 8192. The DE genes between two cell

states were identified using a two-sample t test.
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Figure 6.4: Power analysis for DE studies comparing astrocytes and oligodendrocytes

(scenario A). The thresholds on the FDRs to identify DE genes are denoted in the color

legends. The table summarizes the optimal cell number according to each metric. a: the

Fluidigm C1 protocol; b: the inDrop protocol.

Our results suggest that given a selected criterion in the DE analysis, the optimal cell

number is jointly determined by multiple technical factors, including the experimental pro-

tocol and the variation introduced by sequencing, as well as biological factors, such as the

119



intra- and inter- state cellular heterogeneity. Two factors are notable. First, when cells of the

same two states are sequenced, the optimal cell number varies with protocols. For example,

between two types of glial cells: astrocytes and oligodendrocytes, 512 cells per state is the

optimal cell number that maximizes the recall in DE analysis when Fluidigm C1 is used,

but the number becomes 4096 per state when inDrop is used (Figure 6.4). If users choose

F1 score as the criterion, the optimal cell number per state is 128 and 1024 for Fluidigm

C1 and inDrop, respectively. Therefore, Fluidigm C1 and inDrop require vastly different

cell numbers to reach the same level of accuracy in DE analysis, and inDrop generally needs

more cells than Fluidigm C1. This result is reasonable, since inDrop is a tag-based protocol

that is advantageous in capturing more cells but disadvantageous in measuring each cell

accurately, compared with the full-length protocol Fluidigm C1. Second, under the same

protocol, the optimal cell number depends on the transcriptome similarity of the two cell

states. For instance, with Smart-seq2, 512 cells need to be sequenced per state to maximize

the recall in identifying DE genes between two dendrocyte subtypes, but only 256 cells per

state are needed when dendrocytes are compared with monocytes (Table C.4). If the goal

is to maximize the F2 score, the optimal cell number for comparing the two dendrocyte

subtypes remains 512 per state, but the number reduces to 128 for comparing dendrocytes

with monocytes. It is worth noting that the optimal cell number for both comparisons be-

comes 64, the smallest candidate cell number, when the criterion is the precision or the true

negative rate (Table C.4). The reason is that only the genes with strong DE signals are

detectable with a small sample size (cell number) in any statistical testing. Hence, with a

reasonable lower bound on the cell number, the DE genes detected at a smaller cell number

have a higher precision. Unlike the precision, the largest recall in DE analysis is mostly

achieved at a medium to large cell number. In all the experimental designs we evaluated,

the recall rate of DE genes first increases with the cell number and then decreases after

reaching a peak. These results demonstrate the trade-off between the cell number and the

cell-wise library size in scRNA-seq experiments. A combination of a small cell number and a

large cell-wise library size ensures the identification of the DE genes with strong DE signals

(i.e., achieving a high precision rate), but the small cell number may prohibit the detection
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of the DE genes with small to medium DE signals (i.e., sacrificing the recall rate). On the

other hand, a combination of a reasonably large cell number and a small cell-wise library

size increases the recall rate in detecting DE genes but compromises the precision rate due

to high dropout rates. We also performed the DE analysis by replacing the two-sample t

test with a scRNA-seq DE method MAST [192]. The optimal cell number remains 64 per

state when the criterion is the precision. The optimal cell numbers defined by the recall have

small differences from the t test results, but the scale and trend remain largely consistent.

In scenario B, the constraint is the total sequencing depth of one experiment with at

least two cell states, and the goal is to determine the optimal total cell number for that

experiment given a criterion in DE analysis. We apply scDesign to simulate a new count

matrix of each cell state based on a real count matrix from the same state, with pre-specified

total sequencing depth, total cell number, and cell proportions of the two cell states of

interest. We applied scDesign to evaluate the designs of 12 example experiments (Table

C.5). In every experiment, we set the sequencing depth to 100 million reads and considered

six cell numbers: 512, 1024, 2048, 4096, 8192, and 16, 384. We estimated the cell proportions

of the two cell states from the corresponding real data. In practical applications of scDesign,

the cell state proportions can be inferred from pilot studies or public data [159,161].

In contrast to scenario A, the optimal total cell number in scenario B depends on an

additional factor: the cell state proportions, aside from the technical and biological factors

we have discussed. The two cell states of interest may be present in various proportions

depending on biological conditions and experimental protocols, and larger cell state propor-

tions in general reduce the demand of a larger total cell number. For example, the estimated

cell state proportions of astrocytes and oligodendrocytes in a human brain sample are 19.2%

and 14.9%, respectively [230], and 1024 cells are needed to maximize the recall with Flu-

idigm C1 (Table C.5). In a mouse visual cortex sample, however, the estimated proportions

of the same two cell types are 8.8% and 13.1%, respectively, and 16, 384 cells are required

to achieve the highest recall with inDrop (Table C.5). Given an experimental protocol, the

optimal total cell number depends on both the two cell state proportions and the magnitude

of gene expression differences between the two cell states. For example, the proportions
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Figure 6.5: Power analysis for DE studies comparing CD4 and B cells with the Seq-Well

protocol (scenario B). The thresholds on the FDRs to identify DE genes are denoted in the

color legends. Different proportions (0.1, 0.2, 0.3, and 0.4) of CD4 and B cells were considered

in the experimental design. For the three metrics of recall, F1, and F2, the smallest cell

numbers leading to the best DE accuracy are marked in red boxes.

of CD4 cells, CD8 cells, and B cells in a human peripheral blood mononuclear sample are

17.2%, 10.2%, and 7.3%, respectively [161]. Two important facts about this experiment

are: first, the proportion of CD8 cells is higher than the proportion of B cells; second, the

magnitude of gene expression differences is larger between CD4 and B cells than between

CD4 and CD8 cells. With the Seq-Well protocol, the DE analysis of CD4 vs. B cells only

needs 4096 cells to achieve the highest F1 score. On the other hand, the DE analysis of

CD4 vs. CD8 requires 16, 384 cells to maximize the F1 score (Table C.5). To further assess

the effect of cell state proportions on DE analysis, we synthesized CD4 and B cells with
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multiple hypothetical cell proportions: 10%, 20%, 30%, and 40% (Figure 6.5), among which

the mixture of 40% B cells and 20-30% CD4 cells led to the minimum cell number required

to maximize the recall and precision. Determining the optimal cell state proportions given

a total cell number is especially useful when the cell states of interest can be enriched by

fluorescence-activated cell sorting [228] or flow cytometry [231] before the sequencing step.

6.3.3 scDesign demonstrates reproducibility across studies

In addition to evaluating the results of scDesign across different cell types and scRNA-seq

protocols, we also analyzed the experimental designs of the same cell types and protocols

but different datasets, in attempt to assess the reproducibility of scDesign.

First, we applied scDesign to optimize the pairwise DE analysis between the oligoden-

drocyte precursor cells (OPCs) and three other brain cell types: differentiation-committed

oligodendrocyte precursors (COPs), myelin-forming oligodendrocytes (MFOs), and newly

formed oligodendrocytes (NFOs). Two real datasets were collected for each cell type, and

the two datasets were generated using the Fluidigm C1 protocol but from different brain re-

gions: dorsal horn and hypothalamus [232]. We applied scDesign in scenario A, assuming a

total sequencing depth of 50 million reads for each cell type. In each experiment, we assumed

that the libraries of the two cell types have the same number of cells, and we considered

five candidate cell numbers per cell type: 64, 128, 256, 512, and 1024. The experimental

designs based on the two brain regions lead to highly consistent results. Both designs show

that in a DE analysis between OPCs and COPs, the optimal number of each cell type is

64 if selected by precision or true negative rate, 512 by F2 score, and 1024 by recall or F1

score (Figure 6.6); to better compare OPCs and MFOs or NFOs, the optimal number of each

cell type is 64 if selected by precision, recall, or true negative rate, 128 by F2 score, and 64

by F1 score (Figure B.19). In fact, not only do the two designs identify the same optimal

cell number in each case, but they also reveal highly consistent trends regarding how DE

accuracy changes as the number of sequenced cells increases (Figures 6.6 and B.19). This

example demonstrates the reproducibility of scDesign when taking input data from biological
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replicates.
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Figure 6.6: Reproducibility of scDesign based on data from different brain regions. The DE

studies compared OPCs and COPs based on scRNA-seq data from two brain regions: dorsal

horn and hypothalamus. When identifying the DE genes, the threshold set on the FDR

rate was 10−10. The y-axis of each line are divided by the maximum value of that line for

normalization.

Second, we applied scDesign to optimize the pairwise DE analysis between three retina

cell types: muller glia, amacrine, and rods. Two real datasets were collected from each cell

type, and the two datasets were generated using the Drop-seq protocol in two independent

studies [159,229]. We applied scDesign in scenario A, assuming a total sequencing depth of

100 million reads for each cell type. In each experiment, we assumed that the libraries of

the two cell types have the same number of cells and considered six candidate cell numbers

per cell type: 64, 128, 256, 512, 1024, and 2048. The experimental designs based on the two

single-cell studies lead to highly similar results (Figure B.20). As in the first example, both

designs identified the same optimal cell number regardless of the DE criterion used. The

only exception was in the comparison between the muller glia and rods: using the Macosko

et al. data, the best cell number is 512 by F1 score and 1024 by F2 score, while using the

Shekhar et al. data, the best cell number is 1024 by F1 score and 512 by F2 score. Such

discrepancy is not suprising since we only evaluated a few candidate cell numbers, and the

two input datasets inevitably differ in qualities as they came from two studies. Overall,
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this example demonstrates the reproducibility of scDesign when taking input data from

independent studies to design scRNA-seq experiments.

6.3.4 scDesign assists scRNA-seq method development

In addition to assisting single-cell experimental design, scDesign can also simulate scRNA-seq

data to benchmark various computational methods for differential gene expression analysis,

single cell clustering analysis, dimensionality reduction of gene expression data, etc. Due to

excess zeros resulting from dropout events and the fact that each gene’s expression level in

each cell is only measured once, the ground truth of individual genes’ expression levels in

single cells cannot be accurately estimated from scRNA-seq data. Also, cellular identities

of individual cells are difficult to pre-determine in most experiments. Lacking the afore-

mentioned ground truth encumbers the development of computational methods to decipher

information from scRNA-seq data. Direct evaluation of computational methods relies on

experimental validation, which is often unavailable for computationalists, and indirect inter-

pretation from downstream analysis is used instead as a not-so-ideal substitute. Empowered

by its ability to generate synthetic scRNA-seq data that well mimic real scRNA-seq data

and have ground truth information, scDesign provides a flexible framework to benchmark

computational methods for various scRNA-seq data analysis tasks.

We first demonstrate the application of scDesign to evaluating DE methods. We consid-

ered a baseline DE method, i.e., the two-sample t test, and four DE methods (MAST [192],

SCDE [168], DESeq2 [30], and edgeR [28]) specifically designed for scRNA-seq data. Here

both DESeq2 and edgeR denote their single-cell-adapted versions, where gene expression

values are weighted by the weights estimated from a ZINB model before the statistical

testing step [233]. We evaluated scDesign using real scRNA-seq data of six cell types: den-

drocytes (Smart-seq2), oligodendrocytes (Fluidigm C1), interneurons (inDrop), retinal gan-

glions (Drop-seq), enterocytes (10x Genomics), and natural killer cells (Seq-Well). Based

on the real data of each cell type, we simulated a pair of count matrices, with one matrix

representing the given cell type and the other including up-regulated and down-regulated
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genes (Appendix A.9). In the first setting, we set the percentage of DE genes to 5% and

sampled the fold changes of those DE genes’ expression values uniformly from the interval

[2, 5]. Then we evaluated the performance of the five DE methods by comparing the areas

under their precision-recall curves (Figure B.21). With Smart-seq2 and Fluidigm C1, MAST

and SCDE were the only two methods that achieved better accuracy than the two-sample t

test, but overall the three methods had comparable precision and recall. With inDrop and

10x Genomics, edgeR became the best DE method, followed by MAST and SCDE. With

Drop-seq and Seq-Well, the most accurate method was SCDE, and the baseline two-sample t

test had poor performance. These simulation results suggest that scRNA-seq data from the

10x, inDrop, Drop-seq, and Seq-Well protocols need more specialized statistical modeling

in the DE analysis, compared with Smart-seq2 and Fluidigm C1. In the second setting,

we set the percentage of up-regulated and down-regulated genes in each comparison to 10%

and sampled the fold changes of these DE genes uniformly from the interval [4, 5]. Since

the magnitude of fold changes increased, the DE methods overall demonstrated improved

accuracy, but the relative accuracy of the five DE methods was consistent with that under

the first setting.

We next demonstrated the application of scDesign to comparing dimensionality reduction

methods. We considered four methods: PCA, tSNE [14], independent component analysis

(ICA) [234], and ZINB-WaVE [177]. We evaluated scDesign based on the same real scRNA-

seq data used in the comparison of DE methods. Using the real data of each cell type,

we simulated a set of synthetic count matrices, representing multiple cell states following

a differentiation path (Appendix A.9). For the Smart-seq2 and Fluidigm C1 protocols,

we simulated four cell states with two states each having 80 cells and the other two each

having 50 cells. For the other four protocols, we simulated five cell states with two states

each having 300 cells and the other three each having 100 cells. In each case, we first

simulated the cell state at the starting point of differentiation based on the real data, and

then we simulated each of the three subsequent cell states with 1% of up-regulated and

down-regulated genes from its previous state. In addition, we sampled the fold changes of

those DE genes’ expression values uniformly from [2, 5]. After we applied the dimensionality
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reduction methods on each dataset, the hierarchical clustering method was applied on the

first two dimensions, and the Jaccard index between the computed cell classes and the true

cell conditions was calculated. Among the four dimensionality reduction methods, ZINB-

WaVE had the best performance in grouping cells into biologically meaningful clusters based

on the C1 data, followed by the tSNE method. Based on the Smart-Seq2 data, PCA had the

best performance in the 2D space, followed by ZINB-WaVE. However, the comparison results

were different for droplet-based protocols. The tSNE method led to the most accurate cell

clusters for the Drop-seq, inDrop, 10x, and Seq-Well protocols, followed by ICA and PCA. In

spite of the clustering performance, another factor worth noting is that PCA, ICA, and ZINB-

WaVE generate comparable cell-cell distances after dimensionality reduction, but tSNE does

not. The above results demonstrate the capacity of scDesign in helping developers evaluate

competing computational methods for the same purpose (e.g., DE analysis or dimensionality

reduction), and in selecting the appropriate method for analyzing scRNA-seq data from a

specific protocol.

6.4 Discussion

The scRNA-seq technologies have become an essential tool for studying various biological and

biomedical problems, but one unresolved challenge is how to balance the trade-off between

exploring the depth or breadth of transcriptome information in experimental design. We

introduce scDesign, the first statistical and computational simulator that enables rational

and practical scRNA-seq experimental design. By integrating statistical assumptions and

real scRNA-seq datasets from public repositories into its generative framework, scDesign is

able to mimic the real experimental processes and simulate synthetic scRNA-seq datasets

that well capture gene expression characteristics in real data. In addition, scDesign is a

flexible and reproducible simulator that is capable of modeling protocol-specific scRNA-

seq data generated under multiple biological and experimental conditions. We conducted a

comprehensive comparison of scDesign and four other scRNA-seq simulation methods based

on datasets from 17 different cell types and six experimental protocols. The comparison
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suggests that scDesign generates synthetic data with the largest resemblance to real scRNA-

seq data regardless of cell types and protocols.

Using its simulated data, scDesign performs power analysis on DE analysis to provide

a quantitative and objective standard for designing future experiments. In the context of

differential gene expression analysis between two cell states, scDesign suggests an optimal

cell number given a fixed sequencing depth, in the trade-off between a deeper sequencing of a

smaller number of cells or a shallower sequencing of a larger number of cells. Specifically, we

demonstrated the application of scDesign in two scenarios, where cells from the two states

are sequenced as two separate libraries or as one pooled library. We evaluated the experi-

mental designs for 14 and 12 scRNA-seq studies under the two scenarios, respectively. Our

results for the first time demonstrate how the optimal experimental design for DE analysis

depends on the scRNA-seq protocol and the intra and inter cell state transcriptome hetero-

geneity. In addition, our results revealed a general phenomenon that a deeper sequencing of

a smaller number of cells leads to a higher precision in DE analysis. In contrast to the pre-

cision, maximizing the recall of DE analysis requires finding a balance between the cell-wise

sequencing depth and the cell number, because our results show that the recall first increases

and then decreases as we increase the cell number with the total sequencing depth fixed. The

scDesign method enables researchers to design effective scRNA-seq experiments without pre-

experimental costs in an objective manner, for example, guided by the expected power in

downstream DE analysis. In addition, we demonstrate that scDesign leads to reproducible

designs for target cell states given data generated in different studies.

Aside from enhancing future experimental designs, another contribution of scDesign is to

assist computational method development for scRNA-seq data. Since large-scale benchmark

data are not yet available, computationalists typically rely on scRNA-seq data from public

repositories to evaluate new methods. However, quality control and normalization of real

data are themselves ongoing research questions, making the results in many method papers

not comparable nor reproducible [220,235]. To tackle this challenge, scDesign allows users to

generate synthetic scRNA-seq data with user-specified experimental protocols, sequencing

depths, cell states, cell numbers, as well as pre-specified differentially expressed genes. Given
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that scDesign generates synthetic data with known truth and well mimicking real data, users

can leverage its synthetic data to comprehensively evaluate computational and statistical

methods in a flexible, reproducible, and comparable way. For example, we compared five DE

methods (the two-sample t test, MAST, SCDE, DESeq2, and edgeR) and four dimensionality

reduction methods (PCA, tSNE, ICA, and ZINB-WaVE) using synthetic data generated by

scDesign. Those comparison results provide useful guidance for researchers to select the

most appropriate computational method to analyze real data.

We expect scDesign to assist scRNA-seq experimental design for a vast array of available

experimental protocols. It incorporates real scRNA-seq data into its statistical framework to

make flexible decisions based on the protocol and cell states used in the target study. If the

real data of the two cell states are not generated from the same experiment, it is recommended

to correct the batch effect before applying scDesign [236, 237]. To extend scDesign’s ability

to evaluate experimental designs for cell states whose scRNA-seq data are not yet publicly

available, a future direction is to incorporate bulk RNA-seq data of the same type as a

surrogate to estimate the gene expression parameters. Otherwise, pilot experiments need to

be conducted to collect data for experimental design, which is also a widely adopted practice

[238]. Another future extension of scDesign is to find the optimal design in the context of

other types of downstream analyses besides the differential gene expression analysis, such as

the detection of novel cell sub-types or the recovery of temporal transcriptome trajectories

[218]. For instance, we may jointly learn the proportions and the gene expression profiles

of multiple cell states from real scRNA-seq data and use them as input into our simulation

framework to evaluate how the power of detecting rare cell types changes with experimental

parameters. Given time-series scRNA-seq data, the scDesign framework can be modified to

conduct ANOVA or more advanced statistical analysis to objectively select cell numbers for

multiple time points. It is also possible to generalize the simulation framework of scDesign to

account for more complex trajectories in the cell differentiation process. We expect scDesign

to be an effective bioinformatic tool that assists rational scRNA-seq experiment design based

on specific research goals and benchmarks competing scRNA-seq computational methods.
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CHAPTER 7

Conclusions

Over the past decade, RNA sequencing technologies have revolutionized transcriptome anal-

ysis for interpreting genome function and investigating molecular bases for various disease

phenomena. The bulk RNA-seq technologies enable the analysis of pooled populations of

cells to understand the molecular constituents of cells and tissues, and have become an

essential tool for understanding development and disease [1]. The recent few years have

witnessed powerful advances in single cell sequencing technologies, allowing transcriptomic

analysis to be carried out at a single-cell resolution. The emerging scRNA-seq technolo-

gies enable the quantification of transcriptomic dynamics in heterogeneous cell populations

and complex tissues, offering unprecedented opportunities for investigating transcriptional

mechanisms underlying organ development and disease [145]. This disseration aims to dis-

cuss the statistical challenges and potential solutions in the analysis of RNA-seq data, for

better understanding both bulk and single-cell transcriptomics.

The first part of this dissertation focuses on discussing and developing statistical methods

for bulk RNA-seq data. Chapter 1 provides an overview of the modeling and analysis of

next-generation RNA-seq data from a statistical perspective. We summarize state-of-the-art

computational methods for bulk RNA-seq data analysis at four different levels: sample, gene,

transcript, and exon levels, and we discuss the key statistical considerations involved in these

methods. We expect the discussion to be useful to both statisticians focusing on methodology

development and applied bioinformaticians interested in understanding the commonly used

statistical models.

Chapters 2 and 3 are devoted to addressing the statistical challenges involved in transcript-

level analysis of RNA-seq data for more accurate isoform identification and quantification.
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In Chapter 2, we propose a statistical model, MSIQ, to more accurately estimate isoform

expression levels using multiple RNA-seq datasets. It tackles the challenge of accurate iso-

form quantification by aggregating information from multiple RNA-seq samples derived from

the same biological condition. The unique advantage of MSIQ lies in its ability to identify

and give higher weights to multiple RNA-seq samples that share similar transcriptome in-

formation, which we define as the consistent group. The MSIQ method not only provides

a tool to measure isoform expression levels under different biological conditions, but also

supports better reuse of public RNA-seq data by evaluating consistency of multiple samples

from the same biological condition. In Chapter 3, we propose a statistical method, AIDE,

to improve the precision of isoform discovery by selectively borrowing alternative splicing

information from existing annotations. Based on a carefully constructed likelihood model,

AIDE iteratively identifies isoforms in a stepwise manner while placing priority on the anno-

tated isoforms, and it uses statistically principled tests to automatically filter the identified

isoforms. We have demonstrated the superior performance of MSIQ and AIDE using both

simulated and real RNA-seq datasets, compared to the state-of-the-art methods. In addition,

the high precision of AIDE was confirmed based on a comparison to the long-read sequencing

results and multiple experimental validations using PCR. We have also shown the ability of

AIDE in identifying full-length isoforms with biological functions in pathological conditions,

such as melanoma and breast cancer.

The MSIQ and AIDE models can be considered as umbrella frameworks that can be

easily extended to incorporate more detailed modeling procedures to describe read generating

processes using likelihood functions. The extension would allow flexible assumptions given

additional experimental details or data features. As high-quality scRNA-seq data from full-

length protocols become available, MSIQ and AIDE might be modified to answer transcript-

level questions in single cell studies. Another future extension is to integrate MSIQ and AIDE

to simultaneously identify and quantify mRNA isoforms from multiple RNA-seq samples. By

aggregating information from multiple samples at the stage of isoform discovery, the joint

model has the potential to further improve the accuracy and robustness of isoform expression

analysis. We expect that the application of MSIQ and AIDE will help us better understand
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the isoform-level dynamics of RNA contents in different cells, tissues, and developmental

stages. The greater accuracy of the identified isoforms and their estimated expression levels

will shed light on transcriptional regulatory mechanisms of genetic diseases, thus assisting

biomedical researchers in designing targeted therapies.

The second part of this dissertation focuses on discussing and developing statistical meth-

ods for single-cell RNA-seq data. Chapter 4 provides an overview of the currently available

scRNA-seq technologies and summarizes common statistical analyses for scRNA-seq data,

including dimensionality reduction and feature selection, clustering analysis to identify cell

subpopulations, and differential gene expression analysis. The dicussion reveals a need for

new statistical tools to assist rational experimental design and to help denoise scRNA-seq

data, in order to make reliable and reproducible scientific discoveries.

Since computational analyses are complicated by the dropout events prevalent in scRNA-

seq data, we propose the scImpute method in Chapter 5 to impute the missing gene expres-

sion levels resulting from technical limitations. A key feature of scImpute is that it focuses

on imputing the missing expression values of dropout genes, while retaining the expression

levels of genes that are largely unaffected by dropout events. To achieve this goal, scImpute

first learns each gene’s dropout probability in each cell by fitting a mixture model for each

cell subpopulation. Next, scImpute imputes the highly probable dropout values of genes

in a cell by borrowing information of the same genes’ expression in other similar cells. We

have demonstrated using both simulated and real scRNA-seq data that scImpute is able to

recover gene expression levels affected by dropout events, improve the identification of cell

subpopulations, and assist differential gene expression analysis. Following the development

of scImpute, new computational methods have been proposed for imputation of scRNA-seq

data. Given that large-scale, error-free scRNA-seq data are not yet available for benchmark-

ing, it remains critical to assess the performance of computational methods from perspectives

that have biologically meaningful interpretations. As scRNA-seq data of improved quality

become available, we will be better equipped to perform comprehensive and fair comparisons

of scRNA-seq computational methods.

In Chapter 6, we introduce scDesign, the first statistical simulator that enables rational
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scRNA-seq experimental design, to address the unresolved challenge about how to balance

the trade-off between exploring the depth or breadth of transcriptome information in scRNA-

seq experiments. The scDesign method provides a flexible and reproducible simulator that

is capable of modeling protocol-specific scRNA-seq data generated under multiple biological

conditions, and we have shown that it is able to mimic the real experimental processes and

simulate synthetic scRNA-seq data that well capture gene expression characteristics in real

data. In addition, scDesign is able to suggest an optimal cell number given a fixed sequencing

depth, in the trade-off between a deeper sequencing of a smaller number of cells or a shallower

sequencing of a larger number of cells, in the context of differential gene expression analysis

between two cell states. Future extension of scDesign is to find the optimal design for other

biological questions besides the identification of DE genes, such as the detection of novel cell

subtypes or the recovery of temporal transcriptome trajectories.

In conclusion, we have discussed four statistical challenges and our proposed solutions for

the analysis of bulk or single-cell RNA-seq data. We believe that these problems demonstrate

the essential role of statistics in the interpretation of large-scale genomic data. Multiple

statistical and computational methods are often available for the same analysis purpose of

RNA-seq data, but there is hardly a method that is superior in every application scenario.

Therefore, we would like to emphasize the necessity for method developers to demonstrate

the reproducibility and interpretability of new methods. This will help the users apply

these methods in proper scenarios and ensure that the key statistical assumptions are not

violated, leading to biologically meaningful discoveries. As sequencing technologies develop,

the collection of further data will enable advances in statistical methods to help answer

emerging biological and biomedical questions.
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APPENDIX A

Supplementary text

A.1 Approaches to RNA-seq data summary

The RNA-seq reads are mapped to the reference genome, represented by genomic positions

covered by each read. That is, if a read has a total length 2c (the left and right end each have

length c), it is represented by a set of genomic positions {y1, . . . , y2c}. However, efficient data

summary is needed to preserve most relevant information for isoform quantification while

controlling the computational complexity at manageable level [100]. To our knowledge, there

are three existing approaches designed for data summary:

• Approach 1 [53]: represent the read by (y1, y2c)
′;

• Approach 2 [62]: represent the read by (y1, yc, yc+1, y2c)
′;

• Approach 3 [100]: represent the read by s1 and s2, the indices of the exons that

completely or partially overlap with each end of the read:

s1 = {i : Gi ∩ {y1, . . . , yc} 6= ∅, i = 1, . . . , N} ,

s2 = {i : Gi ∩ {yc+1, . . . , y2c} 6= ∅, i = 1, . . . , N} ,
(A.1)

where Gi denotes the set of genomic positions in exon i .

We compare these three approaches on the hypothetical gene in Figure 2.2 and summa-

rize their results in Table A.1. It is obvious that Approach 1 loses more information than

Approach 2. In this specific case, Approach 3 gives clearer indication of the possible iso-

form origins of the three reads, because it captures the mapping information inside the left

and right ends, which are missed by Approaches 1 and 2. However, Approach 3 removes the
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actual genomic positions of reads, which are necessary for estimating the fragment length cor-

responding to each paired-end read. Recognizing the comparative advantages of Approaches

2 and 3, we use a combination of Approaches 2 and 3 as our data summary method.

Table A.1: Comparison of the three RNA-seq data summary approaches. Examples of three

summarized reads and their encoded isoform origin information are listed.

Read Approach 1 Approach 2 Approach 3

data origin data origin data origin

1 (231,559) 1,2 (231,280,510,559) 1,2 {1}{4} 1,2

2 (100,578) 1,2 (100,199,460,578) 2 {1}{3,4} 2

3 (50,537) 1,2 (50,149,370,537) 1,2 {1}{2,3,4} 2
...

...
...

...

A.2 Proof of Lemma 2.1

We first introduce some results from [239] to assist the proof of Lemma 2.1.

Theorem A.1. Suppose (X(0),X(1), . . . ,X(t), . . . ), X(t) ∈ O ⊆ Rn be a Markov chain with

transition kernel K w.r.t a σ-finite measure ν, and π is an invariant distribution of this

Markov chain. If the transition kernel K is π-irreducible and aperiodic, then for all x ∈ Q =

{x ∈ O : π(x) > 0}, as t→∞,

(i) |K(t)(x, ·)− π| → 0, where K(t)(x, ·) is the density of x(t) given X(0) = x;

(ii) for real-valued, π-integrable function f ,

1

t

t∑
i=1

f
(
x(i)
)
→
∫
O

f(x)π(x)dν(x) a.s..

Lemma A.1. If ν is discrete, then K is well-defined and π-irreducibility of K is a sufficient

condition for the results of Theorem A.1.

Lemma A.2. If ν is n-dimentional Lebesgue measure, and π is lower semi-continuous at 0,

then K is well-defined.
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With the results introduced above, we can prove Lemma 2.1.

Proof. For simplicity, let X = (E,Z, γ)′, a vector of n = D +
∑D

d=1 nd + 1 dimensions,

where E = (E1, . . . , ED)′ and Z = (Z
(1)
1 , . . . , Z

(1)
n1 , . . . , Z

(D)
1 , . . . , Z

(D)
nD )′. We denote the joint

density ofX as π(x|R,λ, a, b). In MSIQ, the transition kernel of the Markov chain is formed

by the Gibbs sampler: K(x(t),x(t+1)) =
∏n

l=1 π
(
x

(t+1)
l |{x(t)

j }j>l, {x
(t+1)
k }k<l

)
.

We know that π(x|R,λ, a, b) is discrete w.r.t. Xi (i = 1, 2, . . . , n− 1) and is continuous

w.r.t. Xn. According to Lemmas A.1 and A.2 [239], K(x(t),x(t+1)) is a well-defined kernel

and π is an invariant distribution of the Markov chain applied by K. We also know that the

conditional probabilities of Xd = Ed (d = 1, . . . , D) or Xn = γ on everything else are always

positive. For each XD+i+
∑d−1
k=1 nk

= Z
(d)
i , if we define its conditional distribution (2.15) on

the domain {j : q
(d)
ij 6= 0}, its conditional probability is also always positive. The positive

properties of these conditional distributions naturally lead to the positivity of the transition

kernel K(x(t),x(t+1)), and thus the π-irreducibility of K.

Now since K(x(t),x(t+1)) is π-irreducible, by Theorem A.1 for all x ∈ Q = {x :

π(x|R,λ, a, b) > 0}, K(t)(x, ·) converges to π(x): |K(t)(x, ·)−π(x|R,λ, a, b)| → 0 as t→∞,

where K(t)(x, ·) is the density of x(t) given X(0) = x. Therefore, θ̂MSIQ
d converges to

E(Ed|R,λ, a, b):

lim
T→∞

θ̂MSIQ
d = lim

T→∞

1

T

T∑
t=1

E
(t)
d = E(Ed|R,λ, a, b). (A.2)

Now we can prove the convergece of α̂MSIQ. From model (2.9) it is easy to see that

α|Z,E,R, λ, a, b ∼ Dirichlet(λ′1, . . . , λ
′
J), where λ′j = λj +

∑D
d=1

(
Ed
∑nd

i=1 I
(d)
i,j

)
. Thus the

conditional posterior mean of αj:

E(αj|Z,E,R, λ, a, b) = E(αj|X,R, λ, a, b) =
λj +

∑D
d=1

(
Ed
∑nd

i=1 I
(d)
i,j

)
∑J

j=1 λj +
∑D

d=1Ednd
, gj(X). (A.3)

Then the isoform proportion α
(t)
j defined in equation (2.17) can be written as: α

(t)
j = gj(X

(t)).

As a result,

lim
T→∞

α̂MSIQ
j = lim

T→∞

1

T

T∑
t=1

α
(t)
j = Eπ[gj(X)] = E(αj|R, λ, a, b), (A.4)

and limT→∞ α̂
MSIQ = E(α|R, λ, a, b).
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A.3 Sensitivity analysis of the MSIQ model

When calculating the MSIQ estimator in Chapter 2.3.1, we set the hyper-parameters as

a = 7 and b = 2. These two parameters will influence the probability of assigning an RNA-

seq sample to the consistent group. In order to illustrate that MSIQ is robust to these

parameters, we present a sensitivity analysis here.

We randomly selected 500 genes out of the 3421 fly genes and carried out simulation

based on these fly genes. For each gene, we considered five scenarios and independently

simulated ten RNA-seq samples each with 500 paired-end reads by following the procedure

described in Chapter 2.3.1. We estimated the isoforms proportions of these genes based

on different values of a and b, and then compare the REE in different settings. In the

calculation, we either fixed a = 7 and vary b among {2, 3, 4, 5, 6}, or d b = 2 and vary a

among {4, 5, 6, 7, 8, 9, 10}. Meanwhile, the fragment length was set as 150 bp and the read

length was set as 50 bp. As shown in Figure A.1, the REE rates in all five scenarios are

largely invariant when parameters a and b take different values. This result justifies the

robustness of MSIQ to the prior parameters.

A.4 Simulation for comparing isoform reconstruction methods

We considered 18, 960 protein-coding genes from the human GENCODE annotation (version

24) [75]. For each gene, we set the proportions of isoforms not in the GENCODE database

to 0. As for the annotated isoforms in GENCODE, their isoform proportions were simu-

lated from a symmetric Dirichlet distribution with parameters (1/dJ
2
e, . . . , 1/dJ

2
e)′, where J

denotes the number of annotated isoforms for a given gene. When simulating the RNA-seq

reads, we treated these simulated proportions as the pre-determined ground truth. Next,

for each target read coverage among the eight choices (10x, 20x, . . . , 80x), we used the R

package polyester [117] to simulate one RNA-seq sample given the pre-determined isoform

proportions. All the simulated RNA-seq samples contained paired-end reads with 100 bp

length.
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Figure A.1: REE of MSIQ on 500 fly genes in scenarios 1-5. The first five boxplots corre-

sponde to the case when b = 2 and a varies between {4, 5, 6, 7, 8, 9, 10}; the last five boxplots

correspond to the case when a = 7 and b varies between {2, 3, 4, 5, 6}.
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A.5 Calculation of precision and recall in isoform reconstruction

We denote the true isoform set of an RNA-seq sample as S and the discovered isoform set as

D. We use B(s) and E(s) to denote the number of bases and the number of exons in isoform

s, respectively. We calculated the isoform-level precision and recall of isoform discovery by

comparing the two sets S and D. When comparing the isoforms s1 in S and s2 in D, we

allowed a small difference by requiring the number of mismatch bases to be smaller than

0.99B(s1). The isoform-level precision and recall were calculated as

precisionisoform =
|D ∩ S|
|D|

, recallisoform =
|D ∩ S|
|S|

. (A.5)

The exon-level precision and recall were calculated as

precisionexon =

∑
s∈D∩S E(s)∑
s∈D E(s)

, recallexon =

∑
s∈D∩S E(s)∑
s∈S E(s)

. (A.6)

The base-level precision and recall rates were calculated as

precisionbase =

∑
s∈D∩S B(s)∑
s∈D B(s)

, recallbase =

∑
s∈D∩S B(s)∑
s∈S B(s)

. (A.7)

A.6 Validation of isoforms by PCR and Sanger sequencing

Biopsy was collected freshly and the total RNAs were extracted with the RiboPure Kit

(Ambion). The reverse transcription reactions were performed using the RevertAid First-

Strand cDNA Synthesis System kit (ThermoFisher) . With the cDNAs as templates and

primers from TSINGKE, the PCR procedure (95◦C 5 min, 95◦C 30 s, 55◦C 30 s, 72◦C 1 min

to 2 min, 40 to 50 cycles, 72◦C 5 min for extension) was conducted using a ThermoFisher

PCR system. PCR products were purified using Gel Extraction Kit (OMEGA) followed by

Sanger sequencing with their special forward primers. Finally, the sequencing results were

analyzed using the Sequence Scanner software.
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A.7 Validation of isoform functions by colongenic assay

Breast cancer cell lines BT549, MB231, SUM149, BT474, SK-BR-3, and MCF-7 were cul-

tured in the State Key Laboratory of Biotherapy, West China Hospital. The cells’ total RNAs

were extracted with the RiboPure Kit (Ambion), and the reverse transcription reactions were

performed using the RevertAid First-Strand cDNA Synthesis System kit (ThermoFisher).

With the cDNAs as templates and primers from TSINGKE, the PCR procedure (95◦C 5 min,

95◦C 30 s, 55◦C 30 s, 72◦C 1 min, 40 cycles, 72◦C 5 min for extension) was conducted using

a ThermoFisher PCR system. PCR products were purified using the Gel Extraction Kit

(OMEGA) followed by Sanger sequencing with special forward primers. The five siRNAs

specifically targeting FGFR1-238 were synthesized at Shanghai GenePharma. The cells’

colonegenic assays lasted for 10-12 days.

A.8 AIDE improves isoform discovery via stepwise selection

We conducted a proof-of-concept simulation study to verify the efficiency and accuracy of

our proposed AIDE method. We used this study to show why simply performing forward se-

lection is insufficient and how stepwise selection leads to more precise and robust isoform dis-

covery results. Here we considered 2, 262 protein-coding genes from the human GENCODE

annotation (version 24) [75]. We treated the annotated isoforms as the true isoforms and

simulated paired-end RNA-seq reads from those isoforms with pre-determined abundance

levels. For every gene, we applied AIDE, which uses stepwise selection, and its counterpart

AIDEf, which only uses forward selection, to discover isoforms from the simulated reads.

To evaluate the robustness of AIDE to the accuracy of annotation, we considered three

types of annotation sets: (1) “N” (no) annotations: no annotated isoforms were used; (2) “I”

(inaccurate) annotations: the annotated isoforms consisted of half of the randomly selected

true isoforms and the same number of false isoforms; (3) “A” (accurate) annotations: the

annotated isoforms consisted of half of the randomly selected true isoforms.

The simulation results averaged from the 2, 262 genes show that AIDE and AIDEf perform
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the best when the “A” annotations are supplied, and they have the worst results with

the “N” annotations, as expected (Figure A.2). Given the “A” annotations, AIDE and

AIDEf have similarly good performance. However, when supplied with the “I” or the “N”

annotations, AIDE has much better performance than AIDEf. Notably, the performance of

AIDE with the “I” annotations is close to that with the “A” annotations, demonstrating

the robustness of AIDE to inaccurate annotations. On the other hand, AIDEf has decreased

precision when the “I” annotations are supplied because forward selection is incapable of

removing non-expressed annotated isoforms from its identified isoform set. Given the “N”

annotations, AIDE also has better performance than AIDEf. These results suggest that

choosing stepwise selection over forward selection is reasonable because perfectly accurate

annotations are usually not available in real scenarios.

20 40 60 80 20 40 60 80 20 40 60 80
0.4
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0.8
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read coverage

“N” annotation + AIDEf “I” annotation + AIDEf “A” annotation + AIDEf

“N” annotation + AIDE “I” annotation + AIDE “A” annotation + AIDE

F score average precision average recall

Figure A.2: Comparison of AIDE (stepwise selection) and AIDEf (forward selection only)

across the 2, 262 genes in simulation. For AIDE and AIDEf, each measure is calculated

based on three types of annotations and RNA-seq samples with varying read coverages. The

horizontal axis denotes the average per-base coverage of RNA-seq reads.

Figure A.2 also suggests that both approaches exhibit improved performance with all

the three types of annotations as the read coverages increase. Higher read coverages help

the most when the “N” annotations are supplied, but its beneficial effects become more

negligible with the “A” annotations. When the coverages increase from 10x to 80x, the F

scores of AIDE increase by 32.6%, 12.3%, and 9.5% with the “N”, “I”, and “A” annotations,
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respectively. Moreover, we observe that the F scores of AIDE with the “N” annotations and

the 80x coverage are approximately 30% lower than the F scores with the “A” annotations

and the 30x coverage. This suggests that accurate annotations can assist isoform discovery

and reduce the costs for deep sequencing depths to a large extent.

16.2%

31.7%

29.7%

76.2%

81.1%

80.8%

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

recall

pr
ec

is
io

n proportion of genes
0.2
0.4

0.6

0.8

“N” annotation + AIDf

“N” annotation + AID

“I” annotation + AIDf

“I” annotation + AID

“A” annotation + AIDf

“A” annotation + AID

Figure A.3: Comparison of AIDE (stepwise selection) and AIDEf (forward selection only) in

terms of the per-gene precision and recall in simulation, with 80x read coverage and three

types of annotations. The circle sizes are proportional to the fractions of genes with the

corresponding precision and recall.

We also summarized the precision and recall rates of AIDE at the individual gene level

(Figure A.3). When the “A” annotations are supplied, both AIDE and AIDEf achieve 100%

precision and recall for over 80% of the genes. When the “N” or “I” annotations are supplied,

we observe a 2.0- or 2.6- fold increase in the number of genes with 100% precision and recall

from AIDEf to AIDE. These results again demonstrate the effectiveness of AIDE in removing

non-expressed annotated isoforms and identifying novel isoforms with higher accuracy due

to its use of statistical model selection principles.
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A.9 Simulating count matrices following a differentiation path

Given a real dataset with I genes and J0 cells, the goal of this section is to generate G (G ≥ 2)

new count matrices, each of which has I genes, J synthetic cells, and a total of S reads. The

synthetic data should represent G cell states following a specified differentiation path with

known DE genes, such that these data serve as a good basis for benchmarking single-cell

data analysis and method development. When generating the G synthetic count matrices,

we assume that the G cell states follow a differentiation path, with a pup proportion of up-

regulated genes and a pdown proportion of down-regulated genes from state g to state g + 1

(g = 1, . . . , G− 1).

(1). Estimate parameters from real scRNA-seq data.

As described in Chapter 6.2.2, from the real count matrix Xreal
I×J0 , we obtain the following

parameter estimates: (1) the mean µ̂s and the standard deviation σ̂s of the Normal distri-

bution used to model the cell library sizes; (2) the cell-wise dropout rates q̂01, . . . , q̂0J0 ; (3)

the gene-wise dropout rate λ̂0i, mean µ̂0i, and standard deviation σ̂0i of gene i, i = 1, . . . , I.

A Gamma distribution is used to fit the estimated gene mean expression µ̂01, . . . , µ̂0I , and

the estimated shape and scale parameters are denoted as k̂0 and θ̂0, respectively. The above

parameter estimates are then used to simulate the expression parameters of state 1, while

the parameters of state g + 1 depended on the parameters of its previous state g.

(2). Simulate gene mean expression values of the G states.

In this step, we simulate the log-scale mean gene expression values under each cell state,

without considering dropout events. We assume that from state g to state g + 1, the pro-

portions of up-regulated and down-regulated genes are pup and pdown, respectively. The fold

changes of gene mean expression levels are independently and uniformly distributed within

[fl, fu].

We used µgi to denote the mean expression of gene i in cell state g. For cell state 1, we

simulate µ1
i from the Gamma distribution: µ1

i
i.i.d.∼ Gamma(k̂0, θ̂0), i = 1, . . . , I. Then given

µg1, . . . , µ
g
I , we simulate µg+1

1 , . . . , µg+1
I (g = 1, . . . , G − 1) as follows. We first simulate the
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number of up-regulated genes ngup, and the number of down-regulated genes ngdown from a

Multinomial distribution:
(
ngup, n

g
down, I − ngup − n

g
down

)
∼ M (I, (pup, pdown, 1− pup − pdown)) .

We randomly draw the ngup + ngdown DE genes from the gene population {1, . . . , I} without

replacement and denote

dgi =


1, if gene i is up-regulated

−1, if gene i is down-regulated

0, otherwise

. (A.8)

Then, we simulate µg+1
I , the mean expression of gene i in state g + 1:

µg+1
i =


µgi + log10 f

g
i if dgi = 1

µgi − log10 f
g
i if dgi = −1

µgi , otherwise

, (A.9)

where f gi
i.i.d∼ Uniform[fl, fu]).

(3). Simulate the count matrices.

With the mean gene expression µg1, . . . , µ
g
I , we simulate the count matrix Xsyn,g under

each state g independently following steps (2)-(4) in Chapter 6.2.2.

A.10 Power analysis of DE detection with scDesign

We have introduced two scenarios in experimental designs. If the two cell states are sequenced

separately, the design needs specification of the sequencing depth S and the cell numbers J1

in state 1 and J2 in state 2. If the two cell states are sequenced together, the design needs

specification of the sequencing depth S and the total cell number J . The goal of power

analysis is to determine the best choice of cell number(s) to optimize the downstream DE

analysis between two cell states, given a fixed S.

Given Xreal1
I×J01 and Xreal2

I×J02 from two different cell states, for each gene i we estimated its

mean expression values in the mixture model as µ̂g0i and σ̂g0i for state g (g = 1, 2) (see Chapter
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6.2.2). Then we calculated an effect score of gene i to denote its differential expression

strength: hi = |µ̂10i−µ̂20i|/(σ̂1
0i+σ̂

2
0i) . The top N genes with the largest hi’s are used as the true

DE genes to be compared with the detected DE genes from the simulated data, and this

gene set is denoted as A0.

Given an experimental design, we simulated B count matrices {Xsyn,11, . . . ,Xsyn,1B} for

cell state 1, and B count matrices {Xsyn,21, . . . ,Xsyn,2B} for cell state 2. By performing DE

analysis onXsyn,1b andXsyn,2b, we identified a DE gene set Ab. Denoting the gene population

set as Ω, we calculated five accuracy metrics: precision (ab1), recall (ab2), true negative rate

(ab3), F1 (ab4), and F2 (ab5):

ab1 =
|A0 ∩ Ab|
|Ab|

, ab2 =
|A0 ∩ Ab|
|A0|

, ab3 = 1− |A
b \ A0|
|Ω \ A0|

, ab4 = 2
ab1 × ab2
ab1 + ab2

, ab5 = 2
ab2 × ab3
ab2 + ab3

.

(A.10)

Then we averaged each of the five metrics calculated over the B sets of data as ai =

1
B

∑B
b=1 a

b
i , i = 1, . . . , 5. Finally, we repeated the above steps for each candidate cell number

and selected the cell number that maximizes the user-specified metric among the five metrics.

For analyses presented in Chapter 6.3, we set N = 1000 and B = 100. The DE method

used in the simulation were the two sample t test, which was applied to the non-zero gene

expression values, and MAST [192]. In real data applications, users are suggested to use the

DE method of their choice for the experimental design.
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APPENDIX B

Supplementary figures
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Figure B.1: Illustration of isoform reconstruction and quantification challenges. a: Taken

this 4-exon gene as an example, the observed RNA-seq reads were sequenced from fragments

of the true but unobservable isoforms. The read length is fixed in each experiment, but

the fragment lengths can vary. Since only the two ends of each fragment are sequenced

as paired-end reads, this leads to information loss in RNA-seq experiments. b: Given the

paired-end reads mapped to the 4-exon gene (one end mapped to the first exon and the

other end mapped to the fourth exon), the inferred fragment length could be different when

assuming different isoform origin of the read. c: An example Bayesian framework to estimate

the population isoform proportions θ of a gene given D samples. θ(1), . . . ,θ(D) are considered

as the realization of θ in D samples. Z
(d)
i denotes the isoform origin of read r

(d)
i in sample

d. Only the reads r
(d)
i ’s are observed information. Other random variables are hidden, and

parameters need estimation.
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Figure B.2: The distribution of fragment length in real RNA-seq data. The empirical frag-

ment length distribution of four example mouse genes in the mouse bone marrow-derived

macrophage dataset (Table C.2).
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Figure B.3: Gene-level precision of AIDE and the other three isoform discovery methods in

simulation. Each boxplot gives the 1st quantile, median, and 3rd quantile of the gene-level

precision given the corresponding synthetic annotation set and read coverage.
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Figure B.4: Gene-level recall of AIDE and the other three isoform discovery methods in

simulation. Each boxplot gives the 1st quantile, median, and 3rd quantile of the gene-level

recall given the corresponding synthetic annotation set and read coverage.
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Figure B.5: Isoform discovery for the human gene DPM1 with synthetic annotation set

1. The histogram and the sashimi plot denote the RNA-seq reads mapped to the DPM1

gene. The annotation (white) for this gene has a 67% purity and a 67% completeness,

compared with the truly expressed isoforms (yellow). AIDE, Cufflinks, and StringTie each

discovered three isoforms, but only AIDE was able to identify the shortest isoform missing

in the annotation. SLIDE reported 17 isoforms, which are not displayed in the plot.
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Figure B.6: Isoform discovery for the human gene DPM1 with synthetic annotation set 9.

The histogram and the sashimi plot denote the RNA-seq reads mapped to the DPM1 gene.

The annotation (white) for this gene has a 60% purity and a 100% completeness, compared

with the truly expressed isoforms (yellow). AIDE, Cufflinks, and StringTie respectively

discovered three, five, and four isoforms, and only AIDE was able to identify the three true

isoforms with 100% accuracy. SLIDE reported 20 isoforms, which are not displayed in the

plot.
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Figure B.7: Comparison between AIDE and the other three isoform discovery methods

in simulation. The genome-wide average performance of AIDE, Cufflinks, StringTie, and

SLIDE given each of the nine synthetic annotation sets was summarized. The base-level,

exon-level, and transcript-level precision, recall, and F scores averaged across the human

genes were calculated based on the RNA-seq data with a 10x coverage.
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Figure B.8: Precision-recall curves of AIDE and the other three isoform discovery methods

in real data studies. We applied AIDE, Cufflinks, StringTie, and SLIDE on three human

ESC samples (a) and three mouse BMDM samples (b). The estimated expression levels of

the predicted isoforms were summarized using the FPKM values. The precision-recall curves

(at isoform-level) were obtained by thresholding the FPKM values of the predicted isoforms.

The corresponding AUC of each method is also marked in the plot.
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Figure B.9: Isoform discovery for the human genes ZBTB11 and TOR1A given different

p-value thresholds. The histogram and the sashimi plot denote the RNA-seq reads mapped

to the two genes in the human ESC sample 1 (Table C.2). Isoform discovery was based on

the GENCODE human annotation version 24. The threshold on the p-values resulted from

the likelihood ratio tests decreased from 10−2 to 10−10.
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Figure B.10: Sensitivity analysis based on the mouse embryo data [201]. a: Clustering results

of imputed data when different values of parameter K were used in scImpute. b: Clustering

results of imputed data when different values of parameter t were used in scImpute. c: The

distributions of dropout probabilities in four randomly selected cells from the mouse embryo

data. Most genes had dropout probabilities very close to either 0 or 1.
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Figure B.11: Expression levels of cell cycle genes before and after imputation. Violin plots

show the log 10(count+1) of the 892 cell cycle genes in the three phases (G1, G2M, and S).

This comparison result shows that scImpute has successfully imputed the dropout expression

values of cell cycle genes.

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5

dr
op

ra
te

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
recall

pr
ec

is
io

n

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
recall

pr
ec

is
io

n

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
recall

pr
ec

is
io

n

log10(count+1)

ρ
0.01

0.03

0.05

0.07

0.09

0.11

0.13

0.15

0.17

0.19

c1 vs c2

c1 vs c3 c2 vs c3

a b

c d

Figure B.12: Performance of scImpute given different dropout rates in simulated raw

data. a: The theoretical dropout rates determined by the double exponential function

exp(ρ log 10(count + 1)2), with ρ varying from 0.01 to 0.19 by a step size of 0.02. b-d: The

precision-recall curves for the identification of DE genes from the imputed data.
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Figure B.13: The adjusted Rand index, Jaccard index, nmi, and purity scores of clustering

results based on raw and imputed data. Clustering was performed by the spectral clustering

algorithm on the single cells’ scores in the first two PCs.
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Figure B.14: The first two dimensions of the t-SNE results calculated from imputed PBMC

data by MAGIC.
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Figure B.15: Comparison of DE analysis between bulk and single-cell data. a: p-values

on both bulk and single-cell data were calculated using DESeq2 [30]. b: p-values on bulk

data were calculated using DESeq2 and p-values for single-cell data were calculated using

MAST [192].
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Figure B.16: Time-course expression patterns of four marker genes of DECs. The genes’

log 10(count + 1) in both raw and imputed data are summarized in the boxplots. Black

triangles mark the genes expression in bulk data.
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Dendrocytes subtype 1
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Figure B.17: Comparison of scDesign and the other four simulation methods based on the

Smart-seq2 protocol. The boxplots display the gene-wise expression mean, expression vari-

ance, expression coefficient of variation, zero proportion, and the cell-wise zero proportion

and library size in both real and simulated datasets. The heatmaps display the KS distances

between the six statistics in the real data and in the simulated data. The best and sec-

ond best simulation methods with respect to each statistic are respectively marked with 1

and 2 in the heatmaps. The line plots demonstrate the empirical relationships between the

key statistics in real and simulated data. Note that scDD failed to simulate data for the

dendrocytes subtype1 dataset.
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Figure B.18: Comparison of scDesign and the other four simulation methods based on the

10x Genomics protocol. The boxplots display the gene-wise expression mean, expression

variance, expression coefficient of variation, zero proportion, and the cell-wise zero proportion

and library size in both real and simulated datasets. The heatmaps display the KS distances

between the six statistics in the real data and in the simulated data. The best and second

best simulation methods with respect to each statistic are respectively marked with 1 and

2 in the heatmaps. The line plots demonstrate the empirical relationships between the key

statistics in real and simulated data.
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Figure B.19: Reproducibility of scDesign based on data from different brain regions. The

DE studies compared OPC and three other cell types based on scRNA-seq data from two

brain regions: dorsal horn and hypothalamus. When identifying the DE genes, the threshold

set on the FDR rate was 10−10. The y-axis of each line are divided by the maximum value

of that line for normalization.
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Figure B.20: Reproducibility of scDesign based on data from different studies. The DE

studies compared three types of retina cells based on scRNA-seq data from two studies:

Macosko et al. and Shekhar et al. When identifying the DE genes, the threshold set on the

FDR rate was 10−10. The y-axis of each line are divided by the maximum value of that line

for normalization.
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Figure B.21: Comparison of scRNA-seq DE methods. The precision-recall curves of the five

DE methods were summarized for the six scRNA-seq protocols, respectively. Corresponding

AUCs are shown in the plots.
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APPENDIX C

Supplementary Tables

Table C.1: Description of the RNA-seq datasets used in Chapter 2.

replicate ID cell/tissue data type read length accession number

1 hESC real data 76×2 GSM758566

2 hESC real data 35×2 & 36×2 GSM517435

3 hESC real data 35×2 & 36×2 GSM517435

4 hESC real data 76×2 GSM958733

5 hESC real data 101×2 GSM958743

6 hESC real data 101×2 GSM1153528

7 Brain real data 50×2 GSE19166

8 Brain real data 50×2 GSE19166

9 Brain real data 50×2 GSE19166

10-14 / simulated data 36×2 /

15-19 / simulated data 76×2 /

20-24 / simulated data 101×2 /

1 HepG2 real data 50×2 ENCFF084JYA

2 HepG2 real data 50×2 ENCFF790CFB

3 HepG2 real data 38×2 ENCFF916YZY

4 HepG2 real data 38×2 ENCFF179TFY

5 HepG2 real data 50×2 ENCFF168NGI

6 HepG2 real data 50×2 ENCFF711DJN

165



Table C.2: Description of real RNA-seq datasets used in Chapter 3.

sample cell type read length accession number

1 HepG2 50×2 ENCFF084JYA

2 HepG2 50×2 ENCFF790CFB

3 HepG2 100×2 ENCFF916YZY, ENCFF800YJR

4 HepG2 100×2 ENCFF179TFY, ENCFF782TAX

5 HepG2 76×2 ENCFF168NGI

6 HepG2 76×2 ENCFF711DJN

sample cell type read length accession number

1 human ESC 76×2 GSE90225

2 human ESC 76×2 GSE33480

3 human ESC 101×2 GSE47626

sample cell type read length accession number

1 mouse BMDM 100×2 ENCSR614DLJ

2 mouse BMDM 100×2 ENCSR822FMG

3 mouse BMDM 100×2 ENCSR614KOV
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Table C.3: Description of real scRNA-seq datasets used in Chapter 6.

data accession species cell	type protocol

1 GSE94820 human
dendrocyte1	(165)
dendrocyte2	(94)
monocyte2	(163)

Smart-Seq2

2 GSM1626793 mouse

bipolar	(919)	
cones	(241)	
rods	(3746)
retinal	ganglion	(70)

Drop-seq

3 GSE92332 mouse
goblet	(510)	
stem	(1267)	
tuft	(166)

10x

4 GSE67835 human
astrocyte	(49)	
neuron	(122)	
oligodendrocyte	(38)

Fluidigm	C1

5 GSE102827 mouse

excitatory	(1040)	
neuron	(116)	
oligodendrocyte	(286)	
astrocyte	(189)

inDrop

6 GSM2486333 human

natural	killer	(471)	
CD4	(634)	
CD8	(269)
B	cell	(376)

Seq-Well
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Table C.4: The optimal cell numbers in experimental design (scenario A) using t tests.

Five DE accuracy metrics were calculated in every comparison: precision, recall, TN (true

negative rate), F1 score, and F2 score. For each metric, the smallest cell number that leads

to the highest accuracy was recorded as the optimal number.

protocol cell	type	1 cell	type	2 precision recall TN F1 F2
Smart-Seq2 dendrocyte1 monocyte1 64 256 64 128 128
Smart-Seq2 dendrocyte1 dendrocyte2 64 512 64 256 512
Drop-seq cone retinal	ganglion 64 1024 64 512 512
Drop-seq cone rod 64 2048 64 1024 512
10x	 tuft goblet 64 2048 64 1024 4096
10x tuft stem 64 4096 64 2048 4096
C1 neuron astrocyte 64 512 64 128 512
C1 neuron oligodendrocyte 64 512 64 128 512
C1 astrocyte oligodendrocyte 64 512 64 128 512
inDrop astrocyte oligodendrocyte 64 4096 64 1024 2048
inDrop excitatory interneuron 64 4096 64 2048 4096
inDrop excitatory oligodendrocyte 64 1024 64 128 512
Seq-Well CD4 B	cell 64 2048 64 512 512
Seq-Well CD4 CD8 64 8192 64 8192 8192
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Table C.5: The optimal cell numbers in experimental design (scenario B) using t tests.

Five DE accuracy metrics were calculated in every comparison: precision, recall, TN (true

negative rate), F1 score, and F2 score. For each measure, the smallest cell number that leads

to the highest accuracy was recorded as the optimal number. The cell type proportions are

listed under the cell labels.

protocol cell	type	1 cell	type	2 precision recall TN F1 F2

Smart-Seq2 dendrocyte1
16.1%

monocyte1
15.8%

512 1024 512 512 1024

Smart-Seq2 dendrocyte1
16.1%

dendrocyte2
9.1%

512 2048 512 1024 2048

Drop-seq cone
0.42%

retinal	ganglion
0.1%

8192 16384 16384 16384 16384

Drop-seq cone
0.42%

rod
65.6%

2048 16384 2048 16384 16384

10x	 tuft
2.3%

goblet
7.1%

512 16384 512 16384 16384

10x tuft
2.3%

Stem
17.6%

1024 16384 1024 16384 16384

C1 neuron
47.8%

astrocyte
19.2%

512 512 512 512 512

C1 astrocyte
19.2%

oligodendrocyte
14.9%

512 1024 512 1024 1024

inDrop astrocyte
8.8%

oligodendrocyte
13.1%

512 16384 512 8192 16384

inDrop excitatory
47.8%

interneuron
5.3%

512 16384 512 8192 16384

Seq-Well CD4
17.2%

B	cell
7.3%

512 16384 512 4096 8192

Seq-Well CD4
17.2%

CD8
10.2%

512 16384 512 16384 16384
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Roderic Guigó, and Michael Sammeth. Modelling and simulating generic RNA-Seq
experiments with the flux simulator. Nucleic Acids Research, 40(20):10073–10083,
2012.

[102] Kate R Rosenbloom, Joel Armstrong, Galt P Barber, Jonathan Casper, Hiram Claw-
son, Mark Diekhans, Timothy R Dreszer, Pauline A Fujita, Luvina Guruvadoo, Max-
imilian Haeussler, et al. The UCSC genome browser database: 2015 update. Nucleic
Acids Research, 43(D1):D670–D681, 2015.

[103] Meghana M Kulkarni. Digital multiplexed gene expression analysis using the NanoS-
tring nCounter system. Current Protocols in Molecular Biology, 94(1):25B–10, 2011.

[104] Pierre-Luc Germain, Alessandro Vitriolo, Antonio Adamo, Pasquale Laise, Vivek Das,
and Giuseppe Testa. RNAontheBENCH: computational and empirical resources for
benchmarking RNAseq quantification and differential expression methods. Nucleic
Acids Research, 44(11):5054–5067, 2016.

[105] Mateusz G Adamski, Patryk Gumann, and Alison E Baird. A method for quantitative
analysis of standard and high-throughput qPCR expression data based on input sample
quantity. PloS One, 9(8):e103917, 2014.

[106] Angela R Wu, Norma F Neff, Tomer Kalisky, Piero Dalerba, Barbara Treutlein,
Michael E Rothenberg, Francis M Mburu, Gary L Mantalas, Sopheak Sim, Michael F
Clarke, et al. Quantitative assessment of single-cell RNA-sequencing methods. Nature
Methods, 11(1):41–46, 2014.

[107] Iain C Macaulay and Thierry Voet. Single cell genomics: advances and future per-
spectives. PLoS Genet, 10(1):e1004126, 2014.

[108] Claudia Ghigna, Cristina Valacca, and Giuseppe Biamonti. Alternative splicing and
tumor progression. Current Genomics, 9(8):556–570, 2008.

[109] Joan E Hooper. A survey of software for genome-wide discovery of differential splicing
in RNA-Seq data. Human genomics, 8(1):3, 2014.

178



[110] Guey-Shin Wang and Thomas A Cooper. Splicing in disease: disruption of the splicing
code and the decoding machinery. Nature Reviews Genetics, 8(10):749–761, 2007.

[111] Daniel Mordes, Xiaoyan Luo, Amar Kar, David Kuo, Lili Xu, Kazuo Fushimi, Guowu
Yu, Paul Sternberg Jr, and Jane Y Wu. Pre-mRNA splicing and retinitis pigmentosa.
Molecular Vision, 12:1259, 2006.

[112] Natalia N Singh and Ravindra N Singh. Alternative splicing in spinal muscular atrophy
underscores the role of an intron definition model. RNA Biology, 8(4):600–606, 2011.

[113] Sagar Chhangawala, Gabe Rudy, Christopher E Mason, and Jeffrey A Rosenfeld. The
impact of read length on quantification of differentially expressed genes and splice
junction detection. Genome Biology, 16(1):131, 2015.

[114] Juliane C Dohm, Claudio Lottaz, Tatiana Borodina, and Heinz Himmelbauer. Sub-
stantial biases in ultra-short read data sets from high-throughput DNA sequencing.
Nucleic Acids Research, 36(16):e105–e105, 2008.

[115] Davide Risso, Katja Schwartz, Gavin Sherlock, and Sandrine Dudoit. GC-content
normalization for RNA-Seq data. BMC Bioinformatics, 12(1):480, 2011.

[116] Jun Li, Hui Jiang, and Wing Hung Wong. Modeling non-uniformity in short-read rates
in RNA-Seq data. Genome Biology, 11(5):1, 2010.

[117] Alyssa C Frazee, Andrew E Jaffe, Ben Langmead, and Jeffrey T Leek. Polyester:
simulating RNA-seq datasets with differential transcript expression. Bioinformatics,
31(17):2778–2784, 2015.

[118] Wei Zheng, Lisa M Chung, and Hongyu Zhao. Bias detection and correction in RNA-
Sequencing data. BMC Bioinformatics, 12(1):1, 2011.

[119] Kasper D Hansen, Steven E Brenner, and Sandrine Dudoit. Biases in Illumina tran-
scriptome sequencing caused by random hexamer priming. Nucleic Acids Research,
38(12):e131–e131, 2010.

[120] Hui Jiang and Julia Salzman. A penalized likelihood approach for robust estimation
of isoform expression. Statistics and Its Interface, 8(4):437, 2015.

[121] Daniel R Zerbino, Premanand Achuthan, Wasiu Akanni, M Ridwan Amode, Daniel
Barrell, Jyothish Bhai, Konstantinos Billis, Carla Cummins, Astrid Gall, Carlos Garćıa
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guide to single-cell RNA-sequencing for biomedical research and clinical applications.
Genome Medicine, 9(1):75, 2017.

[145] S Steven Potter. Single-cell RNA sequencing for the study of development, physiology
and disease. Nature Reviews Nephrology, 14(8):479, 2018.
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